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ABSTRACT 

Numerical techniques in solving electromagnetics problems are the most common 

methods which are used during the last decades, especially with the growing 

inventions of fast speed computers and powerful softwares. In this thesis, it is 

attempted to approach a fast efficient algorithm for solving the famous Hallen and 

Pocklington integral equations, regarding the current distribution on a finite-length 

linear thin wire antenna. 

 

In order to approach this aim, Method of Moments (MOM) which is a powerful 

numerical technique to solve integral equations and Fast Multipole Method (FMM) 

which is a mathematical technique to accelerate iterative solutions is to be combined. 

Afterward, this technique will be applied on Hallen and Pocklington’s integral 

equations (HE and PE) for a transmitting thin wire antenna which is energized by 

delta-function generator (DFG) in order to find current distribution along the 

antenna.  

In the thesis, there would be a discussion part about solvability and non-solvability of 

HE and PE equations and comparison between the results using this technique and 

the ones which have been extracted by applying the other methods mentioned in 

different books for solving HE and PE equations in frequency domain. 

Keywords: Current distribution, thin wire antenna, Hallen’s integral equation, 

Pocklington’s integral equation, Galerkin method, Entire domain basis function, Fast  

multipole method. 
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ÖZ 

Bu amaçla, güçlü bir sayısal yöntem olan Moment Metodu ile ötelemeli çözümleri 

hızlandıran bir yöntem olan Hızlı Çok kutup Yöntemi birlikte kullanılmaktadır. 

Burada sayısal çözümleri yapılan Tümlev Denklemleri Hallen ve Pocklington 

denklemleri olarak anılmaktadır. Antenin uyarılması delta-işlevli bir kaynakla 

yapılmaktadır. 

Bu tezde ayrıca Hallen ve Pocklington denklemlerinin çözülebilirlikleri ile ilgili bir 

tartışma da yer almaktadır. 

Bu çalışmada elde edilen sonuçlar, başka sayısal yöntemlerle elde edilenlerle ve bazı 

deneysel verilerle de karşılaştırılmaktadır. 

 Anahtar Kelimeler: Akım dağılımı, ince tel anten, Hallen integral denklemi, 

Pocklington integral denklemi, Galerkin yöntemi, Tüm etki alanı bazında 

fonksiyonu, Hızlı çok kutuplu yöntem 
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Chapter 1 

1 INTRODUCTION 

1.1 Numerical Electromagnetics  

Generally in electromagnetics, there are two ways to solve problems. One is to create 

a particular formulation and computational method for a specific problem when we 

use all terms in the instruction to simplify the solution which may even lead to a 

closed formula as the solution. The second method is to create general solutions 

which cover various types of problems, but may not be necessarily as effective as a 

specific solution to an especially designed problem. 

Numerical solutions of integral equations, as general solutions for electromagnetic 

problems, are based on breaking the areas under consideration, into smaller parts 

with identical geometric shapes. Then, a unique formulation is applied on each of 

these parts and finally by rejoining them, the solution for the main problem is 

retrieved. Commonly in EM problems, the desired parameters which are to be found 

are surface or volume charge density, surface or volume current density and 

electromagnetic fields. The other parameters of a problem such as capacitance, input 

impedance, radiation pattern, losses, cut-off frequency, etc. will be derived from 

them. 

The basic of the formulation over all of the numerical methods in EM is nothing but 

“Maxwell's Equations”. In each method, by using the principles of the method and 
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extracting appropriate mathematical relations, these equations are changed in order to 

be solved by numerical algorithms. In the most cases, by using the integral equations 

(extracted from Maxwell's Equations) and breaking the region of the integral into the 

smaller parts with similar geometric shapes, we change these IEs (integral equations) 

into the matrix equations which can be solved easily, using fast computerized 

algorithms.  

Therefore, the first step in moment method solution in EM problems is formulating 

the problems in terms of integral equations. Overall, there are three types of integral 

equations in formulating EM problems; (1) MFIE (magnetic field integral equation), 

(2) EFIE (electric field integral equation) and (3) CFIE (compound field integral 

equation). All these equations are formulated with the help of Maxwell's equations 

and auxiliary potentials.  

After formulating the problem, breaking the area of the object is to be performed 

(discretizing the related integral equation). This is so called “Meshing” operation, 

applicable in different ways. Choosing each way depends on the type of the 

formulation and geometrical shape of the object. For example, surface meshes have 

the shape of triangle, rectangle or multi-edge in general, if the formulation is applied 

on the surface of the object (like EFIE). Between the elements of surface mesh, only 

multi-edge and triangle are the ones which can cover the curved surfaces with a good 

approximation. Elements of rectangular shape have problem to approximate the 

double curved surfaces like the sphere and are used only for the plane-surface 

objects. 
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Apparently, numerical solutions (which is in contrast with analytical solutions) in 

EM problems, especially the ones in which the number of unknowns is large, brings 

the necessity of computer mathematical softwares and programs. In this thesis, 

MATLAB as a strong mathematical program will be used for calculating the desired 

unknowns and illustration of the correspondent figures.    

1.2 Applied Numerical Method 

In most of the numerical methods in electromagnetics, current or charge density will 

be calculated first, but sometimes the priority is by finding EM fields. For example in 

"Finite Element Method", first we find EM fields and then other parameters are 

extracted from them while in MOM, charge or current density is determined first and 

the rest are computed accordingly. 

In chapter 2, after introducing MOM and its classifications, two particular 

electromagnetic problems which are Hallen’s and Pocklington’s integral equations 

will be solved for current distribution over a center-fed thin dipole antenna, using 

two different classes of MOM which are “Point Matching” and “Galerkin” methods 

and the results will be compared to each other. In addition to figures which help us in 

our assessments, appropriate MATLAB codes for the solutions have been provided 

and attached to the thesis in appendix section. 

1.3 Optimization of the Solution 

In order to speed up the calculation process in chapter 2, we will impose a multilevel 

algorithm so called “Fast Multipole Method” (FMM) to our solution. This method 

can accelerate the matrix-vector product as well as linear system solution which 
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arises from applying the Galerkin method or any similar numerical method which 

ends up to a matrix equation. The result of combining FMM is preserving time and 

memory in the computation process. In chapter 3, FMM and some of its applications 

will be introduced in more details. 

1.4 Outline   

The purpose of this thesis is to solve time harmonic HE and PE for unknown current 

by applying Galerkin method (which is a certain type of MOM) and to find the 

distribution of the current over a thin wire structure. Then we optimize our solution 

by performing the algorithm which is defined in FMM to reduce the computation 

time and the number of operations in Galerkin method from order of N×N into order 

of N logN. 

In the last chapter, Galerkin method and FMM are being combined and once more, 

the derived solution will be applied on the thin wire structure in order to examine its 

efficiency, advantages and disadvantages.     

In this thesis, the considered electromagnetic structure is assumed to be a perfect 

conductor. Although in reality there are various types of structures in which isolating 

materials like dielectrics are used, analyzing EM problems in such structures requires 

another class of MOM and formulation which is not the subject of this thesis. 
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Chapter 2 

2 METHOD OF MOMENTS 

2.1 Terminology 

Most solutions of functional equations can be interpreted in terms of projections onto 

subspaces of functional spaces. For computation, these subspaces must necessarily 

be finite dimensional. For theoretical work they may be infinite dimensional. The 

general concept of solution of equation by projection onto subspaces has a number of 

different names. Some of the more common ones are the method of projections, the 

method of weighted residuals, the Petrov-Galerkin method and the method of 

moments [33].  

The name “Method of Moments” has been derived from the original terminology that 

  is the n
th

 moment of the function . When  is replaced by an 

arbitrary   , we continue to call the integral “a moment of ”. For the other 

mentioned names above, there will be brief explanations in part (2.2.3) of this thesis.  

2.2 Basic Concept of MOM 

The method of moments can be applied on the problems in which the formulation of 

them can be expressed as a linear operational equation in the form; 

(2.1)  

( )nx f x dx ( )f x nx

nw f

( )L f g
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where   in (2.1) is a linear operator. This operator can be a differential, an integral 

or an integro-differential operator. Here  is an unknown function and  is a 

known function. In the first step of MOM it is considered that  can be defined over 

the domain of , ( ), in a linear combination form of; 

(2.2)  

where s are unknown scalars and s are known “expansion functions” (in MOM, 

these expansion functions are called Basis Functions). It is necessary to mention that 

for approximate solutions (2.2) is a finite summation while for exact solutions, it is 

usually an infinite one. Using (2.1), (2.2) and linearity of , we have; 

(2.3)  

Now, we define a set of linearly independent “testing functions” or “weighting 

functions” in the range of . Taking the inner product of (2.3) with 

each (can be considered in integral form) and using the linearity of the inner 

product yields; 

(2.4)        (j = 1, 2, 3,…, N) 

The above equation can be written as; 

L

f g

f

L
LD

1

N

i i

i

f f


 

i if

L

1

( )
N

i i

i

L f g


 

 1 2, ,..., Nw w w L

jw

1

, ( ) ,
N

i j i j

i

w L f w g


    
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(2.5)        

  

Thus, we can write (2.5) as 

(2.6)  

   
      

           

                                 , ( )ij j iZ w L f     where;  i,j = 1,2, ..., N  

 

 

In (2.6), matrix Z is usually called MOM impedance matrix while matrix I contains 

the unknown coefficients. If Z is an invertible matrix, we can find I using; 

(2.7)                                                                
 

 

2.2.1 Solving Matrix Equation 

In the last part of the solution, equation (2.6) must be solved in order to find the 

unknown coefficients ( 's in Eq. (2.5)). To do so, there are three methods: 

1) Finding the inverse of Z directly or by applying inversion methods 

2) Decomposing Z into two or more simpler matrices (usually Upper and Lower 

    Triangular matrices) 

3) Iterative method 

Once any of these methods was applied, we will find the unknown coefficients, 

regardless that what parameters they represent in EM. After that, depending on the 

1 1 1 2 1 1 1

2 1 2 2 2 2 2

1 2

, ( ) , ( ) , ( ) ,

, ( ) , ( ) , ( ) ,

, ( ) , ( ) , ( ) ,

N

N

N N N N N N

w L f w L f w L f w g

w L f w L f w L f w g

w L f w L f w L f w g







           
    
           

    
    
           

     
1 1N N N N

Z I V
  
 

1i iI 

1 ,j jV w g

     
1

I Z V


 

i
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type of formulation (EFIE, MFIE or CFIE) and the parameters of the fundamental 

primary integral equation, (2.2) will help us to find our desired electromagnetic 

factors such as charge or current density distribution function.  

2.2.2 Classification of MOM 

In order to perform MOM algorithm, one should know how to choose basis and test 

functions which are the most appropriate to the nature of the problem. There are lots 

of mathematical functions to be used for this purpose which are defined either on a 

part of the object namely “Sub-domain Functions” or the “Entire-domain Functions” 

which are defined over the whole abject. 

2.2.2.1 Basis (expansion) Functions 

In MOM, those groups of functions can be chosen for basis functions which are 

differentiable or integrable up to the degree of the operator , but in practice, we 

cannot choose any function for this purpose because the mathematical operations due 

to applying  on them may become too complicated or sometimes impossible to 

solve. The noticeable point in choosing basis functions is that their behavior should 

be the same as the expected solution of the problem or at least they can satisfy the 

boundary conditions up to a certain level. 

Generally in moment method, there are two types of basis functions to be used. One 

is the Entire Domain functions which as their name implies, are defined and nonzero 

over the entire length of the structure being considered. Thus no segmentation 

involved in their use. A common entire domain basis set is that of sinusoidal 

functions, where;
(2 1)

( ) cos ,
2 2

n

n x
f x x

  
     

 
.  

L

L
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Note that this basis set would be particularly useful for modeling the current 

distribution on a wire dipole, which is known to have primarily sinusoidal 

distribution. The main advantage of entire domain basis functions lies in problems 

where the unknown function may render a priori to follow a known pattern [1]. 

 The other types of basis functions are Sub-domain functions which are defined in a 

specific part of the operator's domain in such a way that they are zero at the rest of 

the domain. The choice of basis (expansion) functions depends on the type of the 

problem and its complications.  

Overall, the entire domain functions can be used restrictedly and they can cover a 

limited spectrum of the problems to analyze, while we can almost use sub-domain 

functions in any kind of problems, provided that we can discrete the region of 

operation into N similar small parts. Common sets of sub-domain functions and their 

illustration are as below; 
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Figure 2.1: Common sub-domain basis functions [1] 

2.2.2.2 Weighting (testing) Functions 

In general, any function can be used as testing function, but we should be aware that 

if the function is too complicated, finding the elements of  Z (Impedance matrix) will 

be hard and sometimes impossible. Two commonly used testing functions are; 

 1) Dirac-Delta function   2) Basis function itself 

and we have; 

.w g w g    

In the first choice, N different  functions will be considered in N different points of 

the region and "dot product" (.) is applied. The elements of Z and V will be found 

( )x


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easily because according to the property of   function, the result of integration of 

the inner product of  with any function over any region, is conditionally equal to 

the magnitude of the function itself at the place of  (the condition is that the region 

of integration should contain the point which  function is infinite at that point). 

The process of applying the inner product of  on Eq.(2.4) for N different points, is 

the same as we equate both sides of Eq.(2.4) for N different points. Hence, this 

method is called “Point Matching” or “Point Collocation”. It is the one of the 

methods which is applied in part 2.3 of this thesis. 

Choosing N testing points is completely optional. They can be symmetric or 

asymmetric in the region of operation. The advantage of this method is simplicity in 

finding the elements of matrix Z. 

In the second choice, basis functions are used as testing functions (i.e, ,  j= 

1,2,...,N). This method is called “Galerkin's Method”. A great advantage of this 

method is its 2
nd

 –order error.  

2.2.3 Special Terms 

The term "Method of Moment" is changed regarding to basis and test relations. Here 

are some of the most common terms: 

2.2.3.1 Method of Weighting Residuals 

 It is derived from the following interpretation that if Eq.(3.2) in [5] represents an 

approximation quantity, then the difference between the exact and approximate 

( )L f 's is; 











j jw f



 

12 

( )i i

i

g L f r   

which is called the residual r . The inner products ,iw r   are called the weighted 

residuals. Now, Eq.(1.3) in [5] is obtained by setting all weighted residuals equal to 

zero. 

2.2.3.2 Galerkin's Method 

 This is when the domains of L  and *L  are the same and therefore we choose if  = 

iw . When L  is self-adjoint, this has the advantage of making our fundamental 

matrix symmetric. Since the treatment of a symmetric matrix is easier than a non-

symmetric one, particularly for eigenvalue problems, this can be a theoretical 

advantage. However, Harrington claims that for computations, the evaluation of the 

elements of the matrix may be difficult when Galerkin's method is used, and this 

often out weights the advantage of keeping the matrix symmetric [17]. 

2.2.3.3 Collocation Method 

 Perhaps the simplest mode for computation is the collocation or point matching 

method. This basically involves satisfying the approximate representation at discrete 

points in the region of interest. In terms of the method of moments, this is formally 

equivalent to choosing the testing (weighting) functions to be Dirac-delta functions. 

The integrations represented by the inner products now become trivial, which is the 

major advantage of this method. 

 2.2.3.4 Least Square Method 

Another possibility is that of minimizing the length or norm of the residual, given by 

Eq.(3.4) in [5]. If the usual inner product is used, the procedure is called least square 

method. It is evident that minimization of r  is equivalent to finding the shortest 

distance from g  to the subspace generated by ( )iL f , i = 1,2,...,N. Hence by the 
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projection theorem, the least norm is obtained by taking ( )i iw L f  in the method of 

moments. 

There are other types of specializations such as “The Rayleigh-Rits Variational 

Method” and “The Perturbation Method” in which, more specifications and 

mathematical formulas are needed to represent their properties regarding the method 

of moments. 

 

2.3 Application on Thin Wire Antenna 

In this section, current distribution over a finite length dipole antenna is derived, 

using the moment method. The considered dipole is assumed to be very thin (

,a l a  ) as we can call it a thin wire antenna. First step is formulating the 

problem in terms of an integral equation. We examine our solution for both Hallen’s 

and Pockkington’s integral equations. Then we solve them for the unknown current 

density, using both “point matching (collocation)” in section (2.3.1) and “Galerkin” 

form of moment method in (2.3.2). 

2.3.1 Point Matching Method 

The pulse function is used as our basis and Dirac-delta function as the weighting 

function in order to simplify HE and PE and transform them to the matrix equations 

which are easily solvable by MATLAB codes. The results are significantly accurate 

compared with the similar examples in [1]. 

2.3.1.1 Pocklington's Integral Equation  

Consider a thin wire antenna in figure 2.2 where an incident electric field ( )iE r   

impinges on its surface. Therefore a linear current density sJ  is induced on the 
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surface. The induced current density will reradiate and produces a field which is 

referred to as the scattered electric field ( )sE r . So at any point in the space the total 

electric field will be ( ) ( ) ( )t i sE r E r E r  .  

When the antenna is transmitting, the field is generated by a voltage source 

connected to the terminals of the dipole at the center. There are two ways for 

modeling the source in our problem. First is called delta-function generator [DFG] 

which refers to an ideal generator placed in a gap between the arms of the antenna. 

Second one is called magnetic frill generator which is assumed to be a very thin 

disc-like generator placed at the center of the wire. For the simplicity, let's assume 

the first one illustrated in figure (2.2).  

 

 

Figure 2.2: Uniform plane wave obliquely incident on a conducting wire[1] 
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Figure 2.3: Wire Antenna with Idealized DFG[20] 

 

When the observation point is brought onto the surface of the wire, while wire is 

perfectly conducting, the total tangential field vanishes; 

                               ( ) ( ) ( ) 0t i s

z s z s z sE r r E r r E r r                   (2.8) 

Thus,  ( ) ( )s i

z s z sE r r E r r    . In general, the scattered electric filed generated by 

the current density sJ  is given by: 

 
2

1
( ) ( )

1
[ ( )]

sE r j A j A

j k A A






    

   

 (2.9) 

where, A is the vector (auxiliary) potential in space. However, for observation on the 

surface of the wire only the z-component of the field is needed which is; 

 
2

2

2

1
( ) [ )]s z

z z

A
E r j k A

z


  


 (2.10) 

Since ( )
4

jkR

s

s

e
A J r ds

R







  , by neglecting the edge effects we can write; 
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/2 2

/2 04 4

jkR jkR
l

z z z
l

s

e e
A J ds J ad dz

R R

 


 

 


       (2.11) 

If the wire is very thin, the current density zJ  is not a function of the azimuthal angle 

and we can write;  
( )

2 ( )
2

z
z z z

I z
aJ I z J

a





    

where ( )zI z  is assumed to be an equivalent filament line-source current located a 

radial distance a   from the z-axis, as shown in figure 2.4. Therefore, Eq.(2.11) 

reduces to;                         

                                          
/2

/2
( ) ( ) ( , )

l

z z
l

A a I z G z z dz 


                            (2.12) 

where 
2

0
( , )

jkRe
G z z d

R






               and   

where; 2 2 2( ) ( ) ( )R x x y y z z          = 2 2 2( 2 cos( ) ( )a a z z          

 

 

Figure 2.4: Dipole segmentation and its equivalent current [1] 

while  is the radial distance to the observation point and a  is the radius. Figure 2.5 

shows the segmentation on the wire antenna. 
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Figure 2.5: Geometry of the problem showing the zoning of the antenna[15] 

 

Because of the symmetry of the wire, the observations are not a function of  . For 

simplicity let us choose 0  . Hence;   

2 2 2( ) 4 sin ( ) ( )
2

R a a z z





     

Now from Eq.(2.8) and (2.10) we have 

                 

2
/2

2

2 /2

1
( ) ( ) ( , ) ( )

l
i

z z
l

d
j k I z G z z dz E a

dz


 
                       (2.13) 

 

or                 

                                

2
/2

2

2 /2
( ) ( ) ( , ) ( )

l
i

z z
l

d
k I z G z z dz j E a

dz
 


              (2.14) 

Interchanging integration with differential equation we can write; 
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2
/2

2

2/2
( ) ( ) ( , ) ( )

l
i

z z
l

d
I z k G z z dz j E a

dz
 



 
      
 

  (2.15) 

Equation (2.15) is referred to as Pocklington's integral equation which can be used to 

determine the equivalent filamentary line-source current and thus current density on 

the wire, by knowing the incident field on the surface of the wire [1]. If we assume 

that the wire is very thin such that a   so we can write ( , )
4

jkRe
G z z

R



   , Eq.(2.15) 

can be expressed as; 

/2
2 2 2 2 2

5/2
( ) [(1 )(2 3 ) ] ( )

4

jkR
l

i

z z
l

e
I z jkR R a k a R dz j E a

R
 






        

  (2.16)  

2.3.1.2 Hallen's Integral Equation 

Referring to figure (2.4), as a   and a l  so that the effects of the end faces of 

the wire can be neglected, according to the boundary conditions and the assumption 

of perfect conductivity of the arms, we can say that total tangential E field at the 

surface of the wire and the currents at the end surfaces of the cylinder are vanished. 

Since the current induced on the surface of the wire in the direction of za , we can 

write; 

 
2 2

2

2 2

1 1t z z
z z z

A d A
E j A j j A

z dz
  

 


      

  
 

since the total tangential electric filed is zero on the surface of the cylinder, above  

equation is reduced to;                

2

2
0z

z

d A
kA

dz
                                                   (2.17) 
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Because the current density is symmetrical on the wire, Az is also symmetrical. So the 

solution for the above differential equation is;  

                                        ( ) [ cos( ) sin( )]zA z j B k C k z                             (2.18) 

where B and C are constants. Also for a current-carrying wire, its potential is given 

by 
/2

/2
( ) ( )

4

jkR
l

z z
l

e
A z I z dz

R




    , hence; 

                       
/2

/2
( ) [ cos( ) sin( )]

4

jkR
l

z
l

e j
I z dz B k C k z

R 




                                (2.19) 

 where /    is the intrinsic impedance of the conductor. If the applied voltage 

at the terminals of the antenna is iV  it can be shown that / 2iC V  while B can be 

found by applying the boundary condition at the end surfaces of the cylindrical wire. 

Equation (2.19) is referred to as Hallen's integral equation for a perfectly conducting 

wire. 

2.3.1.3 Moment Method Solution 

After formulating the problem in terms of Hallen and Pocklington's integral 

equations we can modify the integral form into the matrix equation. To do so, let us 

divide the wire uniformly to N equal segments each by height /l N   as shown in 

figure (2.5). Now for applying the point matching form of MOM we take observation 

(field) points (or matching points) mz  at the midpoint of each subinterval as it is 

shown in the figure below where the positions of mz 's and nz 's are;     
( 1)

n

n l
z

N


  

and 
(2 1)

, 1,2,..., 1
2

m

m l
z m N

N


    
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Figure 2.6: Wire antenna with N segments 

Then we approximate I(z) as 
1

( ) ( )
N

n n

n

I z I P z


 . Refer to moment method solution, 

Pn's are our basis functions. Let us take them as pulse functions; 

1 ,
( )

0 ,

n

n

n

z z
P z

z z


 



. 

Substituting I(z) in Hallen's integral equation yields; 

  

         
/2

/2
1

( , ) ( ) cos( ) sin( )
2

N l

n m n m m
l

n

j j
I G z z P z dz B kz k z

 


                 (2.20) 

or       

 

1

1

( , ) cos( ) sin( ) , 1,2,..., 1
2

n

n

N z

n m m m
z

n

j j
I G z z dz B kz k z m N

 





                  (2.21) 

 

which is  [ ][ ] [ ]mn n mA I e  in its matrix form where;  

/2

/2
( , )

l

mn m
l

A G z z dz


             and          cos( ) sin( )
2

m m m

j j
e B kz k z

 
   . 
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The point is that the value for B is unknown. Applying boundary condition on current 

at  z=l is imposed as In =0. Then C must be treated as an unknown in the system of 

linear equation previously formed by our matrix equation. Therefore the matrix 

equation is in the form;  

 

(2.22) 

 

 

 

where;    cos( ) , sin( | |)
2

m m m m

j j
d kz b k z

 
      

Hence by solving the above equation, current distributions induced over the surface 

of the thin wire (dipole) antenna which is extracted using Hallen's integral equation, 

pulse basis function and the point matching procedure, agrees quite well with the 

experimental results [33].Let us solve an example to see the result. 

Problem 1- Using Hallen’s IE, determine the current distribution I(z) on a straight 

dipole of length . Plot |I| = |Ire +j Iimg | against z. Assume excitation by a 

unit voltage,N = 51,Ω = 2 ln( /a)= 12.5, and consider cases: (a)  = λ/2, (b)  = 

1.5λ  (problem 5.23 from [28] ). 

Solution, using the above procedure would result into the figure below; 

1

2

1

11 12 1, 1 1

2

21 22 2, 1 2

11

1 2 , 1 ,

1 1

N N

N N

NN

N N N N N N N N
NN N

I

I

I

B

b
A A A d

b
A A A d

b
A A A d

b







 

 

  
    
    
     
    
     
     

   



 

22 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Current distribution, part (a) where; 2( ), / 2m    

                               

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Current distribution, part (b) where; 2( ), 1.5m    

In this example, basis functions are assumed to be sub-domain pulse functions and 

Dirac-delta functions as testing functions are used, hence the term point matching 

(collocation) implied.  Figures (2.7) and (2.8) illustrate desired current distribution 

over the surface of the thin wire dipole with characteristics in problem1.  
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Observations are analogous to the results demonstrated in [28]. We can observe that 

in figure (2.7) the current is distributed sinusoidally (as it was expected) with a good 

approximation over all parts of the wire except at the end points where it should be 

zero according to the boundary conditions explained previously. 

Our second problem (example 8.4 from [1]) is to compare the results when piece 

wise constant (pulse) sub-domain basis functions and point matching are used for 

both Hallen's IE and Pocklington's IE. 

Problem 2- Assume a center-fed linear dipole of 0.47l   and 0.005a  . 

Determine the normalized current distribution over the length of the dipole using 

N=21 segments to subdivide the length. Plot the current distribution. Use 

Pocklington's integrodifferential equation to solve the problem.  

Because the current at the ends of the wire vanishes, the piecewise constant sub-

domain basis functions are not the most judicious choice. However, because of the 

simplicity, they are chosen here to illustrate the principles even though the results are 

not the most accurate.  

 

Assume the excitation voltage 1iV v  [1]. 

Using the same process, the results are as follows; 
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Figure 2.9: Current distribution, 1( ), 0.47m   .  

The figure above shows that the solution by using both integral equations and point 

matching with pulse basis functions (and Dirac-delta test functions) are satisfactory. 

However, as current must vanish at the end points (whereas we have currents as 

above) it shows that piecewise constant basis functions are not judicious ones to be 

taken as the basis functions. Overall, the results near the feeding point are perfectly 

matched with the assumption of sinusoidal current distribution over a wire with 

/ 2l  . 

Moreover, the result extracted from Pocklington's IE gives better convergence at the 

feeding point, though it takes more time to be computed because of the complexity in 

Eq.(2.15) or (2.16). Also it provides more accurate result at the end points of the wire 

than the one in which using Hallen's IE was used. 
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2.3.2 Galerkin Method 

As it was mentioned in section 2.2.3.2, it is referred to this method when an identical 

function is used for both basis and testing functions. Here in this part, we use an 

Entire-domain cosine function and compare the results for both HE and PE equations 

with the ones we’ve found for point-matching method and the ones which are in 

some references. 

 The process of transformation of the equations to the matrix equation forms are the 

same as the previous ones. But the formulation of the problems is a bit different due 

to the limitations that arise from using entire-domain function.  

2.3.2.1 Hallen’s Integral Equation 

To get started, consider Hallen’s equation of the form; 

sin( , ') ( ') ' cos( | |)
2

( )
h

h
G z z I z dz C kz

j
k z


                            (2.23) 

where h  denotes the one arm length of the antenna. Fikioris [13] suggests a 

numerical method consisting 
       1 2

( )I z I z CI z   where 
   1

I z  satisfies 

eq.(2.23) with the right hand side containing only the sine component and 
   2

I z  

satisfying the equation with the right hand side containing only the cosine 

component. The solution for Galerkin method with entire domain basis function 

cos( / )n z h  with n=0,1,…,N leads to two ( 1) ( 1)N N    systems of equations for 

the basis function coefficients 
(1)

nI  and  
(2)

nI . 

Once the two systems were solved, we determine C as; 
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(1)

0

(2)

0

( 1)

( 1)

N n

n n

N n

n n

I
C

I





 
 

 
 

and the final current approximation on the wire which vanishes at end points of the 

antenna takes the form; 

(1) (2)

0

( ) [ ] cos
N

n n
n

n z
I z I CI

h





 
   

 
                           (2.24) 

Galerkin solution to problem 1 in section 2.3.1.3 with N=40 segments yields the 

following figure; 

 
Figure 2.10: Current distribution, Galerkin vs. Point matching (HE) 

Figure (2.10) shows that the distribution over the wire antenna is almost the same for 

Galerkin and Point matching, but point matching applies the boundary condition 

better than Galerkin at the end points (hence the name Point Matching). 
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Hallen’s solution for a thin wire antenna ( 0.25 , 0.01h a   ) with N=40 

evaluation points of current are illustrated in figures (2.11) and (2.12).  

 
Figure 2.11: Current distribution (real) over the dipole 

The figure above shows the real part of the current distribution on the dipole antenna. 

The most abnormal behavior of using Galerkin method with entire-domain functions 

in this particular example is the rapid oscillations that occur at the and points for real 

part and the imaginary part of the current especially at the center of dipole where it is 

fed.  

Fikioris [13] claims that these oscillations will decrease when the Delta-Function 

Generator (DFG) is replaced by the equivalent Frill-Generator(FG). Also, there is a 

discussion about the relation between the radius of the wire antenna and the number 

of segments to be chosen (see [13]). 
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Figure 2.12: Current distribution (imaginary) over the dipole 

For the coefficients of the basis functions we also illustrate the results in figures 

(2.13) and (2.14), to observe their variances along the wire. The real parts of the 

coefficients appear to oscillate about z=0 while the behavior of the imaginary parts 

seems to grow eventually in magnitude.  

The behavior of real part coefficients is associated with the oscillations near end 

points of the current whereas the behavior of imaginary part is associated with the 

oscillations near the center point in imaginary current. 
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Figure 2.13: Coefficients of the basis functions (real) 

 

 

Figure 2.14: Coefficients of the basis functions (imaginary) 
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2.3.2.2 Pocklington’s Integral Equation 

Considering PE and Galerkin method, both formulation and numerical technique are 

the same as the point-matching. The only difference is the basis and test functions 

which are identical and has the form of entire-domain basis function cos( / )n z h .  

Obviously, dissimilar to the Hallen’s case, the integrand would take more 

components and this yields to more complicated and time consuming evaluation of 

the impedance matrix elements and its inverse to solve the equation for current 

distribution. 

2.3.2.3 Moment Method Solution 

From equations (2.16), (2.17), (2.18) and the fact that the potential of a current 

carrying wire is given by 
/2

/2
( ) ( )

4

jkR
l

z z
l

e
A z I z dz

R




     we can write; 

/2
2 2 2 2 2

5/2
( ) [(1 )(2 3 ) ] cos( )si

4
n( | |)

2

jkR
l

z
l

e
I z jkR R a k a R dz C kz

R

j
k z






     

 

Next step is to substitute 
0

'
( ') cos

N

n

n

n z
I z I

h





 
  

 
  and inner product both sides of the 

above equation with the same weighting function cos
n z

h

 
 
 

 in order to form the 

matrix equation.  

Then using the same technique of Fikioris [21], current distribution on the thin wire 

antenna using Pocklington’s integral equation and Galerkin with entire-domain basis 

function would be as the one illustrated in figure (2.14) and (2.15) for real and 

imaginary parts of the current. 
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Figure 2.15: Current distribution, Galerkin vs. Point matching (PE) 

  

From the figure above, we can see that solution of PE using an entire domain 

sinusoidal basis and test functions (Galerkin) is representing sinusoidal distribution 

over the antenna more than using pulse and dirac-delta functions (point matching). 

Moreover, solution of PE holds the boundary conditions at the antenna end points 

more than HE, especially in case of applying Galerkin method. 

After solving various examples of MOM application on the thin wire antenna for 

unknown current distribution, we have noticed that even by using fast computers, 

numerical solution for such n-body problems has the order of O( 2N ) complexity 

with the large amount of memory consumption to store the data in order to use them 

for the other desirable parameters.  
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For example, to solve a matrix equation in our problems, we first generate the 

impedance matrix, then calculate its inverse and multiply this inverse matrix by  both 

sides of the equation which is extremely expensive considering time and memory, 

especially when the number of unknowns is quite large which is case for big 

structures in the real  life. 

Therefore, in the next chapter, we are going to introduce one of the most popular fast 

algorithm called “Fast Multipole Method (FMM)” to achieve the recent solutions, 

using less time and memory allocations. In chapter 4, the combination of FMM with 

Point-matching and Galerkin methods are applied for the particular problems of 

solving Hallen’s and Pocklington’s integral equations. 

 

 

 

 

 

 

 

 

 



 

33 

Chapter 3 

3 Fast Multipole Method (FMM) 

3.1 Introduction to FMM 

Fast Multipole Method (FMM)  introduced first time by Greengard and Rokhlin for 

2D and 3D problems, to reduce the computational complexity of N-body  problems 

by applying an error-controlled approximation technique to the Green’s function of a 

system. It allows the interaction due to a group of particles to be computed as if there 

is a single particle. 

 

When FMM is applied to vector electromagnetic problems, the interaction between 

well-separated groups of basis functions can be evaluated very quickly. This will 

lead to a rapid calculation of matrix-vector product in an iterative solver without 

storing many of the matrix elements. Hence, this technique speeds up the calculation 

and reduces the amount of memory needed for solving all type of such problems 

[14]. 

Here in this thesis, the Green’s function under consideration is the Green’s function 

for Helmholtz equation and obviously we are going to examine FMM application on 

a one dimensional problem of thin wire antenna. 

Later on in chapter 4, when we modify this method for our MOM solution of the 

wire antenna, we will see that FMM is not only useful to speed up the multiplication 
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of 
1Z V

, but it is also useful to accelerate evaluation of the impedance matrix Z and 

facilitate the computation of inverse impedance matrix in this particular problem 

which is finding the current distribution on the DFG fed thin dipole antenna. 

For now, let us focus on the basic concepts of general FMM algorithm and the steps 

of forming a FMM solution. 

3.2 Basic Concepts 

Many problems in physics (computation of electrostatic or gravitational potentials 

and fields), molecular dynamic simulations, fluid mechanics and density estimation 

are based on the pairwise interaction models between particles in one or two domains 

of the form; 

1

( ) ( )
N

i i

i

f y q K y x


   

where K is a known kernel or green function, iq ’s are scalar values and { }ix  is a set 

of “source points” and y is a “target point”. To evaluate f  for a set of target points 

{ }jy , there is a need for N×N calculation. Typically, the applications of interest 

involve the evaluation of f  at the same locations ix  with the self-interaction term 

omitted); 

( ) ( )
N

j j i

i j

f x K x x


   

To do so, FMM suggests to divide the domain of f  into particular number of sets 

containing numbers of source points as well as target points which are close to each 

other in some dimensions so we can treat them as a single source point and name the 

interaction between adjacent groups as “near field” interaction (near, while the 
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interaction between the groups which are not close to each other is called “far field” 

interaction. 

The process of making sets is called “spatial grouping”. Separation of the sets is very 

crucial because the separation parameter controls the efficiency of our fast 

summation by means of the accuracy since the truncation number depends on this 

parameter substantially.  

The near field interaction and target point evaluation is to be performed by the 

regular pairwise interactions. For the approximation of far field evaluation, we 

perform three steps of aggregation, translation and disaggregation.  

These steps are based on the degeneration of the kernel K. The process of 

aggregation is to relate the source points in one group with a point in group which is 

usually located at the center of the group by means of some functions.  

After this process is done for all groups, we form a groupwise set of interactions 

between any two (non-adjacent) group centers to evaluate the effects of points in one 

group on the other one referred to translation operation. Note that this process is 

performed only between the group centers regardless of point source locations.The 

final step is to expand the value found at the center of target group to each individual 

member (target points) of that group.  

Generally, in FMM there are two types of spatial grouping. One is to group both 

source and target points as described above. The other one is to group only target 

points or source points. In the recent one, regarding to the final step of FMM, there 
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are two different expansions; “local (near field) expansion” and “multipole (far field) 

expansion”.To have a better understanding, let us show this process by some figures. 

 

Figure 3.1: Well-separated sets 

In figure above, X  and Y denote the source and target points respectively. 

 

 

Figure 3.2: Grouping with respect to the target sets 
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Figure 3.3: Local expansion 

 

 

Figure 3.4: Grouping with respect to the source sets 

 

Figure 3.5: Far field expansion 
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As it was mentioned previously, for expansion we group both source and target 

points and we use a translation function to translate the interactions between the 

elements and the center in one group to another group center.  

It is to say that FMM is performed in two forms. One is called “Single Level Fast 

Multipole Method” (SLFMM) in which we break the domain into particular number 

of sets for sources and targets only one time. The second form is called “Multilevel 

Fast Multipole Method” (MLFMM)  which goes some steps further than SLFMM 

and groups the derived sets from SLFMM onto some certain levels using hierarchical 

tree-codes. Figures (3.6) and (3.7) illustrate SLFMM and its multilevel version. 

 

Figure 3.6: Standard and single level FMM 

While total number of operations for standard algorithm is in the order of O(NM), the 

total number of operations for SLFMM is in the order of O(N+M+KL). 
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Figure 3.7: MLFMM using hierarchical clustering of domain 

In the figure above S and R denote far field and local expansions. S|S , R|R and S|R 

terms are multipole-to-multipole, local-to-local and multipole-to local translations 

respectively. 

Looking to the recent two figures, it is more understandable that why FMM has 

become a popular algorithm for solving large N-body problems. It can break the 

number of operations needed for the solution significantly into a few operations, 

saving time and memory. 

3.3 Degenerating Kernel 

After an overview of FMM algorithm, it is time to see how we can derive 

aggregation, translation and disaggregation operators for two separated sets which 

are far away from each other in a particular equation’s kernel (which in our case, it is 

Green’s function of Helmholtz equation, without the 1/(4π) constant). 

Assume the kernel of the form; 
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(| |)

( )
| |

jke
G




r-r'

r,r'
r - r'

                                            (3.1) 

where r’ and r are the source and observation points respectively. This kernel is 

called separable or degenerate if; 

1

( ) ( ) ( )
L

l l

l

G f g


r,r' r r'                                        (3.2) 

We need this degeneration, to represent eq.(3.1) in form of matrix multiplication 

which is required to solve our problem. Let us modify eq.(3.1) by adding a small 

offset d to the source location. Then; 

jk jk
e e
 


r-r'+d D+d

r - r'+ d D + d
                                       (3.3) 

where D=r-r’. From the definition of Spherical Hankel function of the Second kind 

and using addition theorem for the spherical waves [4]; 

(2)

1

0

ˆ ˆ( 1) (2 1) ( ) ( ) ( )
jk L

l

l l

l

e
jk l J k h k P





   
D+d

d D d.D
D + d

          (3.4) 

where 1( )J x is the spherical Bessel function of the first kind and ( )lP x is the legendre 

polynomial of order l. According to [14] we can convert eq.(3.4) to a surface integral 

on the unit sphere through the relationship; 

ˆ

1
1

ˆ ˆ ˆ ˆ4 ( ) ( ) ( ) ( )l jk

l lj J k P e P dS   
k.d

d d.D k.D                   (3.5) 

where k̂ is unit radial vector on the suface of sphere. Using eq.(3.5) we can write; 
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ˆ 1 (2)

1
0

ˆ ˆ( ) (2 1) ( ) ( )
4

jk

jk l

l l

l

e k
e j l h k P dS



 
 



  
D+d

k.d
D k.D

D + d
     (3.6) 

where the summation will be truncated at some finite order L (truncation number) 

which limits the acceptable value for D and d. Hence; 

ˆ

1

ˆ( , )
4

jk

jk

L

e k
e T k dS





 
D+d

k.d
k,D

D + d
                             (3.7) 

with, 

1 (2)

0

ˆ ˆ ˆ( , ) ( ) (2 1) ( ) ( )
4

L
l

L l l

l

k
T k j l h k P







  k,D D k.D             (3.8) 

which is refered to as transfer function or translation operator. This transfer function 

converts the outgoing waves radiating from a source point to a set of incoming 

spherical waves at an observation point[14]. 

Now consider figure(3.8), where points α and β are two observation and source 

points respectively, close to (in terms of wave length) r and r’ and the vector v=r-r’. 

 

Figure 3.8: Vector translation 

we can write;                       v = (r -α)+(α -β)+(β -r')  
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or       'r r  v = r +r -r  

Using the above and eq.(3.7) rewriting the Green’s function and taking a summation 

over it for N source points yields; 

 
ˆ ( )

1
1 1

ˆ( , )
n

r rn

jkN N
jk

L

n nn

e
e T k dS 






 

 
r-r

k. r -r
k,r

r - r
         (3.9) 

which is; 

ˆˆ

1
1 1

ˆ( , )
n

rr n

jkN N
jkjk

L

n nn

e
e T k e dS







 

 
r-r

k.rk.r
k,r

r - r
        (3.10) 

with transfer function; 

1 (2)

0

ˆ ˆ ˆ( , ) ( ) (2 1) ( ) ( )
4

L
l

L l l

l

k
T k j l h k P  







  k,r r k.r      (3.11) 

Equations (3.11) shows that the transfer function depends only on r which is the 

distance between the centers of non-adjacent (in far-field) groups. Moreover, if we 

move the source or target points (r,r’) a small distance from their previous location 

(meaning another source and target points inside the same groups), the transfer 

function will not change and it computes the interaction between any two points 

close to the centers  α and β. 

Looking at eq.(3.10), we observe that computation of the sum of Green’s functions 

evaluated between the target point r and all the source points nr  close to β can be 

easily performed, showing a fast computation of a matrix-vector product. 
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It shows that for each source location nr , we calculate the value of 
ˆ

rn
jk

e k.r
 which 

from now we call it radiation function. Then this fuctions for all sources are 

aggregated to evaluate a local field at β, the center of the segment. Then, this field is 

transmitted using transfer function to form a local field at α, the center of target 

points in a group. Multiplication of this local field with 
ˆ

rjk
e  k.r

(receive function) of 

the target point and the integration over unit sphere which we refer to disaggregation, 

yields the desired summation. 

In the next chapter where we modify our MOM solution to Hallen’s integral 

equation, with SLFMM, you’ll see how we locate our basis and test functions into 

the formulation of fast multipole algorithm to speed up MOM matrix-vector 

multiplication in order to find unknown current distribution on the thin wire dipole. 
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Chapter 4 

4 Application of FMM on MOM 

4.1 Reviewing the problem 

Once more, we need to have a look at the thin wire antenna structure and 

formulations of Hallen’s and Pocklington’s integral equations in addition to the 

MOM solutions for both integral equations in order to modify them for FMM 

solution. 

Consider the upper half-part of the wire shown in figure (4.1) with the length h 

oriented at the origin along z-axis. This cylindrical antenna is fed by DFG at the 

center (here the origin) by Vi=1 (volts). Therefore we can assume that voltage along 

the wire at any mz  point on the axis of the cylinder is one volt everywhere. Since the 

wire is very thin, we assume no current flow at the end points and consider only 

filamentary current on the surface of the cylinder (at nz  points) since the antenna is a 

good conductor. 

Our moment method solution starts with discretization of the domain into N-1 

segments (thus N observation and source points mz  and nz  (n,m=1,2,…,N) on the 

axis and surface respectively). Then approximating the current by the sum of 

weighted basis functions, which in case of Hallen’s IE and 
'

( ') cos
n z

f z
h

 
  

 
 

(entire-domain) basis function yields; 
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10

'
cos [ cos( ) sin( )]

4

h jkRN

n

n

n z e j
I dz B kz C k z

h R



 





  
     

  


       (4.1) 

and interchanging integral and summation goes to; 

       1 0

'
cos [ cos( ) sin( )]

4

h jkRN

n

n

n z e j
I dz B kz C k z

h R



 





 
    

 
 

      (4.2) 

where 2 2( ')R z z a   . Inner product of both sides of eq.(4.2) with testing 

functions ( ) cos
m z

w z
h

 
  

 
 (m=1,2,…N), hence the name Galerkin method, we 

have; 

1 0 0

0

'
cos cos

4

cos [ cos( ) sin( )]

h h jkRN

n

n

h

m z n z e
I dz dz

h h R

j m z
B kz C k z dz

h

 











   
    

   

 
  

 

  


   (4.3) 

Equation (4.3) can be transformed to the matrix equation [ ][ ] [ ]Z I V  with unknown 

current coefficients nI . Direct calculation of impedance matrix Z elements and 

inverting the matrix and even the matrix-vector multiplication of 
1[ ] [ ] [ ]I Z V  is 

quite time and memory consuming process. Therefore we modify the solution of 

Hallen’s IE by the fast multipole method algorithm in the next section. 
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Figure 4.1: Structure of the antenna with N-1 segments of height z  

4.2 FMM and Galerkin 

In the FMM solution of Galerikn method, considering the distance between each pair 

of target and source points, some of them are far-away from each others. Therefore 

for the interaction matrix Z , V and I vectors, one can decompose each term of the 

matrix-vector equation in the form; 

[ ][ ] [ ] [ ][ ] [ ][ ]

near

near far near near far far

m m m m m mfar

I
Z I Z Z Z I Z I V

I
    

 
     

    (4.4)
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for each row of matrices V and Z. This means that at each observation point, total 

source effect is the addition of effect of sources near to the observation point (in near 

field) and the effect of the far-field sources. For the sources in near-field of the 

observation point, we apply the regular matrix-vector multiplication resulted from 

Galerkin method and keep the values found for each observation point mz  , then we 

evaluate far field effects for that observation point and add it to the previous value to 

find the total effect in that specific target point. 

4.3 Far-field Approximation 

Let us start with grouping source points and target points as it is illustrated in figure 

(4.1) for SLFMM. Since we divide one arm into N-1 segment of height 'z z   , we 

have M=N target and sourec points.  

Assumption 1: Let a (radius) to be very small( 2a h ) so we can put source points 

on the same axis of evaluation points, here z-axis ( ( ) 0 r,r'  ). 

we can form K groups each contains equal number (N/K) of source and target points 

namely β and α (α,β=1,2,…,K) respectively according to figure (4.1) with group 

centers ,c c  .  

Now, substituting equations (3.10) and (3.11) into the left hand side of eq.(4.3), 

writing the part which is forming our impedance matrix farz  with interchanging the 

integral orders, we’ll have; 

'
ˆˆ '

1 0 0

'ˆ( , , ) cos cos '
z cz c nm

h h jkjkfar

mn L

m z n z
Z T k e dz e dz

h h





    
    

   
  

k.rk.r
k r    (4.5) 
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In the above equation, assumption 1 help us to take all vectors along z-axis (even 

wave vector ˆ ˆ
zak , since the problem reduced to a one dimensional problem). This 

and using the geometry of the problem we can write; 

1 11 1 1 12 2 1 1

2 21 1

1 1

K K

far

K K K KK K

U B W U B W U B W

U B W
Z

U B W U B W

 
 
 
 
 
 

                        (4.6) 

where for α,β=1,2,…,K  , l,l’=1,2,…,L and p,q=1,2,…,N/K we have; 

( )
1 1 1

,

( ' )

1 1 1'
,

'

[ ] cos

' '
[ ] cos '

ˆ( , ) ' ,
[ ]

0

jk z c
p ppl

N K N K

jk z c

q ql q

N K N K

l z

ll

l z
U e dz

h

l z
W e dz

h

T k a l l and faraway
B

otherwise





 

 









 

 
   
  

 



   
  

 

 
  

 

 
  

 


 






,r

         (4.7) 

where;      
1 (2)

0

ˆ( , ) ( ) (2 1) ( )
4

l
u

l z u

u

k
T k a j u h k c c  







   ,r  

because;   ˆˆ( ) (cos ) 1u z uP a P  .r  since 0   due to assumption 1. 

Equation (4.6) can be rewritten as; 

1 1

11 12 1

2 2

1 2

0 0 0 0

0 0

0 0

0 0

K

far

K K KK

K K

U W
B B B

U W
Z

B B B
U W

   
    
         
 

    
   

   (4.8) 
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or farZ UBW . Therefore, in the final steps of our moment method solution we will 

have; 

[ ] [ ] [ ] [ ][ ] [ ][ ]near far far far near nearV V V Z I Z I     

while; 

1[ ] [ ][ ] [ ] [ ] [ ]near near near near near nearV Z I I Z V    

and 

1

1

1 1 1

[ ] [ ][ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

far far far far far far

far

far

V Z I I Z V

UBW V

W B U V





  

  




          (4.9) 

and finally;  [ ] [ ] [ ]near farI I I  . 

Equation (4.9) shows how much SLFMM simplifies the solution of Hallen’s IE for 

unknown current distribution, not only by means of reduction in the amount of 

memory needed, but speeds up the calculation of impedance matrix and its inverse 

(U and W matrices are block diagonal matrices which are easily inverted). Note that 

we should consider proper basis and test functions in eq.(4.7) when applying other 

moment methods for U and W in aggregation and disaggregation process. 

 It is to say that instead of computing matrix Z by calculation of order O( 2N ), 

matrices nearZ and farZ are computed with lower order of computations. Matrix nearZ  

has nonzero entries in place of blocks U B W    in eq.(4.6) where α,β are not 

faraway.  
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Under mild restrictions on the boundary (see [22],[8]), there are O(K) of these blocks 

and each contains 2 2/N K  entroes. So the matrix nearZ has O(
2N K ) nonzero 

entries. Each matrix Uα has Ln/K entries as does each Wβ, while each Bαβ has at most 

L nonzero entries. So, storage of Z
near

 and the decomposition of eq.(4.8) requires 

O(N
2
/K +LN+LK

2
) storage locations which is smaller than O(N

2
) locations. We are 

free for choosing K in order to minimize complexity, but we should first find the 

value of L which is the length of expansion (truncation number) controlling the error 

of the approximation  of or far-field matrix Z
far

 [22]. 

4.3.1 Number of Multipoles 

In many books and papers, various amounts for L which is called the number of 

multipoles or truncation limit, is suggested. In [14] the suggested values for the 

number of multipoles are as follows; 

 5log( )L kd kd           (Rokhlin for single precision calculation) 

 10log( )L kd kd         (Rokhlin for double precision [14],[2]) 

 
1 3( )L kd kd          (Chew and Song  [14],[5]) 

where β is the number of digits of required accuracy (β=6 is sufficient for reasonable 

accuracy [14]) and d is the diameter (width) of each group. 

Now, with everything in hand, once more we resolve Hallen’s equation for unknown 

current on the thin wire antenna applying SLFMM on Galerkin method solution. 
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4.4 SLFMM Solution for Hallen IE 

In this section, the same Hallen’s IE we solved in section 2.3.2.1 will be resolved for 

unknown current density. The same entire-domain cosine function is considered as 

both basis and test functions (hence Galerkin).  

We start again by dividing the domain (thin wire antenna upper arm) into N-1=39 

segments, thus N=40 source points achieved. Considering equal number of 

evaluation points in the same coordination of source points and loop over each p,q=8 

points makes a set of K=5 groups with 8 points for both source and targets with the 

width d=h/K (h is the length of upper arm). 

Then, by taking each two adjacent groups and applying the normal Galerkin method  

we compute the currents on each evaluation point due to the source points (here 

voltage points) which are in near field of that specific evaluation point. This will lead 

to 40 near basis function coefficients. 

The next step is to find the same coefficients but this time, due to the sources which 

are faraway. To do so, first we’ll find the group centers of each groups and directly 

form the matrices in eq.(4.8). using eq.(4.7). Note that the number of multipoles L is 

chosen due to the recommended one by Chew in 4.3.1 which rounded up to L=5. 

Therefore, we can form eq.(4.9) to compute currents on each target point due to its 

far basis functions. 

Note that in eq.(4.7) the block matrices have the size as follows; 
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1

2

5 5

5

1

2

5 5

5

11 12 15

5 5

51 52 55

0 0

0
:

0

0

0 0

0
:

0

0

:

W

W
Radiation Matrix W

W

U

U
Receive Matrix U

U

B B B

Transfer Matrix B

B B B







 
 
 
 
 
 

 
 
 
 
 
 

 
 

  
 
 

 

where the size for each block of  W, U and B is; 

5 8[ ]W   ; 8 5[ ]U   ; 5 5[ ] L LB     (α,β=1,2,…,K) 

where each block in U is the conjugate transpose of the correspondent block in W. 

Since U and V matrices are block diagonal, finding their inverse to form eq.(4.9) is 

easily performed by pseudo-inverting (inverse of non-square matrics 5 8[ ]W   and 

8 5[ ]U  ) each block elements of them to get another two block diagonal matrices U
-1

 

and W
-1

 of the sizes 5×5 block-wise and 25×40 and 40×25 element-wise. To invert 

matrix B with the size of 25×25 (element-wise) we use less memory than inverting 

the original impedence matrix in direct MOM solution. Even by diagonalizing 

transfer matrix B, computation of its inverse can be performed faster and expansion 

of blocks may not be necessary. 
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Overall, equation (4.9) gives us the current distribution over the half-wire according 

to far field approximation and adding the near field and far field results for current 

we can find the overall current distribution illustrated in figure (4.2). 

 

Figure 4.2: Current distribution for HE, over the thin wire, FMM  

As it is shown in the figure above, the distribution computed by FMM is almost 

similar to the one in 2.3.2.1 for Hallen’s IE with maximum 5.5% error at the center 

of the dipole. Similar to the direct Galerkin solution and boundary conditions at the 

end points are significantly satisfied. 

Computational time using FMM is 15.582 seconds (12.821 seconds more than the 

compuatational time in direct method) but in terms of memory, the maximum 

memory allocation to form all near and far field matrix manipulations is about 10 KB             

which  compared to the direct MOM (26.896 KB) shows a significant performance 

of applying FMM in this particular problem. Therefore, we can state that the fast 
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multipole method is a reliable technique for such problems, at least with the pre-

defined assumptions for this particular integral equations in one dimension. 

The results from solving n-body problems using FMM in different areas of science 

have shown that this method is quite useful and save time and memory which in 

problems with bigger and more complicated shape objects in 2D and 3D spaces, it 

shows its efficiency in terms of time and memory, especially when it comes to 

Multilevel Fast Multipole Method (MLFMM). 
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Chapter 5 

5 CONCLUSION 

To sum up the results of this thesis, we observe that in addition to applying moment 

method as an effective and strong numerical technique for solving Hallen and 

Pocklington’s integral equations with point matching and Galerkin (comparing the 

results), combining the solution with Fast Multipole Method accelerates our solution 

and reduce the memory required for this particular numerical technique. 

Although thin wire antenna problem and current distribution is not too much 

complicated when compared to 2D and 3D problems and may not have many 

applications in real life, performing FMM and MOM for this problem in this thesis at 

least give us the idea of how such fast algorithm can save time and memory when it 

comes to bigger and much more complicated antenna problems. 

This algorithm and expanding the solution into 2D and 3D problems may be quite 

useful especially for bigger and more complicated objects which can be considered 

as the future work for this thesis. 

 

Using such numerical techniques in reverse engineering can be performed for 

designing antennas with desired functionalities due to the desired distribution of the 

current which comes through the incomming or outgoing radiations. 
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Appendix A: Matlab Programs for Point Matching MOM 

A-1: Hallen’s integral Equation 

%------------------------------------------------------------------% 
%------------------------------------------------------------------% 
%---------------Matlab code for figure(2.7)where L=lamda/2---------% 

%-----------------and figure(2.8)where L=1.5Lamda------------------% 
%------------------------------------------------------------------% 
%------------------------------------------------------------------% 
clc 
clear all 
clc 
%______________________________Constants___________________________% 
c=3.0e+08; 
etha=377; 
Frequency=1.5e+08;   %Operating Frequency% 
Voltage=1;           %Applied Voltage% 
lamda=c/Frequency;   %Wavelength of the field% 
L=lamda/2;           %Length of the Wire% 
a=L/518;             %Radius of the Wire% 
k=2*pi/lamda; 
N=40;                %Number of Segments% 
delta=L/(N); 
%__________________________________________________________________% 
t=linspace (-0.5*L,0.5*L,N); 
zm=-0.5*L-delta 
for m=1:N+1 
    zm=zm+delta; 
    zn=-0.5*L+delta/2; 
    for n=1:N+1 
        if (n==N+1) 
            A(m,n)=-i*cos(k*zm)/(etha); 
        else 
            syms z 
            R=sqrt(a^2+(z-zm)^2); 
            g=inline([exp(-i*k*R)/(4*pi*R)]); 
            G=quad(g,zn,zn+delta/2); 
            A(m,n)=G; 
        end 
        zn=zn+delta; 
    end 
    V(m,1)=[-i*Voltage*sin(k*abs(zm))]/(2*etha); 
end 
Ainv=inv(A); 
I=(Ainv*V); 
for p=1:N 
    P(p,1)=I(p,1); 
end 
plot(t,abs(P),t,real(P),'g',t,imag(P),'r') 
xlabel('Dipole Length (m)') 
ylabel('I(z),Current density (A/m)') 
title('Current distribution over dipole antenna f=150 MHz') 
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A-2: Hallen vs. Pocklington  

%------------------------------------------------------------------% 
%------------------------------------------------------------------% 
%-----------------------Matlab code for figure(2.9)----------------% 
%------------------------------------------------------------------% 
%------------------------------------------------------------------% 
clear all 
clc 
%____________________________Costants__________________________% 
c=3.0e+08; 
etha=377; 
Frequency=3.0e+08;    %Operating Frequency% 
Voltage=1;            %Applied Voltage% 
lamda=c/Frequency;    %Wavelength of the Field% 
L=0.47*lamda;         %Length of the Wire% 
a=0.005*lamda;        %Radius of the Wire% 
k=2*pi/lamda; 
N=21;                 %Number of Segments% 
delta=L/(N); 
%_______________________________________________________________% 
t=linspace (-0.5*L,0.5*L,N); 
zm=-0.5*L-delta; 
for m=1:N+1 
    zm=zm+delta; 
    zn=-0.5*L+delta/2; 
    for n=1:N+1 
        if (n==N+1) 
            A(m,n)=-cos(k*zm); 
        else 
            syms z 
            R=sqrt(a^2+(z-zm)^2); 
            g=inline([exp(-i*k*R)/(4*pi*R)]); 
            G=quad(g,zn,zn+delta/2); 
            A(m,n)=G; 
        end 
        zn=zn+delta; 
    end 
    V(m,1)=[-i*Voltage*sin(k*abs(zm))]/(2*etha); 
end 
Ainv=inv(A); 
I=(Ainv*V); 
for h=1:N 
    H(h,1)=I(h,1); 
end 
zm=-0.5*L-delta; 
for m=1:N+1 
    zm=zm+delta; 
    zn=-0.5*L+delta/2; 
    for n=1:N+1 
        if (n==N+1) 
            A(m,n)=-i*cos(k*zm)/(etha); 
        else 
            syms z 
            R=sqrt(a^2+(z-zm)^2); 
            g=inline([exp(-i*k*R)/(4*pi*R^5)]*[(1+j*k*R)*(2*R^2-

3*a^2)+(k*a*R)^2]); 
            G=quad(g,zn,zn+delta); 
            A(m,n)=-lamda*etha*G/(8*pi^2*i); 
        end 
        zn=zn+delta; 
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    end 
    V(m,1)=[-i*Voltage*sin(k*abs(zm))]/(2*etha); 
end 
Ainv=inv(A); 
I=(Ainv*V); 
for p=1:N 
    P(p,1)=I(p,1); 
end 
plot(t,abs(H)/abs(max(H)),t,abs(P)/abs(max(P)),'r') 
xlabel('Dipole Length (m)') 
ylabel('I(z),Current density (A/m)') 
title('Current distribution, Hallen Vs. Pocklington') 
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Appendix B: Matlab Programs for Galerkin MOM 

B-1: Hallen’s Integral Equation (a=L/518) 

%------------------------------------------------------------------% 

%-------------This Matlab code computes current distribution-------%  

%------------for HE,using Galerkin method with entire domain-------% 

%---------------------basis and test functions---------------------%  

%------------------------------------------------------------------% 

%-----The result is shown in figure(2.10) with the result of-------% 

%-------------the code in appendix A-1 for comparison--------------% 

%------------------------------------------------------------------% 

clear all 
clc 
%____________________________Costants__________________% 
c=3.0e+08; 
etha=377; 
Frequency=1.5e+08;    %Operating Frequency% 
Voltage=1;            %Applied Voltage% 
lamda=c/Frequency;    %Wavelength of the Field% 
L=lamda/2;           %Length of the Wire% 
a=L/518;             %Radius of the Wire% 
k=2*pi/lamda; 
N=40;                 %Number of Segments% 
delta=L/(N); 
h=L/2; 
for m=1:N+1 
    for n=1:N+1; 
        G2=0; 
        for z=-h:delta:h 
            G1=0; 
            for zp=-h:delta:h 
                R=sqrt(a^2+(z-zp)^2); 
                g1=(exp(-1i*k*R)/(4*pi*R))*cos(n*pi*zp/L)*delta; 
                G1=g1+G1; 
            end 
            g2=cos(m*pi*z/L)*delta*G1; 
            G2=g2+G2; 
        end 
        A(m,n)=G2; 
    end 
z=-h:delta:h; 
vm1=-(0.5i*delta/etha)*cos(m*pi*z/L).*sin(k*abs(z)); 
vm2=-delta*cos(m*pi*z/L).*cos(k*z); 
V1(m,1)=sum(vm1); 
V2(m,1)=sum(vm2); 
end 
I1=A\V1; 
I2=A\V2; 
n=0:N; 
nom=((-1).^n).*I1'; 
denom=((-1).^n).*I2'; 
C=sum(nom)/sum(denom); 
In=(I1+C*I2) 
m=0; 
for z=-h:delta:h; 
    m=m+1; 
    I(m,1)=0; 
    for n=1:41 
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        Iz=In(n)*cos(n*pi*z/L); 
        I(m,1)=I(m,1)+Iz; 
    end 
end 
t=-h:delta:h;    
plot(t,abs(I)) 
xlabel('Dipole Length (m)') 
ylabel('I(z),Current density (A/m)') 
title('Current distribution over dipole antenna f=150 MHz') 

 

B-2: Hallen’s Integral Equation (a=0.01λ) 

%------------------------------------------------------------------% 
%------------------------------------------------------------------% 
%---------Matlab code for figures(2.11),(2.12),(2.13),(2.14)-------% 
%------------------------------------------------------------------% 
%------------------------------------------------------------------% 
clear all 
clc 
%____________________________Costants__________________________% 
c=3.0e+08; 
etha=377; 
Frequency=1.5e+08;    %Operating Frequency% 
Voltage=1;            %Applied Voltage% 
lamda=c/Frequency;    %Wavelength of the Field% 
L=lamda/2;         %Length of the Wire% 
a=0.01*lamda;        %Radius of the Wire% 
k=2*pi/lamda; 
N=40;                 %Number of Segments% 
h=L/2; 
dz=h/N;dzp=h/N; 
for m=1:N+1 
    for n=1:N+1; 
        G2=0; 
        for z=dz:dz:h+dz 
            G1=0; 
            for zp=0:dzp:h 
                R=sqrt(a^2+(z-zp)^2); 
                RP=sqrt(a^2+(z+zp)^2); 
                g1=((exp(-1i*k*R)/(4*pi*R))+(exp(-

1i*k*RP)/(4*pi*RP)))*cos((n-1)*pi*zp/h)*dzp; 
                G1=g1+G1; 
            end 
            g2=cos((m-1)*pi*z/h)*dz*G1; 
            G2=g2+G2; 
        end 
        A(m,n)=G2; 
    end 
z=dz:dz:h+dz; 
vm1=(0.5i/etha)*cos((m-1)*pi*z/h).*sin(k*z)*dz; 
vm2=cos((m-1)*pi*z/h).*cos(k*z)*dz; 
V1(m,1)=sum(vm1); 
V2(m,1)=sum(vm2); 
end 
I1=A\V1; 
I2=A\V2; 
n=0:N; 
nom=((-1).^n).*I1'; 
denom=((-1).^n).*I2'; 
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C=sum(nom)/sum(denom); 
In=(I1+C*I2) 
z=0:dz:h; 
z=z'; 
nz=z*n; 
Iz=In'*cos((pi/h)*nz); 
zl=0:-dz:-h; 
zr=0:dz:h; 
subplot(2,2,1) 
plot(zl/lamda,real(Iz),zr/lamda,real(Iz),'b') 
xlabel('z/lamda (m)') 
ylabel('Re {I(z)},Current density (A/m)') 
title('Current distribution, Hallen ') 
subplot(2,2,2) 
plot(zl/lamda,imag(Iz),zr/lamda,imag(Iz),'b') 
xlabel('z/lamda (m)') 
ylabel('Img {I(z)},Current density (A/m)') 
title('Current distribution, Hallen ') 
n=0:N; 
subplot(2,2,3) 
plot(n,real(In)) 
xlabel('n') 
ylabel('Re {I(n)},Basis function coefficients') 
title('Current distribution, Hallen ') 
subplot(2,2,4) 
plot(n,imag(In)) 
xlabel('n') 
ylabel('Img {I(n)},Basis function coefficients') 
title('Current distribution, Hallen ') 
figure() 
subplot(1,2,1) 
plot(zl/lamda,abs(Iz),zr/lamda,abs(Iz),'b') 
xlabel('z/lamda (m)') 
ylabel('Magnitude {I(z)},Current density (A/m)') 
title('Current distribution, Hallen ') 
subplot(1,2,2) 
plot(n,abs(In)) 
xlabel('n') 
ylabel('Magnitude {I(n)},Basis function coefficients') 
title('Current distribution, Hallen ') 

 

 

B-3: Pocklington’s Integral Equation 

%------------------------------------------------------------------% 

%-------------This Matlab code computes current distribution-------% 

%------------for PE,using Galerkin method with entire domain-------% 

%---------------------basis and test functions---------------------%  

%------------------------------------------------------------------% 

%-----The result is shown in figure(2.15) with the result of-------% 

%-------------the code in appendix A-2 for comparison--------------% 

%------------------------------------------------------------------% 

clear all 
clc 
%____________________________Costants__________________________% 
c=3.0e+08; 
etha=377; 
Frequency=1.5e+08;    %Operating Frequency% 
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Voltage=1;            %Applied Voltage% 
lamda=c/Frequency;    %Wavelength of the Field% 
L=lamda/2;           %Length of the Wire% 
a=L/518;             %Radius of the Wire% 
k=2*pi/lamda; 
N=40;                 %Number of Segments% 
delta=L/(N); 
h=L/2; 

  
for m=1:N+1 
    for n=1:N+1; 
        G2=0; 
        for z=-h:delta:h 
            G1=0; 
            for zp=-h:delta:h 
                R=sqrt(a^2+(z-zp)^2); 
                g1=(exp(-1i*k*R)/(4*pi*R^5))*((1+i*k*R)*(2*R^2-

3*a^2)+(k*a*R)^2)*cos(n*pi*zp/h)*delta; 
                G1=g1+G1; 
            end 
            g2=cos(m*pi*z/h)*delta*G1; 
            G2=g2+G2; 
        end 
        A(m,n)=G2; 
    end 
z=-h:delta:h; 
vm1=-(0.5i*delta/etha)*cos(m*pi*z/h).*sin(k*abs(z)); 
vm2=-delta*cos(m*pi*z/h).*cos(k*z); 
V1(m,1)=sum(vm1); 
V2(m,1)=sum(vm2); 
end 
I1=A\V1; 
I2=A\V2; 
n=0:N; 
nom=((-1).^n).*I1'; 
denom=((-1).^n).*I2'; 
C=sum(nom)/sum(denom); 
In=(I1+C*I2) 
m=0; 
for z=-h:delta:h; 
    m=m+1; 
    I(m,1)=0; 
    for n=1:41 
        Iz=In(n)*cos(n*pi*z/h); 
        I(m,1)=I(m,1)+Iz; 
    end 
end 
t=-h:delta:h;    
plot(t,abs(I)/0.002) 
xlabel('Dipole Length (m)') 
ylabel('I(z),Current density (A/m)') 
title('Current distribution over dipole antenna f=150 MHz') 
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Appendix C: Matlab Program for FMM and Galerkin Method(HE) 

%------------------------------------------------------------------% 
%------------------------------------------------------------------% 
%--------This Matlab code,computes the current distribution--------% 
%-------over the wire antenna for Hallen’s integral equation-------% 
%--------------modifying Galerkin method with FMM------------------% 

%-------Results of this code and the code in Appendix B-1 has------% 

%-------------------been illustrated in figure (4.2)---------------% 

%------------------------------------------------------------------% 
 

clear all 
clc 
%____________________________Costants__________________________% 
c=3.0e+08; 
etha=377; 
Frequency=1.5e+08;    %Operating Frequency% 
Voltage=1;            %Applied Voltage% 
lamda=c/Frequency;    %Wavelength of the Field% 
Length=lamda/2;         %Length of the Wire% 
radius=Length/518;        %Radius of the Wire% 
k=2*pi/lamda; 
N=40;                 %Number of points% 
delta=Length/(N-1); 
L=5;          %mnumber= number of multipoles  L=kd+beta*(kd)^(1/3)     

beta=6,d=group width 
K=5;        %Number of groups% 
a=1:K;b=1:K;   %Group numbers 
l=1:L;lp=1:L; 
P=N/K;Q=N/K;        %number of target/source points in each group 
%------------------------Near Field Calculations-------------------% 
h=P*delta;           %width of segments 
H=2*h; 
INear=zeros(N,1); 
for t=0:K-2 
    for m=1:2*P 
        for n=1:2*Q 
            G2=0; 
            for z=-h:delta:h 
                G1=0; 
                for zp=-h:delta:h 
                    R=sqrt(radius^2+(z-zp)^2); 
                    g1=(exp(-1i*k*R)/(4*pi*R))*cos(n*pi*zp/H)*delta; 
                    G1=g1+G1; 
                end 
                g2=cos(m*pi*z/H)*delta*G1; 
                G2=g2+G2; 
            end 
            A(m,n)=G2; 
        end 
        z=-h:delta:h; 
        vm1=-(0.5i/etha)*cos(m*pi*z/H).*sin(k*abs(z))*delta; 
        vm2=cos(m*pi*z/H).*cos(k*z)*delta; 
        V1(m,1)=sum(vm1); 
        V2(m,1)=sum(vm2); 
    end 
    I1=A\V1; 
    I2=A\V2; 
    n=0:2*P-1; 
    nom=((-1).^n).*I1'; 
    denom=((-1).^n).*I2'; 
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    C=sum(nom)/sum(denom); 
    In=(I1+C*I2); 
    if t==0 
        INear=[In;zeros(N-(t+2)*P,1)]; 
    else 
        

INear=[INear(1:t*P);INear(t*P+1:(t+1)*P)+In(1:P);In(P+1:2*P);zeros(N

-(t+2)*P,1)]; 
    end 
end 
%----------------------Far Field Calculations----------------------%  

  

  
ca=(P-1)*delta/2:h:Length-(P-1)*delta/2;              %group centers 
cb=(Q-1)*delta/2:h:Length-(Q-1)*delta/2; 

  

  
%----------------------Receive and Radiation Matrices--------------% 
for  b=1:K 
    for lp=1:L 
        for q=1:Q 
            syms zp 
            Rad=inline(exp(1i*k*(zp-cb(b)))*cos(lp*pi*zp/h)); 
            W(lp,q,b)=quad(Rad,Length*((q-1)/(N-1)+(b-

1)/K),Length*(q/(N-1)+(b-1)/K)); 
         end 
    end 
end 
RAD=blkdiag(W(:,:,1),W(:,:,2),W(:,:,3),W(:,:,4),W(:,:,5)); 
for  a=1:K 
    for p=1:P 
        for l=1:L 
            syms z 
            Rcv=inline(exp(-1i*k*(z-ca(a)))*cos(l*pi*z/h)); 
            U(p,l,a)=quad(Rcv,Length*((p-1)/(N-1)+(a-

1)/K),Length*(p/(N-1)+(a-1)/K)); 
         end 
    end 
end 
RCV=blkdiag(U(:,:,1),U(:,:,2),U(:,:,3),U(:,:,4),U(:,:,5)); 
%----------------------------Transfer Matrix-----------------------% 

  
for  a=1:K 
    for b=1:K 
        for l=1:L 
            for lp=1:L 
                if (abs(a-b) > 1) & (l==lp) 
                    t=0:l; 
                    T=(-

1i).^(t+1).*(2*t+1).*besselh(t,2,k*abs(ca(a)-cb(b))); 
                    B(l,lp,a,b)=k*sum(T)/(4*pi); 
                else 
                    B(l,lp,a,b)=0; 
                end 
            end 
        end 
    end 
end 

  
B2D=zeros(K*K,K*K); 
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for xm=1:K:K^2-K+1 
    xM=xm+(K-1); 
    for ym=1:K:K^2-K+1 
        yM=ym+(K-1); 
        B2D(xm:xM,ym:yM)=B(:,:,xM/K,yM/K); 
    end 
end 
AF=pinv(RAD)*((B2D)\pinv(RCV)); 
for m=1:N 
    z=-Length/2:delta:Length/2; 
    vm1=-(0.5i/etha)*cos(m*pi*z/Length).*sin(k*z)*delta; 
    vm2=cos(m*pi*z/h).*cos(k*z)*delta; 
    V1(m,1)=sum(vm1); 
    V2(m,1)=sum(vm2); 
end 
I1=AF*V1; 
I2=AF*V2; 
n=0:N-1; 
nom=((-1).^n).*I1'; 
denom=((-1).^n).*I2'; 
C=sum(nom)/sum(denom); 
IF=(I1+C*I2); 
IF=I2+I1; 
InTotal=IF+INear; 
m=0; 
for z=-Length/2:delta:Length/2; 
    m=m+1; 
    I(m,1)=0; 
    for n=1:40 
        Iz=InTotal(n)*cos(n*pi*z/Length); 
        I(m,1)=I(m,1)+Iz; 
    end 
end 
z=-Length/2:delta:Length/2; 
plot(z,I) 
xlabel('Dipole Length(m)'); 
ylabel('|I(z)|,Current density (A/m)') 
title('Current distribution, Galerkin & FMM') 

 

 

 

  


