

 Optimizing the Route of an Assembly Arm

Hajieh Jabbari K.

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Industrial Engineering

Eastern Mediterranean University

January 2011

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director (a)

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Industrial Engineering.

 Asst. Prof. Dr. Gokhan Izbirak

 Chair, Department of Industrial Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Industrial

Engineering.

 Prof. Dr. Bela Vizvari

 Supervisor

 ExaminingCommittee

1. Prof. Dr. Bela Vizvari

2. Prof. Dr. Alagar Rangan

3. Asst. Prof. Dr. Gokhan Izbirak

ABSTRACT

Optimizing the route of an assembly arm is a procedure of finding placement tours of

pick and place robot's arm for the equipping of Printed Circuit Board (PCB). The

problem of finding placement tours is a production planning problem with n

positions on a board as the assembly points and n bins containing n components as n

locations for the bins, called cell points. PCB manufacturing requires a good route

for the robot that makes production, so that time savings can be achieved. In the

robots considered, working time of the robot is proportional to the distance travelled,

and the problem appears as a combination of the Traveling Salesman Problem (TSP)

and the matching problem. Such a problem is a special type of the TSP, known as the

bipartite TSP. Given the complete graph on vertices, a weight

function and a partition of into 2 subsets of size , bipartite TSP

is to find a Hamiltonian cycle of minimum weight that visits the subsets in a fixed

alternating order. The problem has simulated many efforts to find an efficient

algorithm but no algorithm is presently available that can solve for the optimal

solution of this problem in polynomial time. As its complexity is NP-Complete the

general opinion of scientists is that a fast polynomial algorithm does not exist.

The aim of this thesis is to introduce an efficient approximation algorithm for

medium-sized (up to 500 assembly points) problems and to derive bounds for the

typical length of optimal tours. We present an iterative algorithm which applies a

cutting model to get a shorter lower bound by adding cuts to the Linear Programming

(LP) relaxations and a combined heuristic algorithm for finding an acceptable upper

bound when the optimal integer solution is not found. The method is applied for both

Dantzig-Fulkerson-Johnson and Miller-Tucker-Zemlin models. As the problem is

NP-Complete, it is often unnecessary to have an exact solution. Thus a special

heuristic algorithm is developed to obtain near-optimal solution in a reasonable time,

suitable for practical purposes. The developed heuristic method is applied a

constructive scheme combining two famous efficient heuristics: Nearest Neighbor

and Insertion algorithms.

Keywords: TSP, Bipartite Graph, Pick and Place Robot, Heuristic Algorithms,

Minimal Cut.

ÖZ

Bir montaj kolu rota optimizasyonu seçme ve yerleştirme robot kolunun yerleştirme

turlarını bulma işlemidir ki Baskılı Devrenin onatılması için kullanılır. Yerleştirme

turları bulma sorunu bir üretim planlama sorunudur. Bu problemlerde montaj

noktaları için n tane pozisyon vardır ve her birisinin içerisinde bir tane birleşen

parçası yerleştirilmiş n tane kutu vardır ki bunlara hücre denilir. Baskılı devre üretimi

zaman tasarufu elde edebilir böylece üretim yapan robot için iyi bir rota bulunması

gerekir. Ele alınan robotlarda çalışma süresi gezilen mesafe ile orantılıdır. Bu tip

problemler Gezgin Satıcı Problemi ve Eşleştirme Probleminin birleşimi olarak

görülür. Böyle bir problem özel gezgin satıcı problemidir ki ikili gezgin satıcı

problemi olarak bilinir. Verilen tamamlanmış grafikde G=(V,E), 2n köşe noktası ve

ağırlık fonksiyonu W:E￫R≥0 ve V iki n taneli alt kümeye bölünen ikili gezgin satici

problemi minumum agırlıklı Hamilton çevrimi bulmakdır ki bir alt kümeyi sabit bir

alternatif sırayla ziyaret eder. Etkin bir algorithma bulmak için çok çaba harcanmış

ama halen bu sorunun optimal çözümü bulmak için polinom zamanda bir algoritma

bulunmamıştır. Bilim adamlarının genel görüşüne göre hızlı bir polinom algoritma

yoktur çünkü bu problem bir polinom zamanlı olmayan-tam problemidir.

Bu tezin amacı orta büyüklükteki soruları (500 montaj noktasına kadar) için etkin bir

yaklaşım algoritması tanıtmaktır. En uygun turların uzunluğunun sınırlarını türetir.

Biz bir yenilenen algoritma sunuyoruz ki bir kesim modeli ve birleştirilmiş sezgisel

algoritmadan oluşur. Optimal tam sayı çözüm bulunmadığında kesim modelini daha

yakın bir alt sınırı ve sezgisel algoritmayı kabul edilebilir bir üst sınırı bulmak için

kullanıyoruz. Bu yöntem Dantzig-Fulkerson-Johnson ve Miller-Tucker-Zemlin

modelleri için uygulanmıştır. Problem NP-Tam olduğu için çoğu kez kesin bir çözüm

olması gereksizdir. Bu nedenle özel bir sezgisel algoritma geliştirilmiştir ki

neredeyse optimal çözümü makul bir süre içerisinde ve pratik amaçlar için uygun

olan cevabı elde ediyor. Geliştirilmiş sezgisel yöntem iki tane ünlü etkin yapısal

sezgiselin birleşimidir. Bahsedilen iki sezgisel algoritma en yakın komşu ve

yerleştirme algoritmalarıdır.

Anahtar Kelimeler: Gezgin Satici Problemi, Ikili Grafik, Ceçme ve Yerleştirme

Robotu, Sezgisel Algoritmalar, Minimal Kesme

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGMENT ... viii

LIST OF TABLES .. xiv

LIST OF FIGURES .. xvi

LIST OF PROGRAMS ... xviii

1 INTRODUCTION .. 1

1.1 Industrail Robots .. 1

1.1.1 Robot Structure ... 2

 1.1.1.1 Body of the Robotic Arm ... 2

 1.1.1.2 Robot Head .. 3

1.1.2 Robot Specifications ... 3

1.1.3 Robot Classifications .. 4

1.2 Pick and Place Robots .. 7

1.3 Traveling Salesman Problem ... 9

1.4 Outline of the Thesis .. 11

2 Literature Review .. 13

2.1 Traveling Salesman Problem Origin .. 13

2.1.1 Exact Algorithms .. 14

2.1.2 Heuristic Algorithms ... 16

 2.1.2.1 Constructive Algorithms .. 17

 2.1.2.2 Iterative Improvement Algorithms ... 18

 2.1.2.3 Composite Algorithms ... 19

 2.1.2.4 Randomized Improvement Algorithms .. 19

2.1.3 Polyhedral Approaches of TSP ... 20

2.2 Alternating Traveling Salesman Problem .. 22

3 Model Definition and Problem Statement .. 24

3.1 The Printed Circuit Board Assembly Problem .. 25

3.2 Mathematical Models of TSP .. 26

3.2.1 The Dantzig, Fulkerson, Johnson Formulation ... 26

3.2.2 The Miller, Tucher, Zemlin Formulation .. 27

3.2.3 The Gavish and Graves Flow Based Formulation .. 28

3.2.4 Multi-Commodity Network Model ... 29

3.2.5 The Fox, Gavish, Graves Time Staged Formulation 30

3.2.6 The Vajda Stage Dependent Model .. 31

3.3 Polyhedral Approaches of TSP .. 32

3.3.1 Subtour Elimination Inequalities .. 32

3.3.2 Comb Inequalities ... 34

3.4 Lower Bounds of the Optimal Value ... 35

3.4.1 The 2-Matching Relaxation... 36

3.4.2 The 1-Tree Bound ... 37

3.4.3 Geometric Bounds ... 37

3.4.4 The Christofides Lower Bound ... 38

3.5 Heuristic Methods .. 40

3.5.1 Nearest Neighbor Constructive Heuristic ... 40

3.5.2 Node and Edge Insertion Improvement Heuristic ... 40

3.6 Cutting Plane Methods ... 41

3.7 Application of Theory for Medium-size Bipartite TSP ... 43

4 Model Development .. 45

4.1 Assumptions ... 46

4.1.1 Symmetric TSP ... 46

4.1.2 Euclidean Bipartite TSP .. 46

4.1.3 Edge Distance as the Weight... 47

4.1.4 Robot Arm With Limited Capacity ... 47

4.1.5 One Head Placement Robot .. 47

4.1.6 Standard Bipartite TSP .. 47

4.1.7 Suppressed Picking/Insertion Times ... 47

4.2 Applied Exact Methods .. 47

4.2.1 The DFJ Model for Directed Cases ... 47

4.2.2 The DFJ Model for Undirected Cases ... 47

4.2.3 The MTZ Model .. 48

4.2.4 Labeling Technique ... 48

4.2.5 Finding Minmal Cut .. 49

4.3 Proposed Heuristic Algorithm ... 53

4.4 Proposed Iterative Algorithm for the Medium-Size Bipartite TSP 58

5 Computational Experiments .. 59

 5.1 Modeling of the DFJ and MTZ Formulations .. 59

 5.2 Plotting the Graphs... 61

 5.3 Appliying Labeling Technique .. 61

 5.4 Solving the Minimal Cut Model .. 61

 5.5 Applying the Proposed Heuristic Algorithm ... 66

5.5.1 Sensitivity Analysis of the Proposed Heuristic .. 70

5.5.2 CPU Times for the Proposed Heuristics ... 72

5.5.3 Comparison of Different Thresholds .. 72

 5.6 Calculation of the Approximate Performance Ratio .. 73

6 Concluding Remarks and Future Work .. 75

REFERENCES... 78

APPENDICES ... 84

Appendix A: Input Data ... 85

Appendix B: LINGO Programs ... 104

Appendix C: MATLAB Programs ... 108

Appendix D: Some Output Plots .. 117

LIST OF TABLES

Table 1.1: Milestones in Solution of the TSP Instances .. 11

Table 5.1: Initial Results of 10-City Problem with MTZ Model 62

Table 5.2: Results of Cutting Model for Problem 10-City .. 63

Table 5.3: Results of the DFJ Model ... 65

Table 5.4: Results of the MTZ Model .. 65

Table 5.5: Different Calculation Methods of Threshold .. 66

Table 5.6: Heuristic Results Case (1)... 67

Table 5.7: Heuristic Results Case (2)... 69

Table 5.8: Sensitivity Analysis for the Proposed Heuristics .. 71

Table 5.9: Comparison of Thresholds .. 73

Table 5.10: Calculation of the Performance Ratio ... 74

Table A1: Some Famous Pick and Place Machines and their Specifications................... 86

Table A2: Distance Matrix of Problem 6-City ... 87

Table A3: Distance Matrix of Problem 10-City ... 87

Table A4: Distance Matrix of Problem 15-City ... 88

Table A5: Distance Matrix of Problem 20-City ... 89

Table A6: Input Data for Problem 80-1 .. 90

Table A7: Input Data for Problem 80-2 .. 91

Table A8: Input Data for Problem 100-1 .. 92

Table A9: Input Data for Problem 100-2 .. 93

Table A10: Input Data for Problem 25-15-1 ... 94

Table A11: Input Data for Problem 25-15-2 ... 95

Table A12: Input Data for Problem 25-15-3 ... 96

Table A13: Input Data for Problem 200-1 .. 97

Table A14: Input Data for Problem 200-2 .. 98

Table A15: Input Data for Problem 240-1 .. 99

Table A16: Input Data for Problem 240-2 .. 101

Table A17: Labels of Problem 25-15-1 After Solving with MTZ Model 103

LIST OF FIGURES

Figure 1.1: Cartesian Robot ... 5

Figure 1.2: SCARA Robot ... 5

Figure 1.3: Articulated Robot .. 6

Figure 1.4: Parallel Robot .. 6

Figure 1.5: Cylindrical Robot .. 7

Figure 1.6: Polar Robot .. 7

Figure 1.7: Pick and Place Machine ... 9

Figure 2.1: Progress in TSP, Log Scale ... 16

Figure 3.1: Printed Circuit Board ... 24

Figure 3.2: Graphical View of 6-City Problem’s Solution .. 33

Figure 3.3: Optimal Solution of the 6-City Problem ... 34

Figure 3.4: A Comb with 3 Teeth .. 35

Figure 3.5: A 1-Tree Sample.. 37

Figure 3.6: A System with 6 Circles and 2 Moats ... 38

Figure 3.7: Illustration of Christofides Heuristic ... 39

Figure 3.8: Edge Insertion Move ... 41

Figure 3.9: Illustration of Cutting Plane .. 42

Figure 4.1: Samples of Directed and Undirected Graph .. 46

Figure 4.2: Labeling Technique Flow Chart .. 49

Figure 4.3: An Example of a Cut in a Graph ... 50

Figure 4.4: Edge Insertion Process .. 54

Figure 4.5: Different Insertion Possibilities in the Bipartite Graph 55

Figure 5.1: Structure of Distance Matrix of PCB Problems .. 60

Figure 5.2: Flow Between Set '1' and Set '0' .. 64

Figure 5.3: CPU Times for Two Cases of Proposed Heuristic .. 72

Figure E1: Plot of Initial MTZ Output for Problem 25-15-1.. 118

Figure E2: Plot of Initial MTZ Output for Problem 25-15-2.. 118

Figure E3: Plot of Initial MTZ Output for Problem 240-1 ... 119

Figure E4: Plot of Initial MTZ Output for Problem 240-2 ... 119

Figure E5: Plot of the Best Heuristic Output for Problem 25-15-1 120

Figure E6: Plot of the Best Heuristic Output for Problem 25-15-2 120

Figure E7: Plot of the Best Heuristic Output for Problem 25-15-3 121

Figure E8: Plot of the Best Heuristic Output for Problem 240-1 122

Figure E9: Plot of the Best Heuristic Output for Problem 240-2 122

LIST OF PROGRAMS

Program B1: The MTZ Model Formulation ... 105

Program B2: The DFJ Model Formulation ... 105

Program B3: Cut Model for 10-City Problem (first_cut model) 106

Program B4: The MTZ Model and Added Cuts ... 107

Program C1: Program of Calculating Distance Matrix .. 109

Program C2: Program of Plotting the TSP Solution ... 109

Program C3: Program of Labeling Technique.. 110

Program C4: Program of Proposed Heuristic _Case(1) .. 111

Program C5: Program of Proposed Heuristic _Case(2) .. 114

To My Love:

Ehsan

ACKNOWLEDGMENT

It is a pleasure to thank the many people who made this thesis possible.

In the first place I would like to record my gratitude to my supervisor, Prof. Dr. Bela

Vizvari. With his enthusiasm, his inspiration, and his great efforts to explain things

clearly and simply, he helped to make mathematics especially graph theory fun for

me. Above all and the most needed, he provided me unflinching encouragement and

support in various ways. His truly scientist intuition has made him as a constant oasis

of ideas and passions in science, which exceptionally inspire and enrich my growth

as a student, a researcher and an engineer want to be. Throughout two years that I

was studying my master degree, he provided good teaching and lots of good ideas. I

am indebted to him more than he knows.

I gratefully acknowledge Moosa Moghimi Hadji for his advice, and crucial

contribution, which made him a backbone of this research and so to this thesis.

Moosa, I am grateful in every possible way.

I would like to place on record, my sincere thanks to Prof. Dr. Alagar Rangan for his

constructive comments and careful evaluation of the thesis.

I am deeply indebted to Ass. Prof. Dr. Gokhan Izbirak the chairman of the industrial

engineering department for providing a loving environment to learn and grow.

It is impossible to overstate the influence of the Industrial Engineering department

members in EMU University. I wish to thank them for assisting me in many different

ways. Professors, instructors, research assistants, secretor and librarians deserve

special mention.

I owe quit a lot to my family who encouraged me all throughout my studies. I would

like to thank them because they raised me, supported me, taught me, and loved me.

Words fail me to express my appreciation to my husband Ehsan whose dedication,

love and persistent confidence in me, has taken the load off my shoulders. I owe him

for being unselfishly let his intelligence, passions, and ambitions collide with mine.

Therefore, I would also thank Moghimi Hadji family for letting me take his hand in

marriage, and accepting me as a member of the family, warmly.

Finally, I would like to thank everybody who was important to the successful

realization of thesis, as well as expressing my apology that I could not mention

personally one by one.

APPENDICES

Appendix A: Collected Data

Table A1: Some Famous Pick and Place Machines and Their Specifications

MFCTR
Product

Name
Specifications

APS

Novastar

APS

Novastar

L60

Max board size: 343*813 mm; Max placement rate: 4800cph;

Dispense option: 10,000 dots per hr.

Fuji CP642 ME
Max board size: 457*356 mm; Max placement rate: 40,000cph;

Placement accuracy: 0.1 mm; two feeder carriages

Fuji QP 242E
Max board size: 457*356 mm; Max placement rate: 14,000cph;

Placement accuracy: 0.1 mm; Modular multi-purpose machine

Fuji IP 1
Max placing points: 999 sequences/program; Max placement

rate: 1.5 sec/part; Placement accuracy: 0.1 mm

Hitachi GXH-1
Max component size: 44*44 mm; Max placement rate:

60,000cph; 200 feeder positions 8 mm

Mydata
Mydata

TP11 UFP

Max component size: 51.9*51.9*15 mm; Max picking rate:

6,000cph; 128 feeder positions 8 mm; Pick up nozzles 7

PMJ HiSAC 1000
Odd form placement system; Pick & place travel:

450*870*150mm

Siemens
Siplace 80

F5 HM

With 12 nozzle collect and place plus pick and place head or 6

nozzle; Max placement rate: pick & place (1,800 cph);

Placement accuracy: 38 micron 3 Sigma (p & p head)

Siemens Siplace CF

With Compact 6 nozzle collect and place plus pick & place

head; Max placement rate: pick & place (1,800 cph);

Placement accuracy: 40 micron 4 Sigma (p & p head)

Siemens
Siplace 80

S27 HM

With 12 nozzle collect and place plus pick and place head or

optional 6 nozzle; Max placement rate: 12 nozzle (26,500cph);

Placement accuracy: 90 micron 4 Sigma (12 nozzle head)

Universal
Universal

GSM II

X, Y Accuracy: 0.0381 mm; Rotational accuracy: 0.06 degree;

Pick & place travel: 727.46*720.73*762.00 mm; Max. board:

508*457 mm

 cph is the abbreviation of chip per hour

Table A2: Distance Matrix of Problem 6-City

 1 2 3 4 5 6

 ABADAN ASTARA ARAK ARDABIL URMIA ISFAHAN

1 ABADAN 0 1351 704 1401 1192 868

2 ASTARA 1351 0 766 77 604 953

3 ARAK 704 766 0 843 786 288

4 ARDABIL 1401 77 834 0 527 1030

5 URMIA 1192 604 786 527 0 1074

6 ISFAHAN 868 953 288 1030 1074 0

Table A3: Distance Matrix of Problem 10-City

 ABADAN ASTARA ARAK ARDABIL URMIA ISFAHAN AHVAZ BABOL BIRJAND TABRIZ

ABADAN 0 1351 704 1401 1192 868 123 1226 1889 1198

ASTARA 1351 0 766 77 604 953 1228 515 1737 296

ARAK 704 766 0 843 786 288 581 522 1606 785

ARDABIL 1401 77 834 0 527 1030 1305 592 1814 219

URMIA 1192 604 786 527 0 1074 1064 1136 2220 308

ISFAHAN 868 953 288 1030 1074 0 745 668 1173 1038

AHVAZ 123 1228 581 1305 1064 745 0 1103 1918 1075

BABOL 1226 515 522 592 1136 668 1103 0 1222 828

BIRJAND 1889 1737 1606 1814 2220 1173 1918 1222 0 1912

TABRIZ 1198 296 785 219 308 1038 1075 828 1912 0

Table A6: Input Data for Problem 80-1

Point X Y Point X Y

1 100 100 41 388 378

2 100 200 42 328 1018

3 100 300 43 1518 1281

4 100 400 44 299 251

5 100 500 45 1390 1833

6 100 600 46 1052 1510

7 100 700 47 246 1878

8 100 800 48 1548 851

9 100 900 49 671 1441

10 100 1000 50 1218 1666

11 100 1100 51 442 1728

12 100 1200 52 1758 453

13 100 1300 53 1673 1064

14 100 1400 54 634 1390

15 100 1500 55 769 1640

16 100 1600 56 1189 1173

17 100 1700 57 592 1865

18 100 1800 58 1922 154

19 100 1900 59 1017 1084

20 100 2000 60 1897 979

21 2200 100 61 939 1654

22 2200 200 62 409 1779

23 2200 300 63 1559 1981

24 2200 400 64 412 324

25 2200 500 65 772 1654

26 2200 600 66 185 269

27 2200 700 67 166 1301

28 2200 800 68 1022 241

29 2200 900 69 532 243

30 2200 1000 70 1 14

31 2200 1100 71 772 655

32 2200 1200 72 73 107

33 2200 1300 73 1580 103

34 2200 1400 74 255 303

35 2200 1500 75 1910 949

36 2200 1600 76 543 1976

37 2200 1700 77 1654 816

38 2200 1800 78 1911 673

39 2200 1900 79 1239 482

40 2200 2000 80 1702 1559

Table A7: Input Data for Problem 80-2

Point X Y Point X Y

1 100 100 41 276 895

2 100 200 42 1303 1754

3 100 300 43 1005 1992

4 100 400 44 1247 186

5 100 500 45 24 839

6 100 600 46 1559 1970

7 100 700 47 72 781

8 100 800 48 608 466

9 100 900 49 1478 1766

10 100 1000 50 330 834

11 100 1100 51 1249 1675

12 100 1200 52 1647 1358

13 100 1300 53 931 250

14 100 1400 54 608 1074

15 100 1500 55 246 1398

16 100 1600 56 529 323

17 100 1700 57 1876 177

18 100 1800 58 1035 390

19 100 1900 59 1660 1568

20 100 2000 60 1698 1715

21 2200 100 61 1544 1510

22 2200 200 62 1409 615

23 2200 300 63 602 1137

24 2200 400 64 701 1982

25 2200 500 65 730 595

26 2200 600 66 1633 668

27 2200 700 67 1453 1092

28 2200 800 68 713 1287

29 2200 900 69 691 958

30 2200 1000 70 844 1205

31 2200 1100 71 185 1477

32 2200 1200 72 1031 1136

33 2200 1300 73 280 150

34 2200 1400 74 131 1056

35 2200 1500 75 948 1919

36 2200 1600 76 79 774

37 2200 1700 77 1016 26

38 2200 1800 78 1713 78

39 2200 1900 79 1984 1289

40 2200 2000 80 759 1753

Table A8: Input Data for Problem 100-1

Point X Y Point X Y

1 100 100 51 530 2297

2 100 200 52 2157 2019

3 100 300 53 1926 2416

4 100 400 54 231 1387

5 100 500 55 640 1773

6 100 600 56 1105 2358

7 100 700 57 2304 1764

8 100 800 58 1943 150

9 100 900 59 461 592

10 100 1000 60 1645 1702

11 100 1100 61 462 1863

12 100 1200 62 1186 1049

13 100 1300 63 104 2238

14 100 1400 64 304 1929

15 100 1500 65 293 569

16 100 1600 66 1925 1585

17 100 1700 67 2427 687

18 100 1800 68 1555 2302

19 100 1900 69 440 2396

20 100 2000 70 2298 1002

21 100 2100 71 1203 585

22 100 2200 72 479 1131

23 100 2300 73 1441 2509

24 100 2400 74 255 1666

25 100 2500 75 616 2109

26 2700 100 76 1113 1855

27 2700 200 77 2416 1767

28 2700 300 78 419 895

29 2700 400 79 382 2516

30 2700 500 80 621 749

31 2700 600 81 136 1219

32 2700 700 82 721 1907

33 2700 800 83 521 2097

34 2700 900 84 1152 353

35 2700 1000 85 1744 528

36 2700 1100 86 2050 2367

37 2700 1200 87 728 2091

38 2700 1300 88 2270 2545

39 2700 1400 89 443 1143

40 2700 1500 90 2589 703

41 2700 1600 91 641 494

42 2700 1700 92 1885 451

43 2700 1800 93 967 2543

44 2700 1900 94 2067 1545

45 2700 2000 95 2016 1379

46 2700 2100 96 516 1330

47 2700 2200 97 103 1187

48 2700 2300 98 1896 399

49 2700 2400 99 2290 832

50 2700 2500 100 2040 633

Table A9: Input Data for Problem 100-2

Point X Y Point X Y

1 100 100 51 648 558

2 100 200 52 2112 1091

3 100 300 53 901 804

4 100 400 54 961 1395

5 100 500 55 1114 128

6 100 600 56 437 1357

7 100 700 57 1304 1859

8 100 800 58 2228 526

9 100 900 59 1547 1455

10 100 1000 60 1071 616

11 100 1100 61 1881 842

12 100 1200 62 471 1202

13 100 1300 63 1533 2381

14 100 1400 64 140 854

15 100 1500 65 296 883

16 100 1600 66 522 440

17 100 1700 67 902 1039

18 100 1800 68 274 2485

19 100 1900 69 263 2390

20 100 2000 70 906 1938

21 100 2100 71 329 420

22 100 2200 72 1977 2003

23 100 2300 73 1435 136

24 100 2400 74 2386 1087

25 100 2500 75 1186 301

26 2700 100 76 1295 515

27 2700 200 77 2044 2537

28 2700 300 78 1738 542

29 2700 400 79 2020 330

30 2700 500 80 439 422

31 2700 600 81 210 1217

32 2700 700 82 2077 1446

33 2700 800 83 1459 1158

34 2700 900 84 1839 1403

35 2700 1000 85 2065 1823

36 2700 1100 86 2102 829

37 2700 1200 87 2137 2210

38 2700 1300 88 1092 827

39 2700 1400 89 1723 935

40 2700 1500 90 2215 948

41 2700 1600 91 1604 2529

42 2700 1700 92 1297 190

43 2700 1800 93 2414 1651

44 2700 1900 94 963 1535

45 2700 2000 95 1333 413

46 2700 2100 96 2596 528

47 2700 2200 97 528 1649

48 2700 2300 98 2360 1466

49 2700 2400 99 1411 929

50 2700 2500 100 698 2393

Point X Y Point X Y Point X Y Point X Y

1 100 200 41 1700 200 81 134 1837 121 330 1111

2 100 300 42 1700 300 82 1512 867 122 499 386

3 100 400 43 1700 400 83 832 1883 123 1422 1219

4 100 500 44 1700 500 84 530 2534 124 980 1922

5 100 600 45 1700 600 85 1186 2540 125 753 1003

6 100 700 46 1700 700 86 1557 523 126 1030 1366

7 100 800 47 1700 800 87 1050 1783 127 293 1290

8 100 900 48 1700 900 88 749 848 128 1281 1722

9 100 1000 49 1700 1000 89 970 385 129 1269 2315

10 100 1100 50 1700 1100 90 249 324 130 1298 2362

11 100 1200 51 1700 1200 91 1563 869 131 1450 2517

12 100 1300 52 1700 1300 92 559 1925 132 1596 1423

13 100 1400 53 1700 1400 93 166 272 133 881 778

14 100 1500 54 1700 1500 94 1551 1071 134 1453 2238

15 100 1600 55 1700 1600 95 868 993 135 559 1489

16 100 1700 56 1700 1700 96 924 734 136 140 1896

17 100 1800 57 1700 1800 97 1218 566 137 533 2328

18 100 1900 58 1700 1900 98 416 1835 138 1161 432

19 100 2000 59 1700 2000 99 1275 830 139 804 530

20 100 2100 60 1700 2100 100 292 836 140 1510 786

21 100 2200 61 1700 2200 101 340 1191 141 1067 1271

22 100 2300 62 1700 2300 102 1243 1863 142 1199 1722

23 100 2400 63 1700 2400 103 353 548 143 1141 770

24 100 2500 64 1700 2500 104 304 517 144 322 1329

25 100 2600 65 1700 2600 105 143 1520 145 664 2551

26 200 100 66 200 2700 106 1241 630 146 1367 699

27 300 100 67 300 2700 107 1254 1849 147 1434 2293

28 400 100 68 400 2700 108 133 445 148 169 679

29 500 100 69 500 2700 109 841 1094 149 948 1120

30 600 100 70 600 2700 110 1540 198 150 1367 265

31 700 100 71 700 2700 111 115 1382 151 1598 616

32 800 100 72 800 2700 112 1252 835 152 1304 609

33 900 100 73 900 2700 113 933 1850 153 154 2140

34 1000 100 74 1000 2700 114 1116 1685 154 827 252

35 1100 100 75 1100 2700 115 1432 2117 155 1138 1154

36 1200 100 76 1200 2700 116 467 1814 156 136 1991

37 1300 100 77 1300 2700 117 434 1177 157 1045 1904

Table A10: Input Data for Problem 25-15-1

Table A11: Input Data for Problem 25-15-2

38 1400 100 78 1400 2700 118 1289 2131 158 1568 1569

39 1500 100 79 1500 2700 119 1506 2339 159 1396 2209

40 1600 100 80 1600 2700 120 1107 1846 160 1381 1800 Point X Y Point X Y Point X Y Point X Y

Table A12: Input Data for Problem 25-15-3

Point X Y Point X Y Point X Y Point X Y

1 100 200 41 1700 200 81 1319 633 121 567 1297

1 100 200 41 1700 200 81 811 1353 121 625 1500

2 100 300 42 1700 300 82 682 507 122 423 714

3 100 400 43 1700 400 83 696 1141 123 719 653

4 100 500 44 1700 500 84 427 2534 124 1179 653

5 100 600 45 1700 600 85 572 655 125 313 594

6 100 700 46 1700 700 86 746 2331 126 963 562

7 100 800 47 1700 800 87 1170 1845 127 1066 1556

8 100 900 48 1700 900 88 497 297 128 741 2104

9 100 1000 49 1700 1000 89 748 1018 129 133 228

10 100 1100 50 1700 1100 90 1110 1036 130 1485 1154

11 100 1200 51 1700 1200 91 602 2204 131 1245 926

12 100 1300 52 1700 1300 92 834 1719 132 492 401

13 100 1400 53 1700 1400 93 1130 1083 133 1256 2587

14 100 1500 54 1700 1500 94 1514 212 134 687 1673

15 100 1600 55 1700 1600 95 936 1349 135 915 2345

16 100 1700 56 1700 1700 96 805 1081 136 763 174

17 100 1800 57 1700 1800 97 1322 1230 137 374 861

18 100 1900 58 1700 1900 98 545 1796 138 621 1196

19 100 2000 59 1700 2000 99 929 2057 139 999 1198

20 100 2100 60 1700 2100 100 419 2495 140 1263 1238

21 100 2200 61 1700 2200 101 498 911 141 1376 2463

22 100 2300 62 1700 2300 102 162 2150 142 274 140

23 100 2400 63 1700 2400 103 909 2196 143 1051 1420

24 100 2500 64 1700 2500 104 876 1998 144 1170 226

25 100 2600 65 1700 2600 105 687 2479 145 1396 956

26 200 100 66 200 2700 106 275 886 146 1259 257

27 300 100 67 300 2700 107 338 157 147 722 1994

28 400 100 68 400 2700 108 1143 1084 148 823 727

29 500 100 69 500 2700 109 961 1468 149 320 830

30 600 100 70 600 2700 110 1455 2203 150 1186 860

31 700 100 71 700 2700 111 254 674 151 1547 1959

32 800 100 72 800 2700 112 1060 387 152 569 1630

33 900 100 73 900 2700 113 656 1203 153 402 201

34 1000 100 74 1000 2700 114 1309 1261 154 1557 1087

35 1100 100 75 1100 2700 115 648 1995 155 458 422

36 1200 100 76 1200 2700 116 1270 2032 156 474 2252

37 1300 100 77 1300 2700 117 423 1082 157 418 1613

38 1400 100 78 1400 2700 118 283 958 158 1365 2510

39 1500 100 79 1500 2700 119 556 1700 159 570 2156

40 1600 100 80 1600 2700 120 1012 1514 160 711 1819

2 100 300 42 1700 300 82 1566 2308 122 520 588

3 100 400 43 1700 400 83 761 444 123 1272 942

4 100 500 44 1700 500 84 1349 675 124 1003 231

5 100 600 45 1700 600 85 1564 1654 125 321 428

6 100 700 46 1700 700 86 184 1154 126 464 2365

7 100 800 47 1700 800 87 775 496 127 949 1486

8 100 900 48 1700 900 88 1529 1612 128 888 218

9 100 1000 49 1700 1000 89 836 834 129 696 1008

10 100 1100 50 1700 1100 90 1038 607 130 438 820

11 100 1200 51 1700 1200 91 571 1728 131 834 143

12 100 1300 52 1700 1300 92 1189 565 132 1165 2086

13 100 1400 53 1700 1400 93 1552 1752 133 797 288

14 100 1500 54 1700 1500 94 1029 1543 134 884 659

15 100 1600 55 1700 1600 95 142 278 135 791 2213

16 100 1700 56 1700 1700 96 1297 2213 136 826 1325

17 100 1800 57 1700 1800 97 1163 2247 137 158 878

18 100 1900 58 1700 1900 98 1255 1696 138 912 1434

19 100 2000 59 1700 2000 99 1360 1663 139 655 1565

20 100 2100 60 1700 2100 100 1086 711 140 965 2559

21 100 2200 61 1700 2200 101 584 698 141 250 2376

22 100 2300 62 1700 2300 102 525 389 142 1225 369

23 100 2400 63 1700 2400 103 706 873 143 1250 867

24 100 2500 64 1700 2500 104 202 1216 144 304 658

25 100 2600 65 1700 2600 105 1130 396 145 280 2492

26 200 100 66 200 2700 106 877 1971 146 1002 1903

27 300 100 67 300 2700 107 765 1390 147 118 183

28 400 100 68 400 2700 108 780 1597 148 827 1688

29 500 100 69 500 2700 109 1528 313 149 1285 1861

30 600 100 70 600 2700 110 640 1585 150 359 228

31 700 100 71 700 2700 111 1270 215 151 352 684

32 800 100 72 800 2700 112 735 726 152 581 1250

33 900 100 73 900 2700 113 1028 2522 153 377 2317

34 1000 100 74 1000 2700 114 1321 1524 154 1321 2057

35 1100 100 75 1100 2700 115 974 2279 155 1574 1313

36 1200 100 76 1200 2700 116 261 395 156 220 1568

37 1300 100 77 1300 2700 117 651 2151 157 1153 334

38 1400 100 78 1400 2700 118 1111 1444 158 900 2232

39 1500 100 79 1500 2700 119 1169 1933 159 437 1335

40 1600 100 80 1600 2700 120 503 2193 160 246 167

Table A13: Input Data for Problem 200-1

Point X Y Point X Y Point X Y Point X Y

1 100 100 51 200 100 101 1298 2196 151 1032 231

2 100 200 52 300 100 102 662 2443 152 1862 884

3 100 300 53 400 100 103 842 184 153 2529 1112

4 100 400 54 500 100 104 2025 1195 154 1011 1306

5 100 500 55 600 100 105 1198 989 155 455 463

6 100 600 56 700 100 106 320 1266 156 302 1414

7 100 700 57 800 100 107 634 189 157 152 1620

8 100 800 58 900 100 108 126 2576 158 1035 1091

9 100 900 59 1000 100 109 689 442 159 2236 706

10 100 1000 60 1100 100 110 1960 2396 160 1451 2545

11 100 1100 61 1200 100 111 2114 2339 161 1453 315

12 100 1200 62 1300 100 112 2531 2124 162 2080 1075

13 100 1300 63 1400 100 113 814 2197 163 340 1081

14 100 1400 64 1500 100 114 373 794 164 2230 2093

15 100 1500 65 1600 100 115 319 1792 165 917 1928

16 100 1600 66 1700 100 116 1878 1974 166 351 1763

17 100 1700 67 1800 100 117 1740 654 167 1749 1232

18 100 1800 68 1900 100 118 1434 523 168 1510 2358

19 100 1900 69 2000 100 119 548 243 169 501 2021

20 100 2000 70 2100 100 120 1216 443 170 580 823

21 100 2100 71 2200 100 121 1933 983 171 2180 1431

22 100 2200 72 2300 100 122 853 785 172 692 410

23 100 2300 73 2400 100 123 2405 629 173 233 595

24 100 2400 74 2500 100 124 2555 1596 174 788 1497

25 100 2500 75 2600 100 125 1120 476 175 1651 321

26 2700 100 76 200 2700 126 1138 779 176 1997 2335

27 2700 200 77 300 2700 127 1794 1590 177 1505 2255

28 2700 300 78 400 2700 128 902 1494 178 1382 478

29 2700 400 79 500 2700 129 208 522 179 1941 2120

30 2700 500 80 600 2700 130 1421 2335 180 950 811

31 2700 600 81 700 2700 131 523 2439 181 1920 484

32 2700 700 82 800 2700 132 1437 535 182 664 2011

33 2700 800 83 900 2700 133 2460 2598 183 1990 531

34 2700 900 84 1000 2700 134 1028 2188 184 1375 1463

35 2700 1000 85 1100 2700 135 2042 1188 185 1278 1721

36 2700 1100 86 1200 2700 136 2441 1359 186 478 1716

37 2700 1200 87 1300 2700 137 146 261 187 1399 1075

38 2700 1300 88 1400 2700 138 1350 2476 188 812 1255

39 2700 1400 89 1500 2700 139 2300 1771 189 1776 1414

40 2700 1500 90 1600 2700 140 2271 974 190 1585 134

41 2700 1600 91 1700 2700 141 2147 1265 191 847 597

42 2700 1700 92 1800 2700 142 1305 2518 192 2455 1404

43 2700 1800 93 1900 2700 143 1160 2359 193 2479 2183

44 2700 1900 94 2000 2700 144 238 204 194 1060 1497

45 2700 2000 95 2100 2700 145 880 874 195 1114 1936

46 2700 2100 96 2200 2700 146 1744 756 196 1514 916

47 2700 2200 97 2300 2700 147 2506 159 197 303 1367

48 2700 2300 98 2400 2700 148 2275 306 198 2217 2039

49 2700 2400 99 2500 2700 149 2509 1560 199 2585 1589

50 2700 2500 100 2600 2700 150 1982 1528 200 536 2207

Table A14: Input Data for Problem 200-2

Point X Y Point X Y Point X Y Point X Y

1 100 100 51 200 100 101 2068 1257 151 1707 2243

2 100 200 52 300 100 102 1742 1570 152 2134 1548

3 100 300 53 400 100 103 1963 832 153 1981 2164

4 100 400 54 500 100 104 938 2488 154 1548 1520

5 100 500 55 600 100 105 1422 1794 155 1047 514

6 100 600 56 700 100 106 415 1225 156 169 912

7 100 700 57 800 100 107 2279 1875 157 1010 826

8 100 800 58 900 100 108 2066 2171 158 2492 1952

9 100 900 59 1000 100 109 997 1083 159 242 643

10 100 1000 60 1100 100 110 1142 247 160 260 113

11 100 1100 61 1200 100 111 428 1291 161 2408 1329

12 100 1200 62 1300 100 112 795 2245 162 1132 1876

13 100 1300 63 1400 100 113 2392 173 163 522 1076

14 100 1400 64 1500 100 114 1051 176 164 1629 1795

15 100 1500 65 1600 100 115 309 2070 165 1999 805

16 100 1600 66 1700 100 116 565 687 166 2525 1368

17 100 1700 67 1800 100 117 201 1630 167 820 342

18 100 1800 68 1900 100 118 948 267 168 2571 2482

19 100 1900 69 2000 100 119 2402 1663 169 2368 851

20 100 2000 70 2100 100 120 162 1204 170 1533 1032

21 100 2100 71 2200 100 121 618 2213 171 601 2583

22 100 2200 72 2300 100 122 1478 1310 172 101 1967

23 100 2300 73 2400 100 123 2325 534 173 882 600

24 100 2400 74 2500 100 124 1989 1597 174 1433 1668

25 100 2500 75 2600 100 125 1981 1273 175 2093 1874

26 2700 100 76 200 2700 126 1921 2466 176 2044 2502

27 2700 200 77 300 2700 127 145 1524 177 765 1605

28 2700 300 78 400 2700 128 2502 2494 178 763 1096

29 2700 400 79 500 2700 129 1298 803 179 1016 1411

30 2700 500 80 600 2700 130 942 1576 180 1695 2060

31 2700 600 81 700 2700 131 1777 2084 181 473 559

32 2700 700 82 800 2700 132 835 1030 182 1315 794

33 2700 800 83 900 2700 133 2584 982 183 1228 1084

34 2700 900 84 1000 2700 134 2063 1499 184 691 1271

35 2700 1000 85 1100 2700 135 2046 230 185 1482 210

36 2700 1100 86 1200 2700 136 2137 1973 186 2017 1395

37 2700 1200 87 1300 2700 137 1615 2329 187 107 2492

38 2700 1300 88 1400 2700 138 2388 766 188 908 2040

39 2700 1400 89 1500 2700 139 1784 1196 189 1374 2073

40 2700 1500 90 1600 2700 140 1522 1385 190 1785 1792

41 2700 1600 91 1700 2700 141 204 1223 191 2423 1169

42 2700 1700 92 1800 2700 142 2455 2542 192 439 2094

43 2700 1800 93 1900 2700 143 1770 873 193 2372 2321

44 2700 1900 94 2000 2700 144 1113 1889 194 312 1832

45 2700 2000 95 2100 2700 145 2556 1733 195 2004 118

46 2700 2100 96 2200 2700 146 1763 2430 196 1607 2368

47 2700 2200 97 2300 2700 147 1595 2243 197 769 1535

48 2700 2300 98 2400 2700 148 1113 2024 198 2518 1160

49 2700 2400 99 2500 2700 149 2285 560 199 2055 1817

50 2700 2500 100 2600 2700 150 437 910 200 1654 1892

Table A15: Input Data for Problem 240-1

P X Y Z P X Y Z P X Y Z

1 1 0 1 41 1 0 3 81 1 21 2

2 2 0 1 42 2 0 3 82 2 21 2

3 3 0 1 43 3 0 3 83 3 21 2

4 4 0 1 44 4 0 3 84 4 21 2

5 5 0 1 45 5 0 3 85 5 21 2

6 6 0 1 46 6 0 3 86 6 21 2

7 7 0 1 47 7 0 3 87 7 21 2

8 8 0 1 48 8 0 3 88 8 21 2

9 9 0 1 49 9 0 3 89 9 21 2

10 10 0 1 50 10 0 3 90 10 21 2

11 11 0 1 51 11 0 3 91 11 21 2

12 12 0 1 52 12 0 3 92 12 21 2

13 13 0 1 53 13 0 3 93 13 21 2

14 14 0 1 54 14 0 3 94 14 21 2

15 15 0 1 55 15 0 3 95 15 21 2

16 16 0 1 56 16 0 3 96 16 21 2

17 17 0 1 57 17 0 3 97 17 21 2

18 18 0 1 58 18 0 3 98 18 21 2

19 19 0 1 59 19 0 3 99 19 21 2

20 20 0 1 60 20 0 3 100 20 21 2

21 1 0 2 61 1 21 1 101 1 21 3

22 2 0 2 62 2 21 1 102 2 21 3

23 3 0 2 63 3 21 1 103 3 21 3

24 4 0 2 64 4 21 1 104 4 21 3

25 5 0 2 65 5 21 1 105 5 21 3

26 6 0 2 66 6 21 1 106 6 21 3

27 7 0 2 67 7 21 1 107 7 21 3

28 8 0 2 68 8 21 1 108 8 21 3

29 9 0 2 69 9 21 1 109 9 21 3

30 10 0 2 70 10 21 1 110 10 21 3

31 11 0 2 71 11 21 1 111 11 21 3

32 12 0 2 72 12 21 1 112 12 21 3

33 13 0 2 73 13 21 1 113 13 21 3

34 14 0 2 74 14 21 1 114 14 21 3

35 15 0 2 75 15 21 1 115 15 21 3

36 16 0 2 76 16 21 1 116 16 21 3

37 17 0 2 77 17 21 1 117 17 21 3

38 18 0 2 78 18 21 1 118 18 21 3

39 19 0 2 79 19 21 1 119 19 21 3

40 20 0 2 80 20 21 1 120 20 21 3

Table A15: Input Data for Problem 240-1(continue)

P X Y Z P X Y Z P X Y Z

121 1 2 0 161 8 5 0 201 15 3 0

122 1 3 0 162 8 8 0 202 15 5 0

123 1 10 0 163 8 11 0 203 15 8 0

124 1 11 0 164 8 17 0 204 15 10 0

125 1 13 0 165 8 18 0 205 15 11 0

126 1 16 0 166 8 19 0 206 15 15 0

127 1 19 0 167 8 20 0 207 15 15 0

128 2 1 0 168 9 7 0 208 15 17 0

129 2 12 0 169 9 9 0 209 16 1 0

130 2 16 0 170 9 17 0 210 16 7 0

131 2 16 0 171 9 19 0 211 16 8 0

132 3 6 0 172 10 8 0 212 16 9 0

133 3 9 0 173 10 9 0 213 16 11 0

134 3 10 0 174 10 12 0 214 16 15 0

135 3 13 0 175 10 13 0 215 16 18 0

136 3 15 0 176 10 20 0 216 16 19 0

137 3 16 0 177 11 3 0 217 17 1 0

138 3 17 0 178 11 4 0 218 17 6 0

139 3 18 0 179 11 12 0 219 17 12 0

140 3 20 0 180 11 14 0 220 17 14 0

141 4 7 0 181 11 16 0 221 17 15 0

142 4 12 0 182 11 19 0 222 17 17 0

143 4 15 0 183 12 2 0 223 18 1 0

144 5 1 0 184 12 3 0 224 18 4 0

145 5 6 0 185 12 8 0 225 18 6 0

146 5 14 0 186 12 10 0 226 18 14 0

147 6 7 0 187 12 12 0 227 18 15 0

148 6 8 0 188 12 13 0 228 18 16 0

149 6 9 0 189 12 14 0 229 18 17 0

150 6 13 0 190 12 16 0 230 19 2 0

151 6 15 0 191 12 17 0 231 20 1 0

152 6 17 0 192 12 18 0 232 20 2 0

153 6 18 0 193 12 20 0 233 20 4 0

154 6 20 0 194 13 4 0 234 20 5 0

155 7 4 0 195 13 20 0 235 20 7 0

156 7 6 0 196 14 1 0 236 20 9 0

157 7 8 0 197 14 3 0 237 20 12 0

158 7 14 0 198 14 9 0 238 20 14 0

159 8 1 0 199 14 14 0 239 20 18 0

160 8 2 0 200 15 1 0 240 20 20 0

Table A16: Input Data for Problem 240-2

P X Y Z P X Y Z P X Y Z

1 1 0 1 41 1 0 3 81 1 21 2

2 2 0 1 42 2 0 3 82 2 21 2

3 3 0 1 43 3 0 3 83 3 21 2

4 4 0 1 44 4 0 3 84 4 21 2

5 5 0 1 45 5 0 3 85 5 21 2

6 6 0 1 46 6 0 3 86 6 21 2

7 7 0 1 47 7 0 3 87 7 21 2

8 8 0 1 48 8 0 3 88 8 21 2

9 9 0 1 49 9 0 3 89 9 21 2

10 10 0 1 50 10 0 3 90 10 21 2

11 11 0 1 51 11 0 3 91 11 21 2

12 12 0 1 52 12 0 3 92 12 21 2

13 13 0 1 53 13 0 3 93 13 21 2

14 14 0 1 54 14 0 3 94 14 21 2

15 15 0 1 55 15 0 3 95 15 21 2

16 16 0 1 56 16 0 3 96 16 21 2

17 17 0 1 57 17 0 3 97 17 21 2

18 18 0 1 58 18 0 3 98 18 21 2

19 19 0 1 59 19 0 3 99 19 21 2

20 20 0 1 60 20 0 3 100 20 21 2

21 1 0 2 61 1 21 1 101 1 21 3

22 2 0 2 62 2 21 1 102 2 21 3

23 3 0 2 63 3 21 1 103 3 21 3

24 4 0 2 64 4 21 1 104 4 21 3

25 5 0 2 65 5 21 1 105 5 21 3

26 6 0 2 66 6 21 1 106 6 21 3

27 7 0 2 67 7 21 1 107 7 21 3

28 8 0 2 68 8 21 1 108 8 21 3

29 9 0 2 69 9 21 1 109 9 21 3

30 10 0 2 70 10 21 1 110 10 21 3

31 11 0 2 71 11 21 1 111 11 21 3

32 12 0 2 72 12 21 1 112 12 21 3

33 13 0 2 73 13 21 1 113 13 21 3

34 14 0 2 74 14 21 1 114 14 21 3

35 15 0 2 75 15 21 1 115 15 21 3

36 16 0 2 76 16 21 1 116 16 21 3

37 17 0 2 77 17 21 1 117 17 21 3

38 18 0 2 78 18 21 1 118 18 21 3

39 19 0 2 79 19 21 1 119 19 21 3

40 20 0 2 80 20 21 1 120 20 21 3

Table A16: Input Data for Problem 240-2(continue)

P X Y Z P X Y Z P X Y Z

121 1 1 0 161 8 8 0 201 13 17 0

122 1 3 0 162 8 11 0 202 13 20 0

123 1 5 0 163 8 16 0 203 14 3 0

124 1 7 0 164 8 17 0 204 14 5 0

125 1 12 0 165 9 3 0 205 14 6 0

126 1 20 0 166 9 7 0 206 14 9 0

127 2 2 0 167 9 8 0 207 14 13 0

128 2 3 0 168 9 15 0 208 14 19 0

129 2 7 0 169 9 19 0 209 14 20 0

130 2 14 0 170 9 20 0 210 15 1 0

131 2 15 0 171 10 1 0 211 15 17 0

132 2 17 0 172 10 2 0 212 16 3 0

133 3 3 0 173 10 9 0 213 16 7 0

134 3 6 0 174 10 11 0 214 16 12 0

135 3 7 0 175 10 12 0 215 16 14 0

136 3 8 0 176 10 13 0 216 16 15 0

137 3 9 0 177 10 15 0 217 16 16 0

138 3 11 0 178 10 16 0 218 16 19 0

139 3 20 0 179 11 6 0 219 17 4 0

140 4 3 0 180 11 8 0 220 17 9 0

141 4 8 0 181 11 10 0 221 17 12 0

142 4 9 0 182 11 11 0 222 17 15 0

143 4 17 0 183 11 16 0 223 18 2 0

144 4 19 0 184 11 17 0 224 18 3 0

145 4 20 0 185 11 18 0 225 18 4 0

146 5 1 0 186 11 21 0 226 18 5 0

147 5 3 0 187 12 4 0 227 18 9 0

148 5 6 0 188 12 8 0 228 18 11 0

149 5 8 0 189 12 9 0 229 18 12 0

150 5 10 0 190 12 14 0 230 18 14 0

151 5 13 0 191 12 16 0 231 18 17 0

152 5 19 0 192 12 17 0 232 18 20 0

153 6 5 0 193 12 18 0 233 19 2 0

154 6 8 0 194 12 20 0 234 19 5 0

155 6 19 0 195 13 0 0 235 19 6 0

156 7 6 0 196 13 6 0 236 19 8 0

157 7 18 0 197 13 11 0 237 19 17 0

158 7 19 0 198 13 12 0 238 20 3 0

159 7 20 0 199 13 13 0 239 20 15 0

160 8 3 0 200 13 14 0 240 20 19 0

Table A17: Labels of Problem 25-15-1 After Solving with the MTZ formulation

point Label point Label point Label point Label

1 1 58 6 145 8 140 11

2 2 67 6 13 9 20 12

12 2 68 6 18 9 49 12

104 2 75 6 30 9 87 12

127 2 76 6 35 9 156 12

3 3 79 6 43 9 22 13

8 3 84 6 45 9 32 13

15 3 85 6 54 9 40 13

105 3 100 6 59 9 53 13

108 3 113 6 61 9 98 13

109 3 116 6 74 9 110 13

4 4 129 6 81 9 141 13

5 4 131 6 86 9 154 13

33 4 149 6 102 9 24 14

36 4 151 6 111 9 47 14

51 4 160 6 112 9 82 14

69 4 9 7 120 9 92 14

80 4 11 7 132 9 25 15

96 4 42 7 133 9 28 15

103 4 50 7 142 9 29 15

138 4 57 7 143 9 83 15

147 4 64 7 14 10 88 15

148 4 72 7 21 10 95 15

155 4 73 7 34 10 26 16

159 4 94 7 41 10 119 16

6 5 101 7 48 10 37 17

31 5 114 7 66 10 38 17

52 5 121 7 77 10 55 17

62 5 128 7 89 10 65 17

63 5 146 7 91 10 90 17

93 5 157 7 122 10 97 17

115 5 10 8 130 10 150 17

123 5 17 8 137 10 158 17

125 5 39 8 144 10 56 18

134 5 70 8 152 10 60 18

139 5 78 8 153 10 107 18

7 6 106 8 19 11 126 18

16 6 117 8 27 11 71 19

23 6 118 8 46 11 124 19

44 6 135 8 136 11 99 20

Bold digits show non-integer points

Appendix B: LINGO Programs

Program B1: The MTZ Model Formulation

MODEL:

SETS:

CITY / 1.. N/: U; ! U(I) = sequence no. of city;

LINK(CITY, CITY):

DIST, ! The distance matrix;

X; ! X(I, J) = 1 if we use link I, J;

ENDSETS

DATA: !Distance matrix, it need not be symmetric;

DIST = @OLE(FILE_ADDRESS, RANGE_NAME);

ENDDATA

N = @SIZE(CITY);

MIN = @SUM(LINK: DIST * X);

@FOR(CITY(K):

! It must be entered;

@SUM(CITY(I)| I #NE# K: X(I, K)) = 1;

! It must be departed;

@SUM(CITY(J)| J #NE# K: X(K, J)) = 1;

! Weak form of the subtour breaking constraints;

@FOR(CITY(J)| J #GT# 1 #AND# J #NE# K:

U(J) >= U(K) + (N-1)*X (K, J) +(2-N)

));

@FOR(LINK: @BND(0, X, 1));

@FOR(CITY(K)| K #GT# 1:

 U(K) <= N - 1 - (N - 1) * X(1, K);

 U(K) >= 1 + (N - 2) * X(K, 1));

Program B2: The DFJ Model Formulation

MODEL:

! DFJ MODEL FOR DIRECTED GRAPH;

SETS:

point / 1.. N/; ! U(I) = sequence no. of city;

LINK(point, point):X,DIST;

ENDSETS

DATA:

DIST=@ole(FILE_ADDRESS, RANGE_NAME);

ENDDATA

MIN = @SUM(LINK: X*DIST);

@FOR(LINK: @BND(0, X, 1));

@FOR(LINK: @BND(0, X, 1));

@FOR(point(K):

 @SUM(point(I)| I #NE# K: X(I, K)) = 1;

 @SUM(point(J)| J #NE# K: X(K, J)) = 1);

@FOR(point(K):

 @FOR(point(I)| I #NE# K: X(I,K)+X(K,I)<=1));

END

Program B3: Cut Model for 10-City Problem (First_Cut Model)

model:

min=h0103+h0106+h0205+h0208+h0306+h0307+h0402+h0405+h0603+h0607+h060

9+h0802+h0809+h0906+h0908+h0504+h0701;

x01+x02+x03+x04+x06+x08+x09+x07+x05>=1;

x01+x02+x03+x04+x06+x08+x09+x07+x05<=8;

!Costraints of non-integer arcs;

h0103-.89*x01+.89*x03>=0;

h0106-.11*x01+.11*06>=0;

h0205-.50*x02+.50*x05>=0;

h0208-.50*x02+.50*x08>=0;

h0306-.39*x03+.39*x06>=0;

h0307-.61*x03+.61*x07>=0;

h0402-.50*x04+.50*x02>=0;

h0405-.50*x04+.50*x05>=0;

h0603-.110*x06+.110*x03>=0;

h0607-.39*x06+.39*x07>=0;

h0609-.5*x06+.5*x09>=0;

h0802-.5*x08+.5*x02>=0;

h0809-.5*x08+.5*x09>=0;

h0908-.5*x09+.5*x08>=0;

h0906-.5*x09+.5*x06>=0;

!Costraints for paths;

h0504-x05+x04>=0;

h0701-x07+x01>=0;

@gin(x01);

@gin(x02);

@gin(x03);

@gin(x04);

@gin(x05);

@gin(x06);

@gin(x07);

@gin(x08);

@gin(x09);

end

Program B4: The MTZ Model and Added Cuts

MODEL:

! Traveling Salesman Problem with MTZ model and cuts;

SETS:

point / 1..10/: U, cutvalue; ! U(I) = sequence no. of point;

LINK(point, point):

DIST, ! The distance matrix;

X; ! X(I, J) = 1 if we use link I, J;

ENDSETS

DATA: !Distance matrix, it is symmetric;

DIST=@ole(fileaddress, range name);

cutvalue=@ole(fileaddress, rangename);
ENDDATA

N = @SIZE(point);

MIN = @SUM(LINK: DIST * X);

@FOR(point(K):

! It must be entered;

@SUM(point(I)| I #NE# K: X(I, K)) = 1;

! It must be departed;

@SUM(point(J)| J #NE# K: X(K, J)) = 1;

! Weak form of the subtour breaking constraints;

@FOR(point(J)| J #GT# 1 #AND# J #NE# K:

 U(J) >= U(K) + (N-1)*X (K, J) +(2-N)));

@FOR(LINK: @BND(0, X, 1));

For the first and last stop we know

FOR(point(K)| K #GT# 1

 U(K) <= N - 1 - (N - 1) * X(1, K);

 U(K) >= 1 + (N - 2) * X(K, 1);

!added cuts;

SUM

 (LINK(I,J)|cutvalue(I) #NE#0 #AND# cutvalue(J) #EQ#0:

X(I,J))>=1
END

Appendix C: MATLAB Programs

Program C1: Program of Calculating Distance Matrix

clear all;
clc;
NP=Number of cell points;
x=[];
y=[];
z=[];

for i=1:NP
 for j=1:NP
 D(i,j)=((X(i)-X(j+NP))^2+(Y(i)-Y(j+NP))^2+(Z(i)-

Z(j+NP))^2)^.5;
 end
 end
 D2=D;
%D
xlswrite('xls file address', D);

Program C2: Program of Plotting the TSP Solution

clear all

clc

V=xlsread('pointfile address');

M=xlsread('mtxfile address');

% It drawes a figure from the TSP solution

 [n,m]=size(M);

clf reset;

hold on;

grid on

for i=1:n

 plot(V(i,1),V(i,2),'b.')

for j=1:m

 if (M(i,j)+M(j,i)>1)

line([V(i,1);V(j,1)],[V(i,2);V(j,2)],'Color','k')

 end

 if (M(i,j)+M(j,i)> 0.67 && M(i,j)+M(j,i)<=1)

line([V(i,1);V(j,1)],[V(i,2);V(j,2)],'Color','r')

 end

 if (M(i,j)+M(j,i)> 0 && M(i,j)+M(j,i)<=0.67)

 line([V(i,1);V(j,1)],[V(i,2);V(j,2)],'Color','g')

 [V(i,1);V(j,1)],[V(i,2);V(j,2)]

 end

 end

 end

Program C3: Program of Labeling Technique

clear all
A= xlsread('LINGO output address');
[n,n] = size(A);
%A IS THE OUTPUT MATRIx OF LINGO (COSTOMIZED);
%B IS SYMMETRIC MATRIX OF A;
for i=1:n
 for j=1:n
 w=A(i,j);
 if A(j,i)>w
 w=A(j,i);
 end
 B(i,j)=w;
 B(j,i)=w;
 end
end
%GETTING THE LABELS;
for i=2:n
 Label(i)=0;
end
Label(1)=1;
L=1;
p=1;
pointer = 1;
counter=1;
while counter<=n && pointer<2*n-1
 for i=1:n
 if B(p,i)>0 && Label(i)==0
 Label(i)=L;
 counter = counter+1;
 end
 end
 Label(p)=(-1)*(Label(p));
 p=0;
 pointer = pointer +1;
 for i=1:n
 if Label(i)>0
 pointer = pointer +1;
 break
 end
 end
 if p==0
 for i=1:n
 if Label(i)==0
 p=i;
 pointer = pointer +1;
 L=L+1;
 Label(p)=L;
 counter = counter+1;
 break
 end
 end
 end
end

for i=1:n
 Label(i)=abs(Label(i));
end
Label

Program C4: Program of Proposed Heuristic _ Case (1)

clear all;
%clc;
NP=80;%number of the CP/AP points
for pp=1:80
D2=D;
CP(1)=pp;
[minv,idx]=min(D(CP(1),:));
AP(1)=idx;
SD=minv;%SD indicates the shortest path that has been inserted so

far;
T=SD;%the initial value of the Threshold;
D2(CP(1),:)=20000*ones(1,NP);
[minv,idx]=min(D2(:,AP(1)));
D2(:,AP(1))=20000*ones(NP,1);
if minv<T
 CP(2)=idx;
 cnt=3;%number of the nodes that have been inserted so far;
 SD=minv;
else
 cp=idx;
 [minv,idx]=min(D2(cp,:));
 ap=idx;
 if D(CP(1),ap)+D(cp,AP(1))<D(CP(1),ap)+D(cp,AP(1);
 AP(2)=AP(1);
 AP(1)=ap;
 CP(2)=cp;
 else
 D2(CP(2),:)=20000*ones(1,NP);
 d=[SD,D(CP(2),AP(1)),D(CP(2),AP(2))];
 SD=min(d);
 cnt=4;
 D2(:,AP(1))=D2(:,AP(2));
 D2(:,AP(2))=D(:,AP(2));
 D2(CP(1),AP(2))=20000;
 D2(CP(2),AP(2))=20000;
end
B=0;
while B==0
 if mod(cnt,2)==0
 api=cnt/2;
 [minv,idx]=min(D2(:,AP(api)));
 D2(:,AP(api))=20000*ones(NP,1);
 if minv<T
 CP(api+1)=idx;
 cnt=cnt+1;
 SD=minv;
 else
 cp=idx;
 [minv,idx]=min(D2(cp,:));
 ap=idx;
 for i=1:api-1
 td(i)=-D(CP(i+1),AP(i))+D(cp,AP(i))+D(CP(i+1),ap);
 end
 [mint,li]=min(td);

 CP(li+2:api+1)=CP(li+1:api);

 CP(li+1)=cp;
 AP(li+2:api+1)=AP(li+1:api);
 AP(li+1)=ap;
 cnt=cnt+2;
 for j=1:NP
 if j~=CP
 D2(j,AP(api+1))=D(j,AP(api+1));
 end
 end
 D2(:,AP(li+1))=20000*ones(NP,1);
 D2(CP(li+1),:)=20000*ones(1,NP);

d=[SD,D(CP(li+1),AP(li)),D(CP(li+1),AP(li+1)),D(CP(li+1),AP(li+1))];
 SD=min(d);
 clear td;
 end
 else
 cpi=ceil(cnt/2);
 [minv,idx]=min(D2(CP(cpi),:));
 D2(CP(cpi),:)=20000*ones(1,NP);
 if minv<T
 AP(cpi)=idx;
 cnt=cnt+1;
 SD=minv;
 else
 ap=idx;
 [minv,idx]=min(D2(:,ap));
 cp=idx;
 for i=1:cpi-1
 td(i)=-D(CP(i),AP(i))+D(cp,AP(i))+D(CP(i),ap);
 end
 [mint,li]=min(td);
 CP(li+2:cpi+1)=CP(li+1:cpi);
 CP(li+1)=cp;
 AP(li+1:cpi)=AP(li:cpi-1);
 AP(li)=ap;
 cnt=cnt+2;
 for j=1:NP
 if j~=AP
 D2(CP(cpi+1),j)=D(CP(cpi+1),j);
 end
 end
 D2(CP(li+1),:)=20000*ones(1,NP);
 D2(:,AP(li))=20000*ones(NP,1);

d=[SD,D(CP(li),AP(li)),D(CP(li+1),AP(li+1)),D(CP(li+1),AP(li))];
 SD=min(d);
 clear td;
 end
 end
 if cnt>=2*NP-1
 B=1;
 end
end
if cnt==2*NP-1
 AP(NP)=1;
end
ST=0;
for i=1:NP-1
 ST=ST+D(CP(i),AP(i))+D(CP(i+1),AP(i));

end
CP(1);
APP(pp)= CP(1);

 ST=ST+D(CP(NP),AP(NP))+D(CP(1),AP(NP));

 AST(pp) = ST;

end
for pp =1 :80
 RUN = pp
 APP(pp)
 AST(pp)
end

%PLOTTING THE GRAPH

for j=1:NP
 STR(2*j-1)=CP(j);
 SX(2*j-1)=X(STR(2*j-1));
 SY(2*j-1)=Y(STR(2*j-1));
 STR(2*j)=AP(j)+NP;
 SX(2*j)=X(STR(2*j));
 SY(2*j)=Y(STR(2*j));
end
plot(SX,SY)

Program C5: Program of Proposed Heuristic _ Case(2)

clear all;
%clc;
NP=80;%number of the CP/AP points
for ml=1:NP
 D2=D;
 CP(1)=ml;
 [minv,idx]=min(D(CP(1),:));
 AP(1)=idx;
 SD=minv;%SD indicates the shortest path that has been inserted

so far
 T=SD

 D2(CP(1),:)=20000*ones(1,NP);
 [minv,idx]=min(D2(:,AP(1)));
 D2(:,AP(1))=20000*ones(NP,1);
 if minv<T
 CP(2)=idx;
 cnt=3;%number of the nodes that have been inserted so far
 SD=minv;
 else
 cp=idx;
 [minv,idx]=min(D2(cp,:));
 ap=idx;
 if D(cp,AP(1))<D(CP(1),ap)
 li=1;
 AP(2)=ap;
 CP(2)=cp;
 else
 li=0;
 AP(2)=AP(1);
 CP(2)=CP(1);
 AP(1)=ap;
 CP(1)=cp;
 end
 if li==0
 for j=1:NP
 if j~=CP
 D2(j,AP(1+1))=D(j,AP(1+1));
 end
 end
 D2(:,ap)=20000*ones(NP,1);
 D2(cp,:)=20000*ones(1,NP);
 else
 D2(cp,:)=20000*ones(1,NP);
 end
 cnt=4;
 D2(CP(2),:)=20000*ones(1,NP);
 D2(:,AP(1))=D2(:,AP(2));
 D2(:,AP(2))=D(:,AP(2));
 D2(CP(1),AP(2))=20000;
 D2(CP(2),AP(2))=20000;
 end
 B=0;

 while B==0
 if mod(cnt,2)==0%a CP must be added
 api=cnt/2;%index of the last AP/CP
 [minv,idx]=min(D2(:,AP(api)));
 D2(:,AP(api))=20000*ones(NP,1);
 if minv<T
 CP(api+1)=idx;
 cnt=cnt+1;
 else
 cp=idx;
 [minv,idx]=min(D2(cp,:));
 ap=idx;
 for i=1:api-1
 td(i)=-

D(CP(i+1),AP(i))+D(cp,AP(i))+D(CP(i+1),ap);
 end
 td(api)=D(cp,AP(api));
 td(api+1)=D(CP(1),ap);
 [mint,li]=min(td);
 if li==api
 CP(api+1)=cp;
 AP(api+1)=ap;
 elseif li==api+1
 CP(2:api+1)=CP(1:api);

 CP(1)=cp;
 AP(2:api+1)=AP(1:api);
 AP(1)=ap;
 d=[SD,D(CP(1),AP(1)),D(CP(2),AP(1))];
 else
 CP(li+2:api+1)=CP(li+1:api);
 CP(li+1)=cp;
 AP(li+2:api+1)=AP(li+1:api);
 AP(li+1)=ap;
 end
 if li~=api
 for j=1:NP
 if j~=CP
 D2(j,AP(api+1))=D(j,AP(api+1));
 end
 end
 D2(:,ap)=20000*ones(NP,1);
 D2(cp,:)=20000*ones(1,NP);
 else
 D2(cp,:)=20000*ones(1,NP);
 end

 cnt=cnt+2;
 clear td;
 end
 else%an AP must be added
 cpi=ceil(cnt/2);%index of the last CP
 [minv,idx]=min(D2(CP(cpi),:));
 D2(CP(cpi),:)=20000*ones(1,NP);
 if minv<T
 AP(cpi)=idx;
 cnt=cnt+1;
 else
 ap=idx;
 [minv,idx]=min(D2(:,ap));
 cp=idx;
 for i=1:cpi-1

 td(i)=-D(CP(i),AP(i))+D(cp,AP(i))+D(CP(i),ap);
 end
 td(cpi)=D(CP(cpi),ap);
 td(cpi+1)=D(CP(1),ap);
 [mint,li]=min(td);
 if li==cpi
 CP(cpi+1)=cp;
 AP(cpi)=ap;
 elseif li==cpi+1
 CP(2:cpi+1)=CP(1:cpi);
 CP(1)=cp;
 AP(2:cpi)=AP(1:cpi-1);
 AP(1)=ap;
 else
 CP(li+2:cpi+1)=CP(li+1:cpi);
 CP(li+1)=cp;
 AP(li+1:cpi)=AP(li:cpi-1);
 AP(li)=ap;
 end
 if li~=cpi
 for j=1:NP
 if j~=AP
 D2(CP(cpi+1),j)=D(CP(cpi+1),j);
 end
 end
 D2(cp,:)=20000*ones(1,NP);
 D2(:,ap)=20000*ones(NP,1);
 else
 D2(:,ap)=20000*ones(NP,1);
 end
 clear td;
 end
 end
 if cnt>=2*NP-1
 B=1;
 end
 end
 if cnt==2*NP-1
 AP(NP)=1;
 end
 ST=0;
 for i=1:NP-1
 ST=ST+D(CP(i),AP(i))+D(CP(i+1),AP(i));
 end
 TL(ml)=ST+D(CP(NP),AP(NP))+D(CP(1),AP(NP));
 for j=1:NP
 STR(ml,2*j-1)=CP(j);
 STR(ml,2*j)=AP(j)+NP;
 end
 clear AP;
 clear CP;

end
[mnv,mn]=min(TL);
 mnv

Appendix D: Some Output Plots

 Figure E1: Plot of Initial MTZ Output for Problem 25-15-1

 Figure E2: Plot of Initial MTZ Output for Problem 25-15-2

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

 Figure E3: Plot of Initial MTZ Output for Problem 240-1

 Figure E4: Plot of Initial MTZ Output for Problem 240-2

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

 Figure E5: Plot of the Best Heuristic Output for Problem 25-15-1

 Figure E6: Plot of the Best Heuristic Output for Problem 25-15-2

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

 Figure E7: Plot of the Best Heuristic Output for Problem 25-15-3

 Figure E8: Plot of the Best Heuristic Output for Problem 240-1

 Figure E9: Plot of the Best Heuristic Output for Problem 240-2

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Chapter 1

INTRODUCTION

1. 1 Industrial Robots

According to the robotics research group of Robot Institute of America, “a robot is a

reprogrammable, multifunctional manipulator designed to move materials, parts,

tools or specialized devices through variable programmed motions for the

performance of a variety of tasks.”

Robots can be found in different fields of applications. These various applications

consist of manufacturing industry, military, space exploration, transportation,

research area, and medical applications. Typical industrial robots do some kind of

jobs that are difficult, dangerous or dull. They can do the same task hour after hour

and day after day not only without getting tired or making errors but also with

precision. Therefore robots are ideally suited to perform repetitive tasks. Industrial

robots are used in most industries such as automobile and manufacturing industries

for loading bricks, dying cast, drilling, fastening, forging, making glass, grinding,

heating treat, loading/unloading machines, handling parts, measuring, monitoring,

running nuts, sorting parts, cleaning, sand blasting, changing tools and welding. The

advantages of robots have become more apparent as robotic technology has grown

and developed in the last 60 years when the first industrial robot with the name of

Unimate was put into use in the 1950s. Today, almost 90% of the robots in use today

are in the industrial robotic sector in the factories. Robotics Industry Association

(RIA) estimates that “some 196,000 robots are now at work in U.S. factories,

placing the United States second to Japan in overall robot use. More than one

million robots are now being used worldwide. RIA currently represents some 235

robotics manufacturers, system integrators, component suppliers, end users,

consulting groups, and research organizations. A total of 9,628 robots valued at

$618.4 million were ordered through September by North American manufacturing

companies. This represents a gain of 34% in units and 45% in dollars over the same

period in 2009. Companies outside of North America ordered another 1,778 robots

valued at $102.6 million from North American based robotics companies during the

period, a gain of 143% in units and 168% in dollars over the first nine months of

2009.”

1.1.1 Robot Structure

The structure of a robot is directly related to its design purpose. Industrial robots

usually take the shape of an arm because many tasks require the flexibility of human

hands. Looking back at the history of robot development, a human-size industrial

robotic arm called Programmable Universal Machine for Assembly (PUMA) came

into existence. Because of the similarities between PUMA’s structure and the human

arm, it is often termed anthropomorphic.

Robotic arms re generally too rigid devices. They perform repetitive tasks under

programmed control in the controlled environments.

1.1.1.1 Body of the Robotic Arm

Most of the robotic arms use the following five joint types.

(i.) Prismatic joints: create a linear movement.

(ii.) Rotary joints: drive by electric motors.

(iii.) Spherical joints: needed for a revolving movement.

(iv.) Screw joints: follow the thread of the axis in spiral in order to move along the

axis.

(v.) Cylindrical joints: are used in some equipment like parallel robots.

Different robotic arms configurations are formed by combination of the above joints.

The motion of the arm is up and down, generally. The robot can perform this motion

by extending a cylinder. Cylinder is built into the arm. A robot is stopped when it

hits a stop. The cylinders are moved using air pressure that is controlled by solenoid

values. Additional movement can be done by attaching a wrist to the end of this arm

cylinder. The wirst will be complex enough to provide some additional degrees of

freedom.

1.1.1.2 Robot Head(s)

Every arm is equipped with one or more heads. Head is responsible for picking and

placing components. A head for an industrial robot consists of:

(i.) A head body mounted on an end of an arm,

(ii.) An internal motor for generating a rotational torque,

(iii.) A nut member supported by head body,

(iv.) A guide member rotatable supported by head body,

(v.) A screw rod for passing through and threaded engaging with mentioned nut

member,

(vi.) A shaft having a non-circular shape,

And some devices needed to support above components.

1.1.2 Robot specifications

(i.) Accuracy: when robot’s program calls the robot to move to a considered

point, it does not actually perform as specified. The accuracy measures such a

gap. In other words, the distance between the considered position and the

actual achieved position is defined as the accuracy of the robot.

(ii.) Repeatability: the ability of a robotic mechanism to repeat the same motion is

called repeatability. In fact, repeatability measures the variability of

repeatedly reaching for a single position.

(iii.) Degree of freedom: every axis on the robot defines a degree of freedom. Each

degree of freedom can be n the slider, rotary or other types of actuator. The

number of degrees of freedom introduces the number of independent ways in

which a robot arm can move.

(iv.) Resolution: the smallest increment of motion that can be controlled by the

robotic control system is called resolution. Resolution is dependent on the

distance between the tool center point and the joint axis.

(v.) Envelope: a three-dimensional shape that introduces the boundaries that the

robot can reach is called envelope.

(vi.) Reach: the maximum horizontal distance from the center of the robot is called

reach.

(vii.) Maximum Speed: the theoretical full speed which does not consider under

loading condition defines the maximum speed of the robot.

(viii.) Payload: the amount of weight carried by the robot manipulator at reduced

speed without loosing the rated precision is known as payload.

1.1.3 Robot Classifications

Industrial robots have already been classified by mechanical structure as follows:

(i.) Cartesian/Gantry Robots: a Cartesian coordinate robot has three directions of

movement in such a way that three prismatic axes (X, Y, and Z) are at right

angles to each other. Gantry robots are such Cartesian robots with the

horizontal member supported at both ends. Both of them, Cartesian and

gantry robots, have a rectangular work envelope. These types of robots are

highly rigid but they are very accurate and repeatable but lack of flexibility is

seen in reaching around objects. These robots are very easy to perform and

visualize. Cartesian robots are suited for pick and place applications. Gantry

robots also have a wide range of applications in material handling such as

pick and place, machine loading and unloading, stacking and palletizing. A

sample Cartesian robot is shown in Figure 1.1.

Figure 1.1: Cartesian Robot

(ii.) SCARA Robots: Selective Compliant Assembly Robot Arm (SCARA) robots

can move to any direction of X, Y, and Z axes within their work envelope.

Since the controlling software of SCARA robot requires inverse kinematics

for linear interpolated moves, these robots are so expensive. Because of the

rigidity in the vertical direction and flexibility in the horizontal plane,

SCARA robots are suited for assembly operations such as inserting a round

pin in a round hole without binding. They are also used for pick and place

works and handling machine tools. A sample SCARA robot is shown in

Figure 1.2.

Figure 1.2: SCARA Robot

(iii.) Articulated Robots: the mechanical structure of articulated robots has at least

three rotary joints which form a polar system. This structure is very flexible

and can achieve any position and orientation within the working envelope.

Articulated robots are used for paint spraying, spot welding, machine tending,

die-casting, packing, gluing, etc. A sample articulated robot is shown in

Figure 1.3.

Figure 1.3: Articulated Robot

(iv.) Parallel Robots: these robots have arms that each one has three concurrent

prismatic joints. Parallel robots are able to manipulate large loads. They are

used in a large number of applications ranging from astronomy to flight

simulators. Less flexibility of parallel robots results in high repeatability. A

sample parallel robot is shown in Figure 1.4.

Figure 1.4: Parallel Robot

(v.) Cylindrical Robots: the body structure of cylindrical robots is such that the

robotic arm can move up and down along a vertical member. In the other

words, these robots have at least one rotary joint and at least one prismatic

joint. This construction makes the robot able to work in a cylindrical shape.

Cylindrical robots are used for assembly operations, spot welding, die-casting

and handling machine tools. A sample cylindrical robot is shown in Figure

1.5.

Figure 1.5: Cylindrical Robot

(vi.) Polar Robots: the other name of polar robots is spherical. These types of

robots have an arm with two rotary joints and one prismatic joint. Polar

coordinate system results short vertical reach. Because of long horizontal

achievement, polar robot is useful for spot welding, felting machines, arc

welding and gas welding. A sample polar robot is shown in Figure 1.6.

Figure 1.6: Polar Robot

1.2 Pick and Place Robots

Our focus in this thesis is on Pick and Place machine for placement of electronic

components on Printed Circuit Board (PCB). A PCB is a board on which several

resistors, transistors and diodes are mounted. For the manufacturing of PCB, the

components are stored in one or more feeders from which a computer-controlled pick

and place machine transfers them to a location on the PCB where they are to be

fixed. Placement machines are also called "chip shooters". In the aspect of Surface

Mount Technology (SMT), there are many types of placement machines available,

such as sequential pick and place, concurrent pick and place, rotary disk turret, etc.

Since different types of SMT placement machines have different characteristics and

restrictions, the PCB production scheduling process is highly influenced by the type

of placement machine being used. Most of the placement machines used in PCB

assembly industry are Cartesian robots.

In general, each placement machine has a PCB table, feeder carrier, head, nozzle,

and a tool magazine. Each of the feeder carrier, PCB table and head can be either

fixed or moveable depending on the specification of the placement machine. Usually

several tape reels or vibratory ski slope feeders or both of them construct a common

feeder carrier. Positioning of the feeder reels or vibratory ski slope feeders is done

according to the arrangement given by feeder setup. The role of the nozzle is

grasping the component from the feeder and then mounting it on the PCB. Picking

and placing the components is the responsibility of the placement arm that is

equipped with head(s). Every placement machine may have more than one head and

every head of the placement machine may have more than one nozzle. Placement

machines have various types of heads such as rotating turret head, positioning arm

head, etc. The PCB table is needed to position printed circuit boards during

placement operation. Different sizes of nozzles are required for different sizes of

surface mount devices to pick and place them. A tool magazine is required to provide

the exact size of nozzles. A sample pick and place machine is shown in Figure 1.7.

Figure 1.7: Pick and Place Machine

In fact, pick and place machine is the heart of SMT. A pick and place machine picks

electronic components and places them onto the PCB. Some of them are capable of

placing many different components used in electronics, while others are limited to a

few component types. In our concentrated cases, pick and place machine can pick

only one component at a time, which should be fixed first before the machine can

handle another component. Vacuum pick up tools are used in pick and place

machines in order to hold the components. Vision-assisted alignment is also used in

few others of such machines. Some of the famous pick and place robots in addition

of the manufacturer and the important specifications of them have been collected in

Table A1.

1.3 Traveling Salesman Problem (TSP)

When hundreds of electronic components of different shapes and sizes have to be

placed at specific positions on a PCB, finding an optimal robot traveling path is so

complex and time consuming. The problem to be solved here is finding a sequence in

which the assembly points are to be assembled in order to minimize the total

assembly time and increasing the productivity. The problem of determining the

optimum sequence of points can be considered as an extension to TSP.

One of the most intensive studied problems in computational mathematics is the

traveling salesman problem, the task of finding the shortest tour through a given list

of cities and their pairwise distances that visits each city exactly once. It is a well-

known NP-Complete combinatorial optimization problem. TSP has received much

attention from mathematicians and computer scientists, especially since it is so easy

to describe but is very difficult to solve optimally. The importance of the traveling

salesman problem starts not only from a need of salesman wishing to minimize

traveled distance, but comes from a wealth of other applications, many of which

seem completely unrelated to traveling routes. Many practical applications can be

modeled as TSP or a variant of it.

It is clear that theoretical and practical insight achieved in the study of TSP can often

be useful in the solution of real-world problems. It is also valuable to mention that an

important driving force in the development of the computational complexity theory

was research on TSP in the beginning of the 1970s.

In the last three decades an improved progress has been made with respect to solving

traveling salesman problems to optimality which is the main goal of every

researcher. The number of cities in practical applications ranges from some small

number up to even millions that is far beyond the capabilities of any exact algorithm

available today. Due to this manifold area of applications of TSP, there should be

abroad collection of algorithms to treat with the various instances of TSP. Landmarks

in the search for optimal solutions have been shown in Table 1.1. The time has been

needed to solve the last mentioned instances in Table 1.1 is more than several years

using the big processors. It should be considered how is easy or difficult to solve a

problem depends on many factors. The mathematical properties of the distance

matrix are important, i.e. whether or not the triangle inequality and symmetry are

satisfied. The structure of the positions of the cities is also very important, i.e.

problems arising from chip design are much easier than the problems containing real

cities. In spite of these achievements, the traveling salesman problem is still far from

being solved. Many aspects of the traveling salesman problem still require to be

considered and the questions are still left to be answered.

 Table 1.1: Milestones in the Solution of TSP Instances

Year Research Team Size of instance Name

1954 Dantzig, Fulkerson and Johnson 49 cities dantzig42

1971 Held and Karp 64 cities 64 points

1975 Camerini, Fratta and Maffioli 67 cities 67 points

1977 Grotschel 120 cities gr120

1980 Crowder and Padberg 318 cities lin318

1987 Padberg and Rinaldi 532 cities att532

1987 Grotschel and Holland 666 cities gr666

1987 Padberg and Rinaldi 2,392 cities pr2392

1994 Applegate, Bixby, Chvatal and Cook 7,397 cities pla7397

1998 Applegate, Bixby, Chvatal and Cook 13,509 cities usa13509

2001 Applegate, Bixby, Chvatal and Cook 15,112 cities d15112

2004 Applegate, Bixby, Chvatal, Cook and Helgaun 24,978 cities sw24978

2006 Applegate, Bixby, Chvatal and Cook 85,900 cities pla85900

1.4 Outline of the Thesis

As it is mentioned at the outset the primary goal of this work is to find an acceptable

technique to solve medium-size arm assembly problems. Continuing some of the

discussions began in this chapter, we also cover a brief history of traveling salesman

problem, exact and heuristic algorithms were proposed to solve various types of TSP

and explaining the proposed technique for solving medium-size bipartite TSPs.

In chapter 2 we begin with the origin of the TSP, and follow with the existing

methods for solving traveling salesman problems with the discussion about the

history of the algorithms. In chapter 3 we will have a brief survey of exact and

heuristic algorithms in detail and will give the relation between discussed contents

and proposed technique. The proposed method to optimize the production time (or

cost) caused by the distance that the robotic arm has to travel in the printed circuit

board assembly problem is presented in chapter 4. Results of computational tests are

given in chapter 5. Finally, in conclusion we discuss some of the research objectives

and achievements. Required coding programs and computational documents will be

given in the appendices.

Chapter 2

Literature Review

2.1 Traveling Salesman Problem Origin

The origin of the name TSP is a bit of mystery. There is not any authorittative

documentation pointing out the creator of the traveling salesman name for this

problem, and there is not good guesses as to when it first came into use. The

numerous salesmen on the road were interested in the subject of the planning of

economical routs according to customer area of them. A most important reference in

this context is the German Handbook Der Handlungsreisende in 1832[4]. This

handbook first brought to the attention of the traveling salesman problem research

community by Heiner Muller-Merbach[4]. The mentioned book was not alone in

considering planned tours. In the late 1800s, Spears and Friedman described how a

salesman used guidebooks to map out routs through their regions. One of such

guidebooks is L.P.Brockett's commercial traveler's guide book [4]. In the 1920’s,

Karl Menger (the mathematician and economist) publicized it in Vienna [4]. In the

1930’s, traveling salesman problem reappeared in the mathematical circles of

Princeton. It was studied by statisticians (Mahalanobis (1940) and Jessen(1942)) [4]

in connection with an agricultural application. Then Merrill Flood, who was a

mathematician, popularized it at the RAND Corporation in the 1940’s [4]. At last,

the TSP became as the prototype of a hard problem in combinatorial optimization.

Over the years wealth of algorithmic creativity has been applied to TSP, and

excellent surveys of TSP algorithms can be found in many articles. We hope to

provide a useful review of widely known algorithms, divided into two main classes:

exact algorithms, and heuristic algorithms which the heuristics can be divided into

three types of algorithms.

2.1.1 Exact Algorithms

These algorithms are guaranteed to find the optimal solution in a bounded number of

iterations. Linear programming is very useful tool in this way. An important feature

of linear formulations is that even very large s can be solved efficiently with a variety

of new and old solution methods. The most important of these solution techniques is

simplex method which was proposed by George Dantzig in 1947. The simplex

method was also vital in the context of TSP. Many of the state of the art LP solvers

which are available today use simplex method.

In 1954 when George Dantzig, Ray Fulkerson, and Selmer Johnson published a

description of a method for solving the TSP, a breakthrough came in solving this

problem. They illustrated the power of this method by solving an with 49 cities that

was an impressive size at that time. This of the TSP was included of the 48 states of

the U.S.A in that time and Washington D.C.; such that the costs of travel between

different cities were defined as pairwise distances of cities taking from an atlas.

Rather than solving this 49-city problem, Dantzig, Fulkerson, Johnson firstly solved

the 42-city problem obtained by removing 7 states. Since the shortest route between

Washington D.C. and Boston passes through the seven removed cities, also in the

optimal tour of the 42-city problem had an edge of passing through the mentioned

two cities; the solution of the 42-city problem yielded a solution of the 49-city

problem. Using the simplex method and following the studies of Robinson (1949)

and Kuhn (1955) they attacked the salesman with linear programming as follows.

Each TSP with n cities can be specified as a vector whose components specify the

traveled costs and each tour through the n cities can be represented as its incidence

vector in order to minimize the total costs of the tour. Thus the first exact

mathematical model of TSP was developed by Dantzig, Fulkerson and Johnson. The

main disadvantage of their method was having exponentially constraints. An

alternate linear formulation that reduced the number of constraints at the expense of

additional real variables was developed by Miller, Tucker, and Zemlin (1960). It was

originally proposed for a vehicle routing problem where the number of vertices of

each route is limited.

In 1962, Held and Karp solved a problem with 48 cities using dynamic

programming. Because of many computation steps and large storage locations,

dynamic programming was not so practical. Consequently, practical application of

dynamic programming in the context of TSP is restricted to tours with few cities. In

the 1960’s, Little et al. proposed an algorithm for TSP in such a way that branch and

bound term coined in conjunction with their algorithm. The branch and bound

method can handle large case problems but the disadvantage is unpredictable

computing time and it increases rapidly when the size of the problem increases.

Also, other integer and mixed integer formulations have been proposed based on DFJ

formulation in the next years. For an extensive list of such formulations the paper of

Langevin et al. (1990) can be addressed. One of the well known variant formulations

of DFJ belongs to Padberg and Sung (1991). They solved some large problems in

such a way that DFJ linear relaxation is properly contained in their linear relaxation.

These efforts yielded to find an exact solution for 15,112 German cities in 2001

using cutting plane method proposed by Dantzig et al. (1954). It is interesting to

know the computations were performed on a network of 110 processors and its

computation time was equivalent to 22.6 years on a single 500 MHz Alpha

processor. In April 2004, the instance of 24,978 cities in Sweden was solved but for

solving this problem with a large number of processors was spent more than 10

years. Applegate et al. (2006) solved the biggest size instance of TSP library that is

called pla85,900. Solving this problem was run on sun Microsystems with 250

processors and the total CPU time was 568.9 hours. In Figure 2.1 progress in TSP

with the log scale

has been shown

[44].

No. of cities

Figure 2.1: Progress in TSP, Log Scale

2.1.2 Heuristic Algorithms

Despite of exact algorithms, heuristic algorithms obtain good solutions but do not

guarantee that optimal solutions will be found. Heuristics are usually very simple and

have short running times. Some of the heuristic algorithms provide solutions such

that in average differ only by a few percent from the optimal solution. Therefore,

when running time is limited and a small deviation from optimum is acceptable, it

may be appropriate to use a heuristic algorithm. TSP heuristic algorithms can be

roughly partitioned into the following four classes: constructive algorithms, iterative

improvement algorithms, composite algorithms, and randomized improvement

algorithms. All classes and their performances in computational experiments will be

discussed below.

2.1.2.1 Constructive Algorithms

Constructive algorithms determine a tour according to some construction rule, but do

not try to improve upon this tour. In other words, a tour is successively built from

scratch and stop, when one tour is produced. In most of constructive algorithms, the

initial subtour is simply a randomly selected city. In addition to initial subtour

construction, a distinction is made between deciding which city is chosen to be

inserted into the current subtour and where the city is to be inserted. The choice of

Year

selection and insertion criteria in the selection and insertion steps of tour construction

can be critical to the success of a heuristic algorithm.

Many of the construction heuristics presented here are known and computational

results for some s are available. These heuristics consist of so many algorithms such

as: Nearest Neighbor Heuristics, Insertion Heuristics, Heuristics based on Spanning

Trees, and Saving Heuristics. Golden and Stewart (1985), Arthur and Frendeway

(1985), Johnson (1990), Bentley (1992) have proposed such heuristics and the results

of computational efforts are available in lecture notes of Gerhard Reinelt in 1994.

The simplest and most obvious construction algorithm is the Nearest Neighbor

algorithm. Computational experiments in [14] indicate that in most real-world

problem s of ATSP (Asymmetric TSP), nearest neighbor performs better than the

other algorithms even greedy algorithm which is one of the most important

construction heuristics. Although, the computational experiments in [15] displays

that both of the nearest neighbor and greedy algorithms perform well on Euclidean s

but are poor in other cases of general STSP (Symmetric TSP). It should be noted that

tour construction heuristics are important in the context of this thesis not only for the

perspectives they provide but also because they can be used to generate the initial

tours needed by other heuristics that will be explained.

2.1.2.2 Iterative Improvement Algorithms

Improvement heuristics improve upon a tour by performing different exchanges until

there is no feasible exchange that improves the current solution. Since the

construction heuristics were only of moderate quality, the improvement heuristics

were proposed. In general, iterative improvement algorithms are characterized by a

certain type of basic move to change the current tour. These algorithms are faster

than exact algorithms and often produce solutions close to the optimal solution. The

mentioned algorithms are referred to as -Opt, where is the number of edges

exchanged at each step. Generally, the larger the value of , the more likely it is that

the final solution is optimal. Unfortunately, the number of operations is needed to

test all exchanges increases exponentially as the number of cities increases; hence,

the most common values of are 2 or 3.

The most famous iterative improvement heuristics are as follows: Node and Edge

Insertion, 2-Opt Exchange, 3-Opt heuristics and variants, and Lin-Keringhan type

heuristics. Computational experiments in [36] shows that Lin-Keringhan heuristics

obtain better solutions than the others. These results indicate that if one wants to get

solutions at most 1-2% above the optimal solutions, he/she has to implement Lin-

Keringhan heuristics.

Further improvement heuristics have been proposed. E.g., Gendreau, Hertz and

Laporte (1992) and Glover (1992) [36] discussed additional types of exchange

moves. Moreover, the effect of the choice of the starting tour on the final result of

improvement has been considered in Perttunen (1991) [36].

2.1.2.3 Composite Algorithms

Composite algorithms combine the features of constructive and improvement

algorithms to solve the problems. These heuristic algorithms start from a tour in a

single attempt generally obtained by constructive algorithms, and then iteratively

modify a given starting solution. The obtained solution is dependent on the initial

starting point because the choice of the starting city affect on the final result. One of

the earliest composite algorithms has been given by Lin in 1965. After Lin, Jacque,

and Fayez (1995) [36] gave an extension of it for the symmetric generalized traveling

salesman problem.

2.1.2.4 Randomized Improvement Algorithms

At least in principle, every TSP heuristic algorithm has the chance of obtaining

optimal tour. However, it is really an impossible event. When an improvement

method finds a locally optimal tour, it means that no further improving moves can be

generated. The weaker the local moves that can be implemented, the larger is the

difference between the length of the optimal tour and of the locally optimal tour

found by the heuristic algorithm. A way to get better performance is to start

improvement heuristics many times with different starting tours in order to increase

the chance of finding better local optimum. Another possibility is to consider the

current tour by some modification to restart heuristics.

Randomized improvement heuristics try to use a symmetric rule to escape from local

minimum. In the other words, these algorithms utilize local searching to find routes.

Examples of this subsection are: Simulated Annealing, Genetic Algorithm, Tabu

Search, and Neural Networks. Computational experiments of simulated annealing

have been given by Kirkpatrick (1984), Cerny (1985), Van Laarhoven (1988), Aarts

and Korst (1989), and Johnson (1990), and Johnson and McGeoch (1995) [36].

Application of genetic algorithm has been reported in Fruhwirth (1987), Muhlenbein

, Gorges-Schleuter and Kramer (1988), and Ulder, Pesch, Vav Laarhoven, Bandelt

and Aarts (1990) and Johnson and McGeoch (1995). Glover (1989) [36] gives a

detailed introduction to tabu search methods. Knox and Glover (1989) [36], Malek,

Guruswamy, Owens and Pandya (1989), and Malek, Heap, Kapur and Mourad

(1989) [36] report good computational results for using tabu search. A detailed

explanation of neural networks is found in the report of Henriques, Safayeni and

Fuller in 1987. Fritzke and Wilke (1991) [36] give a further neural network

algorithm for the TSP. A survey of different models can be found Potvin (1993) [36].

It can be shown that if running time be not a major concern, then randomized

improvement heuristics can be successfully employed since they usually avoid bad

local optima and have a chance to even obtain optimal solutions. .

2.1.3 Polyhedral Approaches of TSP

As stated before, combinatorial optimization problems such as TSP are usually

relatively easy to formulate mathematically but most of them are computationally

difficult due to the limitation that all or a subset of the variables have to take integral

values. During the last three decades there has been a remarkable progress in

techniques based on the polyhedral description of these problems so those techniques

lead to a large increase in the size of the solved problems. The main idea behind

polyhedral approaches is to derive a linear formulation of the set of solutions by

defining some linear inequalities such that these inequalities must be included in the

description of the convex hull of the integer feasible solutions. As we know, the

convex hull for a set of points in a real vector space is the minimal

convex set containing . The convex hull of the integers is the integer hull of set S is

shown by

Ideally everyone can then solve the combinatorial optimization problem as the linear

programming problem. The computational hardness of traveling salesman problem

has motivated researchers to develop formulations or algorithms that are expected to

reduce the number of iterations in solving large s. Using the structure of the convex

hull of the integer feasible solutions has been one of the most successful techniques

so far. The first main work in this direction was done by Dantzig, Fulkerson and

Johnson (1954). Their method in solving the 49 cities problem was based on the

description of the convex hull of feasible solutions by linear inequalities and is called

polyhedral combinatorics.

When studying Dantzig, Fulkerson and Johnson, a question arises whether it is

possible to develop a method for identifying the inequalities. The answer of the

question was done by Gomory (1958), (1960), (1963) who invented a cutting plane

algorithm for general integer linear programming. Chvatal (1973) proved inequalities

that are needed for the description of convex hull of integer solutions can be obtained

by taking linear combinations of original inequalities. Schrijver (1980) proved that

the number of operations to the linear formulation containing the integer solutions to

generate the convex hull of integer solutions is finite. The results of Gomory,

Chvatal, and Schrijver were very important in the sense of the theory of

combinatorial optimization but they did not provide tools for solving real-life s

within reasonable time. Scientists therefore began to search for inequalities included

inequalities that are necessary in the description of the convex hull of feasible

solutions and then identified the separation algorithms to find the violated

inequalities. There are families of valid inequalities and the corresponding separation

algorithms for TSP. The first class of these inequalities is called subtour elimination

constraints which were developed by Dantzig, Fulkerson and Johnson. Comb

inequalities are such valid inequalities were introduced by Chvatal (1975). These

inequalities will be described in chapter 3. After Chvatal, Grotschel and Padberg

(1979) were generalized his famous inequalities. Then Grotschel and Pulleyblank

(1986) introduced the other useful inequalities called clique tree inequalities. Many

exotic classes of valid inequalities have been introduced to date but the search for the

new ones is still vivid. Goemans (1993) and Applegate et al.(1994) gave an overview

of the various inequalities. Specially, Goemans considers the quality of those

inequalities with respect to their induced relaxations.

2.2 Alternating Traveling Salesman Problem

There are some other alternates of the traveling salesman problem. Let us consider

the bipartite TSP as a simple but non-trivial class of s of alternating traveling

salesman problem. Originally arising from applications involving pick and place

robots, the following variant of the famous traveling salesman problem is of

independent interest.

Given a set of item types, and a set of locations where items must be brought to by a

robot. Each location must be equipped by one item of a specified type. Several

locations may require the same type of items and the items are stored in depots such

that each item belongs to each type. Here the goal is the finding a shortest tour that

visits locations by item types in an alternating fashion in order to equip the printed

circuit boards while the edge weights are given by Euclidean distances. In fact, the

problem is configuration of two different sets that can be solved with combining an

assignment problem with a traveling salesman problem. Bipartite comes from

partitioning of the problem to the separated sets. A straightforward reduction to the

Euclidean TSP indicates that the bipartite variant of TSP is not easy compared to

original TSP. Hence, the bipartite TSP cannot be solved in polynomial time, unless

. Thus we are interested in good approximations for this problem.

Approximating the bipartite TSP is too complex. There is no constant factor

approximation algorithm in general. Moreover, because of the bipartite analogue of

the triangle inequality, i.e. the distances obey the square inequality, this alternate of

the TSP is at least as hard to approximate as the original TSP with triangle

inequality. It should be considered that good approximation algorithms for the

Euclidean TSP are known. The best one was given by Christofides in 1976.

Christofides algorithm obtains a locally optimal minimum that is times longer

than the optimal tour. Also, Arora (1996) provided a polynomial-time approximation

for constructing a tour at most times longer than optimal tour where

 The fact is that these techniques are not suitable to produce bipartite tours

directly. Anily and Hassin (1992) and Michel, Schroeter and Sirvastav (1993)

observed that inserting a perfect matching into a TSP tour yields a bipartite tour with

a length that is bounded by the triangle inequality to be at most . In 1996,

Chalasani, Motwani and Rao and, independently, Frank, Korte, Triesch and Vygen in

1998, proved that there is a polynomial 2-factor approximation algorithm using

spanning tree strategy for the bipartite TSP. After that, Baltz and Sirvastav (2001)

gave a polynomial time approximation algorithm based on cycle cover

decomposition. The study on the bipartite variant of TSP is still continued. The focus

of this thesis will be in this variant of TSP because the problem arises from the

assembly arm of pick and place robot is the same.

Chapter 3

Model Definition and Problem Statement

Consider a weighted complete bipartite graph , where is the

union of the two n-point subsets of 2 and the edge weights are given by the

Euclidean distances between the "Cell Points" in and the "Assembly Points" in A.

What can be said about a shortest tour that visits cell and assembly points in an

alternating fashion? This is a typical problem arising in pick and place robot routing.

In the other words, the problem of finding placement tours for pick and place robots

that are used for the automatically placement of electronic components on printed

circuit boards is of interest. A sample printed circuit board and cell together with the

assembly and cell points has been given in Figure 3.1. Optimization problem here is

to minimize the placement time of the robot. Since the working time of the robot is

proportional to the distance traveled, the general problem appears as a combination

of traveling salesman problem and the matching problem so we have an Euclidean

bipartite traveling salesman problem.

Figure 3.1: Printed Circuit Board

3.1 The Printed Circuit Board Assembly Problem

We are given:

Cell point

Assembly point

 components which we call cells. In real world, cells are geometrical

objects like boxes containing components. Let be the set of cells.

 A finite set of points in the plane or in the space called cell-point

locations.

 A set of m positions in the plane or in the space called assembly points. Let

be the set of assembly points.

For simplicity we give the labels for each component and each assembly point in

such a way that the -labeled position corresponds exactly to the locations on a

printed circuit board on which the -labeled component must be placed. A placement

tour of the robot is defined as follows: the robot travels from a starting point to some

non-empty cell like , picks an -labeled component, travels to the -labeled

position, places the picked component on this position, travels to some non-empty

cell, and continues in this fashion until all components have been placed. Therefore,

we have to determine simultaneously a placement tour such that the total working

time is minimal.

For the theoretical analysis we consider the standard model where the working time

of the robot is assumed to be proportional to the distances traveled. The fact that a

placement tour must be alternating between cell points and assembly points seems to

be the main difficulty in finding good algorithm. The mentioned problem is a special

bipartite TSP.

Definition 3.1: A bipartite graph is an undirected graph in which

 can be partitioned into V1 and V2 such that implies either

and 2 or V2 and V1. That is all edges go between two sets V1 and

V2.

In the above model, technological features such as robot arm acceleration

and insertion/picking time have been suppressed. In addition, all states of

assembly assignments are assumed to be feasible. Note that even under

these assumptions the model is realistic enough for some real-world

assembly robots, and it helps to understand the most complicated

situations.

Since the mentioned problem is a combination of TSP and the matching problem we

should consider some mathematical model and heuristic algorithms that have been

developed in this direction.

3.2 Mathematical Models of TSP

In all of the formulations that are given in this section the set of cities (nodes) is

defined as and the variables are defined as the following:






0

1
ijx

cij = .

The objective function is given by:


 

n

i

n

j

ijijxc
1 1

 (3.1)

3.2.1 The Dantzig, Fulkerson and Johnson (DFJ) Formulation (1954)





n

j

ijx
1

,1 ni ,...,2,1 (3.2)





n

i

ijx
1

,1 nj ,...,2,1 (3.3)

,1
,




Sx
sji

ij NS  such that (3.4)

This formulation shows that the problem is an integer program which consists of

 variables and constraints. In this formulation, constraints

(3.2) and (3.3) introduce a regular assignment problem. Constraints (3.2) ensure that

each city is entered from only one other city and constraints (3.3) ensure that each

city is only departed to one other city. Consequently, constraints (3.2) and (3.3)

ensure that there are two arcs adjacent to each vertex (city), and one is in and the

other one is out. The last constraints (3.4) are the famous subtour elimination

constraints and require feasible solutions to be connected. Subtour elimination

constraints guarantee the exclusion of subtours in the optimal solution. A cycle

length is called a subtour. It means that instead of having one tour, the

Otherwise

solution can consist of two or more vertex-disjoint cycles. Subtour elimination

inequalities will be explained in detail in subsection 3.3.1.

The exponential number of constraints makes it impractical to obtain the traveling

salesman problem solution directly. Therefore, the usual procedure is to apply (3.2)

and (3.3) constraints and append just those subtour elimination constraints which are

violated. Based on DFJ formulation, many integer and mixed integer programs have

been proposed and there are some variants of this formulation.

3.2.2. The Miller, Tucker and Zemlin (MTZ) Formulation

Miller et al. (1960) proposed an alternate formulation which reduced the number of

subtour elimination constraints but extended the number of real variables by defining

continuous variables . Except for the arbitrarily chosen first city, the depot,

associate with each city a real variable represents 's relative position on the tour.

's are referred as the sequencing variables.

 = ' .

Constraints (3.2) and (3.3) and the objective function as defined in (3.1) are retained.

The subtour elimination constraints of the MTZ model are given by

  ,21  nxnuu ijji nji ,...,2,  (3.5)

,11  nui ni ,...,2 (3.6)

In this formulation the elimination of subtours from the feasible set is attained using

sequencing variables. If an integer solution is not a tour, it contains a cycle C without

vertex (city) 1 (starting city) and by adding the inequalities above corresponding to

all arcs of cycle, we arrive at a contradiction. The MTZ formulation has

 constraints with binary variables and continuous

variables. Number of constraints has been decreased in this formulation with the

price of increasing the number of variables. It is remarkable that the above

formulation is used for computational practice, particularly in the moderate-size

problems.

3.2.3 The Gavish and Graves (1978) Flow Based Formulation

Constraints (3.2) and (3.3) are retained but instead of elimination constraints, other

constraints are defined based on introducing new continuous variables.

 and flow based constraints are as follows:

  ijij xny 1 ; nji ,...,2,1,  (3.7)





n

j

j ny
1

1 1 (3.8)

 
 


n

i

n

k

jkij yy
1 1

,1 nj ,...,2 (3.9)

In this model city 1 is the only source while the others are sinks. Constraints (3.8)

and (3.9) restrict units of a single commodity to flow out of city 1 and one unit

to flow out of each of the remained cities. Consider that flow can only take place in

an arc if it is included in the tour by virtue constraints (3.7). This formulation has

 constraints and binary variables and continuous variables.

3.2.4 Multi-Commodity Network Model (Wong (1980) and Claus (1984))

As stated earlier, constraints (3.2) and (3.3) are retained but some continuous

variables are introduced and with respect to some new constraints defined below.

and constraints are:

ij

k

ij xy  ,,...,2,1,, nkji  ji  (3.10)





n

i

k

iy
1

1 ,1 nk ,...,2 (3.11)





n

i

k

iy
1

1 ,0 nk ,...,2 (3.12)





n

i

k

iky
1

,1 nk ,...,2 (3.13)





n

j

k

kjy
1

,0 nk ,...,2 (3.14)

 
 


n

i

n

i

k

ji

k

ij yy
1 1

,0 nkj ,...,2,  kj  (3.15)

In this formulation constraints (3.10) allow flow only on an arc which is present in

the tour. Constraints (3.11) avoid any commodity in city 1. Constraints (3.12) force

exactly one unit of each commodity to flow in at city 1. Constraints (3.13) force

exactly one unit of commodity k to flow in to at city k and constraints (3.14) avoid

any of commodity k to flow out at city k. The last constraints, constraints (3.15),

force 'material' balance for all commodities at each city apart from city 1 and for

commodity k at city k.

The above multi-commodity network model has constraints,

 binary variables and continuous variables.

3.2.5 The Fox, Gavish, and Graves Time Staged Formulation

The next formulation exploits a relationship between traveling salesman problem and

machine scheduling. Fox et al. (1980) have proposed three different time-dependent

models. One of them has been presented below. In order to facilitate comparisons

with the other formulation that were mentioned before, xij variables and constraints

(3.2) and (3.3) are retained. We introduce zero-one integer variables as follows:






o

y t

ij

1

and elimination constraints are:

 
i j t

t

ij ny (3.16)

 


tk

t

ki

t
tj

t

ij tyty
,

2
,

,1 ni ,...,3,2 (3.17)

 
t

t

ijij yx ,0 ,,...,2,1, nji  ji  (3.18)

In addition the other conditions must be imposed:

,01 
t

iy nt  (3.19)

,0t

ijy 1t (3.20)

,01 ijy jii  ,1 (3.21)

Constraints (3.17) guarantee that if a city is entered at stage it is left at next stage,

i.e. . Removing certain variables using conditions (3.19), (3.20), (3.21) forces

city 1 to be left only at stage 1 and entered just at stage . Note that in this model

there is no need to place upper bounds of 1 on the variables xij , and this condition

may be violated in the linear programming relaxation. The above model has

constraints and binary variables. Obviously, for constraints (3.18)

and variables xij this model would be even more compact having only constraints

and variables. It is a remarkably drawback in terms of the strength of its

Linear Programming relaxation and therefore the slowness of its overall running

time.

3.2.6 The Vajda Stage Dependent Model

The same variables as in the previous model and constraints (3.2), (3.3), and (3.18)

are used, together with:






ji
ti

t

ijy
,

,1 nj ,...,2,1 (3.22)






ij
tj

t

ijy
,

,1 ni ,...,2,1 (3.23)





iji

t

ijy
,

,1 nt ,...,2,1 (3.24)





n

j

jy
1

1

1 1 (3.25)





n

i

n

iy
1

1 1 (3.26)

 
 

 
n

j

n

k

t

ki

t

ij yy
1 1

1 ,0 nti ,...,3,2,  (3.27)

Constraints (3.25) forces city 1 to be left at stage 1 and constraints (3.26) causes it to

be entered at stage . The last constraints (3.27) have the same effect as constraints

(3.17). This model has constraints in addition of binary

variables which again could be reduced by leaving out constraints (3.18) and

variables xij.

As it can be seen in all mathematical formulations, with the exception of DFJ model,

there is polynomial (in) number of constraints. This feature makes them more

attractive than the DFJ model. However, the number of constraints for big number of

 (large scale problems) may still be large, and the linear programming relaxation

weaker.

3.3 Polyhedral Approaches of TSP

The TSP polyhedral set is the convex hull of the characteristic vectors of all possible

tours. Let be a tour. Then:

The characteristic vectors of the tour is a vector of the dimensional

space such that

=




0

1

Consequently, the TSP polyhedral is: = . If all facet

defining inequalities of is given then TSP is reduced to a linear programming

problem. An optimal solution always occurs at an optimal extremal point.

3.3.1 Subtour Elimination Inequalities

The subtour elimination constraints (4) in the DFJ formulation are facets of TSP, and

testify to the strength of the DFJ formulation. Grotschel and Padberg (1985) proved

the following theorem.

 Theorem 3.1: For every the subtour elimination constraint:

  1 SSx (3.28)

defines a facet of symmetric TSP for . Additionally, if , constraint

(3.28) reduces to the upper bound facet xij ≤ 1.

In fact, the quality of obtained lower bound by solving the subtour elimination

constraints with the LP relaxation of TSP is much better than what can be obtained

from the original relaxation but it comes at a price of increasing the number of

constraints. Subtour elimination constraints are completely describing the

characteristic vectors of the tours but the polyhedral set of the LP relaxation of the

DFJ model is strictly larger than the TSP polyhedra.

An example will be useful to understand the concepts. Suppose we are interested in

finding a complete tour for 6 cities same the 6-city problem of TSP. We examined it

for 6 selected cities of IRAN then for directed graph of TSP, we obtained the

following solution:

, the graphical view of the

solution is given in Figure 3.2.

Figure 3.2: Graphical View of 6-City Problem's Solution

According to above explained constraints, we add the subtour elimination constraints

as below:

 1; 1; + 1.

By adding above constraints to the problem, the optimal solution will be as follows:

=1; =1; =1; =1; =1; =1. In Figure 3.3 the graphical view of the

optimal solution will be shown.

Figure 3.3: Optimal Solution of 6-City Problem

3.3.2 Comb Inequalities

A famous class of facet-inducing inequalities for TSP is the set of the comb

inequalities. These inequalities were defined by Chvatal (1975) as the generalization

of the 2-matching inequalities. A comb inequality consists of a Handle which is

denoted by vertex set and Teeth denoting by vertex sets 1, …, Ts such that:

(i). ;

(ii). ;

(iii). .

and the comb inequality is written as:

1

4 6 3

5 2

 ).1(
2

1
)1())(()(

11

 


sTHTExHEx
s

j

j

s

j

j (3.29)

Where is the edge set of a subset of cities and if is a subset of edges then

A sample comb with 3 teeth is given in Figure 3.4.

Figure 3.4: A Comb with 3 Teeth

Grotschel and Padberg (1979), introduced such structures where each tooth can have

more than one vertex in common with the handle, i.e and / are non-empty

for every . In 1986, Grotschel and Pullyblank introduced the clique tree inequalities

that are further generalization of comb inequalities in the sense that clique trees

contain multiple handles, which are connected through the teeth. According to the

theorem 3.2 (defined by Grotschel and Padberg (1979)) comb inequalities induce

facets of STSP (Symmetric TSP) for problems having more than 5 cities.

Theorem 3.2: The comb inequalities define facets of STSP(n) for n 6.

3.4 Lower Bounds of the optimal value

The main interest of solving TSPs lies in computing good feasible tours. In practice,

having some guarantee on the quality of the solutions is of interest. Such guarantees

can only be given if a lower bound for the optimal value of the length of possible

tour is known. Generally, lower bounds are obtained by solving relaxations of the

original problem in such a way that one optimizes over some set containing all

feasible solutions of the original case as a subset. Then the optimal solution of that

problem gives an acceptable lower bound for the optimal value of the original

problem. Different relaxations provide different lower bounds of the main problem.

In this section several fairly simple bounds are considered. For the purpose of this

selection, we are mainly interested in lower bounds which can be computed fast

enough to decrease the overall computational efforts and running times. These

bounds are combinatorial in the sense that they are derived directly from the

relaxations of the description of tours. The mentioned lower bounds are not to meant

give a very good estimation of the achievable optimum but to give indications on the

quality of the tours found by heuristic algorithms that will be explained in the next

subsections.

3.4.1 The 2-Matching Relaxation

A 2-matching in a graph is a set of edges such that every node (city) is incident to

exactly two of them. Every tour is a perfect 2-matching; even a collection of subtours

is a 2-matching. The following formulation is a case of the 2-matching problem:


i j

ijijxc (3.30)

   ,2ix  (3.31)

,10 orxij  (3.32)

Note that is the set of edges incident to a node such that the number is the

degree of . This problem can be solved in polynomial time based on Edmonds and

Johnson (1973). The 2-matching constraints were defined to give a description of the

polyhedral set of 2-matching. As it can been seen, the 2-matching problem is the DFJ

model of the TSP without the subtour elimination constraints for the symmetric case

of TSP.

3.4.2 The 1-Tree Bound

The fundamental of 1-tree bound for TSP is based on the following observation: If

we select one city, for example city 1, then a Hamiltonian tour consists of a special

spanning tree on the remaining cities in addition of two edges connecting city 1 to

this tree. Hence a relaxation of TSP is obtained if it is taken as feasible solutions

arbitrary spanning tree on the set plus two edges incident to the city

1. In Figure 3.5, a 1-tree has been given.

Length =

287.1

Length =

194.5

Figure 3.5: A 1-Tree Sample

3.4.3 Geometric bounds

The geometric structure of Euclidean TSPs provides a very simple observation of

lower bound for the TSP. A system of circles (disks) around cities and moats around

sets of circles and moats is computed in this method. It is done in such a way that

circles and moats do not overlap each other. Moreover, there has to be at least one

city inside and outside of each circle and moat. Each city should be contained in a

tour and each moat should be crossed at least two times. It means that the salesman

must visit city 1 at some point in the tour and to do so he will need to travel at least

distance r (radius of a circle) to arrive at the city and at least distance r to leave the

city. It can be concluded that every tour has length at least . In Figure 3.6

an illustration of such a system consisting of 6 circles and 2 moats has been shown.

Figure 3.6: A System with 6 Circles and 2 Moats

Different systems of disks and moats are possible for a set of cities. One system can

be computed using Kruskal's algorithm [36]. If the radius of the disk around city

Circle

Moats

w

denoted by and the width of the moat around set denoted by , then the problem

of finding the best bound can be formulated as follows.

 



n

i s

si wr
1

22max (3.33)





sjsi

ijsji cwrr
,

, (3.34)

,0ir (3.35)

,0sw (3.36)

Since we want the bound to be as large as possible, we are interested in choosing the

radii so as to maximize twice their sum. Constraints (3.34) satisfy the over-lapping

conditions. The formulas (3.33) – (3.36) model given by Juenger and Pulleyblank

(1993) is the linear programming dual of the LP relaxation of the DFJ model. The

bound can be determined in the polynomial time.

3.4.4 The Chistofides Lower Bond

Christofides heuristics method uses a minimum spanning tree as a basis for

generating tours. It begins with a minimum spanning tree and gets an Eulerian graph

then with some procedure obtains a Hamiltonian tour. Christofides (1976) proposed

this method.

Definition 3.2: A cycle of length in a graph on nodes is called Hamiltonian tour.

Definition 3.3: A closed walk that traverses every edge of a graph exactly once is

called Eulerian tour.

There are classes of instances in the publications of Cornuejols and Nemhauser

(1978) showing that Christofides algorithm yields a tour times longer

than the optimal tour, thus proving that the above result can be a good lower bound.

Christofides algorithm is explained below.

(i). Obtain a minimum spanning tree using Kruskal's algorithm.

(ii). Obtain a Eulerian graph by computing a minimum weight perfect

matching on the odd-degree nodes of the tree and add it to the tree.

(iii). Obtain an Eulerian tour.

(iv). Obtain a Hamiltonian tour from the generated tour.

In Figure 3.7 above method has been illustrated.

Figure 3.7: Illustration of Christofides Heuristic

3.5 Heuristic Methods

There are more heuristics than what can be discussed in this section. Only the

approaches used in the analysis are explained here.

3.5.1 Nearest Neighbor Construction Heuristic

In the nearest neighbor algorithm the salesman starts at some city and goes to the

nearest city of the starting city. From there the salesman visits the nearest city that

was not visited so far until all cities are covered, and the salesman returns to the

starting point. This procedure can be explained as follows:

(i).

(ii).

-

-

(iii).

Due to Rosenkrantz, Stearns and Lewis (1977) [36] there is a proved theorem

guarantee s that no constant worst case performance can be given.

3.5.2 Node and Edge Insertion Improvement Heuristic

A further intuitive method for finding the tour is to start with tours on small subsets

and then extending these tours by inserting the remained nodes that is called node

insertion method. Starting small subset can include one or two nodes. Using this

principle results a tour containing more and more nodes of the problem until all

nodes are inserted and the final complete tour is obtained. In the edge insertion

algorithm an edge is removed from the tour and reinserted at the best possible

position. Figure 3.8 shows a simple edge insertion process.

Figure 3.8: Edge Insertion Move

Because of endpoints of an edge, there are two possibilities for connecting the

removed edge. The algorithm is given as the following.

Suppose is the current tour. Do the following until failure is obtained.

(iv). For every node i= 1, 2, …, n: Test all possibilities to insert the edge

between i and its successor in the tour. If the decrease in the length of the

tour is possible then select the best such edge insertion move and update

T.

(v). If no improving movement can be found, then stop and declare the

failure.

Reinelt (2001) proves that it takes time O(n2) to check if there is an improving edge

insertion move at all because for every edge of the tour every possible insertion point

must be checked.

3.6 Cutting Plane Methods

If be the distance vector and if denotes the set of the incidence vectors of all

tours, then the TSP is:

 (3.37)

In order to solve the above problem, Dantzig, Fulkerson and Johnson (1954) start

with the problem that they can solve as the problem below.

 (3.38)

By suitable chosen system of linear inequalities satisfied by all ,

solving problem (3.38) is what the simplex method is for. Problem (3.38) is a

relaxation of (3.37) i.e. any feasible solution of (3.37) is a feasible solution of (3.38).

Therefore the optimal value of (3.38) gives a lower bound on the optimal value of

(3.37). It is a characteristic feature of the simplex method that the optimal solution is

an extreme point of the polyhedron defined by the system of linear inequalities in

(3.38). Optimal solution is denoted by . If  then it lies outside the convex

hull of . In this way can be separated from S by a hyperplane which is shown in

Figure 3.9.

Figure3.9: Illustration of Cutting Plane

Cutting plane

LP optimal solution

The Figure displays that there is a linear inequality which is satisfied by all the points

in and violated by optimal solution (). Such an inequality is called a cutting

plane. If a cut is found then it could be added to the linear inequality system in (3.38)

to solve the resulting relaxation using simplex method. This process is repeated until

the optimal solution of relaxation (3.38) in is found. In the implementation of

cutting plane method, the main step is finding the cuts. Based on Applegate et al.

(1998), there are some ways to find the cuts. Two classical ways are:

1) Subtour eliminator cuts, and

2) Gomory cuts.

3.7 Application of Theory for medium-size Bipartite Problems

In order to manufacture some work pieces such as picking and placing some

assembly parts on the PCB, a robot has to perform a sequence of operations on it.

The task is to determine a sequence to perform the required operations that leads to

the shortest total processing time. The robot moves between separated sets of

positions in an alternating fashion. Therefore here we have the problem of finding

the shortest Hamiltonian path in a bipartite graph. This problem can be treated as an

alternating TSP. According to the theorem proposed by Baltz (2001), finding optimal

tour of this alternating TSP in the Euclidian plane is also NP-hard.

Our robot problem, a tour for the pick and place robot starts at a depot or arbitrary

starting cell point, carries an item to an appropriate location as assembly point, then

moves to a depot again, and so on with this property that the robot cannot carry more

than one item. It can be observed that the node sets (N) of the problems can be

partitioned into two nonempty disjoint sets () which such that no

two nodes in and no two nodes in are connected by an edge. Because of

partitioning into two set of nodes, this problem is called bipartite TSP. Since | | = | |

and adge set of then we call the graph of the problem as the

complete bipartite graph. The focus of this thesis is on medium sized (up to 500)

bipartite TSPs arises the robot problems.

The polyhedral structure of the Dantzig, Fulkerson and Johnson model is better

understood and its linear relaxation is properly contained in the linear relaxation of

some other formulations. The Miller, Trucker and Zemlin model has been also

selected for developing an exact method. The reason is that DFJ formulation has an

exponential number of subtour elimination constraints but MTZ formulation contains

only a polynomial number of constraints especially in the first steps of solving the

LP relaxation, MTZ priority is so considerable in the both sense of number of

constraints and time needed.

Since in the first step of solving LP relaxation using MTZ getting to the optimal tour

is very difficult for the moderate-size problems then violated constraints (constraints

not satisfied by the current LP solution) should be found. In most of the cases, the

violated constraint is a subtour eliminator one. Such a violated constraint can be

obtained by determining the absolute minimal cut in the graph. The procedure will be

discussed in Chapter 4.

As we know from the various formulations, there are many subtour elimination

constraints and it is not simple to claim all of them in the LP relaxation. Using the

cutting plane method, just needed constraints are added to the problem. Finding the

cuts help us to get the LP solution to be a tour, and thereafter solve the TSP.

However, it can be a very long procedure even in that case the LP solution a very

good lower bound and also an LP solution that can serve as a guide in trying to get a

good tour.

Exact methods like as MTZ model require several hours or days of running time

even for moderate size instances. When running time is limited or the data of the

instance is not exact, using TSP heuristics is needed. Due to find a suitable upper

bound for the problem, in this work, a combination of nearest neighbor and edge

insertion algorithms has been used. The complete explanation of the above methods

will be done in the next chapter.

Chapter 4

Model Development

Explicitly examining all possible TSP tours is impractical even for moderately sized

problems because there are different tours in (complete graph of the

symmetric TSP) and Different tours in (complete digraph of the

asymmetric TSP). Hence, we will not attempt to obtain the optimal solution

analytically which is rather impossible.

In order to examine exact methods, it must be explained the different types of graphs

and assumptions that they will be taken into account. In any TSP, there are two types

of graphs in sense of the direction between two nodes. These two cases are called

directed graph and undirected graph. An undirected graph consists of a finite set of

vertices and a finite set of edges such that each edge has two endpoints and

and is denoted by . We call such a graph undirected because we do not

distinguish between the edges and . In the other words, in this graph each edge is

adjacent to two vertices. While in the directed graph, we will speak about head and

tail of an edge. It means that the arc is not equivalent to the arc Hence, in the

directed graph we arrive into each city (or point) once and leave each city (or point)

once. We denote an undirected graph as and a directed graph as

where:

(i).

(ii).

(iii).

Samples of directed and undirected graphs have been given in Figure 4.1.

Figure 4.1: Samples of Directed and Undirected Graph

4.1 Assumptions

Before explaining the used models and proposed iterative algorithm, the assumptions

which belong to the solved problems should be addressed.

4.1.1 Symmetric TSP

In this study symmetric type of the TSP is of interest. A symmetric TSP is said to

satisfy the triangle inequality if for all distinct vertices .

Since we consider to the special case of the bipartite TSP, the distances obey the

square inequality for all vertices .

Directed graph Undirected graph

4.1.2 Euclidean Bipartite TSP

The corresponding graph of the TSP in our problems is Euclidean bipartite TSP. An

interesting special case of the TSP is to consider the optimal route passing through a

collection of points in the Euclidean plane. In fact, in the Euclidean TSP we are

given nodes (vertices) in 2 (more generally, in d) and desire the minimum

distance salesman tour for these nodes (vertices), where the distance of the edge

between nodes and is given by in the formula 4.1.

 (4.1)

4.1.3 Edge Distance as the Weight

For the theoretical analysis, we consider distances between points where the moving

time of the robot is assumed to be proportional to the distances travelled.

4.1.4 Robot Arm Limited Capacity

It is assumed that the robot cannot carry more than one item in each movement.

4.1.5 One Head Placement Robot

The placement arm of the studied robots is equipped with one hand.

4.1.6 Standard Bipartite TSP

The equal number of cells and assembly points exist on the printed circuit board.

4.1.7 Suppressed Picking/Insertion Times

Picking/insertion times have been suppressed.

4.2 Applied Exact Methods

Both of the DFJ and MTZ models have been used in the experiments.

4.2.1 The DFJ Model for the Directed Cases

Formulas (3.1), (3.2), (3.3), and (3.4) are the same. Since two versions of subtour

elimination constraints have been considered we will call formula (3.4) as the version

1 and the following constraints will give the version # 2. The idea is that if

then we must leave .

 (4.2)

4.2.2 The DFJ Model for Undirected cases

Instead of (3.2) and (3.3) we have:

 (4.3)

And the version # 1 of subtour elimination constraints is same to (3.4), but the

version # 2 is given by:

 (4.4)

The number of variables in the undirected graph is .

4.2.3 The MTZ Model

We continue with the MTZ model introduced in subsection 3.1.2, wherein the

number of subtour elimination constraints is reduced but the number of real variables

is extended by defining continuous variables. The MTZ constraints yield a

compact representation for the TSP, and their use is particularly attractive in various

contexts.

The problems are solved by using both of the above formulations and the results are

stored. As we expect, the solutions were not integers. To find the subtour structures

labeling technique is used.

4.2.4 Labeling Technique

With consideration of provided information, some subtours are obtained. As stated

before, some violated constraints make to get subtours in the model. To check if the

provided graph from the results of LP relaxations is disconnected or not, labeling

technique is used. The idea is that going through a path, every node should be given

the same label. Different labels will determine the existence paths. The flow chart of

proposed labeling technique has been given in Figure 4.2.

Figure 4.2: Labeling Technique Flow Chart

4.2.5 Finding Minimal Cut

Some inequalities are satisfied by the characteristic vectors of complete tours but are

violated by the optimal solution of the current relaxation . Such inequality is called

cut briefly. Having found cuts, one can add them to the linear inequality system of

LP relaxation, solve the obtained relaxation, and iterate this process while the

optimal solution becomes feasible.

Definition 4.1: A cut of is a partition of into two sets such that:

(i).

(ii).

The capacity of a cut is given by:

 (4.5)

We can also think of a cut as a set of edges that go from to , i.e. all edges

such that If we remove these edges from the graph, no vertex in will

be connected to a vertex in . The direction of the edges is important in the

definition of a cut (see Figure 4.3) because we want the capacity of a cut to limit the

flow going through that cut in one direction. In the Figure 4.3, set consists of un-

shaded nodes and consists of the shaded nodes. Edges between the

partitions of the cut are highlighted. The capacity of the cut is

Figure 4.3: An Example of a Cut in a Graph

Considering the above information, we proposed a cutting model to find the

minimum capacity cut. Most obviously, the connectivity of the bipartite graph and

constructing complete tour is the minimum value of a cut. The obtained minimum

cut displays the subtour eliminators that are violated. Found violated constraints are

added to the LP relaxation, the LP is solved to get the new solution.

Corresponding to the last information, finding the minimal cut in a bipartite graph is

introduced as follows. Constraints are related to:

1) Two non-empty parts (0 and 1)

2) Objective function

The directed cut goes from part '1' to part '0'.

Constraints of two parts are:

(4.6)

 (4.7)

Remark 4.1: Partitioning into two parts '1' and '0' is based on the values of the

variables obtained by LP solver such that having integer values of 1 are in part '1'

and having 0 values are in part '0'.

Related information for the objective function are as follows:

Note that are parameters and are variables in the minimal cut model.

 (4.8)

From above information we will have:

 (4.9)

Thus objective function will be:

 (4.10)

Minimization problem implies that in the optimal solution of the minimal cut model

 will be:

 (4.11)

To summarize the procedure until now, we solve an initial LP relaxation. Let be

the solution. If it is integer and feasible, the optimal solution has been found, then we

stop. If the solution is non-integer and infeasible then we look for one or more

violated inequalities. If no violated inequalities are found then the final lower bound

is recorded. When some inequalities are found we add them to the LP relaxation. We

resolve the LP and again we check the solution in the sense of integrality and

feasibility. One important problem here is the finding of violated inequalities. The

fact is that we cannot test each one explicitly. In order to overcome this problem we

use the minimal cut model. Implementing of such cutting method is called cut and

branch algorithm. Our cut and branch algorithm has been shown in Algorithm 4.1.

Algorithm 4.1: Customized Cut and Branch Algorithm

4.3 Proposed Heuristic Algorithm

Every TSP heuristic can be evaluated in terms of two key parameters: its running

time and the quality of tours obtained. Because of the time and cost limitations in the

manufacturing and engineering problems, we should consider to some heuristics

having low running time in addition of simple structure of the method. A mixed

Nearest Neighbor and Insertion constructive heuristic is proposed to obtain a good

upper bound for the medium-size bipartite TSP. The proposed algorithm is a

combined approach. Nearest neighbor procedure proceeds well and produces

connections with short edges in the beginning but several points are forgotten during

the algorithm, and they have to be inserted at high cost in the end. To avoid this

problem we use an insertion algorithm during the procedure. Since the movement

from one point to another point is restricted in bipartite graph, i.e. we are just

allowed to go from some cell point to assembly point or vice versa, during the

insertion process an edge will be inserted not a vertex (node). For applying the

combined method a threshold value denoted by is defined. Firstly, one starting cell

point is selected randomly. Based on the concept of the nearest neighbor algorithm,

the nearest assembly point of that point will be found. In the process of finding the

next point of the tour, the distance between new point and existence points will be

considered. If the distance from the endpoint is less than threshold value the nearest

neighbor algorithm is applied. Otherwise edge insertion method is used. As stated

before, the logic of applying edge insertion method in our problems comes out of

bipartite TSP characteristics. Since any cell point can only be connected to an

assembly point and any assembly point can only be connected to a cell point, the

insertion process is as follows: Select a cell point and the nearest assembly point not

included in the path.

New edge can be inserted to the endpoints of the path or in the middle of the path.

Figure 4.4 shows such an edge insertion process.

Figure 4.4: Edge Insertion Process

In Figure 4.4, the net cost (distance) is given by:

 Minimization of this net distance will be of

interest.

Remark 2: In bipartite cases of the TSP, for the edge insertion process there are some

different possibilities which must be considered. In the proposed heuristic all of these

CP

AP

CPi

APj

Subtour

CPk

APl

CP

AP

CPi

APj

Subtour

CPk

APl

possibilities are checked for each insertion process. This process is done iteratively

and switching from nearest neighbor to the edge insertion is performed based on the

threshold value. The procedure will be done until a complete tour is obtained.

Different possibilities of insertion new edge to the current tour in the bipartite cases

are shown in Figure 4.5.

CP1 AP1 CPk

k

APk AP2 CP2

Prohibited path

dCPkAPk is above threshold

CP1 AP1
APk-1 CPk AP2 CP2

Allowed path

CP1 AP1 CP

k

APk AP2 CP2 CPk+1

Allowed path

Figure 4.5: Different Insertion Possibilities in the Bipartite Graph

Algorithm 4.2, shows the proposed heuristic in detail.

Algorithm 4.2: Proposed Heuristic Algorithm

Algorithm 4.2: Proposed Heuristic Algorithm (continue)

 Else

{ }

 Else

{ }

 then

{ }

 Else

{ }

Algorithm 4.2: Proposed Heuristic Algorithm (continue)

 Else

{ }

 Else

{m}

 then

{ }

 Else

{ }

Algorithm 4.2: Proposed Heuristic Algorithm (continue)

4.4 Proposed Iterative Algorithm for the Medium-size Bipartite TSP

Corresponding to the customized cutting model and proposed heuristic algorithm,

our iterative algorithm for solving the bipartite problems is as follows:

1) Solve LP relaxation. If its integer optimal solution was found, stop.

Otherwise go to step 2.

2) Prepare the graph consisting of the integer arcs.

3) Apply labeling technique to determine the paths.

4) Prepare the graph consisting of

(i). Non-integer arcs, and

(ii). Each path is substituted by an arc from the starting point to the end

point of the path. The weight of the arc is 1.

5) Solve the minimal cut model in the generated graph.

6) If the optimal value is at least 1 then no subtour eliminator constraint is

found. Switch to heuristic tour constructor.

7) If the optimal value is less than 1 then add to the node sets '1' and '0' the

nodes of paths going within the set. These paths have been found in step 3.

The subtour eliminator constraint between the supplemented sets '1' and '0' is

violated. Add this constraint to the problem. Go to step 1.

Chapter 5

Computational Experiments

Theoretical analysis is a useful tool in the algorithm design but empirical analysis is

absolutely necessary to check the efficiency of the algorithm. We are interested in

design and selection of the most efficient algorithms for real-world use and, thus, we

pay more attention to experimental evaluation.

In this chapter, computational results obtained after testing the ideas mentioned in the

previous chapter is described. All of the implementations have been written in the

"MATLAB R2010a" and "LINGO12.0" programming languages. The computers

used to run the implementations were all each with 2GB RAM, running at 2.8 GHz

processor.

5.1 Modeling of the DFJ and MTZ Formulations

In order to test the exact methods, first step was writing DFJ and MTZ models in the

optimization software. The solver package has been used for these experiments is

extended LINGO 12.0/ win 32 (LINDO system 2010). To execute the models in

LINGO environment the problems were translated into LINGO language. Basically,

LINGO uses branch and bound algorithm for solving the problems.

To prevent the unnecessary long computational times in the first steps, analyzing the

corresponding results of DFJ and MTZ models were begun with small sizes of TSP

for the cities of Iran. These experiments consist of 6, 10, 15, 20 cities respectively.

After them, eleven PCB problems addressed by P-80-1, P-80-2, P-100-1, P-100-2, P-

25-15-1, P-25-25-2, P-25-15-3, P-200-1, P-200-2, P-240-1, and P-240-2 have been

performed. LINGO models of DFJ and MTZ formulations are available in

APPENDIX B. For the simplicity of the models, the variables have been assumed

real variables between 0 and 1. In order to avoid time-consuming tasks in LINGO,

input matrices for medium sized problems (PCB problems) is read from Microsoft

Excel. For example, the input matrix of the problem P-25-15-1 contains 6400

elements. Typing 6400 elements in LINGO is approximately impossible. Also, a

solution generated by LINGO is of little use if it could not to be exported to other

applications. For these reasons, interfacing with spreadsheets of LINGO is used to

move information in and out of LINGO. Input data can be found in APPENDIX A,

Tables A2 TO A16. The distance matrices have been calculated using Euclidean

distance, as stated before, and computing these matrices has been done by MATLAB

program that is given in APPENDIX C. Distance structure of the mentioned

problems is shown in Figure 5.1. Note that there are no variables with indices

where or .

Cell Points Assembly Points

C
el

l
P

o
in

ts

Figure 5.1: Structure of Distance Matrices of PCB Problems

5.2 Plotting the Graphs

The desirable solution of the solving TSP problems is integer solution. Because of

the non-integrality in the solutions of PCB problems, it could be useful to check the

plotting style of integer and non-integer arcs in the bipartite graph. To do this feature,

a MATLAB code has been written in MATLAB R2010a. The program is shown in

APPENDIX C. It should be noted that plotting program is based on the values of the

variables resulting from LINGO such that the edges of the graph having weights

between 0.69 and 1 are shown as red edges, and green lines display edges having

weight between 0 and 0.69. If there be any edge with weight greater than 1 it is

shown by magenta line in the plot. The plotting results for PCB instances for initial

results of MTZ formulation have been shown in APPENDIX E, Figure E1 to E4.

5.3 Applying Labeling Technique

As stated before, labeling technique is applied to find the paths in the bipartite graphs

in order to check the obtained graph from LINGO results is connected or not.

Existence of any disconnected path in the graph somehow will be shown the

existence of violated constraints in the problem. MATLAB R2010a has been used to

write the proposed labeling technique. The corresponding code is given in

APPENDIX C. Output of the program is transferred to spreadsheets. This

spreadsheets display the label of every node in the corresponded TSP graph. Each

A
ss

em
b
ly

 P
o
in

ts

group of the nodes having same labels constructs a path. For example, the initial

obtained labels of problem 25-15-1 by this program have been given in APPENDIX

A, Table A17.

5.4 Solving the Minimal Cut Model

A subtour elimination constraint is violated if there is a cut in the graph with a cut

value less than 1. Therefore, the absolute minimal cut must be found in the graph

determined by the fractional solution. It is different from the usual problem to find

the minimal cut separating two a priori given vertices. Based on the explained cutting

model in the previous chapter, the non-integer arcs and also each path consisting of

these non-integers as the starting point and endpoint should be found. Now the

required information to write a cutting model for the problem is available. To

understand the model exactly, cutting model of the problem 10-city by MTZ

formulation is explained below. Using the output worksheet of LINGO for problem

10-city, fractional solution is given in Table 5.1.

Table 5.1: Initial Results of 10-City Problem with MTZ Model

Variable Value

y(1, 3) 0.89

y(1, 6) 0.11

y(2, 5) 0.50

y(2, 8) 0.50

y(3, 6) 0.39

y(3, 7) 0.61

y(4, 2) 0.50

y(4, 5) 0.50

y(5, 10) 1.00

y(6, 3) 0.11

y(6, 7) 0.39

y(6, 9) 0.50

y(7, 1) 1.00

y(8, 2) 0.50

y(8, 9) 0.50

y(9, 6) 0.50

y(9, 8) 0.50

y(10, 4) 1.00

It should be considered that the values of other variables are zero. Results show that

considerable paths with arc weights 1 are as follows.

, . Considering , we must exclude node 10 from the

model.

Therefore, in the cutting model for above paths we should have:

; . Also for non-integer arcs we should have

the following constraints: in these constraints display

the value of variables in LP relaxation which are gotten using LINGO model.

Display model of this example in LINGO has been given in APPENDIX B.

Given two different values of the cutting model variables, we wish to partition the

nodes into two non-empty sets so as to minimize the number (or total weight) of

edges crossing between them. More formally, a cut (0, 1) of a graph is a partition of

the nodes of that graph into two nonempty sets 'o' and '1'. An edge crosses cut

(0, 1) if is in set '0' and is in '1'. The subtour eliminator constraint between the

supplemented sets '1' and '0' are violated if the cut value is less than 1. These

constraints are added to the LP relaxation in LINGO and the LP relaxation again is

solved. LINGO model after adding these constraints will be changed. The program

of LP relaxation after adding initially violated constraints has been displayed in

APPENDIX B. For example, in 10-city problem the memberships of the two sets are

shown in Table 5.2.

Table 5.2: Results of Cutting Model for Problem 10-City

x Membership

1 1

2 0

3 1

4 0

5 0

6 0

7 1

8 0

9 0

10 0

Since the objective function value of the model is less than 1, we have the violated

constraints in LP relaxation. To find the violated constraint, determining the

partitions of cut is needed. The Table above gives two sets and as follows:

 ,

In Figure 5.2, flow between these two sets can be seen.

Figure 5.2: Flow Between Set '1' and Set '0'

In-flow of node 6 is 0.5 (less than 1) and we can conclude there are some violated

constraints. Thus we should add the following inequalities to the LP relaxation and

solve the LP once more.

Obviously, this work should be repeated until no violated subtour elimination

constraint exists. Because of some difficulties, the program of cutting model has

been not automated yet, so three cuts only have been performed for the medium-size

problems. Outputs of the cuts for the city problems and bipartite instances have been

shown in Table 5.3 and Table 5.4. Note that DFJ OFV and MTZ OFV indicate the

initial objective function value of the DFJ and MTZ models for our directed

0.11 0.38

6

1 3 7

2 4 5 8 9 10

'1'

'0'

problems, respectively. LB is the abbreviation of Lower Bound. Consider that in the

DFJ model assignment problem constraints are included. Results indicate that there

is no significant different between the results obtained by DFJ and MTZ

formulations. In some problems DFJ model and in the some other problems MTZ

model gives better lower bound.

Table 5.3: Results of the DFJ Model

Problem Size DFJ OFV Found LB

G
e

n
e

ra
l

T
S

P

6 city 6 × 6 3068.00 3718.00

10 city 10 × 10 5675.00 5679.00

15 city 15 ×15 7616.00 7700.45

20 city 20 × 20 7943.00 8075.00

2
-D

im
e

n
si

o
n

a
l

B
ip

a
rt

it
e

80-1 40 × 40 44318.49 44328.00

80-2 40 × 40 48382.57 48384.30

100-1 50 × 50 63747.28 63756.90

100-2 50 × 50 73340.72 73341.70

25-15-1 80 × 80 67863.70 67874.90

25-15-2 80 × 80 77306.70 77322.60

25-15-3 80 × 80 72823.80 73458.00

200-1 100 × 100 103319.30 104322.00

200-2 100 × 100 112905.90 119306.50

3
-D

. B
ip

a
rt

it
e

240-1 120 × 120 1406.87 1407.90

240-2 120 × 120 1374.44 1398.30

Table 5.4: Results of the MTZ Model

Problem Size MTZ OFV Found LB

G
e

n
e

ra
l

T
S

P
 6 city 6 × 6 3073.11 3722.60

10 city 10 × 10 5207.56 5355.44

15 city 15 × 15 6441.14 6732.29

20 city 20 × 20 7133.68 7237.10

2
-D

im
e

n
si

o
n

a
l

B
ip

a
rt

it
e

80-1 40 × 40 44317.12 44321.80

80-2 40 × 40 48384.37 48397.46

100-1 50 × 50 63747.93 63770.19

100-2 50 × 50 73336.71 73341.70

25-15-1 80 × 80 67864.12 67868.37

25-15-2 80 × 80 77306.28 77308.74

25-15-3 80 × 80 72823.67 73600.14

200-1 100 × 100 103319.50 104319.23

200-2 100 × 100 112904.40 119307.61

3
-D

.

B
ip

a
rt

it
e
 240-1 120 × 120 1406.87 1407.13

240-2 120 × 120 1374.31 1375.55

5.5 Applying the Proposed Heuristic Algorithm

After solving the minimal cut model, if the optimal value of cut is greater than 1

then no subtour elimination constraint is found and we should switch to Heuristic

tour constructor. Based on the concept of the algorithm in Chapter 4, the proposed

heuristic algorithm is written as a program by MATLAB R2010a. The corresponding

program is available in APPENDIX C. In this program threshold value has been

calculated in some various methods. Methods used in our problems have been given

in Table 5.5.

Table 5.5: Different Calculation Methods of Threshold

Method of calculation of Threshold

median of top 10%

min

max

average

min+ ((average-min)/2)

min+ ((average-min)/3)

min+ ((average-min)/4)

As mentioned in the previous chapter, there are some possibilities when we are going

to insert an edge to the path in the process of constructing complete tour. We can

consider only to the endpoints of the current path and insert the new edge to these

endpoints. Heuristic case (1) has been constructed based on this feature. In addition

of endpoints, we can also insert the new edge to the middle of the current path during

the insertion process. We have denoted this heuristic as case (2). Given algorithm in

the previous chapter has been constructed based on case (2) to cover all possibilities

in the insertion process. The obtained results can be improved or not according to the

characteristics of the problems. To cover this purpose, the heuristic algorithm has

been written in both conditions. The written codes have been shown in APPENDIX

C. Further, the results of the heuristic method for all our PCB instances tested for

both heuristics have been given in Tables 5.6 and 5.7. Fortunately, the average

Elapsed Runtime is not more than two seconds in both cases.

Remark 5.3: The best solution for each problem is marked with a (*).

Table 5.6: Heuristic Results Case (1)

Proble

m

Method of calculation of

Threshold

T value

Min. tour

distance

 Elapsed

Time (sec.)

2
-

D
im

en
si

o
n

a
l

B
ip

a
rt

it
e

80-1

median of top 10% 383.500 49804* 0.201043

min 27.893 51021 0.167665

max 2963.07 51435 0.034562

2

average

1372.43

7

50471 0.082217

min+ ((average-min)/2) 700.165 50981 0.143690

min+ ((average-min)/3) 476.074 51085 0.176550

min+ ((average-min)/4) 364.029 50790 0.198976

80-2

median of top 10% 426.500 51069 0.165447

min 33.422 51021 0.153429

max

2666.25

2

51435 0.030246

average

1350.41

0
50294* 0.074502

min+ ((average-min)/2) 691.916 50981 0.139760

min+ ((average-min)/3) 472.418 51894 0.157234

min+ ((average-min)/4) 362.669 50790 0.164312

100-1

median of top 10% 430.700 69769 0.251398

min 13.342 69368 0.232419

max

3363.07

3

70994 0.040361

average

1683.26

7

71677 0.126540

min+ ((average-min)/2) 848.304 68146* 0.209060

min+ ((average-min)/3) 569.983 71587 0.232670

min+ ((average-min)/4) 430.823 69769 0.264291

100-2

median of top 10% 508.300 75949* 0.276789

min 60.959 78061 0.254490

max

3402.01

4

80284 0.043345

average 1657.04 79264 0.094864

4

min+ ((average-min)/2) 859.002 78999 0.257753

min+ ((average-min)/3) 592.987 75949* 0.258766

min+ ((average-min)/4) 459.980 77035 0.274460

25-15-1

median of top 10% 69.400 72722* 0.845689

min 23.431 75310 0.809081

max

2838.24

0

75555 0.122093

average

1333.15

2

75183 0.301803

min+ ((average-min)/2) 678.291 75725 0.650276

min+ ((average-min)/3) 460.004 74255 0.670271

min+ ((average-min)/4) 350.861 76348 0.762123

25-15-2

median of top 10% 84.150 84816 0.919021

min 43.278 85587 0.859799

max

2883.03

2

86243 0.101080

average

1323.56

6

85559 0.238471

min+ ((average-min)/2) 683.422 85130 0.613563

min+ ((average-min)/3) 470.041 83371* 0.907830

min+ ((average-min)/4) 363.350 85010 0.825121

Table 5.6: Heuristic Results Case (1)-continue

Proble

m

Method of calculation of

Threshold

T value

Min. tour

distance

 Elapsed

Time (sec.)

2
-

D
im

en
si

o
n

a
l

B
ip

a
rt

it
e

25-15-3

median of top 10% 97.850 82309 0.885239

min 24.759 83276 0.923543

max 7180.43 85932 0.122563

2

average

1398.82

6

83020 0.253613

min+ ((average-min)/2) 711.792 81881 0.724098

min+ ((average-min)/3) 482.781 84217 0.851676

min+ ((average-min)/4) 368.286 85943 0.752674

200-1

median of top 10% 486.100 115580 1.431207

min 37.162 113120 1.564957

max

3571.56

2

115510 0.180534

average

1671.49

9

114290 0.351556

min+ ((average-min)/2) 854.330 112960 0.843481

min+ ((average-min)/3) 581.941 111450* 1.318800

min+ ((average-min)/4) 445.746 115440 1.424837

200-2

median of top 10% 512.500 127530 1.574342

min 10.630 123940* 1.716574

max

3527.79

2

128530 0.191936

average

1666.04

9

126650 0.419853

min+ ((average-min)/2) 838.340 125840 1.095427

min+ ((average-min)/3) 562.436 126090 1.721015

min+ ((average-min)/4) 424.485 125530 1.565432

3
-D

im
en

si
o

n
a

l
B

ip
a

rt
it

e

240-1

min 1.414 1473.9 2.772190

max 27.749 1431.4 0.339103

average 13.668 1429.8* 0.405182

min+ ((average-min)/2) 7.541 1442.3 1.957426

min+ ((average-min)/3) 5.499 1475.5 2.601191

min+ ((average-min)/4) 4.478 1463.5 2.675432

240-2

min 1.000 1492.7 2.534267

max 27.749 1424.3 0.295641

average 13.610 1408.8 0.354398

min+ ((average-min)/2) 7.305 1436.4 2.432106

min+ ((average-min)/3) 5.203 1405.6* 2.438765

min+ ((average-min)/4) 4.153 1416.4 2.820125

Table 5.7: Heuristic Results Case (2)

Problem

Method of calculation of

Threshold
T value

Min. tour

distance

 Elapsed

Time (sec.)

2
-D

im
e

n
si

o
n

a
l

B
ip

a
rt

it
e

80-1

median of top 10% 383.50 48352 0.202011

min 27.89 47905 0.183556

max 2963.07 48521 0.049896

average 1372.44 48152 0.093395

min+ ((average-min)/2) 700.17 46645* 0.165207

min+ ((average-min)/3) 476.07 48707 0.198267

min+ ((average-min)/4) 364.03 48352 0.204957

80-2

median of top 10% 426.50 51311 0.185905

min 33.42 52233 0.180424

max 2666.25 51435 0.051556

average 1350.41 51466 0.088100

min+ ((average-min)/2) 691.92 50755* 0.153471

min+ ((average-min)/3) 472.42 51311 0.180383

min+ ((average-min)/4) 362.67 51311 0.192855

100-1

median of top 10% 430.70 67815* 0.284357

min 13.34 69891 0.269563

max 3363.07 70994 0.066074

average 1683.27 71477 0.133445

min+ ((average-min)/2) 848.30 70824 0.227750

min+ ((average-min)/3) 569.98 70194 0.255577

min+ ((average-min)/4) 430.82 67815* 0.294449

100-2

median of top 10% 508.30 76776* 0.303430

min 60.96 79832 0.271011

max 3402.01 80284 0.066486

average 1657.04 80204 0.126524

min+ ((average-min)/2) 859.00 80814 0.273771

min+ ((average-min)/3) 592.99 76776* 0.276046

min+ ((average-min)/4) 459.98 76787 0.308213

25-15-1

median of top 10% 69.40 73652 0.879720

min 23.43 75660 0.833873

max 2838.24 75556 0.134484

average 1333.15 76153 0.331714

min+ ((average-min)/2) 678.29 75803 0.689853

min+ ((average-min)/3) 460.00 75304 0.709963

min+ ((average-min)/4) 350.86 73455* 0.792449

25-15-2

median of top 10% 84.15 84072* 0.944540

min 43.28 86509 0.880275

max 2883.03 86243 0.138416

average 1323.57 86200 0.279699

min+ ((average-min)/2) 683.42 86415 0.644214

min+ ((average-min)/3) 470.04 86651 0.929565

min+ ((average-min)/4) 363.35 84800 0.835545

Table 5.7: Heuristic Results Case (2)-continue

 Problem
Method of calculation of

Threshold
T value

Min. tour

distance

 Elapsed

Time (sec.)

2
-D

im
e

n
si

o
n

a
l

B
ip

a
rt

it
e

25-15-3

median of top 10% 97.85 81460 0.916372

min 24.76 92700 0.957786

max 7180.43 85932 0.141187

average 1398.83 85726 0.275497

min+ ((average-min)/2) 711.79 85000 0.732268

min+ ((average-min)/3) 482.78 82641 0.874728

min+ ((average-min)/4) 368.29 80267* 0.778949

200-1

median of top 10% 486.10 113270 1.450885

min 37.16 113160 1.588987

max 3571.56 115510 0.205895

average 1671.50 114290 0.369101

min+ ((average-min)/2) 427.19 112530* 0.887560

min+ ((average-min)/3) 407.56 114220 1.328641

min+ ((average-min)/4) 397.74 113690 1.459964

200-2

median of top 10% 512.50 124840* 1.609653

min 10.63 125450 1.741797

max 3527.79 128530 0.205053

average 1666.05 126730 0.438337

min+ ((average-min)/2) 460.03 125590 1.128979

min+ ((average-min)/3) 442.54 136790 1.739344

min+ ((average-min)/4) 433.79 125090 1.583813

3
-D

im
e

n
si

o
n

a
l

B
ip

a
rt

it
e

240-1

min 1.41 1930 2.809650

max 27.75 1935 0.339599

average 13.67 1928* 0.429750

min+ ((average-min)/2) 7.54 1929 1.967688

min+ ((average-min)/3) 5.50 1929 2.605713

min+ ((average-min)/4) 4.48 1929 2.689052

240-2

min 1.00 1866 2.557984

max 27.75 1863 0.301114

average 13.61 1853 0.369727

min+ ((average-min)/2) 7.31 1849 2.443762

min+ ((average-min)/3) 5.20 1847* 2.450805

min+ ((average-min)/4) 4.15 1847* 2.828947

5.5.1 Sensitivity Analysis of the Proposed Heuristics

We have examined the average quality of each variant (case 1, case 2) for eleven

sample problems. To this end we have performed each heuristic for every starting

node of cell points Table 5.8 Shows the results. Each line corresponds

to one case and gives the length of the best, resp. worst tour, the average tour length

obtained, and the span between best and worst tour (i.e., worst quality – best quality).

Table 5.8: Sensitivity Analysis for the Proposed Heuristics

Heuristic Minimum Maximum Average Span

80-1

case (1) 49804 51435 50963.83 1631

case (2) 46645 48707 48331.5 2062

80-2

case (1) 50294 51894 51198.33 1600

case (2) 50755 52233 51511.17 1478

100-1

case (1) 68146 71677 70527.33 3531

case (2) 67815 71477 70676 3662

100-2

case (1) 75949 80284 78728.6 4335

case (2) 76776 80814 79584.2 4038

25-15-1

case (1) 72722 76348 75396 3626

case (2) 73455 76153 75354.67 2698

25-15-2

case (1) 83371 86243 85390.83 2872

case (2) 84072 86651 86136.3 2579

25-15-3

case (1) 81881 85943 83796.86 4062

case (2) 80267 92700 85576.5 12433

200-1

case (1) 111450 115580 114483.3 4130

case (2) 112530 115510 114023.3 2980

200-2

case (1) 123940 128530 126695 4590

case (2) 124840 136790 128030 11950

240-1

case (1) 1429.8 1475.5 1457.32 45.7

case (2) 1928 1935 1930 7

240-2

case (1) 1405.6 1492.7 1435.72 87.1

case (2) 1847 1866 1858 19

The results verify that case (1) more than case (2) leads to the best results but the

average quality of the tours obtained by two cases are not significantly different.

Therefore, we can conclude two variants perform more or less the same. The span is

considerable; the quality of the tours strongly depends on the choice of the starting

node.

5.5.2 CPU Times for the Proposed Heuristics

CPU times for the complete set of the instances are shown in Figure 5.3. The running

times for the variants do not include the time to plot the graph obtained. Time scale is

based on second.

Figure 5.3: CPU Times for Two Cases of Proposed Heuristic

Figure 5.3 clearly visualizes that the time for both heuristics is highly problem-size

dependent. As we expect the running time of case (2) is more than case (1) because

checking the possibility of inserting to the middle points takes more times.

5.5.3 Comparison of Different Thresholds

We continue this chapter with a comparative assessment of all threshold values used

for our instances. Comparison results are listed in Table 5.9. We give number of best

solutions found by every threshold obtained from both heuristics mentioned.

Table 5.9: Comparison of Thresholds

Method of calculation Threshold No. of best solutions

median of top 10% 7

min 1

max 0

average 3

min+ ((average-min)/2) 5

min+ ((average-min)/3) 6

min+ ((average-min)/4) 4

Table 5.9 shows that there is no clear winner comparing all thresholds but it is

obvious that maximum distance as the threshold value cannot be a good value in our

proposed heuristic. Using maximum distance somehow we would not able to escape

from nearest neighbor selection process and the result will be like the nearest

neighbor heuristic algorithm. Interestingly, applying the minimum distance as the

threshold value is not a good value because in this way we will use insertion process

after first two nodes. It means that combination of these two heuristic can give better

result.

5.6 Calculation of the Approximate Performance Ratio

We close the chapter with a relative quality by lower bounds and upper bounds

discussed earlier. We now assess the performance of our iterative algorithm. Namely,

we compare the best tour generated by the heuristics with the best found lower bound

for the respective problem instances obtained using the MTZ and DFJ models.

Qualities are computed with respect to these best found lower bounds and are given

in Table 5.10. The calculating performance ratio is given by:

Due to Table 5.10 we can expect that, on the average, our proposed heuristic method

can produce a solution with a certain 5.1% gap of the best found lower bound.

Table 5.10: Calculation of the Performance Ratio

Problem Best LB Best UP % of P.R.

80-1 44328.00 46645.00 5.23%

80-2 48397.46 50294.00 3.92%

100-1 63770.19 67815.00 6.34%

100-2 73341.70 75949.00 3.56%

25-15-1 67874.90 72722.00 7.14%

25-15-2 77322.60 83371.00 7.82%

25-15-3 73600.14 80267.00 9.06%

200-1 104322.00 111450.00 6.83%

200-2 119307.61 123940.00 3.88%

240-1 1407.90 1429.80 1.56%

240-2 1398.30 1405.60 0.52%

Table A4: Distance matrix of Problem 15-city

ABADAN ASTARA ARAK ARDABIL URMIA ISFAHAN AHVAZ BABOL BIRJAND TABRIZ TEHRAN JOLFA CHABAHAR RASHT ZANJAN

ABADAN 0 1351 704 1401 1192 868 123 1226 1889 1198 997 1333 2088 1162 1090

ASTARA 1351 0 766 77 604 953 1228 515 1737 296 514 431 2475 189 454

ARAK 704 766 0 843 786 288 581 522 1606 785 239 920 1872 577 505

ARDABIL 1401 77 834 0 527 1030 1305 592 1814 219 591 354 2552 266 377

URMIA 1192 604 786 527 0 1074 1064 1136 2220 308 907 308 2614 739 588

ISFAHAN 868 953 288 1030 1074 0 745 668 1173 1038 439 1173 1584 764 757

AHVAZ 123 1228 581 1305 1064 745 0 1103 1918 1075 874 1210 2153 1039 967

BABOL 1226 515 522 592 1136 668 1103 0 1222 828 229 963 2190 343 548

BIRJAND 1889 1737 1606 1814 2220 1173 1918 1222 0 1912 1313 2047 1166 1548 1622

TABRIZ 1198 296 785 219 308 1038 1075 828 1912 0 599 135 2560 485 280

TEHRAN 997 514 239 591 907 439 874 229 1313 599 0 734 1961 325 319

JOLFA 1333 431 920 354 308 1173 1210 963 2047 135 734 0 2695 620 415

CHABAHAR 2088 2475 1872 2552 2614 1584 2153 2190 1166 2560 1961 2695 0 2286 2280

RASHT 1162 189 577 266 739 764 1039 343 1548 485 325 620 2286 0 348

ZANJAN 1090 454 505 377 588 757 967 548 1622 280 319 415 2280 348 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Table A5: Distance matrix between cities (ABADAN, ASTARA, ARAK,

ARDABIL, URMIA, ISFAHAN, AHVAZ, BABOL, BIRJAND, TABRIZ,

TEHRAN, JOLFA, CHABAHAR, RASHT, ZANJAN, SEMNAN, SHIRAZ,

GHAZVIN, KERMAN, MASHHAD)

REFERENCES

[1] Wang, R.L., Zhao, L.Q. (2010). A Memory-based Ant Colony Algorithm for

the Bipartite Subgraph Problem. IJCSNS International Journal of Computer

1 0 1351 704 1401 1192 868 123 1226 1889 1198 997 1333 2088 1162 1090 1233 594 1005 1165 1674

2 1351 0 766 77 604 953 1228 515 1737 296 514 431 2475 189 454 750 1438 374 1553 1256

3 704 766 0 843 786 288 581 522 1606 785 239 920 1872 577 505 529 773 303 949 1187

4 1401 77 834 0 527 1030 1305 592 1814 219 591 354 2552 266 377 828 1515 451 1629 1333

5 1192 604 786 527 0 1074 1064 1136 2220 308 907 308 2614 739 588 1143 1559 763 1735 1801

6 868 953 288 1030 1074 0 745 668 1173 1038 439 1173 1584 764 757 675 485 480 661 1222

7 123 1228 581 1305 1064 745 0 1103 1918 1075 874 1210 2153 1039 967 1110 659 883 1230 1768

8 1226 515 522 592 1136 668 1103 0 1222 828 229 963 2190 343 548 204 1153 379 1267 741

9 1889 1737 1606 1814 2220 1173 1918 1222 0 1912 1313 2047 1166 1548 1622 1139 1335 1463 999 481

10 1198 296 785 219 308 1038 1075 828 1912 0 599 135 2560 485 280 835 1522 455 1637 1493

11 997 514 239 591 907 439 874 229 1313 599 0 734 1961 325 319 236 924 150 1038 894

12 1333 431 920 354 308 1173 1210 963 2047 135 734 0 2695 620 415 970 1658 590 1772 1628

13 2088 2475 1872 2552 2614 1584 2153 2190 1166 2560 1961 2695 0 2286 2280 2197 1494 2028 923 1647

14 1162 189 577 266 739 764 1039 343 1548 485 325 620 2286 0 348 561 1249 185 1363 1067

15 1090 454 505 377 588 757 967 548 1622 280 319 415 2280 348 0 555 1243 175 1357 1213

16 1233 750 529 828 1143 675 1110 204 1139 835 236 970 2197 561 555 0 1160 386 1274 658

17 594 1438 773 1515 1559 485 659 1153 1335 1522 924 1658 1494 1249 1243 1160 0 965 571 1374

18 1005 374 303 451 763 480 883 379 1463 455 150 590 2028 185 175 386 965 0 1182 1044

19 1165 1552 949 1629 1735 661 1230 1267 999 1637 1038 1772 923 1363 1357 1274 571 1182 0 889

20 1674 1256 1187 1333 1801 1222 1768 741 481 1493 894 1628 1647 1067 1213 658 1374 1044 889 0

Science and Network Security, VOL.10 NO.3.

 [2] Cook, W. (2009). Fifty-Plus years of Combinatorial Integer Programming:

1958-2008. Mathematics and Statistics, Springer, Part 2, 387-430.

 [3] Oncan, T., Altinel, I.K., & Laporte, G. (2009). A comparative analysis of

several asymmetric traveling salesman problem formulations. Computers and

Operations Research 36, 637-654.

[4] Applegate, D., Bixby, R., Chvatal, V., Cook, W.(2007). The Traveling

Salesman Problem. Prinston University Press and copyrighted.

 [5] Laporte, G. (2007). A short history of the Traveling Salesman Problem.

ECCO XX Conference, Limassol, Cyprus, May 2007.

[6] Volgenant, A., Waal, A. (2006). A heuristic for multiple-feeder PCB

manufacturing. Journal of the Operational Research Society 57, 1134–1141.

[7] Wastlund, J. (2006). The Limit in the Mean Field Bipartite Traveling

Salesman Problem. Mathematics Subject Classification: Primary: 60C05, 90C27,

90C35.

[8] Baltz, A., Sirvastav, A. (2005). Approximation Algorithms for the Euclidean

Bipartite TSP. Operations Research Letters, Volume 33, Number 1.

 [9] Orman, A.J., Williams, H.P. (2004). A Survey of Different Integer

Programming Formulations of The Traveling Salesman problem. First published

in Great Britian by the Department of the Operational Research London School

of Economics and Political Scienc, ISBN NO:07530-1689-3.

[10] Crama Y, van de Klundert J and Spieksma FCR (2002). Production planning

problems in printed circuit board assembly. Discrete Appliedl Mathematics 123:

339–361.

[11] D.Sherali, H., J.Driscoll, P. (2002). On Tightening the Relaxations of Miller-

Tucker- Zemlin Formulations for Asymmetric Traveling Salesman Problems.

Operations Research, VOL. 50, NO. 4, 656-669.

 [12] Monnot, J., Paschos, V., Toulouse, S. (2002). Approximation Algorithms

for the Traveling Salesman Problem. Mathematical Models of Operations

Research 56, 387-405.

[13] N.Letchford, A., Lodi, A. (2002). Polynomial-Time Seperation of Simple

Comb Inequalities. Proceedings of the 9th International IPCO Conference on

Integer Programming and Combinatorial Optimization.

[14] Johnson, D.S., McGeoch, L.A.,. (2002). Experimental Analysis of Heuristics

for STSP. The traveling Salesman Problem and its Variations(G.Gutin And A.P.

Punnen, eds.), Kluwer, Dordrecht.

[15] Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W., and

Zverovitch, A. (2002). Experimental Analysis of Heuristics for ATSP. The

traveling Salesman Problem and its Variations(G.Gutin And A.P. Punnen, eds.),

Kluwer, Dordrecht.

[16] Baltz, A., Scchoen, T., Sirvastav, A. (2001). Probabilistic Analysis of

Bipartite Traveling Salesman Problem. Mathematics Seminar, Christian-

Albertchts-Universitat Zu Kiel.

 [17] Sirvastav, A., Schroeter, H., & Michel, C. (2001). Approximation

Algorithms for Pick-and-Place Robots. Annals of Operation Research 107, 321-

338.

[18] Altinkemer, K., Kazaz, B., Köksalan, M., and Moskowitz, H. (2000).

Optimization of printed circuit board manufacturing: integrated modeling and

algorithms. European Journal of Operations Research 124: 409–421.

[19] Helsgaun, K. (2000). An Effective Implementation of the Lin-Keringhan

Traveling Salesman Heuristic. European Journal of Operational Research, VOL.

126, 106-130.

[20] Korte, B., Vygen, J. (2000). Combinatorial Optimization: Theory and

Algorithm. Third Edition. Springer-Verlag Berlin Heidelberg New York, ISBN:

0937-5511.

[21] Karger, D. (2000). Random Sampling in Cut, Flow, and Network Design

Problems.

[22] Renaud, J., Boctor, F.F., Ouenniche, J., (2000). A heuristic for the pickup

and delivery traveling salesman problem. Computers and operations research,

27(9), 905-916.

[23] Applegate, D., Bixby, R., Chvatal, V., Cook, W. (1999). FINDING TOURS

IN THE TSP. Institute for Discrete Mathematics, Universitat Bonn.

[24] Balas, E. (1999). New classes of efficiently solvable generalized Traveling

Salesman Problems. Annals of Operations Research 86, 529-558.

[25] Karger, D. (1999). Minimum Cuts in Near-Linear Time. Journal of the

ACM. Vol. 47, Issu. 1, Jan. 2000.

[26] Arora, S. (1998). Polynomial time approximation schemes for Euclidean

Traveling Salesman. Journal of the ACM 45 (5): 753–782,

DOI:10.1145/290179.290180

 [27] Frank, A., Triesch, E., Korte, B., & Vygen, J. (1998). On the Bipartite

Traveling Salesman Problem. http://www.or.uni-bonn.de/home/vygen/biptsp.ps

[28] Arora, S. (1997). Nearly Linear Time Approximation Schemes for Euclidean

TSP and other Geometric Problems. In Proc. 38
th

 Annu. IEEE Sympos. Found.

Comput. Sci. (FOCS 97).

[29] Dahl, G. (1997). An Introduction to Convexity, Polyhedral theory and

Combinatorial optimization. University of Oslo, Institute of Information Press.

[30] S. Johnson, D., A. McGeoch, L. (1997). The Traveling Salesman Problem:

A Case Study in Local Optimization. Local Search in Combinatorial

Optimization, 215-310.

http://en.wikipedia.org/wiki/Sanjeev_Arora
http://graphics.stanford.edu/courses/cs468-06-winter/Papers/arora-tsp.pdf
http://graphics.stanford.edu/courses/cs468-06-winter/Papers/arora-tsp.pdf
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F290179.290180
http://www.or.uni-bonn.de/home/vygen/biptsp.ps

[31] Aardal, K., Hoesel, S.V. (1996). Polyhedral Techniques in Combinatorial

Optimization. Statistica Nearlandica, VOL. 50, Issu 1, 3-26.

[32] Chalasani, P., Motwani, R., & Rao, A. (1996). Approximation Algorithms

for Robot Grasp and Delivery. In Proceedings of the 2
nd

 International Workshop

on Algorithmic Fundations of Robotics, Toulouse, France.

 [33] Johnson, D., McGeoch, L., & Rothberg, E. (1996). Asymptotic

Experimental Analysis for the Held-Karp Traveling Salesman Bound.

Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,

341-350.

[34] Applegate, D., Bixby, R., Chvatal, V., Cook, W. (1995). FINDING CUTS

IN THE TSP. DIAMACS Technical Report 95-05, March 1995.

[35] Frieze, A., Karp, M., Reed, B. (1995). When is the Assignment Bound Tight

for the Asymmetric Traveling-Salesman Problem? SIAM Journal on Computing

24, 484-493.

[36] Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for

TSP Applications. Springer-Verlag Berlin Heidelberg New York, ISBN:3-540-

58334-3.

[37] Crowder, H., Padberg, M.W., (1980). Solving large-scale symmetric

travelling salesman problems to optimality. Management science, 26(5), 495-

509.

http://www.math.cmu.edu~af1p/tsp.ps.gz
http://www.math.cmu.edu~af1p/tsp.ps.gz

[38] Grotschel, M., (1980). On the symmetric traveling salesman problem:

Solution of a 120-city problem. Mathematical programming study, 12, 61-77.

[39] Lin, S., Kernighan, B.W., 1973. An effective heuristic algorithm for the

traveling-salesman problem. Operations research, 21(2), 498-516.

 [40] Sales and Chips. http://www.york.cuny.edu/~malk/modeling/index.html

 [41] The Traveling Salesman Problem.

http://rodin.wustl.edu/~kevin/dissert/node1.html

 [42] A Survey on Traveling Salesman Problem. http://www.pdf-finder.com/The-

Travelling-Salesman-Problem.html

 [43] Traveling salesman problem. http://www.tsp.gatech.edu/index.html

 [44] Traveling salesman problem.

http://en.wikipedia.org/wiki/Traveling_Salesman_Problem#Metric_TSP

http://www.york.cuny.edu/~malk/modeling/index.html
http://rodin.wustl.edu/~kevin/dissert/node1.html
http://www.pdf-finder.com/The-%20%20Travelling-Salesman-Problem.html
http://www.pdf-finder.com/The-%20%20Travelling-Salesman-Problem.html
http://www.tsp.gatech.edu/index.html
http://en.wikipedia.org/wiki/Traveling_Salesman_Problem#Metric_TSP

