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ABSTRACT 

Optimizing the route of an assembly arm is a procedure of finding placement tours of 

pick and place robot's arm for the equipping of Printed Circuit Board (PCB). The 

problem of finding placement tours is a production planning problem with n 

positions on a board as the assembly points and n bins containing n components as n 

locations for the bins, called cell points. PCB manufacturing requires a good route 

for the robot that makes production, so that time savings can be achieved. In the 

robots considered, working time of the robot is proportional to the distance travelled, 

and the problem appears as a combination of the Traveling Salesman Problem (TSP) 

and the matching problem. Such a problem is a special type of the TSP, known as the 

bipartite TSP. Given the complete graph on  vertices, a weight 

function  and a partition of  into 2 subsets of size , bipartite TSP 

is to find a Hamiltonian cycle of minimum weight that visits the subsets in a fixed 

alternating order. The problem has simulated many efforts to find an efficient 

algorithm but no algorithm is presently available that can solve for the optimal 

solution of this problem in polynomial time. As its complexity is NP-Complete the 

general opinion of scientists is that a fast polynomial algorithm does not exist.    

The aim of this thesis is to introduce an efficient approximation algorithm for 

medium-sized (up to 500 assembly points) problems and to derive bounds for the 

typical length of optimal tours. We present an iterative algorithm which applies a 

cutting model to get a shorter lower bound by adding cuts to the Linear Programming 



 

(LP) relaxations and a combined heuristic algorithm for finding an acceptable upper 

bound when the optimal integer solution is not found. The method is applied for both 

Dantzig-Fulkerson-Johnson and Miller-Tucker-Zemlin models. As the problem is 

NP-Complete, it is often unnecessary to have an exact solution. Thus a special 

heuristic algorithm is developed to obtain near-optimal solution in a reasonable time, 

suitable for practical purposes. The developed heuristic method is applied a 

constructive scheme combining two famous efficient heuristics: Nearest Neighbor 

and Insertion algorithms.  
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ÖZ 

Bir montaj kolu rota optimizasyonu seçme ve yerleştirme robot kolunun yerleştirme 

turlarını bulma işlemidir ki Baskılı Devrenin onatılması için kullanılır. Yerleştirme 

turları bulma sorunu bir üretim planlama sorunudur. Bu problemlerde montaj 

noktaları için n tane pozisyon vardır ve her birisinin içerisinde bir tane birleşen 

parçası yerleştirilmiş n tane kutu vardır ki bunlara hücre denilir. Baskılı devre üretimi 

zaman tasarufu elde edebilir böylece üretim yapan robot için iyi bir rota bulunması 

gerekir. Ele alınan robotlarda çalışma süresi gezilen mesafe ile orantılıdır. Bu tip 

problemler Gezgin Satıcı Problemi ve Eşleştirme Probleminin birleşimi olarak 

görülür. Böyle bir problem özel gezgin satıcı problemidir ki ikili gezgin satıcı 

problemi olarak bilinir. Verilen tamamlanmış grafikde G=(V,E), 2n köşe noktası ve 

ağırlık fonksiyonu W:E￫R≥0 ve V iki n taneli alt kümeye bölünen ikili gezgin satici 

problemi minumum agırlıklı Hamilton çevrimi bulmakdır ki bir alt kümeyi sabit bir 

alternatif sırayla ziyaret eder. Etkin bir algorithma bulmak için çok çaba harcanmış 

ama halen bu sorunun optimal çözümü bulmak için polinom zamanda bir algoritma 

bulunmamıştır. Bilim adamlarının genel görüşüne göre hızlı bir polinom algoritma 

yoktur çünkü bu problem bir polinom zamanlı olmayan-tam problemidir.  

Bu tezin amacı orta büyüklükteki soruları (500 montaj noktasına kadar) için etkin bir 

yaklaşım algoritması tanıtmaktır. En uygun turların uzunluğunun sınırlarını türetir. 

Biz bir yenilenen algoritma sunuyoruz ki bir kesim modeli ve birleştirilmiş sezgisel 

algoritmadan oluşur. Optimal tam sayı çözüm bulunmadığında kesim modelini daha 

yakın bir alt sınırı ve sezgisel algoritmayı kabul edilebilir bir üst sınırı bulmak için 



 

kullanıyoruz. Bu yöntem Dantzig-Fulkerson-Johnson ve Miller-Tucker-Zemlin 

modelleri için uygulanmıştır. Problem NP-Tam olduğu için çoğu kez kesin bir çözüm 

olması gereksizdir. Bu nedenle özel bir sezgisel algoritma geliştirilmiştir ki 

neredeyse optimal çözümü makul bir süre içerisinde ve pratik amaçlar için uygun 

olan cevabı elde ediyor. Geliştirilmiş sezgisel yöntem iki tane ünlü etkin yapısal 

sezgiselin birleşimidir. Bahsedilen iki sezgisel algoritma en yakın komşu ve 

yerleştirme algoritmalarıdır.  
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Table A1: Some Famous Pick and Place Machines and Their Specifications 

MFCTR 
Product 

Name 
Specifications 

APS 

Novastar 

APS 

Novastar 

L60 

Max board size: 343*813 mm; Max placement rate: 4800cph; 

Dispense option: 10,000 dots per hr. 

Fuji CP642 ME 
Max board size: 457*356 mm; Max placement rate: 40,000cph; 

Placement accuracy: 0.1 mm; two feeder carriages 

Fuji QP 242E 
Max board size: 457*356 mm; Max placement rate: 14,000cph; 

Placement accuracy: 0.1 mm; Modular multi-purpose machine 

Fuji IP 1 
Max placing points: 999 sequences/program; Max placement 

rate: 1.5 sec/part; Placement accuracy: 0.1 mm 

Hitachi GXH-1 
Max component size: 44*44 mm; Max placement rate: 

60,000cph; 200 feeder positions 8 mm 

Mydata 
Mydata 

TP11 UFP 

Max component size: 51.9*51.9*15 mm; Max picking rate: 

6,000cph; 128 feeder positions 8 mm; Pick up nozzles 7 

PMJ HiSAC 1000 
Odd form placement system; Pick & place travel: 

450*870*150mm 

Siemens 
Siplace 80 

F5 HM 

With 12 nozzle collect and place plus pick and place head or 6 

nozzle; Max placement rate: pick & place (1,800 cph); 

Placement accuracy: 38 micron 3 Sigma (p & p head) 

Siemens Siplace CF 

With Compact 6 nozzle collect and place plus pick & place 

head; Max placement rate:  pick & place (1,800 cph); 

Placement accuracy:  40 micron 4 Sigma (p & p head) 

Siemens 
Siplace 80 

S27 HM 

With 12 nozzle collect and place plus pick and place head or 

optional 6 nozzle; Max placement rate:  12 nozzle (26,500cph); 

Placement accuracy: 90 micron 4 Sigma (12 nozzle head) 

Universal  
Universal 

GSM II 

X, Y Accuracy: 0.0381 mm; Rotational accuracy: 0.06 degree; 

Pick & place travel: 727.46*720.73*762.00 mm; Max. board: 

508*457 mm 

 cph is the abbreviation of chip per hour 

 



 

 

 

Table A2: Distance Matrix of Problem 6-City 

 
  1 2 3 4 5 6 

    ABADAN ASTARA ARAK ARDABIL URMIA ISFAHAN 

1 ABADAN 0 1351 704 1401 1192 868 

2 ASTARA 1351 0 766 77 604 953 

3 ARAK 704 766 0 843 786 288 

4 ARDABIL 1401 77 834 0 527 1030 

5 URMIA 1192 604 786 527 0 1074 

6 ISFAHAN 868 953 288 1030 1074 0 
 

 

 

 

Table A3: Distance Matrix of Problem 10-City 

  ABADAN ASTARA ARAK ARDABIL URMIA ISFAHAN AHVAZ BABOL BIRJAND TABRIZ 

ABADAN 0 1351 704 1401 1192 868 123 1226 1889 1198 

ASTARA 1351 0 766 77 604 953 1228 515 1737 296 

ARAK 704 766 0 843 786 288 581 522 1606 785 

ARDABIL 1401 77 834 0 527 1030 1305 592 1814 219 

URMIA 1192 604 786 527 0 1074 1064 1136 2220 308 

ISFAHAN 868 953 288 1030 1074 0 745 668 1173 1038 

AHVAZ 123 1228 581 1305 1064 745 0 1103 1918 1075 

BABOL 1226 515 522 592 1136 668 1103 0 1222 828 

BIRJAND 1889 1737 1606 1814 2220 1173 1918 1222 0 1912 

TABRIZ 1198 296 785 219 308 1038 1075 828 1912 0 
 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table A6: Input Data for Problem 80-1 

Point X Y Point X Y 

1 100 100 41 388 378 

2 100 200 42 328 1018 

3 100 300 43 1518 1281 

4 100 400 44 299 251 

5 100 500 45 1390 1833 

6 100 600 46 1052 1510 

7 100 700 47 246 1878 

8 100 800 48 1548 851 

9 100 900 49 671 1441 

10 100 1000 50 1218 1666 

11 100 1100 51 442 1728 

12 100 1200 52 1758 453 

13 100 1300 53 1673 1064 

14 100 1400 54 634 1390 

15 100 1500 55 769 1640 

16 100 1600 56 1189 1173 

17 100 1700 57 592 1865 

18 100 1800 58 1922 154 

19 100 1900 59 1017 1084 

20 100 2000 60 1897 979 

21 2200 100 61 939 1654 

22 2200 200 62 409 1779 

23 2200 300 63 1559 1981 

24 2200 400 64 412 324 

25 2200 500 65 772 1654 

26 2200 600 66 185 269 

27 2200 700 67 166 1301 

28 2200 800 68 1022 241 

29 2200 900 69 532 243 

30 2200 1000 70 1 14 

31 2200 1100 71 772 655 

32 2200 1200 72 73 107 

33 2200 1300 73 1580 103 

34 2200 1400 74 255 303 

35 2200 1500 75 1910 949 

36 2200 1600 76 543 1976 

37 2200 1700 77 1654 816 

38 2200 1800 78 1911 673 

39 2200 1900 79 1239 482 

40 2200 2000 80 1702 1559 

 



 

 

 

Table A7: Input Data for Problem 80-2 

Point X Y Point X Y 

1 100 100 41 276 895 

2 100 200 42 1303 1754 

3 100 300 43 1005 1992 

4 100 400 44 1247 186 

5 100 500 45 24 839 

6 100 600 46 1559 1970 

7 100 700 47 72 781 

8 100 800 48 608 466 

9 100 900 49 1478 1766 

10 100 1000 50 330 834 

11 100 1100 51 1249 1675 

12 100 1200 52 1647 1358 

13 100 1300 53 931 250 

14 100 1400 54 608 1074 

15 100 1500 55 246 1398 

16 100 1600 56 529 323 

17 100 1700 57 1876 177 

18 100 1800 58 1035 390 

19 100 1900 59 1660 1568 

20 100 2000 60 1698 1715 

21 2200 100 61 1544 1510 

22 2200 200 62 1409 615 

23 2200 300 63 602 1137 

24 2200 400 64 701 1982 

25 2200 500 65 730 595 

26 2200 600 66 1633 668 

27 2200 700 67 1453 1092 

28 2200 800 68 713 1287 

29 2200 900 69 691 958 

30 2200 1000 70 844 1205 

31 2200 1100 71 185 1477 

32 2200 1200 72 1031 1136 

33 2200 1300 73 280 150 

34 2200 1400 74 131 1056 

35 2200 1500 75 948 1919 

36 2200 1600 76 79 774 

37 2200 1700 77 1016 26 

38 2200 1800 78 1713 78 

39 2200 1900 79 1984 1289 

40 2200 2000 80 759 1753 

 



 

 

 

Table A8: Input Data for Problem 100-1 

Point X Y Point X Y 

1 100 100 51 530 2297 

2 100 200 52 2157 2019 

3 100 300 53 1926 2416 

4 100 400 54 231 1387 

5 100 500 55 640 1773 

6 100 600 56 1105 2358 

7 100 700 57 2304 1764 

8 100 800 58 1943 150 

9 100 900 59 461 592 

10 100 1000 60 1645 1702 

11 100 1100 61 462 1863 

12 100 1200 62 1186 1049 

13 100 1300 63 104 2238 

14 100 1400 64 304 1929 

15 100 1500 65 293 569 

16 100 1600 66 1925 1585 

17 100 1700 67 2427 687 

18 100 1800 68 1555 2302 

19 100 1900 69 440 2396 

20 100 2000 70 2298 1002 

21 100 2100 71 1203 585 

22 100 2200 72 479 1131 

23 100 2300 73 1441 2509 

24 100 2400 74 255 1666 

25 100 2500 75 616 2109 

26 2700 100 76 1113 1855 

27 2700 200 77 2416 1767 

28 2700 300 78 419 895 

29 2700 400 79 382 2516 

30 2700 500 80 621 749 

31 2700 600 81 136 1219 

32 2700 700 82 721 1907 

33 2700 800 83 521 2097 

34 2700 900 84 1152 353 

35 2700 1000 85 1744 528 

36 2700 1100 86 2050 2367 

37 2700 1200 87 728 2091 

38 2700 1300 88 2270 2545 

39 2700 1400 89 443 1143 

40 2700 1500 90 2589 703 

41 2700 1600 91 641 494 

42 2700 1700 92 1885 451 

43 2700 1800 93 967 2543 

44 2700 1900 94 2067 1545 

45 2700 2000 95 2016 1379 

46 2700 2100 96 516 1330 

47 2700 2200 97 103 1187 

48 2700 2300 98 1896 399 



 

49 2700 2400 99 2290 832 

50 2700 2500 100 2040 633 

 

Table A9: Input Data for Problem 100-2 

Point X Y Point X Y 

1 100 100 51 648 558 

2 100 200 52 2112 1091 

3 100 300 53 901 804 

4 100 400 54 961 1395 

5 100 500 55 1114 128 

6 100 600 56 437 1357 

7 100 700 57 1304 1859 

8 100 800 58 2228 526 

9 100 900 59 1547 1455 

10 100 1000 60 1071 616 

11 100 1100 61 1881 842 

12 100 1200 62 471 1202 

13 100 1300 63 1533 2381 

14 100 1400 64 140 854 

15 100 1500 65 296 883 

16 100 1600 66 522 440 

17 100 1700 67 902 1039 

18 100 1800 68 274 2485 

19 100 1900 69 263 2390 

20 100 2000 70 906 1938 

21 100 2100 71 329 420 

22 100 2200 72 1977 2003 

23 100 2300 73 1435 136 

24 100 2400 74 2386 1087 

25 100 2500 75 1186 301 

26 2700 100 76 1295 515 

27 2700 200 77 2044 2537 

28 2700 300 78 1738 542 

29 2700 400 79 2020 330 

30 2700 500 80 439 422 

31 2700 600 81 210 1217 

32 2700 700 82 2077 1446 

33 2700 800 83 1459 1158 

34 2700 900 84 1839 1403 

35 2700 1000 85 2065 1823 

36 2700 1100 86 2102 829 

37 2700 1200 87 2137 2210 

38 2700 1300 88 1092 827 

39 2700 1400 89 1723 935 

40 2700 1500 90 2215 948 

41 2700 1600 91 1604 2529 

42 2700 1700 92 1297 190 

43 2700 1800 93 2414 1651 

44 2700 1900 94 963 1535 

45 2700 2000 95 1333 413 

46 2700 2100 96 2596 528 

47 2700 2200 97 528 1649 

48 2700 2300 98 2360 1466 

49 2700 2400 99 1411 929 

50 2700 2500 100 698 2393 



 

 

 

Point X Y Point X Y Point X Y Point X Y 

1 100 200 41 1700 200 81 134 1837 121 330 1111 

2 100 300 42 1700 300 82 1512 867 122 499 386 

3 100 400 43 1700 400 83 832 1883 123 1422 1219 

4 100 500 44 1700 500 84 530 2534 124 980 1922 

5 100 600 45 1700 600 85 1186 2540 125 753 1003 

6 100 700 46 1700 700 86 1557 523 126 1030 1366 

7 100 800 47 1700 800 87 1050 1783 127 293 1290 

8 100 900 48 1700 900 88 749 848 128 1281 1722 

9 100 1000 49 1700 1000 89 970 385 129 1269 2315 

10 100 1100 50 1700 1100 90 249 324 130 1298 2362 

11 100 1200 51 1700 1200 91 1563 869 131 1450 2517 

12 100 1300 52 1700 1300 92 559 1925 132 1596 1423 

13 100 1400 53 1700 1400 93 166 272 133 881 778 

14 100 1500 54 1700 1500 94 1551 1071 134 1453 2238 

15 100 1600 55 1700 1600 95 868 993 135 559 1489 

16 100 1700 56 1700 1700 96 924 734 136 140 1896 

17 100 1800 57 1700 1800 97 1218 566 137 533 2328 

18 100 1900 58 1700 1900 98 416 1835 138 1161 432 

19 100 2000 59 1700 2000 99 1275 830 139 804 530 

20 100 2100 60 1700 2100 100 292 836 140 1510 786 

21 100 2200 61 1700 2200 101 340 1191 141 1067 1271 

22 100 2300 62 1700 2300 102 1243 1863 142 1199 1722 

23 100 2400 63 1700 2400 103 353 548 143 1141 770 

24 100 2500 64 1700 2500 104 304 517 144 322 1329 

25 100 2600 65 1700 2600 105 143 1520 145 664 2551 

26 200 100 66 200 2700 106 1241 630 146 1367 699 

27 300 100 67 300 2700 107 1254 1849 147 1434 2293 

28 400 100 68 400 2700 108 133 445 148 169 679 

29 500 100 69 500 2700 109 841 1094 149 948 1120 

30 600 100 70 600 2700 110 1540 198 150 1367 265 

31 700 100 71 700 2700 111 115 1382 151 1598 616 

32 800 100 72 800 2700 112 1252 835 152 1304 609 

33 900 100 73 900 2700 113 933 1850 153 154 2140 

34 1000 100 74 1000 2700 114 1116 1685 154 827 252 

35 1100 100 75 1100 2700 115 1432 2117 155 1138 1154 

36 1200 100 76 1200 2700 116 467 1814 156 136 1991 

37 1300 100 77 1300 2700 117 434 1177 157 1045 1904 



 

Table A10: Input Data for Problem 25-15-1 

Table A11: Input Data for Problem 25-15-2 

38 1400 100 78 1400 2700 118 1289 2131 158 1568 1569 

39 1500 100 79 1500 2700 119 1506 2339 159 1396 2209 

40 1600 100 80 1600 2700 120 1107 1846 160 1381 1800 Point X Y Point X Y Point X Y Point X Y 



 

Table A12: Input Data for Problem 25-15-3 

Point X Y Point X Y Point X Y Point X Y 

1 100 200 41 1700 200 81 1319 633 121 567 1297 

1 100 200 41 1700 200 81 811 1353 121 625 1500 

2 100 300 42 1700 300 82 682 507 122 423 714 

3 100 400 43 1700 400 83 696 1141 123 719 653 

4 100 500 44 1700 500 84 427 2534 124 1179 653 

5 100 600 45 1700 600 85 572 655 125 313 594 

6 100 700 46 1700 700 86 746 2331 126 963 562 

7 100 800 47 1700 800 87 1170 1845 127 1066 1556 

8 100 900 48 1700 900 88 497 297 128 741 2104 

9 100 1000 49 1700 1000 89 748 1018 129 133 228 

10 100 1100 50 1700 1100 90 1110 1036 130 1485 1154 

11 100 1200 51 1700 1200 91 602 2204 131 1245 926 

12 100 1300 52 1700 1300 92 834 1719 132 492 401 

13 100 1400 53 1700 1400 93 1130 1083 133 1256 2587 

14 100 1500 54 1700 1500 94 1514 212 134 687 1673 

15 100 1600 55 1700 1600 95 936 1349 135 915 2345 

16 100 1700 56 1700 1700 96 805 1081 136 763 174 

17 100 1800 57 1700 1800 97 1322 1230 137 374 861 

18 100 1900 58 1700 1900 98 545 1796 138 621 1196 

19 100 2000 59 1700 2000 99 929 2057 139 999 1198 

20 100 2100 60 1700 2100 100 419 2495 140 1263 1238 

21 100 2200 61 1700 2200 101 498 911 141 1376 2463 

22 100 2300 62 1700 2300 102 162 2150 142 274 140 

23 100 2400 63 1700 2400 103 909 2196 143 1051 1420 

24 100 2500 64 1700 2500 104 876 1998 144 1170 226 

25 100 2600 65 1700 2600 105 687 2479 145 1396 956 

26 200 100 66 200 2700 106 275 886 146 1259 257 

27 300 100 67 300 2700 107 338 157 147 722 1994 

28 400 100 68 400 2700 108 1143 1084 148 823 727 

29 500 100 69 500 2700 109 961 1468 149 320 830 

30 600 100 70 600 2700 110 1455 2203 150 1186 860 

31 700 100 71 700 2700 111 254 674 151 1547 1959 

32 800 100 72 800 2700 112 1060 387 152 569 1630 

33 900 100 73 900 2700 113 656 1203 153 402 201 

34 1000 100 74 1000 2700 114 1309 1261 154 1557 1087 

35 1100 100 75 1100 2700 115 648 1995 155 458 422 

36 1200 100 76 1200 2700 116 1270 2032 156 474 2252 

37 1300 100 77 1300 2700 117 423 1082 157 418 1613 

38 1400 100 78 1400 2700 118 283 958 158 1365 2510 

39 1500 100 79 1500 2700 119 556 1700 159 570 2156 

40 1600 100 80 1600 2700 120 1012 1514 160 711 1819 



 

2 100 300 42 1700 300 82 1566 2308 122 520 588 

3 100 400 43 1700 400 83 761 444 123 1272 942 

4 100 500 44 1700 500 84 1349 675 124 1003 231 

5 100 600 45 1700 600 85 1564 1654 125 321 428 

6 100 700 46 1700 700 86 184 1154 126 464 2365 

7 100 800 47 1700 800 87 775 496 127 949 1486 

8 100 900 48 1700 900 88 1529 1612 128 888 218 

9 100 1000 49 1700 1000 89 836 834 129 696 1008 

10 100 1100 50 1700 1100 90 1038 607 130 438 820 

11 100 1200 51 1700 1200 91 571 1728 131 834 143 

12 100 1300 52 1700 1300 92 1189 565 132 1165 2086 

13 100 1400 53 1700 1400 93 1552 1752 133 797 288 

14 100 1500 54 1700 1500 94 1029 1543 134 884 659 

15 100 1600 55 1700 1600 95 142 278 135 791 2213 

16 100 1700 56 1700 1700 96 1297 2213 136 826 1325 

17 100 1800 57 1700 1800 97 1163 2247 137 158 878 

18 100 1900 58 1700 1900 98 1255 1696 138 912 1434 

19 100 2000 59 1700 2000 99 1360 1663 139 655 1565 

20 100 2100 60 1700 2100 100 1086 711 140 965 2559 

21 100 2200 61 1700 2200 101 584 698 141 250 2376 

22 100 2300 62 1700 2300 102 525 389 142 1225 369 

23 100 2400 63 1700 2400 103 706 873 143 1250 867 

24 100 2500 64 1700 2500 104 202 1216 144 304 658 

25 100 2600 65 1700 2600 105 1130 396 145 280 2492 

26 200 100 66 200 2700 106 877 1971 146 1002 1903 

27 300 100 67 300 2700 107 765 1390 147 118 183 

28 400 100 68 400 2700 108 780 1597 148 827 1688 

29 500 100 69 500 2700 109 1528 313 149 1285 1861 

30 600 100 70 600 2700 110 640 1585 150 359 228 

31 700 100 71 700 2700 111 1270 215 151 352 684 

32 800 100 72 800 2700 112 735 726 152 581 1250 

33 900 100 73 900 2700 113 1028 2522 153 377 2317 

34 1000 100 74 1000 2700 114 1321 1524 154 1321 2057 

35 1100 100 75 1100 2700 115 974 2279 155 1574 1313 

36 1200 100 76 1200 2700 116 261 395 156 220 1568 

37 1300 100 77 1300 2700 117 651 2151 157 1153 334 

38 1400 100 78 1400 2700 118 1111 1444 158 900 2232 

39 1500 100 79 1500 2700 119 1169 1933 159 437 1335 

40 1600 100 80 1600 2700 120 503 2193 160 246 167 

 

Table A13: Input Data for Problem 200-1 

Point X Y Point X Y Point X Y Point X Y 

1 100 100 51 200 100 101 1298 2196 151 1032 231 



 

2 100 200 52 300 100 102 662 2443 152 1862 884 

3 100 300 53 400 100 103 842 184 153 2529 1112 

4 100 400 54 500 100 104 2025 1195 154 1011 1306 

5 100 500 55 600 100 105 1198 989 155 455 463 

6 100 600 56 700 100 106 320 1266 156 302 1414 

7 100 700 57 800 100 107 634 189 157 152 1620 

8 100 800 58 900 100 108 126 2576 158 1035 1091 

9 100 900 59 1000 100 109 689 442 159 2236 706 

10 100 1000 60 1100 100 110 1960 2396 160 1451 2545 

11 100 1100 61 1200 100 111 2114 2339 161 1453 315 

12 100 1200 62 1300 100 112 2531 2124 162 2080 1075 

13 100 1300 63 1400 100 113 814 2197 163 340 1081 

14 100 1400 64 1500 100 114 373 794 164 2230 2093 

15 100 1500 65 1600 100 115 319 1792 165 917 1928 

16 100 1600 66 1700 100 116 1878 1974 166 351 1763 

17 100 1700 67 1800 100 117 1740 654 167 1749 1232 

18 100 1800 68 1900 100 118 1434 523 168 1510 2358 

19 100 1900 69 2000 100 119 548 243 169 501 2021 

20 100 2000 70 2100 100 120 1216 443 170 580 823 

21 100 2100 71 2200 100 121 1933 983 171 2180 1431 

22 100 2200 72 2300 100 122 853 785 172 692 410 

23 100 2300 73 2400 100 123 2405 629 173 233 595 

24 100 2400 74 2500 100 124 2555 1596 174 788 1497 

25 100 2500 75 2600 100 125 1120 476 175 1651 321 

26 2700 100 76 200 2700 126 1138 779 176 1997 2335 

27 2700 200 77 300 2700 127 1794 1590 177 1505 2255 

28 2700 300 78 400 2700 128 902 1494 178 1382 478 

29 2700 400 79 500 2700 129 208 522 179 1941 2120 

30 2700 500 80 600 2700 130 1421 2335 180 950 811 

31 2700 600 81 700 2700 131 523 2439 181 1920 484 

32 2700 700 82 800 2700 132 1437 535 182 664 2011 

33 2700 800 83 900 2700 133 2460 2598 183 1990 531 

34 2700 900 84 1000 2700 134 1028 2188 184 1375 1463 

35 2700 1000 85 1100 2700 135 2042 1188 185 1278 1721 

36 2700 1100 86 1200 2700 136 2441 1359 186 478 1716 

37 2700 1200 87 1300 2700 137 146 261 187 1399 1075 

38 2700 1300 88 1400 2700 138 1350 2476 188 812 1255 

39 2700 1400 89 1500 2700 139 2300 1771 189 1776 1414 

40 2700 1500 90 1600 2700 140 2271 974 190 1585 134 

41 2700 1600 91 1700 2700 141 2147 1265 191 847 597 

42 2700 1700 92 1800 2700 142 1305 2518 192 2455 1404 

43 2700 1800 93 1900 2700 143 1160 2359 193 2479 2183 

44 2700 1900 94 2000 2700 144 238 204 194 1060 1497 

45 2700 2000 95 2100 2700 145 880 874 195 1114 1936 

46 2700 2100 96 2200 2700 146 1744 756 196 1514 916 

47 2700 2200 97 2300 2700 147 2506 159 197 303 1367 

48 2700 2300 98 2400 2700 148 2275 306 198 2217 2039 

49 2700 2400 99 2500 2700 149 2509 1560 199 2585 1589 

50 2700 2500 100 2600 2700 150 1982 1528 200 536 2207 

 

 

Table A14: Input Data for Problem 200-2 

Point X Y Point X Y Point X Y Point X Y 

1 100 100 51 200 100 101 2068 1257 151 1707 2243 



 

2 100 200 52 300 100 102 1742 1570 152 2134 1548 

3 100 300 53 400 100 103 1963 832 153 1981 2164 

4 100 400 54 500 100 104 938 2488 154 1548 1520 

5 100 500 55 600 100 105 1422 1794 155 1047 514 

6 100 600 56 700 100 106 415 1225 156 169 912 

7 100 700 57 800 100 107 2279 1875 157 1010 826 

8 100 800 58 900 100 108 2066 2171 158 2492 1952 

9 100 900 59 1000 100 109 997 1083 159 242 643 

10 100 1000 60 1100 100 110 1142 247 160 260 113 

11 100 1100 61 1200 100 111 428 1291 161 2408 1329 

12 100 1200 62 1300 100 112 795 2245 162 1132 1876 

13 100 1300 63 1400 100 113 2392 173 163 522 1076 

14 100 1400 64 1500 100 114 1051 176 164 1629 1795 

15 100 1500 65 1600 100 115 309 2070 165 1999 805 

16 100 1600 66 1700 100 116 565 687 166 2525 1368 

17 100 1700 67 1800 100 117 201 1630 167 820 342 

18 100 1800 68 1900 100 118 948 267 168 2571 2482 

19 100 1900 69 2000 100 119 2402 1663 169 2368 851 

20 100 2000 70 2100 100 120 162 1204 170 1533 1032 

21 100 2100 71 2200 100 121 618 2213 171 601 2583 

22 100 2200 72 2300 100 122 1478 1310 172 101 1967 

23 100 2300 73 2400 100 123 2325 534 173 882 600 

24 100 2400 74 2500 100 124 1989 1597 174 1433 1668 

25 100 2500 75 2600 100 125 1981 1273 175 2093 1874 

26 2700 100 76 200 2700 126 1921 2466 176 2044 2502 

27 2700 200 77 300 2700 127 145 1524 177 765 1605 

28 2700 300 78 400 2700 128 2502 2494 178 763 1096 

29 2700 400 79 500 2700 129 1298 803 179 1016 1411 

30 2700 500 80 600 2700 130 942 1576 180 1695 2060 

31 2700 600 81 700 2700 131 1777 2084 181 473 559 

32 2700 700 82 800 2700 132 835 1030 182 1315 794 

33 2700 800 83 900 2700 133 2584 982 183 1228 1084 

34 2700 900 84 1000 2700 134 2063 1499 184 691 1271 

35 2700 1000 85 1100 2700 135 2046 230 185 1482 210 

36 2700 1100 86 1200 2700 136 2137 1973 186 2017 1395 

37 2700 1200 87 1300 2700 137 1615 2329 187 107 2492 

38 2700 1300 88 1400 2700 138 2388 766 188 908 2040 

39 2700 1400 89 1500 2700 139 1784 1196 189 1374 2073 

40 2700 1500 90 1600 2700 140 1522 1385 190 1785 1792 

41 2700 1600 91 1700 2700 141 204 1223 191 2423 1169 

42 2700 1700 92 1800 2700 142 2455 2542 192 439 2094 

43 2700 1800 93 1900 2700 143 1770 873 193 2372 2321 

44 2700 1900 94 2000 2700 144 1113 1889 194 312 1832 

45 2700 2000 95 2100 2700 145 2556 1733 195 2004 118 

46 2700 2100 96 2200 2700 146 1763 2430 196 1607 2368 

47 2700 2200 97 2300 2700 147 1595 2243 197 769 1535 

48 2700 2300 98 2400 2700 148 1113 2024 198 2518 1160 

49 2700 2400 99 2500 2700 149 2285 560 199 2055 1817 

50 2700 2500 100 2600 2700 150 437 910 200 1654 1892 

 

Table A15: Input Data for Problem 240-1 

P X Y Z P X Y Z P X Y Z 

1 1 0 1 41 1 0 3 81 1 21 2 



 

2 2 0 1 42 2 0 3 82 2 21 2 

3 3 0 1 43 3 0 3 83 3 21 2 

4 4 0 1 44 4 0 3 84 4 21 2 

5 5 0 1 45 5 0 3 85 5 21 2 

6 6 0 1 46 6 0 3 86 6 21 2 

7 7 0 1 47 7 0 3 87 7 21 2 

8 8 0 1 48 8 0 3 88 8 21 2 

9 9 0 1 49 9 0 3 89 9 21 2 

10 10 0 1 50 10 0 3 90 10 21 2 

11 11 0 1 51 11 0 3 91 11 21 2 

12 12 0 1 52 12 0 3 92 12 21 2 

13 13 0 1 53 13 0 3 93 13 21 2 

14 14 0 1 54 14 0 3 94 14 21 2 

15 15 0 1 55 15 0 3 95 15 21 2 

16 16 0 1 56 16 0 3 96 16 21 2 

17 17 0 1 57 17 0 3 97 17 21 2 

18 18 0 1 58 18 0 3 98 18 21 2 

19 19 0 1 59 19 0 3 99 19 21 2 

20 20 0 1 60 20 0 3 100 20 21 2 

21 1 0 2 61 1 21 1 101 1 21 3 

22 2 0 2 62 2 21 1 102 2 21 3 

23 3 0 2 63 3 21 1 103 3 21 3 

24 4 0 2 64 4 21 1 104 4 21 3 

25 5 0 2 65 5 21 1 105 5 21 3 

26 6 0 2 66 6 21 1 106 6 21 3 

27 7 0 2 67 7 21 1 107 7 21 3 

28 8 0 2 68 8 21 1 108 8 21 3 

29 9 0 2 69 9 21 1 109 9 21 3 

30 10 0 2 70 10 21 1 110 10 21 3 

31 11 0 2 71 11 21 1 111 11 21 3 

32 12 0 2 72 12 21 1 112 12 21 3 

33 13 0 2 73 13 21 1 113 13 21 3 

34 14 0 2 74 14 21 1 114 14 21 3 

35 15 0 2 75 15 21 1 115 15 21 3 

36 16 0 2 76 16 21 1 116 16 21 3 

37 17 0 2 77 17 21 1 117 17 21 3 

38 18 0 2 78 18 21 1 118 18 21 3 

39 19 0 2 79 19 21 1 119 19 21 3 

40 20 0 2 80 20 21 1 120 20 21 3 

 

 

Table A15: Input Data for Problem 240-1(continue) 

P X Y Z P X Y Z P X Y Z 

121 1 2 0 161 8 5 0 201 15 3 0 



 

122 1 3 0 162 8 8 0 202 15 5 0 

123 1 10 0 163 8 11 0 203 15 8 0 

124 1 11 0 164 8 17 0 204 15 10 0 

125 1 13 0 165 8 18 0 205 15 11 0 

126 1 16 0 166 8 19 0 206 15 15 0 

127 1 19 0 167 8 20 0 207 15 15 0 

128 2 1 0 168 9 7 0 208 15 17 0 

129 2 12 0 169 9 9 0 209 16 1 0 

130 2 16 0 170 9 17 0 210 16 7 0 

131 2 16 0 171 9 19 0 211 16 8 0 

132 3 6 0 172 10 8 0 212 16 9 0 

133 3 9 0 173 10 9 0 213 16 11 0 

134 3 10 0 174 10 12 0 214 16 15 0 

135 3 13 0 175 10 13 0 215 16 18 0 

136 3 15 0 176 10 20 0 216 16 19 0 

137 3 16 0 177 11 3 0 217 17 1 0 

138 3 17 0 178 11 4 0 218 17 6 0 

139 3 18 0 179 11 12 0 219 17 12 0 

140 3 20 0 180 11 14 0 220 17 14 0 

141 4 7 0 181 11 16 0 221 17 15 0 

142 4 12 0 182 11 19 0 222 17 17 0 

143 4 15 0 183 12 2 0 223 18 1 0 

144 5 1 0 184 12 3 0 224 18 4 0 

145 5 6 0 185 12 8 0 225 18 6 0 

146 5 14 0 186 12 10 0 226 18 14 0 

147 6 7 0 187 12 12 0 227 18 15 0 

148 6 8 0 188 12 13 0 228 18 16 0 

149 6 9 0 189 12 14 0 229 18 17 0 

150 6 13 0 190 12 16 0 230 19 2 0 

151 6 15 0 191 12 17 0 231 20 1 0 

152 6 17 0 192 12 18 0 232 20 2 0 

153 6 18 0 193 12 20 0 233 20 4 0 

154 6 20 0 194 13 4 0 234 20 5 0 

155 7 4 0 195 13 20 0 235 20 7 0 

156 7 6 0 196 14 1 0 236 20 9 0 

157 7 8 0 197 14 3 0 237 20 12 0 

158 7 14 0 198 14 9 0 238 20 14 0 

159 8 1 0 199 14 14 0 239 20 18 0 

160 8 2 0 200 15 1 0 240 20 20 0 

 

 

Table A16: Input Data for Problem 240-2 

P X Y Z P X Y Z P X Y Z 

1 1 0 1 41 1 0 3 81 1 21 2 



 

2 2 0 1 42 2 0 3 82 2 21 2 

3 3 0 1 43 3 0 3 83 3 21 2 

4 4 0 1 44 4 0 3 84 4 21 2 

5 5 0 1 45 5 0 3 85 5 21 2 

6 6 0 1 46 6 0 3 86 6 21 2 

7 7 0 1 47 7 0 3 87 7 21 2 

8 8 0 1 48 8 0 3 88 8 21 2 

9 9 0 1 49 9 0 3 89 9 21 2 

10 10 0 1 50 10 0 3 90 10 21 2 

11 11 0 1 51 11 0 3 91 11 21 2 

12 12 0 1 52 12 0 3 92 12 21 2 

13 13 0 1 53 13 0 3 93 13 21 2 

14 14 0 1 54 14 0 3 94 14 21 2 

15 15 0 1 55 15 0 3 95 15 21 2 

16 16 0 1 56 16 0 3 96 16 21 2 

17 17 0 1 57 17 0 3 97 17 21 2 

18 18 0 1 58 18 0 3 98 18 21 2 

19 19 0 1 59 19 0 3 99 19 21 2 

20 20 0 1 60 20 0 3 100 20 21 2 

21 1 0 2 61 1 21 1 101 1 21 3 

22 2 0 2 62 2 21 1 102 2 21 3 

23 3 0 2 63 3 21 1 103 3 21 3 

24 4 0 2 64 4 21 1 104 4 21 3 

25 5 0 2 65 5 21 1 105 5 21 3 

26 6 0 2 66 6 21 1 106 6 21 3 

27 7 0 2 67 7 21 1 107 7 21 3 

28 8 0 2 68 8 21 1 108 8 21 3 

29 9 0 2 69 9 21 1 109 9 21 3 

30 10 0 2 70 10 21 1 110 10 21 3 

31 11 0 2 71 11 21 1 111 11 21 3 

32 12 0 2 72 12 21 1 112 12 21 3 

33 13 0 2 73 13 21 1 113 13 21 3 

34 14 0 2 74 14 21 1 114 14 21 3 

35 15 0 2 75 15 21 1 115 15 21 3 

36 16 0 2 76 16 21 1 116 16 21 3 

37 17 0 2 77 17 21 1 117 17 21 3 

38 18 0 2 78 18 21 1 118 18 21 3 

39 19 0 2 79 19 21 1 119 19 21 3 

40 20 0 2 80 20 21 1 120 20 21 3 

 

 

Table A16: Input Data for Problem 240-2(continue) 

P X Y Z P X Y Z P X Y Z 

121 1 1 0 161 8 8 0 201 13 17 0 



 

122 1 3 0 162 8 11 0 202 13 20 0 

123 1 5 0 163 8 16 0 203 14 3 0 

124 1 7 0 164 8 17 0 204 14 5 0 

125 1 12 0 165 9 3 0 205 14 6 0 

126 1 20 0 166 9 7 0 206 14 9 0 

127 2 2 0 167 9 8 0 207 14 13 0 

128 2 3 0 168 9 15 0 208 14 19 0 

129 2 7 0 169 9 19 0 209 14 20 0 

130 2 14 0 170 9 20 0 210 15 1 0 

131 2 15 0 171 10 1 0 211 15 17 0 

132 2 17 0 172 10 2 0 212 16 3 0 

133 3 3 0 173 10 9 0 213 16 7 0 

134 3 6 0 174 10 11 0 214 16 12 0 

135 3 7 0 175 10 12 0 215 16 14 0 

136 3 8 0 176 10 13 0 216 16 15 0 

137 3 9 0 177 10 15 0 217 16 16 0 

138 3 11 0 178 10 16 0 218 16 19 0 

139 3 20 0 179 11 6 0 219 17 4 0 

140 4 3 0 180 11 8 0 220 17 9 0 

141 4 8 0 181 11 10 0 221 17 12 0 

142 4 9 0 182 11 11 0 222 17 15 0 

143 4 17 0 183 11 16 0 223 18 2 0 

144 4 19 0 184 11 17 0 224 18 3 0 

145 4 20 0 185 11 18 0 225 18 4 0 

146 5 1 0 186 11 21 0 226 18 5 0 

147 5 3 0 187 12 4 0 227 18 9 0 

148 5 6 0 188 12 8 0 228 18 11 0 

149 5 8 0 189 12 9 0 229 18 12 0 

150 5 10 0 190 12 14 0 230 18 14 0 

151 5 13 0 191 12 16 0 231 18 17 0 

152 5 19 0 192 12 17 0 232 18 20 0 

153 6 5 0 193 12 18 0 233 19 2 0 

154 6 8 0 194 12 20 0 234 19 5 0 

155 6 19 0 195 13 0 0 235 19 6 0 

156 7 6 0 196 13 6 0 236 19 8 0 

157 7 18 0 197 13 11 0 237 19 17 0 

158 7 19 0 198 13 12 0 238 20 3 0 

159 7 20 0 199 13 13 0 239 20 15 0 

160 8 3 0 200 13 14 0 240 20 19 0 

 

         

Table A17: Labels of Problem 25-15-1 After Solving with the MTZ formulation 

point Label point Label point Label point Label 

1 1 58 6 145 8 140 11 



 

2 2 67 6 13 9 20 12 

12 2 68 6 18 9 49 12 

104 2 75 6 30 9 87 12 

127 2 76 6 35 9 156 12 

3 3 79 6 43 9 22 13 

8 3 84 6 45 9 32 13 

15 3 85 6 54 9 40 13 

105 3 100 6 59 9 53 13 

108 3 113 6 61 9 98 13 

109 3 116 6 74 9 110 13 

4 4 129 6 81 9 141 13 

5 4 131 6 86 9 154 13 

33 4 149 6 102 9 24 14 

36 4 151 6 111 9 47 14 

51 4 160 6 112 9 82 14 

69 4 9 7 120 9 92 14 

80 4 11 7 132 9 25 15 

96 4 42 7 133 9 28 15 

103 4 50 7 142 9 29 15 

138 4 57 7 143 9 83 15 

147 4 64 7 14 10 88 15 

148 4 72 7 21 10 95 15 

155 4 73 7 34 10 26 16 

159 4 94 7 41 10 119 16 

6 5 101 7 48 10 37 17 

31 5 114 7 66 10 38 17 

52 5 121 7 77 10 55 17 

62 5 128 7 89 10 65 17 

63 5 146 7 91 10 90 17 

93 5 157 7 122 10 97 17 

115 5 10 8 130 10 150 17 

123 5 17 8 137 10 158 17 

125 5 39 8 144 10 56 18 

134 5 70 8 152 10 60 18 

139 5 78 8 153 10 107 18 

7 6 106 8 19 11 126 18 

16 6 117 8 27 11 71 19 

23 6 118 8 46 11 124 19 

44 6 135 8 136 11 99 20 

Bold digits show non-integer points 
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Program B1: The MTZ Model Formulation  

MODEL: 

SETS: 

CITY / 1.. N/: U; ! U( I) = sequence no. of city; 

LINK( CITY, CITY): 

DIST, ! The distance matrix; 

X; ! X( I, J) = 1 if we use link I, J; 



 

ENDSETS 

DATA: !Distance matrix, it need not be symmetric; 

DIST = @OLE(FILE_ADDRESS, RANGE_NAME); 

ENDDATA 

N = @SIZE( CITY); 

MIN = @SUM( LINK: DIST * X); 

@FOR( CITY( K): 

! It must be entered; 

@SUM( CITY( I)| I #NE# K: X( I, K)) = 1; 

! It must be departed; 

@SUM( CITY( J)| J #NE# K: X( K, J)) = 1; 

! Weak form of the subtour breaking constraints; 

@FOR( CITY( J)| J #GT# 1 #AND# J #NE# K: 

U( J) >= U( K) + (N-1)*X ( K, J) +(2-N) 

)); 

@FOR( LINK: @BND( 0, X, 1)); 

 

@FOR( CITY( K)| K #GT# 1: 

                U( K) <= N - 1 - ( N - 1) * X( 1, K); 

                U( K) >= 1 + ( N - 2) * X( K, 1)); 

 

 

 

Program B2: The DFJ Model Formulation  

MODEL: 

! DFJ MODEL FOR DIRECTED GRAPH; 

SETS: 

point / 1.. N/; ! U( I) = sequence no. of city; 

LINK( point, point):X,DIST; 

ENDSETS 

DATA:  

DIST=@ole(FILE_ADDRESS, RANGE_NAME); 

ENDDATA 

MIN = @SUM( LINK: X*DIST); 

@FOR( LINK: @BND( 0, X, 1)); 

@FOR( LINK: @BND( 0, X, 1)); 

@FOR( point(K): 

      @SUM( point( I)| I #NE# K: X( I, K)) = 1; 

      @SUM( point( J)| J #NE# K: X( K, J)) = 1); 

@FOR( point( K):   

       @FOR(point( I)| I #NE# K: X(I,K)+X(K,I)<=1)); 

END 

 

 

 

 

 

Program B3: Cut Model for 10-City Problem (First_Cut Model)  



 

 

model: 

min=h0103+h0106+h0205+h0208+h0306+h0307+h0402+h0405+h0603+h0607+h060

9+h0802+h0809+h0906+h0908+h0504+h0701; 

 

x01+x02+x03+x04+x06+x08+x09+x07+x05>=1; 

x01+x02+x03+x04+x06+x08+x09+x07+x05<=8; 

 

!Costraints of non-integer arcs; 

h0103-.89*x01+.89*x03>=0; 

h0106-.11*x01+.11*06>=0; 

h0205-.50*x02+.50*x05>=0; 

h0208-.50*x02+.50*x08>=0; 

h0306-.39*x03+.39*x06>=0; 

h0307-.61*x03+.61*x07>=0; 

h0402-.50*x04+.50*x02>=0; 

h0405-.50*x04+.50*x05>=0; 

h0603-.110*x06+.110*x03>=0; 

h0607-.39*x06+.39*x07>=0; 

h0609-.5*x06+.5*x09>=0; 

h0802-.5*x08+.5*x02>=0; 

h0809-.5*x08+.5*x09>=0; 

h0908-.5*x09+.5*x08>=0; 

h0906-.5*x09+.5*x06>=0; 

 

!Costraints for paths; 

h0504-x05+x04>=0; 

h0701-x07+x01>=0; 

 

@gin(x01); 

@gin(x02); 

@gin(x03); 

@gin(x04); 

@gin(x05); 

@gin(x06); 

@gin(x07); 

@gin(x08); 

@gin(x09); 

 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Program B4: The MTZ Model and Added Cuts  

MODEL: 

! Traveling Salesman Problem with MTZ model and cuts; 

SETS: 

point / 1..10/: U, cutvalue; ! U( I) = sequence no. of point; 

LINK( point, point): 

DIST, ! The distance matrix; 

X; ! X( I, J) = 1 if we use link I, J; 

 

ENDSETS 

DATA: !Distance matrix, it is symmetric; 

DIST=@ole(fileaddress, range name); 

cutvalue=@ole(fileaddress, rangename); 
ENDDATA 

N = @SIZE( point); 

MIN = @SUM( LINK: DIST * X); 

@FOR( point( K): 

! It must be entered; 

@SUM( point( I)| I #NE# K: X( I, K)) = 1; 

! It must be departed; 

@SUM( point( J)| J #NE# K: X( K, J)) = 1; 

! Weak form of the subtour breaking constraints; 

@FOR( point( J)| J #GT# 1 #AND# J #NE# K: 

                 U( J) >= U( K) + (N-1)*X ( K, J) +(2-N))); 

@FOR( LINK: @BND( 0, X, 1)); 

For the first and last stop we know  

FOR( point( K)| K #GT# 1  

           U( K) <= N - 1 - ( N - 1) * X( 1, K); 

           U( K) >= 1 + ( N - 2) * X( K, 1 ); 

!added cuts; 

SUM 

   ( LINK(I,J)|cutvalue(I) #NE#0 #AND# cutvalue(J) #EQ#0:    

X(I,J))>=1  
END 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Appendix C: MATLAB Programs 

 

 

 

 

 

 

 

 

 



 

 

 

Program C1: Program of Calculating Distance Matrix 

clear all;  
clc;  
NP=Number of cell points; 
x=[]; 
y=[]; 
z=[]; 

 
for i=1:NP 
        for j=1:NP 
            D(i,j)=((X(i)-X(j+NP))^2+(Y(i)-Y(j+NP))^2+(Z(i)-

Z(j+NP))^2)^.5; 
        end 
    end 
    D2=D; 
%D 
xlswrite('xls file address', D); 

 

Program C2: Program of Plotting the TSP Solution 

clear all 

clc 

V=xlsread('pointfile address'); 

M=xlsread('mtxfile address'); 

  

% It drawes a figure from the TSP solution 

 [n,m]=size(M); 

clf reset; 

hold on; 

grid on 

for i=1:n 

    plot(V(i,1),V(i,2),'b.')   

for j=1:m 

          if (M(i,j)+M(j,i)>1) 

              

line([V(i,1);V(j,1)],[V(i,2);V(j,2)],'Color','k') 

             

          end 

          if ( M(i,j)+M(j,i)> 0.67 && M(i,j)+M(j,i)<=1)   

              

line([V(i,1);V(j,1)],[V(i,2);V(j,2)],'Color','r') 

             

          end 

          if ( M(i,j)+M(j,i)> 0 && M(i,j)+M(j,i)<=0.67 ) 

             line([V(i,1);V(j,1)],[V(i,2);V(j,2)],'Color','g') 

             [V(i,1);V(j,1)],[V(i,2);V(j,2)] 

          end 

      end 



 

 end 

 

 

Program C3: Program of Labeling Technique  

clear all 
A= xlsread('LINGO output address'); 
[n,n] = size(A); 
%A IS THE OUTPUT MATRIx OF LINGO (COSTOMIZED); 
%B IS SYMMETRIC MATRIX OF A; 
for i=1:n 
    for j=1:n 
        w=A(i,j); 
        if A(j,i)>w 
            w=A(j,i); 
        end 
        B(i,j)=w; 
        B(j,i)=w; 
    end 
end 
%GETTING THE LABELS; 
for i=2:n 
    Label(i)=0; 
end 
Label(1)=1; 
L=1; 
p=1; 
pointer = 1; 
counter=1; 
while counter<=n && pointer<2*n-1 
    for i=1:n 
        if  B(p,i)>0 && Label(i)==0 
            Label(i)=L; 
            counter = counter+1; 
        end 
    end 
    Label(p)=(-1)*(Label(p)); 
    p=0; 
    pointer = pointer +1; 
        for i=1:n 
            if Label(i)>0 
               pointer = pointer +1; 
               break 
            end 
        end 
        if p==0 
           for i=1:n 
               if Label(i)==0 
                  p=i; 
                  pointer = pointer +1; 
                  L=L+1; 
                  Label(p)=L; 
                  counter = counter+1; 
                  break 
               end 
           end 
        end 
end 



 

for i=1:n    
    Label(i)=abs(Label(i)); 
end 
Label 

 

Program C4: Program of Proposed Heuristic _ Case (1) 
 

clear all; 
%clc; 
NP=80;%number of the CP/AP points 
for pp=1:80 
D2=D; 
CP(1)=pp; 
[minv,idx]=min(D(CP(1),:)); 
AP(1)=idx; 
SD=minv;%SD indicates the shortest path that has been inserted so 

far; 
T=SD;%the initial value of the Threshold; 
D2(CP(1),:)=20000*ones(1,NP); 
[minv,idx]=min(D2(:,AP(1))); 
D2(:,AP(1))=20000*ones(NP,1); 
if minv<T 
    CP(2)=idx; 
    cnt=3;%number of the nodes that have been inserted so far; 
    SD=minv;  
else 
    cp=idx; 
    [minv,idx]=min(D2(cp,:)); 
    ap=idx; 
    if D(CP(1),ap)+D(cp,AP(1))<D(CP(1),ap)+D(cp,AP(1); 
        AP(2)=AP(1); 
        AP(1)=ap; 
        CP(2)=cp; 
    else 
    D2(CP(2),:)=20000*ones(1,NP); 
    d=[SD,D(CP(2),AP(1)),D(CP(2),AP(2))]; 
    SD=min(d); 
    cnt=4; 
    D2(:,AP(1))=D2(:,AP(2)); 
    D2(:,AP(2))=D(:,AP(2)); 
    D2(CP(1),AP(2))=20000; 
    D2(CP(2),AP(2))=20000; 
end 
B=0; 
while B==0 
    if mod(cnt,2)==0 
        api=cnt/2; 
        [minv,idx]=min(D2(:,AP(api))); 
        D2(:,AP(api))=20000*ones(NP,1); 
        if minv<T 
            CP(api+1)=idx; 
            cnt=cnt+1; 
            SD=minv; 
        else 
            cp=idx; 
            [minv,idx]=min(D2(cp,:)); 
            ap=idx; 
            for i=1:api-1 
                td(i)=-D(CP(i+1),AP(i))+D(cp,AP(i))+D(CP(i+1),ap); 
            end 
            [mint,li]=min(td); 



 

            CP(li+2:api+1)=CP(li+1:api); 

            CP(li+1)=cp; 
            AP(li+2:api+1)=AP(li+1:api); 
            AP(li+1)=ap; 
            cnt=cnt+2; 
            for j=1:NP 
                if j~=CP 
                    D2(j,AP(api+1))=D(j,AP(api+1)); 
                end 
            end 
            D2(:,AP(li+1))=20000*ones(NP,1); 
            D2(CP(li+1),:)=20000*ones(1,NP); 
            

d=[SD,D(CP(li+1),AP(li)),D(CP(li+1),AP(li+1)),D(CP(li+1),AP(li+1))]; 
            SD=min(d); 
            clear td; 
        end 
    else  
        cpi=ceil(cnt/2); 
        [minv,idx]=min(D2(CP(cpi),:)); 
        D2(CP(cpi),:)=20000*ones(1,NP); 
        if minv<T 
            AP(cpi)=idx; 
            cnt=cnt+1; 
            SD=minv; 
        else 
            ap=idx; 
            [minv,idx]=min(D2(:,ap)); 
            cp=idx; 
            for i=1:cpi-1 
                td(i)=-D(CP(i),AP(i))+D(cp,AP(i))+D(CP(i),ap); 
            end 
            [mint,li]=min(td); 
            CP(li+2:cpi+1)=CP(li+1:cpi); 
            CP(li+1)=cp; 
            AP(li+1:cpi)=AP(li:cpi-1); 
            AP(li)=ap; 
            cnt=cnt+2; 
            for j=1:NP 
                if j~=AP 
                    D2(CP(cpi+1),j)=D(CP(cpi+1),j); 
                end 
            end 
            D2(CP(li+1),:)=20000*ones(1,NP); 
            D2(:,AP(li))=20000*ones(NP,1); 
            

d=[SD,D(CP(li),AP(li)),D(CP(li+1),AP(li+1)),D(CP(li+1),AP(li))]; 
            SD=min(d); 
            clear td; 
        end 
    end 
    if cnt>=2*NP-1 
        B=1; 
    end 
end 
if cnt==2*NP-1 
    AP(NP)=1; 
end 
ST=0; 
for i=1:NP-1 
    ST=ST+D(CP(i),AP(i))+D(CP(i+1),AP(i)); 



 

end 
CP(1); 
APP(pp)= CP(1); 

  
    ST=ST+D(CP(NP),AP(NP))+D(CP(1),AP(NP)); 

  
    AST(pp) = ST; 

  
end 
for pp =1 :80 
    RUN = pp 
    APP(pp) 
    AST(pp) 
end 
 

%PLOTTING THE GRAPH 

for j=1:NP 
    STR(2*j-1)=CP(j); 
    SX(2*j-1)=X(STR(2*j-1)); 
    SY(2*j-1)=Y(STR(2*j-1)); 
    STR(2*j)=AP(j)+NP; 
    SX(2*j)=X(STR(2*j)); 
    SY(2*j)=Y(STR(2*j));  
end 
plot(SX,SY) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Program C5: Program of Proposed Heuristic _ Case(2) 

clear all; 
%clc; 
NP=80;%number of the CP/AP points 
for ml=1:NP 
    D2=D; 
    CP(1)=ml; 
    [minv,idx]=min(D(CP(1),:)); 
    AP(1)=idx; 
    SD=minv;%SD indicates the shortest path that has been inserted 

so far 
    T=SD 

    D2(CP(1),:)=20000*ones(1,NP); 
    [minv,idx]=min(D2(:,AP(1))); 
    D2(:,AP(1))=20000*ones(NP,1); 
    if minv<T 
        CP(2)=idx; 
        cnt=3;%number of the nodes that have been inserted so far 
        SD=minv;  
    else 
        cp=idx; 
        [minv,idx]=min(D2(cp,:)); 
        ap=idx; 
        if D(cp,AP(1))<D(CP(1),ap) 
            li=1; 
            AP(2)=ap; 
            CP(2)=cp; 
        else 
            li=0; 
            AP(2)=AP(1); 
            CP(2)=CP(1); 
            AP(1)=ap; 
            CP(1)=cp; 
        end 
        if li==0 
            for j=1:NP 
                if j~=CP 
                    D2(j,AP(1+1))=D(j,AP(1+1)); 
                end 
            end 
            D2(:,ap)=20000*ones(NP,1); 
            D2(cp,:)=20000*ones(1,NP); 
        else 
            D2(cp,:)=20000*ones(1,NP); 
        end 
        cnt=4; 
         D2(CP(2),:)=20000*ones(1,NP); 
         D2(:,AP(1))=D2(:,AP(2)); 
         D2(:,AP(2))=D(:,AP(2)); 
         D2(CP(1),AP(2))=20000; 
         D2(CP(2),AP(2))=20000; 
    end 
    B=0; 



 

    while B==0 
        if mod(cnt,2)==0%a CP must be added 
            api=cnt/2;%index of the last AP/CP 
            [minv,idx]=min(D2(:,AP(api))); 
            D2(:,AP(api))=20000*ones(NP,1); 
            if minv<T 
                CP(api+1)=idx; 
                cnt=cnt+1; 
                 else 
                cp=idx; 
                [minv,idx]=min(D2(cp,:)); 
                ap=idx; 
                for i=1:api-1 
                    td(i)=-

D(CP(i+1),AP(i))+D(cp,AP(i))+D(CP(i+1),ap); 
                end 
                td(api)=D(cp,AP(api)); 
                td(api+1)=D(CP(1),ap); 
                [mint,li]=min(td); 
                if li==api 
                    CP(api+1)=cp; 
                    AP(api+1)=ap; 
                elseif li==api+1 
                    CP(2:api+1)=CP(1:api); 

                    CP(1)=cp; 
                    AP(2:api+1)=AP(1:api); 
                    AP(1)=ap; 
                    d=[SD,D(CP(1),AP(1)),D(CP(2),AP(1))]; 
                else 
                    CP(li+2:api+1)=CP(li+1:api); 
                    CP(li+1)=cp; 
                    AP(li+2:api+1)=AP(li+1:api); 
                    AP(li+1)=ap; 
                 end 
                if li~=api 
                    for j=1:NP 
                        if j~=CP 
                            D2(j,AP(api+1))=D(j,AP(api+1)); 
                        end 
                    end 
                    D2(:,ap)=20000*ones(NP,1); 
                    D2(cp,:)=20000*ones(1,NP); 
                else 
                    D2(cp,:)=20000*ones(1,NP); 
                end 

 
                cnt=cnt+2; 
                clear td; 
            end 
        else%an AP must be added 
            cpi=ceil(cnt/2);%index of the last CP 
            [minv,idx]=min(D2(CP(cpi),:)); 
            D2(CP(cpi),:)=20000*ones(1,NP); 
            if minv<T 
                AP(cpi)=idx; 
                cnt=cnt+1; 
            else 
                ap=idx; 
                [minv,idx]=min(D2(:,ap)); 
                cp=idx; 
                for i=1:cpi-1 



 

                    td(i)=-D(CP(i),AP(i))+D(cp,AP(i))+D(CP(i),ap); 
                end 
                td(cpi)=D(CP(cpi),ap); 
                td(cpi+1)=D(CP(1),ap); 
                [mint,li]=min(td); 
                if li==cpi 
                    CP(cpi+1)=cp; 
                    AP(cpi)=ap; 
                elseif li==cpi+1 
                    CP(2:cpi+1)=CP(1:cpi); 
                    CP(1)=cp; 
                    AP(2:cpi)=AP(1:cpi-1); 
                    AP(1)=ap; 
                else 
                    CP(li+2:cpi+1)=CP(li+1:cpi); 
                    CP(li+1)=cp; 
                    AP(li+1:cpi)=AP(li:cpi-1); 
                    AP(li)=ap; 
                end 
                if li~=cpi 
                    for j=1:NP 
                        if j~=AP 
                            D2(CP(cpi+1),j)=D(CP(cpi+1),j); 
                        end 
                    end 
                    D2(cp,:)=20000*ones(1,NP); 
                    D2(:,ap)=20000*ones(NP,1); 
                else 
                    D2(:,ap)=20000*ones(NP,1); 
                end 
                clear td; 
            end 
        end 
        if cnt>=2*NP-1 
            B=1; 
        end 
    end 
    if cnt==2*NP-1 
        AP(NP)=1; 
    end 
    ST=0; 
    for i=1:NP-1 
        ST=ST+D(CP(i),AP(i))+D(CP(i+1),AP(i)); 
    end 
    TL(ml)=ST+D(CP(NP),AP(NP))+D(CP(1),AP(NP)); 
    for j=1:NP 
        STR(ml,2*j-1)=CP(j); 
        STR(ml,2*j)=AP(j)+NP; 
    end 
    clear AP; 
    clear CP; 

      
end 
[mnv,mn]=min(TL); 
 mnv 

 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

Appendix D: Some Output Plots 



 

               Figure E1: Plot of Initial MTZ Output for Problem 25-15-1 

                     Figure E2: Plot of Initial MTZ Output for Problem 25-15-2 
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                       Figure E3: Plot of Initial MTZ Output for Problem 240-1 

 

 

 

 

 

 

 

 

       

 

 

                       Figure E4: Plot of Initial MTZ Output for Problem 240-2 
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                     Figure E5: Plot of the Best Heuristic Output for Problem 25-15-1 

 

 

 

 

 

 

 

 

 

 

 

 

                       Figure E6: Plot of the Best Heuristic Output for Problem 25-15-2 

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000



 

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

 

         Figure E7: Plot of the Best Heuristic Output for Problem 25-15-3 



 

                       Figure E8: Plot of the Best Heuristic Output for Problem 240-1 

                            Figure E9: Plot of the Best Heuristic Output for Problem 240-2 

 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25



 

 

Chapter 1  

INTRODUCTION 

1. 1 Industrial Robots 

According to the robotics research group of Robot Institute of America, “a robot is a 

reprogrammable, multifunctional manipulator designed to move materials, parts, 

tools or specialized devices through variable programmed motions for the 

performance of a variety of tasks.”   

Robots can be found in different fields of applications. These various applications 

consist of manufacturing industry, military, space exploration, transportation, 

research area, and medical applications. Typical industrial robots do some kind of 

jobs that are difficult, dangerous or dull. They can do the same task hour after hour 

and day after day not only without getting tired or making errors but also with 

precision. Therefore robots are ideally suited to perform repetitive tasks. Industrial 

robots are used in most industries such as automobile and manufacturing industries 

for loading bricks, dying cast, drilling, fastening, forging, making glass, grinding, 

heating treat, loading/unloading machines, handling parts, measuring, monitoring, 

running nuts, sorting parts, cleaning, sand blasting, changing tools and welding. The 

advantages of robots have become more apparent as robotic technology has grown 

and developed in the last 60 years when the first industrial robot with the name of 



 

Unimate was put into use in the 1950s. Today, almost 90% of the robots in use today 

are in the industrial robotic sector in the factories. Robotics Industry Association 

(RIA) estimates that “some 196,000 robots are now at work in U.S. factories, 

placing the United States second to Japan in overall robot use. More than one 

million robots are now being used worldwide. RIA currently represents some 235 

robotics manufacturers, system integrators, component suppliers, end users, 

consulting groups, and research organizations. A total of 9,628 robots valued at 

$618.4 million were ordered through September by North American manufacturing 

companies. This represents a gain of 34% in units and 45% in dollars over the same 

period in 2009.  Companies outside of North America ordered another 1,778 robots 

valued at $102.6 million from North American based robotics companies during the 

period, a gain of 143% in units and 168% in dollars over the first nine months of 

2009.” 

1.1.1 Robot Structure  

The structure of a robot is directly related to its design purpose. Industrial robots 

usually take the shape of an arm because many tasks require the flexibility of human 

hands. Looking back at the history of robot development, a human-size industrial 

robotic arm called Programmable Universal Machine for Assembly (PUMA) came 

into existence. Because of the similarities between PUMA’s structure and the human 

arm, it is often termed anthropomorphic.  

Robotic arms re generally too rigid devices. They perform repetitive tasks under 

programmed control in the controlled environments.  

1.1.1.1 Body of  the Robotic Arm 

Most of the robotic arms use the following five joint types. 



 

(i.) Prismatic joints: create a linear movement. 

(ii.) Rotary joints: drive by electric motors. 

(iii.) Spherical joints: needed for a revolving movement. 

(iv.) Screw joints: follow the thread of the axis in spiral in order to move along the 

axis. 

(v.) Cylindrical joints: are used in some equipment like parallel robots. 

Different robotic arms configurations are formed by combination of the above joints. 

The motion of the arm is up and down, generally. The robot can perform this motion 

by extending a cylinder. Cylinder is built into the arm. A robot is stopped when it 

hits a stop. The cylinders are moved using air pressure that is controlled by solenoid 

values. Additional movement can be done by attaching a wrist to the end of this arm 

cylinder. The wirst will be complex enough to provide some additional degrees of 

freedom.  

1.1.1.2 Robot Head(s)  

Every arm is equipped with one or more heads. Head is responsible for picking and 

placing components. A head for an industrial robot consists of:  

(i.) A head body mounted on an end of an arm, 

(ii.) An internal motor for generating a rotational torque, 

(iii.) A nut member supported by head body, 

(iv.) A guide member rotatable supported by head body, 

(v.) A screw rod for passing through and threaded engaging with mentioned nut 

member, 

(vi.) A shaft having a non-circular shape, 

And some devices needed to support above components. 

1.1.2 Robot specifications  



 

(i.) Accuracy: when robot’s program calls the robot to move to a considered 

point, it does not actually perform as specified. The accuracy measures such a 

gap. In other words, the distance between the considered position and the 

actual achieved position is defined as the accuracy of the robot.  

(ii.) Repeatability: the ability of a robotic mechanism to repeat the same motion is 

called repeatability. In fact, repeatability measures the variability of 

repeatedly reaching for a single position.  

(iii.) Degree of freedom: every axis on the robot defines a degree of freedom. Each 

degree of freedom can be n the slider, rotary or other types of actuator. The 

number of degrees of freedom introduces the number of independent ways in 

which a robot arm can move.  

(iv.) Resolution: the smallest increment of motion that can be controlled by the 

robotic control system is called resolution. Resolution is dependent on the 

distance between the tool center point and the joint axis. 

(v.) Envelope: a three-dimensional shape that introduces the boundaries that the 

robot can reach is called envelope. 

(vi.) Reach: the maximum horizontal distance from the center of the robot is called 

reach. 

(vii.) Maximum Speed: the theoretical full speed which does not consider under 

loading condition defines the maximum speed of the robot.    

(viii.) Payload: the amount of weight carried by the robot manipulator at reduced 

speed without loosing the rated precision is known as payload.  

1.1.3 Robot Classifications  

Industrial robots have already been classified by mechanical structure as follows: 



 

(i.) Cartesian/Gantry Robots: a Cartesian coordinate robot has three directions of 

movement in such a way that three prismatic axes (X, Y, and Z) are at right 

angles to each other. Gantry robots are such Cartesian robots with the 

horizontal member supported at both ends. Both of them, Cartesian and 

gantry robots, have a rectangular work envelope. These types of robots are 

highly rigid but they are very accurate and repeatable but lack of flexibility is 

seen in reaching around objects. These robots are very easy to perform and 

visualize. Cartesian robots are suited for pick and place applications. Gantry 

robots also have a wide range of applications in material handling such as 

pick and place, machine loading and unloading, stacking and palletizing. A 

sample Cartesian robot is shown in Figure 1.1. 

 

 

 

 

Figure 1.1: Cartesian Robot 

(ii.) SCARA Robots: Selective Compliant Assembly Robot Arm (SCARA) robots 

can move to any direction of X, Y, and Z axes within their work envelope. 

Since the controlling software of SCARA robot requires inverse kinematics 

for linear interpolated moves, these robots are so expensive. Because of the 

rigidity in the vertical direction and flexibility in the horizontal plane, 

SCARA robots are suited for assembly operations such as inserting a round 

pin in a round hole without binding. They are also used for pick and place 

works and handling machine tools. A sample SCARA robot is shown in 

Figure 1.2.   



 

     

 

Figure 1.2: SCARA Robot 

(iii.) Articulated Robots: the mechanical structure of articulated robots has at least 

three rotary joints which form a polar system. This structure is very flexible 

and can achieve any position and orientation within the working envelope. 

Articulated robots are used for paint spraying, spot welding, machine tending, 

die-casting, packing, gluing, etc. A sample articulated robot is shown in 

Figure 1.3. 

 

 

 

Figure 1.3: Articulated Robot 

(iv.) Parallel Robots: these robots have arms that each one has three concurrent 

prismatic joints. Parallel robots are able to manipulate large loads. They are 

used in a large number of applications ranging from astronomy to flight 

simulators. Less flexibility of parallel robots results in high repeatability. A 

sample parallel robot is shown in Figure 1.4.  

 

 

 

Figure 1.4: Parallel Robot 



 

(v.) Cylindrical Robots: the body structure of cylindrical robots is such that the 

robotic arm can move up and down along a vertical member. In the other 

words, these robots have at least one rotary joint and at least one prismatic 

joint. This construction makes the robot able to work in a cylindrical shape. 

Cylindrical robots are used for assembly operations, spot welding, die-casting 

and handling machine tools. A sample cylindrical robot is shown in Figure 

1.5.  

 

 

   

 

Figure 1.5: Cylindrical Robot 

(vi.) Polar Robots: the other name of polar robots is spherical. These types of 

robots have an arm with two rotary joints and one prismatic joint. Polar 

coordinate system results short vertical reach. Because of long horizontal 

achievement, polar robot is useful for spot welding, felting machines, arc 

welding and gas welding. A sample polar robot is shown in Figure 1.6.   

                                                                                                          

 

 

 

 

 

Figure 1.6: Polar Robot 



 

1.2 Pick and Place Robots  

Our focus in this thesis is on Pick and Place machine for placement of electronic 

components on Printed Circuit Board (PCB). A PCB is a board on which several 

resistors, transistors and diodes are mounted. For the manufacturing of PCB, the 

components are stored in one or more feeders from which a computer-controlled pick 

and place machine transfers them to a location on the PCB where they are to be 

fixed.  Placement machines are also called "chip shooters". In the aspect of Surface 

Mount Technology (SMT), there are many types of placement machines available, 

such as sequential pick and place, concurrent pick and place, rotary disk turret, etc. 

Since different types of SMT placement machines have different characteristics and 

restrictions, the PCB production scheduling process is highly influenced by the type 

of placement machine being used. Most of the placement machines used in PCB 

assembly industry are Cartesian robots.     

In general, each placement machine has a PCB table, feeder carrier, head, nozzle, 

and a tool magazine. Each of the feeder carrier, PCB table and head can be either 

fixed or moveable depending on the specification of the placement machine. Usually 

several tape reels or vibratory ski slope feeders or both of them construct a common 

feeder carrier. Positioning of the feeder reels or vibratory ski slope feeders is done 

according to the arrangement given by feeder setup. The role of the nozzle is 

grasping the component from the feeder and then mounting it on the PCB. Picking 

and placing the components is the responsibility of the placement arm that is 

equipped with head(s). Every placement machine may have more than one head and 

every head of the placement machine may have more than one nozzle. Placement 

machines have various types of heads such as rotating turret head, positioning arm 



 

head, etc. The PCB table is needed to position printed circuit boards during 

placement operation. Different sizes of nozzles are required for different sizes of 

surface mount devices to pick and place them. A tool magazine is required to provide 

the exact size of nozzles. A sample pick and place machine is shown in Figure 1.7.  

 

 

 

 

 

Figure 1.7: Pick and Place Machine 

In fact, pick and place machine is the heart of SMT. A pick and place machine picks 

electronic components and places them onto the PCB. Some of them are capable of 

placing many different components used in electronics, while others are limited to a 

few component types. In our concentrated cases, pick and place machine can pick 

only one component at a time, which should be fixed first before the machine can 

handle another component. Vacuum pick up tools are used in pick and place 

machines in order to hold the components. Vision-assisted alignment is also used in 

few others of such machines. Some of the famous pick and place robots in addition 

of the manufacturer and the important specifications of them have been collected in 

Table A1.  

1.3 Traveling Salesman Problem (TSP) 

When hundreds of electronic components of different shapes and sizes have to be 

placed at specific positions on a PCB, finding an optimal robot traveling path is so 



 

complex and time consuming. The problem to be solved here is finding a sequence in 

which the assembly points are to be assembled in order to minimize the total 

assembly time and increasing the productivity. The problem of determining the 

optimum sequence of points can be considered as an extension to TSP.  

One of the most intensive studied problems in computational mathematics is the 

traveling salesman problem, the task of finding the shortest tour through a given list 

of cities and their pairwise distances that visits each city exactly once. It is a well-

known NP-Complete combinatorial optimization problem. TSP has received much 

attention from mathematicians and computer scientists, especially since it is so easy 

to describe but is very difficult to solve optimally. The importance of the traveling 

salesman problem starts not only from a need of salesman wishing to minimize 

traveled distance, but comes from a wealth of other applications, many of which 

seem completely unrelated to traveling routes. Many practical applications can be 

modeled as TSP or a variant of it.  

It is clear that theoretical and practical insight achieved in the study of TSP can often 

be useful in the solution of real-world problems. It is also valuable to mention that an 

important driving force in the development of the computational complexity theory 

was research on TSP in the beginning of the 1970s.  

In the last three decades an improved progress has been made with respect to solving 

traveling salesman problems to optimality which is the main goal of every 

researcher. The number of cities in practical applications ranges from some small 

number up to even millions that is far beyond the capabilities of any exact algorithm 

available today. Due to this manifold area of applications of TSP, there should be 



 

abroad collection of algorithms to treat with the various instances of TSP. Landmarks 

in the search for optimal solutions have been shown in Table 1.1. The time has been 

needed to solve the last mentioned instances in Table 1.1 is more than several years 

using the big processors. It should be considered how is easy or difficult to solve a 

problem depends on many factors. The mathematical properties of the distance 

matrix are important, i.e. whether or not the triangle inequality and symmetry are 

satisfied. The structure of the positions of the cities is also very important, i.e. 

problems arising from chip design are much easier than the problems containing real 

cities. In spite of these achievements, the traveling salesman problem is still far from 

being solved. Many aspects of the traveling salesman problem still require to be 

considered and the questions are still left to be answered.  

             Table 1.1: Milestones in the Solution of TSP Instances 

Year  Research Team Size of instance Name  

1954 Dantzig, Fulkerson and Johnson  49 cities dantzig42 

1971 Held and Karp 64 cities 64 points 

1975 Camerini, Fratta and Maffioli 67 cities 67 points 

1977 Grotschel  120 cities  gr120 

1980 Crowder and Padberg 318 cities  lin318 

1987 Padberg and Rinaldi 532 cities  att532 

1987 Grotschel and Holland 666 cities  gr666 

1987 Padberg and Rinaldi 2,392 cities  pr2392 

1994 Applegate, Bixby, Chvatal and Cook 7,397 cities  pla7397 

1998 Applegate, Bixby, Chvatal and Cook 13,509 cities  usa13509 

2001 Applegate, Bixby, Chvatal and Cook 15,112 cities  d15112 

2004 Applegate, Bixby, Chvatal, Cook and Helgaun 24,978 cities  sw24978 

2006 Applegate, Bixby, Chvatal and Cook 85,900 cities  pla85900 

1.4 Outline of the Thesis  

As it is mentioned at the outset the primary goal of this work is to find an acceptable 

technique to solve medium-size arm assembly problems. Continuing some of the 

discussions began in this chapter, we also cover a brief history of traveling salesman 



 

problem, exact and heuristic algorithms were proposed to solve various types of TSP 

and explaining the proposed technique for solving medium-size bipartite TSPs.   

In chapter 2 we begin with the origin of the TSP, and follow with the existing 

methods for solving traveling salesman problems with the discussion about the 

history of the algorithms. In chapter 3 we will have a brief survey of exact and 

heuristic algorithms in detail and will give the relation between discussed contents 

and proposed technique. The proposed method to optimize the production time (or 

cost) caused by the distance that the robotic arm has to travel in the printed circuit 

board assembly problem is presented in chapter 4. Results of computational tests are 

given in chapter 5. Finally, in conclusion we discuss some of the research objectives 

and achievements. Required coding programs and computational documents will be 

given in the appendices.   

Chapter 2 

Literature Review 

2.1 Traveling Salesman Problem Origin 

The origin of the name TSP is a bit of mystery. There is not any authorittative 

documentation pointing out the creator of the traveling salesman name for this 

problem, and there is not good guesses as to when it first came into use. The 

numerous salesmen on the road were interested in the subject of the planning of 

economical routs according to customer area of them. A most important reference in 



 

this context is the German Handbook Der Handlungsreisende in 1832[4]. This 

handbook first brought to the attention of the traveling salesman problem research 

community by Heiner Muller-Merbach[4]. The mentioned book was not alone in 

considering planned tours. In the late 1800s, Spears and Friedman described how a 

salesman used guidebooks to map out routs through their regions. One of such 

guidebooks is L.P.Brockett's commercial traveler's guide book [4]. In the 1920’s, 

Karl Menger (the mathematician and economist) publicized it in Vienna [4]. In the 

1930’s, traveling salesman problem reappeared in the mathematical circles of 

Princeton. It was studied by statisticians (Mahalanobis (1940) and Jessen(1942)) [4] 

in connection with an agricultural application. Then Merrill Flood, who was a 

mathematician, popularized it at the RAND Corporation in the 1940’s [4]. At last, 

the TSP became as the prototype of a hard problem in combinatorial optimization.  

Over the years wealth of algorithmic creativity has been applied to TSP, and 

excellent surveys of TSP algorithms can be found in many articles. We hope to 

provide a useful review of widely known algorithms, divided into two main classes: 

exact algorithms, and heuristic algorithms which the heuristics can be divided into 

three types of algorithms.  

2.1.1 Exact Algorithms  

These algorithms are guaranteed to find the optimal solution in a bounded number of 

iterations. Linear programming is very useful tool in this way. An important feature 

of linear formulations is that even very large s can be solved efficiently with a variety 

of new and old solution methods. The most important of these solution techniques is 

simplex method which was proposed by George Dantzig in 1947.  The simplex 

method was also vital in the context of TSP. Many of the state of the art LP solvers 

which are available today use simplex method.  



 

In 1954 when George Dantzig, Ray Fulkerson, and Selmer Johnson published a 

description of a method for solving the TSP, a breakthrough came in solving this 

problem. They illustrated the power of this method by solving an  with 49 cities that 

was an impressive size at that time. This of the TSP was included of the 48 states of 

the U.S.A in that time and Washington D.C.; such that the costs of travel between 

different cities were defined as pairwise distances of cities taking from an atlas. 

Rather than solving this 49-city problem, Dantzig, Fulkerson, Johnson firstly solved 

the 42-city problem obtained by removing 7 states. Since the shortest route between 

Washington D.C. and Boston passes through the seven removed cities, also in the 

optimal tour of the 42-city problem had an edge of passing through the mentioned 

two cities; the solution of the 42-city problem yielded a solution of the 49-city 

problem. Using the simplex method and following the studies of Robinson (1949) 

and Kuhn (1955) they attacked the salesman with linear programming as follows. 

Each TSP with n cities can be specified as a vector whose components specify the 

traveled costs and each tour through the n cities can be represented as its incidence 

vector in order to minimize the total costs of the tour. Thus the first exact 

mathematical model of TSP was developed by Dantzig, Fulkerson and Johnson. The 

main disadvantage of their method was having exponentially constraints. An 

alternate linear formulation that reduced the number of constraints at the expense of 

additional real variables was developed by Miller, Tucker, and Zemlin (1960). It was 

originally proposed for a vehicle routing problem where the number of vertices of 

each route is limited.    

In 1962, Held and Karp solved a problem with 48 cities using dynamic 

programming. Because of many computation steps and large storage locations, 



 

dynamic programming was not so practical. Consequently, practical application of 

dynamic programming in the context of TSP is restricted to tours with few cities. In 

the 1960’s, Little et al. proposed an algorithm for TSP in such a way that branch and 

bound term coined in conjunction with their algorithm. The branch and bound 

method can handle large case problems but the disadvantage is unpredictable 

computing time and it increases rapidly when the size of the problem increases.  

Also, other integer and mixed integer formulations have been proposed based on DFJ 

formulation in the next years. For an extensive list of such formulations the paper of 

Langevin et al. (1990) can be addressed. One of the well known variant formulations 

of DFJ belongs to Padberg and Sung (1991). They solved some large problems in 

such a way that DFJ linear relaxation is properly contained in their linear relaxation. 

These efforts yielded to find an exact solution for 15,112 German cities in 2001 

using cutting plane method proposed by Dantzig et al. (1954). It is interesting to 

know the computations were performed on a network of 110 processors and its 

computation time was equivalent to 22.6 years on a single 500 MHz Alpha 

processor. In April 2004, the instance of 24,978 cities in Sweden was solved but for 

solving this problem with a large number of processors was spent more than 10 

years. Applegate et al. (2006) solved the biggest size instance of TSP library that is 

called pla85,900. Solving this problem was run on sun Microsystems with 250 

processors and the total CPU time was 568.9 hours. In Figure 2.1 progress in TSP 

with the log scale 

has been shown 

[44]. 
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Figure 2.1: Progress in TSP, Log Scale 

2.1.2 Heuristic Algorithms  

Despite of exact algorithms, heuristic algorithms obtain good solutions but do not 

guarantee that optimal solutions will be found. Heuristics are usually very simple and 

have short running times. Some of the heuristic algorithms provide solutions such 

that in average differ only by a few percent from the optimal solution. Therefore, 

when running time is limited and a small deviation from optimum is acceptable, it 

may be appropriate to use a heuristic algorithm. TSP heuristic algorithms can be 

roughly partitioned into the following four classes: constructive algorithms, iterative 

improvement algorithms, composite algorithms, and randomized improvement 

algorithms. All classes and their performances in computational experiments will be 

discussed below. 

2.1.2.1 Constructive Algorithms  

Constructive algorithms determine a tour according to some construction rule, but do 

not try to improve upon this tour. In other words, a tour is successively built from 

scratch and stop, when one tour is produced. In most of constructive algorithms, the 

initial subtour is simply a randomly selected city. In addition to initial subtour 

construction, a distinction is made between deciding which city is chosen to be 

inserted into the current subtour and where the city is to be inserted. The choice of 

Year 



 

selection and insertion criteria in the selection and insertion steps of tour construction 

can be critical to the success of a heuristic algorithm.  

Many of the construction heuristics presented here are known and computational 

results for some s are available. These heuristics consist of so many algorithms such 

as: Nearest Neighbor Heuristics, Insertion Heuristics, Heuristics based on Spanning 

Trees, and Saving Heuristics. Golden and Stewart (1985), Arthur and Frendeway 

(1985), Johnson (1990), Bentley (1992) have proposed such heuristics and the results 

of computational efforts are available in lecture notes of Gerhard Reinelt in 1994. 

The simplest and most obvious construction algorithm is the Nearest Neighbor 

algorithm. Computational experiments in [14] indicate that in most real-world 

problem s of ATSP (Asymmetric TSP), nearest neighbor performs better than the 

other algorithms even greedy algorithm which is one of the most important 

construction heuristics. Although, the computational experiments in [15] displays 

that both of the nearest neighbor and greedy algorithms perform well on Euclidean s 

but are poor in other cases of general STSP (Symmetric TSP). It should be noted that 

tour construction heuristics are important in the context of this thesis not only for the 

perspectives they provide but also because they can be used to generate the initial 

tours needed by other heuristics that will be explained.    

2.1.2.2 Iterative Improvement Algorithms  

Improvement heuristics improve upon a tour by performing different exchanges until 

there is no feasible exchange that improves the current solution. Since the 

construction heuristics were only of moderate quality, the improvement heuristics 

were proposed. In general, iterative improvement algorithms are characterized by a 

certain type of basic move to change the current tour. These algorithms are faster 

than exact algorithms and often produce solutions close to the optimal solution. The 



 

mentioned algorithms are referred to as -Opt, where  is the number of edges 

exchanged at each step. Generally, the larger the value of , the more likely it is that 

the final solution is optimal. Unfortunately, the number of operations is needed to 

test all  exchanges increases exponentially as the number of cities increases; hence, 

the most common values of are 2 or 3.  

The most famous iterative improvement heuristics are as follows: Node and Edge 

Insertion, 2-Opt Exchange, 3-Opt heuristics and variants, and Lin-Keringhan type 

heuristics. Computational experiments in [36] shows that Lin-Keringhan heuristics 

obtain better solutions than the others. These results indicate that if one wants to get 

solutions at most 1-2% above the optimal solutions, he/she has to implement Lin-

Keringhan heuristics.  

Further improvement heuristics have been proposed. E.g., Gendreau, Hertz and 

Laporte (1992) and Glover (1992) [36] discussed additional types of exchange 

moves. Moreover, the effect of the choice of the starting tour on the final result of 

improvement has been considered in Perttunen (1991) [36].   

2.1.2.3 Composite Algorithms  

Composite algorithms combine the features of constructive and improvement 

algorithms to solve the problems. These heuristic algorithms start from a tour in a 

single attempt generally obtained by constructive algorithms, and then iteratively 

modify a given starting solution. The obtained solution is dependent on the initial 

starting point because the choice of the starting city affect on the final result. One of 

the earliest composite algorithms has been given by Lin in 1965. After Lin, Jacque, 

and Fayez (1995) [36] gave an extension of it for the symmetric generalized traveling 

salesman problem.  



 

2.1.2.4 Randomized Improvement Algorithms   

At least in principle, every TSP heuristic algorithm has the chance of obtaining 

optimal tour. However, it is really an impossible event. When an improvement 

method finds a locally optimal tour, it means that no further improving moves can be 

generated. The weaker the local moves that can be implemented, the larger is the 

difference between the length of the optimal tour and of the locally optimal tour 

found by the heuristic algorithm. A way to get better performance is to start 

improvement heuristics many times with different starting tours in order to increase 

the chance of finding better local optimum. Another possibility is to consider the 

current tour by some modification to restart heuristics.  

Randomized improvement heuristics try to use a symmetric rule to escape from local 

minimum. In the other words, these algorithms utilize local searching to find routes. 

Examples of this subsection are: Simulated Annealing, Genetic Algorithm, Tabu 

Search, and Neural Networks. Computational experiments of simulated annealing 

have been given by Kirkpatrick (1984), Cerny (1985), Van Laarhoven (1988), Aarts 

and Korst (1989), and Johnson (1990), and Johnson and McGeoch (1995) [36]. 

Application of genetic algorithm has been reported in Fruhwirth (1987), Muhlenbein 

, Gorges-Schleuter and Kramer (1988), and Ulder, Pesch, Vav Laarhoven, Bandelt 

and Aarts (1990) and Johnson and McGeoch (1995). Glover (1989) [36] gives a 

detailed introduction to tabu search methods. Knox and Glover (1989) [36], Malek, 

Guruswamy, Owens and Pandya (1989), and Malek, Heap, Kapur and Mourad 

(1989) [36] report good computational results for using tabu search. A detailed 

explanation of neural networks is found in the report of Henriques, Safayeni and 

Fuller in 1987. Fritzke and Wilke (1991) [36] give a further neural network 

algorithm for the TSP. A survey of different models can be found Potvin (1993) [36]. 



 

It can be shown that if running time be not a major concern, then randomized 

improvement heuristics can be successfully employed since they usually avoid bad 

local optima and have a chance to even obtain optimal solutions. .  

2.1.3 Polyhedral Approaches of TSP 

As stated before, combinatorial optimization problems such as TSP are usually 

relatively easy to formulate mathematically but most of them are computationally 

difficult due to the limitation that all or a subset of the variables have to take integral 

values. During the last three decades there has been a remarkable progress in 

techniques based on the polyhedral description of these problems so those techniques 

lead to a large increase in the size of the solved problems. The main idea behind 

polyhedral approaches is to derive a linear formulation of the set of solutions by 

defining some linear inequalities such that these inequalities must be included in the 

description of the convex hull of the integer feasible solutions. As we know, the 

convex hull for a set of points  in a real vector space  is the minimal 

convex set containing . The convex hull of the integers is the integer hull of set S is 

shown by   

Ideally everyone can then solve the combinatorial optimization problem as the linear 

programming problem. The computational hardness of traveling salesman problem 

has motivated researchers to develop formulations or algorithms that are expected to 

reduce the number of iterations in solving large s. Using the structure of the convex 

hull of the integer feasible solutions has been one of the most successful techniques 



 

so far. The first main work in this direction was done by Dantzig, Fulkerson and 

Johnson (1954). Their method in solving the 49 cities problem was based on the 

description of the convex hull of feasible solutions by linear inequalities and is called 

polyhedral combinatorics.   

When studying Dantzig, Fulkerson and Johnson, a question arises whether it is 

possible to develop a method for identifying the inequalities. The answer of the 

question was done by Gomory (1958), (1960), (1963) who invented a cutting plane 

algorithm for general integer linear programming. Chvatal (1973) proved inequalities 

that are needed for the description of convex hull of integer solutions can be obtained 

by taking linear combinations of original inequalities. Schrijver (1980) proved that 

the number of operations to the linear formulation containing the integer solutions to 

generate the convex hull of integer solutions is finite. The results of Gomory, 

Chvatal, and Schrijver were very important in the sense of the theory of 

combinatorial optimization but they did not provide tools for solving real-life s 

within reasonable time. Scientists therefore began to search for inequalities included 

inequalities that are necessary in the description of the convex hull of feasible 

solutions and then identified the separation algorithms to find the violated 

inequalities. There are families of valid inequalities and the corresponding separation 

algorithms for TSP. The first class of these inequalities is called subtour elimination 

constraints which were developed by Dantzig, Fulkerson and Johnson. Comb 

inequalities are such valid inequalities were introduced by Chvatal (1975). These 

inequalities will be described in chapter 3. After Chvatal, Grotschel and Padberg 

(1979) were generalized his famous inequalities. Then Grotschel and Pulleyblank 

(1986) introduced the other useful inequalities called clique tree inequalities. Many 

exotic classes of valid inequalities have been introduced to date but the search for the 



 

new ones is still vivid. Goemans (1993) and Applegate et al.(1994) gave an overview 

of the various inequalities. Specially, Goemans considers the quality of those 

inequalities with respect to their induced relaxations.       

2.2 Alternating Traveling Salesman Problem    

There are some other alternates of the traveling salesman problem. Let us consider 

the bipartite TSP as a simple but non-trivial class of s of alternating traveling 

salesman problem. Originally arising from applications involving pick and place 

robots, the following variant of the famous traveling salesman problem is of 

independent interest.  

Given a set of item types, and a set of locations where items must be brought to by a 

robot. Each location must be equipped by one item of a specified type. Several 

locations may require the same type of items and the items are stored in depots such 

that each item belongs to each type. Here the goal is the finding a shortest tour that 

visits locations by item types in an alternating fashion in order to equip the printed 

circuit boards while the edge weights are given by Euclidean distances. In fact, the 

problem is configuration of two different sets that can be solved with combining an 

assignment problem with a traveling salesman problem. Bipartite comes from 

partitioning of the problem to the separated sets. A straightforward reduction to the 

Euclidean TSP indicates that the bipartite variant of TSP is not easy compared to 

original TSP. Hence, the bipartite TSP cannot be solved in polynomial time, unless 

. Thus we are interested in good approximations for this problem. 

Approximating the bipartite TSP is too complex. There is no constant factor 

approximation algorithm in general. Moreover, because of the bipartite analogue of 

the triangle inequality, i.e. the distances obey the square inequality, this alternate of 



 

the TSP is at least as hard to approximate as the original TSP with triangle 

inequality. It should be considered that good approximation algorithms for the 

Euclidean TSP are known. The best one was given by Christofides in 1976. 

Christofides algorithm obtains a locally optimal minimum that is times longer 

than the optimal tour. Also, Arora (1996) provided a polynomial-time approximation 

for constructing a tour at most  times longer than optimal tour where 

 The fact is that these techniques are not suitable to produce bipartite tours 

directly. Anily and Hassin (1992) and Michel, Schroeter and Sirvastav (1993) 

observed that inserting a perfect matching into a TSP tour yields a bipartite tour with 

a length that is bounded by the triangle inequality to be at most . In 1996, 

Chalasani, Motwani and Rao and, independently, Frank, Korte, Triesch and Vygen in 

1998, proved that there is a polynomial 2-factor approximation algorithm using 

spanning tree strategy for the bipartite TSP. After that, Baltz and Sirvastav (2001) 

gave a polynomial time approximation algorithm based on cycle cover 

decomposition. The study on the bipartite variant of TSP is still continued. The focus 

of this thesis will be in this variant of TSP because the problem arises from the 

assembly arm of pick and place robot is the same.   

Chapter 3 

Model Definition and Problem Statement 



 

Consider a weighted complete bipartite graph , where  is the 

union of the two n-point subsets of 2 and the edge weights are given by the 

Euclidean distances between the "Cell Points" in  and the "Assembly Points" in A. 

What can be said about a shortest tour that visits cell and assembly points in an 

alternating fashion? This is a typical problem arising in pick and place robot routing. 

In the other words, the problem of finding placement tours for pick and place robots 

that are used for the automatically placement of electronic components on printed 

circuit boards is of interest. A sample printed circuit board and cell together with the 

assembly and cell points has been given in Figure 3.1. Optimization problem here is 

to minimize the placement time of the robot. Since the working time of the robot is 

proportional to the distance traveled, the general problem appears as a combination 

of traveling salesman problem and the matching problem so we have an Euclidean 

bipartite traveling salesman problem.  

 

Figure 3.1: Printed Circuit Board 

 

3.1 The Printed Circuit Board Assembly Problem  

We are given: 

Cell point 

Assembly point 



 

 components which we call cells. In real world, cells are geometrical 

objects like boxes containing components. Let  be the set of cells.  

 A finite set of  points in the plane or in the space called cell-point 

locations. 

 A set of m positions in the plane or in the space called assembly points. Let  

be the set of assembly points.   

For simplicity we give the labels for each component and each assembly point in 

such a way that the -labeled position corresponds exactly to the locations on a 

printed circuit board on which the -labeled component must be placed. A placement 

tour of the robot is defined as follows: the robot travels from a starting point to some 

non-empty cell like , picks an -labeled component, travels to the -labeled 

position, places the picked component on this position, travels to some non-empty 

cell, and continues in this fashion until all components have been placed. Therefore, 

we have to determine simultaneously a placement tour such that the total working 

time is minimal.  



 

For the theoretical analysis we consider the standard model where the working time 

of the robot is assumed to be proportional to the distances traveled. The fact that a 

placement tour must be alternating between cell points and assembly points seems to 

be the main difficulty in finding good algorithm. The mentioned problem is a special 

bipartite TSP.  

Definition 3.1: A bipartite graph is an undirected graph  in which 

 can be partitioned into V1 and V2 such that implies either  

and 2 or V2 and V1. That is all edges go between two sets V1 and 

V2.  

In the above model, technological features such as robot arm acceleration 

and insertion/picking time have been suppressed. In addition, all states of 

assembly assignments are assumed to be feasible. Note that even under 

these assumptions the model is realistic enough for some real-world 

assembly robots, and it helps to understand the most complicated 

situations.   

Since the mentioned problem is a combination of TSP and the matching problem we 

should consider some mathematical model and heuristic algorithms that have been 

developed in this direction.   

3.2 Mathematical Models of TSP 



 

In all of the formulations that are given in this section the set of cities (nodes) is 

defined as  and the variables are defined as the following: 
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3.2.1 The Dantzig, Fulkerson and Johnson (DFJ) Formulation (1954) 
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This formulation shows that the problem is an integer program which consists of 

 variables and  constraints. In this formulation, constraints 

(3.2) and (3.3) introduce a regular assignment problem. Constraints (3.2) ensure that 

each city is entered from only one other city and constraints (3.3) ensure that each 

city is only departed to one other city. Consequently, constraints (3.2) and (3.3) 

ensure that there are two arcs adjacent to each vertex (city), and one is in and the 

other one is out. The last constraints (3.4) are the famous subtour elimination 

constraints and require feasible solutions to be connected. Subtour elimination 

constraints guarantee the exclusion of subtours in the optimal solution. A cycle 

length  is called a subtour. It means that instead of having one tour, the 

  

Otherwise  



 

solution can consist of two or more vertex-disjoint cycles. Subtour elimination 

inequalities will be explained in detail in subsection 3.3.1.   

The exponential number of constraints makes it impractical to obtain the traveling 

salesman problem solution directly. Therefore, the usual procedure is to apply (3.2) 

and (3.3) constraints and append just those subtour elimination constraints which are 

violated. Based on DFJ formulation, many integer and mixed integer programs have 

been proposed and there are some variants of this formulation.  

3.2.2. The Miller, Tucker and Zemlin (MTZ) Formulation 

Miller et al. (1960) proposed an alternate formulation which reduced the number of 

subtour elimination constraints but extended the number of real variables by defining 

continuous variables . Except for the arbitrarily chosen first city, the depot, 

associate with each city  a real variable  represents 's relative position on the tour. 

's are referred as the sequencing variables.  

 = ' . 

Constraints (3.2) and (3.3) and the objective function as defined in (3.1) are retained. 

The subtour elimination constraints of the MTZ model are given by  

  ,21  nxnuu ijji nji ,...,2,                (3.5) 

,11  nui ni ,...,2                                                                                            (3.6) 

In this formulation the elimination of subtours from the feasible set is attained using 

sequencing variables. If an integer solution is not a tour, it contains a cycle C without 

vertex (city) 1 (starting city) and by adding the inequalities above corresponding to 



 

all arcs  of cycle, we arrive at a contradiction. The MTZ formulation has 

 constraints with  binary variables and  continuous 

variables. Number of constraints has been decreased in this formulation with the 

price of increasing the number of variables. It is remarkable that the above 

formulation is used for computational practice, particularly in the moderate-size 

problems.  

3.2.3 The Gavish and Graves (1978) Flow Based Formulation 

Constraints (3.2) and (3.3) are retained but instead of elimination constraints, other 

constraints are defined based on introducing new continuous variables. 

 

 and flow based constraints are as follows: 
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In this model city 1 is the only source while the others are sinks. Constraints (3.8) 

and (3.9) restrict  units of a single commodity to flow out of city 1 and one unit 

to flow out of each of the remained cities. Consider that flow can only take place in 



 

an arc if it is included in the tour by virtue constraints (3.7). This formulation has 

 constraints and  binary variables and  continuous variables. 

3.2.4 Multi-Commodity Network Model (Wong (1980) and Claus (1984)) 

As stated earlier, constraints (3.2) and (3.3) are retained but some continuous 

variables are introduced and with respect to some new constraints defined below. 

  

and constraints are: 
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In this formulation constraints (3.10) allow flow only on an arc which is present in 

the tour. Constraints (3.11) avoid any commodity in city 1. Constraints (3.12) force 

exactly one unit of each commodity to flow in at city 1. Constraints (3.13) force 

exactly one unit of commodity k to flow in to at city k and constraints (3.14) avoid 

any of commodity k to flow out at city k. The last constraints, constraints (3.15), 



 

force 'material' balance for all commodities at each city apart from city 1 and for 

commodity k at city k. 

The above multi-commodity network model has constraints, 

 binary variables and   continuous variables.  

3.2.5 The Fox, Gavish, and Graves Time Staged Formulation 

The next formulation exploits a relationship between traveling salesman problem and 

machine scheduling. Fox et al. (1980) have proposed three different time-dependent 

models. One of them has been presented below. In order to facilitate comparisons 

with the other formulation that were mentioned before, xij variables and constraints 

(3.2) and (3.3) are retained. We introduce zero-one integer variables as follows: 
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In addition the other conditions must be imposed: 
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,01 ijy  jii  ,1               (3.21) 

Constraints (3.17) guarantee that if a city is entered at stage  it is left at next stage, 

i.e. . Removing certain variables using conditions (3.19), (3.20), (3.21) forces 

city 1 to be left only at stage 1 and entered just at stage . Note that in this model 

there is no need to place upper bounds of 1 on the variables xij , and this condition 

may be violated in the linear programming relaxation. The above model has  

constraints and binary variables. Obviously, for constraints (3.18) 

and variables xij this model would be even more compact having only  constraints 

and  variables. It is a remarkably drawback in terms of the strength of its 

Linear Programming relaxation and therefore the slowness of its overall running 

time.  

3.2.6 The Vajda Stage Dependent Model 

The same variables as in the previous model and constraints (3.2), (3.3), and (3.18) 

are used, together with:  
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Constraints (3.25) forces city 1 to be left at stage 1 and constraints (3.26) causes it to 

be entered at stage . The last constraints (3.27) have the same effect as constraints 

(3.17). This model has  constraints in addition of  binary 

variables which again could be reduced by leaving out constraints (3.18) and 

variables xij.  

As it can be seen in all mathematical formulations, with the exception of DFJ model, 

there is polynomial (in ) number of constraints. This feature makes them more 

attractive than the DFJ model. However, the number of constraints for big number of 

 (large scale problems) may still be large, and the linear programming relaxation 

weaker.  

3.3 Polyhedral Approaches of TSP 



 

The TSP polyhedral set is the convex hull of the characteristic vectors of all possible 

tours. Let  be a tour. Then: 

 

The characteristic vectors  of the tour  is a vector of the dimensional 

space such that 

=




0

1
 

Consequently, the TSP polyhedral is: = . If all facet 

defining inequalities of  is given then TSP is reduced to a linear programming 

problem. An optimal solution always occurs at an optimal extremal point.   

3.3.1 Subtour Elimination Inequalities 

The subtour elimination constraints (4) in the DFJ formulation are facets of TSP, and 

testify to the strength of the DFJ formulation. Grotschel and Padberg (1985) proved 

the following theorem.  

 Theorem 3.1: For every  the subtour elimination constraint:  

  1 SSx                 (3.28) 

 

 



 

defines a facet of symmetric TSP for . Additionally, if , constraint 

(3.28) reduces to the upper bound facet xij ≤ 1.  

In fact, the quality of obtained lower bound by solving the subtour elimination 

constraints with the LP relaxation of TSP is much better than what can be obtained 

from the original relaxation but it comes at a price of increasing the number of 

constraints. Subtour elimination constraints are completely describing the 

characteristic vectors of the tours but the polyhedral set of the LP relaxation of the 

DFJ model is strictly larger than the TSP polyhedra.  

An example will be useful to understand the concepts. Suppose we are interested in 

finding a complete tour for 6 cities same the 6-city problem of TSP. We examined it 

for 6 selected cities of IRAN then for directed graph of TSP, we obtained the 

following solution: 

, the graphical view of the 

solution is given in Figure 3.2.  

 

Figure 3.2: Graphical View of 6-City Problem's Solution 

According to above explained constraints, we add the subtour elimination constraints 

as below:  



 

 1; 1; +  1. 

By adding above constraints to the problem, the optimal solution will be as follows: 

=1; =1; =1; =1; =1; =1. In Figure 3.3 the graphical view of the 

optimal solution will be shown.  

  

 

Figure 3.3: Optimal Solution of 6-City Problem 

3.3.2 Comb Inequalities  

A famous class of facet-inducing inequalities for TSP is the set of the comb 

inequalities. These inequalities were defined by Chvatal (1975) as the generalization 

of the 2-matching inequalities. A comb inequality consists of a Handle which is 

denoted by vertex set  and Teeth denoting by vertex sets 1, …, Ts such that:  

(i).  ; 

(ii).  ; 

(iii).  . 

and the comb inequality is written as: 
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Where  is the edge set of a subset of cities and if is a subset of edges then  

 

A sample comb with 3 teeth is given in Figure 3.4. 

 

 

 

 

Figure 3.4: A Comb with 3 Teeth 

Grotschel and Padberg (1979), introduced such structures where each tooth can have 

more than one vertex in common with the handle, i.e  and /  are non-empty 

for every . In 1986, Grotschel and Pullyblank introduced the clique tree inequalities 

that are further generalization of comb inequalities in the sense that clique trees 

contain multiple handles, which are connected through the teeth. According to the 

theorem 3.2 (defined by Grotschel and Padberg (1979)) comb inequalities induce 

facets of STSP (Symmetric TSP) for problems having more than 5 cities.  



 

Theorem 3.2: The comb inequalities define facets of STSP(n) for n 6.  

3.4 Lower Bounds of the optimal value 

The main interest of solving TSPs lies in computing good feasible tours. In practice, 

having some guarantee on the quality of the solutions is of interest. Such guarantees 

can only be given if a lower bound for the optimal value of the length of possible 

tour is known. Generally, lower bounds are obtained by solving relaxations of the 

original problem in such a way that one optimizes over some set containing all 

feasible solutions of the original case as a subset. Then the optimal solution of that 

problem gives an acceptable lower bound for the optimal value of the original 

problem. Different relaxations provide different lower bounds of the main problem.  

In this section several fairly simple bounds are considered. For the purpose of this 

selection, we are mainly interested in lower bounds which can be computed fast 

enough to decrease the overall computational efforts and running times. These 

bounds are combinatorial in the sense that they are derived directly from the 

relaxations of the description of tours. The mentioned lower bounds are not to meant 

give a very good estimation of the achievable optimum but to give indications on the 

quality of the tours found by heuristic algorithms that will be explained in the next 

subsections.    

3.4.1 The 2-Matching Relaxation  

A 2-matching in a graph is a set of edges such that every node (city) is incident to 

exactly two of them. Every tour is a perfect 2-matching; even a collection of subtours 

is a 2-matching. The following formulation is a case of the 2-matching problem:   


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Note that is the set of edges incident to a node such that the number is the 

degree of . This problem can be solved in polynomial time based on Edmonds and 

Johnson (1973). The 2-matching constraints were defined to give a description of the 

polyhedral set of 2-matching. As it can been seen, the 2-matching problem is the DFJ 

model of the TSP without the subtour elimination constraints for the symmetric case 

of TSP. 

3.4.2 The 1-Tree Bound  

The fundamental of 1-tree bound for TSP is based on the following observation: If 

we select one city, for example city 1, then a Hamiltonian tour consists of a special 

spanning tree on the remaining cities in addition of two edges connecting city 1 to 

this tree. Hence a relaxation of TSP is obtained if it is taken as feasible solutions 

arbitrary spanning tree on the set plus two edges incident to the city 

1. In Figure 3.5, a 1-tree has been given.  
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Figure 3.5: A 1-Tree Sample  

3.4.3 Geometric bounds 

The geometric structure of Euclidean TSPs provides a very simple observation of 

lower bound for the TSP. A system of circles (disks) around cities and moats around 

sets of circles and moats is computed in this method. It is done in such a way that 

circles and moats do not overlap each other. Moreover, there has to be at least one 

city inside and outside of each circle and moat. Each city should be contained in a 

tour and each moat should be crossed at least two times. It means that the salesman 

must visit city 1 at some point in the tour and to do so he will need to travel at least 

distance r (radius of a circle) to arrive at the city and at least distance r to leave the 

city. It can be concluded that every tour has length at least . In Figure 3.6 

an illustration of such a system consisting of 6 circles and 2 moats has been shown.  

 

 

 

Figure 3.6: A System with 6 Circles and 2 Moats 

Different systems of disks and moats are possible for a set of cities. One system can 

be computed using Kruskal's algorithm [36]. If the radius of the disk around city  

Circle 
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denoted by and the width of the moat around set  denoted by , then the problem 

of finding the best bound can be formulated as follows. 
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Since we want the bound to be as large as possible, we are interested in choosing the 

radii so as to maximize twice their sum. Constraints (3.34) satisfy the over-lapping 

conditions. The formulas (3.33) – (3.36) model given by Juenger and Pulleyblank 

(1993) is the linear programming dual of the LP relaxation of the DFJ model. The 

bound can be determined in the polynomial time.    

3.4.4 The Chistofides Lower Bond 

Christofides heuristics method uses a minimum spanning tree as a basis for 

generating tours. It begins with a minimum spanning tree and gets an Eulerian graph 

then with some procedure obtains a Hamiltonian tour. Christofides (1976) proposed 

this method.  

Definition 3.2: A cycle of length  in a graph on  nodes is called Hamiltonian tour. 



 

Definition 3.3: A closed walk that traverses every edge of a graph exactly once is 

called Eulerian tour.  

There are classes of instances in the publications of Cornuejols and Nemhauser 

(1978) showing that Christofides algorithm yields a tour  times longer 

than the optimal tour, thus proving that the above result can be a good lower bound. 

Christofides algorithm is explained below. 

(i). Obtain a minimum spanning tree using Kruskal's algorithm. 

(ii). Obtain a Eulerian graph by computing a minimum weight perfect 

matching on the odd-degree nodes of the tree and add it to the tree. 

(iii). Obtain an Eulerian tour. 

(iv). Obtain a Hamiltonian tour from the generated tour. 

In Figure 3.7 above method has been illustrated.  

 

 

 

Figure 3.7: Illustration of Christofides Heuristic 

3.5 Heuristic Methods  

There are more heuristics than what can be discussed in this section. Only the 

approaches used in the analysis are explained here.  



 

3.5.1 Nearest Neighbor Construction Heuristic  

In the nearest neighbor algorithm the salesman starts at some city and goes to the 

nearest city of the starting city. From there the salesman visits the nearest city that 

was not visited so far until all cities are covered, and the salesman returns to the 

starting point. This procedure can be explained as follows: 

(i).  

(ii).  

-  

-  

(iii).  

Due to Rosenkrantz, Stearns and Lewis (1977) [36] there is a proved theorem 

guarantee s that no constant worst case performance can be given.  

3.5.2 Node and Edge Insertion Improvement Heuristic  

A further intuitive method for finding the tour is to start with tours on small subsets 

and then extending these tours by inserting the remained nodes that is called node 

insertion method. Starting small subset can include one or two nodes. Using this 

principle results a tour containing more and more nodes of the problem until all 

nodes are inserted and the final complete tour is obtained.  In the edge insertion 

algorithm an edge is removed from the tour and reinserted at the best possible 

position. Figure 3.8 shows a simple edge insertion process.  



 

 

 

Figure 3.8: Edge Insertion Move 

Because of endpoints of an edge, there are two possibilities for connecting the 

removed edge. The algorithm is given as the following. 

Suppose  is the current tour. Do the following until failure is obtained.  

(iv). For every node i= 1, 2, …, n: Test all possibilities to insert the edge 

between i and its successor in the tour. If the decrease in the length of the 

tour is possible then select the best such edge insertion move and update 

T.  

(v). If no improving movement can be found, then stop and declare the 

failure. 

Reinelt (2001) proves that it takes time O(n2) to check if there is an improving edge 

insertion move at all because for every edge of the tour every possible insertion point 

must be checked.    

3.6 Cutting Plane Methods  

If be the distance vector and if  denotes the set of the incidence vectors of all 

tours, then the TSP is: 

                    (3.37) 



 

In order to solve the above problem, Dantzig, Fulkerson and Johnson (1954) start 

with the problem that they can solve as the problem below.  

                                                                         (3.38) 

By suitable chosen system  of linear inequalities satisfied by all , 

solving problem (3.38) is what the simplex method is for. Problem (3.38) is a 

relaxation of (3.37) i.e. any feasible solution of (3.37) is a feasible solution of (3.38). 

Therefore the optimal value of (3.38) gives a lower bound on the optimal value of 

(3.37). It is a characteristic feature of the simplex method that the optimal solution is 

an extreme point of the polyhedron defined by the system of linear inequalities in 

(3.38). Optimal solution is denoted by . If    then it lies outside the convex 

hull of . In this way  can be separated from S by a hyperplane which is shown in 

Figure 3.9.  

 

 

 

 

Figure3.9: Illustration of Cutting Plane 

Cutting plane 

LP optimal solution 



 

The Figure displays that there is a linear inequality which is satisfied by all the points 

in  and violated by optimal solution ( ). Such an inequality is called a cutting 

plane. If a cut is found then it could be added to the linear inequality system in (3.38) 

to solve the resulting relaxation using simplex method. This process is repeated until 

the optimal solution of relaxation (3.38) in  is found. In the implementation of 

cutting plane method, the main step is finding the cuts. Based on Applegate et al. 

(1998), there are some ways to find the cuts. Two classical ways are: 

1) Subtour eliminator cuts, and 

2) Gomory cuts.  

3.7 Application of Theory for medium-size Bipartite Problems 

In order to manufacture some work pieces such as picking and placing some 

assembly parts on the PCB, a robot has to perform a sequence of operations on it. 

The task is to determine a sequence to perform the required operations that leads to 

the shortest total processing time. The robot moves between separated sets of 

positions in an alternating fashion. Therefore here we have the problem of finding 

the shortest Hamiltonian path in a bipartite graph. This problem can be treated as an 

alternating TSP. According to the theorem proposed by Baltz (2001), finding optimal 

tour of this alternating TSP in the Euclidian plane is also NP-hard. 

Our robot problem, a tour for the pick and place robot starts at a depot or arbitrary 

starting cell point, carries an item to an appropriate location as assembly point, then 

moves to a depot again, and so on with this property that the robot cannot carry more 

than one item. It can be observed that the node sets (N) of the problems can be 



 

partitioned into two nonempty disjoint sets ( ) which  such that no 

two nodes in  and no two nodes in  are connected by an edge. Because of 

partitioning into two set of nodes, this problem is called bipartite TSP. Since | | = | | 

and adge set of  then we call the graph of the problem as the 

complete bipartite graph. The focus of this thesis is on medium sized (up to 500) 

bipartite TSPs arises the robot problems. 

The polyhedral structure of the Dantzig, Fulkerson and Johnson model is better 

understood and its linear relaxation is properly contained in the linear relaxation of 

some other formulations. The Miller, Trucker and Zemlin model has been also 

selected for developing an exact method. The reason is that DFJ formulation has an 

exponential number of subtour elimination constraints but MTZ formulation contains 

only a polynomial number of constraints especially in the first steps of solving the 

LP relaxation, MTZ priority is so considerable in the both sense of number of 

constraints and time needed. 

Since in the first step of solving LP relaxation using MTZ getting to the optimal tour 

is very difficult for the moderate-size problems then violated constraints (constraints 

not satisfied by the current LP solution) should be found. In most of the cases, the 

violated constraint is a subtour eliminator one. Such a violated constraint can be 



 

obtained by determining the absolute minimal cut in the graph. The procedure will be 

discussed in Chapter 4.  

As we know from the various formulations, there are many subtour elimination 

constraints and it is not simple to claim all of them in the LP relaxation. Using the 

cutting plane method, just needed constraints are added to the problem. Finding the 

cuts help us to get the LP solution to be a tour, and thereafter solve the TSP. 

However, it can be a very long procedure even in that case the LP solution a very 

good lower bound and also an LP solution that can serve as a guide in trying to get a 

good tour. 

Exact methods like as MTZ model require several hours or days of running time 

even for moderate size instances. When running time is limited or the data of the 

instance is not exact, using TSP heuristics is needed. Due to find a suitable upper 

bound for the problem, in this work, a combination of nearest neighbor and edge 

insertion algorithms has been used. The complete explanation of the above methods 

will be done in the next chapter. 

 

 

Chapter 4 

Model Development  



 

Explicitly examining all possible TSP tours is impractical even for moderately sized 

problems because there are  different tours in (complete graph of the 

symmetric TSP) and  Different tours in (complete digraph of the 

asymmetric TSP). Hence, we will not attempt to obtain the optimal solution 

analytically which is rather impossible.  

In order to examine exact methods, it must be explained the different types of graphs 

and assumptions that they will be taken into account. In any TSP, there are two types 

of graphs in sense of the direction between two nodes. These two cases are called 

directed graph and undirected graph. An undirected graph consists of a finite set of 

vertices  and a finite set of edges  such that each edge has two endpoints  and  

and is denoted by . We call such a graph undirected because we do not 

distinguish between the edges  and . In the other words, in this graph each edge is 

adjacent to two vertices. While in the directed graph, we will speak about head and 

tail of an edge. It means that the arc is not equivalent to the arc  Hence, in the 

directed graph we arrive into each city (or point) once and leave each city (or point) 

once. We denote an undirected graph as  and a directed graph as  

where:  



 

(i).  

(ii).  

(iii).  

Samples of directed and undirected graphs have been given in Figure 4.1.  

 

 

 

 

Figure 4.1: Samples of Directed and Undirected Graph 

4.1 Assumptions 

Before explaining the used models and proposed iterative algorithm, the assumptions 

which belong to the solved problems should be addressed.  

4.1.1 Symmetric TSP 

In this study symmetric type of the TSP is of interest. A symmetric TSP is said to 

satisfy the triangle inequality if  for all distinct vertices . 

Since we consider to the special case of the bipartite TSP, the distances obey the 

square inequality for all vertices .  

Directed graph Undirected graph 



 

4.1.2 Euclidean Bipartite TSP 

The corresponding graph of the TSP in our problems is Euclidean bipartite TSP. An 

interesting special case of the TSP is to consider the optimal route passing through a 

collection of  points in the Euclidean plane. In fact, in the Euclidean TSP we are 

given nodes (vertices) in 2 (more generally, in d) and desire the minimum 

distance salesman tour for these nodes (vertices), where the distance of the edge 

between nodes  and  is given by  in the formula 4.1. 

                                                                              (4.1) 

4.1.3 Edge Distance as the Weight 

For the theoretical analysis, we consider distances between points where the moving 

time of the robot is assumed to be proportional to the distances travelled.  

4.1.4 Robot Arm Limited Capacity 

It is assumed that the robot cannot carry more than one item in each movement.  

4.1.5 One Head Placement Robot 

The placement arm of the studied robots is equipped with one hand. 

4.1.6 Standard Bipartite TSP 

The equal number of cells and assembly points exist on the printed circuit board.  

4.1.7 Suppressed Picking/Insertion Times 

Picking/insertion times have been suppressed. 

4.2 Applied Exact Methods  

Both of the DFJ and MTZ models have been used in the experiments.   



 

4.2.1 The DFJ Model for the Directed Cases 

Formulas (3.1), (3.2), (3.3), and (3.4) are the same. Since two versions of subtour 

elimination constraints have been considered we will call formula (3.4) as the version 

# 1 and the following constraints will give the version # 2. The idea is that if  

then we must leave .  

                                                                                                   (4.2) 

4.2.2 The DFJ Model for Undirected cases 

Instead of (3.2) and (3.3) we have: 

                                                                                     (4.3) 

And the version # 1 of subtour elimination constraints is same to (3.4), but the 

version # 2 is given by: 

                                                                                                   (4.4) 

The number of variables in the undirected graph is .  

4.2.3 The MTZ Model 

We continue with the MTZ model introduced in subsection 3.1.2, wherein the 

number of subtour elimination constraints is reduced but the number of real variables 

is extended by defining continuous variables. The MTZ constraints yield a 

compact representation for the TSP, and their use is particularly attractive in various 

contexts.  



 

The problems are solved by using both of the above formulations and the results are 

stored. As we expect, the solutions were not integers. To find the subtour structures 

labeling technique is used.    

4.2.4 Labeling Technique 

With consideration of provided information, some subtours are obtained. As stated 

before, some violated constraints make to get subtours in the model. To check if the 

provided graph from the results of LP relaxations is disconnected or not, labeling 

technique is used. The idea is that going through a path, every node should be given 

the same label. Different labels will determine the existence paths. The flow chart of 

proposed labeling technique has been given in Figure 4.2.   

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 4.2: Labeling Technique Flow Chart 

4.2.5 Finding Minimal Cut 

Some inequalities are satisfied by the characteristic vectors of complete tours but are 

violated by the optimal solution of the current relaxation . Such inequality is called 

cut briefly. Having found cuts, one can add them to the linear inequality system of 

LP relaxation, solve the obtained relaxation, and iterate this process while the 

optimal solution  becomes feasible.  

Definition 4.1: A cut of  is a partition of  into two sets  such that: 

(i).  

(ii).  



 

The capacity of a cut  is given by: 

                                                                                     (4.5) 

We can also think of a cut as a set of edges that go from  to , i.e. all edges  

such that  If we remove these edges from the graph, no vertex in  will 

be connected to a vertex in . The direction of the edges is important in the 

definition of a cut (see Figure 4.3) because we want the capacity of a cut to limit the 

flow going through that cut in one direction. In the Figure 4.3, set  consists of un-

shaded nodes and  consists of the shaded nodes. Edges between the 

partitions of the cut  are highlighted. The capacity of the cut is 

 

 

 

Figure 4.3: An Example of a Cut in a Graph 



 

Considering the above information, we proposed a cutting model to find the 

minimum capacity cut. Most obviously, the connectivity of the bipartite graph and 

constructing complete tour is the minimum value of a cut. The obtained minimum 

cut displays the subtour eliminators that are violated. Found violated constraints are 

added to the LP relaxation, the LP is solved to get the new solution.  

Corresponding to the last information, finding the minimal cut in a bipartite graph is 

introduced as follows. Constraints are related to: 

1) Two non-empty parts (0 and 1) 

2) Objective function 

The directed cut goes from part '1' to part '0'. 

 

Constraints of two parts are: 

                                                                              

(4.6) 

                                                                      (4.7) 

Remark 4.1: Partitioning into two parts '1' and '0' is based on the values of the 

variables obtained by LP solver such that having integer values of 1 are in part '1' 

and having 0 values are in part '0'.  

  

 



 

Related information for the objective function are as follows: 

 

  

    

Note that  are parameters and  are variables in the minimal cut model.  

                                                                                    (4.8) 

From above information we will have:  

                                                                                                                 (4.9) 

Thus objective function will be:  

                                                                                                            (4.10) 

Minimization problem implies that in the optimal solution of the minimal cut model 

 will be: 

  

  

 

 

 

 

 



 

                                                                                                               (4.11) 

To summarize the procedure until now, we solve an initial LP relaxation. Let  be 

the solution. If it is integer and feasible, the optimal solution has been found, then we 

stop. If the solution is non-integer and infeasible then we look for one or more 

violated inequalities. If no violated inequalities are found then the final lower bound 

is recorded. When some inequalities are found we add them to the LP relaxation. We 

resolve the LP and again we check the solution in the sense of integrality and 

feasibility. One important problem here is the finding of violated inequalities. The 

fact is that we cannot test each one explicitly. In order to overcome this problem we 

use the minimal cut model. Implementing of such cutting method is called cut and 

branch algorithm. Our cut and branch algorithm has been shown in Algorithm 4.1. 

Algorithm 4.1: Customized Cut and Branch Algorithm 

 

 

 

 

 



 

 

 

 

 

4.3 Proposed Heuristic Algorithm 

Every TSP heuristic can be evaluated in terms of two key parameters: its running 

time and the quality of tours obtained. Because of the time and cost limitations in the 

manufacturing and engineering problems, we should consider to some heuristics 

having low running time in addition of simple structure of the method. A mixed 

Nearest Neighbor and Insertion constructive heuristic is proposed to obtain a good 

upper bound for the medium-size bipartite TSP. The proposed algorithm is a 

combined approach. Nearest neighbor procedure proceeds well and produces 

connections with short edges in the beginning but several points are forgotten during 

the algorithm, and they have to be inserted at high cost in the end. To avoid this 

problem we use an insertion algorithm during the procedure. Since the movement 

from one point to another point is restricted in bipartite graph, i.e. we are just 

allowed to go from some cell point to assembly point or vice versa, during the 

insertion process an edge will be inserted not a vertex (node). For applying the 

combined method a threshold value denoted by  is defined. Firstly, one starting cell 



 

point is selected randomly. Based on the concept of the nearest neighbor algorithm, 

the nearest assembly point of that point will be found. In the process of finding the 

next point of the tour, the distance between new point and existence points will be 

considered. If the distance from the endpoint is less than threshold value the nearest 

neighbor algorithm is applied. Otherwise edge insertion method is used. As stated 

before, the logic of applying edge insertion method in our problems comes out of 

bipartite TSP characteristics. Since any cell point can only be connected to an 

assembly point and any assembly point can only be connected to a cell point, the 

insertion process is as follows: Select a cell point and the nearest assembly point not 

included in the path.  

New edge can be inserted to the endpoints of the path or in the middle of the path. 

Figure 4.4 shows such an edge insertion process. 

 

 

 

Figure 4.4: Edge Insertion Process 

In Figure 4.4, the net cost (distance) is given by: 

 Minimization of this net distance will be of 

interest.   

Remark 2: In bipartite cases of the TSP, for the edge insertion process there are some 

different possibilities which must be considered. In the proposed heuristic all of these 
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possibilities are checked for each insertion process. This process is done iteratively 

and switching from nearest neighbor to the edge insertion is performed based on the 

threshold value. The procedure will be done until a complete tour is obtained. 

Different possibilities of insertion new edge to the current tour in the bipartite cases 

are shown in Figure 4.5.  
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Figure 4.5: Different Insertion Possibilities in the Bipartite Graph 

Algorithm 4.2, shows the proposed heuristic in detail.  

Algorithm 4.2: Proposed Heuristic Algorithm 

 

 

 

 

 

 

 

  

 

 

             

             

  

  

   

Algorithm 4.2: Proposed Heuristic Algorithm (continue) 
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Algorithm 4.2: Proposed Heuristic Algorithm (continue) 
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Algorithm 4.2: Proposed Heuristic Algorithm (continue) 

 

                                         

 

                                 



 

 

 

                                                   

 

 

 

 

 

4.4 Proposed Iterative Algorithm for the Medium-size Bipartite TSP 

Corresponding to the customized cutting model and proposed heuristic algorithm, 

our iterative algorithm for solving the bipartite problems is as follows:  

1) Solve LP relaxation. If its integer optimal solution was found, stop. 

Otherwise go to step 2.  

2) Prepare the graph consisting of the integer arcs. 

3) Apply labeling technique to determine the paths. 

4) Prepare the graph consisting of  

(i). Non-integer arcs, and  

(ii). Each path is substituted by an arc from the starting point to the end 

point of the path. The weight of the arc is 1. 

5) Solve the minimal cut model in the generated graph. 

6) If the optimal value is at least 1 then no subtour eliminator constraint is 

found. Switch to heuristic tour constructor. 

7) If the optimal value is less than 1 then add to the node sets '1' and '0' the 

nodes of paths going within the set. These paths have been found in step 3. 



 

The subtour eliminator constraint between the supplemented sets '1' and '0' is 

violated. Add this constraint to the problem. Go to step 1.   

 

Chapter 5 

Computational Experiments 

Theoretical analysis is a useful tool in the algorithm design but empirical analysis is 

absolutely necessary to check the efficiency of the algorithm. We are interested in 

design and selection of the most efficient algorithms for real-world use and, thus, we 

pay more attention to experimental evaluation.   

In this chapter, computational results obtained after testing the ideas mentioned in the 

previous chapter is described. All of the implementations have been written in the 

"MATLAB R2010a" and "LINGO12.0" programming languages. The computers 

used to run the implementations were all each with 2GB RAM, running at 2.8 GHz 

processor.  

5.1 Modeling of the DFJ and MTZ Formulations  

In order to test the exact methods, first step was writing DFJ and MTZ models in the 

optimization software. The solver package has been used for these experiments is 

extended LINGO 12.0/ win 32 (LINDO system 2010). To execute the models in 

LINGO environment the problems were translated into LINGO language. Basically, 

LINGO uses branch and bound algorithm for solving the problems. 



 

To prevent the unnecessary long computational times in the first steps, analyzing the 

corresponding results of DFJ and MTZ models were begun with small sizes of TSP 

for the cities of Iran. These experiments consist of 6, 10, 15, 20 cities respectively. 

After them, eleven PCB problems addressed by P-80-1, P-80-2, P-100-1, P-100-2, P-

25-15-1, P-25-25-2, P-25-15-3, P-200-1, P-200-2, P-240-1, and P-240-2 have been 

performed. LINGO models of DFJ and MTZ formulations are available in 

APPENDIX B. For the simplicity of the models, the variables have been assumed 

real variables between 0 and 1. In order to avoid time-consuming tasks in LINGO, 

input matrices for medium sized problems (PCB problems) is read from Microsoft 

Excel. For example, the input matrix of the problem P-25-15-1 contains 6400 

elements. Typing 6400 elements in LINGO is approximately impossible. Also, a 

solution generated by LINGO is of little use if it could not to be exported to other 

applications. For these reasons, interfacing with spreadsheets of LINGO is used to 

move information in and out of LINGO. Input data can be found in APPENDIX A, 

Tables A2 TO A16. The distance matrices have been calculated using Euclidean 

distance, as stated before, and computing these matrices has been done by MATLAB 

program that is given in APPENDIX C. Distance structure of the mentioned 

problems is shown in Figure 5.1. Note that there are no variables with indices  

where  or  . 
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Figure 5.1: Structure of Distance Matrices of PCB Problems 

5.2 Plotting the Graphs 

The desirable solution of the solving TSP problems is integer solution. Because of 

the non-integrality in the solutions of PCB problems, it could be useful to check the 

plotting style of integer and non-integer arcs in the bipartite graph. To do this feature, 

a MATLAB code has been written in MATLAB R2010a. The program is shown in 

APPENDIX C. It should be noted that plotting program is based on the values of the 

variables resulting from LINGO such that the edges of the graph having weights 

between 0.69 and 1 are shown as red edges, and green lines display edges having 

weight between 0 and 0.69. If there be any edge with weight greater than 1 it is 

shown by magenta line in the plot. The plotting results for PCB instances for initial 

results of MTZ formulation have been shown in APPENDIX E, Figure E1 to E4.  

5.3 Applying Labeling Technique   

As stated before, labeling technique is applied to find the paths in the bipartite graphs 

in order to check the obtained graph from LINGO results is connected or not. 

Existence of any disconnected path in the graph somehow will be shown the 

existence of violated constraints in the problem. MATLAB R2010a has been used to 

write the proposed labeling technique. The corresponding code is given in 

APPENDIX C. Output of the program is transferred to spreadsheets. This 

spreadsheets display the label of every node in the corresponded TSP graph. Each 

A
ss

em
b
ly

 P
o
in

ts
 



 

group of the nodes having same labels constructs a path. For example, the initial 

obtained labels of problem 25-15-1 by this program have been given in APPENDIX 

A, Table A17. 

5.4 Solving the Minimal Cut Model  

A subtour elimination constraint is violated if there is a cut in the graph with a cut 

value less than 1. Therefore, the absolute minimal cut must be found in the graph 

determined by the fractional solution. It is different from the usual problem to find 

the minimal cut separating two a priori given vertices. Based on the explained cutting 

model in the previous chapter, the non-integer arcs and also each path consisting of 

these non-integers as the starting point and endpoint should be found. Now the 

required information to write a cutting model for the problem is available. To 

understand the model exactly, cutting model of the problem 10-city by MTZ 

formulation is explained below. Using the output worksheet of LINGO for problem 

10-city, fractional solution is given in Table 5.1. 

Table 5.1: Initial Results of 10-City Problem with MTZ Model 

Variable Value 

y( 1, 3)      0.89 

y( 1, 6)      0.11 

y( 2, 5)        0.50 

y( 2, 8)      0.50 

y( 3, 6)       0.39 

y( 3, 7)      0.61 

y( 4, 2)      0.50 

y( 4, 5)        0.50 

y( 5, 10)     1.00 



 

y( 6, 3)      0.11 

y( 6, 7)     0.39 

y( 6, 9)        0.50 

y( 7, 1)      1.00 

y( 8, 2)      0.50 

y( 8, 9)       0.50 

y( 9, 6)      0.50 

y( 9, 8)    0.50 

y( 10, 4)      1.00 

 

It should be considered that the values of other variables are zero. Results show that 

considerable paths with arc weights 1 are as follows. 

, . Considering , we must exclude node 10 from the 

model.  

Therefore, in the cutting model for above paths we should have: 

;  . Also for non-integer arcs we should have 

the following constraints:  in these constraints display 

the value of variables in LP relaxation which are gotten using LINGO model. 

Display model of this example in LINGO has been given in APPENDIX B. 

Given two different values of the cutting model variables, we wish to partition the 

nodes into two non-empty sets so as to minimize the number (or total weight) of 

edges crossing between them. More formally, a cut (0, 1) of a graph is a partition of 



 

the nodes of that graph into two nonempty sets 'o' and '1'. An edge  crosses cut 

(0, 1) if  is in set '0' and  is in '1'. The subtour eliminator constraint between the 

supplemented sets '1' and '0' are violated if the cut value is less than 1. These 

constraints are added to the LP relaxation in LINGO and the LP relaxation again is 

solved. LINGO model after adding these constraints will be changed. The program 

of LP relaxation after adding initially violated constraints has been displayed in 

APPENDIX B. For example, in 10-city problem the memberships of the two sets are 

shown in Table 5.2. 

Table 5.2: Results of Cutting Model for Problem 10-City 

x Membership 

1 1 

2 0 

3 1 

4 0 

5 0 

6 0 

7 1 

8 0 

9 0 

10 0 



 

Since the objective function value of the model is less than 1, we have the violated 

constraints in LP relaxation. To find the violated constraint, determining the 

partitions of cut is needed. The Table above gives two sets  and as follows: 

 ,   

In Figure 5.2, flow between these two sets can be seen.  

 

 

 

Figure 5.2: Flow Between Set '1' and Set '0'  

In-flow of node 6 is 0.5 (less than 1) and we can conclude there are some violated 

constraints. Thus we should add the following inequalities to the LP relaxation and 

solve the LP once more. 

 

Obviously, this work should be repeated until no violated subtour elimination 

constraint exists. Because of some difficulties, the program of cutting model has 

been not automated yet, so three cuts only have been performed for the medium-size 

problems. Outputs of the cuts for the city problems and bipartite instances have been 

shown in Table 5.3 and Table 5.4. Note that DFJ OFV and MTZ OFV indicate the 

initial objective function value of the DFJ and MTZ models for our directed 

0.11 0.38 

6 

1 3 7 

2 4 5 8 9 10 

'1' 

'0' 



 

problems, respectively. LB is the abbreviation of Lower Bound. Consider that in the 

DFJ model assignment problem constraints are included. Results indicate that there 

is no significant different between the results obtained by DFJ and MTZ 

formulations. In some problems DFJ model and in the some other problems MTZ 

model gives better lower bound.   

Table 5.3: Results of the DFJ Model 

 

Problem Size DFJ OFV  Found LB  

G
e

n
e

ra
l 

T
S
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6 city 6 × 6 3068.00 3718.00 

10 city 10 × 10 5675.00 5679.00 

15 city 15 ×15 7616.00 7700.45 

20 city 20 × 20 7943.00 8075.00 

2
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80-1 40 ×  40 44318.49 44328.00 

80-2 40 ×  40 48382.57 48384.30 

100-1 50 ×  50 63747.28 63756.90 

100-2 50 ×  50 73340.72 73341.70 

25-15-1 80 ×  80 67863.70 67874.90 

25-15-2 80 ×  80 77306.70 77322.60 

25-15-3 80 ×  80 72823.80 73458.00 

200-1 100 × 100 103319.30 104322.00 

200-2 100 ×  100 112905.90 119306.50 

3
-D

. B
ip

a
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240-1 120 × 120 1406.87 1407.90 

240-2 120 × 120 1374.44 1398.30 

 

Table 5.4: Results of the MTZ Model 

 

Problem Size MTZ OFV  Found LB  

G
e

n
e

ra
l 

T
S

P
 6 city 6 × 6 3073.11 3722.60 

10 city 10 × 10 5207.56 5355.44 

15 city 15 × 15 6441.14 6732.29 



 

20 city 20 ×  20 7133.68 7237.10 
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80-1 40 ×  40 44317.12 44321.80 

80-2 40 ×  40 48384.37 48397.46 

100-1 50 ×  50 63747.93 63770.19 

100-2 50 ×  50 73336.71 73341.70 

25-15-1 80 ×  80 67864.12 67868.37 

25-15-2 80 ×  80 77306.28 77308.74 

25-15-3 80 ×  80 72823.67 73600.14 

200-1 100 × 100 103319.50 104319.23 

200-2 100 ×  100 112904.40 119307.61 

3
-D

. 

B
ip

a
rt
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e
 240-1 120 ×  120 1406.87 1407.13 

240-2 120 ×  120 1374.31 1375.55 

5.5 Applying the Proposed Heuristic Algorithm 

After solving the minimal cut model, if the optimal value of cut is greater than 1  

then no subtour elimination constraint is found and we should switch to Heuristic 

tour constructor. Based on the concept of the algorithm in Chapter 4, the proposed 

heuristic algorithm is written as a program by MATLAB R2010a. The corresponding 

program is available in APPENDIX C. In this program threshold value has been 

calculated in some various methods.  Methods used in our problems have been given 

in Table 5.5.  

Table 5.5: Different Calculation Methods of Threshold 

Method of calculation of Threshold 

median of top 10% 

min 

max 



 

average 

min+ ((average-min)/2) 

min+ ((average-min)/3) 

min+ ((average-min)/4) 

As mentioned in the previous chapter, there are some possibilities when we are going 

to insert an edge to the path in the process of constructing complete tour. We can 

consider only to the endpoints of the current path and insert the new edge to these 

endpoints. Heuristic case (1) has been constructed based on this feature. In addition 

of endpoints, we can also insert the new edge to the middle of the current path during 

the insertion process. We have denoted this heuristic as case (2). Given algorithm in 

the previous chapter has been constructed based on case (2) to cover all possibilities 

in the insertion process. The obtained results can be improved or not according to the 

characteristics of the problems. To cover this purpose, the heuristic algorithm has 

been written in both conditions. The written codes have been shown in APPENDIX 

C. Further, the results of the heuristic method for all our PCB instances tested for 

both heuristics have been given in Tables 5.6 and 5.7. Fortunately, the average 

Elapsed Runtime is not more than two seconds in both cases.   

Remark 5.3: The best solution for each problem is marked with a (*). 

Table 5.6: Heuristic Results Case (1) 

 

Proble

m  

Method of calculation of 

Threshold 

T value 

Min. tour 

distance  

 Elapsed 

Time (sec.) 

2
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80-1 

median of top 10% 383.500 49804* 0.201043 

min 27.893 51021 0.167665 

max 2963.07 51435 0.034562 



 

2 

average 

1372.43

7 

50471 0.082217 

min+ ((average-min)/2) 700.165 50981 0.143690 

min+ ((average-min)/3) 476.074 51085 0.176550 

min+ ((average-min)/4) 364.029 50790 0.198976 

80-2 

median of top 10% 426.500 51069 0.165447 

min 33.422 51021 0.153429 

max 

2666.25

2 

51435 0.030246 

average 

1350.41

0 
50294* 0.074502 

min+ ((average-min)/2) 691.916 50981 0.139760 

min+ ((average-min)/3) 472.418 51894 0.157234 

min+ ((average-min)/4) 362.669 50790 0.164312 

100-1 

median of top 10% 430.700 69769 0.251398 

min 13.342 69368 0.232419 

max 

3363.07

3 

70994 0.040361 

average 

1683.26

7 

71677 0.126540 

min+ ((average-min)/2) 848.304 68146* 0.209060 

min+ ((average-min)/3) 569.983 71587 0.232670 

min+ ((average-min)/4) 430.823 69769 0.264291 

100-2 

median of top 10% 508.300 75949* 0.276789 

min 60.959 78061 0.254490 

max 

3402.01

4 

80284 0.043345 

average 1657.04 79264 0.094864 



 

4 

min+ ((average-min)/2) 859.002 78999 0.257753 

min+ ((average-min)/3) 592.987 75949* 0.258766 

min+ ((average-min)/4) 459.980 77035 0.274460 

25-15-1 

median of top 10% 69.400 72722* 0.845689 

min 23.431 75310 0.809081 

max 

2838.24

0 

75555 0.122093 

average 

1333.15

2 

75183 0.301803 

min+ ((average-min)/2) 678.291 75725 0.650276 

min+ ((average-min)/3) 460.004 74255 0.670271 

min+ ((average-min)/4) 350.861 76348 0.762123 

25-15-2 

median of top 10% 84.150 84816 0.919021 

min 43.278 85587 0.859799 

max 

2883.03

2 

86243 0.101080 

average 

1323.56

6 

85559 0.238471 

min+ ((average-min)/2) 683.422 85130 0.613563 

min+ ((average-min)/3) 470.041 83371* 0.907830 

min+ ((average-min)/4) 363.350 85010 0.825121 

 

Table 5.6: Heuristic Results Case (1)-continue 
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m  

Method of calculation of 

Threshold 
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Min. tour 

distance  

 Elapsed 
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25-15-3 

median of top 10% 97.850 82309 0.885239 

min 24.759 83276 0.923543 

max 7180.43 85932 0.122563 



 

2 

average 

1398.82

6 

83020 0.253613 

min+ ((average-min)/2) 711.792 81881 0.724098 

min+ ((average-min)/3) 482.781 84217 0.851676 

min+ ((average-min)/4) 368.286 85943 0.752674 

200-1 

median of top 10% 486.100 115580 1.431207 

min 37.162 113120 1.564957 

max 

3571.56

2 

115510 0.180534 

average 

1671.49

9 

114290 0.351556 

min+ ((average-min)/2) 854.330 112960 0.843481 

min+ ((average-min)/3) 581.941 111450* 1.318800 

min+ ((average-min)/4) 445.746 115440 1.424837 

200-2 

median of top 10% 512.500 127530 1.574342 

min 10.630 123940* 1.716574 

max 

3527.79

2 

128530 0.191936 

average 

1666.04

9 

126650 0.419853 

min+ ((average-min)/2) 838.340 125840 1.095427 

min+ ((average-min)/3) 562.436 126090 1.721015 

min+ ((average-min)/4) 424.485 125530 1.565432 

3
-D
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n
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B
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240-1 

min 1.414 1473.9 2.772190 

max 27.749 1431.4 0.339103 

average 13.668 1429.8* 0.405182 

min+ ((average-min)/2) 7.541 1442.3 1.957426 

min+ ((average-min)/3) 5.499 1475.5 2.601191 



 

min+ ((average-min)/4) 4.478 1463.5 2.675432 

240-2 

min 1.000 1492.7 2.534267 

max 27.749 1424.3 0.295641 

average 13.610 1408.8 0.354398 

min+ ((average-min)/2) 7.305 1436.4 2.432106 

min+ ((average-min)/3) 5.203 1405.6* 2.438765 

min+ ((average-min)/4) 4.153 1416.4 2.820125 

 

 

 

 

 

 

 

Table 5.7: Heuristic Results Case (2) 

 
Problem  

Method of calculation of 

Threshold 
T value 

Min. tour 

distance  

 Elapsed 

Time (sec.) 
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80-1 

median of top 10% 383.50 48352 0.202011 

min 27.89 47905 0.183556 

max 2963.07 48521 0.049896 

average 1372.44 48152 0.093395 

min+ ((average-min)/2) 700.17 46645* 0.165207 

min+ ((average-min)/3) 476.07 48707 0.198267 

min+ ((average-min)/4) 364.03 48352 0.204957 

80-2 

median of top 10% 426.50 51311 0.185905 

min 33.42 52233 0.180424 

max 2666.25 51435 0.051556 



 

average 1350.41 51466 0.088100 

min+ ((average-min)/2) 691.92 50755* 0.153471 

min+ ((average-min)/3) 472.42 51311 0.180383 

min+ ((average-min)/4) 362.67 51311 0.192855 

100-1 

median of top 10% 430.70 67815* 0.284357 

min 13.34 69891 0.269563 

max 3363.07 70994 0.066074 

average 1683.27 71477 0.133445 

min+ ((average-min)/2) 848.30 70824 0.227750 

min+ ((average-min)/3) 569.98 70194 0.255577 

min+ ((average-min)/4) 430.82 67815* 0.294449 

100-2 

median of top 10% 508.30 76776* 0.303430 

min 60.96 79832 0.271011 

max 3402.01 80284 0.066486 

average 1657.04 80204 0.126524 

min+ ((average-min)/2) 859.00 80814 0.273771 

min+ ((average-min)/3) 592.99 76776* 0.276046 

min+ ((average-min)/4) 459.98 76787 0.308213 

25-15-1 

median of top 10% 69.40 73652 0.879720 

min 23.43 75660 0.833873 

max 2838.24 75556 0.134484 

average 1333.15 76153 0.331714 

min+ ((average-min)/2) 678.29 75803 0.689853 

min+ ((average-min)/3) 460.00 75304 0.709963 

min+ ((average-min)/4) 350.86 73455* 0.792449 

25-15-2 

median of top 10% 84.15 84072* 0.944540 

min 43.28 86509 0.880275 

max 2883.03 86243 0.138416 

average 1323.57 86200 0.279699 



 

min+ ((average-min)/2) 683.42 86415 0.644214 

min+ ((average-min)/3) 470.04 86651 0.929565 

min+ ((average-min)/4) 363.35 84800 0.835545 

 

 

 

Table 5.7: Heuristic Results Case (2)-continue 

  Problem  
Method of calculation of 

Threshold 
T value 

Min. tour 

distance  

 Elapsed 

Time (sec.) 
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25-15-3 

median of top 10% 97.85 81460 0.916372 

min 24.76 92700 0.957786 

max 7180.43 85932 0.141187 

average 1398.83 85726 0.275497 

min+ ((average-min)/2) 711.79 85000 0.732268 

min+ ((average-min)/3) 482.78 82641 0.874728 

min+ ((average-min)/4) 368.29 80267* 0.778949 

200-1 

median of top 10% 486.10 113270 1.450885 

min 37.16 113160 1.588987 

max 3571.56 115510 0.205895 

average 1671.50 114290 0.369101 

min+ ((average-min)/2) 427.19 112530* 0.887560 

min+ ((average-min)/3) 407.56 114220 1.328641 

min+ ((average-min)/4) 397.74 113690 1.459964 

200-2 

median of top 10% 512.50 124840* 1.609653 

min 10.63 125450 1.741797 

max 3527.79 128530 0.205053 



 

average 1666.05 126730 0.438337 

min+ ((average-min)/2) 460.03 125590 1.128979 

min+ ((average-min)/3) 442.54 136790 1.739344 

min+ ((average-min)/4) 433.79 125090 1.583813 
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240-1 

min 1.41 1930 2.809650 

max 27.75 1935 0.339599 

average 13.67 1928* 0.429750 

min+ ((average-min)/2) 7.54 1929 1.967688 

min+ ((average-min)/3) 5.50 1929 2.605713 

min+ ((average-min)/4) 4.48 1929 2.689052 

240-2 

min 1.00 1866 2.557984 

max 27.75 1863 0.301114 

average 13.61 1853 0.369727 

min+ ((average-min)/2) 7.31 1849 2.443762 

min+ ((average-min)/3) 5.20 1847* 2.450805 

min+ ((average-min)/4) 4.15 1847* 2.828947 

 

5.5.1 Sensitivity Analysis of the Proposed Heuristics 

We have examined the average quality of each variant (case 1, case 2) for eleven 

sample problems. To this end we have performed each heuristic for every starting 

node of cell points   Table 5.8 Shows the results. Each line corresponds 

to one case and gives the length of the best, resp. worst tour, the average tour length 

obtained, and the span between best and worst tour (i.e., worst quality – best quality).  

Table 5.8: Sensitivity Analysis for the Proposed Heuristics 

Heuristic Minimum Maximum Average Span 

80-1 



 

case (1) 49804 51435 50963.83 1631 

case (2) 46645 48707 48331.5 2062 

80-2 

case (1) 50294 51894 51198.33 1600 

case (2) 50755 52233 51511.17 1478 

100-1 

case (1) 68146 71677 70527.33 3531 

case (2) 67815 71477 70676 3662 

100-2 

case (1) 75949 80284 78728.6 4335 

case (2) 76776 80814 79584.2 4038 

25-15-1 

case (1) 72722 76348 75396 3626 

case (2) 73455 76153 75354.67 2698 

25-15-2 

case (1) 83371 86243 85390.83 2872 

case (2) 84072 86651 86136.3 2579 

25-15-3 

case (1) 81881 85943 83796.86 4062 

case (2) 80267 92700 85576.5 12433 

200-1 

case (1) 111450 115580 114483.3 4130 

case (2) 112530 115510 114023.3 2980 

200-2 

case (1) 123940 128530 126695 4590 

case (2) 124840 136790 128030 11950 

240-1 

case (1) 1429.8 1475.5 1457.32 45.7 

case (2) 1928 1935 1930 7 



 

240-2 

case (1) 1405.6 1492.7 1435.72 87.1 

case (2) 1847 1866 1858 19 

 

The results verify that case (1) more than case (2) leads to the best results but the 

average quality of the tours obtained by two cases are not significantly different.  

Therefore, we can conclude two variants perform more or less the same. The span is 

considerable; the quality of the tours strongly depends on the choice of the starting 

node. 

 

5.5.2 CPU Times for the Proposed Heuristics  

CPU times for the complete set of the instances are shown in Figure 5.3. The running 

times for the variants do not include the time to plot the graph obtained. Time scale is 

based on second.  

 

Figure 5.3: CPU Times for Two Cases of Proposed Heuristic 



 

Figure 5.3 clearly visualizes that the time for both heuristics is highly problem-size 

dependent. As we expect the running time of case (2) is more than case (1) because 

checking the possibility of inserting to the middle points takes more times.   

5.5.3 Comparison of Different Thresholds  

We continue this chapter with a comparative assessment of all threshold values used 

for our instances. Comparison results are listed in Table 5.9. We give number of best 

solutions found by every threshold obtained from both heuristics mentioned. 

 

 

Table 5.9: Comparison of Thresholds 

Method of calculation Threshold No. of best solutions 

median of top 10% 7 

min 1 

max 0 

average 3 

min+ ((average-min)/2) 5 

min+ ((average-min)/3) 6 

min+ ((average-min)/4) 4 

Table 5.9 shows that there is no clear winner comparing all thresholds but it is 

obvious that maximum distance as the threshold value cannot be a good value in our 

proposed heuristic. Using maximum distance somehow we would not able to escape 

from nearest neighbor selection process and the result will be like the nearest 

neighbor heuristic algorithm. Interestingly, applying the minimum distance as the 

threshold value is not a good value because in this way we will use insertion process 



 

after first two nodes. It means that combination of these two heuristic can give better 

result.    

5.6 Calculation of the Approximate Performance Ratio 

We close the chapter with a relative quality by lower bounds and upper bounds 

discussed earlier. We now assess the performance of our iterative algorithm. Namely, 

we compare the best tour generated by the heuristics with the best found lower bound 

for the respective problem instances obtained using the MTZ and DFJ models. 

Qualities are computed with respect to these best found lower bounds and are given 

in Table 5.10. The calculating performance ratio is given by:  

 

Due to Table 5.10 we can expect that, on the average, our proposed heuristic method 

can produce a solution with a certain 5.1% gap of the best found lower bound.    

Table 5.10: Calculation of the Performance Ratio 

Problem Best LB Best UP % of P.R. 

80-1 44328.00 46645.00 5.23% 

80-2 48397.46 50294.00 3.92% 

100-1 63770.19 67815.00 6.34% 

100-2 73341.70 75949.00 3.56% 

25-15-1 67874.90 72722.00 7.14% 

25-15-2 77322.60 83371.00 7.82% 

25-15-3 73600.14 80267.00 9.06% 

200-1 104322.00 111450.00 6.83% 

200-2 119307.61 123940.00 3.88% 



 

240-1 1407.90 1429.80 1.56% 

240-2 1398.30 1405.60 0.52% 

 

  

 

 

Table A4: Distance matrix of Problem 15-city 

 
ABADAN ASTARA ARAK ARDABIL URMIA ISFAHAN AHVAZ BABOL BIRJAND TABRIZ TEHRAN JOLFA CHABAHAR RASHT ZANJAN 

ABADAN 0 1351 704 1401 1192 868 123 1226 1889 1198 997 1333 2088 1162 1090 

ASTARA 1351 0 766 77 604 953 1228 515 1737 296 514 431 2475 189 454 

ARAK 704 766 0 843 786 288 581 522 1606 785 239 920 1872 577 505 

ARDABIL 1401 77 834 0 527 1030 1305 592 1814 219 591 354 2552 266 377 

URMIA 1192 604 786 527 0 1074 1064 1136 2220 308 907 308 2614 739 588 

ISFAHAN 868 953 288 1030 1074 0 745 668 1173 1038 439 1173 1584 764 757 

AHVAZ 123 1228 581 1305 1064 745 0 1103 1918 1075 874 1210 2153 1039 967 

BABOL 1226 515 522 592 1136 668 1103 0 1222 828 229 963 2190 343 548 

BIRJAND 1889 1737 1606 1814 2220 1173 1918 1222 0 1912 1313 2047 1166 1548 1622 

TABRIZ 1198 296 785 219 308 1038 1075 828 1912 0 599 135 2560 485 280 

TEHRAN 997 514 239 591 907 439 874 229 1313 599 0 734 1961 325 319 

JOLFA 1333 431 920 354 308 1173 1210 963 2047 135 734 0 2695 620 415 

CHABAHAR 2088 2475 1872 2552 2614 1584 2153 2190 1166 2560 1961 2695 0 2286 2280 

RASHT 1162 189 577 266 739 764 1039 343 1548 485 325 620 2286 0 348 

ZANJAN 1090 454 505 377 588 757 967 548 1622 280 319 415 2280 348 0 

 

 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 



 

 

Table A5: Distance matrix between cities (ABADAN, ASTARA, ARAK, 

ARDABIL, URMIA, ISFAHAN, AHVAZ, BABOL, BIRJAND, TABRIZ, 

TEHRAN, JOLFA, CHABAHAR, RASHT, ZANJAN, SEMNAN, SHIRAZ, 

GHAZVIN, KERMAN, MASHHAD) 
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