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ABSTRACT 

In modern cryptographic methods, keys are the basis for secure communication channels 

and the establishment of secret keys is a challenging problem for the large-scale 

deployment of symmetric cryptography to control encryption and decryption. Key 

establishment protocols provide exchanging secret information between two or more 

parties, typically for subsequent use as symmetric keys for a variety of information 

security services including encryption, message authentication, and entity authentication. 

They may be broadly subdivided into key transport and key exchange. Notably, key 

exchange is one of the difficulties when using symmetric algorithms, the key exchange 

particularly useful from a security viewpoint, for each of the key-sharing parties can 

have its own control and a high confidence on the quality of the key output. Beside 

encryption, key exchange is one of the most basic problems in cryptography; it becomes 

another challenge in cryptography. 

This thesis is concerned with the modifications of the Hill cipher (HC), extension 

of Diffie Hellman and ElGamal key exchange protocols. The HC is one of the most 

popular symmetric key algorithms; it is resistant to brute-force and statistical attacks, but 

it can be broken with a known plaintext-ciphertext attack (KPCA). To overcome this 

vulnerability, several researchers tried to propose modifications of the Hill cipher and 

make it secure. However in the literature,   most of these modifications are found to be 

either insecure or ineffective for image encryption. 

The Diffie-Hellman Key Exchange (DH) is known as one of the public key 

algorithms, its aim is to distribute the keys over insecure channels. It is based on the 
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complexity of discrete logarithm problem (DLP) solving over a finite field ( )GF p , 

where p is prime which considered as an advantage  from the security viewpoint due to 

the challenging and difficulties for solving the discrete logarithm. But DH has 

drawbacks including the fact that there are heavy and expensive exponential operations 

in both sides (sender and receiver) which affect its efficiency; it can be used for 

exchanging secret keys. To overcome this drawback, DH protocol matrix oriented 

modifications based on DLP are proposed by several researchers. Moreover, in the 

literatures, most of the modifications still rely on the DLP. 

The ElGamal Public Key Cryptosystem and Signature (EPKCS) also rely on the 

computational complexity of finding discrete logarithms based on some publicly known 

primitive root (base element), ( )GF p , where p is a large prime. Similar to DH 

protocol, the EPKCS has a drawback; it has a slow speed especially for signing in 

addition to the ciphertext is twice as long as the plaintext. 

 In this thesis, we proposed two modifications of the Hill cipher, HCM-EE and 

HCM-PRE.  A matrix-based Diffie-Hellman-like key exchange protocol is also 

proposed. ElGamal public key cryptosystem and signature scheme is extended to the 

group GU(m, p, n) of numbers co-prime to mp
n
. 

 

Keywords: matrix cipher, dynamic key, image encryption, Diffie-Hellman key-

exchange protocol, secure key-exchange protocol, ElGamal public key cryptosystem. 
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ÖZ 

Modern şifreleme yöntemlerinde güvenli iletişim kanallarının temeli anahtarlardır. 

Simetrik şifreleme sistemlerinin geniş çaplı dağıtımında, gizli anahtarların iletişimi 

güçlük çıkartmaktadır. Anahtar tahsis protokolleri, gizli bilginin iki yada daha fazla taraf 

arasında iletişimini sağlamaktadır. Özellikle bu gizli bilgiler simetrik şifreleme 

anahtarları olarak; şifreleme, mesaj ve kimlik doğrulama gibi güvenli veri servislerinde 

kullanılmaktadır. Anahtar tesis etme sistemleri, anahtar taşıma ve değişimi olarak 

kabaca ikiye ayrılırlar. Simetrik algoritmalar kullanırken, özellikle anahtar değişimi zor 

olmaktadır. Güvenlik açısından bakıldığında, anahtar değişimi oldukça faydalıdır; 

anahtar paylaşan taraflar ortaya çıkan anahtarda pay sahibi olarak, güvenirliğinden emin 

olabilirler. Şifrelemeden sonra anahtar paylaşımı kriptografideki en temel problemdir. 

Bu tez Hill şifrelemesi (HC) üzerine yapılan, Diffie Hellman ve Elgamal anahtar 

değişim protokolleriyle ilgilenmektedir. Hill şifrelemesi, en çok tercih edilen simetrik 

şifrelemedir. İstatistiksel ve zorlama saldırılarına karşı dayanıklı olmasına rağmen, 

bilinen salt metin - şifrelenmiş metin saldırısıyla kırılabilir. Bu açığı gidermek amaçlı 

Hill şifrelemesi üzerine bir çok değişiklik önerildi. Ancak, literatürdeki bu yöntemler 

resim şifrelemek için yetersiz kalmaktadır. 

Diffie-Hellman Anahtar Değişimi (DH), güvenli olmayan yollardan anahtar 

dağıtımını sağlayan, açık anahtarlı bir algoritmadır. Bu algoritma, ayrık logaritmanın 

( )GF p sınırlı alanı üzerinde çözümünün zorluğuna dayanmaktadır. Ancak, DH 

algoritmasının bazı sorunları mevcuttur. Bunlardan birisi, iki tarafta da yapılması 
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gereken ve zaman alan üs alma işlemleridir. Bu sorunun üstesinden gelmek için, 

matrislere yönelik ayrık algoritma tabanlı değişiklikler öne sürülmüştür. Şu an 

literatürde ayrık logaritma kullanan bir çok çalışma mevcuttur. 

Elgamal Açık Anahtarlı Şifre ve İmza Sistemi (EPKCS) de ayrık logaritmanın 

zorluğuna dayanmaktadır. Bu sistemlerde temel kök tabanb elemanı, herkes tarafından 

bilinmektedir; ve ( )GF p  şeklinde belirtilmektedir. Burada p büyük bir asal sayıdır. 

DH algoritmasına benzer şekilde EPKCS'ın da sorunları mevcuttur. En önemli sorunu 

yavaş olmasıdır; özellikle şifrelenmiş metnin salt metnin iki katı olması bu sorunu 

artırmaktadır. 

Bu tezde, Hill şifrelemesi üzerine HCM-EE ve HCM-PRE isimli iki değişiklik 

önerilmiştir. Matris tabanlı Diffie-Hellman-benzeri anahtar değişim protokolü de 

önerilmiştir. ElGamal Açık Anahtarlı Şifre ve imza Sistemi ,nmp e asal olan 

( , , )GU m p n  sayılarına genişletilmiştir. 

 

Anahtar kelimeler: matris şifreleme, dinamik anahtar, resim şifreleme, Diffie-Hellman 

anahtar değişim protokolü, güvenli anahtar değişim protokolü, ElGamal açık anahtar 

şifre sistemi 
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Chapter 1 

1 INTRODUCTION 

1.1 Background and Motivation 

The history of Cryptography can be tracked to the ancient civilizations in information 

secrecy and correspondence, such as ancient Egyptian civilization and the Romanian 

state. Cryptography algorithms are mathematical techniques inspired by the principles of 

basic mathematical, combination, permutation and logical operations which have add a 

number of security characteristics particularly useful for applications in engineering, and 

computer science, among other fields.  

Nowadays, the term encryption has been commonly used to indicate hiding 

information. But the word "encryption" is imported from European languages it comes 

from the word “cipher”. Hence, the developments of use of the word cipher in almost all 

European languages to mean hiding information. Therefore, we can define 

cipher/encryption as hiding the information for its secrecy. 

The recent advances in technology, especially in computer industry and 

communications, allowed potentially, enormous market for distributing digital 

information through the Internet. However, the proliferation of digital documents, 

multimedia processing tools, the worldwide availability of Internet access and network 

technologies have shown  the urgent need of the presence of reliable security in storage 

and transmission of digital data. The security of multimedia data, digital speech data, 
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images, as well as confidential video conferences is required in many applications since 

they are transmitted over open networks. Information security in general is provided by 

a method or a set of methods used to protect the data. These methods are heavily based 

on cryptography.  

Cryptography has been intensively developed by researchers.  The 

mathematician LESTER HILL in 1929 first invents the Hill cipher [1] [2], which 

marked the birth of modern cryptography. Cryptography is used to protect information 

to which illegal access is possible and where other protective measures are inefficient. 

The primitive operation of cryptography is encryption. It is a special computation that 

operates on messages; convert them into representation that is meaningless for all parties 

other than intended receiver.  

In Cryptography, two classes of key-based encryption algorithms are used, 

symmetric (secret/private-key) and asymmetric (public-key); in symmetric algorithms 

same key is used for encryption and decryption (inverse of the key may be used for 

decryption) while asymmetric uses different keys for encryption and decryption.  

The keys are considered as the basis for secure communication in modern 

cryptography, therefore, the process of creating (establishing) the secret keys is 

challenging problem for the symmetric cryptography to control encryption and 

decryption. Key establishment protocols provide shared secrets between two or more 

parties, typically for subsequent use as symmetric keys for a variety of information 

security services including encryption, message authentication, and entity authentication. 

One big issue with symmetric algorithm is the key exchange problem. However, the key 

exchange specifically is important from a security viewpoint,  for each of the key-

sharing parties can have its own control and a high confidence on the quality of the key 
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output. In addition to encryption, key exchange is one of the notable problems in 

cryptography; it becomes another challenge in cryptography. 

Considering the above points, in this thesis, the drawbacks of the Hill cipher 

algorithm and its known modifications has been studied, we proposed two new 

modifications of the original Hill cipher based on pseudo random eigenvalues [3][4],  

with the goal of generating dynamic encryption key efficiently to achieve high level of 

security. The Hill cipher is resistant to brute-force and statistical attacks, but it can be 

broken with a known plaintext-ciphertext attack (KPCA) [5].  

A part of the thesis is devoted to the extension of the Diffie-Hellman key 

exchange protocol [6] and ElGamal cryptosystem [7].  

The main contributions of the thesis are summarized as the following: 

1. We propose two modifications of the Hill cipher, HCM-EE and HCM-PRE 

which are still resistant to brute-force and statistical attacks, and are resistant also 

to known plaintext-ciphertext attack (KPCA) due to dynamic encryption key 

matrix generating. With the modification, the new HCM-PRE can be applied 

widely in the systems which need high security (e.g., image encryption). 

Experimental results are given to demonstrate the proposed modifications that 

are significantly more effective in the encryption quality of images than original 

Hill cipher and its known modifications (HCM-PT, HCM-H, HCM-HMAC, and 

HCM-EE) in the case of images with large single colour areas, and slightly more 

effective otherwise. 

2. A matrix-based Diffie-Hellman-like key exchange protocol and utilizing it as 

secure key-exchange protocol similar to HMQV are proposed. The proposed key 

exchange protocol uses matrix multiplication operation only; it does not rely on 
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the complexity of the discrete logarithm problem contrary to the prototype and 

its known variants. Two-way arrival at the common key, similar to that 

employed in the Diffie-Hellman protocol, is provided by specially constructed 

commutative matrices. The trap-door property ensuring the proposed protocol 

security is based on exploiting of a non-invertible public matrix in the key 

generating process. 

3. ElGamal public key cryptosystem and signature scheme is extended to the group 

( , , )GU m p n of numbers co-prime to nmp and having analytical representation 

and known order. Elements of ( , , )GU m p n with the maximal order are used as 

the base elements in the proposed extension instead of primitive roots used in the 

original scheme. Proposed scheme allows easy periodic change of the group and 

base elements to provide necessary security level without change of the prime 

number p  contrary to the case of ( )GF p  used in the original ElGamal scheme. 

Computation of discrete logarithms in the proposed scheme is difficult for 

large p . 

1.2 Layout of the Thesis 

The rest of the thesis is divided into a number of chapters. Chapter 2 presents a brief 

introduction to cryptography concepts. Chapter 3 introduces a detailed literature survey 

of Hill cipher and its known modifications. Chapter 4 is devoted to the proposed Hill 

cipher modifications. Chapter 5 pauses to provide the necessary background for Diffie-

Hellman key exchange protocol followed by a new cryptosystem consisting of the 

Diffie-Hellman-like key exchange matrix protocol. Chapter 6 is devoted to the extension 

of ElGamal public key cryptosystem and signature scheme to ( , , )GU m p n . We conclude 
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with some remarks in Chapter 7. 

1.3 Contribution of the Thesis 

The result of our research is summarized and reported in one journal paper and three 

conference papers that I finished during my PhD Studies. 

1. In 2009, Hill Cipher Modification Based on Eigenvalues HCM-EE, Proc. of the 

Second International Conference on Security of Information and Networks 

(SIN2009) 6-10 October 2009, Gazimagusa (TRNC) North Cyprus, Elci, A., 

Orgun, M., and Chefranov, A. (Eds.) ACM, New York, USA, 2009: pp. 164- 

167. 

2. In 2010, Secure Hill Cipher Modifications and Key Exchange Protocol,  in Proc. 

2010 IEEE International Conference on Automation, Quality and Testing, 

Robotics AQTR 2010- THETA 17th edition, Romania, Cluj-Napoca. 

3. In 2010, ElGamal Public Key Cryptosystem and Signature Scheme 

in ( , , )GU m p n , in Proc. 3rd International Conference on Security of Information 

and Networks 7-11 September 2010 Taganrog, Rostov-on Don, Russia 

4. In 2011, Ahmed. Y. Mahmoud, Alexander. G. Chefranov, Hill Cipher 

Modification Based on Pseudo-Random Eigenvalues HCM-PRE to appear in the 

Journal of Applied Mathematics and Information Sciences (SCI-E) 
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Chapter 2 

2 PRELIMINARIES 

In this chapter, some basic concepts and definitions of cryptography are introduced.  

2.1 Basic Definitions 

In this section, we recall some standard mathematical notions and introduce some 

definitions from cryptography, which will be used throughout this work. Most of them 

can be found in [5]. 

The set of integers Z contains all integer numbers from negative infinity to 

positive infinity. The set of residues modulo N is NZ . It contains integers from 0 

to 1N  . The set Z has non-negative (positive and zero) and negative integers; the set 

NZ has only non-negative integers. To map a nonnegative integer from Z to NZ , we 

need to divide the integer by N and use the remainder; to map a negative integer from 

Z to NZ , we need to repeatedly add N to the integer to move it to the range 0 to 1N  .  

Modular Arithmetic: In the modular arithmetic system, the numbers are repeated after 

they reach a certain value (the modulus). If ,w x , and y are three integers, N  is 

positive integer and {0,1,.., 1}NZ N  . The properties in Table 1 are held. The 

properties (Table 1) are valid for matrices that are residues of modulo arithmetic on a 

positive number N with entries over NZ such that the matrix K satisfies (2.1) 

( ( ) , ) 1gcd det K mod N N  . 
(2.1) 

where det(K) denotes the determinant of K, and gcd is the greatest common divisor. 



7 

 

Table 2.1: The properties of modulo arithmetic 

Property Expression 

Identities 

(0 )x mod N x mod N    

(1 )x mod N x mod N   

Commutative Law 

( ) ( )x w mod N w x mod N    

( ) ( )x w mod N w x mod N    

Inverse 

For each w belongs to NZ , there exists x such that 

( ) 0w x mod N  then x y   

For each w belongs to NZ and ( , ) 1gcd w mod N N  , there 

exists e such that ( ) 1w e mod N  , where gcd is the greatest 

common divisor 

Associative Law [( ) ] [ ( )]y x w mod N y x w mod N      

Distributive Law 

[ ( )] [ ]w x y mod N w x w y mod N       

[ ( )] [( mod ) (( )mod )]w x y mod N w x N w y N mod N       

 

 

All the matrices considered throughout the thesis are m x m sized with entries 

over NZ , hence all the operations in encryption/decryption algorithms are assumed mod 

N, where m (block size) and N (alphabet cardinality) are selected positive integers (e.g., 

N=256 for gray scale images). Also, we assume that two parties, A and B, want to 

communicate securely, and A is a sender, and B is a receiver. 
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Sender and Receiver: assume someone called the sender A, wants to send a message to 

a receiver, which we shall call the receiver B. Moreover, this sender A wants to send the 

message securely: s/he wants to make sure an eavesdropper/opponent cannot read the 

message.  

 

Messages and Encryption: A message is a plaintext. The process of disguising a 

message in such a way as to hide its substance is encryption. An encrypted message is 

called ciphertext. The process of turning ciphertext back into plaintext is decryption. 

This is all shown in the Fig. 2.1: 

Encryption Decryption
Cipher Text

Plain Text

Plain Text

Secret Key Secret Key

Figure 2.1: Encryption and Decryption 

 

Plaintext: is denoted by P, for plaintext. This is the original message passed to the 

algorithm as input. It can be a stream of bits, a text file, a bitmap, digitized voice, a 

digital video image, etc.  

Ciphertext: is denoted by C, for ciphertext. This is the encrypted plaintext produced as 

output of encryption algorithm. It depends on the plaintext and the used secret key. The 

encryptions of a given plaintext with two different keys yield two different ciphertexts. 

The ciphertext appears as random stream of data and, as it stands, unintelligible. The 

encryption process can be written as follows: 
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( )ke
E P C  (2.2) 

where E is the Encryption Algorithm and ek is used key for encryption; it performs 

various substitutions and transformations on the plaintext, P is the plaintext (original 

message) and C is the result of encryption algorithm (ciphertext).  In the reverse process, 

the decryption D operates on C to produce the plaintext P, where dk is key for 

decryption 

( )kd
D C P  (2.3) 

Since the whole point of encrypting and then decrypting a message is to recover the 

original plaintext, the following identity must hold true:  

( ( ))k kd e
D E P P  (2.4) 

where kd might be the same of k e or its inverse in the case of symmetric encryption and 

kd differ from k e in the case of asymmetric encryption. 

Secret key: The secret key is fed as input to the encryption algorithm. The key is a value 

independent of the plaintext and of the algorithm. The algorithm will produce a different 

output depending on the specific key being used at the time. The exact substitutions and 

transformations performed by the algorithm depend on the key. 

Decryption algorithm: This is essentially the reverse of encryption algorithm. The 

ciphertext and secret key are fed as input and produce the original plaintext. 
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Dynamic Keys: Dynamic keys are one-time symmetric cryptographic keys forming a 

sequence of keys. Every block in the plaintext is encrypted by a different cryptographic 

key. Instead of distributing the cryptographic keys among the parties, the dynamic keys 

are generated at participating parties. Unlike session keys which are exchanged among 

parties in every session, there is no key exchange at every session or transaction. A 

dynamic key generation scheme is used to produce a sequence of dynamic keys based on 

initial parameters. These parameters can either be pre-shared or exchanged via key 

exchange protocol only once at the beginning of the session. The number of distinct 

dynamic keys can be estimated based on the used initial parameters. 

2.2 Symmetric Key Cryptosystems  

All classical cryptosystems (cryptosystems that were developed before 1970s) are 

examples of symmetric key cryptosystems. In addition, most modern cryptosystems are 

symmetric as well. Some of the most popular examples of modern symmetric key 

cryptosystems include AES [8] (Advanced Encryption Standard), DES (Data Encryption 

Standard) [9] RC5 [10], Hill Cipher [1][2], and many others. 

All symmetric key cryptosystems have a common property: they rely on a shared 

secret between communication parties. This secret key is used both as an encryption key 

and as decryption key (inverse of the key may be used for decryption). This type of 

cryptography ensures only confidentiality and fails to provide other objectives of 

cryptography. The important advantage over public (Asymmetric) key cryptosystems is 

that symmetric cryptosystems require smaller key sizes for the same level of security. 

Hence, the computations are much faster and the memory requirements are smaller. On 

the other hand the disadvantage of symmetric key cryptography is that it cannot handle 

large communication network of n-nodes needs to communicate with confidentially with 
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all other nodes in the network, it needs n-1 shared secrets. For large value of n this is 

highly impractical and inconvenient. To overcome this disadvantage, the key exchange 

protocols can be used to exchange the keys between the parties. 

2.3 Asymmetric Key Cryptosystems  

In asymmetric key cryptosystems there are two different keys: a public key, which is 

publicly known, and the secret key, which is kept secret by the owner. The system is 

called “Asymmetric” since the different keys are used for encryption and decryption, the 

public key and the private key.  

If data is encrypted with a public key, it can be decrypted only by using the 

corresponding private key. Today, all public key cryptosystems rely on some 

computationally difficult problems. For example, the cryptosystem RSA [11] relies on 

difficulty of factoring large integers, while El-Gamal [12] cryptosystem relies on 

discrete logarithm problem DLP of a group element with generator base in finite Abelian 

group. 

2.4 Quality Encryption Measures 

A number of different evaluation measures have been used to measure the encryption 

quality of images/signals. The most widely used and popular measures are correlation 

coefficients (C.C) and irregular deviation based quality (ID) [13][14][15].  In this 

section we recall C.C and ID which will be used to measure the image encryption 

quality.   

2.4.1 Correlation Based Quality Measure 

A good encryption algorithm must produce an encrypted image of totally random 

patterns hiding all the features of the original image, and the encrypted image must be 
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independent of the original image. This means that the two images must have a 

correlation coefficient very close to zero. The correlation coefficient is given by the 

following expression: 

1

2 2

1 1

( ( ))( ( ))

. .

( ( )) ( ( ))

N

i i

i

N N

i i

i i

x E x y E y

C C

x E x y E y



 

 



 



 

 (2.5) 

where ix and iy  are the data value of plain-image/signal and encrypted-image/signal at 

point i , respectively, and E  denotes the overall mean value. The closer C.C to zero, the 

better. 

2.4.2 Irregular Deviation Based Quality Measure 

This quality measuring factor is based on how much the deviation affected by encryption 

is irregular. This quality measure can be formulated as follows: 

 

1. Calculate the matrix, DI, which represents the absolute value of the difference 

between each pixel value of the original/plain-image and the encrypted image 

respectively: 

DI = |O - E|, (2.6) 

where O is the original (input) image and E is the encrypted (output) image. 

2. Construct a histogram distribution of the DI we get from step 1: 

h=histogram (DI). (2.7) 

3. Get the average value of how many pixels are deviated at every deviation value 

by: 

255

0

1
,

256
i

i

DC h


   (2.8) 

4. Subtract this average from the deviation histogram and take the absolute value 
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by: 

 

AC(i) = |hi - DC|. (2.9) 

 

5. Count: 

255

0

( ).
i

ID AC i


  (2.10) 

 

The smaller ID, the better. 
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Chapter 3 

3 HILL CIPHER AND ITS MODIFICATIONS 

LITERATURE SURVEY 

Letter-by-letter substitution ciphers are not resistant against frequency analysis and so 

notoriously unsecure. In a block cipher the plaintext is divided into groups of adjacent 

letters of the same fixed length m, and then each such group is transformed (encrypted) 

into a different group of m letters according to some key instead of substituting letters 

individually. If m is large enough, it can be more challenging to break and can resist the 

frequency analysis. The first systematic simple block cipher using more than two letters 

per group is the Hill cipher. Hill cipher is invented by the mathematician Lester Hill 

[1][2].  

3.1 Original Hill Cipher 

The Hill cipher (HC) is one of the notoriously symmetric cryptosystem. The main 

operation of HC is matrix manipulations; it multiplies a plaintext vector by a key matrix 

to get the ciphertext. It is very attractive due to its simplicity and high throughput 

[16][17].  

The basic idea of the HC is to put the letters of the plaintext into blocks of length 

m, assuming an m x m key matrix, and then each block of plaintext letters is then 

converted into a vector of integers according to the alphabet chosen and then multiplied 

by the m x m key matrix. The results are then converted back to letters and the ciphertext 
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message is produced. The key for HC system consist of an m x m square invertible 

matrix K , where the larger the dimensions the more secure the encryption will be. To 

ensure the key matrix K  is invertible, the det(K) must be relatively prime to the 

modulus N, to satisfy this we  require 

( ) , ) 1gcd(det K mod N N  . 
(3.1) 

 

where m (block size) and N (alphabet cardinality) are selected positive integers (e.g., 

N=256 for gray scale images), det(k) the determinant of K and gcd is the greatest common 

divisor. The HC has the property of diffusion: when one changes one letter in the 

plaintext, several letters of the ciphertext are changed. This makes it much more difficult 

to use frequency tests. It also has the property of confusion: each letter of the ciphertext 

depends of several parts of the key. Then the key cannot be computed part by part. 

Suppose two parties, a sender, A, and a receiver, B, want to exchange data using 

HC; they share securely a non-singular invertible key matrix K. If A wants to encrypt a 

plaintext vector, P, he gets the ciphertext vector, C, as follows: 

modC K P N  . 
(3.2) 

 

The receiver, B, decrypts the ciphertext vector C by 

 
1 modP K C N  . 

(3.3) 

 

where 1K  is the key inverse and N is the alphabet cardinality. For existence of 1K 

, we 

require to satisfy (3.1). 
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3.1.1 Attacks 

The HC is extremely secure (resistant) against ciphertext only and brute force attacks. 

That is because the key space is very large, due to choosing the matrix elements from a 

large set of integers [17], it is also resistant to the frequency letter analysis, and 

statistical analysis while it can be broken with a known plaintext-ciphertext attack 

(KPCA) [5]. The key matrix can be calculated easily from a set of known plaintext and 

ciphertext pairs. The KPCA works as follows: 

Suppose that opponent has “captured” enough plaintext along with the 

corresponding ciphertext, and he/she constructs m blocks of m letters of plaintext. Write 

each block as a vertical vector 
i

P (1 )i m   and each block of corresponding ciphertext 

as a vector
i

C . Then, for each i the opponent has: 
i i

K P C  , where K is the unknown 

key matrix. Form a m m  matrix P with the m vertical vectors of plaintext as columns 

1
[ ... ]

m
P P P and similarly, form a m m matrix C with the m vertical vectors of 

ciphertext as columns
1

[ ... ]
m

C C C . Then K P C  . If P is invertible mod N , then we 

can find 1K C P   . If P is not invertible mod N , we can try to find other blocks of plain 

text. Once you have computed the key for the HC, then of course the opponent can 

reveal all the plaintext enciphered by that key and he might impersonate the sender and 

cheat (deceive) the receiver by using the key to create fake ciphered messages to send 

them. 

3.2 Hill Cipher Modifications 

Most of the Hill cipher modifications were developed in the last two decades [15] 

[16][18][19][20].  The aim of those modifications was to repair the weaknesses of the 

HC, due to its succumbed to a KPCA.  
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However most of these modifications were oriented and tested for image 

encryption. Image encryption has large applications in internet communications; it is 

widely used in multimedia systems. It is shown in the literatures that almost all the 

previous modifications of HC are either insecure or not effective for image encryption 

[3][4][6][18][20][21][22]. 

3.2.1 Hill Cipher Modification with Permutation Transfer HCM-PT 

HC modification [16], HCM-PT, uses a dynamic key matrix obtained by random 

permutations of rows and columns from the master key matrix to get every next 

ciphertext, and transfers it together with an HC-encrypted permutation to the receiving 

side. Thus, in HCM-PT, each plaintext vector is encrypted by a new dynamic key matrix 

that prevents the KPCA on the vectors. The number of possible dynamic keys is equal to 

the number of permutations of the key matrix rows, and it may be used as a 

characteristic of its security. But permutations in HCM-PT are transferred HC-

encrypted, which means that master key matrix can be revealed by the KPCA on the 

transferred encrypted permutations [18]. 

The HCM-PT differs from (3.2), (3.3) as follows: To encrypt a plaintext P , A 

selects a permutation, t , randomly over mZ , builds a permutation matrix tM , by pre-

agreed way, where each row and column of which has all zero entries except only one 

non zero entry equal to one only, and gets tK   by permuting the rows and columns of a 

key matrix K  getting 

1
t t tK M K M  . 

(3.4) 

 

The HCM-PT encryption is then performed by (3.1), but using tK  instead of K  . 
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Additionally, sender A encrypts t  by (3.2) using K and getting u as a ciphertext, and 

sends C and u together to the receiver.  

In order to decrypt the ciphertext, B decrypts t  from u by using (3.3), gets 

1 1( ) ( )t tK K   [16] from 1K , and then reveals the plaintext by (3.3), using 1( )tK   

instead of 1K . The number of dynamic keys used in HCM-PT is  

( ) !NDK HCM PT m  , (3.5) 

3.2.1.1 Attack 

The HCM-PT is resistant against the attacks, which resisted by HC. But HCM-PT, can 

be broken with KPCA [18] due to permutations in HCM-PT are transferred HC-

encrypted. The KPCA can be applied on HCM-PT as follows: 

The permutations are transferred HC-encrypted as modu K t m  , this is 

exactly the same problem as the original Hill cipher. Suppose the opponent collected m 

pairs of (u, t), the opponent (cryptanalyst)  can reveal the key K. However, the opponent 

can obtain the permutation matrix Mt  associated to t. Hence, the opponent can calculate 

the key matrix Kt by (3.4). 

On the other hand, if the permutation t cannot be obtained, suppose that the 

opponent has captured m pairs of plaintext with the corresponding ciphertext (C, P) to 

get Kt. It is known that, the ciphertext has been obtained by applying (3.2) using Kt 

instead of K ( mod )tC K P N  , in addition the opponent knows that 

modu K t m  and Kt is calculated by (3.4). Therefore, from the former scenario, the 

opponent can obtain the following [18]: 
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1[ ][ ]K U T  , 
(3.6) 

where  

1 2[ ... ]mU u u u  

and  

1 2[ ... ]mT t t t  

are m m matrices 1 1
t t t t t tK M K M K M K M    , 

(3.7) 

 

From (3.6) and (3.7), the equations can be rewritten as 

1 1 1

2 2 2

1 1

1 1

1 1

[ ][ ]

[ ][ ]

[ ][ ]
m m m

t t t

t t t

t t t

U T M K M

U T M K M

U T M K M

 

 

 







 

Suppose that the predefined function tt M is known and 1[ ]T  exists, and then the 

permutation t is obtained by solving the m equations. This means that, the opponent can 

collect m pairs of the parameters to solve the equations 
1 1[ ][ ]

m m mt t tU T M K M  and m 

parameters to reveal (calculate) each tK from modtC K P N  . Finally, the key K can 

be obtained by m
2
 known-plaintext pairs ( , ,u P C ) 

3.2.2 Hill Cipher Modification with the Number of Permutation Transfer HCM-

NPT 

The HCM-NPT [19] cipher is a modification of HCM-PT which, in turn, is a 

modification of HC. HCM-NPT uses the same initialization and the same 

encryption/decryption technique as HCM-PT does, but without permutations transfer; 

instead, both communicating parties use a pseudo-random permutation generator, and only 

the consecutive number of the necessary permutation is transferred to the receiver. It has 

good computational complexity and the number of its dynamic keys is the same as for 
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HCM-PT. HCM-NPT assumes that the sender, A, and the receiver, B, share a secret seed 

value, SEED, which is used to generate a pseudo-random sequence of permutations.  

In order to encrypt a plaintext, the sender, A, selects a number r, and calculates 

( , )
r

t PRPermutationG SEED r , (3.8) 

getting the r-th output permutation from the pseudo-random permutation generator 

PRPermutationG  (r can be a block number in the sequence of transmitted blocks, or its 

function). Sender A then gets a ciphertext C as in HCM-PT, and sends to receiver B both 

C and r. In order to decrypt, B calculates tr according to (3.8), and then gets the plaintext 

as in HCM-PT. The number of dynamic keys used in HCM-NPT, NDK(HCM-NPT), is 

the same as NDK(HCM-PT) (3.5). It is shown in [3][4][5], neither HCM-NPT nor HCM-

PT are effective for image encryption with images containing very large single colour 

areas.  

3.2.3 Hill Cipher Modification with Hash Function HCM-H 

 HC modification [18], HCM-H, also uses dynamic key matrix produced with the help of 

a one way hash function applied to an integer picked up randomly by the sender to get 

the key matrix, and a vector added to the product of the key matrix with a plaintext. 

HCM-H is computationally expensive due to the use of hash function. On the other 

hand, it was assumed that HCM-H solved the drawbacks in the original HC and is 

secure, but recently, it is proved that HCM-H is vulnerable [20] to chosen-ciphertext 

attack because the selected random number is transmitted in clear over the 

communication link and is repeated. 

 HCM-H, works as follows. The sender, A, and the receiver, B, share an invertible 

matrix K. To encrypt the plaintext P , A, selects a random integer a, where 0 a N  , and 

applies a one way hash function to compute the parameter 
11 12

( || || || ... || )
mm

b f a k k k , 
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where 
11 12

, ,...,
mm

k k k are the elements of K ; b is used to select the 
ij

k  from K, where i 

and j can be calculated according to (3.9) 

1 1
(mod ) 1, .

b b
i m j b m

m m

    
        
   

 (3.9) 

Then, A generates a vector 
1 2

[ , ,..., ]
m

V v v v  according to (3.10) 

1

2

2 1

1

( ) mod ,

( ) mod ( ) mod ,

...,

( ) mod ( ) mod .

ij

ij

m

m m ij

v f k N

v f v N f k N

v f v N f k N




 

 

 (3.10) 

Then, A encrypts the plaintext P by  

mod
ij

C k P K V N    , (3.11) 

and sends together C and a  to B. The decryption process is done by 

 
 

1 1( ) mod
ij

P k C V K N     .
 

(3.12) 

The number of dynamic keys used in HCM-H is 
 

  
2( , )NDK(HCM-H) min m N . (3.13) 

3.2.3.1 Attack 

The encryption of HCM-H can be done using (3.11). The encryption of the t-th block 

plaintext 
t

P can be done by (3.11) which has the form mod
t t t t

C Y P K V N    , where 

t
Y is the corresponding

ij
k . It is shown in [18], the KPCA cannot applied on HCM-H 

even if the opponent knows m pairs of (
t

P ,
t

C ), 1 t m  , due to the key matrix and 

parameters 
t

Y  and 
t

V are unknown and m equations cannot be used for solving an 

unknown m m matrix and 2m unknown parameters. But, in [20] it is shown that 

HCM-H is vulnerable to the chosen-ciphertext attack in the case the opponent selects 
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those equations have the same 
t

Y and 
t

V . 

The chosen-ciphertext attack works as follows: 

The opponent selects different ciphertexts in which he has access to the corresponding 

plaintexts. The opponent tries to   w, the reveal the key. The chosen ciphertext attack is 

most relevant to the public-key algorithms; it also can be used effectively against the 

symmetric algorithms. 

The weakness of HCM-H against the chosen ciphertext attack due to the values 

of b and V, and the selection of 
ij

k  depend on the value of a, and their values don’t 

differ for the same value of a. The value of a is selected randomly but it is sent in clear 

form over the communication which allow the opponent (eavesdropper) to easily capture 

and use it for chosen-ciphertext attack. The chosen-ciphertext attack can be applied on 

HCM-H as follows: 

Suppose that the sender A, sends the pairs (C ,a ) to the receiver B, The 

opponent eavesdrops, capture and saves them. The random number will be repeated 

soon or later in some pairs (C , a ). The opponent selects ( 1m  ) pairs of (C , a )`that 

have the same random number a . Based on the chosen-ciphertext attack, the opponent 

has access to the corresponding plaintext for the chosen ciphertexts. The opponent has a 

set of equations mod
t ij t t

C k P K V N    , 1 1t m   where 
t

P  and 
t

C are known 

parameters. The opponent can easily obtain (reveal) the key matrix K. The vector V can be 

easily eliminated from pairs encrypted with the same random number.  

3.2.4 Hill Cipher Modification with Hash-based Message Authentication Code 

HCM-HMAC 

The HCM-HMAC [20] cipher is a modification of HCM-H, the aim of HCM-HMAC is 
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to avoid the random number transfer in HCM-H. It uses only a seed value secure 

transfer, and then both parties generate necessary numbers synchronously, where 

HMAC is a hash function, e.g., SHA-1[5], MD5 [23]. The difference between HCM-H 

and HCM-HMAC is similar to the difference between HCM-PT and HCM-NPT.  

The HCM-HMAC, works as follows. In order to transfer a seed value, the 

sender, A, transmits the seed value a according to the Hughes key-exchange protocol 

[24]. Then the seed value 
0

a can be used to generate the chain of pseudo-random 

numbers synchronously by the both parties; 
t

a can be calculated by 

' 1( ), 1,2,...t tk
a HMAC a t  , (3. 14) 

where 'k  is the secret key of the hash function, 'k can be calculated by 

'
11 12 13 1( || || || ... || || )mod2q

mm tk k k k k a  , (3. 15) 

where || denotes the concatenation, q is the number of bits required for the hash function, 

and at is used in recursive calculations of the vector V=[v1, v2, ..., vn], calculated for the
 

encryption of t-th block, 0 1v  , if 0(mod )ta p otherwise  0 modtv a p , p is a prime 

number.  

1 modi ij i tv k v a p  , 1,2,...i m , and 1( mod ) 1ij v m   (3.16) 

1iv   is calculated by 

2 2
1 12 mod 2i iv v

    
   
   

 

 
  
 
 

, 
 

(3.17) 

where log 12 1v i       denotes the bit length of 1iv  . Then, A encrypts the plaintext Pt 

by 

0
mod

t t
C v P K V p    , (3.18) 
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and sends together Ct and a  to B, t=1,2,... The receiver B calculates the required 

parameters by using (3.12)-(3.16), and then gets the plaintext by 

1 1
0 ( ) modt tP v C V K p     .

 
(3.19)

 

3.3 Conclusion 

The Hill cipher is very attractive due to its simplicity and high throughput [16][17]. Its 

attributes including its cryptanalysis are reported in some cryptographic textbooks 

[5][24][25][26]. The vulnerability of the HC and its weaknesses against the KPCA make 

it unusable in practice. Although several HC modifications have been proposed to 

improve the security of the HC, but the proposed  HC modifications either still 

susceptible, vulnerable to the cryptanalytic attacks and have the same essential 

drawbacks of the original HC or they are not effective for encryption of images with 

large single colour areas. A challenging problem is to improve the security of HC/HC-

modifications and make it effective for image encryption since neither HC nor known 

HC-modifications are effective for image encryption in large area with single colour. 
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Chapter 4 

4 HILL CIPHER MODIFICATIONS BASED ON 

EIGENVALUES 

4.1 Introduction 

In this chapter, we present our proposed modifications [4] of the Hill cipher, HCM-EE, 

generating dynamic encryption key matrix efficiently with the help of eigenvalues [27], 

it uses the eigenvalues for matrix exponentiation to a pseudo-random power for a new 

key matrix generated for each plaintext block. The proposed approach for improving the 

Hill cipher security is presented in section 4.2. Section 4.3 includes another modification 

of HC, HCM-PRE [3], based on the use of pseudo-random eigenvalues to construct a 

key matrix [27] and modify it for each new plaintext. In order to verify the importance of 

the resultant observations from encryption quality viewpoint, the results of the conducted 

experiments are shown in section 4.4. The security and statistical analysis are presented in 

section 4.5. Section 4.6 shows encryption quality of images encrypted by HCM-EE and 

HCM-PRE versus AES. Finally, we conclude with some notes in section 4.7. 

4.2 Hill Cipher Modification Based on Eigenvalues HCM-EE 

In [4] we propose a modification of Hill cipher denoted as HCM-EE; HCM-EE works as 

follows. Sender A selects a set
1 2

{ , ,..., } {0}
m N

E e e e Z   , gcd(ej, N)=1, gcd is the greatest 

common divisor, 1≤ j≤ m; at least one ej should have the maximal order which is 
( )

2

N
for 
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N being a power of 2 [28], ( )N  is the Euler’s totient function [5], giving the number of 

positive integers less than N and co-prime to it. Then A constructs an invertible matrix Q 

and calculates the key matrix K [27]: 

1K Q D Q    , (4.1) 

where D  is a diagonal matrix, diagonal elements of which are its eigenvalues from E. 

Note that Q and D satisfy (3.1); A and B share them securely. Additionally, they share 

the secret values, SEEDl and SEEDt;  SEEDl is used to generate the set of pseudo-

random numbers
1 2

{ , ,..., }
n

l l l l by (4.2), 0
i

l  and {2,..., ( ) 1}
i

l N  , 1 i n  , n is 

the number of blocks. SEEDt is used to generate a pseudo-random sequence of 

permutations t. In order to encrypt the i-th plaintext block
i

P , A selects  

( , ) 0
i

l PRNG SEEDl i  , (4.2) 

then calculates 

{ } ,1 ,1i

r

l

i j t
E e j m i n     , 

(4.3) 

where 
j

e E , n is the number of blocks, and the random  permutation  
r

t can be 

obtained by (3.8). Finally, A calculates 

1

i i
K Q D Q    , (4.4) 

where 
i

D is a diagonal matrix, diagonal elements of which are from
i

E   and 

( )

2

N
i r s


   , 

( )
0 .

2

N
s


   (4.5) 

The plaintext Pi is encrypted as follows 

( )
i i i i

C K P diag D   , (4.6) 

where ( )
i

diag D is a vector of the main diagonal elements of 
i

D . 



27 

In order to decrypt the ciphertext, B computes li according to (4.2), tr according 

to (3.8) and (4.5), 
i

E according to (4.3), and  

1 1 1 1 1( ) ( )
i i i

K Q D Q Q D Q          . (4.7) 

Then, B retrieves the plaintext:  

1 ( ( ))
i i i i

P K C diag D   . (4.8) 

It is appropriate to mention that for computing 
i

K we use a diagonal matrix, and 

only the diagonal entries of 
i

D  are exponentiated to the power
i

l , requiring O(
2 i

mlog l ) 

multiplications. On the other hand, to get 1

i
D  , we calculate the inverse of m numbers 

only. Note also that 
1Q 
and 1

i
D  are calculated only once. The diagonal elements of 1

i
D   

belong to the group G of numbers co-prime to N. Based on Theorem 10.3 [28] we see 

that for N=256, 
( )

64
2

N
 is the maximal order of elements of G  (odd numbers 

in
256

Z ). In HCM-EE, we select at least one element in the diagonal with the maximum 

order to guarantee the maximum period of the diagonal elements. The number of 

dynamic keys of HCM-EE is estimated as 

( ) !LB m! NDK(HCM-EE) N m    . (4.9) 

where LB is the maximum order of the diagonal elements in 
i

D . If N  is a power of 2, 

( )

2

N
LB


 . It is assumed that the sender and receiver will exchange all the shared 

parameters by using the proposed protocol [6]. 

4.3 Hill Cipher Modification Based on Pseudo-Random Eigenvalues 

HCM-PRE 

We propose another Hill Cipher Modification based on Pseudo-Random Eigenvalues; 
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denoted as HCM-PRE [3]. The proposed HCM-PRE uses the same encryption/decryption 

technique as HCM-EE [4] does. But HCM-PRE differs from the HCM-EE in the key 

construction. It uses pseudo-random eigenvalues instead of static eigenvalues 

exponentiated to pseudo-random powers in HCM-EE. Similar to HCM-EE, HCM-PRE 

assumes the sender, A, and the receiver, B, uses the proposed protocols in [6] to exchange 

securely all the secret parameters. 

If the sender, A, and the receiver, B, want to communicate using HCM-PRE, they 

share a secret value, SEED, that is used to generate pseudo-randomly a sequence of 

eigenvalue sets, ( ),1
i

E E i n   : 

( , )
SEED

E PRSetG n m , (4.10) 

where { } {0}
i ij N

E e Z    is a set of eigenvalues of the matrix to be constructed, 
ij

e is 

relatively prime to N , 1 ,1j m i n    , for positive integers n and m , n is the 

number of blocks; ( , )
SEED

PRSetG n m  is a pseudo-random set sequence generator (using 

e.g., RC4 initialized by SEED) returning n sets, each of which contains m numbers. 

Sender A then constructs an invertible matrix Q  as in HCM-EE. The key matrix 
i

K is 

calculated by (4.4) but, instead of static eigenvalues used in the diagonal elements of
i

D , 

diagonal matrix 
i

D  is used, diagonal elements of which are all the eigenvalues from
i

E , 

1 i n  . HCM-PRE uses a different set of diagonal elements for every plaintext. It may 

be easily shown that 
i

K is invertible modulo N  since Q  and 
i

D  have (by construction) 

determinants relatively prime to N . Finally, the plaintext 
i

P is enciphered by (4.6). 

To decrypt a ciphertext, receiver B computes E according to (4.10), and finds 
1

i
K 

 

using (4.7).  Note that to get
1

i
D 

, we calculate the inverse of m numbers only, and that 
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Q and 1Q  are constructed only once.  Receiver B then retrieves the plaintext by (4.8). To 

generate an invertible key matrix
i

D , the eigenvalues must be in the multiplicative group 

of
N

Z , the number of possible eigenvalues in the multiplicative group of 
N

Z is ( )N . 

Hence the number of dynamic keys of HCM-PRE is 

( 4)
( ) min ( ) ,m Period RC

NDK HCM PRE N
m


 

   
 

 (4.11) 

 

where Period(RC4) is overwhelmingly likely to be greater than 10
100

 [29]. 

 

4.4 Image Encryption Quality and Performance of the HCM-PRE and 

HCM-EE versus Known Ones 

The experiments are hosted on a Windows XP OS running on a Dell Latitude D630 

laptop with Intel(R) Core(TM) 2 Duo 1.8 GHz processor and with 2-GB RAM. The 

simulation is implemented by Visual Studio Environment version 2008. The 

performance evaluation tool used is as C# application, which provides a wide range of 

profiling instruments for reading and manipulating images (a brief description of the 

application is given in the appendix). In our experiments, several RGB images are 

encrypted. Firstly, the image, P , of size NxM is converted into its RGB components. 

Afterwards, each colour matrix (R, G, B) is converted into a vector of integers 

within{0,1,...,255}. Each vector has the length L NxM . Then, the so obtained three 

vectors represent the plaintext (3 )P L which will be encrypted using the block size 

m=16. 

We examine the encryption quality for three different images containing very 

large single colour areas: Nike.bmp (Fig. 4.1), Symbol.bmp (Fig. 4.2), and 

Blackbox.bmp (Fig. 4.3). Also we examined the encryption quality for an image that 
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does not contain many high frequency components: Lena.bmp (Fig. 4.4). The Girl.bmp 

(Fig. 4.5) is used as an example of an image containing many high frequency 

components. Each image is encrypted using HCM-PT, HCM-H, HCM-HMAC, HCM-

EE, and HCM-PRE. 

The quality of encryption of these images is studied by visual inspection (Figs. 

4.1-4.5) and quantitatively (Table 4.1, used irregular deviation based quality measure ID 

[12][13][16] is explained in Chapter 2). 

 

Table 4.1: ID for images encrypted by HCM-PT, HCM-H, HCM-HMAC, HCM-EE and 

HCM-PRE, m=16. 

Image/Algorithm HCM-PT HCM-H HCM-HMAC HCM-EE HCM-PRE 

Nike.bmp 23980.79 13171.75 9983.87 2656.62 1338.04 

Symbol.bmp 10482.25 5755.68 4830.91 2378.07 1874.30 

Blackbox.bmp 34036.28 18511.62 11491.48 3285.25 1328.63 

Lena.bmp 10256 10518.66 10469.33 10172.66 10201.33 

Girl.bmp 11459.55 10472.61 10336.77 9942.21 9913.25 

 

Based on visual inspection, it is obvious that the HCM-PRE and HCM-EE are 

better than the HCM-PT, HCM-H, and HCM-HMAC in hiding all the features of the 

image containing large single colour areas (Figs. 4.1-4.3). 

Based on the numerical evaluation of encryption quality measure ID (Table 4.1), we 

note that the proposed scheme HCM-PRE versus HCM-EE give alternately better or 

nearly the same encryption quality. Table 4.1 shows also that the proposed scheme; 

HCM-PRE is more effective in encryption quality than HCM-PT, HCM-H, HCM-

HMAC, and HCM-EE. On the other hand, HCM-PT, HCM-H, HCM-HMAC, HCM-EE, 

and HCM-PRE are all good in encrypting images containing many high frequency 
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components; all the algorithms give nearly the same results but the HCM-PRE and 

HCM-EE are the most effective ones (Table 4.1, rows 4-5). 

We examined the encryption time for the Nike.bmp image having 

124 124x pixels and 45KB size. The encryption time measured when applying HCM-PT, 

HCM-H, HCM-HMAC, HCM-EE, and HCM-PRE is shown in (Table 4.2 and Fig. 4.6). 

In our implementation, HCM-EE and HCM-PRE were used with RC4 [5] for the 

pseudo-random permutation generator (3.6), pseudo-random number generator (4.2) for 

HCM-EE, and pseudo-random set generator (4.9) for HCM-PRE. We implemented 

HCM-H with SHA-1 [5] since the latter has been used in [18], and the built-in HMAC 

from C# with HCM-HMAC-SHA-1. Table 4.2 and Fig. 4.6 show that HCM-PRE has the 

best execution time; it is roughly two times faster than HCM-EE and HCM-HMAC, and 

four times faster than HCM-H. HCM-EE roughly is twice better than HCM-H and it has 

nearly the same execution time as of HCM-HMAC but HCM-EE has better encryption 

quality (Figs. 4.1-4.5, and Table 4.1). Table 4.2 shows that HCM-PT is faster than 

HCM-EE but equations (3.5) and (4.8) show that NDK(HCM-EE) is greater than 

NDK(HCM-PT), hence HCM-EE is more secure than HCM-PT. Equation (4.11) shows 

that NDK(HCM-PRE) is greater than NDK(HCM-EE). Hence HCM-PRE is more secure 

and is more effective in the encryption time than HCM-PT, HCM-H, HCM-HMAC and 

HCM-EE. 

 

Table 4.2: Encryption time (msec) of  Nike.bmp with HCM-PT, HCM-H, HCM-HMAC, 

HCM-EE and HCM-PRE. 

 HCM-NPT HCM-H HCM-HMACk HCM-EE HCM-PRE 

103 425 214 200 98 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 4.1: Nike.bmp encrypted by: a) HCM-PT, b) HCM-H, c) HCM-HMAC, d) HCM-

EE, e) HCM-PRE. 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 4.2: Symbol.bmp encrypted by: a) HCM-PT, b) HCM-H, c) HCM-HMAC, d) 

HCM-EE, e) HCM-PRE. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 4.3: Blackbox.bmp encrypted by: a) HCM-PT, b) HCM-H, c) HCM-HMAC, d) 

HCM-EE, e) HCM-PRE. 

  
(a) 

 
(b) 

 
(d) 

 
(d) 

 
(e) 

 

Figure 4.4: Lena.bmp encrypted by: a) HCM-PT, b) HCM-H, c) HCM-HMAC, d) 

HCM-EE, e) HCM-PRE. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 4.5: Girl.bmp  encrypted by: a) HCM-PT, b) HCM-H, c) HCM-HMAC, d) HCM-

EE, e) HCM-PRE. 

 

Figure 4.6: Encryption time (msec) of Nike.bmp with HCM-PT, HCM-H, HCM-HMAC, 

HCM-EE and HCM-PRE. 

 

Methods 
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4.5. Security Analysis and Statistical Analysis  

The ability to withstand all kinds of cryptanalysis and attacks [30]-[33] is a good 

measure of the performance of a cryptosystem. Robustness against attacks is used to 

evaluate the security of our schemes. It is shown that our proposed schemes are secure 

from the strongly cryptographic viewpoint. The results show the satisfactory security of 

the HCM-EE and HCM-PRE as explained and discussed in the following subsections. 

4.5.1 Key Space Analysis 

Key space is the total number of different keys that can be used in encryption. For a 

secure encryption scheme, the key space should be large enough to make brute force 

attacks infeasible. For the HCM-PRE, the key space is the same as that of HC [1][2]. 

Therefore the key space of the scheme is large; hence it is secure against brute force 

attack. 

4.5.2 Known Plaintext-Ciphertext Attack KPCA 

The KPCA is effective if the same key is used to encrypt many plaintexts. With the same 

reasoning of HCM-PT [16] and HCM-H[18], our proposed modifications HCM-PRE 

and HCM-EE are secure against the KPCA since each plaintext is encrypted by a 

different key, and the number of such dynamic keys is significantly large (4.11). 

Equations (3.5), (4.8), and (4.11) show that the NDK(HCM-PRE) (4.11) is larger than 

the NDK(HCM-PT) (3.5) and NDK(HCM-EE) (4.8); hence HCM-PRE is more secure.  

4.5.3 Chosen-Ciphertext Attack 

With the same reasoning of HCM-HMAC [20], the proposed HCM-EE and HCM-PRE 

are resistant against the chosen-ciphertext attack since all the shared parameters are 

exchanged via a secure protocol [6]. Knowledge of such parameters is necessary to 

accomplish the chosen-ciphertext attack. For the proposed HCM-EE and HCM-PRE, the 
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opponent cannot use the exchanged parameters. 

4.5.4 Statistical Analysis Resistance 

In [34], it is mentioned that in [35] Shannon said “it is possible to solve many kinds of 

ciphers by statistical analysis”. A good cipher should be robust against any statistical 

attack. To prove the robustness of the proposed scheme, the statistical analysis has been 

performed. It is usually evaluated by the following measures [30][32][36][37][38]; 

calculating the histograms of the encrypted images and the correlation of two adjacent 

pixels in the plain/encrypted image demonstrating their superior confusion and diffusion 

property. The obtained results show that our scheme strongly withstands statistical 

attacks. 

4.5.4.1 Histograms of encrypted images 

We have calculated and analyzed the histograms of several encrypted images as well as 

their original images. Two typical examples are given in (Figs. 4.7-4.8). The histograms 

of the encrypted images are very close to uniform distribution; they are significantly 

different from those of the original image, and bear no statistical resemblance to the 

original image. 
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Figure 4.7: Histogram of RGB layers for original/encrypted Nike.bmp: a) HCM-EE-

encrypted, b) HCM-PRE-encrypted, c) histogram of the original image, d) histogram of 

HCM-EE-encrypted e) histogram of HCM-PRE-encrypted 
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Figure 4.8: Histogram of RGB layers for original/encrypted Lena.bmp: a) HCM-EE-

encrypted, b) HCM-PRE-encrypted, c) histogram of the original image, d) histogram of 

HCM-EE-encrypted e) histogram of HCM-PRE-encrypted 

 

4.5.4.2 Correlation of Two Adjacent Pixels 

There is a very good correlation between adjacent pixels in the plain-image (Nike.bmp: 

Figs. 4.1 and 4.9, Lena.bmp: Figs. 4.5 and 4.10). We studied the correlation between two 

adjacent pixels in plain-image and encrypted image in three different orientations 

(horizontal, vertical and diagonal). We use the following procedure: first 1000 pairs of 

two adjacent pixels in three different orientations are selected randomly from image to 

test correlation, and then using (2.1) calculate the correlation coefficient C.C of each 

pair. Figs. 4.9 and 4.10 show the correlation coefficients (explained in Chapter 2) of two 

adjacent pixels in Nike.bmp and Lena.bmp encrypted by HCM-EE, HCM-PRE, HCM-
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NPT, HCM-H and HCM-HMAC in three different orientations as a practical example 

for different image types; Table 4.3 shows the numerical evaluation of the calculated 

correlations. It is clear that, the neighboring pixels in the plain-image have a very high 

correlation while they have a very small correlation (the closer to zero, the better) for 

encrypted images. This proves that the proposed encryption scheme HCM-PRE satisfies 

very small correlation and is better than other inspected schemes in the case of images 

with large single colour areas. We also note that the proposed scheme HCM-PRE versus 

HCM-EE gives alternately better correlation. On the other hand, the correlation values in 

Table 4.3 show that the examined schemes give nearly the same results in images 

containing many high frequency components. 

 

Table 4.3: Correlation coefficients of two adjacent pixels in original and HCM-PT-

encrypted images, HCM-H-encrypted images, HCM-HMAC-encrypted images, HCM-

EE-encrypted images and HCM-PRE-encrypted images. 
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Horizontal 0.9413 0.0849 -0.0337 -0.0517 -0.0004 0.0287 

Vertical 0.9031 0.1484 0.0951 -0.0134 0.0396 0.0139 

Diagonal 0.9801 0.5743 -0.0602 0.0743 0.0365 0.0051 

L
en
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Horizontal 0.9349 -0.0074 0.0498 0.0168 0.0282 -0.0435 

Vertical 0.8538 0.0037 -0.0473 0.0026 0.0282 -0.0130 

Diagonal 0.8852 -0.0774 -0.0146 0.0071 0.0095 0.0084 
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Figure 4.9: Correlation coefficients of two adjacent pixels in Nike.bmp encrypted by: 

HCM-EE, HCM-PRE, HCM-PT, HCM-H, and HCM-HMAC 
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Figure 4.10: Correlation coefficients of two adjacent pixels in Lena.bmp encrypted by: 

HCM-EE, HCM-PRE, HCM-PT, HCM-H, and HCM-HMAC. 

4.6 HCM-PRE and HCM-EE versus AES 

To give adequate performance comparison, we examine our proposed HCM-PRE versus 

other well known algorithms (e.g. AES). We examined the encryption quality of several 
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images. Based on visual inspection, the proposed HCM-PRE and HCM-EE encrypt the 

images with large single colour areas (identical plaintext blocks), they successfully hide 

data patterns. The AES fails to hide the data patterns for the images contain large single 

colour areas (Micky.bmp: Fig. 4.11, Bicycle.bmp: Fig. 4.12, and Penguin.bmp: Fig. 

4.13). That is, the proposed HCM-PRE and HCM-EE have advantage in encryption of 

identical plaintext blocks over the AES. 

 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4.11: Mickey.bmp encrypted by: a) AES, b) HCM-EE, c) HCM-PRE. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4.12: Bicycle.bmp encrypted by: a) AES, b) HCM-EE, c)HCM-PRE. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4.13: Penguin.bmp encrypted by: a) AES, b) HCM-EE, c) HCM-PRE. 
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4.7 Conclusion 

In this chapter, we have presented two new HC modifications, HCM-EE and HCM-PRE, 

based on the use of eigenvalues for generating a new key matrix for each plaintext block. 

In addition, five modifications of Hill cipher algorithms have been implemented for 

image encryption: HCM-PT, HCM-H, HCM-HMAC, and proposed here HCM-EE and 

HCM-PRE. Quality of image encryption for all algorithms is studied using visual 

inspection and numerical quality measures explained. From the obtained results, it is 

found that the proposed HCM-PRE is more effective in encryption quality than HCM-

PT, HCM-H, HCM-HMAC, and HCM-EE. Encryption time for all the algorithms have 

been considered, the proposed HCM-PRE is about two times faster than HCM-EE and 

HCM-HMAC, and four times faster than the HCM-H.  

The proposed modification HCM-PRE and HCM-EE resist the KPCA because of 

the use of dynamically changing key matrices similar to other considered here HC 

modifications (HCM-PT, HCM-NPT, HCM-H, HCM-HMAC) but the proposed HCM-

PRE is more secure than HCM-H, HCM-PT, HCM-NPT, HCM-EE because of the 

significantly larger number of dynamic keys generated ((4.11) versus (4.8), (3.11) and 

(3.5)). Experimental analysis also shows that the HCM-EE and HCM-PRE resist the 

statistical attacks. The obtained results in this chapter thus encourage the use of the 

proposed schemes especially when image encryption is required. 
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Chapter 5 

5 COMMUTATIVE MATRIX-BASED DIFFIE-HELLMAN-

LIKE KEY EXCHANGE PROTOCOL 

5.1 Introduction 

Key exchange protocol has been intensively developed by several researchers. Public 

key cryptosystems do not need to have a shared secret between communicating parties. 

This solves the problem of large confidential communication network introduced earlier. 

Due to the increase in processor speed and even more due to smart modern 

cryptanalysis, the key size of public key cryptography grew very large. This created 

disadvantage in comparisons to symmetric key cryptosystems: public key cryptosystem 

is significantly slower, and requires large memory capacity and large computational 

power. As an example, 128-bit key used with DES [9] cryptosystem has approximately 

the same level of security as 1024-bit key used with RSA [11][29] public key 

cryptosystem. To solve these problems, researchers introduced different approaches. In 

order to decrease the key size so that public key cryptography can be used in smaller 

computational environments (such as smart cards or handheld wireless devices). The 

most common implementation solution is to combine symmetric key cryptosystems with 

public key cryptography. The idea, to overcome the problems related to applying the 

symmetric encryption only, the plaintext (multimedia component for example image) is 

encrypted using a fast symmetric key scheme, and only the secret key used for the 
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symmetric encryption is encrypted with the slow public key scheme such as RSA.  

The used key can be shared between the parties by the Diffie-Hellman 

(DH) Key exchange protocol [39].  

In this chapter, we present our proposed a DH-like protocol using commutative 

matrices represented as conjugates to diagonal matrices [4]. The trap-door function 

exploited is a matrix multiplication with the zero-determinant matrix. In DH, a publicly 

known primitive element is utilized to obtain a public key from a private key. Similarly, 

in the proposed protocol, some publicly available zero-determinant matrix is used to 

construct a public key from the private ones. The commutativity of the matrices applied 

as private keys allows both parties to arrive at the same key by different ways of 

calculation. This is similar to the procedure in the DH protocol except that we multiply 

matrices instead of taking the exponentiation of big numbers. 

The proposed protocol has high performance as computationally very simple 

because of applying few operations of multiplication to matrices whose entries are 

conventional numbers. Contrary to DH, even for  16 16  matrices with short 7-bit 

integer entries it provides substantial security of 1122 search space size.  

The DH protocol was found to be susceptible to the intruder-in-the-middle attack 

[40] that led to invention of numerous DH extensions providing resistance to the attack. 

Currently, MQV protocol introduced by “Menezes, Qu and Vanstone” in [41] and 

HMQV (H for hash function) are considered as the most secure key-exchange protocols 

based on the DH [42][43]. Similarly, our DH-like protocol is also susceptible to the 

attack, and we show how to extend our protocol to a secure key-exchange protocol 

resembling MQV and HMQV.  

In this thesis, we assume that the sender A, and the receiver B are using the 
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proposed exchange protocols in [6][7] to exchange all the shared matrices and seed 

values required for HCM-PRE [3] and HCM-EE [4]. 

The original DH protocol is presented in section 5.2. Section 5.3 presents our 

DH-like key exchange protocol, and Section 5.4 analyses its security. Section 5.5 

describes briefly MQV  and HMQV and introduces a secure extension of our DH-like 

protocol that is similar to HMQV.  

5.2 Overview of Key-Exchange Diffie-Hellman (DH) 

The key-exchange Diffie-Hellman (DH) protocol without transfer of the secret key over 

an insecure channel was suggested by Diffie and Hellman in 1976 [39]. It is based on the 

complexity of discrete logarithm problem (DLP) solving over a finite field ( )GF q , 

where q is prime. It utilizes a publicly available primitive element  of ( )GF q .  

Each user generates an independent secret random number iX from a set of 

integers {1,2,..., 1}q  but makes publicly available mod
X i

iY q . If users i and 

j want to communicate privately, they use the value 

of mod mod mod
X X X Xi j j i

ij i jK q Y q Y q    as a secret key. This technique 

requires rather long numbers (200-bit big numbers are considered for estimation of its 

security as 1002 operations complexity in [39].  

Conventional computers usually deal with 32- or 64-bit numbers. DH protocol was 

extended to matrix rings in [44], but it is still based on the complexity of the DLP. Its 

security was discussed in [45].  

Further DH protocol matrix oriented modifications based on DLP are proposed and 

discussed [46][47][48][49][50].  A group-theoretic public-key exchange protocol is 
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proposed [51].  This protocol [51] requires the transference of the full sets of group 

elements by both parties willing to get a common key and is based on the complexity of 

solving conjugacy equations. A non-commutative group-theoretical DH protocol 

extension using exponentiation is described in [52].  

5.3 The DH-Like Protocol 

Assume two communicating parties, , 1, 2iA i  , share two publicly available matrices 

 

( , ), ( , )M GL m F G GN m F  , (5.1) 

 

where ( , )GL m F is the set of all invertible m m matrices with entries from the field 

F with | |F elements, and ( , )GN m F  is the set of m m matrices with entries from the 

field F and having rank 1m  and zero determinant value, 

( ) 1,det( ) 0rank G m G   . (5.2) 

 

Assume that party iA  has two secret matrices (his private key) 

1 ( , )ij ijX M D M GL m F  , (5.3) 

 

where ( , )ijD GL m F  is a diagonal matrix, 1,2, 1,2i j  . It is easy to see that these 

matrices commute: 

 
1 1

1 2 1 2

1

1 2

1

2 1

1 1

2 1

2 1

i j i j

i j

j i

j i

j i

X X M D MM D M

M D D M

M D D M

M D MM D M

X X

 





 











, 
(5.4) 

since diagonal matrices commute. 

With the following protocol, the parties can obtain a key, K , shared by both parties 

without the transference of K . 
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5.3.1 The Protocol 

1. User iA  calculates his public key 

 

1 2i i iY X GX , 2,1i . (5.5) 

2. User iA  sends his public key iY  to the user 3 iA  , 1,2i  . 

3. User iA  calculates the common key 21 KKK  using his private key and the 

received public key of his partner 

1 3 2i i i iK X Y X , 1,2i  . (5.6) 

 

The protocol results in the same value 21 KKK  for both parties since, due to 

(5.4)-(5.6), the following holds: 

1 11 2 12 11 21 22 12 21 11 12 22 21 1 22 2K X Y X X X GX X X X GX X X Y X K     . 

 

Note that due to (5.2) and (5.3) 

( ) 1,det( ) 0rank K m K   . (5.7) 

 

Example: Let 52, {0,1,.., 4}m F Z   , and according to (5.2), (5.3),   

1 2

3 4
M

 
  
 

, 1
3 1

4 2
M   

  
 

, 
1 3

4 2
G

 
  
 

, 

1

11

2

0 1 0

0 0 4

d
D

d

   
    

  
,

3

12

4

0 2 0

0 0 4

d
D

d

   
    

  
, 21

1 0

0 2
D

 
  
 

, 22

3 0

0 2
D

 
  
 

. 

(5.8) 

 

Then from (5.3) and (5.8) one calculates  

11

31 10 12 34 12 02

42 04 34 48 34 30
X

           
             
           

, 

12

31 20 12 64 12 33

42 0 4 34 88 34 23
X

           
             
           

, 

21

31 10 12 32 12 44

42 02 34 44 34 1 4
X

           
             
           

, 

(5.9) 
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22

31 30 12 42 12 01

42 02 34 24 34 40
X

           
             
           

. 

And according to (5.5), from (5.9) 

 

1

02 1 3 33 34 33 21

30 42 23 34 23 21
Y

           
             
           

,  

2

44 1 3 01 00 01 00

1 4 42 40 21 40 42
Y

           
             
           

. 

(5.10) 

Finally, by (5.6) and (5.10), 

 

1

02 00 33 34 33 21

30 42 23 00 23 00
K

           
             
           

, 

2

44 21 01 13 01 21

1 4 21 40 00 40 00
K

           
             
           

. 

(5.11) 

 

Thus, from (5.11) one gets 1 2K K K  , that meets (5.7).  

5.4 Security Analysis of the Protocol 

An opponent knowing ,M G and viewing , 1, 2iY i  , is not able to obtain K because he 

needs the secret matrices , 1,2, 1,2ijX i j   for that purpose. He can try to get them by 

substituting (5.3) into (5.5) and trying to solve the resulting system of nonlinear 

algebraic equations with respect to the  2m  unknown diagonal 

elements 1 2( , ), ( , ), 1,i iD l l D l l l m . For the example above, (5.3) and (5.8) yield the 

following private key matrices  

 

1 2 1 2 1 21

11

2 1 2 1 2 1 2

0 3 3( ) 431 12 12

4 2 4 3( )42 0 34 34

d d d d d dd
X

d d d d d d d

           
                        

, 

3 3 4 3 443

12

3 3 4 3 44 4

3 3( ) 4031 12 12

4 4 3( )242 0 34 34

d d d d ddd
X

d d d d dd d

          
                       

, 

 

and the following matrix equation 
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3 4 3 41 2 1 2

1

3 4 3 41 2 1 2

3( ) 43( ) 4 1 3 21

4 3( )4 3( ) 42 21

d d d dd d d d
Y

d d d dd d d d

         
                

, 

or 

 

3 4 3 41 2 1 2
1

3 4 3 41 2 1 2

3( ) 42 4 2

4 3( )3 3 4

d d d dd d d d
Y

d d d dd d d d

     
   

     
 

1 4 2 4 1 4 2 4

1 4 2 4 1 4 2 4

2 4 2 21

3 3 4 21

d d d d d d d d

d d d d d d d d

    
    

    
 

(5.12) 

is obtained. 

Denoting  

1 1 3 2 1 4 3 2 3 4 2 4, , , ,z d d z d d z d d z d d     (5.13) 

 

the following system of equations can be derived from (5.12) 

2 4

2 4

2 4

2 4

2 4 2,

2 1,

3 2,

3 4 1.

z z

z z

z z

z z

 

 

 

 

 (5.14) 

 

From the last two equations of (5.14) one can write 

2 42 2z z  . (5.15) 

 

The first two equations of (5.14) give 

 

2 41 3z z  . (5.16) 

Hence, (5.15) and (5.16) imply 

4 21, 4z z  . (5.17) 

 

The other unknowns, 1 3,z z , are not defined. From (5.13) and (5.17), it follows that 

4 2 4 2 1 41 , 4z d d z d d    . (5.18) 

From (5.18), one gets 

2 14d d . (5.19) 
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It is easy to check that 11D defined in (5.8) meets (5.19). 

As in the example above, system (5.5) after taking (5.3) into account may be solved as 

a system of 2m linear algebraic equations by introducing 

2m unknowns 1 2( , ) ( , )ilk i iz D l l D k k  , 1, , 1,l m k m  . However, due to (5.2), one 

of its rows is a linear combination of its other rows. Hence, the right-hand side of (5.5) 

has one row that is a linear combination of its other rows. The system of 2m equations 

therefore has 2m m linear independent equations. It is thus undetermined and its 

solution has m free unknowns, enumeration of whose possible values is required to find 

a solution of (5.3), (5.5). In the worst case this enumeration requires checking of 

| |mF variants. If e.g., | | 128, 16F m  , then the number of variants to check is 1122  

which is unfeasible for the current level of computer development. 

5.5 Matrix-based DH-like Secure Protocol Extension 

The proposed matrix-based DH-like protocol bares the same deficiencies as the original 

DH key-exchange protocol does, e.g., it is susceptible to the intruder-in-the-middle 

attack [40]. Secure protocols extending DH original protocol are considered, e.g., in 

[40][43]. These algorithms use some information known in advance to the both 

communicating parties (passwords, static keys). These secure protocols are based on the 

original DH key-exchange protocol and may be used in multiplicative (for the Discrete 

Logarithm Problem) or in additive (Elliptic Curves) fields [43, p.3]. 

Secure MQV and HMQV protocols are described in [43, Figs. 5.1, 5.2]. 

Assuming that certified static public keys, ,a bA g B g  , (calculated using respective 

private keys , qa b Z ) of the communicating parties, ˆ ˆ,A B , respectively, are known to 
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the parties in advance, MQV and HMQV may be represented by Fig. 5.1. 

ˆ ˆ

ˆ ˆ

2

ˆ : , ;

ˆ : , ;

ˆ ˆˆ ˆ: , ,

ˆ ˆˆ ˆ: , ,

ˆ : ( ) ; ( )

ˆ : ( ) ; ( )

: 2 mod 2 , 2 mod 2 ;

log / 2

ˆˆ: ( || ), ( || )

x

y

e x da

A A

d y eb

B B

l l l l

A generate x X g

B generate y Y g

A B A B X

B A B A Y

A Y B K H

B XA K H

MQV d X e Y

l q

HMQV e H X B d H Y A

 

 













 

 

   

   

 

 

Figure 5.1: Computation of the session key K by MQV and HMQV ( H is a hash 

function). 

 

Contrary to the original DH key-exchange protocol using some generated by 

users secret numbers (ephemeral, dynamic keys) ,x y , and respective public 

values ,X Y , only, their static private, ,a b , and public, ,A B , keys are used in MQV 

and HMQV (Fig. 5.1) thus not allowing an opponent to apply intruder-in-the-middle 

attack. 

Matrix analogue of HMQV may be represented by Fig. 5.2 assuming that public 

keys, 1 2 1 2,A A GA B B GB   (generated from respective private keys, 

1 2 1 2( , ), ( , )a A A b B B  ) are known to the both communicating parties in advance. 

They generate their ephemeral secret keys, calculate respective public keys, exchange 

them, and use both static and ephemeral keys to calculate common session key K (Fig. 

5.2). 
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1 2 1 2

1 2 1 2

ˆ ˆ1 2 1 2

ˆ ˆ1 2 1 2

ˆ : ( , ), ;

ˆ : ( , ), ;

ˆ ˆˆ ˆ: , ,

ˆ ˆˆ ˆ: , ,

ˆ : ; ( );

ˆ : ; ( )

ˆˆ( || ), ( || )

A A

B B

A generate x X X X X GX

B generate y Y Y Y Y GY

A B A B X

B A B A Y

A eX BX dAY A K H

B eB XB dY AY K H

e H X B d H Y A

 

 

 

 





  

  

 

 

Figure 5.2: Matrix-based analogue of HMQV 

Hence, our protocol opens a door for a variety of similar secure protocols which 

are however less computationally intensive than DLP- or Elliptic Curve-based protocols 

since they apply few simple matrix multiplications only.  

5.6  Conclusion 

The proposed DH-like matrix protocol is based on few matrix multiplications and does 

not use exponentiation as do other known DH protocol modifications. The concept of 

the proposed protocol is the same as that of DH: it allows two-way arrival at the same 

common key that is provided by the use of private key matrices commuting each other 

as conjugates to diagonal invertible matrices. The public key is obtained by 

multiplication of the private key matrices with a publicly known zero-determinant 

matrix. The non-invertibility of this matrix defines the trap-door property of our 

protocol. For 16 16  matrices with 7-bit integer entries it ensures substantial security of 

1122 search space size. The proposed protocol, contrary to previous ones, may operate 

with short numbers and is computationally simple thus assuring its high performance 

and wide applicability. The proposed matrix-based DH-like protocol bares the same 

deficiencies as the original DH key-exchange protocol, e.g., it is susceptible to the 

intruder-in-the-middle attack [40]. Secure protocols extending DH original protocol are 
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considered, e.g., [40][43]. These algorithms (e.g., MQV, HMQV) utilize some 

information known in advance to both communicating parties (passwords, static keys) 

and may be exploited in multiplicative fields (for the Discrete Logarithm Problem), or in 

additive fields (Elliptic Curves) [43 p.3]. Herein, we propose a protocol similar to 

HMQV that is based on our DH-like protocol. Hence, our protocol opens a door for a 

variety of similar secure protocols which are however less computationally intensive 

than DLP- or Elliptic Curve-based protocols since they use few simple matrix 

multiplications. 
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Chapter 6 

6 ELGAMAL PUBLIC KEY CRYPTOSYSTEM AND 

SIGNATURE SCHEME IN ( , , )GU m p n  

6.1 Introduction 

In this chapter, we present our proposed ElGamal public key cryptosystem and signature 

scheme ( , , )GU m p n [7]. It uses the group ( , , )GU m p n of numbers co-prime to 

nmp and having analytical representation and known order. Elements of 

( , , )GU m p n with the maximal order are used as the base elements in the proposed 

extension instead of primitive roots used in the original scheme. Proposed scheme 

allows easy periodic change of the group and base elements to provide necessary 

security level without change of the prime number p  contrary to the case of ( )GF p  

used in the original ElGamal scheme. Computation of discrete logarithms in the 

proposed scheme is difficult for large p . 

The rest of the chapter is organized as follows. Section 2 introduces an overview 

of ElGamal public key cryptosystem and signature. Section 3 introduces ( , , )GU m p n  

and its properties used in [28]. Section 4 presents the extension of ElGamal public key 

cryptosystem and signature scheme to ( , , )GU m p n . Section 5 concludes the chapter.  
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6.2 Overview of Original ElGamal Public Key Cryptosystem and 

Signature Scheme 

ElGamal public key cryptosystem and signature scheme [53] rely on the computational 

complexity of finding discrete logarithms base some publicly known primitive root (base 

element), ( )GF p , where p is a large prime such that the maximal in ( )GF p  element 

order, ( ) 1GF pmo p  , has at least one large prime factor (if ( )GF pmo  has only small 

prime factors, discrete logarithm computation is easy [54]). A three-parametric finite 

number group ( , , )GU m p n , a subgroup of the group ( )nU mp of units [55] consisting of 

numbers co-prime to nmp  where p is prime and 0modm p introduced in [28]. The 

group ( , , )GU m p n  (contrary to ( )GF p  where finding primitive roots is 

computationally difficult [56]) has 1np   a priori analytically known numbers of the 

maximal order
1

( , , )
n

GU m p nmo p  , any of which can be used as a base 

element ( , , )GU m p n , and if p is large, finding discrete logarithms [54] is difficult. 

We propose an extension of ElGamal public key cryptosystem and digital signature to 

( , , )GU m p n  that is beneficial because, due to its known analytical representation, the 

field and base element can be easily periodically changed as recommended in [57] not 

changing p  (finding of new primes is difficult [58]), and message space can be made 

arbitrarily large also by respective choice of the parameters (messages are from nmp
Z ) 

6.3 Group ( , , )GU m p n  and its Properties  

Theorem 1: 

If 1p  is prime, and mod 0m p  , 2n  are integers, then the set of numbers 
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( , , ) {1, 1} { 1| 0mod ,

| | 1, 1 ,1 }

n n k

k

GU m p n mp qmp b q p

b q p k n

     

    
 

is a group with respect to multiplication modulo nmp . The order of the group is  

1

1

2 ,( 1) ( 2)
| ( , , ) |

2 , ( 1) & ( 2)

n

n

p m p
GU m p n

m p





   
 

 

. 

Example 1: 

a) If 1 2 1 1 22, 3, 5, 2, 3, 2, 1, 4,m p n k k q b q         2 1b  ,then

5 21
1 1 1 2 2 3 1 107,

n k
e q mp b

         5 32
2 2 2 4 2 3 1 73

n k
e q mp b

        , and  

b) 3| (1,2,4) | |{1,3,5,7,9,11,13,15}| 2 8.GU     

c) 2| (2,3,3) | |{1,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47,49,53}| 2 3 18.GU      

d) 2| (3,2,3) | |{1,5,7,11,13,17,19,23}| 2 2 8.GU      

e) | (1,3,2) | |{1,2,4,5,7,8}| 2 3 6.GU      

f) 1| (1,2,2) | |{1,3}| 2 2.GU     
 

Theorem 2: 

In the conditions of Theorem 1, the order of ( , , ) {1, 1}n k nqmp b GU m p n mp     is 

as follows: 

22 ,( 2) & ( 1) & ( 2),

2 , ( 2) & ( 1) & (1 ) & ( 2),
( )

, ( 2) & ( 1) & (1 ) & ( 2) ( 2) & (1 1) &

( 2),

n

k
n k

k

p k n n

p p b k n n
ord qmp b

p p b k n n p k n

n





    

      

  
          




 

and (1) 1, ( 1) 2nord ord mp   . 

Example 2: 

Consider (2,3,10)GU . If 1, 1 9, 1q k n b     , then 1 7n kqmp    , and its 
93 -th 

power (
93 =19683) modulo 

102 3 must be equal to 1. Actually, 
196837 mod 

102 3 = 

1,1607043194177918626894023709983e+16634 mod 118098 =1, and 
196827  mod 
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102 3 = 1,6581490277397026609848605299976e+16633 mod 118098 =101227. 

Let ( , , ) { ( , , ) {1, 1}| ( ) }n
LGU m p n e GU m p n mp ord e L     , then in the conditions of 

Theorem 1,  

1

1 2 2

2 2

( 1), (( ) ( 2 )) & (1 ) & ( 2),

2 , ( 2 ) & ( 2) & (1 2) & ( 1),
| ( , , ) |

2 2 , ( 2 ) & ( 2) & ( 1),

2 , ( 2 ) & ( 2) & ( 1).

k k k

k k

L n n n

n n

p p L p L p k n p

L p k n m
GU m p n

L p m

L p m



  

 

       

      

 
   


  

 

Example 3:  

a) Consider (3,2,3) {1,5,7,11,13,17,19,23}GU  . There are 
26 2 2  numbers of 

order 3 22 2  : 2| (3, 2,3) | |{5,7,11,13,17,19}| 6GU   .  

b) Consider (1,2,4) {1,3,5,7,9,11,13,15}GU  . There are 4 24 2  numbers of 

order 4 24 2  : 4| (1, 2,4) | |{3,5,11,13}| 4GU   , and 12 2 numbers of 

order 12 2 : 2| (1, 2, 4) | |{7,9} | 2GU     (not taking into account 15). 

Consider (2,3,3) {1,5,7,11,13,17,19,23,25,29,31,35,GU  37,41,43,47,49,53} .There 

are 2 16 3 (3 2)  numbers of order
29 3 : 23

| (2,3,3) | |{7,13,25,31,43,49}|GU   

2 13 (3 1) 6   , the same number of numbers of order 

218 2 3  : 22 3
| (2,3,3) | |{5,11,23,29,41,47}|GU


 2 13 (3 1) 6   , 

1 12 3 (3 1)  numbers of order
13 3 : 1 1

3| (2,3,3) | |{19,37}| 3 (3 1) 2GU     , and the 

same number of numbers of order 
16 2 3  : 1 1

6| (2,3,3) | |{17,35}| 3 (3 1) 2GU     . 
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6.4 ElGamal Public Key Cryptosystem and Signature Scheme  in 

( , , )GU m p n  

6.4.1 Public key cryptosystem 

Suppose that A wants to send B a message M , where nmp
M Z . First, A chooses a 

number l uniformly from {0,1}nmp
Z  ={2,.., 1nmp  }. Then A computes the key 

modl n
BK y mp , (6.1) 

where mod
X nB

By mp , is a secret value of B,  

11 ( , , ), 0mod ,1 nqmp GU m p n q p q p       , (6.2) 

1
( , , )( ) n

GU m p nord mo p   , according to Theorem 2, {0,1}B nmp
X Z  , and By is 

kept in the public file of B together with  . The ciphertext is then the pair (c1, c2), 

where 

1 2mod , modl n nс mp c KM mp  . (6.3) 

Decryption splits into two parts. The first step is recovering K, which is easy for B, 

since 1( ) mod mod
XXl n nBBK mp c mp  , and BX is known to B only. The second 

step is to multiply 2c by 1 mod nK mp , and recover the message M . 

Example 4:  

Consider (2,3,10)GU . Let 2, 1 9, 1q k n b     , and 1180983 nmp
M Z Z   , 

3l  , 2 2 3 1 13 (2,3,10)GU       , 6BX  , 

6 10
13 mod 2 3 4826809mod118098 102889

X By B      ,  

3mod 102889 mod118098 9289l n
BK y mp   ,  
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3
1 2mod 13 mod118098 2197, modl n nс mp c KM mp   

9289 3mod118098 27867   . Side B restores the message (c1, c2) by the following 

calculations: 6
1 mod (2197) mod118098 9289
X nBK с mp   , 

1 6751mod118098K   , 1
2 mod (6751 27867)mod118098 3nM K c mp     . 

6.4.2 Signature Scheme  

Let nmp
M Z  is a document to be signed. The public file still consists of  and 

mod
X na

ay mp , (6.4) 

for each user a, {0,1}a nmp
X Z  . The signature for M  is the pair (r,s), 

( , , )r GU m p n , nmp
s Z , chosen such that the equation 

mod
rM s n
ay r mp   (6.5) 

is satisfied, where 

modk nr mp , 

( )nk U mp  is a random number selected secretly, ( )U N is a group of numbers co-

prime to N , and s is obtained as a solution of (6.5) written as 

mod
X rM ks na mp    ,                  

from which it follows that 

1( ) mod n
as M X r k mp  . (6.6) 

Given M , r, and s, it is easy to verify the authenticity of the signature by checking (6.5) 

using (6.4). The use of inverse modulo 
nmp in (6.6) is possible since, by (6.2) and 

Theorem 2,
1

1mod
np nmp

  and 1np  divides nmp . 
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Example 5: 

a) Let 2, 3, 10m p n   , 118098nmp  , 10 1180982 3
2 nmp

M Z Z Z


    , 

7 ( ) (118098), 5 {0,1}, 2 2 3 1 13 (2,3,10)n
a nmp

k U mp U X Z GU            ,   

5 7mod 13 mod118098 16999, 13 mod118098 38479
X na

ay mp r    

1 1 10101227mod118098, ( ) mod 2 3 (2 5 38479) 101227mod

118098 61297mod118098 56871,

ak s M X r k        

  
,  

2mod 13 mod118098 169M nmp   , (6.7) 

38479
mod 16999 mod118098

10000 3 8479
(16999 mod118098) 16999 mod118098) mod118098

112555 86335 mod118098 96289

r n
y mpa 

 

  

,

56871

5000 11 1871

mod 38479 mod118098

(38479 mod118098) (38479 mod118098)

35077 16369mod118098 101035

s nr mp 

 

  

,  

mod 96289 101035mod118098 169r s n
ay r mp    . (6.8) 

From (6.7), (6.8), it follows that (6.5) holds and the message 2M   is correct. 

b) Let 2, 5, 7m p n   , 156250nmp  , 1562502 nmp
M Z Z   , 

73 ( ) (2 5 ) (156250)nk U mp U U     , 1562505 {0,1} {0,1}a nmp
X Z Z     , 

2 2 5 1 21 (2,5,7)GU       , 5mod 21 mod156250 21601
X na

ay mp   , 

3mod 21 mod156250 9261k nr mp   , 
1 104167 mod156250k   , 

1 6( ) mod5 (2 5 9261) 104167mod156250

119601mod15625 36649,

as M X r k      

  

9261mod 21601 mod156250 56351r n
ay mp   ,
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36649 10000 3

6649

mod 9261 mod156250 ((9261 mod156250)

(9261 mod156250)) mod156250 50001 103841mod156250

122591,

s nr mp   

 



mod 56351 122591mod156250 441r s n
ay r mp    .     (6.9) 

6.5 Conclusion  

The ElGamal public key cryptosystem and signature scheme originally proposed for 

( )GF p are redefined for the group ( , , )GU m p n . The elements of ( )GF p having the 

maximal order 1p  (primitive roots) are the base elements of the original ElGamal 

system. Finding primitive roots in ( )GF p is computationally difficult [56]. For the 

group ( , , )GU m p n , 1np  a priori analytically known its elements represented by (6.2) 

have the maximal order of 1np  . They are used as the base elements in the proposed 

system that allows easy changing of a field and base element as recommended in [58] 

but without change of p  (finding of true primes is computationally difficult [58]). The 

discrete logarithm calculation algorithm [56] is computationally difficult in the case of 

( , , )GU m p n  for large p  since the maximal element order in ( , , )GU m p n is 1np  . By 

increasing m and n , it is possible to cover any message space as far as messages for the 

proposed cryptosystem and signature scheme are from nmp
Z .  
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Chapter 7 

7 CONCLUSIONS AND FUTURE RESEARCH 

In this thesis we presented two new modifications of Hill cipher based on the use of 

pseudo-random eigenvalues for one-time key matrix, generated for each plaintext block; 

The proposed modifications are secure and efficient. Security analysis shows that HCM-

EE and HCM-PRE resist the brute-force attack because of large key space; and they also 

resist the known plaintext-ciphertext attack because of the use of dynamically changing 

key matrices similar to HCM-NPT. Experiments showed that the proposed HCM-PRE, 

HCM-PRE are more effective in encryption quality than HCM-NPT, HCM-H, HCM-

HMAC and AES in the case of images with large single color areas.  

We also presented DH-like matrix protocol based on matrix multiplication and does 

not use exponentiation as do other known DH protocol modifications. The concept of 

the proposed protocol is the same as that of DH: it allows two-way arrival at the same 

common key that is provided by the use of private key matrices commuting each other 

as conjugates to diagonal invertible matrices. Generation of the public key is made by 

multiplication with a publicly known zero-determinant matrix. The non-invertibility of 

this matrix defines the trap-door property of our protocol. 

We also presented an extension of Elgamal public key cryptosystem and signature 

scheme. The proposed extension uses the group GU(m,p,n). 
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The amount of work devoted to problems of information security is continuously 

increasing with the proliferation of distribution and transmission of data over networks. 

Some trends to be considered further: 

1. Propose a parallel algorithm for both HCM-EE and HCM-PRE 

2. Study the weaknesses of the RC4 stream cipher 

3. Investigate orthogonal matrix and study the ability to use it in the encryption 

techniques. 

4. Investigate the authentication and digital signature problems 
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Appendix: 

To demonstrate the results of our experiments, here in, we provide a brief description of 

image encryption application with screen shots. The application is designed in a flexible 

way to enable the user to select the image to be encrypted and to save the encrypted 

image with a given name. It shows both images before and after encryption, decryption, 

respectively.  

 The application is written in C# (Microsoft Visual Studio 2008). The choice is 

dedicated by the fact that, C# offers tools for easy creation of friendly user interfaces; it 

includes a huge number of functions related to the images and image processing. It is 

easy to use and compare the results. The encryption/decryption schemes can invoked 

through a menu including options for the main encryption and decryption algorithms. 

The options have submenus corresponding to the different algorithms.  

The main principle in the system design is its modularity, which makes it 

extendable. Thus, it is very easy to add algorithms for new encryption algorithms. The 

system includes a class of methods for encryption and decryption. It also can show 

(calculate) the quality of encryption by using the quality encryption measures, Irregular 

Deviation Based Quality Measure (ID) and Correlation Coefficients (C.C). 
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Figure Appendix 1: Main menu of the application 

The application can encrypt images with different extensions (types), such as BMP, JPG, 

GIF, etc. it can be extended easily to cover others. Correspondingly, each encryption 

scheme includes two submenus, as shown on (Fig. Appendix 1). 

To encrypt an image by using our proposed modifications or any other schema, 

the user first selects the image to be encrypted by clicking on Browse (Fig. Appendix 1). 

The original image to be encrypted is chosen in a flexible way (Fig. Appendix 2). The 

original image will be displayed as shown in (Fig. Appendix 3, e.g., Nike.bmp). Right 

click on the mouse to select the schema for encryption (Fig. Appendix 4, e.g., HCM-

PRE). The encrypted image will be displayed. The encrypted image can be saved by 

clicking save button.  
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Figure Appendix 2: Select an image to be encrypted 

 

Figure Appendix 3: Original image to be encrypted 
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Figure Appendix 4: Nike.bmp will be encrypted by HCM-PRE 

 

Figure Appendix 5: Nike.bmp HCM-PRE encrypted 

The irregular irregular deviation based quality measure ID can be calculated by 

clicking on Irregular Deviation button, the result will be displayed (Fig. Appendix 6), R-

value, G-value, and B-value means the ID for red, green, and blue layers, the ID is taken 

as an average from those three values. 

  

Figure Appendix 6: Irregular deviation based quality measure for Nike.bmp 
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To demonstrate the correctness of our modifications that is, decryption will lead to the 

original image we perform the HCM-PRE decryption (Fig. Appendix 7) 

 

Figure Appendix 7: Nike.bmp will be decrypted by HCM-PRE 

The original image is restored (Fig.Appendix 8) 

 

Figure Appendix 8: Nike.bmp HCM-PRE decrypted 

The former steps can be applied for any encryption schema. 

It is appropriate to mention that, we did not include the statistical values of 

encryption/decryption because of the following: for example, if we used the nike.bmp 

with size 124x124x3=46128 pixels (bytes) (approximately needs 15 pages with A4), for 

the irregular deviation based quality, it calculates the histogram of the difference 

between the original and encrypted image. Hence, this means that we need to include 
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such size of data three times which is not appropriate, therefore, we did not include 

them. 


