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ABSTRACT 

 

According to the Eric Verlinde’s arguments on the gravity, we study the entropic 

force of two spacetimes without and with dilaton field, which are the Schwarzschild 

black hole and the charged dilaton black hole respectively. Generally, the existence 

of the dilaton field makes over the spacetime to have unusual asymptotic structure. 

During the calculations of the entropic force, the key point is to describe the 

holographic screen of the associated spacetime. In this thesis, we mainly consider 

three surfaces as being candidates for the holographic screen. These surfaces are 

called as the static holographic screen, the accelerating surface and the stretched 

horizon. Thus, by comparing the results of the entropic force of the associated 

spacetimes, we want to stress the effect of the dilaton field on the entropic force. 
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ÖZ 

Eric Verlinde’nin yerçekimi üzerindeki argümanlarına dayanarak dilaton alanına 

sahip olmayan ve sahip olan iki uzay-zamanın, ki sırasıyla bunlar Schwarzschild ve 

yüklü dilaton kara delikleridir, entropik kuvvetlerini hesaplıyoruz. Genellikle dilaton 

alanının varlığı uzay-zamanı asimtotik olarak düzgün olmayan bir yapıya dönüştürür. 

Entropik kuvvet hesaplamaları sırasında kilit nokta ilgili uzay-zamanın holografik 

ekranını tanımlamaktır. Bu tezde, holografik ekran adayı olarak başlıca üç yüzeyi 

dikkate alıyoruz. Bu yüzeyler statik holografik ekran, ivmelenen yüzey ve gergin 

yüzey olarak adlandırılırlar. Böylece, ilgili uzay-zamanların entropik kuvvetlerinin 

sonuçlarını karşılaştırarak dilaton alanının entropik kuvvet üzerindeki etkisini ön 

plana çıkarmak istiyoruz. 

 

 

 

 

 

 

 

 

 

Anahtar Kelimeler: Entropik kuvvet, holografik ekran, dilaton alanı, beliren 

yerçekimi. 
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Chapter 1 

1 INTRODUCTION  

1.1 Review of the Gravity and Holography 

Gravity is one of the four fundamental interactions of nature. Because of its 

existence, objects with mass attract each other. Since1916 in which Einstein 

published his famous studies [1-2] on general relativity, it has been discussed that 

gravity is different from the other fundamental forces. In point of view of the general 

relativity we consider the gravity as gravitational fields arising due to the 

deformation of spacetime. Although the Einstein’s general relativity theory has a 

Newtonian limit, until today there is no confirmed signal proving the existence of 

gravitational waves. So one may deduce that the only explanation for the absence of 

these fields is, maybe we were thinking in the wrong way. That is why nowadays the 

researchers look for a new approach to describe the gravity in the framework of 

general relativity and quantum mechanics – the so-called quantum gravity theory.  

Bekenstein [3,4] from Gedanken experiments found out that black hole (BH) 

could have intrinsic entropy when the thermodynamics laws applied for the BH 

physics. Hawking [5] in continue found out that BH can radiate its energy in the 

form of Planckian black body radiation. Throughout this period, ’t Hooft [6,7] and 

Susskind [8,9] showed that the basic principles of quantum mechanics and statistical 

mechanics have to be made to co-exist with BH evaporation. Later on, Jacobson [10] 

demonstrated that Einstein equations could be derived from combining the 
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thermodynamics with equivalence principle. Padmanabhan [11,12] observed that 

equipartition law for horizon degrees of freedom combined with the Smarr’s formula 

leads to Newton's law of gravity. Recently, Verlinde [13] has proposed the 

Newtonian law as an entropic force by using holographic principle and equipartition 

rule. 

1.2  Holographic Principle 

t’ Hooft [6-7] found that the maximum information storage capacity of a BH 

depends on its area, not on its volume. Holographic principle says that the entire 

phenomena occurring in a three-dimensional region can be described by only on the 

two-dimensional boundary of the region. In other words, we can describe the whole 

world with a two-dimensional lattice of spins. A two-dimensional surface as a screen 

separates sites as pixels [14]. Of more relevance to a theory of quantum gravity, BH 

will be assumed as entropy storage found on the horizon, no more than one bit per 

Planck area. Namely, the entropy can be considered as a measure of information. We 

can map the horizon on the screen as follows, see figure 1 [15]. 

 

Figure 1: A BH projected to the screen 

 

We have another image of slowly passing first BH in front of the second in an 

attempt to eclipse it, see figure 2. 
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Figure 2 

In summary, the holographic principle shows that the world is two-dimensional, 

but two-dimensional surface contains information that is encoded in such a way that 

we can recover our three-dimensional world. Hence, one can also make another 

assumption: “We are the holograms, living on the boundary surface of a five-

dimension spacetime”. On the other hand, the holographic principle yields also 

another consequence: gravity is not a fundamental interaction any more, it is just an 

emergent phenomenon that appears from the statistical behavior of microscopic 

degrees of freedom encoded on holographic screen (HS). This suggests that gravity 

originates from changing of mass, time and space (information). By summarizing 

some well-known physical principles and laws we make the relation between 

information and gravity more clear. [16] 

 1) Landauer's principle: To erase information   , at least energy described 

by         should be consumed. (Information is related to the heat). 

2)        : Energy is related to the mass (matter) 

3) Einstein’s equations:             (Matter generates gravity) 

4) Unruh effect: Quantum fluctuation looks thermal to some observers 
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By combining 1 and 2, we see that "matter is related to information", 1+2+3 

means "Gravity is related to information" and 1+4 shows that " Quantum mechanics 

is related to information". This configuration can be seen best in figure 3.  

 

Therefore, one can make the following remarks: 

i- Information is fundamental→ Physical laws should be such that they respect 

observers' information about given matter and spacetime 

ii- Holographic principle → Amount of information in a region bounded by causal 

horizon is finite in bits and proportional to the area of the horizon 

iii- Landauer's principle,        or second law of thermodynamics → 

information- energy relation 

 

 

 

 

 

 

 

 

 

 

Figure 3: Relation between various physical concepts. 
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1.3  Entropic Force 

Thermodynamics and relativity has been connected over 35 years ago, with 

pioneering work of Bekenstein [3,4], Hawking [5], and Unruh [17,18]. Based on 

Bekenstein and Hawking's works, Jacobson [10] discovered that Einstein’s equations 

[1-2] can be viewed as thermodynamic equation of state under a set of minimal 

assumptions, the equivalence principle and the identification of the area of a causal 

horizon with its entropy. Recently, Verlinde [13] has shown that Newton's law of 

gravitation can be understood as an entropic force.  

The idea of BH entropy is rather enigmatic. The first glimmerings of the notion 

began in the early days of thermodynamics, the study of the movement of heat. In 

1850, Rudolf Clausius [19] generalized Carnot's finding who analyzed the working 

of a steam engine in detail. Clausius called the unavailable energy of a system the 

entropy of that system. According to Clausius, the entropy of any closed system 

always increases with time. This statement which is a version of the second law of 

thermodynamics holds for all closed systems. 

On the other hand, Boltzmann [20] said, entropy is the number of distinct 

arrangements of microstates in a system that gives rise to the same energy of the 

system. The entropy of the volume of a gas, for example, is the number of different 

arrangements of molecules that give rise to the same energy for the gas. The unit of 

Boltzmann's entropy is energy divided by temperature [14]. 

There is another definition for entropy. It was developed by Claude Shannon [21], 

who introduced the concept of entropy as a branch of applied mathematics called 

information theory in 1948. He showed that maximum amount of information we can 

pack into a system depends upon the surface area of the system, not the volume. We 

can think of the entropy of a BH as being information written on its event horizon. 
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Each bit of information corresponds to four Planck areas. Bekenstein [3-4] stated that 

when object falls into a BH the mass and the area of the horizon and the entropy of 

the BH increases (general form of the second law of thermodynamics). In 1986, 

Rafael Sorkin [22] showed that the entropy we calculate for a BH must involve the 

most fundamental degrees of freedom (DoF). So even if the structure of matter is 

unknown, we can still find the true entropy of a BH [14]. 

If we return to the concept of the entropic force, it can be understood as an 

effective macroscopic force that starts in a system with many DoF. The equation of 

this macroscopic force can be formulated in terms of the entropy differences without 

considering the microscopic dynamics.  

In order to visualize this macroscopic force, we can consider the elastic force in a 

polymer. By using a mechanism, we can pull the endpoints of the polymer by an 

applied force  . Thus we bring it out of its equilibrium. Furthermore, if we assign its 

one end as the origin, and shift its other endpoint along the   –axis, we get the 

entropy as 

                                                                                                

where    is the Boltzmann's constant and the volume        , which is a 

function of the total energy   of the system and the position   belongs to the 

configuration space of the system. Therefore, the applied force   at a temperature   

can be obtained by the following saddle point equations 

                                            
 

 
 

  

  
           

 

 
 

  

  
                                        

According to the Newton’s third law, the applied force   should be equal to the 

entropic force. Namely, the polymer is restored to its equilibrium point by the 

entropic force. Thus, we can deduce that the magnitude of an entropic force is 

directly proportional to the temperature, and it is aligned with the direction of 
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increasing entropy. Actually, Verlinde has extended the latter idea to the 

gravitational force between test masses using a set of assumptions loosely motivated 

by the concepts emerged from the study of the relation between thermodynamics and 

relativity, [13,23]. 

In order to understand Verlinde’s entropic force, we imagine first a patch of a HS 

[24], and an object of mass   that penetrates it from the side at which spacetime has 

already emerged. While the object with its microscopic DoF attaches to the screen, it 

also influences the amount of information stored on the screen, see figure 4. 

 

 

 

 

 

 

 

Figure 4 

According to the Bekenstein's arguments [25], the change in entropy (  ) which 

is correlated with the information on a boundary (screen) is given by 

                                                    
 

  
                                      

Soon after, we will understand the reason of the factor    appearing in the above 

equation. 

Let us rewrite this formula by assuming that    is linear to the displacement,   . 
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For reaching the entropic force then we gain inspiration from the osmosis, which 

crosses a semi-permeable membrane. When an object transfers through a membrane 

with a temperature  , it experiences an effective force  , which satisfies the 

following equality 

                                                                                                                 

  is called the entropic force. Remarkably, in order to have a    , a non-zero 

temperature is needed. On the other hand, we know from the Newton's second law 

that whenever     yields a non-zero acceleration,     . . Unruh [17,18] proved 

that  acceleration and temperature are related. Referring to his studies, we get the 

following expressions 

                      
 

  

   

 
                       

 

    
 
   

 
                                      

where    is the acceleration. This equation shows that temperature caused by the 

acceleration. From now on, we can call   as the temperature associated with the bits 

on the HS. Now we understand why the equation (1.3.3) contains the factor 2 . 

                                                  
 

    

   

 
                                                    

and 

                                                         

 

   
                                               

Thus, we reach to the second law of Newton by using the factor 2 , 

                                             

  

 
                                    

The above arguments indicate that in order to gain insight into the origin of the 

entropic force we need to explore where the temperature comes from. For this 

purpose let us imagine that our boundary is finite and closed surface. One of the 

ways is to consider the boundary as an information storage device. Each bit occupies 
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let us say one unit cell and   is the number of used bits.   will be proportional to the 

area of the boundary. Then one has 

                                                              
   

  
                                                  

Whit a new constant   known as Newton's constant. Suppose that there is a total 

energy   which is divided over the bits  . It can be determined by the equipartition 

rule  

                                                             
 

 
                                                  

Since 

                                                                                                                   

from Eq. (1.3.11), one obtains 

                                                             
 

 
 

 

    
                                         

where   is the mass that comes out from the part of space surrounded by the screen, 

see figure 5. 

 

Figure 5: An object with mass   locating near a spherical HS. The energy is 

uniformly distributed over the unit cells, and is equivalent to the mass   that would 

emerge in the part of space enclosed by the HS. 

 

By using the following equations, we can find the entropic force as follows. 
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The latter result is nothing but the Newton's law of gravitation, which is 

practically derived by virtue of the holographic principle. The number of DoF is 

linear with the area of the HS and, the energy is evenly distributed over takes the 

form of the Newton's law. Therefore, we conclude that in order to determine the 

gravitational force, one needs only the amount of information determined by the 

entropy and the energy, which is associated with.  

In this thesis, our main aim is to derive Verlinde's entropic force in a spacetime 

with dilaton field. Today, the studies on the dilaton field shows that it can be the 

dominant messenger between standard model fields and dark matter [26]. In this 

way, we want to find the form of the dilatonic entropic force. To this end, we choose 

the metric of charged dilaton black hole (CDBH) [27] as our spacetime, which 

admits unusual asymptotics. They do not only exhibit asymptotic flatness (AF), but 

also they have non-asymptotically flat (NAF) structure depending on their dilaton 

parameter,  . One of the important properties of the CDBHs is that they have 

Schwarzschild limit when the dilaton field vanishes,    . Here, we basically 

follow one of the recent studies on the entropic force whose authors are Myung and 

Kim [28]. They have introduced some HS candidates. We basically consider three of 

them, which are accelerating surface (AS), static HS and stretched horizon (SH). Our 

strategy is the following: we first calculate the temperature of each HS, and insert 

those obtained temperatures separately into the entropic force formula (1.3.15). Thus, 
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we also aim to verify that the obtained entropic forces reduce to the Schwarzschild 

results, and thus to the Newton’s force law [28]. Furthermore, we want to find out 

the effect of the dilaton field on the entropic force by some graphics. 

The thesis is organized as follows. In chapter 2, we consider the Schwarzschild 

BH as a test spacetime to calculate the entropic force on the three different HSs; 

static HS, AS, and SH. In chapter 3, we extend our calculations made in chapter 2 to 

the CDBHs. The obtained results of chapter 2 and 3 are also compared graphically. 

Chapter 4 is devoted to the conclusion. We discuss about the obtained results, and 

highlight the possible detection of the dilaton fields.  
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Chapter 2 

2 ENTROPIC FORCE OF THE SCHWARZSCHILD 

BLACK HOLE 

2.1 Features of the Schwarzschild Black Hole 

According to the Newton's theory in order to escape from gravity of a heavy 

object with mass   and radius  , the escape velocity should be     
   

 
 . Now 

think what will happen if mass   is compressed into small volume that escape 

velocity become larger than the speed of light? First in 1783, this question was raised 

by John Mitchell.  Later, Pierre Simon de Laplace investigated further and asked, 

does the light fall back toward the surface of that object? Today, we can answer this 

question according to the Einstein's both special and general relativity theories. Later 

on, Karl Schwarzschild discovered that Einstein's equations have a solution in closed 

form. Singularity appeared in his solution is such a point that the physics laws break 

down there and a traveler could go through it but never comes back. Indeed, also 

light could not emerge out of central region of this solution. John Archibald Wheeler 

called these strange objects, BHs. Schwarzschild and many other researchers thought 

that his theoretical solution has no physical meaning and they had doubt on existence 

of BHs. But nowadays we have evidence that BHs exist in nature. Astrophysicists 

have detected super massive BHs at the center of many galaxies, and our galaxy has 

a BH at its core. When one gets close to the BH, spacetime becomes rarely curved. 
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And when one passes the event horizon, which is a surface enclosing the singularity, 

the velocity required to escape from the gravitational clutches of the BH becomes 

larger than the speed of light, so all hopes to escape from the BH is lost. Although 

astrophysical BHs are massive, from Einstein's theory BH with a much smaller mass 

is also possible. If we can find a way to crush mass into a small volume, then we can 

create a BH. Another important issue about a BH is its entropy, which we shall 

discuss about it in next chapters, [14, 15] 

2.1.1 Schwarzschild Coordinates and Its Geometrical Properties 

Schwarzschild coordinates, or the related tortoise coordinates, cover only exterior 

of the horizon. Schwarzschild geometry is simplest spherically symmetric static 

uncharged BHs geometry. Its metric is described by 

                  
   

 
     

 

   
   
  

                           

Where the spherical line-element is                 . Throughout the 

thesis, without loss of generality, we use         .   and   are the mass of 

the BH and universal gravitational constant. The coordinate   is called Schwarzschild 

time, and it shows the time recorded by a standard clock at rest at spatial infinity. 

The coordinate   is known as Schwarzschild radial coordinate. It is the distance from 

origin, and it shows that the area of two-sphere at   is     . The symbols   and   

are polar and azimuthal angles. The horizon is the place where     vanishes, and 

defined by the coordinate        . At the horizon     becomes singular. No 

local invariant properties of the geometry are singular at          So, in simple 

free-falling in laboratory at       we would record nothing unusual. 

We can easily read the metric tensor     from the Schwarzschild metric (2.1.1).  
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Table 1: Metric components of the Schwarzschild spacetime 

                    𝜽𝜽               𝜽 

                    𝜽𝜽                  𝜽  

 

 

where     
   

 
. 

 

The Christoffel symbols are found via the components of metric tensor  

                             
  

 

 
                                                     

We just write the nonzero component of Christoffel symbols 

                                     
  

   

  

 

   
   
  

    
 

 
                             

                                               
       

   

 
                                               

                                               
  

   

     
   

    
 

 
                                           

                                                          
                                                           

where a prime denotes derivative with respect to  .  

The Riemann curvature tensor formula is defined as 

                                
       

       
     

    
     

    
                       

And the Kretschmann scalar [29] which represents singularity at     is given by  
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2.1.2 Hawking Temperature and Entropy of Schwarzschild Black Hole 

 

Stephen Hawking found that BHs actually emit radiation like a black body 

spectrum when he was studying the quantum theory of electromagnetism near BHs. 

He showed that vacuum differences between spatial infinity and near horizon regions 

produce thermal effects, which occur near the horizon of the BH. This new 

phenomenon can be considered as the evaporation of the BH. The particles of 

thermal atmosphere gradually leak through the barrier and carry off energy in the 

form of thermal radiation. We can understand this process by Rindler quantum field 

theory by observing this fact: When a particle approaches the event horizon of the 

BH it is broken into matter and anti-matter, and matter can run away from the BH 

and we detect it as Hawking radiation, and conversely the anti-matter one decreases 

the mass   of the BH. Temperature of the Hawking radiation is given by 

                                                             
 

  
                                                  

where   is an acceleration due to gravity the so-called surface gravity and can be 

found by the following formula 

                    
 
  

 
                  

 
 
                               

By using     from table 1, we find that 

                                          
  

   
 

 

 

 

 
  

      
 

 

   
                               

Thus the Hawking temperature (2.1.9) becomes 

                                                        
 

  
 

 

    
                                                          



16 

 

So, for a distant observer, BH is a body with that   temperature and energy  . It 

means that there is entropy for the BH. For finding the entropy, we use the first law 

of thermodynamics 

                                                                                                                  

  can be replaced with mass   so that 

                                                     
 

    
                                          

which can be integrated to give 

                                                                                                         

Since the radius of the Schwarzschild BH is     and consequently the area of the 

horizon is             , one can see that 

                                                         
  

  
                                                 

This is the famous Bekenstein–Hawking entropy.  

The entropy shows the number of microscopically distinct quantum states, which 

is called coarse graining, into the single macroscopic state that we know it as a BH. 

The number of states is of order  

                                               
  

  
                                                      

Here    is the number of distinct quantum states with mass   in the interval   . It 

means that we can study entropy in terms of local properties of the BH. 

 

2.2  Entropic Force of the Schwarzschild Black Hole on the 

Isothermal Cavity 

It is clear from (1.3.15) that to obtain the entropic force on any screen of BH; the first 

step is finding the temperature on that screen. The Schwarzschild BH could be in 

thermal equilibrium with a finite size heat tank in asymptotically flat spacetimes. It 



17 

 

can be made by enclosing BH into a cavity. So the temperature that we should find 

for entropic force corresponds to the Tolman temperature and the energy is the 

quasilocal energy on the isothermal cavity. By using the Tolman red-shift 

transformation on the BH system [29], the local temperature observed by an observer 

located on        is 

                                  
  

     

 
 

    

 

   
   
 

                            

where 

                                       
 

    
 

 

     
                                       

and similarly we have local energy 

                                                    
  

     

                                                     

which shows that UV/IR scaling transformation (the Tolman redshift transformation) 

of the energy between the bulk and the HS? It is important to notice that there is no 

difference between the local BH entropy near the horizon    and the entropy at 

infinity    ; 

                                                           
                                            

This is the Bekenstein-Hawking entropy for the Schwarzschild BH, and it is invariant 

under UV/IR transformation, [30]. 

Now one can introduce the energy of the HS as      

                       
  

   
   
 

                                        

and 
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In order to find the holographic temperature     we use (2.2.5) and (2.2.8) 

                                                                                                  

where 

                                               
   

 
                                                          

From here we can easily see that 

                                        
  

       
   
 

                                   

We are very close to our aim, which is finding the entropic force on the HS by using 

(1.3.15). 

                                                                           
   

  

 

   
   
 

                                   

We know that Newtonian force work in very long distance, so when     

                                            
   

 
         

   

                              

Thus, we reach the Newtonian force that is expected from Verlinde's assumption 

[28]. Namely, the Newtonian force is obtained by using entropy and thermodynamic 

equations. 

Similarly, the quasilocal energy is derived by using the first law of thermodynamics 

       and assuming that the Bekenstein-Hawking entropy     is not changed 

on the cavity. 

                                       
   

  
 

     
 

  
                                        

Since 

                                                                                                             

By putting (2.2.1) into (2.2.13) 
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We integrate it to find energy 

                         
 

   
   
 

 
  

 
   

   

 
                         

For finding the constant, we use the asymptotic behavior of the quasilocal energy, i.e, 

when     , one must get     
   

  
. Thus 

       
  

 
   

   

 
           

  

 
                         

and it can be easily seen that 

                                                           
 

 
                                                                

Finally, the quasilocal energy can be rewritten as 

                                         
 

 
      

   

 
                                              

In this sense, the isothermal cavity, which was an artificial device to make a phase 

transition from a hot gas to a BH, is different from HS. It seems unlikely to define 

the entropic force on the isothermal cavity except the case that it is located near the 

event horizon, [28]. 

2.3 Entropic Force of the Schwarzschild Black Hole on the Static 

Holographic Screen 

In the previous section, we have reached to the entropic force by finding the local 

temperature of surface. We want to find entropic force by using proper acceleration. 
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Our aim is to show that there is no special way to reach the entropic force i.e., we can 

find it from different ways. 

For the first step, we introduce the component form of the proper acceleration [23, 

28] 

                                                            
 

 
     

 
                                           

   is a timelike Killing vector of spacetime, and semicolon means covariant 

derivative. In general, a Killing vector is governed by the following equation 

                                                                                                          

In terms of the proper acceleration, the energy of the static HS is found by 

                                           
 

   
      
  

                                     

where   is the volume of the bulk, which is enclosed by a spacelike hypersurface i.e.,  

     , and    is a spacelike unit normal vector of   . Alternatively, we can 

express the energy of the HS in the Komar integral form 

                                             
 

   
     

  

                                            

in which 

                                                                                         

Meanwhile, Eq. (2.3.4) is defined only for the stationary spacetimes. Now, for 

outside region of the BH, one of the non-zero components of the Killing vector 

which satisfies Eq. (2.3.2) is 

                                                                                                                   

The non-zero component of    on the    hypersurface is 
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For solving (2.3.3), we need to find out the proper acceleration   . We have 

                                                                                                                

And from (2.3.1) 

            
 

 
     

  
 

 
      

     
     

 

 
    

     
 

 
   

                      

which is equivalent to 

 
 

 
 
 

 
                         

                             
 

  
                        

  
  

 
                                                                          

Therefore, the proper acceleration (2.3.8) is obtained as 

                                                                       
  

   
                                                     

So the energy on the static HS (2.3.3) with               becomes 

       
 

   
 

  

 

 

  
           

  

 

 
 

   
 

   

  

 

   
   
 

          
  

  

                                 
 

   
   
 

                                        

This is the local energy from viewpoint of an observer located at rest with respect 

to the Schwarzschild coordinate  . On the other hand, the entropy on the HS,    , for 

      is 
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Since we know now the energy on HS, by using the equipartition rule we can find 

the temperature of the HS. The procedure is as follows 

                      

 

   
   
 

 
    

 
        

                                         
  

       
   
 

                                        

Finally by using (1.3.15) the entropic force of the Schwarzschild BH yields 

                                       
 

   
   
 

   

  
                             

We can clearly see that when        the object having mass   feels an infinitely 

strong attraction force, while at large distances       this force reduces to the 

well-known Newtonian force. We also remark that for obtaining the entropic force of 

a BH the most important step is to make use of the equipartition rule to gain the 

temperature on the static screen. 

2.4 Entropic Force of the Schwarzschild Black Hole on the 

Accelerating Surface 

In the previous sections, we studied the entropic force on the static HS and 

isothermal cavity, now we want to extend our entropic force calculations to the AS, 

which is also considered as a HS. This surface is a spacelike two-surface, and it does 

not belong to the part of any horizon of spacetime. Its dynamical properties satisfy 

the Einstein's field equations [1,2]. The AS is a smooth, orientable, simply 

connected, spacelike two-surface of the spacetime. Every point on the AS accelerates 

with a constant proper acceleration    with direction of unit vector    . One can learn 



23 

 

more things about the AS by referring to [31,32]. Here we have another definition for 

the component form of the proper acceleration unlike the definition given in (2.3.1) 

                                                                  
 
                                               

where    denotes a future pointing unit tangent vector field of the congruence of 

the timelike world lines of the points on an arbitrary spacelike two-surface of 

spacetime [31]. Let us recall that the proper acceleration is defined as 

                                                                                                  

It shows that all the points on the surface have the same acceleration equal to 

amount    in direction of unit vector   . We can easily verify that unit vector field    

is orthogonal to the acceleration     and the unit vector   .  

                                                                                                                          

                                                                                                                       

One of the properties of the AS [31] is 

                                                                                        

At every point of two-surface. Essentially, the constancy of the proper acceleration 

explains why we choose the AS. The main reason is that this surface is very similar 

to event horizon of the BH. As if the surface gravity   
 

   
 is constant everywhere 

on the event horizon, the proper acceleration    is constant through the AS. Since the 

BH is associated with the concept of heat, entropy and temperature, we also hope to 

do the same thing for the AS.  

The flux of the proper acceleration vector field through the AS is defined as 
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Now it is time to find entropic force with our knowledge about the AS. In previous 

sections, we obtained the entropic force by finding the acceleration and its associated 

temperature. Here we choose a different way to obtain the temperature. To this end, 

we use the relation between a flux of the proper acceleration and energy (heat) which 

is given by an equation of the form 

                                                           
 

   
                                                   

For the Schwarzschild BH (2.1.1), the only non-zero component for the future 

pointing unit vector is 

                                                      
 

   
   
 

                                                   

So we can find the non-zero component of the proper acceleration vector    

         
        

     
     

 

  

   

 

 

  
 

  

 
                   

                 

Thus the proper acceleration (2.4.5) becomes 

                                        
  

 

 

  
 

  

  

 

   
   
 

                           

Therefore, we obtain the Unruh temperature as 

                                           
  

  
 

  

    

 

   
   
 

                                     

By comparing the above equation with (2.3.14), we find out that 

                                                                                                                             

This equality is well known in the local quantum field theory. It is called the Unruh 

effect, which tells that an accelerating observer detects thermal particles even in the 
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case of no particles. If we go to the Newtonian limit for the acceleration and the flux, 

one can see that 

                         
  

  
                                

    

   
   
 

                        

This is the acceleration of the free falling particle in the gravitational field due to the 

mass     

The derivative of the flux can be written as 

     
    

  
   

    

  
     

 
         

  
     

  

 
 

   
       

  
   

   

 
 

  
 

                    

According to the constancy of the proper acceleration on the AS;           . This 

condition leads to 

    
   

  
   

   

  
                           

which corresponds to 

 

                                                           
 

   
  

   
  

                                             

From Eq. (2.4.11) 

   

  
 

  

  
   

   

 
 

  
 

    
  

 
                                     

                              
   

  
        

   

 
 

  
 

   
  

 
                              

After substituting the above results into (2.4.17), we obtain 
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Therefore the change of the heat (2.4.8) becomes 

                                              
  

 

 

   
   
 

                                          

We want to use the above equation like the equipartition law of energy to 

determine the temperature on the AS. In this case, it is seen that the entropy takes the 

following form  

                                                       
 

  
 

    

 
                                           

Then we differentiate it to find    in terms of     

                                                            
  

 
                                                

Inserting it into Eq. (2.4.20), we get 

             
  

    

 

   
   
 

               
  

  
                       

It shows that change of the heat is balanced by the change of the entropy when 

fixing the acceleration on the AS. Thus, by using the temperature of the AS,      , 

we prove that the entropic force obtained for the static HS matches with the entropic 

force of the AS: 

                                          
 

   
   
 

   

  
                       

This result approves that the AS can be used as a HS.        

2.5  Entropic Force of the Schwarzschild Black Hole on the 

Stretched Horizon 
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In this section, we shall consider the SH as a HS, and attempt to derive the entropic 

force on it. In fact, SH is such a place that all the thermodynamic quantities, which 

are measured by an observer located at the proper distance     away from the 

horizon. The location of the SH is chosen at       
   
 

   
 , [28]. This umlaut 

length (
   
 

   
          ) is due to the redshift transformation of       

   
   

  

near the event horizon.  

 

 

 

 

Figure 6: Solid circle here represents the event horizon     of the Schwarzschild BH, 

and the dotted circle, at the position       
   
 

   
  near the event horizon, shows 

the entropic force equality of isothermal cavity, static HS and AS. 

In order to find the local temperature on the SH, we put       
   
 

   
  instead 

of   in the (2.2.1) then we have 

   
      

       
   
 

   
 

    

 
 

     

   

   
   

   
 

   
    

 
 

     
   

 

    
   

                                                        



28 

 

in which      
 ,         and the series of             is used. In the 

leading order, we can see that local temperature of SH is independent of the BH mass 

  [30]. We repeat the same processes for the static HS temperature        or the 

Unruh temperature                as 

   
      

       
   
 

   
 

          

       
   
 

   
 

       

 
 

     

 

   
   
 

   
   

    
   
 

   
   

 
 

  

                                   
 

     
   

 

      
                                                               

It can be easily seen that three temperatures are the same in leading order: 

                                             
      

     
   

 

     
                                        

Similarly for the local energy on the SH(2.1.12), 
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where          
   and     

   

   
   

. Finally we can see that the energy and 

entropy on the SH take different form for the HS for the non-relativistic case. 

                                          
        

              
   

 

     
                                 

This result shows that energy is proportional to mass square   , and the 

temperature is independent of the mass. This is a feature of thermodynamic 

quantities of a BH on the SH. For this reason,    
   can be called as the Rindler 

energy observed from near the horizon, and   (energy) is the Schwarzschild mass 

defined by an observer at infinity. Now, for finding the entropic force, we use the 

first law of thermodynamics on the SH. 

                                                        
       

                                                         

where the entropy on the SH is introduced as 

                                                              
   

    
                                                         

It is obvious that the latter result is different from the original Bekenstein-Hawking 

entropy     
   

    
   [3, 4]. Finally, by combining Eqs. (1.3.15) and (2.5.3), we can 

easily calculate the entropic force on the SH, which yields 

                     
         

             
     

 

    
                        

According to the Newton's second law,      , one can read the  acceleration on 

the SH as  
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Figure 7: Image of the SH on an asymptotic screen. 
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Chapter 3 

3 ENTROPIC FORCE OF THE CHARGED DILATON 

BLAK HOLE 

3.1  Features of the Charged Dilaton Black Hole 

CDBHs are the static and spherically symmetric solutions to the Einstein-Maxwell-

Dilaton theory in the low energy limit of the string theory [33]. These solutions have 

a regular horizon and a curvature singularity at the origin. The metrics of the CDBHs 

are neither AF nor NAF. The charge feature of the CDBH is transformable from 

magnetic to electric one by simply replacing the sign of the dilaton parameter   .  

First, Gibbons and Maeda [34] found the CDBH solutions, however they were in 

rather general form. Their solutions were admitting the higher dimensional CDBHs. 

Later on, the four dimensional version of the CDBHs were re-obtained by Garfinkle, 

Horowitz and Strominger [35]. Today one can see various studies in the literature 

which are related with the CDBHs, see for instance [36-40]. 

 

In this section, we will focus only on the four dimensional electrically charged 

dilaton BHs. These CDBHs can be best seen in the paper of Chan et al. [27]. The 

beauty of their solution is that they have Schwarzschild limit. Their CDBH solution 

is obtained from the following four dimensional action  
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where the above action is expressed in the Einstein frame. Here   is the scalar 

curvature,           is the Maxwell invariant and the dilaton parameter   governs 

the dilaton field  .     is known as the Maxwell field, which is related to      

subgroup of       or spin(32)/  . After varying the action (3.1.1) and solving the 

required field equations, the electrically charged dilaton BH solutions are given by 

the following metric [27] as 

                           
   

 
                                         

where   and    are 

                                           
 

  
   

  
 
   

 
                                            

                                                                                                              

and 

                                                          
  

  
                                                       

Here    shows the event horizon of the CDBH. Eq. (3.1.5) can be obtained by the 

virtue of quasilocal mass definition of the Brown and York [41] which is designed 

for the NAF BHs. Meanwhile,   is an arbitrary real constant and another parameter 

   is expressed by  

                                                    
  

    
                                                     

The solution of the dilaton field is found in the following form 

                                                                                                  

where 
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in which   corresponds to the electric charge, and hence the solution for 

electromagnetic field is found as 

                                                         
    

   
                                               

The present form of the dilaton field (3.1.7) is common in two and three 

dimensional solutions, but it is used also as a sign of pathology in dimensions higher 

than three. Due to the existence of the dilaton field in the action (3.1.1), the CDBHs 

are not vacuum solutions (energy-momentum tensor never vanishes). Furthermore, if 

we terminate the dilaton field (    ) with    , the CDBH solution reduces to 

the Schwarzschild solution. Besides, in the particular case of    , the CDBH is 

known as the linear dilaton BH [42]. Without loss of generality, from now on we will 

use    . 

One of the interesting features of the CDBHs is that even when      the metric 

(3.1.2) still represents the features of being a BH. This is because of the singularity at 

    is null and marginally trapped, so that it prevents the outgoing signals to reach 

the external observer. Another intriguing issue of the CDBH is about its charge  : 

there is no     case and no extremal limit on  .  
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Table2:  Metric components of CDBH 

         
 

        
  

 
             

  
         

  

 
   

         
  

         
  

 
          

 
        

  

 
  

                 

           𝜽              𝜽 

 

 

By using the above table, we can see that the Ricci scalar of the CDBH takes the 

form 

                                            , 

 
   

       
        

  

   
                                                      

It can be easily seen that it is finite everywhere except at    , which is the location 

of the singularity hidden by the event horizon,   . On the other hand, the Hawking 

temperature of the CDBH according to the definition (2.1.9) is 

                                                     
     

 

  
  

    

    
                                             

Thus, one can easily observe that the BH temperature increases as the mass of the 

CDBH decreases for      . if     we can see the Schwarzschild limit: 
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Now we can easily find local temperature   
     

  
     

  
    

     

 
  

    

  
 

  
 

  

    

     
  
 

                   

      
   

  
     

   
  

     
   

 

 
 

    

 

   
   
 

   
                  

In the following sections, we aim to find the entropic force of the CDBHs by 

following the calculations that we made in chapter 2. Again, we shall consider three 

HS candidates, which are the static HS, AS and SH. After finding the temperature of 

each associated surface, and we will simply read the entropic force (1.3.15). Finally, 

we will analyze the effect of dilaton parameter on the entropic force. To this end, we 

shall plot some graphs and by using these graphs we will opine about the entropic 

force with dilaton field. 

3.2 Entropic Force of the Charged Dilaton Black Hole via the Static 

Holographic Screen 

In this section we briefly follow the section (2.3) to derive the entropic force on the 

static HS of the CDBH. As it was found in Eq. (2.3.10), the  -component of the 

proper acceleration     of the static HS of the CDBH becomes 

                     
 

 
   

 

 
  

    

     
 

    
   

  
 
  

  
 
                          

According to the energy       definition of the static HS (2.3.3), one can generalize 

this concept of energy for the CDBH as 

                                              
        

 

  
 

  

 

 

  
                                  

and it can be integrated to give 
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We can easily verify that in the vanishing dilaton case (   ), the energy reduces 

to its Schwarzschild form (2.3.12), i.e., 

     
      

 

   
  
 

                                                       

Now, in order to obtain the holographic temperature of the CDBH on the HS, we use 

the local equipartition rule 

                                               
         

       
                                        

where    
     is the entropy on the HS located at  , outside the horizon of the CDBH, 

and it is defined as 

                                                     
                                                           

By using the Eqs. (3.2.3-6), one can read the temperature on the HS for CDBH as 

                         
     

 

        
    

   
    

    
   

   
  
 

                      

As happened in the energy case,    
     reduces to its Schwarzschild form (2.3.14) 

with vanishing dilaton field 

                      
   

   
     

 

    

 

   
  
 

                          

Since we have the temperature of the static HS, with the aid of Eq. (1.3.15), we can 

calculate the entropic force for the CDBH on the static HS 
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which is the force exerting on the object having mass   when it is on the static HS of 

the CDBH with mass  . As expected, in the case of no dilaton field,    
     is 

nothing but the     (2.3.15): 

                        
   

   
     

  

     
  
 

                                    

On the other hand, at large distances      ,     
     takes the following form 

                                           
               

 

 
 

 

    
                                

We can see that by eliminating the dilaton field in the above equation, we recover 

the Newtonian force. For this reason, we have preferred to symbolize the large 

distance limit of    
     as     – Modified Newtonian Force. In section (3.5), we 

will discuss about the effect of the dilaton field on the gravitational force by 

sketching some proper plots for    . 

3.3 Entropic Force of the Charged Dilaton Black Hole on the 

Accelerating Surface 

In this section our purpose is to define the entropic force on the AS of the CDBH. 

Since we have already recognized the AS in the section (2.4), here we shall simply 

extend the obtained results of the Schwarzschild BH to the CDBH. 

From Eq. (2.4.11), the proper acceleration on the AS of the CDBH is found as  

                    
  

   
 

    

      

   
    

    
   

   
  
 

                                

Then according to the definition of Unruh temperature [17, 18], we obtain the 

temperature of the AS on the CDBH, which is the so-called CDBH Unruh 

temperature 
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This result means that an accelerating observer located on AS with   distance far 

away from the center of the CDBH detects thermal radiation as   
    . Another 

interpretation of it is that when the accelerating observer looks at the space around 

the CDBH, which is filled with the quantized field, he will observe the CDBH as a 

state containing many particles in thermal equilibrium with   
     [42]. Comparing 

Eq. (3.3.2) with Eq. (3.2.7), one can see that   
        

     .  

Now, if we follow the procedure about the flux of heat through the AS that we 

have done in chapter (2.4), the definition of      of the CDBH should be modified to  

                                                   
           

                                               

where    
     is the surface area of AS of the CDBH. Thus, the flux becomes 

                                    
     

       

      

   
    

    
   

   
  
 

                       

Since the change of the heat is defined as 

                                                        
 

  
    

                                                  

where 

                                                
     

    
    

  
   

    
    

  
                               

and we know also that the proper acceleration on the AS is constant such that 

           , so that we can express    in terms of   .After a tedious calculation, 

we find    as 
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Substituting this into Eqs. (3.3.5) and (3.3.6), we get the change in the heat of the AS 

                          
   

    
 
 

 
    

   
    

    
   

   
  
 

                                         

The foregoing equation can also be expressed in terms of the differential entropy of 

the CDBH, which is equal to 

                                            
          

    
                                            

and thus we have 

   
    

        
 
   

    
    
   

   
  
 

     
                

    
        

      

                                                            
         

                                                           

Therefore, we deduce that if we keep the temperature on the AS as constant, then 

the change of the heat is balanced by the change of the entropy. Now, since we have 

obtained the temperature on AS, the entropic force can readily be obtained from Eq. 

(1.3.15) as 

             
          

      
     

      
 
   

    
    
   

   
  
 

                           

which is exactly same with the    
    (3.2.9). 

3.4 Entropic Force of the Charged Dilaton Black Hole on the 

Stretched Horizon 

In this section we will explore the form of entropic force on the SH for the CDBH. 

As mentioned before, this surface is a particular surface in which all the temperatures 

on it become equivalent. We shall simply follow the procedure given in section (2.5). 
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The local temperature (3.1.14) can be modified to the CDBH by shifting   to 

      
    where the Planck constant    can be fixed to 1 without losing the 

generality. Thus it takes the following form  

  
        

 

        
    

 
     

 

 
       

 

  
    

                                                        
 

  
    

 
                                                                       

One can easily check that with vanishing dilaton field it reduces to the local 

temperature of the Schwarzschild BH (2.5.3), namely 

                                                   
   

  
        

 

  
                                      

If we apply the same shifting in   to the Unruh temperature and/or to the static HS 

temperature described by Eqs. (3.2.7) and (3.3.2) respectively, we see that 

  
           

         
 

  
    

 
       

 

  
       

    
 

  
  

 
     
       

  

                           
 

  
   

       

   
       

     
 

                                     

As stated before, all the temperature on the SH with different approaches should 

have the same form. This can be realized by checking the leading order of the 

temperatures (3.4.1) and (3.4.3): 

           
           

          
        

 

  
    

 
                     

Once a time, we observe that limit of     reduces the above equation to Eq. 

(3.4.2). We can also read the local energy (3.2.3) of the CDBH on the SH as 

  
           

          
     

                                                      
   

    

  
  

 
                                             



41 

 

Remarkably, one can crosscheck from Eqs. (3.4.4-5) that the equipartition rule is 

satisfied:    
        

 

 
       

        where           
     is the number of bits 

stored on the HS. Therefore, we deduce that the dilaton parameter   scales the total 

information stored on the screen. When    , in the zero dilaton field, the total 

information on the HS takes its maximum, and conversely increasing dilaton field 

decreases the amount of information stored on the screen [42].  

Since the Bekenstein-Hawking entropy is the quarter of the horizon area, one 

concludes that 

                                                                       
                                                

Recalling the first law of thermodynamics  

                                         
           

              
                                

the entropy of the CDBH on the SH should be 

                                                        
   

     

    
    

                                       

which corresponds to 

  
     

  

   
                                                     

Above results show that the information stored on the SH or the entropy of the SH 

obviously depends on the dilaton parameter  . The       
      

     while     

(maximal dilaton field case, see the reference [42]) and it could be      
       

     

in the absence of the dilaton field (   ) [28]. 

Finally, by using (3.4.3) we can find the entropic force of the CDBH on the SH 

        
           

        
 

 
     

 
           

                       

where      
     

 

 
    

 

     is called the proper acceleration defined on the SH [42]. 
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3.5 Graphics of the Entropic Force With and Without Dilaton Field 

In the previous chapters, we have defined the entropic force basically on the three 

different HS surfaces both for the Schwarzschild BH and the CDBH. Now we 

especially want to compare the entropic forces of these two BHs by sketching the 

plots. Through the comparison we mainly focus on the entropic forces of the static 

HS and the AS. 

Let us first revisit the equations that we need. If one goes back to Eq. (2.3.15), we 

see that the entropic force of the Schwarzschild BH with     is defined as 

                                           
  

  

 

   
  
 

                                             

such that in the large distance limit       it is the conventional Newtonian force 

                                                  
  

  
                                                 

However for the CDBH, its entropic force is given by Eq. (3.2.9)  

                                 
     

 

      
    

       
     

   
  
 

                         

and its large distance limit      is called the Modified Newtonian force. 

                                                
 

 
 

 

    
                                

Firstly, we plot the     versus   graphs by using the Eqs. (3.5.1) and (3.5.3). The 

physical parameters are chosen as               . For the plots of     
    , 

different values of   are chosen in order to see the effect of dilaton field on the 

entropic force of the CDBH. 
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Figure 8. The solid line belongs to     of the Schwarzschild BH, however the dotted 

lines represent     of the CDBH with different dilaton parameters. 

 

Secondly, we plot the   versus   graphs which are governed by Eqs. (3.5.2) and 

(3.5.4). Again the physical parameters are chosen as               . For the 

plots of     , different values of   are chosen in order to see the effect of dilaton 

field on the large distance limit of the entropic force. 
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Figure 9: The solid line belongs to   , however, the dotted lines represent     with 

different dilaton parameters. 

 

It is obvious from figure (8) that in the high dilaton field regime the distinct 

behaviors of the entropic forces of both the Schwarzschild BH and the CDBH 

become more apparent. On the other hand, all types of entropic forces tend to vanish 

at spatial infinity like the Newtonian force. Especially, in figure (9), which pictures 

the entropic forces at large distances we realize that the effect of the dilaton field on 

the gravitational force of an object and the CDBH can be a measurable value. In 

other words, there could be an indirect way to detect the dilaton fields, and thus the 

existence of the CDBHs, in the universe, experimentally. 
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Chapter 4 

4 CONCLUSION 

In this thesis we have considered two different BHs, which are the Schwarzschild 

BH and the CDBH. After gaining an experience about the entropic force calculations 

on the Schwarzschild BH, we have extended these calculations to the CDBH.  

In chapter 1, we have made a revision about the entropic force in order to clarify 

how one could define the entropic force on the HS by using the equipartition rule and 

the laws of thermodynamics, as proposed by Verlinde [13, 43]. This review tells us 

why the gravity is not the fundamental force anymore; instead it emerges due to the 

change in the entropy. In our entropic force calculations, three different surfaces are 

taken into account in place of the HS. These surfaces are the static HS, the AS, and 

the SH. Then in the following chapters using Eq. (1.3.15) we have calculated the 

entropic forces of the Schwarzschild BH and the CDBH, which are different from the 

conventional Newtonian force at any distance r. However, all the obtained entropic 

forces with no additional field like dilaton (except the gravitational field) match with 

the Newtonian force at large distances.  

The most remarkable points that we have obtained in this thesis are due to the 

dilaton parameter  . It is shown that this parameter does not only modify the entropic 

force of gravity but it scales the number of bits of information stored on the HS. 

Particularly, in section (3.4) we have seen that an increase in the dilaton field causes 

a decrease in amount of the information on the SH. Besides, after plotting the 
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entropic forces of the Schwarzschild BH and the CDBH against the distance  , we 

make the effect of dilaton field on the entropic force more apparent. It is seen that a 

distant observer feels the gravitational force of the CDBH stronger than the 

Schwarzschild and the Newtonian ones. If the Verlinde’s arguments about the 

gravity are verified in the near future, our latter result may also provide us a chance 

to discover the dilaton fields in the universe. Because some researchers have reported 

that the dilaton fields could be responsible for the dark energy in the cosmos, see for 

instance [26]. 
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