
ABSTRACT

The concept of thin-shell wormholes has been considered in Einstein’s theory of

gravity coupled with different matter sources like Maxwell, Yang-Mills, Born-Infeld-

Hoffman fields, generalized Chaplygin gas and dilaton. Our consideration is in higher

dimensions where the bulk spacetime is introduced there. We mainly concentrate on

the stability of possible thin shell wormholes and the amount of normal or exotic

matter needed to support such kind of wormholes. In addition to the Einstein Grav-

ity (i.e General Relativity) we also consider the Gausse-Bonnet gravity which is an

extension of Einstein’s gravity. This extended version of general relativity enabled

us to construct thin-shell wormholes which are supported by normal matter. Most of

our calculations are numeric together with some plots. The results given in this thesis

are published during the recent years.

Keywords: Black hole, Wormholes, Thin-shell, Normal matter, Exotic matter,

Stability.
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ÖZET

Maxwell, Yang - Mills, Born - Infeld - Hoffman, genellestirilmis Chaplygin gazi ve

dilaton alan katkili Einstein yerekim kurami ierisindeki ince - kabuklu uzay solucan

delikleri incelenmistir. Bu kuramlarda yksek boyutlar ierisinde esas ilgi alanimiz ince

- kabuklu solucan deliklerinin kararliligi, normal ve normal - disi (ekzotik) madde

miktarinin varligi olmustur. Einstein ekim kuraminin Gauss - Bonnet ainimi alis-

mamizda zel bir yer teskil etmekte , zira burada normal madde ile solucan delikleri

kararli olabilmektedir. Yapilan islemlerin byk ogunlugunu sekillerle desteklenmis

sayisal hesaplar olusturuyor. Elde edilen sonular son birka yil ierisinde yayinlanmi-

stir.

Anahtar Kelimeler: kara delik, solucan delikleri, ince - kabuklu, normal madde,

ekzotik madde, stability.
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CHAPTER 1

INTRODUCTION

Although the idea of wormholes entered into physics literature in 1930s under

the name of Einstein-Rosen bridge, its popularization came with the seminal pa-

per of Morris and Thorne [1]. Therein, Morris and Thorne defined the concept of

Traversable Wormholes and the conditions under which such objects can turn into

reality in the real life. Expectedly, the conditions were insurmountable: the energy

conditions satisfied by such objects were not physical. Then the question arises, is

it possible to consider alternative theories of gravity which admits different energy

conditions in order to make wormholes viable? This question has partly been an-

swered in the literature by many researchers during the recent decade. Within the

Einstein gravity, however, a satisfactory theory of wormholes with reasonable energy

conditions and stability requirement has never been met. In other words, with the

Einstein-Hilbert Lagrangian which is described by the Lagrangian
√−gR, where g

refers to the spacetime metric determinant and R is the Ricci scalar, there is no phys-

ical energy momentum Tµν that renders construction of wormholes possible. If we

imagine that such an object has been constructed momentarily it will be collapsed

into the singularity of space time. What is needed therefore is an energy-momentum

that acts against attractive gravity to balance such a wormhole. The absence of such

an energy-momentum in Einstein’s gravity enforces us to consider extended theories
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among which the Gauss-Bonnet (GB) theory is rather popular. In the latter beside the

Ricci scalar, which appears linearly in the Einstein-Hilbert Lagrangian we consider

quadratic invariants in a particular combination that the field equations are still sec-

ond order so that no ghosts, or non-physical degrees of freedom arise. In this thesis

we shall show that by employing Gauss-Bonnet invariant as supplementary to the

Einstein-Hilbert term desired wormholes can be obtained.

Beside the geometrical Gauss-Bonnet term we consider also extended physical

sources in the theory. The first and simplest source to be considered is naturally a

Maxwell field of linear electrodynamics. Due to divergence problem for the electric

field (i.e. the Coulomb problem) Born-Infeld (BI) introduced in 1930s a non-linear

electromagnetic theory that may also have a curing property for singularities in gen-

eral relativity [41]. Further, the Hoffmann modification of the Born-Infeld theory,

under the name of Born-Infeld-Hoffmann (BIH), has also been considered in this

thesis. Another source is naturally a massless scalar field with exponential coupling

to the electromagnetic field, such a scalar field is called the dilaton which has been

proved much useful in various theories. The dilaton plays the role of ’cement’ to glue

gravity with the electromagnetic field.

In addition to the linear and non-linear electromagnetic sources we consider also

the magnetically charged Yang-Mills (YM) field through the Wu-Yang ansatz which

is effective in the higher dimensions d > 4, [7]. For d = 4 the YM field reduces to

the Abelian Maxwell field in a particular gauge. Being an isotropic gauge the Wu-

Yang ansatz is applicable to the spherically symmetric spacetime metrics. During

the recent decade another interesting physical source that attracted attention is the

Chaplygin [63] source which is characterized by the equation of state p = −A
ρ
, for the
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constant A > 0, [63]. For the generalized Chaplygin gas we have p = −
¯̄̄
A
ρ

¯̄̄ν
where

the parameter ν > 0 . The main reason that the Chaplygin gas attracted interest is that

it yields negative pressure is negative which is required for a repulsive force. In the

cosmological problems due to the accelerated expansion of the universe a negative

pressure may play the dominant role to provide the expansion. In analogy, since

in the wormholes also a repulsive force is required to overcome the ever attractive

gravity the Chaplygin gas may play such a role.

As stated in the beginning, traversable wormholes were introduced and discussed

thoroughly by Morris and Thorne [1]. The idea in such a construction is to connect

distant points of the same spacetime or two asymptotically flat spacetimes by a short

cut route. By this procedure distances of billions light years can be reduced to a

very short time and distance through the passage from a wormhole. Physical con-

struction of wormholes in real life, as stated above amounts to finding appropriate

energy-momentum that will enable such objects. To reduce the problems further, in-

stead of general wormholes we prefer to consider in this thesis a particular class of

wormholes, known as thin-shell wormholes (TSWs). The advantage of the latter is

that energy is confined on an infinitely thin layer so that it can be adjusted in an eas-

ier manner. The junction, or the boundary conditions in this particular construction

becomes the important matter to be overcome. These junction conditions for thin-

layers were developed long ago by Isreal [14] which were modified later on in accor-

dance with the theory involved. By this formalism the surface energy-momentum on

the thin-shell is determined by the surrounding energy-momenta such that the Ein-

stein field equations are satisfied everywhere including the thin-shell. The resulting

expressions are rather tedious so that we can only treat them numerically. The per-

turbation equation of the thin-shell has been reduced to the particle equation with a
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potential. The analysis of the potential becomes decisive to determine whether our

thin-shell is stable or not. For certain range of parameters our thin-shells turn out to

be stable against linear radial perturbations. Physically this implies that such objects

can be constructed and may exist in certain parts of our universe as remnants from

the big bang. Given the conditions it is also possible to produce such wormholes in

the high-energy collision experiments that undergo at CERN.

Organization of the thesis is as follows. In Chapter 2 we discuss the higher di-

mensional TSWs in Einstein-Yang-Mills-Gauss-Bonnet gravity. Chapter 3 investi-

gates the stability of TSWs supported by normal matter in Einstein-Maxwell-Gauss-

Bonnet gravity. TSWs in Einstein-Yang-Mills-Dilaton gravity is considered in Chap-

ter 4. Black holes and TSWs in Hoffmann modified Born-Infeld theory is studied in

Chapter 5. Chapter 6 takes into account the generalized Chaplygin gas in Einstein-

Maxwell-Gauss-Bonnet theory. We complete the thesis with Conclusion which ap-

pears in Chapter 7.
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CHAPTER 2

THIN SHELL WORMHOLE IN

EINSTEIN-YANG-MILLS-GAUSS-BONNET GRAVITY

2.1. Overview

Constraction of a traversable wormholes, using the curvature of spacetime and

physical energy-momenta is one of the long standing problem in general relativity

[1, 2]. Most of the sources to support wormholes to date, unfortunately consists of

exotic matter which violates the energy conditions [3, 4]. However, there are exam-

ples of TSWs that resist against collapse when sourced entirely by physical (normal)

matter satisfying the energy conditions [5, 6, 7]. From this token, it has been ob-

served that pure Einstein’s gravity consisting of Einstein-Hillbert (EH) action with

familiar sources alone doesn’t suffice to satisfy the criteria required for normal mat-

ter. This leads automatically to taking into account the higher curvature corrections

known as the Lovelock hierarchy [8]. Most prominent term among such higher order

corrections is the Gauss-Bonnet (GB) term to modify the EH Lagrangian. There is

already a growing literature on Einstein-Gauss-Bonnet (EGB) gravity and wormhole

constructions in such a theory.

In this Chapter we intend to fill a gap in this line of thought which concerns

Einstein-Yang-Mills (EYM) theory amended with the GB term. More specifically,

we construct TSWs that are supported by normal (i.e. non-exotic) matter. By em-
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ploying the higher dimensional Wu-Yang ansatz which has been described in Ref.s

[9, 10] we first construct higher dimensional (d ≥ 5) exact black hole solutions in

EYMGB theory. In this regard EYM solution becomes simpler in comparison with

the Einstein-Maxwell (EM) solutions. This motivates us to seek for TSWs by cutting

/ pasting method in EYM theory. Another point of utmost importance is the GB pa-

rameter (α), whose sign plays a crucial role in the positivity of energy of the system.

Although in string theory this parameter is chosen positive for some valid reasons,

when it comes to the subject of wormholes our choice favors the negative values

(α < 0), for the GB parameter. One more item that we consider in detail in this study

is to investigate the stability of such wormholes against linear perturbations when the

pressure and energy density are linearly related.

2.2. Einstein-Yang-Mills-Gauss-Bonnet Black Hole

The exact solution to EYMGB gravity that we shall introduce were found by

Mazharimousavi and Halilsoy [9, 10]. The d-dimensional, static and spherically sym-

metric line element is given by [10]

ds2 = −f (r) dt2 + dr2

f (r)
+ r2dΩ2d−2, (2.1)

where f (r) is an unknown function to be found and

dΩ2d−2 = dθ21 +
d−2P
i=2

i−1Q
j=1

sin2 θj dθ
2
i , (2.2)

in which

0 ≤ θd−2 ≤ 2π, 0 ≤ θi ≤ π, 1 ≤ i ≤ d− 3.
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The Wu-Yang ansatz in higher dimension follows by introducing the YM potentials

as

A(a) =
Q

r2
C
(a)
(i)(j) x

idxj, r2 =
d−1X
i=1

x2i , (2.3)

2 ≤ j + 1 ≤ i ≤ d− 1, and 1 ≤ a ≤ (d− 2) (d− 1) /2,

x1 = r cos θd−3 sin θd−4... sin θ1, x2 = r sin θd−3 sin θd−4... sin θ1,

x3 = r cos θd−4 sin θd−5... sin θ1, x4 = r sin θd−4 sin θd−5... sin θ1,

...

xd−2 = r cos θ1.

Herein C
(a)
(b)(c) is the structure constants [11] and Q is the YM magnetic charge. Next

we find the YM invariant F which is given by

F = Tr(F (a)
λσ F

(a)λσ) =
(d− 3)
r4

Q2, (2.4)

and the energy momentum tensor reads

T ν
µ = −

1

2
Fdiag [1, 1, κ, κ, .., κ] , and κ =

d− 6
d− 2 . (2.5)

The Einstein-Yang-Mills-Gauss-Bonnet field equations also are given by

GE
µν + αGGB

µν = Tµν, (2.6)
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in which

GGB
µν = 2 (−RµσκτR

κτσ
ν − 2RµρνσR

ρσ − 2RµσR
σ
ν +RRµν)−

1

2
LGBgµν ,

(2.7)

α is the GB parameter and GB Lagrangian LGB is given by

LGB = RµνγδR
µνγδ − 4RµνR

µν +R2. (2.8)

The exact solutions which we shall use are found in [9, 10]

f± (r) =

⎧⎪⎪⎨⎪⎪⎩
1 + r2

4α

µ
1±

q
1 + 32αMADM

3r4
+ 16αQ2 ln r

r4

¶
, d = 5

1 + r2

2α̃

³
1±

q
1 + 16α̃MADM

rd−1(d−2) +
4(d−3)α̃Q2
(d−5)r4

´
, d ≥ 6

,

(2.9)

in which α̃ = (d− 3) (d− 4)α, with the GB parameter α. Here MADM stands for

the usual ADM mass of the black hole and Q is the YM charge. When compared

with Ref.s [9] (for d = 5) and [10] (for d > 5) the meaning of MADM implies that

MADM = 3
2
(m+ 2α) and MADM = 1

4
m (d− 2) , respectively. Let us also add that

in Ref. [10] we set Q = 1 through scaling. The crucial point in our solution is that

the YM term under the square root has a fixed power 1
r4

for all d ≥ 6. As it can be

checked, the negative branch gives the correct limit of higher dimensional black hole

solution in EYM theory of gravity if α → 0, and therefore in the sequel we only

consider this specific case.

Here, in order to explore the physical properties of the above solutions we inves-

tigate some essential thermodynamic quantities. Since d = 5 case has been studied

elsewhere [12] we shall concentrate on d ≥ 6.

Radius of the event horizon (i.e., rh) of the negative branch black hole f− (r) ,
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with positive α is the maximum root of f− (rh) = 0. It is not difficult to show that in

terms of event horizon radius one can write

MADM =
(d− 2)
4

∙¡
α̃+ r2h

¢
− (d− 3)
(d− 5)Q

2

¸
rd−5h . (2.10)

Also we find the Hawking temperature TH in terms of rh, i.e.,

TH =
1

4π
f 0 (rh) =

(d− 3) (r2h −Q2) + α̃ (d− 5)
4πrh (2α̃+ r2h)

. (2.11)

To complete our thermodynamical quantities we use the standard definition of the

specific heat capacity with the constant charge

CQ = TH

µ
∂S

∂TH

¶
Q

, (2.12)

in which S is the standard entropy defined as

S =
A

4
=
(d− 1)π d−1

2

4Γ
¡
d+1
2

¢ rd−2h , (2.13)

to show the possible thermodynamical phase transition. After some manipulation we

find

CQ =
(d−2)(d−1)(2α̃+r2h)π

d−1
2 rd−2h [(d−5)α̃+(d−3)(r2h−Q2)]

4Γ(d+12 ){2α̃[Q2(d−3)−α̃(d−5)]+[3Q2(d−3)−α̃(d−9)]r2h−(d−3)r4h}
.

(2.14)

The phase transition is taking place at the real and positive root(s) of the denominator,
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i.e.,

2α̃ [Q2 (d− 3)− α̃ (d− 5)] + [3Q2 (d− 3)− α̃ (d− 9)] r2h − (d− 3) r4h = 0.

(2.15)

One can show that under the condition

Q2

α̃
<
7d− 39
9 (d− 3) (2.16)

there is no phase transition, while if

7d− 39
9 (d− 3) <

Q2

α̃
<

d− 5
d− 3 (2.17)

we will observe two phase transitions. Finally upon choosing

d− 5
d− 3 ≤

Q2

α̃
(2.18)

there exists only one phase transition. Also, if Q2

α̃
= 7d−39

9(d−3) one phase transition

occurs at rh =
q

6(d−3)
7d−39Q

2 . These results show that the dimensionality of spacetime

plays a crucial role in the thermodynamical behavior of the EYMGB system.

For negative α in the negative branch we write α̃ = − |α̃| and therefore the

horizon radius rh is given by solving

1− 2 |α̃|
r2h

=

s
1− 16 |α̃|MADM

rd−1h (d− 2)
− 4 (d− 3) |α̃|Q

2

(d− 5) r4h
. (2.19)

The method of establishing the TSW, based on the black hole solutions given in

(2.9), follows the standard procedure which has been employed in many recent works

[5, 6, 7].
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2.3. Dynamic Thin Shell Wormholes in d−Dimensions

The method of establishing a TSW in the foregoing geometry goes as follows.

We cut two copies of the EYMGB spacetime

M± = {r± ≥ a, a > rh} (2.20)

and paste them at the boundary hypersurface Σ± = {r± = a, a > rh}. These sur-

faces are identified on r = a with a surface energy-momentum of a thin-shell whose

radius coincides also with the throat radius such that geodesic completeness holds

for M = M+ ∪M−. Following the Darmois-Israel formalism [13, 14, 15, 16] in

terms of the original coordinates xγ = (t, r, θ1, θ2, ...) (i.e. in M) the induced metric

ξi = (τ, θ1, θ2, ...) , on Σ is given by (Latin indices run over the induced coordinates

i.e., {1, 2, 3, .., d− 1} and Greek indices run over the original manifold’s coordinates

i.e., {1, 2, 3, .., d})

gij =
∂xα

∂ξi
∂xβ

∂ξj
gαβ. (2.21)

Here τ is the proper time and

gij = diag
¡
−1, a2, a2 sin2 θ, a2 sin2 θ sin2 φ, ...

¢
, (2.22)

while the extrinsic curvature is defined by

K±
ij = −n±γ

µ
∂2xγ

∂ξi∂ξj
+ Γγαβ

∂xα

∂ξi
∂xβ

∂ξj

¶
r=a

. (2.23)
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It is assumed that Σ is non-null, whose unit d−normal in M± is given by

nγ =

Ã
±
¯̄̄̄
gαβ

∂F

∂xα
∂F

∂xβ

¯̄̄̄−1/2
∂F

∂xγ

!
r=a

, (2.24)

in which F is the equation of the hypersurface Σ, i.e.

Σ : F (r) = r − a (τ) = 0. (2.25)

The generalized Darmois-Israel conditions on Σ determines the surface energy-

momentum tensor Sab which is expressed by [17]

Sj
i = −

1

8π

¡
Kj

i

®
−Kδji

¢
− α

16π


3Jj

i − Jδji + 2P
j

imnK
mn
®
.

(2.26)

Here a bracket implies a jump across Σ. The divergence-free part of the Riemann

tensor Pabcd and the tensor Jab (with trace J = Ja
a ) are given by

Pimnj = Rimnj + (Rmngij −Rmjgin)− (Ringmj −Rijgmn) +
1

2
R (gingmj − gijgmn) ,

(2.27)

Jij =
1

3

£
2KKimK

m
j +KmnK

mnKij − 2KimK
mnKnj −K2Kij

¤
. (2.28)

By employing these expressions through (2.26) we find the energy density and sur-

face pressures for a generic metric function f (r) , with r = a (τ) . The results are

given by

σ = −Sτ
τ = −

∆ (d− 2)
8π

∙
2

a
− 4α̃

3a3
¡
∆2 − 3

¡
1 + ȧ2

¢¢¸
, (2.29)
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Sθi
θi
= p =

1

8π

½
2 (d− 3)∆

a
+
2

∆
− 4α̃

3a2
S

¾
(2.30)

in which

S =

∙
3 ∆− 3

∆

¡
1 + ȧ2

¢
+

∆3

a
(d− 5)− 6∆

a

µ
aä+

d− 5
2

¡
1 + ȧ2

¢¶¸
.

Herein = ä+ f 0 (a) /2 and ∆ =
p
f (a) + ȧ2 in which

f (a) = f− (r)|r=a . (2.31)

We note that in our notation a ’dot’ denotes derivative with respect to the proper time

τ and a ’prime’ with respect to the argument of the function. It can be checked by

direct substitution from (2.29) and (2.30) that the conservation equation

∇iS
ij =

d

dτ

¡
σa(d−2)

¢
+ p

d

dτ

¡
a(d−2)

¢
= 0. (2.32)

holds true.

Once we know precisely the energy density and surface pressures, we can study

the energy conditions and the amount of exotic / normal matter that is to support

the above TSW. Let us start with the weak energy condition (WEC) which implies

for any timelike vector Vµ we must have TµνV
µV ν ≥ 0. Also by continuity, WEC

implies the null energy condition (NEC), which states that for any null vector Uµ,

TµνU
µUν ≥ 0 [2]. It is not difficult to show that in an orthonormal basis these

conditions read as

WEC : ρ ≥ 0, ρ+ pi ≥ 0,

NEC ρ+ pi ≥ 0,
(2.33)
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in which i ∈ {2, 3, ..., d− 1} . Here in the spherical TSWs, the radial pressure pr is

zero and ρ = δ (r − a)σ which imply WEC and NEC coincide as σ ≥ 0. Note that

δ (r − a) stands for the Dirac delta-function. By looking at σ given in (2.30) one may

conclude that these conditions reduce to

3

2
a2 ≤ α̃

¡
f (a)− 2ȧ2 − 3

¢
. (2.34)

For the static configuration with ȧ = 0, ä = 0 and a = a0 it is not difficult to see that

for α̃ ≥ 0 the latter condition is not satisfied. In other words, both WEC and NEC

are violated. This is simply from the fact that the metric function is asymptotically

flat and f (a) < 1 for a ≥ rh. Unlike α̃ ≥ 0, for the case of α̃ < 0 this condition in

arbitrary dimensions is satisfied. Direct consequence of these results can be seen in

the total matter in supporting the TSW. The standard integral definition of the total

matter is given by

Ω =

Z
(ρ+ pr)

√
−gdd−1x (2.35)

which gives

Ω =
2π

d−1
2 ad−20

Γ
¡
d−1
2

¢ σ0 (2.36)

in which

σ0 = −
p
f (a0) (d− 2)

8π

∙
2

a0
− 4α̃

3a30
(f (a0)− 3)

¸
. (2.37)

We note that the sign of σ0 indicates the nature of the matter which supports the

wormhole. It is obvious from Ω that similar to σ0, in static configuration the total
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matter which supports the TSW is exotic if α̃ ≥ 0 and normal if α̃ < 0. This result is

independent of dimensions and other parameters.

2.4. Stability of the Thin Shell Wormholes for d ≥ 5

To study the stability of the TSW, constructed above, we consider a radial pertur-

bation of the radius of the throat a. After the linear perturbation we may consider a

linear relation between the energy density and radial pressure, namely [18]

p = p0 + β2 (σ − σ0) . (2.38)

Here the constant σ0 is given by (2.37) and p0 reads as

p0 =

p
f (a0)

8π

½
2 (d− 3)

a0
+

f 0 (a0)

f (a0)
− 4α̃

a20
A

¾
. (2.39)

where

A =

∙
f 0 (a0)

2
− f 0 (a0)

2f (a0)
+

f (a0) (d− 5)
3a0

− d− 5
a0

¸
.

The constant parameter β2 for the wormhole supported by normal matter is related

to the speed of sound. By considering (2.38) in (2.32), one finds

σ (a) =

µ
σ0 − p0
β2 + 1

¶³a0
a

´(d−2)(β2+1)
+

β2σ0 − p0
β2 + 1

(2.40)

in which a0 is the radius of the throat in static equilibrium wormhole and σ0(p0) is the

static energy density (pressure) on the thin-shell. By equating the latter expression

and the one found by using Einstein equation on the shell (2.29), we find the equation
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of motion of the wormhole which reads

ȧ2 + V (a) = 0, (2.41)

where

V (a) = f (a)−
Ãh√

A2 + B3 −A
i1/3
− B£√

A2 + B3 −A
¤1/3

!2
(2.42)

and

A =
3πa3

2 (d− 2) α̃

∙µ
σ0 + p0
β2 + 1

¶³a0
a

´(d−2)(β2+1)
+

β2σ0 − p0
β2 + 1

¸
,

(2.43)

B = a2

4α̃
+
1− f (a)

2
. (2.44)

Here V (a) is called the potential of the wormhole’s motion and it helps us to

figure out the regions of stability for the wormhole under our linear perturbation.

According to the standard method of stability of TSWs, we expand V (a) as a series

of (a− a0) . One can show that both V (a0) and V 0 (a0) vanish and the first non-zero

term in this expansion is 1
2
V 00 (a0) (a− a0)

2 . Now, in a small neighborhood of the

equilibrium point a0 we have

ȧ2 +
1

2
V 00 (a0) (a− a0)

2 = 0, (2.45)

which implies that with V 00 (a0) > 0, a (τ) will oscillate about a0 and make the

wormhole stable. At this point it will be in order also to clarify the status of parameter

β since ultimately the three-dimensional (i.e. V 00 (a0) > 0, β, a0) stability plots will
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make use of it. First of all although in principle β < 0 is possible we shall restrict

ourselves only to the case β > 0. Unfortunately β can only be expressed implicitly as

a function of a0, through (2.38) and expressions for p, σ, p0 and σ0. It turns out that

the usual expression for stability, namely V 00 (a0) > 0, can be plotted as a projection

onto the plane formed by β and a0. This must not give the impression, however, that

the relation β = β (a0) is known explicitly.

2.4.1. d = 5

Let us first eliminate α from the equations, by using the solution given in (2.9).

To do so we introduce new variables and parameters as

ã =
ap
|α|

, τ̃ =
τp
|α|

, Q̃2 =
Q2

|α| ,

m̃ =
2MADM

3 |α| +
Q2

2 |α| ln |α| . (2.46)

Upon these changes of variables, the other quantities change according to

f (a) = f (ã) , σ (a) =
σ (ã)p
|α|

, p (a) =
p (ã)p
|α|

,

A (a) = A (ã) ,B (a) = B (ã) , V (a) = V (ã) . (2.47)

Finally the wormhole equation reads

µ
dã

dτ̃

¶2
+ Ṽ (ã) = 0. (2.48)

Now, we consider two distinct cases, for α > 0 and α < 0, separately.
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2.4.1.1. with α > 0. In this section we consider α > 0, such that the negative

branch of the EYM black hole solution reads

f (ã) = 1 +
ã2

4

⎛⎝1−
s
1 +

16m̃

ã4
+
16Q̃2 ln ã

ã4

⎞⎠ , (2.49)

in which the condition

1 +
16m̃

ã4
+
16Q̃2 ln ã

ã4

¯̄̄̄
¯
ã=ã0

≥ 0, (2.50)

and

A2 + B3
¯̄
ã=ã0
≥ 0 (2.51)

must hold. The latter equation automatically is valid and the final relation between

the parameters reduces to (2.50). Based on this solution we find Ṽ 00 (ã0) in terms of

the other parameters. Fig. 2.1 shows the stability regions and also f (ã) and σ (ã0) .

2.4.1.2. with α < 0. Next, we concentrate on the case α < 0. With this choice

negative branch of the EYM black hole solution reads

f (ã) = 1− ã2

4

⎛⎝1−
s
1− 16m̃

ã4
− 16Q̃

2 ln ã

ã4

⎞⎠ . (2.52)

Based on this solution we study Ṽ 00 (ã0) in terms of the other parameters.

In this case also we have some constraint on the parameters in order to get

f (ã0) ≥ 0, σ (ã0) ≥ 0, and A2 + B3|ã=ã0 ≥ 0. It is not difficult to see that all
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Figure 2.1. Region of stability (i.e. V 00 (a0) > 0) for the thin-shell in d = 5 and for α > 0.

The f (r) and σ0 plots are also given. It can easily be seen that the energy density σ0 is

negative which implies exotic matter.

Figure 2.2. For d = 5 and α < 0 case with the chosen parameters f (r) has no zero but σ0

has a small band of positivity with the presence of normal matter. We note also that β < 1 in

a small band.
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these conditions reduce to

0 ≤ 1
4

s
1− 16m̃

ã40
− 16Q̃

2 ln ã0
ã40

≤ 4

ã20
− 1, (2.53)

and

1− 16m̃
ã40
− 16Q̃

2 ln ã0
ã40

≥ 0. (2.54)

After some manipulation, the parameters must satisfy the following constraint

ã40 ≥ 16
³
m̃+ Q̃2 ln ã20

´
(2.55)

where 0 ≤ ã20 ≤ 4. The stability region for this case is given in Fig. 2.2.

2.4.2. d ≥ 6

Here also we eliminate α̃ from the equations. By introducing

ã =
ap
|α̃|

, τ̃ =
τp
|α̃|

, Q̃2 =
Q2

|α̃| , m̃ =
MADM

|α̃|
d−3
2

. (2.56)

the other quantities become

f (a) = f (ã) , σ (a) =
σ (ã)p
|α|

, p (a) =
p (ã)p
|α|

,

A (a) = A (ã) ,B (a) = B (ã) , V (a) = V (ã) , (2.57)

and the wormhole equation is given by

µ
dã

dτ̃

¶2
+ Ṽ (ã) = 0. (2.58)
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2.4.2.1. with α > 0. In this section we consider α > 0, such that the negative

branch of the EYMGB black hole solution reads

f− (ã) = 1 +
ã2

2

⎛⎝1−s1 + 16m̃

ãd−1 (d− 2) +
4 (d− 3) Q̃2

(d− 5) ã4

⎞⎠
(2.59)

Here we comment that constraints always restrict our free parameters. In the case of

α > 0 the first constraint is given by

A2 + B3
¯̄
ã=ã0
≥ 0, (2.60)

which upon substitution and manipulation automatically is satisfied for all value of

parameters. Based on this solution we find Ṽ 00 (ã0) in terms of the other parame-

ters. Fig.s 2.3, 2.4 and 2.5 shows the stability regions and also f (ã) and σ (ã0) for

dimensions d = 6, 7 and 8.

2.4.2.2. with α < 0. Next, we concentrate on the case α < 0. With this choice

negative branch of the EYMGB black hole solution reads

f− (ã) = 1−
ã2

2

⎛⎝1−s1− 16m̃

ãd−1 (d− 2) −
4 (d− 3) Q̃2

(d− 5) ã4

⎞⎠ .

(2.61)

Based on this solution we study Ṽ 00 (ã0) in terms of the other parameters. Fig. 2.6

show the stability regions and also f (ã) and σ (ã0) . In order to set f (ã0) ≥ 0,

σ (ã0) ≥ 0, and A2 + B3|ã=ã0 ≥ 0 it is enough to satisfy

0 <

s
1− 16m̃

ãd−10 (d− 2)
− 4 (d− 3) Q̃

2

(d− 5) ã40
<
2

ã20
− 1, (2.62)
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and

1− 16m̃

ãd−1 (d− 2) −
4 (d− 3) Q̃2

(d− 5) ã4 > 0, (2.63)

where 0 < ã20 < 2.
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Figure 2.3. For d = 7 and α > 0 the stability region is plotted which is seen to have exotic

matter alone.

Figure 2.4. For d = 6 and α > 0 also a region of stability is available but with σ0 < 0. Note

that d = 6 is special, since from Eq. (2.5) in the text we have κ = 0 and the

energy-momentum takes a simple form.
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Figure 2.5. For d = 8 with α > 0 exotic matter is seen to be indispensable.

Figure 2.6. For d = 6 with α < 0 there are two disjoint regions of stability for the thin-shell

and in contrast to the α > 0 case in Fig. 2.4, we have σ0 > 0. We notice in this case also

that β < 1 is possible.
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CHAPTER 3

WORMHOLES SUPPORTED BY NORMAL MATTER IN

EINSTEIN-MAXWELL-GAUSS-BONNET GRAVITY

3.1. Overview

Einstein-Gauss-Bonnet (EGB) gravity, with additional sources such as Maxwell,

Yang-Mills, dilaton etc. has already been investigated extensively in the literature

[19, 21, 22, 23, 24, 25, 9]. Not to mention, all these theories admit black hole,

wormhole [26, 32, 28] and other physically interesting solutions. As it is the usual

trend in theoretical physics, each new parameter invokes new hopes and from that

token, the GB parameter α does the same. Although the case α > 0, has been exalted

much more than the case α < 0 in EGB gravity so far [29, 30] (and references cited

therein), it turns out here in the stable, normal matter TSWs that the latter comes first

time to the fore. Construction and maintenance of TSWs has been the subject of a

large literature, so that we shall provide only a brief review here. Instead, one class

[5, 6] that made use of non-exotic matter for its maintenance attracted our interest

and we intend to analyze its stability in this chapter. This is the 5−dimensional thin-

shell solution of Einstein-Maxwell-Gauss-Bonnet (EMGB) gravity, whose radius is

identified with the minimum radius of the wormhole. For this purpose we employ

radial, linear perturbations to cast the motion into a potential-well problem in the

background. In doing this, a reasonable assumption employed routinely, which is
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adopted here also, is to relate pressure and energy density by a linear expression

[31, 14, 15]. For special choices of parameters we obtain islands of stability for such

wormholes. To this end, we make use of numerical computation and plotting since

the problem involves highly intricate functions for an analytical treatment.

3.2. A Brief Review of 5-Dimensional Einstein-Maxwell-Gauss-Bonnet Thin

Shell Wormholes

The action of EMGB gravity in 5−dimensions (without cosmological constant,

i.e. Λ = 0) is

S = κ

Z p
|g|d5x

µ
R+ αLGB −

1

4
FµνF

µν

¶
(3.1)

in which κ is related to the 5−dimensional Newton constant and α is the GB parame-

ter. Beside the Maxwell Lagrangian −1
4
FµνF

µν the GB Lagrangian LGB is given by

(2.8) and hence the variational principle of S with respect to gµν yields EGB equation

Gµν + 2αG
(GB)
µν = κ2Tµν (3.2)

in which Gµν is the Einstein tensor, the GB tensore G(GB)
µν is given by (2.7) and the

energy momentum tensor Tµν is given by

Tµν = FµαF
α
ν −

1

4
gµνFαβF

αβ. (3.3)
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The metric element (2.1) with d = 5 which explicitly becomes

ds2 = −f (r) dt2 + dr2

f (r)
+ r2

¡
dθ2 + sin2 θ

¡
dφ2 + sin2 φdψ2

¢¢
,

(3.4)

in which f (r) is the only unknown function to be found. A TSW is constructed in

EMGB theory as it has been shown in Sec. 2.3 with d = 5.

The EMGB solution that will be employed as a thin-shell solution with a normal

matter [5, 6] is given by (with Λ = 0)

f (r) = 1 +
r2

4α

Ã
1−

s
1 +

8α

r4

µ
2M

π
− Q2

3r2

¶!
(3.5)

with constants, M =mass and Q =charge. For a black hole solution the inner (r−)

and event horizons (r+ = rh) are

r± =

vuutM

π
− α±

"µ
M

π
− α

¶2
− Q2

3

#1/2
. (3.6)

By employing the solution (3.5) we determine the surface energy-momentum on the

thin-shell, which will play the major role in the perturbation. We shall address this

problem in the next section.

In order to study the radial perturbations of the wormhole we take the throat

radius as a function of the proper time, i.e., a = a (τ). Based on the generalized

Birkhoff theorem, for r > a (τ) the geometry will be given still by (3.4). For the

metric function f (r) given in (3.5) one finds the energy density and pressures as
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[5, 6]

σ = −Sτ
τ = −

∆

4π

∙
3

a
− 4α

a3
¡
∆2 − 3

¡
1 + ȧ2

¢¢¸
, (3.7)

Sθ
θ = Sφ

φ = Sψ
ψ = p =

1

4π

∙
2∆

a
+

∆
− 4α

a2

µ
∆−

∆

¡
1 + ȧ2

¢
− 2ä∆

¶¸
,

(3.8)

where = ä+ f 0 (a) /2 and ∆ =
p
f (a) + ȧ2 in which

f (a) = 1 +
a2

4α

Ã
1−

s
1 +

8α

a4

µ
2M

π
− Q2

3a2

¶!
. (3.9)

We note that in our notation a ’dot’ denotes derivative with respect to the proper time

τ and a ’prime’ implies differentiation with respect to the argument of the function.

By a simple substitution one can show that, the conservation equation

d

dτ

¡
σa3
¢
+ p

d

dτ

¡
a3
¢
= 0. (3.10)

is satisfied. The static configuration of radius a0 has the following density and pres-

sures

σ0 = −
p
f (a0)

4π

∙
3

a0
− 4α

a30
(f (a0)− 3)

¸
, (3.11)

p0 =

p
f (a0)

4π

∙
2

a0
+

f 0 (a0)

2f (a0)
− 2α

a20

f 0 (a0)

f (a0)
(f (a0)− 1)

¸
. (3.12)

In what follows we shall study small radial perturbations around the radius of

equilibrium a0. To this end we adapt a linear relation between p and σ as in (2.38)
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[31, 18]. The 5-dimensional form of (2.40) explicitly becomes

σ (a) =

µ
σ0 − p0
β2 + 1

¶³a0
a

´3(β2+1)
+

β2σ0−p0
β2 + 1

. (3.13)

This, together with (3.7) lead us to the equation of motion for the radius of the throat,

which reads

−
p
f (a) + ȧ2

4π

∙
3

a
− 4α

a3
¡
f (a)− 3− 2ȧ2

¢¸
=

µ
σ0+p0
β2 + 1

¶³a0
a

´3(β2+1)
+

β2σ0−p0
β2 + 1

.

(3.14)

After some manipulation this can be cast into

ȧ2 + V (a) = 0, (3.15)

where V (a) is given by (2.42)-(2.44) with d = 5 and α̃ = 2α. We notice that V (a) ,

and more tediously V 0 (a) , both vanish at a = a0. The stability requirement for

equilibrium reduces therefore to the determination of V 00(a0) > 0, and it is needless

to add that, V (a) is complicated enough for an immediate analytical result. For

this reason we shall proceed through numerical calculation to see whether stability

regions/ islands develop or not. Since the hopes for obtaining TSWs with normal

matter when α > 0, have already been dashed [29, 30], we shall investigate here

only the case for α < 0.

In order to analyze the behavior of V (a) (and its second derivative) we introduce

new parameterization as follows

ã2 = −a
2

α
, m = −16M

πα
, q2 =

8Q2

3α2
, σ̃0 =

√
−ασ0, p0 =

√
−αp0

(3.16)
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Accordingly, our new variables f (ã) , σ̃0, p̃0, A and B take the following forms

f (ã) = 1− ã2

4
+

ã2

4

r
1− m

ã4
+

q2

ã6
(3.17)

and

σ̃0 = −
p
f (ã0)

4π

∙
3

ã0
+
4

ã30
(f (ã0)− 3)

¸
, (3.18)

p̃0 =

p
f (ã0)

4π

∙
2

ã0
+

f 0 (ã0)

2f (ã0)
+
2

ã20

f 0 (ã0)

f (ã0)
(f (ã0)− 1)

¸
, (3.19)

and V (a) is the same as the Eq. (2.42) in which the functions A and B are

A = −πã
3

4

"µ
σ̃0+p̃0
β2 + 1

¶µ
ã0
ã

¶3(β2+1)
+

β2σ̃0−p̃0
β2 + 1

#
, (3.20)

B = − ã
2

8
+
1− f (ã)

2
. (3.21)

Following this parametrization our Eq. (3.15) takes the form

µ
dã

dτ

¶2
+ Ṽ (ã) = 0, (3.22)

where

Ṽ (ã) = −V (ã)
α

. (3.23)

In the next section we explore all possible constraints on our parameters that must

satisfy to materialize a stable, normal matter wormhole through the requirement

V 00 (ã) > 0.
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3.3. Constraints Versus Finely-Tuned Parameters

i) Starting from the metric function we must have

1− m

ã40
+

q2

ã60
≥ 0. (3.24)

ii) In the potential, the reality condition requires also that

A2 + B3 ≥ 0. (3.25)

At the location of the throat this amounts to

µ
−πã

3
0

4
σ̃0

¶2
+

µ
− ã

2
0

8
+
1− f (ã0)

2

¶3
≥ 0 (3.26)

or after some manipulation it yields

f (ã0)− 2 +
ã20
2
≤ 0. (3.27)

This is equivalent to

0 ≤ 1− m

ã40
+

q2

ã60
≤
µ
4

ã20
− 1
¶2

. (3.28)

iii) Our last constraint condition concerns, the positivity of the energy density,

which means that

σ̃0 > 0. (3.29)
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This implies, from (3.18) that

∙
3

ã0
+
4

ã30
(f (ã0)− 3)

¸
< 0 (3.30)

or equivalently

0 ≤ 1− m

ã40
+

q2

ã60
< 4

µ
4

ã20
− 1
¶2

. (3.31)

It is remarkable to observe now that the foregoing constraints (i − iii) on our para-

meters can all be expressed as a single constraint condition, namely

0 ≤ 1− m

ã40
+

q2

ã60
≤
µ
4

ã20
− 1
¶2

. (3.32)

We plot Ṽ 00 (ã) from (3.23) for various fixed values of mass and charge, as a

projection into the plane with coordinates β and ã0. In other words, we search and

identify the regions for which Ṽ 00 (ã) > 0, in 3−dimensional figures considered as a

projection in the (β, ã0) plane. The metric function f (r) and energy density σ̃0 > 0,

behavior also are given in Fig.s 3.1-3.4.

It is evident from Fig.s 1-4 that for increasing charge the stability regions shrink

to smaller domains and tends ultimately to disappear completely. For smaller ã0

bounds we obtain fluctuations in Ṽ 00 (ã) , which is smooth otherwise. In each plot

it is observed that the maximum of Ṽ 00 (ã) occurs at the right-below corner (say, at

amax) which decreases to the left (with ã0) and in the upward direction (with β).

Beyond certain limit (say amin), the region of instability takes the start. The proper
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Figure 3.1. Ṽ 00 (ã) > 0 region (m = 0.5, q = 1.0) for various ranges of β and ã0. The lower

and upper limits of the parameters are evident in the figure. The metric function f (r̃) and

σ̃0 > 0, are also indicated in the smaller figures.

Figure 3.2. Ṽ 00 (ã) > 0 plot for m = 1.0, q = 1.5. The stability region is seen clearly to

shrink with the increasing charge. This effect reflects also to the σ̃0 > 0, behavior.
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Figure 3.3. The stability region for m = 1.0, q = 2.0, is seen to shift outward and get

smaller.

Figure 3.4. For fixed mass m = 1.0 but increased charge q = 2.5 it is clearly seen that the

stability region and the associated energy density both get further reduced.
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time domain of stability can be computed from (3.22) as

∆τ =

Z amax

amin

dãp
−V (ã)

. (3.33)

From a distant observer’s point of view the timespan ∆t can be found by using the

radial geodesics Lagrangian which admits the energy integral

f

µ
dt

dτ

¶
= E◦ = const. (3.34)

This gives the lifetime of each stability region determined by

∆t =
1

E◦

Z amax

amin

dã

f (ã)
p
−V (ã)

. (3.35)

Once amin (amax) are found numerically, assuming that no zeros of f (ã) and V (ã)

occurs for amin < a < amax, the lifespan of each stability island can be determined.

We must admit that the mathematical complexity discouraged us to search for possi-

ble metastable region that may be triggered by employing a semi-classical treatment.
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CHAPTER 4

NON-ASYMPTOTICALLY FLAT THIN SHWLL

WORMHOLES IN EINSTEIN-YANG-MILLS-DILATON

GRAVITY

4.1. Overview

The original aim of a spacetime wormhole was to connect two distinct, asymp-

totically flat (AF) spacetimes, or two distant regions in the same AF spacetime [1].

In making such a short cut travel possible it is crucial that the traveller doesn’t en-

counter event horizons of black holes. A thin-shell may support such a wormhole

provided it has the proper source to resist against the gravitational collapse. An ex-

otic matter, which fails to satisfy the energy conditions has been used extensively

to provide maintenance of such wormholes. The non-physical source of energy is

confined on rather thin spherical shells, simply to invoke justification from quantum

theory. More recently, however, it has been shown that without such resort, TSWs can

be constructed entirely from normal matter obeying the energy conditions [5, 6, 33].

Further, such wormholes established on realistic matter may be stable against radial,

linear perturbations. Clearly this implies that existence of wormholes may be an

undeniable reality in our universe.

In 4−dimensional Einstein-Maxwell (EM) theory it was not possible to employ

normal matter in the construction / maintenance of TSWs. In 5−dimensions, with

36



the Gauss-Bonnet (GB) extension of EM theory [19, 20, 21, 22, 23, 24, 25], it was

further proved that stable, TSWs supported by normal matter is possible provided the

GB parameter takes negative values, i.e. α < 0 [5, 6, 33]. Is this true also for different

sources such as Yang-Mills (YM) fields when considered in Einstein-Gauss-Bonnet

(EGB) gravity? The answer, to the best of our knowledge, is not in the affirmative.

4.2. Review of Higher Dimensional Einstein-Yang-Mills-Dilaton Gravity

We consider the d−dimensional action in the EYMD theory as (G = 1)

S = − 1

16π

Z
M
ddx
√
−g
µ
R− 4

d− 2 (∇Φ)2 + L (Φ)
¶
,

L (Φ) = −e−4αΦ/(d−2)Tr(F (a)
λσ F

(a)λσ), (4.1)

where

Tr(.) =

(d−1)(d−2)
2P

a=1

(.) , (4.2)

Φ is the dilaton scalar potential, the parameter α denotes the coupling between dilaton

and Yang-Mills (YM) field and as usual R is the Ricci scalar. The YM field 2−forms

F(a) = F
(a)
µν dxµ ∧ dxν are given by [9, 11]

F(a) = dA(a) +
1

2σ
C
(a)
(b)(c)A

(b) ∧A(c) (4.3)

in which C
(a)
(b)(c) are the structure constants, σ is a coupling constant and the YM

potential 1−forms are given by (2.3). The field equations, after varying the action,

are given by

d
¡
e−4αΦ/(d−2) F(a)

¢
+
1

σ
C
(a)
(b)(c)e

−4αΦ/(d−2)A(b) ∧ F(c) = 0, (4.4)

37



Rµν =
4

d− 2∂µΦ∂νΦ+ 2e
−4αΦ/(d−2)

∙
Tr
³
F
(a)
µλ F

(a) λ
ν

´
− 1

2 (d− 2)Tr(F
(a)
λσ F

(a)λσ)gµν

¸
,

(4.5)

∇2Φ = −1
2
αe−4αΦ/(d−2)Tr(F

(a)
λσ F

(a)λσ), (4.6)

in which Rµν is the Ricci tensor and the hodge star means duality. As it was shown

in Ref. [9, 11], these equations admit black hole solution in the form of

ds2 = −f (r) dt2 + dr2

f (r)
+ h (r)2 dΩ2d−2, (4.7)

where dΩ2d−2 is the line element on Sd−2 and the solution can be summarized as

follows

Φ = −(d− 2)
2

α ln r

α2 + 1
, h (r) = Ar

α2

α2+1 , f (r) = Ξ

Ã
1−

³rh
r

´ (d−3)α2+1
α2+1

!
r

2
α2+1 .

(4.8)

We abbreviate here

Ξ =
(d− 3)

((d− 3)α2 + 1)Q2
, A2 = Q2

¡
α2 + 1

¢
, rh =

µ
4 (α2 + 1)M

(d− 2)Ξα2Ad−2

¶
(4.9)

and rh stands for the radius of event horizon. Here M implies the quasilocal mass

(see [11] and the references therein).

4.3. Dynamic Thin Shell Wormholes in Einstein-Yang-Mills-Dilaton Gravity

Following the method introduced in Sec. 2.3, we consider two copies of of the

EYMD spacetime to construct the TSWs in EYMD gravity. Beside those given in
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Sec. 2.3 we note that the induced metric on the TSW is given by

gij = diag
¡
−1, h (a)2 , h (a)2 sin2 θ1, h (a)2 sin2 θ1 sin2 θ2, ....

¢
.

(4.10)

The parametric equation of the hypersurface Σ is given by

F (r, a (τ)) = r − a (τ) = 0, (4.11)

and the normal unit vectors to M± defined by

nγ =

Ã
±
¯̄̄̄
gαβ

∂F

∂xα
∂F

∂xβ

¯̄̄̄−1/2
∂F

∂xγ

!
r=a

, (4.12)

are found as follows

nt = ±

⎛⎝¯̄̄̄¯gtt
µ
∂a (τ)

∂t

¶2
+ grr

¯̄̄̄
¯
−1/2

∂F

∂t

⎞⎠
r=a

. (4.13)

Upon using

µ
∂t

∂τ

¶2
=

1

f (a)

µ
1 +

1

f (a)
ȧ2
¶
, (4.14)

it implies

nt = ± (−ȧ) . (4.15)
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Similarly one finds that

nr = ±
Ã¯̄̄̄

gtt
∂F

∂t

∂F

∂t
+ grr

∂F

∂r

∂F

∂r

¯̄̄̄−1/2
∂F

∂r

!
r=a

= (4.16)

±
Ãp

f (a) + ȧ2

f (a)

!
, and nθi = 0, for all θi.

After the unit d−normal, one finds the extrinsic curvature tensor components from

the definition

K±
ij = −n±γ

µ
∂2xγ

∂ξi∂ξj
+ Γγαβ

∂xα

∂ξi
∂xβ

∂ξj

¶
r=a

. (4.17)

It follows that

K±
ττ = −n±t

µ
∂2t

∂τ 2
+ Γtαβ

∂xα

∂τ

∂xβ

∂τ

¶
r=a

− n±r

µ
∂2r

∂τ 2
+ Γrαβ

∂xα

∂τ

∂xβ

∂τ

¶
r=a

=

−n±t
µ
∂2t

∂τ 2
+ 2Γttr

∂t

∂τ

∂r

∂τ

¶
r=a

− n±r

µ
∂2r

∂τ 2
+ Γrtt

∂t

∂τ

∂t

∂τ
+ Γrrr

∂r

∂τ

∂r

∂τ

¶
r=a

=

±
Ã
− f 0 + 2ä

2
p
f + ȧ2

!
. (4.18)

Also

K±
θiθi
= −n±γ

µ
∂2xγ

∂θ2i
+ Γγαβ

∂xα

∂θi

∂xβ

∂θi

¶
r=a

= ±
p
f (a) + ȧ2hh0.

(4.19)

In sum, we have

hKiji = 2hh0
p
f (a) + ȧ2diag

µ
− f 0 + 2ä

2hh0 (f + ȧ2)
, 1, sin2 θ1, sin

2 θ1 sin
2 θ2, ...

¶
,

(4.20)
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which implies


Kj

i

®
= 2

p
f (a) + ȧ2diag

µ
f 0 + 2ä

2 (f + ȧ2)
,
h0

h
,
h0

h
,
h0

h
, ...

¶
(4.21)

and therefore

K = Trace

Kj

i

®
=

Ki

i

®
=

f 0 + 2äp
f + ȧ2

+ 2 (d− 2)
p
f (a) + ȧ2

h0

h
.

(4.22)

The surface energy-momentum components of the thin-shell are [34, 35, 14, 15, 17,

36, 37]

Sj
i = −

1

8π

¡
Kj

i

®
− hKi δji

¢
(4.23)

which yield

σ = −Sτ
τ = −

(d− 2)
4π

µp
f (a) + ȧ2

h0

h

¶
, (4.24)

Sθi
θi
= pθi =

1

8π

Ã
f 0 + 2äp
f (a) + ȧ2

+ 2 (d− 3)
p
f (a) + ȧ2

h0

h

!
.

(4.25)

By substitution one can show that the energy conservation takes the form

∇iS
ij =

d

dτ
(σA) + p

d

dτ
(A) = −(d− 2)

4π

h00

h
ȧA
p
f (a) + ȧ2 6= 0,

(4.26)

in which A = 2π
d−1
2

Γ(d−12 )
h (a)d−2 is the area of the thin-shell. In other words, due to the

exchange with the bulk spacetime, the energy on the shell is not conserved.

Let us note that we adopt the junction conditions of general relativity which can
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be justified by the fact that the dilaton field Φ and its normal derivative are both

continuous across the shell. Similar approach has been followed by different authors

[4, 38] which can be justified easily by integrating the dilaton equation (4.6) across

the throat radius a0 ± , in the limit as → 0. Since the singularity and horizons all

reside deliberately at distances r < a0, the contribution from the dilaton field and its

derivative to the thin-shell source vanishes. We note that this is different in the case

of Brans-Dicke (BD) scalar field, which has structural difference compared with the

dilaton field [39, 62]. To say the least among the others, the exponential coupling of

dilaton with the gauge field makes it short ranged whereas BD field is long ranged. To

calculate the amount of exotic matter needed to construct the traversable wormhole

we use the integral (2.35). For a TSW pr = 0 and ρ = σδ (r − a) , where δ (r − a)

is the Dirac delta function. In static configuration, a simple calculation gives

Ω =

2πZ
0

πZ
0

...

πZ
0

∞Z
0

√
−gσδ (r − a) drdθ1dθ2...dθd−2 =

2π
d−1
2

Γ
¡
d−1
2

¢h (a)d−2 σ (a) .
(4.27)

We aim now to apply a small radial perturbation around the radius of equilibrium

a0 and to investigate the behavior of the throat under this perturbation. For this

perturbation we consider the radial pressure of the thin-shell to be a linear function

of the energy density, i.e., (2.38) [31, 18]. Therein p0 and σ0 are the radial pressure

and energy density of the thin-shell in the static configuration of radius a0 which are

given by

σ0 = −
(d− 2)
4π

µp
f (a0)

h0 (a0)

h (a0)

¶
, (4.28)
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p0 =
1

8π

Ã
f 0 (a0)p
f (a0)

+ 2 (d− 3)
p
f (a0)

h0 (a0)

h (a0)

!
. (4.29)

By substituting (2.38) into (4.26), one finds a first order differential equation for σ (a)

which is given by

σ0 (a) + (d− 2) (σ + p)
h0 (a)

h (a)
=

h00 (a)

h0 (a)
σ (a) , (4.30)

or equivalently

σ0 (a) + σ (a)

∙
(d− 2)

¡
1 + β2

¢ h0 (a)
h (a)

− h00 (a)

h0 (a)

¸
= (d− 2)

¡
σ0β

2 − p0
¢ h0 (a)
h (a)

.

(4.31)

This equation, for the case of EYMD wormhole introduced before can be ex-

pressed as

rσ0 (a) + ξ1σ (a) = ξ2 (4.32)

in which

ξ1 =
1 + (d− 2)α2 (1 + β2)

α2 + 1
, (4.33)

ξ2 =
(d− 2)α2 (σ0β2 − p0)

α2 + 1
. (4.34)

This equation admits a solution in the form of

σ (a) =
ξ2
ξ1
+

µ
σ0 −

ξ2
ξ1

¶³a0
a

´ξ1
, (4.35)

which obviously at a = a0 is nothing but σ0. In terms of the metric function f (a) ,
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Figure 4.1. The plot of f̃ (a0) = Q2f (a0) , Ω̃ (a0) = Ω (a0) /Q
2 and pressure

p̃0 = p0 |Q|, for d = 5. The shaded inscribed part shows the stable regions (i.e.

V 00 (a0) > 0) in the (β, a0) diagram for M = 0.1,α = 2.0.

in a dynamic case σ (a) was given by (4.24) which after equating with the latter

expression in (4.35) we obtain (2.41). Here the potential function V (a) is given by

V (a) = f (a)− 16π2a2

(d− 2)2
µ
α2 + 1

α2

¶2 ∙
ξ2
ξ1
+

µ
σ0 −

ξ2
ξ1

¶³a0
a

´ξ1¸2
.

(4.36)

We notice that V (a) , and more tediously V 0 (a) , both vanish at a = a0. The stability

requirement for equilibrium reduces therefore to the determination of the regions in

which V 00(a0) > 0. For this reason we shall proceed through numerical analysis to

see whether stability regions/ islands develop and under what conditions. Let us note

that our figures refer to d = 5, for d > 5 we observed that no significant changes

take place. In Fig.s 4.1-4.5 we show the stability regions in terms of β and wormhole

throat a0.
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Figure 4.2. The plot of f̃ (a0) = Q2f (a0) , Ω̃ (a0) = Ω (a0) /Q
2 and pressure

p̃0 = p0 |Q|, for d = 5. The shaded inscribed part shows the stable regions (i.e.

V 00 (a0) > 0) in the (β, a0) diagram for M = 0.10,α = 1.0.

Figure 4.3. The plot of f̃ (a0) = Q2f (a0) , Ω̃ (a0) = Ω (a0) /Q
2 and pressure

p̃0 = p0 |Q|, for d = 5. The shaded inscribed part shows the stable regions (i.e.

V 00 (a0) > 0) in the (β, a0) diagram for M = 0.05,α = 1.0. It is seen that the Ω behavior

doesn’t differ much in this range of parameters.
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Figure 4.4. Similar plots for f̃ (a0) , Ω̃ (a0) and pressure p̃0, (again for d = 5), for

M = 0.10, α = 0.4.

Figure 4.5. Similar plots for f̃ (a0) , Ω̃ (a0) and pressure p̃0, (again for d = 5), for

M = 0.10, α = 0.2. Decreasing α values improves Ω̃ (a0) slightly which still lies in the

(−) domain. Smaller α implies also less pressure (p̃0) on the shell. Stable regions

(V 00 (a0) > 0) are shown, versus (β, a0) in dark.

46



(Note that we use scalings Ω = Q2Ω̃, f = f̃
Q2

and p0 =
1
|Q| p̃0 in terms of the

YM charge Q and we plot (Ω̃, f̃ , p̃0)). We also show Ω̃ in terms of a0 for different

values of α. As stated before, our wormhole is supported entirely by negative energy,

Ω̃ < 0 on the shell. For changing dilatonic parameter α the change in Ω̃ is visible in

the plots shown.

For fixed mass, decreasing α improves Ω̃ toward zero line but yet in the (−)

domain. The pressure on the shell increases with increasing α. It is noticed from the

dark stability regions that no stable region forms for |β| < 1, i.e. below the speed

of light. Consideration of dimensions d > 5, doesn’t change the behaviors of d = 5

much, this can be seen by further plots which we shall ignore in these studies.
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CHAPTER 5

THIN SHELL WORMHOLE IN HOFFMANN-BORN-INFELD

THEORY

5.1. Overview

It is a well-known fact by now that non-linear electrodynamics (NED) with varia-

tions formulations has therapeutic effects on the divergent results that arise naturally

in linear Maxwell electrodynamics. The theory introduced by Born and Infeld (BI) in

1930s [41] constitutes the most prominent member among the healing power of sin-

gularities, however, drawbacks were not completely eliminated from the theory. One

such serious handicap was pointed out by Born’s co-workers shortly after the intro-

duction of the original BI theory. This concerns the double-valued degenerace of the

displacement vector D
³
E
´

as a function of the electric field E [42]. That is, for the

common value of E the displacement D undergoes a branching which from physical

grounds was totally unacceptable. To overcome this particular problem, Hoffmann

and Infeld and Rosen, both published successive papers on this issue [41, 42, 43].

Specifically, the model Lagrangian proposed by Hoffmann and Infeld (HI) contained

a logarithmic term with remarkable consequences. It removed, for instance, the sin-

gularity that used to arise in the Cartesian components of the E. Being unaware of

this contribution by HI, and after almost 70 years, we have rediscovered very recently

the ubiquitous logarithmic term of Lagrangian while in attempt to construct a model
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of elementary particle in Einstein-NED theory [44]. In our model the spacetime is

divided into two regions: the inner region consists of the Bertotti-Robinson (BR) [45]

spacetime while the outer region is a Reissner-Nordström (RN) type spacetime. The

radius of our particle coincides with the horizon of the RN-type black hole solution

whereas inner BR part represents a singularity-free uniform electric field region. The

two regions and the NED are glued together at the horizon on which the appropriate

boundary gave not only a feasible geometrical model of a particle but remarkably

resolved also the double-valued property of the displacement vector. In other words,

with our technique D
³
E
´

turns automatically into a single-valued function. In this

chapter we wish to make further use of the Hoffmann-Born-Infeld (HBI) Lagrangian

in general relativity, more specifically, in constructing regular black holes and TSWs.

We extend our model also to 5−dimensional Gauss-Bonnet (GB) theory and search

for the possibility of wormholes dominated by ordinary matter rather than exotic

matter. It turns out, as our analysis supports, that the GB modification is not much

promising in this regard. However, a non-black hole solution with asymptotically flat

regions supported by the TSW against linear perturbations is tested and stable region

is obtained.

5.2. Review of the Hoffmann-Born-Infeld Approach in General Relativity

Singularity for classical charged elementary particles leads to infinite self elec-

tromagnetic energy. This should be removed from the Maxwell theory of charged

particles and in this regard Born and Infeld (BI) introduced a non-linear electrody-

namics such that successfully they solved the problem in some senses [41]. Briefly,

we can summarize their proposal in curved spacetime by considering a spherically
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symmetric pure electric particle (i.e., an electron) described by the line element

ds2 = −f (r) dt2 + 1

f (r)
dr2 + r2

¡
dθ2 + sin2 θdϕ2

¢
. (5.1)

They aimed to have a non-singular electric field (with unit charge) as (we use c =

} = kB = 8πG =
1

4π ◦
= 1)

Er =
qp

q2b2 + r4
, (b = constant, the BI parameter and q = constant charge)

(5.2)

which means that the Maxwell 2−form is

F =Erdt ∧ dr. (5.3)

The corresponding action is

S =
1

2

Z
d4x
√
−gL (F, F ) , (5.4)

in which F = FµνF
µν, F = Fµν F µν and stands for duality (here we only consider

the electric field such that F = 0). Easily one finds the Maxwell equation modified

into

d (LF F) = 0,

µ
LF =

∂L
∂F

¶
(5.5)

which reveals

d
¡
LF Err

2 sin θdθ ∧ dϕ
¢
= 0, (5.6)
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or

LF Er =
c

r2
. (5.7)

Since F = FµνF
µν = −2 Er

2 and r2 =

r
q2
³
1−b2Er2
Er2

´
=
q
−q2

¡
2+b2F

F

¢
it yields

LF = c

r
2

2 + b2F
(5.8)

where c =constant of integration which is identified as the charge q. Solution for the

Lagrangian, after adjusting the constants takes the form of

L = 4

b2

Ã
1−

r
1 +

b2F

2

!
, (5.9)

i.e. the BI Lagrangian.

This example gives an idea of how simple it is to find a Lagrangian which yields

a non-singular electric field, but the question was whether this much was enough. B.

Hoffmann and L. Infeld [42] shortly after the BI non-linear Lagrangian, pointed this

problem out and tried to get rid of any possible difficulties.

In [42] the authors remarked that although the electric field becomes finite at r =

0 it yields a discontinuity, for instance in Ex. To quote from [42] ”It is evident that

any finite value for Er at r = 0will lead to a discontinuity of this type”. Accordingly,

their proposal alternative to the BI Lagrangian can be summarized as follows. The

simplest non-singular electric field which takes zero value at r = 0 can be written as

Er =
qr2

(q2b2 + r4)
, (5.10)
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so that r2 in terms of F is

r2 = q
1±

p
1− 4b2E2

r

2Er
= q

1±
√
1 + 2b2F√
−2F

(5.11)

where + and − stand for r4 > q2b2 and r4 < q2b2, respectively. From (5.8) we find

LF =
2c

1±
√
1 + 2b2F

(5.12)

where the positive branch leads to the Lagrangian

L+ = −
2

b2
(k + α + − ln +) (5.13)

with α = 1, k = ln 2 − 2 and + = 1 +
√
1 + 2b2F. Let us note that we wrote the

Lagrangian in this form to show consistency with [42]. Again we remind that the

constant c has been chosen in such a way that limb→0L = −F, which is the Maxwell

limit. In analogy, the negative branch gives

L− = −
2

b2
(k + α − − ln | −|) (5.14)

where − = 1 −
√
1 + 2b2F. It should be noted that, here one does not expect the

Maxwell limit as b goes to zero. In fact, since L− is defined for r4 < q2b2, automat-

ically b can not be zero unless r also goes to zero in which, the case L− becomes

meaningless.

Having L+ for r4 > q2b2 and L− for r4 < q2b2 imposes (L+ = L−)r4=q2b2 which

is satisfied, as it should. Also at r4 = q2b2, one gets Er =
q
2b

which is the maximum

value that Er may take.

Based on the criticisms made in [42], as mentioned above, we see that this La-
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grangian removes the discontinuity in, say, Ex. So shall we adopt this Lagrangian for

further results? The answer was given few years later by N. Rosen [43], which was

negative. The crux of the problem lies in the relation between Er and Dr. Let us go

back to the previous case (5.10) once more. It is known from non-linear electrody-

namics [41, 42, 43] that

Dr = LFEr =
q

r2
(5.15)

which is singular at r = 0. Of course, being singular forDr does not matter; the prob-

lem arises once we consider Dr as a function of Er. In this way at r = 0, Er = 0 and

Dr =∞, and once r =∞ again Er = 0, but Dr = 0. This means that Dr in terms of

Er is double-valued(i.e., Dr (Er (r = 0) = 0) =∞ and Dr (Er (r =∞) = 0) = 0).

Concerning this objection Rosen suggested to reject this Lagrangian and instead he

recommended that the Lagrangian should be a function of the potentials. For the de-

tail of his work we suggest Ref. [43], but here we wish to draw attention to a recent

paper we published [44] which gives a different solution to this problem. Before we

give the detail of the solution we admit that during the time of working on [44] we

were not aware about this problem and we did not know the Hoffmann-Infeld (HI)

form of Lagrangian. In certain sense, we have rediscovered anew a Lagrangian of

70 years old, from the hard way.! Our aim in that work was based on some different

papers such as [45, 46]. Recently, indirectly from [47, 48] we became aware about

the history of this problem. with these remarks, therefore, firstly we wish to pay

tribute to all its historic, eminent originators, and secondly, to draw attention to the

importance of such a Lagrangian.

Returning to the problem, we see that in the case of the HI Lagrangian they used
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two different forms for inside and outside of the typical particle in order to keep the

spacetime spherically symmetric, static Reissner-Nordström (RN) type. This is un-

derstandable since in 1930s RN solution was one of the best known solution whereas

the Bertotti-Robinson (BR) [13, 14, 15] solution was yet unknown. The latter, i.e.,

(BR), constitutes a prominent inner substitute to (RN) as far as Einstein-Maxwell

solutions are concerned and resolves the singularity at r = 0, which caused HI to

worry about [42]. As we gave the detail of such a choice in Ref. [44], one can choose

L+ = − 2
b2
(k + α + − ln +) for all regions (i.e., r ≥

√
qb = the radius of our parti-

cle and r ≤
√
qb). For outside we adopted a RN type spacetime while for inside we

had to choose a BR type spacetime. Accordingly one finds

Er =

⎧⎪⎪⎨⎪⎪⎩
1
2b
, r ≤

√
qb

qr2

(q2b2+r4)
, r ≥

√
qb

(5.16)

and consequently

Dr =

⎧⎪⎪⎨⎪⎪⎩
1
b
, r ≤

√
qb

q
r2
, r ≥

√
qb

(5.17)

which clearly reveals thatDr is not a double valued function ofEr any more. We note

that in matching the two spacetime the Lanczos energy-momentum tensor [18] was

employed. Let us add that this is not the unique choice, so that the opposite choice

also is possible. That is, a RN type space time for r ≤
√
qb and a BR type spacetime

for r ≥
√
qb. In this latter choice the Lagrangian is L− = − 2

b2
(k + α − − ln | −|)
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everywhere, which yields

Er =

⎧⎪⎪⎨⎪⎪⎩
qr2

(q2b2+r4)
, r ≤

√
qb

1
2b
, r ≥

√
qb

(5.18)

and

Dr =

⎧⎪⎪⎨⎪⎪⎩
q
r2
, r ≤

√
qb

1
b
, r ≥

√
qb

(5.19)

is again not double-valued. In Ref. [44] we studied in detail the first case alone.

Obviously, the second case also can be developed into a model of elementary particle.

5.3. A Different Aspect of the Hoffmann-Born-Infeld Spacetime

Once more we start from the HBI Lagrangian

L =

⎧⎪⎪⎨⎪⎪⎩
L−, r ≤

√
qb

L+, r ≥
√
qb

. (5.20)

where b is a free parameter such that

lim
b→0

L = lim
b→0

L+ = −F (5.21)

and

lim
b→∞

L = lim
b→∞

L− = 0 (5.22)
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which are the RN and S limits, respectively. A solution to the Einstein equations

which gives the correct limits may be written as

f (r) = 1− 2m
r
+

q2

3r4◦
r2 ln

µ
r4

r4 + r4◦

¶
−

q2
√
2

3rr◦

"
tan−1

Ã√
2r

r◦
+ 1

!
+ tan−1

Ã√
2r

r◦
− 1
!#
−

q2
√
2

6rr◦
ln

"
r2 + r2◦ −

√
2rr◦

r2 + r2◦ +
√
2rr◦

#
+

√
2q2π

rr◦
, (5.23)

here r◦ =
√
qband m is the correspondence mass of S and RN spacetime. One can

easily show that

lim
b→0

f (r) = 1− 2m
r
+

q2

r2
(5.24)

and

lim
b→∞

f (r) = 1− 2m
r
. (5.25)

It is interesting to observe that although the ADM mass of HBI solution is still m but

the effective mass depends on charge and HBI parameter, i.e.,

meff = m− q2π√
2r◦

. (5.26)

Here one may set the effective mass to zero (note that the ADM mass of the HBI is

not zero and survives with metric indirectly) i.e.,

mADM = mregular =
q2π√
2qb

(5.27)
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to get a regular metric function whose Kretschmann and Ricci scalars are regular at

any point. It must be noticed that this is not the case of regular solution mentioned in

[42], i.e. in contrast to [42] our HBI black hole is not massless.

5.4. Thermodynamics of Hoffmann-Born-Infeld Black Hole

In this section we investigate some thermodynamical properties of the HBI black

hole. To do so firstly we find the horizon of the BH by equating metric function to

zero, and finding the black hole effective mass in terms of the horizon radius

meff =
rh
2

µ
1 +

q2

3r4◦
r2h ln

µ
r4h

r4h + r4◦

¶
−O

¶
, rh > r◦. (5.28)

in which

O =
q2
√
2

3rhr◦

"
tan−1

Ã√
2rh
r◦

+ 1

!
+ tan−1

Ã√
2rh
r◦
− 1
!#
− q2
√
2

6rhr◦
ln

"
r2h + r2◦ −

√
2rhr◦

r2h + r2◦ +
√
2rhr◦

#
(5.29)

Hawking temperature in terms of the event horizon radius is given by

TH =
1

4πrh

µ
1− q2r2h

r4◦
ln

µ
1 +

r4◦
r4h

¶¶
. (5.30)

Also the heat capacity which is defined as

Cq = TH

µ
∂S (r)

∂TH

¶
q

, (5.31)

can be written as

Cq =
πr2h (r

4
h + r4◦)

³
q2r2h ln

³
r4h

r4h+r
4
◦

´
+ r4◦

´
q2r2h (r

4
h + r4◦) ln

³
r4h

r4h+r
4◦

´
− r8◦ + (4q

2 − r2h) r
2
hr
4
◦

(5.32)
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which clearly nominator is positive and roots of denominator give the possible phase

transitions.

5.5. Thin Shell Wormhole in 4−Dimensions

Here we follow the standard method of constructing a thin shell wormhole intro-

duced in Sec. 2.3 [49]. To do so we take two copies of HBI spacetime, and from each

manifold we remove the following 4−dimensional submanifold

Ω1,2 ≡
n
r1,2 ≤ a

¯̄̄
a >

p
qb
o

(5.33)

in which a is a constant and b is the HBI parameter introduced before. In addition, we

restrict our free parameters (any) to keep our metric function non-zero and positive

for r >
√
b. In order to have a complete manifold we define a manifoldM =Ω1∪Ω2

which its boundary is given by the two timelike hypersurfaces

∂Ω1,2 ≡
n
r1,2 = a

¯̄̄
a >

p
qb
o
. (5.34)

After identifying the two hypersurfaces, ∂Ω1 ≡ ∂Ω2, the resulting manifold will

be geodesically complete [5, 6, 31] which possesses two asymptotically flat regions

connected by a traversable Lorantzian wormhole. The throat of the wormhole is at

∂Ω. The induced metric on ∂Ω reads

ds2ind = −dτ 2 + a (τ)2
¡
dθ2 + sin2 θdφ2

¢
(5.35)

where τ states the proper time on the hypersurface ∂Ω. Lanczos equations reads

Si
j = −

1

8π

¡
Ki

j

®
− hKi δij

¢
, (5.36)
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which leads the surface stress-energy tensor

Si
j = diag (−σ, pθ, pφ) . (5.37)

Here σ, and pθ = pφ are the surface-energy density and the surface pressure respec-

tively. A detail study shows [17] that

σ = − 1

2πa

p
f (a) + ȧ2 (5.38)

and

pθ = pφ = −
1

2
σ +

1

8π

2ä+ f 0 (a)p
f (a) + ȧ2

. (5.39)

Also the conservation equation gives

d

dτ

¡
σa2
¢
+ p

d

dτ

¡
a2
¢
= 0 (5.40)

or

σ̇ + 2
ȧ

a
(p+ σ) = 0. (5.41)

The total amount of the exotic matter for constricting the TSW is given by

Ω =
R
(ρ+ p)

√
−gd3x. (5.42)

Here ρ = δ (r − a)σ (a) and d3x = drdθdφ and therefore

Ω = 4πa2σ (a) = −2a
p
f (a). (5.43)
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Concerning to the HBI metric function [44]

f (r) = 1− 2m
r
+

q2

3r4◦
r2 ln

µ
r4

r4 + r4◦

¶
−W, r > r◦, (5.44)

in which

W =
q2
√
2

3rr◦

"
tan−1

Ã√
2r

r◦
+ 1

!
+ tan−1

Ã√
2r

r◦
− 1
!#
− F,

(5.45)

F =
q2
√
2

6rr◦
ln

"
r2 + r2◦ −

√
2rr◦

r2 + r2◦ +
√
2rr◦

#
+

√
2q2π

rr◦
, (5.46)

and r◦ =
√
qb. It is not difficult to show that we obtain the S and RN case in the

limits

lim
b→∞

f (r) = 1− 2m
r
≡ fS (r) , (5.47)

and

lim
b→0

f (r) = 1− 2m
r
+

q2

r2
≡ fRN (r) . (5.48)

In order to investigate the stability of the TSW we start with the thin shell’s equa-

tion of motion Eq. (2.41) in which the thin shell’s potential is given by

V (a) = f (a)− (2πaσ (a))2 (5.49)

which after expansion around a◦ (which requires V (a◦) = V 0 (a◦) = 0) up to the
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second order one gets

V (a) ∼= 1

2
V 00 (a◦) (a− a◦)

2 . (5.50)

By considering (5.49) we get

V 00 (a◦) = f 00◦ −
f 02◦
2f◦
− 1 + 2β◦

a2◦
(2f◦ − a◦f

0
◦) (5.51)

in which β◦ = β (a◦) and β (a) = ∂p/∂σ. The stability condition easily read

for 2f◦ ≷ a◦f
0
◦, 1 + 2β◦ ≶

a2◦
2f◦

µ
2f 00◦ f◦ − f 02◦
2f◦ − a◦f 0◦

¶
. (5.52)

5.6. 5−Dimensional Hoffmann-Born-Infeld Black Hole

In order to extend the 4−dimensional HBI black solution to 5−dimensions we

choose our action as

S =
1

2

Z
dx5
√
−g {−4Λ+R+ L (F)} , (5.53)

where

L =

⎧⎪⎪⎨⎪⎪⎩
L−, r ≤

√
qb

L+, r ≥
√
qb

(5.54)

and the nonlinear Maxwell equation leads to

Er =
qr3

(q2b2 + r6)
. (5.55)
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Variation of the action yields the field equations as

G ν
µ + 2Λδ

ν
µ = T ν

µ , T ν
µ =

1

2

¡
Lδ ν

µ − 4LFFµλF
νλ
¢
, (5.56)

which clearly gives T t
t = T r

r =
¡
1
2
L− LFF

¢
, stating that G t

t = G r
r and T θi

θi
=

1
2
L. Now we introduce our line element

ds2 = −(χ− r2H (r))dt2 +
1

(χ− r2H (r))
dr2 + r2dΩ23 (5.57)

to cover both topological and non-topological black hole solutions [49]. Our choice

of gtt = − (grr)−1 is a direct result of G t
t = G r

r up to a constant coefficient which

we set it to be one. Einstein tensor components are given by

G t
t = G r

r = −
3

2r3
¡
r4H (r)

¢0
, G θi

θi
= − 1

2r2
¡
r4H (r)

¢00 (5.58)

which, after using the theorem given in [49] one gets

H (r) =
Λ

3
+

4m

(d− 2) rd−1 −
1

(d− 2) rd−1
R
rd−2T t

t dr. (5.59)

With the energy-momentum tensor component

T t
t =

1

b2
ln

µ
r6

b2q2 + r6

¶
= − 1

b2
ln

µ
1 +

b2q2

r6

¶
(5.60)

the metric function reads

f (r) = χ− Λ

3
r2 − 4m

3r2
− q2
√
3

6r2r2◦
tan−1

µ
1√
3

∙
2r2

r2◦
− 1
¸¶
−X,

(5.61)
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where

X =
q2
√
2

12r2r2◦
ln

¯̄̄̄
r4 + r4◦ − r2r2◦
r4 + r4◦ + 2r

2r2◦

¯̄̄̄
+

√
3q2π

12r2r2◦
(5.62)

r6◦ = b2q2 and m is the ADM mass of the black hole. One observes that this solution

in two extremal limits for b yields

lim
b→0

f (r) = χ− Λ

3
r2 − 4m

3r2
+

q2

3r4
, lim

b→∞
f (r) = χ− Λ

3
r2 − 4m

3r2
.

(5.63)

Also in the sense of usual ADM mass, represented by m, if one adjusts

mADM = mregular =

√
3q2π

16r2◦
(5.64)

the divergent term∼ 1
r2

in f (r) vanishes and one gets a regular 5-dimensional black

hole solution.

Our action in 5-dimensional HBIGB theory of gravity is given by

S =
1

2

Z
dx5
√
−g {−4Λ+R+ αLGB + L (F)} (5.65)

where LGB = RµνγδR
µνγδ − 4RµνR

µν + R2 and α is the GB parameter. We use

the theorem given in reference [49] to get black hole solution in HBI-Gauss-Bonnet

theory of gravity in 5−dimensions. If we use spherical symmetry spacetime with line

element (5.57) then

H (r) + 4αH (r)2 =
Λ

3
+
4m

3r4
− 2

3r4
R
r3T t

t dr, (5.66)
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and one finally obtains

f± (r) = χ+
r2

8α
B (5.67)

where

B =

(
1±

s
1 + 16α

µ
Λ

3
+
4meff

3r4
+ Z

¶)
(5.68)

in which

Z =
q2
√
3

6r4r2◦
tan−1

µ
1√
3

∙
2r2

r2◦
− 1
¸¶
+

q2
√
2

12r4r2◦
ln

¯̄̄̄
r4 + r4◦ − r2r2◦
r4 + r4◦ + 2r

2r2◦

¯̄̄̄
(5.69)

r6◦ = b2q2 and meff = m −
√
3q2π
16r2◦

. One can check that the following limits are

obtained

lim
b→0

f± (r) = χ+
r2

8α

(
1±

s
1 + 16α

µ
Λ

3
+
4m

3r4
− q2

3r6

¶)
,

(5.70)

lim
b→∞

f± (r) = χ+
r2

8α

(
1±

s
1 + 16α

µ
Λ

3
+
4m

3r4

¶)
, (5.71)

lim
α→0

f− (r) = χ− Λ

3
r2 − 4meff

3r2
− q2
√
3

6r2r2◦
tan−1

µ
1√
3

∙
2r2

r2◦
− 1
¸¶
− H

(5.72)

H =
q2
√
2

12r2r2◦
ln

¯̄̄̄
r4 + r4◦ − r2r2◦
r4 + r4◦ + 2r

2r2◦

¯̄̄̄
, (5.73)
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as expected.

To allow for the analysis of radial perturbations we let the throat radius vary with

the proper time: a = a(τ). As a consequence of the generalized Birkhoff theorem the

geometry will still be described by (5.1), for any r > a(τ). The resulting expressions

for the energy density and pressures for a generic metric function f (r) turn out to be

(2.29) and (2.30) with d = 5, α̃ = 2α and

f (a) = 1 +
a2

4α

Ã
1−

s
1 +

8α

a4

µ
2M

π
− Q2

3a2

¶!
. (5.74)

We note that in our notation a ’dot’ denote derivative with respect to the proper time

τ and a ’prime’ with respect to the argument of the function. For simplicity, we set

the cosmological constant to zero. By a simple substitution one can show that, the

conservation equation (2.32).

In what follows we shall study small radial perturbations around a radius of equi-

librium a0. To this end we adapt a linear relation between p and σ as (2.38). By virtue

of the latter equation we express the energy density in the form (2.40). We notice that

V (a) , and more tediously V 0 (a) , both vanish at a = a0. The stability requirement

for equilibrium reduces therefore to the determination of V 00(a0) > 0. Of course,

V (a) is complicated enough for an immediate analytical result. For this reason we

shall proceed through numerical calculation (Fig.s 5.1 and 5.2) to see whether stabil-

ity regions/ islands develop or not. Since the hopes for obtaining TSWs with ordinary

matter when α > 0, have already been dashed, we shall investigate only the case for

α < 0.
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Figure 5.1. The stability regions (shown dark) for various set of parameters due to the

inequalities given in Eq. (5.52). These regions correspond to the cases of V 00 (ă0, β) > 0.

Figure 5.2. The stability region (i.e. V 00(ă0, β) > 0) for the chosen parameters, r◦ = 1.00,

q = 0.75 and m̃ = 0 ). This is given as a projection into the plane with axes β and a0
|α| . The

plot of the metric function f (r) and energy density σ are also inscribed in the figure.
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CHAPTER 6

THIN SHELL WORMHOLE WITH A GENERALIZED

CHAPLYGIN GAS IN

EINSTEIN-MAXWELL-GAUSS-BONNET GRAVITY

6.1. Overview

Among other aspects the foremost challenging problems related to Thin Shell

Wormholes (TSW) [2, 54, 55, 5, 6, 30] are, i) positivity of energy density , and ii)

stability against symmetry preserving perturbations. To overcome these problems

recently there have been various attempts in Einstein-Gauss-Bonnet (EGB) gravity

with Maxwell and Yang-Mills sources [9, 31, 18, 32, 56, 57, 28, 53, 12]. Specifically,

with the negative Gauss-Bonnet (GB) parameter (α < 0) we obtained stable TSW,

obeying a linear equation of state, against radial perturbations [2, 54, 55, 5, 6, 30].

By linear equation of state it is meant that the energy density (σ) and surface pressure

p satisfy a linear relation. To respond the other challenge, however, i.e. the positivity

of the energy density (σ > 0), we maintain still a cautious optimism. To be realis-

tic, only in the case of Einstein-Yang-Mills-Gauss-Bonnet (EYMGB) theory and in a

finely-tuned narrow band of parameters we were able to beat both of the above stated

challenges [9, 31, 18, 32, 56, 57, 28, 53, 12]. Our stability analysis with the unfor-

tunate negative energy density was extended further to cover non-asymptotically flat

(NAF) dilatonic solutions [58].
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In this Chapter we show that stability analysis of TSW extends to the case of

a generalized Chaplygin gas which has already been considered within the context

of Einstein-Maxwell TSWs [5, 6, 3, 61]. Due to the accelerated expansion of our

universe a repulsive effect of a Chaplygin gas has been considered widely in recent

times . From the same token therefore it would be interesting to see how a gener-

alized Chaplygin gas supports a TSW against radial perturbations in Gauss-Bonnet

(GB) gravity. For this purpose we perturb the thin-shell radially and reduce the equa-

tion into a particle in a potential well problem with zero total energy. The stability

amounts to the determination of the positive domain for the second derivative of the

potential. We obtain plots that provides us such physical regions indicating stable

wormholes. For technical reasons we restrict ourselves only to the 5−dimensional

plots.

6.2. Stability

The d−dimensional Einstein-Maxwell-Gauss-Bonnet (EMGB) action without cos-

mological constant has the form

S =
1

16πG

Z p
|g|ddx

µ
R+ αLGB −

1

4
F
¶
. (6.1)

where G is the d−dimensional Newton constant, F =FµνF
µν is the Maxwell invari-

ant and α is the Gauss-Bonnet (GB) parameter with Lagrangian (2.8). Variation of

S with respect to gµν yields the EMGB field equations given in (3.2). Our static

spherically symmetric metric ansatz will be as (2.1).

Construction of the TSW in the static spherically symmetric spacetime follows

the standard procedure used before in Sec. 2.3. The black hole solution of the EMGB
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field equations (with Λ = 0) is given by, with α̃ = (d− 3) (d− 4)α [20, 25]

f± (r) = 1 +
r2

2α̃

Ã
1±

s
1 + 4α̃

µ
2M

8πrd−1
− Q2

2 (d− 2) (d− 3) r2(d−2)
¶!

(6.2)

in which M is an integration constant related to the ADM mass of the BH and Q is

the electric charge of the BH. The corresponding electric field 2−form is given by

F =
Q

r2(d−2)
dt ∧ dr. (6.3)

The components of energy momentum tensor on the thin-shell are given by (2.29)

and (2.30). The static configuration of the expressed equations comes to be as (2.37)

and (2.39). Our aim in the sequel is to perturb the throat of the TSW radially around

the equilibrium radius a0. To do this, we assume that the equation of state is in the

form of a generalized Chaplying gas [61], i.e.,

p =
³σ0
σ

´ν
p0 (6.4)

in which ν ∈ [0, 1] is a free parameter and σ0/p0 correspond to σ/p at the equilib-

rium radius a0. We plug in the latter expression into the conservation energy equation

(2.32) to find a closed form for the dynamic tension on the thin-shell after perturba-

tion as follows

σ (a) = σ0

∙³a0
a

´(1+ν)(d−2)
+

p0
σ0

µ³a0
a

´(1+ν)(d−2)
− 1
¶¸ 1

1+ν

. (6.5)
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Equating this with the one found in Eq. (2.29), i.e.,

−
p
f± (a) + ȧ2 (d− 2)

8π

∙
2

a
− 4α̃

3a3
¡
f± (a)− 2ȧ2 − 3

¢¸
= (6.6)

σ0

∙³a0
a

´(1+ν)(d−2)
+

p0
σ0

µ³a0
a

´(1+ν)(d−2)
− 1
¶¸ 1

1+ν

from which one solves for the ȧ2 as

ȧ2 + V (a) = 0, (6.7)

The intricate potential here is given by (2.42)-(2.44). It can be checked that at the

equilibrium radius a0 we have both V (a0) = 0 and V 0 (a0) = 0 satisfied.By making

an expansion of the potential in the vicinity of a0 and setting y = a− a0 in the Eq.

(6.7) and differentiating once more with respect to the proper time we obtain the

perturbation equation as

ÿ +
1

2
V 00 (a0) y = 0 (6.8)

The stability condition reduces for this reason to the requirement whether V 00 (a0) >

0 holds. Therefore we search for the regions in our parameters to satisfy this con-

straint on V 00 (a0) .

Fig. 6.1 represents a 5−dimensional plot for the negative branch black hole so-

lution (6.2) with two horizons. For the parameters shown a projection of the three-

dimension plot into the ν − a0 plane is given for a stable region, i.e. V 00 (a0) > 0.

Fig. 6.2 depicts a similar plot for the positive branch solution (6.2) which does

not correspond to a black hole case. Both pictures reveal the fact that in the stability

70



Figure 6.1. The 5−dimensional plot of stability region V 00 (a0) > 0, for the chosen

parameters and negative branch black hole solution (6.2) versus the parameters ν and a0.

The plots of the black hole metric f− (r) versus r and the energy density σ0 versus a0 for

the same parameters are given too. This figure shows that the TSW, under the conditions

indicated, is supported by exotic matter but for certain values of ν and a0 it is stable under a

radial perturbation.

Figure 6.2. Same plot as Fig. 6.1 with the bulk metric f+ (r). The plots of the bulk metric

f+ (r) versus r and energy density σ0 versus a0 for the same parameters are given.
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Figure 6.3. The 5−dimensional plot of stability region V 00 (a0) > 0, for a different set of

parameters than those in Fig. 6.2, with positive branch bulk solution (6.2) versus the

parameters ν and a0. The plots of the bulk metric f+ (r) versus r and energy density σ0

versus a0 for the same parameters are also given. This figure displays that the TSW under

the conditions indicated on the figure is supported by normal matter but its stability region

moves out of the Chaplygin gas region i.e. ν < 0.

domain we have σ0 < 0. Finally in Fig. 6.3 we plot the positive branch solution

(6.2) with different parameters than those of Fig. 6.2. This figure displays that if

we arrange the parameters to have positive energy or normal matter for the TSW, the

stability region moves out of the Chaplygin gas region.
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CHAPTER 7

CONCLUSION

In this thesis our main concern is stability analysis of thin-shell wormholes (TSW)

in various extensions of Einstein’s general relativity. Sources considered are linear

Maxwell field, Yang-Milles (YM) field. Hoffmann extension of non-linear Born-

Infeld electrodynamics dilaton and generalized Chaplygin gas. In each case we found

first an exact black hole solution so that the throat radius of the TSW doesn’t cross the

horizon. This is a requirement in general for any black hole space time if a wormhole

is to be constructed with a safe passage. The energy- momentum of the thin-shell

is localized on a narrow layer specified by a Dirac delta function. This is an advan-

tage for TSW in comparison with the other wormholes. The equation of state on the

thin-shell is chosen either as a linear relation between pressure and density or more

generally in the case of a Chaplygin gas. The basic rule is to provide a positive energy

density and repulsive force that will encounter gravitational attraction and collapse.

The equation of motion for the radius of thin-shell reduces in each case to the simple

equation ȧ2 + V (a) = 0, where a(τ) is the radius as a function of proper time and

V (a) is a rather complicated potential. Perturbation around the fixed radius a0 for

y = a− a0 yields

ÿ +
1

2
V 00(a0)y = 0
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This describes an oscillatory motion around a0 , provided V 00(a0) > 0 , which implies

stability.

We search therefore through numerical analysis region for which V 00(a0) > 0 ,

holds in the projective parameter space. For the case of the generalized Chaplygin

gas stability condition is satisfied but only with exotic matter, i.e. negative energy

density. In the other cases we managed to identity physical matter source together

with V ”(a0) > 0 , so that physical TSW becomes feasible. We observed, in particular

that the contribution of Gauss-Bonnet term with quadratic invariants acts positively

in obtaining physical TSWs. To be more precise, we give a short conclusion for each

chapter.

Chapter two: We have investigated the possibility of thin-shell wormholes in

EYMGB theory in higher (d ≥ 5) dimensions with particular emphasis on stability

against spherical, linear perturbations and normal (i.e. non-exotic) matter. For this

purpose we made use of the previously obtained solutions that are valid in all di-

mensions. The case d = 5 is considered separately from the cases d > 5 because

the solution involves a logarithmic term apart from the power-law dependence. For

d = 5 we observe (Fig. 2.2) the formation of a narrow band of positive energy region

that attains a stable wormhole only for α < 0. On the contrary, for α > 0 although

a large region of stability (i.e. V 00 (a0) > 0) forms, the energy turns out to be ex-

otic. For d > 5 also, we have more or less a similar picture. That is, whenever

the GB parameter α > 0, negative energy shows itself versus the stability require-

ments. We have analyzed the cases d = 6, 7 and 8 as examples. Our technique is

powerful enough to apply in any higher dimensions, however, for technical reasons

we had to be satisfied with these selected dimensions. We must admit also that for

non-spherical perturbations a similar analysis remains to be seen. In our study we
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were able also to observe a stability region which employs 0 < β < 1, which can be

interpreted as a case corresponding to less than the speed of light. In summary, we

state that formation of stable, positive energy thin-shell wormholes in EYMGB are

possible only with a GB parameter α < 0. Without the GB term whatever source is

available the situation is always worse. The indispensable character of the GB para-

meter toward useful wormhole constructions invites naturally the Lovelock hierarchy

for which GB term constitutes the first member.

Chapter 3: Our numerical analysis shows that for α < 0, and specific ranges

of mass and charge the 5−dimensional EMGB thin-shell wormholes with normal

matter can be made stable against linear, radial perturbations. The fact that for α >

0 there is no such wormholes is well-known. The magnitude of α is irrelevant to

the stability analysis. This reflects the universality of wormholes in parallel with

black holes, i.e., the fact that they arise at each scale. Stable regions develop for

each set of finely-tuned parameters which determine the lifespan of each such region.

Beyond those regions instability takes the start. Our study concerns entirely the exact

EMGB gravity solution given in. It is our belief that beside EMGB theory in different

theories also such stable, normal-matter wormholes are abound, which will be our

next venture in this line of research.

Chapter 4: In this Chapter we employed dilaton field beside YM field to investi-

gate the reality of such TSWs. In doing this it should be remembered that the strong

coupling of dilaton turns the spacetime into a non-asymptotically flat (NAF) one.

This is a digression from the original idea of a wormhole since we have to revise the

advantages of an AF spacetime. We remind, however, that we have already enough

familiarity with the cases of NAF spacetimes, the best known one being the de (anti)-

Sitter. For this reason we extended the concept of a wormhole in an AF spacetime
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to a NAF one through the prominent source of a dilaton. Such a wormhole provides

traversability from one NAF to another NAF spacetime. For this purpose we used

d−dimensional solutions of Einstein-Yang-Mills-dilaton (EYMD) theory found re-

cently [9, 11], and investigate thin-shell construction in such geometries. It turns out

that in the dilatonic thin-shells the required source must be exotic. Our findings show,

against our expectation that neither the YM charge, nor the dilatonic parameter have

significant effect on the negative energy density of the thin-shell.

Chapter 5: The original non-linear BI electrodynamics aimed at removing point-

like singularities and resulting divergences. This, however, didn’t resolve the dauble-

valuedness in the displacement vector D(E) as a function of the electric field. This

was the main motivation for emergence of Hoffmann’s version of the BI type La-

grangian, which contained an ubiquitous logarithmic term. We have shown that such

a supplementary term in the Lagrangian has benefits also when employed in general

relativity. Firstly, it removes the double-valuedness in D(E), as observed / proposed

seven decades before. Secondly, by cutting and gluing (pasting) method we obtain

new black hole spacetimes. This may be developed into a finite, geometrical model

of elementary particles as addressed in. Lastly, as we have emphasized in the present

paper, the HBI type Lagrangian can be used in wormhole construction. These worm-

holes have the attractive features of being supported only by normal matter. The

technical complexity in the metric function seems to be the price paid in introducing

new parameters / extensions to general relativity. In spite of the emerging complex-

ity we made use of the novelties without obscuring the real physics. Further, the

thin-shell wormhole obtained in the EHBIGB gravity can be made stable. Although,

for simplicity we have plotted the potential for d = 5, we can speculate that this

behavior is generic upon suitable choice of parameters involved. We have evidences
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from other theories that the behaviors of d > 5 do not differ much from the d = 5

case. This is upon finely-tuned parameters and an intricate potential function which

is required to have positive second derivative. From these feats it is hoped that the

logarithmic Lagrangian due originally to Hoffmann and Infeld will draw attention

from various circles of field theorists for further applications.

Chapter 6: For a generalized Chaplygin gas obeying the equation of state p =¡
σ0
σ

¢ν
p0, we have found stable regions for TSWs, within physically acceptable range

of parameters in EMGB gravity. The energy-density, however, turns out to be nega-

tive to suppress such a TSW as a prominent candidate.
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