
Distributed Continuous Media Streaming – Using

Redundant Hierarchy (RED-Hi) Servers

Mohammad Ahmed Shah

Submitted to the

Computer Engineering Department

in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy

in

Computer Engineering

Eastern Mediterranean University

January 2014

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor of

Philosophy in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Computer

Engineering.

 Prof. Dr. Işık Aybay

 Supervisor

 Examining Committee

1. Prof. Dr. Işık Aybay

2. Prof. Dr. Mehmet Ufuk Çağlayan

3. Prof. Dr. Turhan Tunalı

4. Assoc. Prof. Dr. Muhammed Salamah

5. Asst. Prof. Dr. Gürcü Öz

iii

ABSTRACT

The first part of this thesis provides a survey of continuous media serves, including

discussions on streaming protocols, models and techniques. In the second part, a novel

distributed media streaming system is introduced. In order to manage the traffic in a

fault tolerant and effective manner a hierarchical topology, so called redundant hierarchy

(RED-Hi) is used. The proposed system works in three steps, namely, object location,

path reservation and object delivery. Simulations are used to show that the scheme,

proposed here, performs better than the traditionally used multimedia transmission

models in terms of various parameters. Results show that this scheme gives better

transmission rates and much lower blocking rates. Furthermore it exhibits higher fault

tolerance and greater load balancing of the streaming tasks among the servers of the

streaming system.

Keywords: Distributed Multimedia, Video Streaming Object Location, Object

Delivery, Load Balancing, Fault Tolerance.

iv

ÖZ

Bu tezin ilk kısmında sürekli medya içerik sağlayıcıları ile ilgili çalışmalar ile akış

protokolleri, model ve teknikleri üzerine tartışmalaryer almaktadır. İkinci kısımda ise

yeni bir dağılımlı medya akış modeli tanıtılmıştır. Bu modeled hata toleranslı ve etkili

bir trafik yönetimi için “fazlalık hiyerarşisi” olarak adlandırılan bir hiyerarşik topoloji

kullanılmıştır. Önerilen sistem içerik yer belirlemesi,, yol belirlemesi ve içerik dağıtımı

olmak üzere üç adımda çalışır. Tezde yapılan simülasyonlar, sunulan yeni modelin

çeşitli parametreler açısından geleneksel multimedya iletim modellerinden daha iyi

işlediğini göstermektedir. Elde edilen sonuçlar, bu modelin daha yüksek hata toleransı

ve çok daha düşük engelleme hızlarıyla daha yüksek iletim hızları sağladığını

göstermiştir. Ayrıca akış sistemlerinin sunucuları üzerinde akış görevlerinde daha büyük

yük dengeleme sağlanmıştır.

Anahtar Kelimeler: Dağılımlı multimedya, video akış sistemi, içerik belirleme, içerik

dağıtımı, yük dengeleme, hata toleransı

v

To My Beloved Parents…

vi

ACKNOWLEDGMENTS

I want to thank Dr. Işık Aybay, my supervisor. He was a consistent and constant

source of motivation for me. It would not have been possible to finish this thesis without

his guidance.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

ACKNOWLEDGMENTS .. vi

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF SYMBOLS/ABBREVIATIONS .. xv

1 INTRODUCTION .. 1

1.1 Review on Distributed Streaming .. 2

1.2 Contributions of the Thesis .. 4

1.3 Thesis Organization ... 5

2 CONTINUOUS MEDIA SERVER-ANALYSIS ... 7

2.1 Streaming of Stored Multimedia .. 7

2.1.1 Server .. 7

2.1.2 Network ... 8

2.1.3 Client ... 10

2.2 Scalable Streaming of Stored Multimedia ... 11

2.2.1 Content Replication and Caching ... 12

2.2.1.1 Proxy Caching ... 12

2.2.1.2 Content Replication .. 13

2.2.2 Scalable Delivery Protocols .. 14

2.3 Complex Multimedia ... 16

viii

2.3.1 Network Bandwidth Bounds ... 18

2.3.2 Scalable On-demand Streaming of VBR Media ... 19

2.3.3 Scalable On-demand Streaming of Non-linear Media 19

2.4 Multimedia System Components ... 21

2.5 Media Data ... 22

2.6 Media Delivery .. 24

2.7 Streaming Versus Download ... 25

2.8 Challenges in Building Continuous Media Streaming Systems 30

2.8.1 Scalable On-Demand Streaming of Non-Linear Media 30

2.8.2 Deviations During Streaming .. 31

2.8.3 Real-time Applications ... 35

2.8.4 System Scalability ... 35

2.8.5 System Reliability ... 36

2.8.6 System Trade-offs ... 37

2.8.6.1 Capacity Tradeoff ... 38

2.8.6.2 Time Trade-off .. 39

2.8.6.3 Trade-off in Space ... 40

2.8.6.4 Quality Trade-off .. 41

2.9 Performance and its Guarantees... 43

2.10 Admission Control ... 43

3 DISTRIBUTED CONTINUOUS MULTIMEDIA STREAMING ARCHITECTURE

 .. 46

3.1 Object Location Scheme .. 48

3.2 Object Location Algorithm .. 51

ix

3.2.1 Receive Query Process .. 51

3.2.2 Send Query and Wait for Response Process ... 52

3.3 Object Location .. 53

3.3.1 Object Location Algorithm ... 54

3.3.1.1 Query Message ... 55

3.3.1.2 Negative Message .. 55

3.3.1.3 Ok Message .. 56

3.3.1.4 Timeout and Error Message ... 57

3.4 Request Propagation and Provision ... 58

4 PETRI-NET MODEL DEVELOPED FOR THE SYSTEM .. 59

4.1 Assumptions for the Petri-net Model ... 61

4.2 Model for Clients ... 62

4.3 Model for Intermediate Level Servers ... 64

4.3 Model for Root Level Servers.. 68

4.4 Cost Functions ... 69

5 RED-Hi BASED LOAD MANAGEMENT POLICY .. 71

5.1 System Architecture ... 71

5.1.1 Assumptions .. 72

5.1.2 Entry Level Layer ... 73

5.1.3 Intermediate Level Layer .. 74

5.1.4 Root Level Layer .. 75

5.1.5 Server Connections ... 75

5.2 Request Life Cycle ... 75

5.3 Dynamic Object Placement .. 78

x

5.4 Fault Tolerance .. 79

6 SIMULATION FRAMEWORK ... 82

6.1 Simulation tool ... 82

6.2 Network Architectures of RED-Hi and NonRED-Hi Models 82

6.3 Simulation Parameters ... 85

6.4 Performance Measures ... 85

7 SIMULATION RESULTS ... 87

7.1 Values of the Simulation Parameters ... 87

7.2 Performance Analysis of RED-Hi ... 88

7.2.1 Average Transmission Delay .. 88

7.2.2 Average Communication Delay and Average Number of Control Messages of

Successful Requests ... 89

7.2.3 Average Number of Traversed Nodes of Successful Requests and Average

Number of Hops of Successful Requests ... 92

7.2.4 Blocking Ratio .. 94

7.2.5 Load Distribution .. 96

7.2.6 Overview of the RED-Hi performance ... 98

7.3 Comparison of RED-Hi and Pure Hierarchy ... 99

7.3.1 Blocking Ratio .. 99

7.3.2 Load Distribution .. 101

7.4 Cost Functions ... 103

8 CONCLUSION ... 105

REFERENCES .. 108

xi

 LIST OF TABLES

Table 5.1: Resource distribution in the system…………………………………………73

Table 6.1: Simulation parameters……………………………………………………….85

Table 7.1: Values of the simulation parameters………………………………………...88

xii

LIST OF FIGURES

Figure 2.1: Multimedia System Building Blocks.…………………….....………….…..21

Figure 2.2: Video conferencing in Real-time continuous media.…….....………..……..24

Figure 2.3: VoD an example of soft-real-time continuous media delivery.…………….25

Figure 2.4: Client server interaction in download model………………....…………….26

Figure 2.5: Start-up delay in download model………………………………………….27

Figure 2.6: Partial media playback in streaming model………………………………...29

Figure 2.7: Multi-stream pipelining in the streaming model……………………………30

Figure 2.8: Relation between start-up delay and the playback schedule………………..31

Figure 2.9 End-to-end system and its admission control components………………….32

Figure 2.10: Variations in the system can disrupt continuous media playback………...34

Figure 2.11: Increasing the service capacity of a media streaming system……………..36

Figure 2.12: A media stream with time-varying playback bit-rates…………………….38

Figure 2.13: Network bandwidth allocation based on peak bit-rate…………………….39

Figure 2.14: Time trade-off incurring delay by reducing playback in initial segment….40

Figure 2.15: Spatial trade off in the buffer of the client………………………………...41

Figure 2.16: Trading off the quality by skipping some media data……………………..42

Figure 2.17: Flow chart for a general admission control procedure…………………….44

Figure 3.1: Pure and Redundant hierarchy……………………………………………...49

Figure 3.2: Coverage of the propagation policies. ……………………………………..54

Figure 4.1: Clients connected to the network…………………………………………...60

Figure 4.2: General input/output mechanism for a server………………………………60

xiii

Figure 4.3: General structure of the system……………………………………………..61

Figure 4.4 Message format for the model………………………………………………62

Figure 4.5 Petri-net Graph for clients…………………………………………………...63

Figure 4.6: Petri-net graph for Intermediate Level Servers……………………………..65

Figure 4.7: Status Array kept by intermediate level servers……………………………68

Figure 4.8: Petri-net Graph for a root level server……………………………………...69

Figure 5.1: Network Architecture of the Streaming Servers in the system……………..72

Figure 5.2: Basic flowchart representing the functioning of a node……………………77

Figure 5.3: Moving an Object from Cache to Main Memory of a Server………………78

Figure 5.4: Basic building blocks of a multimedia system……………………………..79

Figure 5.5: Path change flowchart at a node……………………………………………81

Figure 6.1: Network architecture of the RED-Hi model…………….………………....83

Figure 6.2: Network architecture of the Non RED-Hi model. ………………………...84

Figure 7.1: ATD versus interarrival time for RedHI scheme with Popularity Threshold

values of 5, 25 and 50…………………………………………………………………...89

Figure 7.2: ACDSR versus interarrival time for RED-Hi scheme with Popularity

Threshold values of 5, 25 and 50………………………………………………………90

Figure 7.3: ANCMSR versus interarrival time for RED-Hi scheme with Popularity

Threshold values of 5, 25 and 50………………………………………………………91

Figure 7.4: ANTNSR versus interarrival time for RedHI scheme with Popularity

Threshold values of 5, 25 and 50………………………………………………………93

Figure 7.5: ANHSR versus interarrival time for RED-Hi scheme with Popularity

Threshold values of 5, 25 and 50……………………………………………………..…94

xiv

Figure 7.6: BR versus interarrival time for RED-Hi scheme with Popularity Threshold

values of 5, 25 and 50…………………………………………………………………...95

Figure 7.7: Server ID versus Total Number of Transmissions with arrival rate 0.05 and

Popularity Threshold values of 5, 25 and 50…………………………………………....96

Figure 7.8: Server ID versus Total Number of Transmissions with arrival rate 0.1 and

Popularity Threshold values of 5, 25 and 50…………………………………………....97

Figure 7.9: Server ID versus Total Number of Transmissions with arrival rate 0.15 and

Popularity Threshold values of 5, 25 and 50……………………………………………97

Figure 7.10: Server ID versus Total Number of Transmissions with arrival rate 0.2 and

Popularity Threshold values of 5, 25 and 50…………………………………………....98

Figure 7.11: BR versus interarrival time for RED-Hi and Pure Hierarchy with Popularity

Threshold of 25………………………………………………………………………...100

Figure 7.12: Server ID versus Total Number of Transmissions for RED-Hi and Pure

Hierarchy with arrival rate 0.05 and Popularity Threshold of 25……………………101

Figure 7.13: Server ID versus Total Number of Transmissions for RED-Hi and Pure

Hierarchy with arrival rate 0.1 and Popularity Threshold of 25……………………….101

Figure 7.14: Server ID versus Total Number of Transmissions for RED-Hi and Pure

Hierarchy with arrival rate 0.15 and Popularity Threshold of 25……………………102

Figure 7.15: Server ID versus Total Number of Transmissions for RED-Hi and Pure

Hierarchy with arrival rate 0.2 and Popularity Threshold of 25……………………….102

Figure 7.16: The three cost functions FreeBW, UserBW and RatioBW compared

………………………………………………………………...……………………….104

xv

LIST OF SYMBOLS/ABBREVIATIONS

RED-Hi Redundant Hierarchy

ACDSR Average Communication Delay Of Successful Requests

ANCMSR Average Number Of Control Messages Of Successful Requests

ANHSR Average Number Of Hops Of Successful Requests

ANTNSR Average Number Of Traversed Nodes Of Successful Requests

ATD Average Transmission Delay

BR Blocking Ratio

CBR Constant Bit Rate

CDN Content Delivery Network

CMS Continuous Media Servers

CO Central Offices

DCMS Distributed Continuous Media Servers

GPSS General Purpose Simulation System

HTTP Hyper-Text Transfer Protocol

ISP Internet Service Providers

LRU Least Recently Used

POP Points Of Presence

QoS Quality-Of-Service

STB Set-Top Box

TCP Transmission Control Protocol

xvi

VBR Variable Bit Rate

VBRBS Variable Bit Rate Bandwidth Skimming

VoD Video-On-Demand

WWW World Wide Web

1

Chapter 1

1 INTRODUCTION

Multimedia systems have been widely researched in recent years and as a result

they have been used in a number of applications that cater to the needs of areas as

diverse as distance learning to internet television and as demanding as teleconferencing,

and video-on-demand. Performance of most of these applications is highly dependent on

the streaming technique used to deliver multimedia files to their respective clients.

Streaming, in contrast to downloading, allows early commencing of multimedia content

playback; without waiting for the completion of delivery of the multimedia file from the

media server to the client. Downloading approach, on the other hand, would wait for the

entire file to download before starting the playback. In large-scale streaming multimedia

systems, routing algorithms used for streamed packets is as important as the streaming

techniques used for content delivery. Finally, in today’s competitive environment, the

clients demand the content delivery system to be reliable and fault tolerant.

Basically, multimedia streaming applications can be classified into three

categories: on-demand streaming, such as video-on-demand; live streaming, such as

Internet television; and real-time interactive streaming as in video conferencing and on-

line gaming. This thesis mainly focuses on topological design and related performance

issues involved in routing of multimedia content in a fault tolerant fashion, over

graphically dispersed networks.

2

Distributed multimedia streaming necessitates a set of servers, a network, and a set

of clients. Section 1.1. reflects on the respective functionalities of these three basic

building blocks of a multimedia streaming system. Quality of service in streaming

multimedia dictates scalability, reliability and fault avoidance / tolerance among other

critical performance issues such as rate control and congestion control. This thesis

proposes a distributed multimedia content delivery system and as such particularly

concerns with scalable streaming of on demand multimedia data to a large number of

geographically distributed clients using scalable delivery protocols. Section 1.1 details a

discussion on multimedia streaming. Section 1.2 summarizes the contributions of the

thesis to the existing scalable content delivery systems for multimedia objects, and

Section 1.3 provides the overall structure of the thesis.

1.1 Review on Distributed Streaming

Distributed streaming has a variety of applications and as such there are numerous

papers on this topic. Tsai et al. [1] describes the efficiency and applicability of

distributed video content management in a surveillance system, with a discussion on the

development of an IP-based physical security following on ONVIF standard. This ICL

ONVIF middleware uses iSCSI distributed network to establish the distributed

surveillance system. Their target is to provide multimedia content processing with load

balance control and to build a distributed network storage space surveillance system.

Gramatikov et al. [2] proposes a hierarchical network system for VoD content

delivery in managed networks, which implements a redistribution algorithm and a

redirection strategy for optimal content distribution within the network core and optimal

streaming to the clients. Their system monitors the state of the network and the behavior

of the users to estimate the demand for the content items and to take the right decision

3

on the appropriate number of replicas and their best positions in the network. The

system's objectives are to distribute replicas of the content items in the network in a way

that the most demanded contents will have replicas closer to the clients so that it will

optimize the network utilization and will improve the users' experience. It also balances

the load between the servers concentrating the traffic to the edges of the network.

Jin X. [3] presents a scalable distributed multimedia service management

architecture using XMPP. They study the XMPP and revealed the limitations of related

multimedia service management models. Furthermore they describe a scalable

distributed multimedia service management architecture along with a video conferencing

system case using the XMPP model.

Song et al. [4] details a system that models a layer based system for managing and

presenting video on-demand to users of Linux system. The purpose of their work is to

use a P2P based architecture and an application embedded in Linux to provide HD video

to end-users for their consumption.

Bo Tan and Laurent Massoulie [5] address the problem of content placement in

peer-to-peer systems, with the objective of maximizing the utilization of peers’ uplink

bandwidth resources. They identify some fesiable content placement strategies that can

maximize system performance under certain constraints.

Applegate et al. [6] present an approach for intelligent content placement that

scales to large library sizes (e.g., 100Ks of videos). They formulated the problem as a

mixed integer program (MIP) that takes into account constraints such as disk space, link

bandwidth, and content popularity. To overcome the challenges of scale, they employed

a Lagrangian relaxation-based decomposition technique combined with integer

rounding. They also present a number of strategies to address issues such as popularity

4

estimation, content updates, short-term popularity fluctuation, and frequency of

placement updates.

Brost et al. [7] developed light-weight cooperative cache management algorithms

aimed at maximizing the traffic volume served from the cache, minimizing the

bandwidth cost. Their focus is on a cluster of distributed caches, either connected

directly or via a parent node, to formulate the content placement problem as a linear

program in order to benchmark the globally optimal performance.

Zhang et al. [8] study the problem of maximizing the broadcast rate in peer-to-peer

(P2P) systems under node degree bounds, i.e., the number of neighbors a node that can

simultaneously connect to it is upper-bounded. They address the problem by providing a

distributed solution that achieves a near-optimal broadcast rate under arbitrary node

degree bounds, and over an arbitrary overlay graph. It runs on individual nodes and

utilizes only the measurement from their one-hop neighbors, making the solution easy to

implement and adaptable to peer churn and network dynamics. Their solution consists of

two distributed algorithms proposed: a network-coding based broadcasting algorithm

that optimizes the broadcast rate given a topology, and a Markov-chain guided topology

hopping algorithm that optimizes the topology. they demonstrate the effectiveness of the

poropsed solution in simulations using uplink bandwidth statistics of Internet host.

1.2 Contributions of the Thesis

This thesis is inspired from the work of Shahabi et al. [9] which proposed the use

of a Redundant Hierarchy for content management systems of distributed video servers.

This thesis uses their proposed hierarchy and integrates load balancing techniques along

with the fault tolerant nature of RED-Hi [9]. The fault tolerant behavior of RED-Hi for

DCMS has been demonstrated by Shahabi et al. on page 54 of their article [9]. They also

5

showed that it may achieve load balancing. In this study, we illustrate and prove that by

using RED-Hi together with proposed threshold level mechanism of popularity, it is

possible to achieve load balancing and efficiency as well as dynamic placement of media

content.

This thesis also provides a survey of continuous media serves, including

discussions on streaming protocols, models and techniques. The main contribution is

providing a novel distributed media streaming model. In order to manage the traffic in a

fault tolerant and effective manner the hierarchical redundant hierarchy (RED-Hi)

topology is used. The study introduces the use of popularity threshold integrated into a

RED-Hi based DCMS content management system. The simulation results show that the

proposed scheme performs better than the traditionally used multimedia transmission

models in terms of different parameters and under various conditions.

1.3 Thesis Organization

The remainder of the thesis is organized as follows.

In Chapter 2, an analysis of subcomponents of Continuous Media Servers is

presented.

The proposed DCMS architecture is presented in Chapter 3.

Chapter 4 contains a Petri-net model of the DCMS system.

Chapter 5 presents RED-Hi based load management policy.

The simulation tool used in simulations, the performance measures taken into

account and the simulation parameters are discussed in Chapter 6.

In Chapter 7, we present the simulation results of the RED-Hi and Pure Hierarchy

and also provide the performance comparison of RED-Hi and Pure Hierarchy.

6

Chapter 8 summarizes this thesis and gives an outline for possible areas that can

emerge in future.

7

Chapter 2

2 CONTINUOUS MEDIA SERVER ANALYSIS

In order to develop a model for, and then simulate a Distributed Continuous Media

Streaming System, it is essential to understand the key challenges in building such a

multimedia content delivery system, especially the key component of the system, i.e.

Continuous Media Servers (CMS). In this chapter, an analysis of subcomponents of

CMS is presented. The building blocks of a multimedia system are presented with a brief

discussion on challenges involved in building such a system. A limited discussion on

tradeoffs, performance guarantees and Admission Control is also presented to

understand the complexity of the system.

2.1 Streaming of Stored Multimedia

Three major components constitute a distributed multimedia streaming system: the

server, the network, and the clients.

2.1.1 Server

A streaming server typically performs three tasks: process client requests, retrieve

the requested media data and then transmit it into the network. While processing the

client request, the server needs to parse it utilizing the CPU. Once the request is parsed,

the server populates the in-memory buffers with the data requested by the client using

disk bandwidth. Finally network interface bandwidth is required to transmit data into the

8

network. The resources utilized by the server along the access path in order to satisfy a

single media stream are collectively termed as “server channel”.

The allocated server channel may remain occupied over a varied length of time

depending on the size of the media file. This allocation is typically long in terms of time

because multimedia files are inherently large and their delivery takes time to complete.

With increase in the demand, a server may need to support hundreds of thousands of

requests at a given time. Indeed, if separate channels are dedicated for individual client

requests, the channels at the disposal of the server will saturate very quickly.

One approach to manage the predicament of channel saturation caused by

increased popularity of multimedia streaming applications is to simply increase server

capacity by building a server cluster using thousands of low cost desktop machines. This

approach alone, however, cannot yield a desirable solution to the saturation problem

mentioned above, as it fails to address the potential bottlenecks that may incur at the

server network access bandwidth i.e. at the interface between the server outward router

and the network outside the system. Increasing network access bandwidth to meet the

scaling demand of the system is not only costly but it also increases server network

access bandwidth. So, it turns out that this is a temporary solution to a large resource

problem.

2.1.2 Network

When the server sends the requested media file into the network, it is routed to the

client site that initiated the request for the file in the first place. The media file is

transported to the requesting client over the network from the server in form of packets.

These packets of the media data flow through the network and during this flow,

resources such as, processing power and buffer space at each router, and, bandwidth on

9

each link is used. The resources utilized by the data packets during their flow through

the network are collectively termed as the “network channel”.

The most prevalent method of streaming by current multimedia streaming

applications uses unicast, i.e. each stream holds a distinct network channel. In a typical

scenario, where many users access the same ‘popular’ file at the same time, multiple

replicas of the same data packets flow over the same links at the same time through

distinct channels which clearly wastes network resources. This may even cause

bottlenecks in the network and saturate the network channel The data packets would not

seize the flow in a short period of time, as multimedia files are typically very large and

their uninterrupted streaming may last from a couple of minutes to even a couple of

hours.

Unicast streaming may also cause a waste of server resources. To address the

above problems of unicast, multicast can be used to efficiently deliver multimedia data

packets from one server to multiple clients.

Multicast can be employed inside the network, such as IP multicast, or deployed at

the end hosts, as application layer multicast. It is known that network layer multicast

uses network bandwidth very efficiently. Nevertheless, it must be noted that it has

problems such as router overhead, scalability, reliability, and security. The main reason

behind network layer multicast having so many problems is that it is many-to-many in

nature. This means that during an ongoing session, any participant can send and receive

messages from all other participants. One way to overcome this shortcoming is by using

a one-to-many communication model where during a streaming only a single server

sends data to a large number of clients. Such applications motivate a new and simpler

multicast service model called source-specific multicast (i.e., SSM) [10]. As there is

10

only a single sender in source-specific multicast, issues such as group management,

pricing, routing, and security can all be handled more easily and effectively in contrast to

many-to-many type multicast.

As an approach to provide one-to-many along with many-to-many communication

service, researchers have proposed application layer multicast technique [11, 12, 13, 14,

15], where the end hosts, instead of network layer routers, copy and forward data to their

downstream hosts. This idea implements a virtual network or an overlay network across

the end hosts in the system. In this approach, every virtual link from one host to another

is a unicast path. A multicast distribution tree is created from server to all member nodes

to provide a one-to-many multicast. After this, data is transmitted along the established

distribution tree. During the transmission, the data is replicated and forwarded by the

nodes at each branch point until it is received by every member node. This form of

multicast (application layer multicast) does not require network support for one-to-many

communication.

It must be noted that application layer multicast has its own shortcomings also,

such as creating an efficient overlay network across all participating end hosts, and

effectively maintaining an overlay network with changing network conditions [16, 17,

18].

2.1.3 Client

A client requesting a service from a multimedia streaming system needs special

software such as Microsoft Media Player [19] or RealPlayer. Sometimes it also

necessitates use of specialized hardware such as a set-top box (STB) to playback the

requested resource i.e. multimedia file. The media file is typically composed of audio

and video data and by nature has high storage and bandwidth requirements. The audio

11

and video components of the multimedia files are usually compressed when stored or

when they are delivered across the network. The compressed multimedia file needs to be

decompressed at the client side before being rendered onto the screen. Video and audio

data are bound by temporal limitations and are, by nature, delay-sensitive. This means

that a particular piece of data belonging to a multimedia file must be received and

displayed at a particular time in a fixed order. After passing of the time or the order, the

received data becomes unusable. The current Internet supports only best-effort service.

This means that it cannot guarantee any end-to-end delay bound, or any stability in terms

of delays. The instable and unpredictable delay caused by network is called delay-jitter.

At client side, a start-up delay of possibly up to tens of seconds is usually introduced to

accommodate this very delay-jitter. This requires the need for a buffer to hold file data

until it is played out.

2.2 Scalable Streaming of Stored Multimedia

Although many applications of media-on-demand are readily available [20, 21],

maintaining and achieving quality in terms of reliability and scalability of multimedia

streaming files remains a crucial, as well as practical problem and as such, remains to be

an active research field. This section discusses the main approaches proposed to address

this issue. Two prominent approaches, namely, content replication and caching and

scalable delivery protocols are detailed in the following subsections. Both of these

approaches are complementary to each other and are of nontrivial importance to

successful implementation of a distributed multimedia streaming system. This thesis

proposes a streaming multimedia system that merges these two approaches and provides

an object placement, location and content delivery architecture that is reliable and fault

tolerant.

12

2.2.1 Content Replication and Caching

In content replication and caching, policy popular files are copied close to end

users. This is either accomplished through use of proxy caches, as it is usually done in

World Wide Web, or is achieved using mirrors at distributed servers that maintain

copies of the original files.

2.2.1.1 Proxy Caching

Local storage of web objects is usually placed in proxy caches so as to provide

local storage of the resource requested by the client. All web requests are intercepted

using these proxies. In case the requested object by the client is not available locally in

the proxy cache, the request is forwarded to the respective server on behalf of the client.

Once the requested data is received by the proxy server from the server, it forwards the

same data to the client and if needed makes a copy of it in its local storage in order to

satisfy subsequent requests for the same object locally. This approach reduces both the

average response time of client requests and the traffic between the proxy and the

servers. Many researchers have deliberated at the application of proxy caching to

distribute continuous media files. One such approach is preloading prefixes where first

several minutes of a media file are preloaded in the proxy servers. By maintaining

prefixes of a suitable number of the most popular files into the proxy cache, the system

attempts to reduce the start-up delay caused in multimedia streaming [22]. There is

sufficient research done at determining the suitable number of the files to be prefixed as

well as determining what constitutes a popular file. Furthermore, researchers have

investigated optimal placement of media files across the proxies in a distributed

multimedia streaming system. Related research shows that optimal placement usually

13

comes from an all-or-nothing rule i.e. each file is either entirely stored in the proxies or

is not stored at [23].

Noting that the capacity of a proxy server’s cache is physically limited,

furthermore noting that the size of a continuous media file is typically very large, it is

concluded that choice of cache replacement algorithm is an important factor in effective

delivery of multimedia object in any distributed multimedia streaming system benefiting

from proxy servers.

2.2.1.2 Content Replication

Content Replication deals with placing copies of multimedia content on servers. A

Content delivery network (CDN) is deployed using servers that have copies of popular

content throughout the system. Each request originating from a client is handled by the

CDN. It first determines the server(s) that have the content requested and then directs the

request to one that can satisfy the request at the minimum cost.

Many examples of CDN translated into application are readily available [24, 25].

Nevertheless it is necessary to deal with a few critical issues. One of these issues is

content placement. Content placement deals with optimal placement of the content over

the network. Another critical issue is how to direct client requests to the most

appropriate server in a seamless and efficient manner. Yet another concern is

maintaining the server and network status information and keeping track of the updates

to the replicated file locations as they are propagated through the proxies. Finally, an

important issue is communicating the most up-to-date content location information to all

servers in a way that the correct information is available at the server when it is

responding to a request [26, 27, 28, 29, 30, 31, 32].

14

2.2.2 Scalable Delivery Protocols

Employment of a scalable delivery protocol is yet another approach to deliver

multimedia content over the network. In contrast to the classical method where a

dedicated stream is separately used to deliver the content for every request made by the

client, a scalable delivery protocol serves multiple client requests for a given identical

file by using or dedicating a single server channel.

There are two main categories of scalable delivery protocols, namely: immediate

service protocols [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45] and periodic

broadcast protocols [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58].

Periodic broadcast protocols stem from the fact that the probabilities of media file

accesses are highly skewed in their distribution [59]; and that the clients tend to be

patient when they have to wait a small time, typically tens of seconds, for the beginning

of a playback. In periodic broadcast protocol, the media server streams a number of the

most popular (some 10 to 20) media files through the network channels. Clients that

have requested a media file being served through these channels simply tune into the

respective channels. The media files are segmented in increasing sizes to efficiently

utilize the server bandwidth. The efficiency is achieved by first repeatedly broadcasting

a very short segment of the video on a dedicated channel which clients can receive and

playback without much playback delay. Later on, the subsequent segments are fetched

while the initial short segments, and then the other already broadcasted segments are

played back at the client end. The main novelty of the idea in periodic broadcasting

protocol lies in its media segmentation, channel allocation, and the scheduling of the

clients to the channels broadcasting the segments.

15

Periodic broadcasting channel is a scalable protocol, and gets its strength from the

way it streams and broadcasts the media files. Nevertheless, it suffers from the following

problems as in this protocol the server bandwidth usage is independent of the client

request rate:

 It is highly inefficient for streaming media files that are not popular;

 The start-up delay that comes from the periodic nature of the protocol may be

undesirable in some applications;

 The protocol does not address interactive usage of streams and has no support for

functions such as fast-forward or rewind.

These downsides are addressed in a different category of scalable delivery

protocols that tries to respond to client requests in a strictly reactive manner, called

immediate service protocols. In this approach, as a response to every request, a new

stream is created that delivers the requested media file from the very beginning. This

makes it possible to get minimal start-up delay. In order to address the issue of

scalability, the service protocol lets a client eavesdrop into other streams of the same

media file that are being transmitted while storing the respective data in the client’s local

buffer. As soon as the client reaches the point where it has all the data prior to the point

where it began to snoop on the previous stream, its own stream terminates, and the client

continues receiving service from the original stream. Many immediate service protocols

have been discussed in literature, including patching [36, 37, 38, 39], tapping [35],

adaptive piggybacking [33, 34, 44], hierarchical stream merging (HSM) [40, 42, 43, 45,

46], and bandwidth skimming [41]. These protocols are more adaptable to seamless

support of interactive functions such as forward and rewind as they re-allocate a new

stream to the client making the interactive request. It is worth mentioning that these

16

protocols do not require prior knowledge of the popularity of the media files being

delivered. In comparison to periodic broadcast protocols, they work better for streaming

lukewarm and cold media files, but are less efficient for hot media files.

Researchers have also proposed some designs that combine elements of these two

approaches where the basic idea is to dynamically distinguish between popular and not-

so-popular media files, and then use periodic broadcast to deliver popular files and

immediate service to deliver the others [51]. In such implementations, the main hurdle is

accurate identification of media files that are popular and then keeping track of their

popularity in time, reacting appropriately to changes in file popularity.

2.3 Complex Multimedia

Multimedia data is usually compressed before being stored or delivered over the

network. Multimedia data is generally made-up of audio and/or video data. Audio files

are usually compressed using a constant bit rate (CBR) approach, where each time unit

of an audio file requires the same number of bits to represent it digitally. Video files, on

the other hand, may either make use of CBR or a variable bit rate (VBR) compression.

Although it is easier to manage CBR video files and to transmit them over the network,

they are not efficient in terms of quality where motion-intensive scenes are the object of

compression. VBR, as the name suggests, compresses the files in a variable fashion. The

idea is that compression will allocate bandwidth based on properties of different scenes

where, naturally, high bandwidth is allocated for motion-intensive scenes. Such a

schema allows maintaining higher quality across the complete video segments, as the

peak rate of a compressed VBR file is usually two to three times as high as the average

compression rate in VBR [60] yet; such files are hard to stream efficiently.

17

An approach termed as work-ahead smoothing has been proposed that attempts to

smoothen a given variable bit rate file into a near constant bit rate stream, as such

making the delivery across a network easier [61, 62 ,63]. This approach preempts the

bandwidth use by allocating available network bandwidth during the delivery of the low

bit rate portions of a media file to deliver data in high bit rate portions later. Using the

smoothing technique may require a small start-up delay to ‘smooth’ the first several

seconds of the stream. Then, work-ahead smoothing efficiently reduces latencies in peak

rate, and those of the rate variability of stream.

Yet a different form of complex media is co-called composite media. With ease in

authoring, editing and presenting, multimedia data is becoming more and more

prevalent, benefiting from powerful tools readily available in the market. Composite

media files that consist of a mix of audio, video, static images, and plain text are

becoming more popular. This popularity will only increase in time; It does not take

much imagination to visualize the Olympic games being broadcast live over the Internet,

where a typical broadcast might consist of multiple multimedia sub-streams, including

background sounds, video from particular events, close-ups, game statistics, and

narrations.

The existing scalable delivery protocols assume that all and any type of media data

consists of a single sequence of encoded data regardless of the type of the media files

being delivered.

Although this linear approach to deliver media is sufficient for many existing

multimedia applications, with ever increasing consumption of the Internet and at the

same time, the linear increase in network capacity for new multimedia applications

requires a need for providing higher interactivity and customization using more and

18

more complex media structures. Today movies are limited to a linear structure because

they make use of the broadcast technology used in theatres or on TV. Internet delivery

of movies is relatively new and limited. In the future, Internet technology will enable

new types of entertainment and educational video, such as multi-ending movies, where

the clients will determine a suitable end to the movie they are watching by connecting to

different threads of the story line, branching from certain points in different directions

that are determined dynamically. Another example is a “virtual tour” where clients

choose their own navigation path [64]. One can also imagine that in a future news-on-

demand system, viewers in different cities may be able to watch the same national news

followed by different regional news and different local news. Similarly, in a video-on-

demand system, different viewers may be given localized and customized

advertisements during movie breaks. Although these applications could use a collection

of linear media files, for each story line in a multi-ending movie for example, it may be

more efficient to recognize the structures inherent in the media threads and exploit them

during delivery.

2.3.1 Network Bandwidth Bounds

The objective of a scalable delivery protocol is to deliver media files with

bandwidth requirements that do not grow linearly with increase in client request rate, to

put it in another way, as is in with periodic broadcast; it should be inversely proportional

to startup delay at the client. A basic question is how slow this growth can be. Also of

interest is the question that how close existing scalable delivery protocols come in terms

of minimizing the bandwidth usage.

Previous research lists the necessary minimum server bandwidth used by

streaming protocols that work with video-on-demand and guarantee a maximum start-up

19

delay [65, 66, 67] as well as protocols that provide immediate service [43]. However any

study that details the minimum network bandwidth requirement of scalable streaming

protocols for on-demand systems could not been found in literature. Such an analysis is

complicated by the fact that the network bandwidth requirement depends not only on the

streaming protocol, but also on the network topology and on the multicast distribution

tree that is employed.

2.3.2 Scalable On-demand Streaming of VBR Media

Most of the scalable delivery protocols proposed in prior work assume CBR

media. However, video data would typically use a VBR compression in order to

efficiently achieve uniform quality. Furthermore, in multimedia streaming applications

such as news-on-demand and live broadcast, various media types (i.e., audio, video, text,

and static images) may be combined in a composite multimedia presentation, also

resulting in a VBR media file. Due to its intrinsic rate variability, VBR media cannot be

managed and delivered as easily as CBR media.

Work-ahead smoothing techniques are often used to decrease the peak rate and to

minimize the variability in the rate when streaming a VBR file. It has been established

through literature that work-ahead smoothing actually reduces the potential benefits of

scalable delivery protocols. This is because those protocols achieve bandwidth reduction

largely through sharing the delivery of the later portions of a media file among multiple

clients, while work-ahead smoothing moves data from these later portions to earlier

portions that are less widely shared, in order to generate a smoother stream.

2.3.3 Scalable On-demand Streaming of Non-linear Media

Current highly-scalable content delivery services such as TV employ a broadcast

model where end-users play a passive role in receiving the content. Internet delivery of

20

multimedia file entwined with other modern advances enables many new opportunities.

It is not farfetched to fathom customized and interactive multimedia application of

future. This customization maybe one where the client picks their own ending for a

movie that is streamed on-demand, in which the multimedia objects to be delivered

include parallel sequences of data units, such as a branching set of video frames, where

clients may select at chosen branch points which branch of video stream to pursue

making the streaming process dynamic in nature. This means clients that are requesting

the same media file potentially would receive variable sequences of data units, based on

their own selections of the branch points. The currently available scalable delivery

protocols are not capable of being directly used in delivering such dynamic streaming

files.

There exist many approaches to scalable non-linear media delivery. Some of these

approaches assume advance knowledge the path selected by the at every branch point,

either by measurement of the overall client path choice frequencies in the respective

system or relying on client classification or pre-selection. Others assume a priori

knowledge and must achieve a suitable compromise between aggressive sharing of

server transmissions, and client reception of data that turns out to be from a different

path than the path the client will select. Researchers have looked into this type of

scalable non-linear media delivery approach and analyzed the minimum required server

bandwidth and associated overhead client data. This overhead is the data that the clients

receive but do not use. Obviously, if a fairly accurate prior knowledge of the path client

would select is available, then minimal server bandwidth usage can be achieved; this

would also cause substantial savings in the overhead. In the absence of such knowledge,

the client data overhead can still be greatly reduced at a relatively small server

21

bandwidth cost, through control data that could potentially determine through look-

ahead checks to make sure what data is on their path in future .

2.4 Multimedia System Components

This study aims at developing a DCMS system that can efficiently deliver

multimedia data over a network with fault tolerance. In order to achieve this target, a

systematic approach is required. This approach should consider all interactions that

occur between many different subsystem components of a DCMS. This systemic control

of the interactions is necessary in order to achieve the stringent performance restrictions

inherent in multimedia data transmission.

 Figure 2.1: Multimedia System Building Blocks.

Figure 2.1 provides a generic illustration of a model of multimedia data delivery

from server end to client end. At the server sidethe media data is available and is stored

in an encoded format using storage hardware. Software on media servers are used to

retrieve the media data from the disk and prepare it for the transmission over the

network. A media application and a transport protocol are then used to stream the media

data and deliver to the client hosts. At these client hosts, this transmitted media data is

22

first buffered and is then decoded for the presentation application that provides the

media for end user consumption.

If a difficulty surfaces in any single component of a DCMS for any reason, that

single problem can cause degradation in the performance of the entire system. In the

sections that follow, a more detailed investigation of some of these DCMS system

components is presented.

2.5 Media Data

Multimedia comes from the union of multi and media where the word ‘multi’

specifically underlines the many forms of media which may or may not be of same type

included in one data file. This means that possibly many forms of media should be

authored, delivered, and presented as one unit. The many different types of media

mentioned before include but are not limited to plain text, images, audio, or video data.

It is possible to categorize the many different types of media into two multimedia data

delivery classifications.

The first classification can be termed as discrete media. Discrete media would

refer to that type of media which has no overt constraints on its timing for presentation

[68] [69]. As an example let’s take retrieving an image from a web server to be

displayed in a web browser. A browser presenting the image can take different time

units to display this image because the network bandwidth availability may be different

at different times of the presentation. This has nothing to do with the decoding process

that takes place after the image has been downloaded. The download time can be a

fraction of a second or maybe hundreds of seconds. The image size and the available

network bandwidth would determine the time needed for download. This delay should

be as short as physically possible, while making sure that the time it takes to retrieve the

23

image data is long enough not to distort or damage the data itself while receiving,

rendering, or displaying. Once all the data is correctly displayed, it is sure that the

request was satisfied successfully. This means that a restriction that would limit the time

or delay for an image media does not exist in terms of its presentation.

Another type of media data is continuous media. This type of media has stringent

presentation requirements for its timing. These requirements are embedded inside the

media itself [68] [69]. One category of this type of media data is audio/video files. If one

considers video data, the video frames need to be displayed in a proper sequence where

each frame has as fixed frequency. In a PAL video format, this frequency is 25 frames

per second (fps) [70] whereas in NTSC it is 29.9 fps [71]. As such, to display a video

file in its correct presentation would necessitate not only the orderly and error free

reception of the video file but also the correct selection of the decoding algorithm based

on which the media object was encoded in its correct time frame. If the system fails to

process the video media file properly in terms of any one of these constraints, it would

greatly degrade the quality of the video presentation, in some cases it might even fail to

present the video data at all even after successfully receiving the video data at the

presentation end of the transmission [72]. Hence, it is necessary to preserve the integrity

of data and timing constraints when dealing with multimedia delivery of data. This

becomes particularly important when continuous multimedia is being delivered. It

should be noted that there are usually multiple media streams in a single multimedia

content where each stream is composed based on its own schedule of presentation. With

multiple data streams embedded in a single continuous media streaming system, special

care has to be given in terms of presenting each stream together with rest of the streams

24

in synchronized fashion while maintaining the relative timing integrity constraints that

exist between all the streams that makeup the multimedia data.

2.6 Media Delivery

We can classify continuous media data delivery into two general categories. These

categories can be termed as – ‘hard’ and ‘soft’ – real-time delivery [73] [74]. Whenever

there are strict timing constraints in terms of delivery delay from origin to presentation

and high role interchange of client and source, such as is the case in internet telephone

applications or video over internet applications (Figure 2.2), we term it hard real-time

delivery [73] [74]. If the delivery delay in a hard real-time delivery is very large, then

this would render such an interactive continuous media delivery application fruitless and

unusable.

Client1 Camera
Network Active Client1

Passive Client

Active Client2
Client2 Camera

Conferencing Server

Figure 2.2: Video conferencing in Real-time continuous media.

Considering Internet phone [75], if the total delay caused during voice data being

captured and transmitted from the speaker to the listener is larger than 150 ms[76] then

that would cause collisions of voice from both speakers, where both users of the internet

telephone would be speakers and listeners at the same instance of time. These sorts of

25

delays are frequently exhibited during telephone conversation that have multiple service

providers involved or are long haul. Such delays damage the quality of the service.

When multimedia data is delivered with a requirement of only the data integrity

and timing of the presentation are to be preserved but delays can be tolerated, it is

termed soft real-time delivery [73][74]. VoD is an example of such delivery. Naturally,

it is intended that the delays are reduced as much as possible but they do not

compromise the presentation itself. The users can playback at their convenience as and

when enough data is downloaded (Figure 2.3). Such deliveries are more tolerant to

startup delays even if they are much longer than that for a hard real-time delivery

application. Soft real-time delivery would function fine as long as a seamless playback is

ensured once the presentation starts.

`

A / V Encoder

Directory Server

Media Server

Client

Television
Set-top box

Network

Storage

Storage

Audio/Visual Source

U
P

L
O

A
D

Playback A / V

Figure 2.3: VoD an example of soft-real-time continuous media delivery.

2.7 Streaming Versus Download

In terms of multimedia data delivery download is the model that is most frequently

used to transfer multimedia from a server to a client. As Figure 2.4 shows, the client

26

requests a multimedia file from a server. Upon receiving the request the server prepares

the multimedia object for transmission by first retrieving it from its storage and then

transmits it to the requesting client. In WWW, the client would initiate a HTTP GET

request and send it to the server by use of TCP protocol. The web server would then

locate and retrieve the multimedia data requested from its storage and transmit it to the

client using the same TCP protocol connection with HTTP reply message. Once the

complete data file is downloaded, i.e. completely retrieved at the client end, the client

browser would decode and present the multimedia data to its user [77].

During download the file is copied with data downloaded and placed at the local

memory of the downloading client. The downloading client is then able to decode and

present this file as it can with its local multimedia objects. This method works for many

VoD system but is not efficient when continuous media is being delivered. We discuss

the reasons in following sections.

Send

Data

Send

Request

Server

Present

Data
Client

………….

Send

Data

Figure 2.4: Client server interaction in download model.

Illustrated in figure 2.5, take the example of the download model. Here, we are not

considering the time it takes to process the request, but we are just taking into

consideration the delay that incurs from the moment a client initiates a request to the

27

moment when that same requested data becomes available for presentation at the client.

It is observed that this sort of delay purely depends on the media size, i.e. the size of the

file as well as the transmission rate at the disposal of the network. Usually, for web

applications, files requested are from either small images or simple text pages (HTML)

and as such this delay is irrelevantly insignificant.

Send

Data

Send

Request

Server

Present

Data
Client

………….

Send

Data

DELAY

Figure 2.5: Start-up delay in download model.

On the other hand, continuous media is made from a considerably larger chunk of

data, as such; the delay caused in transmission of such an object would be much larger.

So much so, that it would be intolerable for the provision of service. Let’s consider a

video file that is two hours long and encoded with MPEG2 standard and average bit rate

of 6 Mbps. Such a file produces 5.4 GB (2x3600x6000000/8) of data. Even if one was to

transmit this data using high speed broadband internet at 8 Mbps, it will take some one

and a half hour (5400000000 × 8) / (8000000 x 3600) for the download to compete and

for the multimedia presentation to start. Unacceptably long delay time, waiting for a

download to finish, is the main issue that prevents us to use the download model in

providing continuous media service.

28

Although a system cannot present any image or graphic file until and unless it is

completely available to that system, continuous media can be decoded and even

commence presentation with only partial data at the systems disposal[68][69]. This is

mainly because of features such as: a video file is made from a large sequence of video

frames and once sufficient number of these video frames, in a sequence, is available; the

video file can start its playback and rest of the missing frames from the coming

sequences can be downloaded from the server while the playback continues.

Using this feature of continuous multimedia data, a streaming model is one where

playback commences while data is still being downloaded [77]. An example of this

model is shown in figure 2.6. In streaming model, once the request has been made by the

client to the server, the client would only wait for the arrival of first few packets of data

in its buffer and once they are available the client system would start with the

presentation of the continuous media to the user. While playback of the files initial

packets at the users display device, the client would keep on receiving the subsequent

data packets from the server machine. Such an approach reduces the time client would

have had to wait if it were to download the complete file before playback.

In contrast to the earlier method of download, a streaming model necessitates a

couple of requirements. One of these requirements is that it must be possible for the

system to fragment the multimedia file into small units that can be decoded and

presented individually. The other requirement, continuity requirement, is that the system

must make sure a sequential and ordered delivery of the fragments to the client. That is

to say, each fragment must reach the client while maintaining the timing integrity of the

complete media file [78].

29

Send a

parcel

of Data

Send

Request

Server

Present a

Parcel of Data
Client

...

{

(a)

Send 2nd

parcel of Data

Send

Request

Server

Present 2nd

Parcel of DataClient

...

{

(b) ...

Send i
th

parcel of Data

Send

Request

Server

Present i
th

Parcel of Data
Client

...

{

(c)

Present

1
st
 Parcel

of Data

Present

2
nd

 Parcel

of Data

DELAY

Figure 2.6: Partial media playback in streaming model.

30

Figure 2.7 shows that the streaming model can easily service many clients at the same

time because it receives the media in ordered packets within the timing integrity of the

media object [77]. It is worth mentioning that the transmission rate and playback of

multimedia objects are fairly similar and as such the startup delay is irrelevant to the

total population of clients being served. The only limitation, in terms of size of clients

that can be served with same startup delay for the same media file, is that of network and

server capacity.

Server

Client #1

Client #2
...

............

Present the parcel

Present the parcel

Figure 2.7: Multi-stream pipelining in the streaming model.

2.8 Challenges in Building Continuous Media Streaming Systems

This section discusses the main challenges in the design and implementation of

continuous media streaming systems.

2.8.1 Scalable On-Demand Streaming of Non-Linear Media

In the earlier section, it was stated that for the streaming model, we must make

sure that the fragments making up the media content are received in correct order and

within the integrity constraints of the multimedia presentation being transmitted.

31

Furthermore, it must be decided when the presentation should commence its playback.

Figure 2.8 is used to emphasize the fact that after the media data starts its presentation at

the client application layer, the presentation must be played at the same rate throughout

the playback. If, for any reason (such as interactive control from the user), the client

changes the playback timing or schedule for one fragment, then all subsequent fragment

schedules would need to be updated and changed.

Server

Client

............

DELAY

Once Playback starts, the
playback schedule for all media

data are set

Send

Request

Figure 2.8: Relation between start-up delay and the playback schedule.

2.8.2 Deviations During Streaming

Like any other large system, continuous media streaming systems are also made

up of other subsystems with their own components. These subcomponents are shown in

Figure 2.9. This figure shows that multimedia objects are stored in storage devices at the

servers. Upon request these objects are fetched from these local memory units and

transmitted over a network. On the client end, these objects are received using an

interface to the network, saved temporarily in buffers dedicated for system usage and

then decoded and displayed at the user screen

32

There are many different variations that occur during streaming of a multimedia data

file. Major variation points of a streaming system are as follows:

Multimedia Data: difference in data rate consumption at the client or transmission of

data from the server can cause variations in playback rate.

Multimedia Encoding: Different encoding techniques or compression methods can also

be a major reason of data-rate changes of the media file being presented.

Storage Hardware: The quality or type of the storage devices being used for the media

files at servers or the buffers at the client are yet another major reason of varying data

rate.

Network Capabilities: The resources available to the network and the load on the

network can also have a big effect on the transmission and as a result on presentation of

the streaming media.

Processing Devices: The processing power and the processing requirements at a given

time may also cause huge effect on the streaming process itself.

 Figure 2.9 End-to-end system and its admission control components

33

The components making up the streaming system rarely work without a glitch. Normally

there are problems, such as delays, that originate from subcomponents of the system and

there is never a guarantee as to when and which component would cause a variation in

the system behavior. This brings unpredictability in the system.

As an example when one looks at the way multimedia data is created it is noted

that, in order to minimize data rate of the multimedia object, compression is required

[79][80][81]. Compression of the data itself instigates many variations such as the

decoding method and timing required to decompress the individual fragments of the

video data etc.

Hard disks are, typically, used to store the media data. The access time as well as

disk throughput changes in a system from time to time. When a request is being

processed, a server must fetch the requested media objet from its storage and then

prepare it to transmit to the client. This fetching time would vary, depending on how

busy the storage mechanism is at that instant as well as the scheduler priorities of the

system. These parameters cannot be known a priori for a known storage system.

Furthermore, there are many types of the storage systems making it, in itself, impossible

to predict these values beforehand.

Once the media data is retrieved from the hard disk (storage subsystem) of the

server, it starts processing the media object for transmission to the client by making

packets and adding control headers. After the packets are ready, the server starts sending

them over the network. The available network resources, then decides the time it would

be necessary for the media file to go through the network and reach the client. The state

of network resources and the path taken by the packets to reach the destination change at

different times and cannot be known in advance [82][83][84]. If quality-of-service

34

(QoS) can be assured for a network, only then the system can predict and as such

efficiently manage the delays incurred due to many subcomponents involved in the

streaming [83,84,85]. Today’s best effort internet is unable to do provide any such

guarantees [72,86].

As for the client side, once the media data reaches the requesting client, it saves it

in its buffer memory and starts the decoding process. As aforementioned, the decoding

time depends on the encoding algorithm complexity as well as the processing power

available to the client along with the processing schedule at a given instance of time.

The same is true for playback time.

Figure 2.10 shows how all these variations in the streaming process of a

multimedia file can affect the service provision to the client. It is clear from the

discussion in this section that variable timing is a part of the nature of continuous media

streaming systems and it should be treated as a special case scenario.All systems

managing continuous multimedia data must take precautions for these variations and

changes.

Server

Client

.........

Send Request

X

Data Packet Loss

R
e

tr
iv

a
l

D
e

la
y

...

Longer Network

Delay

X X X X X X

Playback Deadline Missed

Figure 2.10: Variations in the system can disrupt continuous media playback.

35

2.8.3 Real-time Applications

Many applications need interactive user participation in real-time – these are

called real-time applications, such as interactive teaching, video conferencing or real-

time video games. In such cases, live streams are exchanged between the participants of

such activities. These live streams are intolerant to delays like startup delay for every

live stream [73, 74, 75, 78]. Hence, designing a continuous media steaming system that

serves real-time multimedia data has to put up with more stringent requirements in terms

of timing, in addition to all the other constraints already present in any multimedia

streaming systems. As such, a trade off must be made among these constraints

depending on the system goals, in order to balance the system and design efficient yet

realizable real-time continuous multimedia streaming system.

2.8.4 System Scalability

An important feature of any system is that whether it is able to increase its

capacity of service with the increase in the demand for its services without increasing

cost of the system a lot, that is if the system can be scaled up [87]. Figure 2.11a

illustrates a system with a single multimedia server. With increasing clients in the

system, one server would become insufficient to continue providing service efficiently.

This would cause degradation in quality, increased waiting time for the clients, and

delays in accessing the storage, to mention a few system overload related issues. A scale

up would mean adding a new multimedia server to the existing single server system and

to copy the media on existing server to the new server, shown in Figure 2.11b. Such a

scale up would increase the capacity of the system two folds at the cost of a single

multimedia server.

36

Storage

Storage
Media Server

ClientNetwork

Media Server

Network

Client

Client

Client

Media Server
Client

Client

Client

Client

Storage `

Client

Media Server

Storage

(a)

Network(b)

Figure 2.11: Increasing the service capacity of a media streaming system.

2.8.5 System Reliability

System reliability is yet another very important feature and poses a challenge to

continuous multimedia services, especially streaming services design and management.

If there are failures at any subcomponent of a continuous media service system at any

given time, it would naturally disturb the entire service mechanism. The only way to

ensure this does not occur is by adding fault tolerant features to the system while

designing the system. The failure, may it be disk failure, network failure, peripheral

failure or any other failure should not be allowed to hinder the service. To the very least

it must not be allowed to render the service inoperable.

To make sure that the system keeps on providing the service it is intended to

provide, redundancies might be necessary to be included in the system. Redundancies

such as, disk, bandwidth, processors, or servers help in making sure that there are no

interruptions in service provision once the system is up and running. This thesis presents

37

a multimedia service provision system for continuous multimedia in a distributed

environment using redundant servers arranged in a hierarchical fashion.

2.8.6 System Trade-offs

In this section, different kinds of tradeoffs are examined. Tradeoffs become

necessary when different challenges have conflicting requirements or when resources

are not enough to fulfill all the challenges. The tradeoffs can be categorized as follows:

 Tradeoff in capacity – This would include but is not limited to the tradeoff in the

throughput of the disk and that of I/O as well as the bandwidth at the networks

disposal.

 Tradeoff in time – These are tradeoffs that deal with timing constraints such as

delay, jitter, and the time it takes to give response to a request.

 Space tradeoff – Space tradeoff targets the space needed to store data, as in

storage space (hard disk etc.) as well as the buffer space available to the servers

and clients included in the service.

 Tradeoff in Quality – This would involve a tradeoff in the quality parameters and

the state of how high or low is the quality of the data being presented to the

consuming client.

38

M
e

d
ia

 D
a

ta
 C

o
n

s
u

m
p

ti
o

n
 B

it
-R

a
te

Playback Time

.

.

.

Figure 2.12: A media stream with time-varying playback bit-rates.

In the coming subsections, for the sake of discussion, consider the diagram in

Figure 2.12 where a multimedia object is being streamed with variant rates of playback

time. Let us further consider that the file being streamed is segmented in time slices of T

time units, hence making each playback time slice for each segment identical in length.

This would make the size of each segment different as the bit rate is different in each

identical time slice. In the coming sections, that discusses the tradeoffs using the initial

example in Figure 2.12, let us assume that ir is the playback rate for a segment i

where i is an integer from 0,1… to n. We look at a scenario where this multimedia file

will be streamed from a continuous media server to a client.

2.8.6.1 Capacity Tradeoff

Let us assume, to keep things simple, that the only traffic in network is the

multimedia object being streamed. Furthermore, let us also assume that the network has

a fixed bandwidth at its disposal. In this case, in order to serve the system efficiently,

one tradeoff would be in bandwidth capacity. In such a tradeoff, the network can

allocate a bandwidth capacity }|max{ irC i , where C is the highest bit rate

39

required by any segment that makeup the multimedia object. This scenario is depicted in

Figure 2.13

M
e

d
ia

 D
a

ta
 C

o
n

s
u

m
p

ti
o

n
 B

it
-R

a
te

Playback Time

.

.

.

Allocated Network Bandwidth

Figure 2.13: Network bandwidth allocation based on peak bit-rate.

It can be noted, with a first glance at the Figure2.13 that this approach suffers from

a problem where only one segment (the one with highest bitrate) uses the bandwidth

efficiently, while all other segments waste a part of the bandwidth allocated to them.

This means although the streaming would go smoothly, this will be at the cost of wasted

bandwidth, hence the tradeoff in useable bandwidth capacity

2.8.6.2 Time Trade-off

A different tradeoff can be that in time, where we waste time in order to save

network capacity at the network disposal. Continuing the example from Figure 2.12, let

us say that the segment with the highest bit rate i.e. the first segment is streamed at a

lower bitrate as compared to the required playback rate. This would mean that, the initial

segment will require more time than T time units. This would necessitate a delay in

40

playback. Figure 2.14 illustrates this scenario. Making a tradeoff in time would save

bandwidth, but would require a higher startup delay.

M
e

d
ia

 D
a

ta
 C

o
n

su
m

p
tio

n
 B

it-
R

a
te

Playback Time

.

.

.

Allocated Network Bandwidth

E
xt

ra

S
ta

rt
u

p

D
e

la
y

Figure 2.14: Time trade-off incurring delay by reducing playback in initial segment.

2.8.6.3 Trade-off in Space

Continuing with the earlier example and the discussions we note that the crucial

network resource, i.e. the whole of the bandwidth remains not effectively utilized and is

a part of it remains wasted, especially in cases where high bit-rate and very low bit-rate

video segments are being transferred simultaneously. This unused (or wasted bandwidth)

can be reclaimed provided the system looks into the future packets and plans in advance

for their transmission as depicted in Figure 2.15. The figure is used to bring attention to

5
th

 packet, which is low bit-rate, and the 6
th

 packet that is made up of media that is high

bit-rate as compared to rest of the segments.

If the system providing the streaming service, can foresee this difference in bit-

rates required, it can initiate the 6
th

 packet as soon as the 5
th

 one is sent. In this way,

41

knowing the extra bandwidth resource is available and the slow bit-rate of 5
th

 segment,

the system is certain that the sequence would not be disturbed and 5
th

 packet will reach

before the 6
th

 packet segment. This also ensures that, because 6
th

 segment was initiated

earlier than normal transmission time, average transmission rate is improved. As in our

example, reducing the transmission rate of the packet with highest bit-rate in the media

data, inevitably improves the peak bit-rate of the entire transmission.

M

e
d

ia
 D

a
ta

 C
o

n
su

m
p

tio
n

 B
it-

R
a

te

Playback Time

.

.

.

Allocated Network Bandwidth

M
e

d
ia

 D
a

ta
 C

o
n

su
m

p
tio

n
 B

it-
R

a
te

Playback Time

.

.

.

Allocated Network Bandwidth(b)

(a)

Figure 2.15: Spatial trade off in the buffer of the client.

2.8.6.4 Quality Trade-off

Throughout our discussion thus far, it was a given that all media data must be

transferred to the client. A tradeoff in quality of media suggests that some of the media

42

data may not be transmitted to the client at the cost of quality but saving the bandwidth

being used and providing a more speedy service as shown in Figure 2.16. The data that

is not sent should not, however, render the data being sent useless but, naturally, the

media being transferred cannot be used to reconstruct the original media file but a lower

quality version of the same.

How much of the quality would be compromised is purely dependent on encoding

techniques, the skipping technique, the type of data and its amount that is skipped.

Another method used to degrade the quality of a media file is to map a high bit-rate file

into a low bit-rate as illustrated in Figure 2.16 where the 6
th

 segment is transformed from

a high bit-rate to a low bit-rate using some encoding technique [88], making sure that the

new bit-rate falls in the range of available bandwidth resource.

M
e

d
ia

 D
a

ta
 C

o
n

s
u

m
p

ti
o

n
 B

it
-R

a
te

Playback Time

.

.

.

X
X

X
X

Allocated Network Bandwidth

Figure 2.16: Trading off the quality by skipping some media data.

43

2.9 Performance and its Guarantees

Whatever technique of transmission is deployed and whatever the tradeoff, the

ultimate goal in media data streaming system is to make sure that the media files and

their segments reach the client in time and in order, so that the client can use that to

decode and display the media data content to the client. This means providing

performance guarantees. Provision of performance guarantees means that the system

must make sure that the worst case scenario is taken into account for any tradeoff or

technique being deployed for the streaming system.

When a system can guarantee that performance matrices will be met in all cases, it

is called deterministic guarantee [89].Consider cases where the worst case scenario

never or rarely happens, it is apparent that resources will be wasted.

Another approach can be probabilistic performance guarantee or statistical

guarantees [89][90], where only the most important performance matrices are met and

guaranteed for most instances, and at rare times they might be ignored. Yet another way

is to provide all the resources at the disposal of the system for the streaming of the media

providing no guarantees for any performance matrix. This is called best effort

performance guarantee [89][90] and in this way no guarantees are actually provided and

that the system does not or cannot control the media data requirements as well as the

transmission requirements of the system used for the transmission, such as the internet.

It must be noted that best effort does not imply poor service, but that at times service

might be poor provided the required resources are not available.

2.10 Admission Control

In cases where the network utilization is very high and as such the network

resources are not sufficient to provide the required service, the system would not be able

44

to entertain the requests being received from the clients. This is natural as there is a

physical limit to the amount of resources that can be used and at any given time the

number of requests being served should not exceed the amount of resources at system

disposal (Figure 2.17). Admission control is the part of the system that makes sure that

requests being admitted can be fulfilled [91][92].

Begin

Determine Resources

Requirement

Determine Resources

Available

Sufficient

Resources?

Admit Client Reject/Queue Client

YES NO

Figure 2.17: Flow chart for a general admission control procedure.

Looking at the multimedia streaming system extensively, like in Figure 2.18, we

note that just having an adequate admission control system in place would not be enough

to provide performance guarantees. There are many components to a streaming system,

as aforementioned, whereas the resources are limited. The components involved in the

streaming process are not used to stream single stream but multiple streams, furthermore

the client side is also typically busy with more than one application, where each

45

application is contending for client resources such as processor time, input and output

resources etc. In order to provide an end-to-end performance guarantee, all these

components, resources, load on the systems involved must be considered.

Within a distributed continuous multimedia streaming system, each server, all

bandwidths and connections, every storage and transmission unit must be investigated so

that a fair admission control system is placed, and a proper resource allocation policy is

established so that a seamless streaming system can be designed that can guarantee the

system performance.

For each request being considered for admission, the system must make sure that

each component involved in the streaming process is capable of providing the service

throughout the life of the request. If for any reason a single component is unable to

provide or continue its service for a period of time, then that request cannot be met and

as such admission should not be granted.

46

Chapter 3

3 DISTRIBUTED CONTINUOUS MULTIMEDIA

STREAMING ARCHITECTURE

A distributed continuous multimedia streaming system consists of multiple

continuous multimedia servers, where each server is capable of providing the necessary

resources needed for streaming the media objects. The clients for these objects are,

geographically dispersed. When a request is received by the system, the continuous

media servers should try to realize the request and serve the client. Normally, DCMS’s

are designed as a network and many times they are arranged in a hierarchical fashion.

In a hierarchical arrangement, each Centralized Continuous Multimedia Server

acts as a node of the hierarchy where the links connecting these nodes are the edges.

The CCMS’s are, as mentioned before, able to store and stream a limited number of

media objects. The links making the edges and providing the communication mechanism

between the nodes are assumed to be able to provide performance guarantees that are

required for the media object being transferred.

The hierarchical topology, usually employed for DCMS, resembles that of a tree

where one end of the hierarchy is the root (top most node) and the other end has leaves

(entry nodes). The client requests are handled through the entry nodes, also known as

head-ends. Clients are connected to the DCMS system through the head-ends, typically

using broadband connection. When a client makes a request to a DCMS for a media

47

object, it is received by the head-end. The head-end node then looks to sees if the media

object is stored in its local storage. Provided the media object, requested by the client is

available at the storage of the head-end node, it (the head-end) serves the client.

Otherwise the head-end node forwards the request to its parents at the next higher level

of the hierarchy. If needed, the request will eventually reach the root node, which will

then serve the request by streaming the object through the hierarchy via the head-end to

the client. Hence, object placement and object location and delivery are at the center of

the resource management component of a DCMS. These functions are discussed in

detail below.

1. Object Placement. The main task of this component of a DCMS is to map the

multimedia objects throughout the DCMS nodes. The placement should be such

that the costs to the system (such as the communication or storage etc.) are

minimal. This issue, also referred to as Media Asset Mapping Problem (MAMP),

has been contemplated by several researchers. Some addressed it using analytical

models and access patterns [93], others considered resource constraints to get

optimal distribution of the media data employing some duplication policies [94,

95, 96, 97].

2. Object Location and Delivery. Object Location and delivery component of

DCMS deals with finding the locations where the multimedia object is placed

within the DCMS and then allocating a delivery route together with all resources

needed by the system to satisfy the client request. The main purpose of this

component is to locate and then deliver the requested object such that minimal

system resources are utilized for a single stream, hence increasing the efficiency.

At the same time, another key goal of such a component is to keep all resources

48

occupied with different streams that are serving different clients, as such

increasing the utilization.

3.1 Object Location Scheme

The object location component is, usually a middleware that runs at the application

layer of a DCMS. The DCMS is made from multiple, hierarchical CCMS’s. These

CCMS’s are capable to handle multimedia storage as well as the streaming

requirements. Making the middleware independent of the network layer and placing it

on the application layer makes it possible for the system to be independent of underlying

communication network. This enables the system to be able to provide performance

guarantees, irrespective of the underlying network. Hence, if the network topology is

designed efficiently, then together with resource management middleware, they define

the general architecture of a distributed multimedia streaming system. As far as topology

is considered, we have chosen to use the Redundant Hierarchy [9] or, briefly, RED-Hi

(see Figure 3.1). The RED-Hi topology decreases the rigid restriction of one parent per

node for pure hierarchy and allows each node to have two or more parents.

Having more than one parent makes it possible for the system to balance the load

on any given path of the topology, not only that it makes it possible for the system to be

more fault tolerant and efficient in terms of resources and cost. There is a redundancy

involved in such a topology; nevertheless this redundancy is not of extra resources but

only of extra links. These links can share the same bandwidth resources and because of

that, the aggregate bandwidth that connects a node with its multiple parents would be the

same as the bandwidth that is used in a pure hierarchy for a node to connect to its single

parent.

49

It is evident from the earlier discussion that in RED-Hi the system does not require

higher bandwidth resources but can still provide a possibility for higher connectivity at

the negligible cost of an added link. Looking at some existing hierarchical structures

such as Central Offices (CO), Points of Presence (POP) and Internet Service Providers

(ISP) that are at the foundations of streaming Internet provision system employed by

DCMS, we notice that RED-Hi is highly compatible with them as they too are connected

with redundancies [98, 99].

Figure 3.1: Pure and Redundant hierarchy.

The Distributed Continuous Multimedia Streaming system being considered in this

study has the following assumptions:

1. The topology used for the system would be based on RED-Hi.

2. Centralized Continuous Multimedia Streaming servers will be used as nodes

where each would have its own storage and bandwidth resources.

3. The underlying network would be responsible to provide resources such as

bandwidth where control and streaming media streams would be sharing the

bandwidth resource.

50

4. The links would be duplex links where the traffic can go in both directions.

5. Nodes at the top of the hierarchy are called Root nodes, the ones at the bottom

are called Entry nodes or Head-ends whereas all intermediate nodes are called

Intermediate nodes.

6. In object distribution policy, all multimedia objects will initially be placed in

the root nodes.Then, based on demand and popularity, they would be

duplicated to the intermediate nodes. With physical limitation approaching in

terms of available memory size, the least recently used (LRU) policy [100]

would be used to remove the objects from the intermediate and entry nodes.

An application agent is assigned to every CCMS that keeps track of the resources

maintained at the node. These agents are responsible for knowing at any instance the

number of multimedia objects present in the storage of its CCMS, the total and available

bandwidth at the CCMS as well as the number of links free and number of links that are

busy at a given time. Furthermore, these agents should keep track of load on each link

that connects the node to its parent nodes and child nodes.

These agents assist the CCMS in locating the requested media object in the entire

system, i.e. all the nodes that belong to the DCMS. Furthermore, these agents help in

selecting the node most suitable to be the source for the request satisfaction and to

designate the most appropriate path that can be used from the source CCMS to the client

requesting the media object. This decision is made while considering the load along the

path of the request transmission ensuring the highest utilization of the available

streaming resources and providing an optimal balance in the load at the nodes involved

in streaming. Finally, the agents allocate all the necessary resources needed for the

51

streaming of the object from its CCMS. Collectively the agents would make allocation

throughout the DCMS network for all necessary resources required for the seamless

flow of the streamed packets from the source node to the requesting client.

3.2 Object Location Algorithm

One of the main contributions of this study is development of the object location

algorithm that handles the task of locating the media content in the distributed server

system. The proposed algorithm performs this task using two modules. One module in

each node of the system is dedicated to receive query messages from its child node, in

case of a head-end, this query is received from the client through the network. The

second process is devoted to the processing of the query in the node itself and passing

the query to its parent node incase the media required is not available locally.

3.2.1 Receive Query Process

This process is responsible for receiving all query messages in a node. The process

can be considered as a thread that is active as long as the server is up and running. It

receives the request and performs the preliminary processes on it.

While (lifetime>0)

{

 RecieveQuery(new_query);

 if (requested media available locally)

SendResponse(ok_message,Child);

 Else

 { Send_Query_and_wait_Process(); }

}

52

3.2.2 Send Query and Wait for Response Process

This process is responsible to send the query messages received by a node to its

parents, wait for a response from both of the parents and finally to inform its child

process of its findings from the inquiry it made to its parents. This process takes into

consideration the timeout and sends an Error message in case it is required.

Send_Query_and_wait_process();

{ SendQuery(new_query,Parent1);

 SendQuery(new_query,Parent2); //set timeout for both parents

 while (Timeout>0) {

 if (RecieveResponse(Status1) !received) and (ReceiveResponse(Status2) !received)

 Wait for the response from both parents

 else

 if ((Respons(Status1)=OK) or (Response(Status2)=OK)

 { if ((Response(Status1=OK) and (Response(Status2)=OK)

 if (timestampe of Status2> timestamp of Status1)

 select Parent1

 else select Parent2

 else select the only parent with OK status for the file.

 SendResponse(ok_message,Child); }

 else SendResponse(negative_message,Child);

 }

 if (Timeout=0)

 SendResponse(Error_message,Child); }

53

3.3 Object Location

Flooding is a famous technique [101] used in routing algorithms. The reasons it is

used frequently is because it is highly robust, and it explores all paths at the same time.

Furthermore, it is able to have parallel communication among every node involved in

the routing system, a highly desired roperty in distributed applications. Finally, it gives a

minimal delay in terms of delivery because we are certain after exploring all paths that

the shortest path is actually the shortest possible path among a set of nodes. There is an

extra cost [102] of time of flooding that comes into consideration, but for multimedia

data streaming, this delay or extra overhead is negligibly small compared to the overall

service time involved in the streaming process. As such, our object location algorithm

uses flooding techniques.

Flooding makes use of different propagation policies depending on the

propagation area that should be covered in the routing or object location problem at

hand. The possible policies are:

1. Parent-only policy: In this policy, nodes forward the requests that they cannot

themselves serve as a source server, only to their parents. As such, the area

covered by the propagation of the flooding while locating the object would limit

only to the ancestors of the head-end that receives the request from a client.

2. Another policy would be Inclusive policy where a nonselective flooding is

performed. Non-selective flooding would mean that any node that cannot service a

request itself would propagate the request to all the nodes they are connected to,

except the one node that had sent the request to them in the first place. In this

policy, all the duplicates of the requested media would be located in the entire

network.

54

3. A third policy that can be used is the Sibling policy. This policy has an addition to

the parent-only policy where a node that receives a request for an object from one

of its child nodes would forwards it to the siblings of the child from which the

query is received and 2) its own parents. Whereas when a node gets a request for

an object from its parent, it never forwards it.

Figure 3.2: Coverage of the propagation policies.

3.3.1 Object Location Algorithm

We propose using four message types in the process of locating the media file in a

distributed continuous media server system:

1. Query message from a node, asking if the node receiving this message contains

the media required.

2. Negative message by a node, stating that it does not hold the inquired media data

and the status of the query message.

3. Ok message by a node confirming that it contains the media Queried.

4. Error message by a node informing a timeout situation at a node.

55

3.3.1.1 Query Message

We propose that this message be propagated in the system using the following

approach. The head-end node receives a request from the network for a specific media

file. It checks its index of contents in order to find out if it is aware of the availability of

the required media file or not. If it contains the media locally then no query message is

required and the media file is conveyed to the network. If it finds out that the content is

available at a node in its parent’s chain, then it tries to confirm this with the specific

node, and upon receiving this confirmation, it connects the network with this node. In

case the head-end finds out after checking its index of contents that it does not have any

knowledge of the file required, then it prepares a message stating “Query: Media File

Name” and adds a timestamp and the node identification number to the query message.

The query message is then sent to the parents of the head-end node and the head-end

node sets a timeout for a reply by the parents. There will be two timeouts for two

parents.

3.3.1.2 Negative Message

The Negative message is sent from a node to the child that had sent the Query

message to this node. This node will check its index of contents after receiving a Query

message and in case it finds that it does not contain the media data requested it sends the

same query message to its parents. This process is repeated by all the nodes until either

the root nodes are reached or the media is found in some node after checking its index. If

the root node is reached and the media asked is not found in any node, then the root node

initiates the Negative message saying “Media File not found”. The child process upon

receiving the negative message from the root node waits for either the Ok message or a

Negative message from the other root node. If any of the roots pass an Ok message then

56

the negative message by the root that did not find the required file is ignored and an Ok

message is passed down. In case both the roots send a negative message, the child node

prepares a negative message for its child and in this manner the tree is traversed. The

head-end, in case of receiving negative messages from all nodes in the hierarchy,

conveys the message to the network that from this head-end there is no path that leads to

the required media file.

3.3.1.3 Ok Message

This message corresponds to finding of the media file by a node in our proposed

distributed continuous media server system. When any node receives a Query message

from a child node, it looks the media file up in its index of contents. In case it finds the

required file in its index, it sends an Ok message to the corresponding child process.

This message contains the statement ‘File available’ along with the node identification

number of the node containing the media file and the current time stamp. After doing

this, it places the identification number of child node that received the Ok message in its

index of content, meaning that this child is aware of the media contents’ availability at

this node. This is done because when this media content has to be moved or deleted, for

one reason or the other, the child process should be informed of this change.

Upon receiving the Ok message, the child process checks the timestamp of the

received message and compares it with other timestamps of the received Ok messages (if

any). It discards all messages except the one with the smallest timestamp on it. It

conveys this information in an Ok message of its own stating ‘File available’ along with

the node identification number of the node containing the media file and the current

timestamp. After doing this it adds the name and the node number of the node

57

containing the media data in its index of content. Furthermore, it places the identification

number of child node that was sent the Ok message in this index of content.

In this way, information is passed down the hierarchy from parent to child nodes

until the head-end is reached. The head-end then conveys the message of availability of

the content to the network and connects the node with the smallest timestamp with the

network.

3.3.1.4 Timeout and Error Message

When a client sends a request and it is received by an entry node the network for a

media file that it does not have listed in the index of contents then the head-end sends a

Query message to the parents of the head-end node. After sending this Query message,

the head-end has to wait for a reply from the parents informing it of the status of the

information required. This wait cannot be infinite as the head-end as well as the client

cannot wait forever in case of a lost connection between a node and its parent in the

hierarchy. The waiting on part of the node sending the Query message has to be

sufficiently long for the parent node to receive the message sent by the node, check its

index and send a reply message to the node waiting for the reply. Let us call this timeout

‘n’ second. As each node has two parents, it will have two separate timeouts n1 and n2

corresponding to the parents. The main tasks for the nodes can be divided into three

categories:

1. Sending/receiving message between nodes involved

2. Checking of the index of contents by the parent node

3. Comparing and comprehending the messages.

Any timeout mechanism should take these three aspects into consideration. After

determining the timeout the nodes are to wait for the response messages from both its

58

parents. If none of the parents send a response message before the expiration of the

timeout then the child process transmits an Error message to its child processes and

assumes the position of a root node itself.

3.4 Request Propagation and Provision

Whenever a client initiates a request, it is received in the system by a head-end

node. The head-end node is a CCMS with agents associated to it and these agents create

a query message to be propagated into the DCMS network. The coverage of the network

propagation is decided based on the flooding policy selected.

Each query message will go through different paths and analyze the costs incurred

over the path traversed incrementally. Eventually, some nodes will be traversed that hold

the requested media objects in their local storage. These nodes will then create and

transmit positive response messages back to the head-end nodes using the same path that

was used by the query message to reach them. The acknowledgement message – positive

response message – would entail the resources and their load. The load and cost

information is readily available at the agents of each CCMS. These agents use the

information included in the positive response message to determine the best path from

their node to the source node. In this way, incrementally, an overall best path would be

found. This path would then be allocated and reserved by the head-end node for the

streaming of the media object from the source to the client requesting the object from the

DCMS system. Once the best node is selected and reserved, the agents would be

periodically used to maintain a list of alternate routes to other replicas of the streamed

object in the system.

59

Chapter 4

4 PETRI-NET MODEL DEVELOPED FOR THE SYSTEM

Petri-net [102] is a tool used for modeling a directional graphic depicting flow of

events. A Petri-net is made from arcs, places and transitions. Input arcs start at a place

and connect it with a transition whereas an output arc connects a transition with a place

with arc originating at the transition. A Petri-net model [102] is designed for the system

developed in this study, in order to help with the simulation. The model is based on three

levels in hierarchy of the CCMS nodes of the DCMS network. A total of 9 servers are

considered for the Petri-net model.

Tokens are used in Petri-nets to represent the current state of the system being

modeled. Places may contain tokens and these tokens can have a marking and a type. A

transition is fired when a token is moved from a place to another through a transition and

this firing of transition depicts a change in the state of the system. When a transition is

fired, a token is removed from an input place to an output place. There might be

preconditions attached to firing of transition and a token can only move from place to

place if all the preconditions of a transition firing are met.

In our model, we assume that all servers are geographically dispersed and are

connected to each other through the Internet. The clients are connected only to Level 1

servers through the Internet. The requests made by clients are accepted only through

Level 1 servers, called head-ends. The general structure of the system is depicted in

Figure 4.1. All the connections between the clients and servers are duplex as well as the

60

connections between the servers with each other. Level 3 servers are at the root of the

system and have no parent node or higher level of hierarchy.

Figure 4.1: Clients connected to the network.

The servers at Level 1 are responsible for all the communication with the clients.

In this model, it is assumed that there is no failure at a node (server) and timeout does

not happen. As mentioned before, the clients communicate with the servers at level 1

through the network, forwarding their requests and waiting for replies. This is shown in

Figure 4.1.

Figure 4.2: General input/output mechanism for a server.

61

The server on the other hand take inputs both form the client (child node) and from

the server at higher level of hierarchy, except for the root node. The general input/output

mechanism of the servers is shown in Figure 4.2.

Figure 4.3: General structure of the system.

4.1 Assumptions for the Petri-net Model

The following assumptions are made while developing the Petri-net model for this

system:

1. Each client, with equal probability, sends a request to a server of the first level and

waits for the response. Only after processing of once request a client may generate

a new request.

2. Requests from clients arrive to servers of the first level through the Internet.

62

3. Servers of the first level communicate with the servers of the second level through

the Internet as well. This is valid for all communication between all servers as they

are geographically dispersed.

4. Transmission in the Internet is modeled as a random delay, distributed

exponentially with some specific mean time ‘TN’

5. Format of messages is as given in Figure 4.4.

Figure 4.4 Message format for the model.

4.2 Model for Clients

The client sends a request to the head-ends, initiating the search for the media

content. The Petri-net graph representing the functioning of a client is shown in Figure

4.5. In this and subsequent Petri-net graphs, ‘n’ is the client number where n=1,2,… N.

The Petri-net graph of Figure 4.5 consists of transitions represented by ‘T’,’X’ and

‘Y’, places represented by ‘S’, token by a dot, and the inputs/outputs of the places by

arrows. T10n is a transition that simulates the (random) time of generation of a request,

exponentially distributed, with given mean TR. Transition T50n to T80n simulates

random time of the transition of the request in the internet, exponentially distributed

with some given mean TN. Transition X10n simulates the random choice of a server of

63

the first level (head-end) by the client, with equal probability. S10n place must contain

the token at the start of simulation (as shown in Figure 4.5), and attribute CLNT must be

assigned ID of the client initiating the specific request. S30n contains the average

response time for a client. The transition X10n must place 1 in the attribute MTYP

(indicating that this is a request message) and id of the client in the attribute SORC.

Figure 4.5 Petri-net Graph for clients.

64

The servers of the first level of the hierarchy (head-end) take the token from the S

places identified by S100n - S400n. The presence of a token in places S500n-S800n and

a the transition in Y10n shows that a message is received from the head-end servers (in

the specific Petri-net graph there are 4 head-end servers). The presence of a token in S

place S40n means that the client has received a message and as soon as a token is

available in place S40n that transition, T20n is fired, meaning that the request has been

received and the client can continue its work or make a new request. In this simulation

model, we assume, for simplicity, that there are 3 clients and three levels of hierarchy in

the distributed media server although there can be potentially thousands of clients and

many levels of hierarchy.

4.3 Model for Intermediate Level Servers

The intermediate level servers are the servers of level 1 and level 2. They are

unique from the root level servers because they have both inputs from and outputs to

lower level of the hierarchy, may it be a server or a client making the request, and inputs

to and outputs from higher level of hierarchy in the distributed continuous media server

system under simulation.

The Petri-net model for the intermediate level servers can be described in the

following manner using Figure 4.6.

The presence of a token in any of the places S1000n-S3000n would mean that a

message is received from a client (in case the receiving server is a head-end) or a server

of level 1 (in case the server receiving the request is a level 2 server).

65

 Figure 4.6: Petri-net graph for Intermediate Level Servers.

This would immediately cause the transition Y100n to fire. The fired transition

from Y100n would be cause addition of a token in queue place Q100n. The queue place

is necessary because potentially different clients/server can make a request at the same

time or a new request from a different client/server may be received before a previous

request is served by the specific server of the system. The server takes a request from the

queue, represented by removal of a token from the queue, and starts checking its index

for the possible presence of the information required. This is shown by firing of

transition X100. It can be seen from Figure 4.6 that X100 is shown using thick lines. The

thickness is for normally distributed random delay with mean value TS necessary to

represent the time consumed by the server in searching its index. There are two possible

outcomes of this search, either the content being searched is found or not.

66

In case the content is found locally by the current server, an Ok message is sent to

the client. This process is depicted by presence of a token in S7000n place and firing of

transition X200n. When transition X200n is fired, a token is placed in S2000n place

meaning that the request made by a client is responded and the transition Y200n can fire.

This transition (Y200n) places the token into place S8000n, S9000n or S10000n after

checking the attributes of the request message to find out which client made the request.

The presence of a token in S8000n, S9000 n or 10000n would cause the corresponding

transition T600n-T800n to fire. These transitions are responsible to show that the output

has been sent to the network for the specific low level server or client to receive.

Transitions T600n-T800n also manage the simulation of network transition time delay

according to an exponentially distributed random factor based on some mean value TN.

If the content is not available in the server locally then the request message is sent

to servers of higher level for a further search by them in their content base. This process

is illustrated by presence of a token in place S4000n causing the firing of transition

T100n. This transition creates an entry in an array of the request being sent to both its

parent servers and it increments the counter to 2. After making the entry of the request

being sent to the servers in higher level of hierarchy tokens are placed in S places

S5000n and S6000n, this causes the transition T200n and T300n to fire after an

exponentially distributed random delay with a mean value of TN.

The presence of a token in either of the places S70000 n or S80000n represents

receipt of a reply from the servers in higher level of the hierarchy. This causes the

transition X300n to fire and places a token in S place S60000n. whenever a token

becomes available in S60000n, the transition T400n fires. This transition is responsible

to find the entry of the corresponding request message in the array of requests sent by

67

this server to the servers in higher level of hierarchy. If this reply is positive, meaning

that the content is available in the server sending this reply, then a status flag is set to 1

and the counter held by this server is decremented by 1. If the negative message is

received then only the counter is decremented by 1 and the status flag is left unchanged.

The status flag is used to find out if this is the first negative message received or the

second. This information will be useful later on. Firing of the T400 transition places a

token in S50000n place which causes transition Y300n to become ready to fire.

Transition Y300n determines if this is the first reply. If that is the case then it further

determines if this is a positive reply or negative reply. If it is a negative reply then it is

directed to S40000n place which is actually a sinking place, meaning that this token is

wasted by firing of transition T500n. If transition Y300 determines that this is a second

negative reply or a first or second positive reply then it is directed to S30000n place and

an entry is made in the array kept by this server for maintaining the request status stating

that a reply has been directed to the server of lower level of hierarchy. A token in

S30000n place causes transition X200n to fire which sends the response to the server of

lower level (or the client if this is a head-end server) through the Internet as explained

above in this section. The array maintained by the intermediate level servers is

schematically illustrated in Figure 4.7.

68

Figure 4.7: Status Array kept by intermediate level servers.

4.3 Model for Root Level Servers

The fundamental concept behind the model for the root level servers is the same as

that of the intermediate level servers except they do not have any input from higher

servers. Thus, they make no inquiry about the required content from other servers. The

change in the design of model of root level servers is in the transition X1000n. If upon

looking up the index of its content, the root level server finds that it does not contain the

required file, it sends a negative message to the server that had sent the query message.

This is done by placing of a token in place S500000n with attribute TYP set to 3

meaning that the content is not available in this server. Furthermore, this server does not

maintain any array of status as it does not need any such mechanism. The Petri-net graph

representing the working of root level servers is shown in Figure 4.8.

Max 2

1-reply already sent

0-reply not sent yet

69

Figure 4.8: Petri-net Graph for a root level server.

4.4 Cost Functions

To balance the load, one can choose the least loaded path among all the candidate

paths. There are many ways to quantify the load of a path. One method is to take the

summation of the loads of all the participating nodes and links in the path. In this case,

longer paths with more links are more likely to have higher loads. With this approach,

longer paths are penalized.

An alternative method would be to take the average of the loads of all the

participating nodes and links in the path. This method does not provide shorter paths

with any advantage. However, if a path has a number of lightly loaded links and nodes

but a single nearly saturated node, this method would choose this path over an averagely

loaded path. This may saturate the heavily loaded node and prevent it from serving other

70

requests while the nodes in the other path are less loaded. Therefore, we have decided to

choose the cost of the most loaded component in the path as the cost of the path. That is,

the node or the link which is most loaded determines the load of its corresponding path.

We propose three cost functions corresponding to our three heuristics to measure

the load of a node or a link in order to select the least loaded path. The first cost function

FreeBW uses the available bandwidth B of servers or links as the load indicator. The

disadvantage of FreeWB is that it tends to select nodes with higher bandwidth in the

higher levels of the hierarchy over nodes in the lower levels of the hierarchy with less

bandwidth. Therefore, a large node operating at fifty percent of its maximum bandwidth

is going to be selected over a smaller node, lower in hierarchy, with same load

percentage. This can unfairly saturate the higher nodes and might yield a higher

communication cost since most of the objects will be retrieved from the higher levels of

the hierarchy.

To overcome this drawback, a second cost function RatioBW is used. Instead of

using available bandwidth as load indicator, RatioBW uses the available bandwidth ratio

(RatioBW = B /Max(B)) to measure the load.

The third cost function UserBW employs UserBW employs an alternative method

to eliminate the disadvantage of FreeBW. UserBW divides the available bandwidth of a

node by the number of users served collectively by the node and its children. Similarly

the UserBW of a link is the available bandwidth of a link divided by the number of user

served collectively by a node and its children.

71

Chapter 5

5 RED-Hi BASED LOAD MANAGEMENT POLICY

5.1 System Architecture

A layered approach is used for placing the multimedia servers in the network

because with geographically distributed servers, the connections as well as the

communications between the servers (nodes) can be handled with relative ease using a

layered approach. Furthermore the resources, such as bandwidth and memory can be

better allocated based on the functionality of the layer that a multimedia server belongs

to, as each layer has a predefined functionality in the system.

We assume three categories of layers, namely, Entry, Intermediate and Root level

layers. There are single Entry Level and Root level layers in the system whereas there

may be many Intermediate level layers. A simple schematic representation of the system

is depicted in Figure 3.1. Redundant Hierarchy (RED-Hi) [9] is used to connect the

servers in each layer to its parents in the adjacent layer.

72

Figure 5.1: Network Architecture of the Streaming Servers in the system.

5.1.1 Assumptions

It is assumed that the following are provided for the policy to work.

a) All nodes have exactly two parent nodes based on RED-Hi [9].

b) Both the parent nodes belong to the same immediate parent layer of the node.

c) Root nodes have no parent nodes.

d) Each node can store multimedia data.

e) Each node is a multimedia server in itself with multimedia processing capabilities.

f) Only entry level servers, also known as head-end servers, communicate with the

clients.

Root Level

Servers Intermediate Level

Servers

Entry Level

Servers

Clients

73

5.1.2 Entry Level Layer

This layer is responsible for all direct communication with the clients to the

system. The servers in this layer act as head-ends to the system and receive all requests

from the clients. Once the requested object is located, these head-end servers deliver the

requested stream from the system of servers to the requesting client.

 As shown in Table 5.1, it is assumed that the head-end servers have relatively low

storage capacity but a high bandwidth capacity. The storage capacity of these servers is

low because they only need to keep the current streaming object and a few (popular)

previously streamed objects in their memory. The bandwidth capacity allocated to these

servers is high as they are responsible for streaming to a possibly large set of clients. The

servers in this layer have designated parent servers in the adjacent intermediate layer.

Each server in this layer has exactly two parent servers in the adjacent intermediate layer

that can help it in realizing the streaming of a requested multimedia object.

Table 5.1 Resource distribution in the system.

Layer Capacity Bandwidth

Root Level Layer High Low

Intermediate Level Layer Medium Medium

Entry Level Layer Low High

74

5.1.3 Intermediate Level Layer

The servers in this layer act as intermediaries to the system. When a request is

received from a lower level server and the requested object is not available in the

memory of intermediate level servers, it forwards the request to the layer above and

waits for the response from that higher level layer. Once the requested object is located,

the corresponding intermediate level server informs the lower level layer about the

location and resources required, along with the current load on the servers involved in

the path of the requested object.

Once the streaming commences, a server of this layer involved in streaming of a

multimedia object forwards the packets available locally in its memory or retrieved from

a higher layer to the requesting server in the adjacent lower level layer.

Each server in this layer has a small set of child nodes from the adjacent lower

layer that depend on it to locate and deliver multimedia objects. At the same time, each

server in this layer has exactly two servers in the adjacent higher layer that can help it in

realizing the streaming of a requested multimedia object.

The servers of the intermediate level are given medium bandwidth and storage

capacities as they tend to the needs of a small set of the system requests and as such do

not have a very high bandwidth requirement. Furthermore, they keep the currently

streamed objects as well as recently streamed objects in their repository and hence need

a higher storage capacity as shown in Table 5.1.

In a large system containing multiple Intermediate level layers, as you go higher in

the hierarchy, the bandwidth requirements are reduced, on the other hand the storage

requirements increase for each increased level in the hierarchy.

75

5.1.4 Root Level Layer

This layer is the main repository of all streams available to the system. If a

requested object is not found in the servers of the root level then that object is not

available in any server of the system. The servers in the root level layer are called root

servers. Each of these root servers is responsible for requests coming from a subset of

servers from the lower level layer (intermediate layer). These servers need high storage

capacity as they keep record of all multimedia objects in the system. The root servers

should not be actively participating in most of the streaming activities in the system.

Hence, low bandwidth capacity is sufficient for these servers.

5.1.5 Server Connections

Physical communication connections exist between the servers of different layers.

All connections are duplex and hence can be used for bidirectional communication.

There are no connections between the servers of the same layer. The network

architecture used is based on Redundant Hierarchy (RED-Hi) [9].

In RED-Hi a node is connected to exactly two nodes of the higher layer in the

hierarchy, the redundancy in RED-Hi is that of links and not bandwidth.

This means that instead of doubling the bandwidth to increase the link, the

available bandwidth is divided among the two links. This gives a higher degree of

connectivity and it is a solution to the bottleneck problem. This also provides continued

service provision in face of node/link failures [9].

5.2 Request Life Cycle

A request for a multimedia object is created by a client. The client sends this

request to the system. The system receives the request through an entry level server

(head-end). The head-end checks its memory for the requested object, as depicted in

76

Figure 5.2. If the requested object is found, it is streamed to the requesting client. If the

requested object is not found in the memory of the head-end, the head-end generates a

query packet and forwards a copy of that query packet to both intermediate level servers

who are its parents.

These parent intermediate level servers, upon receiving the query packet, check

their own repository for the queried item. If the object is available, a positive

acknowledgement is sent to the server querying for the object. Otherwise, the query

packet is forwarded to the two servers in the higher layer of the hierarchy that are

parents of the current server.

In this way, the query packet will eventually reach a server that contains the

requested media or a negative acknowledgement will be generated at the root server.

In case the requested media is located at an intermediate or root server, a positive

acknowledgement is passed down the hierarchy to the head-end responsible for

initializing this query packet. The head-end may receive multiple acknowledgements. In

that case it would select the path with higher resources. The resources available to the

server and all intermediate servers will be mentioned in the positive acknowledgement

packet.

Once the path with highest resources is selected and reserved for streaming, the

head-end propagates a packet, through the reserved path, to inform the server containing

the multimedia packet to start streaming. Upon receiving this packet, the server starts

streaming the multimedia object down the hierarchy.

77

Begin

Receive

Request From

Client

Fav_Cnt for

this request

Forward

Request to

Parents

Stream

Requested

Item to the

Client

Yes

Receive

Stream from

Parent

Locate

Object in

Parents

Object

Found
Yes

Inform Client of

unavailability

No

Streaming

Problem

Alternative

Path

Yes

Yes

No

No

End

End of

Stream
No

Yes

Fav_Cnt++
Available in

Main Memory
No

No

Yes

No

Yes

Yes

Fav_Cnt=0

Local

Stream

Yes

No

Fav_Cnt=Fav_

Threshold

Available in

Cache

Copy to main

memory

No

Figure 5.2: Basic flowchart representing the functioning of a node.

78

5.3 Dynamic Object Placement

Objects are placed dynamically using the ‘popularity’ counter of each streamed

object. Each server in the system maintains its own counter of popularity for each object

streamed through it.

Each server that receives a streaming packet from its parent server, saves that

packet in its local cache memory and then forwards it down the stream. This saving is

done to minimize the number of servers involved to manage a possible packet-loss event

at the lower layers.

The server receiving the stream packet increments the popularity counter of the

currently streamed object by one whenever a new request/query message for this

particular object is received by this server. Once the popularity counter reaches a

predefined popularity threshold, that popular object is moved from the cache memory

into the main memory of that server as shown in Figure 5.3.

Figure 5.3: Moving an Object from Cache to Main Memory of a Server.

The popularity counter helps in determining the popularity of objects among a set

of servers and dynamically places those objects in close vicinity of the requesting

Server Memory

Main Memory

Cache

Memory

Popularity Threshold Reached

79

clients. Dynamic object placement makes it possible to populate the multimedia objects

based on their demand zone and hence optimizes the servers’ usage of memory and

bandwidth resources.

Once the Main memory gets low on storage space, the least recently used media

object is removed from the node’s memory. Similarly the least recently used video

object is removed in case the Cache memory becomes full. No object is removed from

the root nodes.

5.4 Fault Tolerance

A general architecture of client-server system is presented in Figure 5.4. This

figure depicts a generic end-to-end media delivery components involved in a DCMS

system. In the storage subsystem, the server holds compressed and encoded multimedia

objects that are, upon request, retrieved from the storage devices and sent over the

network from the server to the client.

Figure 5.4: Basic building blocks of a multimedia system.

Protocols, such as the application protocol is used by the server to handle the

requests retrieval and transmission, whereas the transport protocol is used to transfer the

80

multimedia object to the requesting client. The client, upon receiving the requested

object packets — buffers and decodes them before presentation can be given to end user.

If a situation arises in any of these subcomponents, like the processors involved

the storage or network hindering the flow of the media data, it can degrade the

performance of the whole system. It is imperative that any end-to-end multimedia

system provides tolerance to a failure that occurs in as many of these components as

possible.

In the object location phase, all possible paths to the requested object are saved at

all included nodes. The best path is selected for streaming initially. However, whenever

a node feels that problems in its currently streaming parent node are inhibiting its

performance, it changes the streaming path using the other parent node, if possible.

As all available multimedia objects are kept in both root servers, it is always

possible for a head-end to find at least two different paths for a given multimedia object,

provided the root servers are not the ones with the fault.

For popular objects, multiple copies at multiple nodes on multiple layers are

available making them more accessible. Even in case of node/link failures in the

streaming path, the worst case scenario would be the delay caused by a change in the

nodes involved in the streaming. This delay is of negligible time as it would not be

required to locate the object from the beginning.

Any failure that occurs during object delivery can be managed by changing the

nodes included in the streaming path other than a physical failure in the head-end.

81

In case a head-end component fails, the client has to redirect its request to some

other head-end after a timeout. The redirect process will include fresh new object

location and object delivery phases.

Figure 5.5 gives the flowchart for the node that detects a problem in the streaming

process. Upon realizing that the streaming process is suffering due to some server

component in the higher layers, the node changes the path from itself up to the server

that commences the streaming process.

Begin

Parent the

problem

Alternate Path

Yes

No

Parent Solves

Problem with its

Parent

Problem SolvedNo

Yes

Change the

streaming parent

Keep Current

streaming parent

Yes

End

Figure 5.5: Path change flowchart at a node.

82

Chapter 6

6 SIMULATION FRAMEWORK

This chapter details the simulation framework. This framework includes the

simulation tool, its model and parameters. The chapter is organized as follows: section

6.1 details the tool used for simulation, 6.2 gives the architecture of the RED-Hi and

NonRED-Hi network models. Section 6.3 gives definitions of the parameters of the

simulation itself.Section 6.4 provides an overview on performance measures.

6.1 Simulation tool

In this study, all simulation studies were developed using the GPSS World

simulation tool. GPSS World is based on the seminal language of computer simulation,

GPSS, which stands for General Purpose Simulation System.

6.2 Network Architectures of RED-Hi and NonRED-Hi Models

We simulated the behavior of RED-Hi and NonRED-Hi models as depicted in

Figures 6.1 and 6.2, respectively. NonRED-Hi environment is one in which the servers

are connected using pure hierarchy, i.e. where each server in the system has exactly one

parent [103]. Both RED-Hi and NonRED-Hi architectures consist of an Entry Level

Layer with five nodes, Intermediate Level Layer 1 with four nodes, Intermediate Level

Layer 2 with three nodes, a Root Level Layer with two and one nodes, correspondingly.

83

Figure 6.1: Network architecture of the RED-Hi model.

84

Figure 6.2: Network architecture of the NonRED-Hi model.

85

6.3 Simulation Parameters

Table 6.1 provides a summary of the simulation parameters used.

Table 6.1: Simulation parameters.

Parameter

Request arrival rate

Popularity Threshold

Storage size of an object

Bandwidth requirement of an object

Total number of objects

6.4 Performance Measures

This thesis evaluates the performance of RED-Hi based DCMS system in terms of

Average Transmission Delay, Average Communication Delay of Successful Requests,

Average Number of Control Messages of Successful Requests, Average Number of

Traversed Nodes of Successful Requests, Average Number of Hops of Successful

Requests, Blocking Ratio and Load Distribution, while the RED-Hi and NonRED-Hi

models were compared based on Blocking Ratio and Load Distributions.

Average Transmission Delay (ATD) is defined as follows:

ATD = Ds/ Ns (6.1)

where Ds is the total delay originating from successful requests and Ns is total number of

successful requests.

86

Average Communication Delay of Successful Requests (ACDSR) is defined as

follows:

ACDSR = Dc/ Ns (6.2)

where Dc is the total communication delay of successful requests and Ns is the total

number of successful requests.

Average Number of Control Messages of Successful Requests (ANCMSR) is

defined as follows:

ANCMSR = Mc/ Ns (6.3)

where Mc is the total number of control messages of successful requests and Ns is the

total number of successful requests.

Average Number of Traversed Nodes of Successful Requests (ANTNSR) is defined

as follows:

ANTNSR = Tt/ Ns (6.4)

where Tt is the total number of traversed nodes by successful requests and Ns is the total

number of successful requests.

Average Number of Hops of Successful Requests (ANHSR) is defined as follows:

ANHSR = Ht/ Ns (6.5)

where Ht is the total number of hops by successful requests and Ns is the total number of

successful requests.

Blocking Ratio (BR) is defined as follows:

BR = Nb/Nt (6.6)

Nb is the total number of blocked (rejected) requests and Nt is the total number of

requests.

87

Chapter 7

7 SIMULATION RESULTS

This chapter examines the simulation results gathered for both RED-Hi and

NonRED-Hi (Pure Hierarchy). The performance of the RED-Hi scheme was evaluated

in terms of Average Transmission Delay, Average Communication Delay of Successful

Requests, Average Number of Control Messages of Successful Requests, Average

Number of Traversed Nodes of Successful Requests, Average Number of Hops of

Successful Requests, Blocking Ratio and Load Distribution, while the RED-Hi and

NonRED-Hi models were compared based on Blocking Ratio and Load Distributions

7.1 Values of the Simulation Parameters

We assume that the propagation delay of links follows a normal distribution with

mean of 0.07 sec and standard deviation 0.014. The flow of all the client requests in both

of the models is modeled as a Poisson process whose rate is λ. The simulation results

were obtained for arrival rates of 0.05, 01, 0.15 and 0.2.

In each simulation 1,000,000 requests were generated and each simulation was run

20 times to ensure that the obtained results are in the 95% confidence interval level

[104]. Table 7.1 contains the values of the simulation parameters.

88

Table 7.1: Values of the simulation parameters.

Parameter Values

Request arrival rate 0.05, 0.1, 0.15, 0.2 s
-1

Popularity Threshold 5, 25, 50

Storage size of an object 0.5 GB

Bandwidth requirement of an object 1 Mb/s

Total number of objects 200

7.2 Performance Analysis of RED-Hi

In this section, simulation results of the RED-Hi scheme are discussed. We

investigate the effect variation in the popularity threshold and arrival rate has on the

performance of the RED-Hi model.

7.2.1 Average Transmission Delay (ATD)

We start with ATD versus arrival rate with popularity threshold values of 5, 25

and 50 depicted in Figure 7.1. The graph clearly displays that there is not a significant

increase in the transmission delay caused by increasing the number of servers or with

substantial increase in the arrival rate of the requests.

89

Figure 7.1: ATD versus interarrival time for RedHI scheme with Popularity Threshold

values of 5, 25 and 50.

7.2.2 Average Communication Delay and Average Number of Control Messages of

Successful Requests

We continue by examining how ACDSR and ANCMSR are affected by the

varying arrival rate and popularity threshold. It is seen in Figures 7.2 and 7.3 that with

increase in the arrival rate the communication delay, the number of control messages in

the system remain fairly constant. This gives the system scalability in case a large

number of requests must be handled.

90

Figure 7.2: ACDSR versus interarrival time for RED-Hi scheme with Popularity

Threshold values of 5, 25 and 50.

91

Figure 7.3: ANCMSR versus interarrival time for RED-Hi scheme with Popularity

Threshold values of 5, 25 and 50.

92

7.2.3 Average Number of Traversed Nodes of Successful Requests and Average

Number of Hops of Successful Requests

Next, we consider how RED-Hi performs in terms of Average Number of

Traversed Nodes (ANTNSR) and Average Number of Hops of Successful Requests

(ANHSR). It is obvious that in a redundant hierarchy, the number of nodes traversed and

number of hops for a higher popularity threshold would be higher as is depicted in

results graphed in Figures 7.4 and 7.5. With a popularity threshold of 50 requests for the

same object, the system has to stream from the root level much more then for a

popularity level of 5 requests making an object popular.

93

Figure 7.4: ANTNSR versus interarrival time for RedHI scheme with Popularity

Threshold values of 5, 25 and 50.

94

Figure 7.5: ANHSR versus interarrival time for RED-Hi scheme with Popularity

Threshold values of 5, 25 and 50.

7.2.4 Blocking Ratio

Now we look at the effects of varying arrival rate and popularity threshold on the

Blocking Ratio (BR). Figure 7.6 shows that BR values are increasing as the popularity

threshold increases. RED-Hi model with popularity threshold 5 achieves the lowest BR.

When the popularity threshold is fairly low it causes the content to reach the head-ends

faster as such the clients get service directly from the head-ends without the need to get

95

service from the intermediate or root nodes. This naturally reduces the blocking ratio in

load balanced RED-Hi.

Figure 7.6: BR versus interarrival time for RED-Hi scheme with Popularity Threshold

values of 5, 25 and 50.

96

7.2.5 Load Distribution

We finalize the performance evaluation of the RED-Hi scheme by inspecting its

performance in terms of load distribution. The following figures depict load distribution

of RED-Hi under various arrival rates.

Figure 7.7: Server ID versus Total Number of Transmissions with arrival rate 0.05 and

Popularity Threshold values of 5, 25 and 50.

97

Figure 7.8: Server ID versus Total Number of Transmissions with arrival rate 0.1 and

Popularity Threshold values of 5, 25 and 50.

Figure 7.9: Server ID versus Total Number of Transmissions with arrival rate 0.15 and

Popularity Threshold values of 5, 25 and 50.

98

Figure 7.10: Server ID versus Total Number of Transmissions with arrival rate 0.2 and

Popularity Threshold values of 5, 25 and 50.

Looking at Figures 7.7 to 7.10, with increasing arrival rate, the system remains

very scalable and the load on the serves remains balanced. These results show that the

system achieves its purpose of load balancing under very high arrival rate of requests for

streaming.

7.2.6 Overview of the RED-Hi performance

To sum up, Figures 7.1 to 7.6 illustrate that RED-Hi with Popularity Threshold 5

outperforms RED-Hi with Popularity Thresholds of 25 and 50 in terms of Average

Transmission Delay, Average Communication Delay of Successful Requests, Average

Number of Control Messages of Successful Requests, Average Number of Traversed

Nodes of Successful Requests, Average Number of Hops of Successful Requests and

Blocking Ratio. Moreover, RED-Hi with Popularity Thresholds 50 demonstrates the

worst performance. However, Figures 7.7 to 7.10 show that RED-Hi with Popularity

99

Threshold 25 attains better Load Distribution then RED-Hi with Popularity Thresholds

of 5 and 50.

7.3 Comparison of RED-Hi and Pure Hierarchy

In this section, we compare the performances of RED-Hi and Non RED-Hi (Pure

Hierarchy) in terms of Blocking Ratio and Load Distribution.

7.3.1 Blocking Ratio

In earlier graphs, we saw how different levels of popularity provided load

balancing and scalability at different arrival rates. Figure 7.11 depicts a comparison of

RED-Hi and Pure Hierarchy in terms of Blocking Ratio.

100

Figure 7.11: BR versus interarrival time for RED-Hi and Pure Hierarchy with

Popularity Threshold of 25.

In Figure 7.11 we see that compared to a Pure Hierarchy, our proposed system

works better under all arrival rates. This is achieved by the availability of the multiple

paths to the same multimedia object, i.e. if one path fails object transmission will

continue through an alternate path. Pure Hierarchy, however, lacks the same flexibility,

hence it achieves significantly higher Blocking Ratio comparing to our proposed system.

101

7.3.2 Load Distribution

Figures 7.12 to 7.15 show that RED-Hi achieves better Load Distribution then

Pure Hierarchy under various arrival rates.

Figure 7.12: Server ID versus Total Number of Transmissions for RED-Hi and Pure

Hierarchy with arrival rate 0.05 and Popularity Threshold of 25.

Figure 7.13: Server ID versus Total Number of Transmissions for RED-Hi and Pure

Hierarchy with arrival rate 0.1 and Popularity Threshold of 25.

102

Figure 7.14: Server ID versus Total Number of Transmissions for RED-Hi and Pure

Hierarchy with arrival rate 0.15 and Popularity Threshold of 25.

Figure 7.15: Server ID versus Total Number of Transmissions for RED-Hi and Pure

Hierarchy with arrival rate 0.2 and Popularity Threshold of 25.

103

By examining the figures 7.12 to 7.15, it can be seen that for RED-Hi the Total

Number of Transmissions are fairy distributed among the servers of the same level. For

example, servers 6, 7, 8 and 9 have similar number of Total Number of Transmissions;

the situation is same for the servers of all the layers in the system. However, Pure

Hierarchy does not provide fair distribution of Total Number of Transmissions for the

servers of the same level. For instance, servers 6, 7, 8 and 9 do not achieve just

distribution of Total Number of Transmissions; the situation is same for the servers of

all the layers in the system. We can conclude that RED-Hi achieves better Load

Distribution then Pure Hierarchy under various arrival rates. It should be noted that in

these graphs there is no node to compare with node 14 of Pure Hierarchy as Pure

Hierarchy is single rooted and has highest node 13 in these simulations.

7.4 Cost Functions

Cost functions are important parts of the object locating and retrieval heuristics.

The three cost functions i.e RatioBW, UserBW and FreeBW mentioned earlier in this

thesis are compared. The results graphed in Figure 7.16 show that RatioBW and UserBW

consistently outperform FreeBW. For example, when load = 200%, RatioBW rejected

21% and 80% less requests compared to UserBW and FreeBW respectively. As

mentioned earlier, FreeBW has a tendency to retrieve objects from the higher levels of

the hierarchy. Therefore, more links become occupied to retrieve these objects resulting

in bad load balancing.

104

Fig. 7.16 The three cost functions FreeBW, UserBW and RatioBW compared

105

Chapter 8

8 CONCLUSION

In this thesis, a load balancing and inherently fault tolerant policy for streaming

multimedia objects in a distributed environment is used that proposes a popularity

threshold based dynamic content placement and delivery system. The proposed system

uses the RED-Hi topology with a two-parent policy per node as its main property.

The main contribution of our work is introducing a popularity threshold based

dynamic object placement for a distributed continuous media system using a hierarchical

topology. The popularity threshold dynamically reduces the hops between the client and

the source of a popular media content requested. Along with dynamic placement of the

media content, another task sustained by the proposed system is balancing the load on

the content provision system while making sure the content is delivered in a fault

tolerant way. The proposed architecture keeps track of multiple routes to a requested

object throughout the streaming process. This is done to make sure an alternative route

is available in case of a link or node failure. Having an alternate route, using alternate

links and nodes, results in seamless service provision from the clients prospective

whenever system faces a node/link failure. It is shown that this system dynamically

places multimedia objects in the distributed multimedia server system based on the

popularity of that particular multimedia object. When storage space demands removal of

some multimedia objects on a server, the least popular object is removed. The removed

106

object is always available at a higher level in the hierarchy. Flexibility is achieved as

there are multiple paths to a multimedia object. This not only facilitates near access to a

resource but also gives a chance to flexibly select the most suitable node for a streaming

session.

The hierarchical topology used in this thesis is so-called RED-Hi topology. The

authors [9] of RED-Hi have extensively deliberated on the fault tolerant nature of RED-

Hi architecture when used for service provision in distributed continuous media systems.

They proposed RED-Hi for distributed continuous media servers and showed that RED-

Hi has a better fault tolerant capability. They prove that the task of locating an object

and retrieving it, in a distributed system, can be performed in a fault tolerant manner

using RED-Hi by eliminating the possibility of bottlenecks in the system as compared to

that for a pure hierarchy. To the best of our knowledge this [9] is the only other research

work that uses RED-Hi in any academic research up till this writing.

The popularity threshold based dynamic content management and delivery system

proposed in this thesis is at least as scalable as any other pure hierarchy based

distributed content multimedia streaming server system. The rationale behind this is: the

only difference in the two systems is that of redundancy in links, not in bandwidth. This

has been discussed in detail in earlier sections. The cost analysis section shows that our

system uses the bandwidth while improving the resource utilization and because of this,

the extra link is an advantage of this system.

The performance of the system is shown in the Simulation results section of this

thesis. It is evident from the results that the system is highly scalable, resiliently reliable

and fault tolerant, furthermore it provides a superior delivery mechanism compared to

the traditional pure hierarchy approach used in most DMS systems simply by better

107

allocating the resources available. The results use a maximum of 0.2 arrival rate. This

means that a new client arrives in our system every five seconds. The simulation results

show that with an arrival rate of 0.2 sustained over a long period of time generates more

than two million clients in the system that are served at a given time. This makes the

system saturated. Having a higher arrival rate would cause same saturation when the

number of clients in the system reaches the saturation point of two million requests. As

such, the arrival rate alone does not affect the simulation results. It is the total number of

requests being served at a particular instance of time that affects the results generated. It

is shown in our results that our proposed system services up to two million clients in a

fault tolerant, load balancing manner with only 14 servers in the system.

In the future, this work can be extended by providing an analytical model for this

system. Along with an analytical model, a detailed study on the utilization of all the

resources along the path can be researched looking at the costs incurred due to the

redundancy in the system. This research provides an admission control mechanism that

simply looks at the available resources for a node and the load on the links before

granting admission to a request, future work can also look at different admission control

protocols and their effect on the system performance.

108

REFERENCES

[1] Hsu, Y. H. T. J. K., & Huang, Y. E. W. W. F. (2011). Distributed Multimedia

Content Processing in ONVIF Surveillance System.

[2] Gramatikov, S., Jaureguizar, F., Cabrera, J., & García, N. (2011, June). Content

delivery system for optimal vod streaming. In Telecommunications (ConTEL),

Proceedings of the 2011 11th International Conference on (pp. 487-494). IEEE.

[3] Jin, X. (2012, January). A Scalable Distributed Multimedia Service Management

Architecture Using XMPP. In Proceedings of the 2011 2nd International

Congress on Computer Applications and Computational Science (pp. 139-145).

Springer Berlin Heidelberg.

[4] Song, F. F., Gao, W. L., Zhang, G. H., Gao, D. W., & Jiang, H. B. (2012). A P2P

Based Video on Demand System for Embedded Linux. Procedia

Engineering,29, 3070-3074.

[5] Tan, B., & Massoulié, L. (2010, July). Brief announcement: adaptive content

placement for peer-to-peer video-on-demand systems. In Proceedings of the 29th

ACM SIGACT-SIGOPS symposium on Principles of distributed computing(pp.

293-294). ACM.

[6] Applegate D, Archer A, Gopalakrishnan V, Lee S, Ramakrishnan KK. Optimal

content placement for a large-scale VoD system. In: Proc. of the 6th International

ACMConference on emerging Networking EXperiments and Technologies

(CoNEXT), December 2010; Philadelphia, USA.

109

[7] Borst, S., Gupta, V., & Walid, A. (2010, March). Distributed caching algorithms

for content distribution networks. In INFOCOM, 2010 Proceedings IEEE (pp. 1-

9). IEEE.

[8] Zhang, S., Shao, Z., & Chen, M. (2010, October). Optimal distributed p2p

streaming under node degree bounds. In Network Protocols (ICNP), 2010 18th

IEEE International Conference on (pp. 253-262). IEEE.

[9] Shahabi, C., Alshayeji, M. H., & Wang, S. (1997, January). A redundant

hierarchical structure for a distributed continuous media server. In Interactive

Distributed Multimedia Systems and Telecommunication Services (pp. 51-64).

Springer Berlin Heidelberg.

[10] Bhattacharyya, S., Diot, C., Giuliano, L., Rockell, R., Meylor, J., Meyer, D., ... &

Haberman, B. (2003). An overview of source-specific multicast (SSM). RFC

3569, July.

[11] Chawathe, Y., McCanne, S., & Brewer, E. (2000). An architecture for internet

content distribution as an infrastructure service. Unpublished work, February.

http://yatin.chawathe.com/~yatin/papers/scattercast.ps.

[12] Chu, Y. H., Rao, S. G., Seshan, S., & Zhang, H. (2002). A case for end system

multicast. Selected Areas in Communications, IEEE Journal on, 20(8), 1456-

1471.

[13] Jannotti, J., Gifford, D. K., Johnson, K. L., & Kaashoek, M. F. (2000, October).

Overcast: reliable multicasting with on overlay network. In Proceedings of the

4th conference on Symposium on Operating System Design & Implementation-

Volume 4 (pp. 14-14). USENIX Association.

110

[14] Pendarakis, D. E., Shi, S., Verma, D. C., & Waldvogel, M. (2001, March).

ALMI: An Application Level Multicast Infrastructure. In USITS (Vol. 1, pp. 5-

5).

[15] Zhuang, S. Q., Zhao, B. Y., Joseph, A. D., Katz, R. H., & Kubiatowicz, J. D.

(2001, January). Bayeux: An architecture for scalable and fault-tolerant wide-

area data dissemination. In Proceedings of the 11th international workshop on

Network and operating systems support for digital audio and video (pp. 11-20).

ACM.

[16] Ratnasamy, S., Handley, M., Karp, R., & Shenker, S. (2002). Topologically-

aware overlay construction and server selection. In INFOCOM 2002. Twenty-

First Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE (Vol. 3, pp. 1190-1199). IEEE.

[17] Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., & Khuller, S. (2003,

March). Construction of an efficient overlay multicast infrastructure for real-time

applications. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the

IEEE Computer and Communications. IEEE Societies (Vol. 2, pp. 1521-1531).

IEEE.

[18] Young, A., Chen, J., Ma, Z., Krishnamurthy, A., Peterson, L., & Wang, R. Y.

(2004, March). Overlay mesh construction using interleaved spanning trees.

InINFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer

and Communications Societies (Vol. 1). IEEE.

[19] Microsoft Windows Media 9 series, July 2004.

http://www.microsoft.com/windows/windowsmedia/default.aspx.

http://www.microsoft.com/windows/windowsmedia/default.aspx

111

[20] Bernier, P. (2003, January). Your video wish is our command. Xchange

Magazine, http://www.xchangemag.com/articles/311coverstory.html.

[21] Shaw Video-on-demand. (2004, July). https://secure.shaw.ca/sod/home.asp.

[22] Sen, S., Rexford, J., & Towsley, D. (1999, March). Proxy prefix caching for

multimedia streams. In INFOCOM'99. Eighteenth Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE (Vol. 3,

pp. 1310-1319). IEEE.

[23] Almeida, J. M., Eager, D. L., Ferris, M., & Vernon, M. K. (2002). Provisioning

content distribution networks for streaming media. In INFOCOM 2002. Twenty-

First Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE (Vol. 3, pp. 1746-1755). IEEE.

[24] Akamai. (2004, July). http://www.akamai.com.

[25] Digital Island. (2004, July). http://www.sandpiper.net.

[26] Qiu, L., Padmanabhan, V. N., & Voelker, G. M. (2001). On the placement of

web server replicas. In INFOCOM 2001. Twentieth Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE (Vol. 3,

pp. 1587-1596). IEEE.

[27] Radoslavov, P., Govindan, R., & Estrin, D. (2002). Topology-informed internet

replica placement. Computer Communications, 25(4), 384-392.

[28] Kangasharju, J., Roberts, J., & Ross, K. W. (2002). Object replication strategies

in content distribution networks. Computer Communications, 25(4), 376-383.

[29] Karlsson, M., & Mahalingam, M. (2002, August). Do we need replica placement

algorithms in content delivery networks. In 7th international workshop on web

content caching and distribution (WCW).

http://www.xchangemag.com/articles/311coverstory.html
https://secure.shaw.ca/sod/home.asp
http://www.akamai.com/
http://www.sandpiper.net/

112

[30] Wang, L., Pai, V., & Peterson, L. (2002). The effectiveness of request redirection

on CDN robustness. ACM SIGOPS Operating Systems Review,36(SI), 345-360.

[31] Ranjan, S., Karrer, R., & Knightly, E. (2004, March). Wide area redirection of

dynamic content by Internet data centers. In INFOCOM 2004. Twenty-third

Annual Joint Conference of the IEEE Computer and Communications

Societies(Vol. 2, pp. 816-826). IEEE.

[32] Tang, X., & Xu, J. (2004, March). On replica placement for QoS-aware content

distribution. In INFOCOM 2004. Twenty-third AnnualJoint Conference of the

IEEE Computer and Communications Societies (Vol. 2, pp. 806-815). IEEE.

[33] Golubchik, L., Lui, J., & Muntz, R. (1995). Reducing I/O demand in video-on-

demand storage servers (Vol. 23, No. 1, pp. 25-36). ACM.

[34] Aggarwal, C., Wolf, J., & Yu, P. S. (1996). On optimal piggyback merging

policies for video-on-demand systems (Vol. 24, No. 1, pp. 200-209). ACM.

[35] Carter, S. W., & Long, D. D. (1997, September). Improving video-on-demand

server efficiency through stream tapping. In Computer Communications and

Networks, 1997. Proceedings., Sixth International Conference on (pp. 200-207).

IEEE.

[36] Hua, K. A., Cai, Y., & Sheu, S. (1998, September). Patching: a multicast

technique for true video-on-demand services. In Proceedings of the sixth ACM

international conference on Multimedia (pp. 191-200). ACM.

[37] Gai, Ying. "Optimizing patching performance." (1999).

[38] Gao, L., & Towsley, D. (1999, July). Supplying instantaneous video-on-demand

services using controlled multicast. In Multimedia Computing and Systems,

1999. IEEE International Conference on (Vol. 2, pp. 117-121). IEEE.

113

[39] Sen, S., Gao, L., Rexford, J., & Towsley, D. (1999, June). Optimal patching

schemes for efficient multimedia streaming. In Proceedings of 9th International

Workshop on Network and Operating Systems Support for Digital Audio and

Video (NOSSDAV'99).

[40] Eager, D., Vernon, M., & Zahorjan, J. (1999, October). Optimal and efficient

merging schedules for video-on-demand servers. In Proceedings of the seventh

ACM international conference on Multimedia (Part 1) (pp. 199-202). ACM.

[41] Eager, D. L., Vernon, M. K., & Zahorjan, J. (2000, January). Bandwidth

skimming: A technique for cost-effective video-ondemand. In Proc. IS&T/SPIE

Conf. On Multimedia Computing and Networking 2000 (MMCN 2000) (pp. 206-

215).

[42] Bar-Noy, A., & Ladner, R. E. (2004). Efficient algorithms for optimal stream

merging for media-on-demand. SIAM Journal on Computing, 33(5), 1011-1034.

[43] Eager, D., Vernon, M., & Zahorjan, J. (2001). Minimizing bandwidth

requirements for on-demand data delivery. Knowledge and Data Engineering,

IEEE Transactions on, 13(5), 742-757.

[44] Ke, W., Basu, P., & Little, T. D. (2001, December). Time-domain modeling of

batching under user interaction and dynamic adaptive piggybacking schemes.

In Electronic Imaging 2002 (pp. 130-141). International Society for Optics and

Photonics.

[45] Coffman Jr, E. G., Jelenković, P., & Momčilović, P. (2002). The dyadic stream

merging algorithm. Journal of Algorithms, 43(1), 120-137.

[46] Bar-Noy, A., Goshi, J., Ladner, R. E., & Tam, K. (2004). Comparison of stream

merging algorithms for media-on-demand. Multimedia Systems, 9(5), 411-423.

114

[47] Aggarwal, C. C., Wolf, J. L., & Yu, P. S. (1996, June). A permutation-based

pyramid broadcasting scheme for video-on-demand systems. In Multimedia

Computing and Systems, 1996., Proceedings of the Third IEEE International

Conference on (pp. 118-126). IEEE.

[48] Viswanathan, S., & Imielinski, T. (1996). Metropolitan area video-on-demand

service using pyramid broadcasting. Multimedia systems, 4(4), 197-208.

[49] Juhn, L. S., & Tseng, L. M. (1997). Harmonic broadcasting for video-on-demand

service. Broadcasting, IEEE Transactions on, 43(3), 268-271.

[50] Hua, K. A., & Sheu, S. (1997, October). Skyscraper broadcasting: a new

broadcasting scheme for metropolitan video-on-demand systems. In ACM

SIGCOMM Computer Communication Review (Vol. 27, No. 4, pp. 89-100).

ACM.

[51] Gao, L., Kurose, J., & Towsley, D. (2002). Efficient schemes for broadcasting

popular videos. Multimedia Systems, 8(4), 284-294.

[52] Pâris, J. F., Carter, S. W., & Long, D. D. (1998, July). Efficient broadcasting

protocols for video on demand. In Modeling, Analysis and Simulation of

Computer and Telecommunication Systems, 1998. Proceedings. Sixth

International Symposium on (pp. 127-132). IEEE.

[53] Eager, D. L., & Vernon, M. K. (1998). Dynamic skyscraper broadcasts for video-

on-demand. In Advances in Multimedia Information Systems (pp. 18-32).

Springer Berlin Heidelberg.

[54] Pâris, J. F., Carter, S. W., & Long, D. E. (1998, October). A low bandwidth

broadcasting protocol for video on demand. In Computer Communications and

115

Networks, 1998. Proceedings. 7th International Conference on (pp. 690-697).

IEEE.

[55] Pâris, J. F., Carter, S. W., & Long, D. D. (1999, January). A hybrid broadcasting

protocol for video on demand. In Proc. 1999 Multimedia Computing and

Networking Conference (pp. 317-326).

[56] Hu, A., Nikolaidis, I., & Van Beek, P. (1999). On the design of efficient video-

on-demand broadcast schedules. In Modeling, Analysis and Simulation of

Computer and Telecommunication Systems, 1999. Proceedings. 7th International

Symposium on (pp. 262-269). IEEE.

[57] Hu, A. (2001). Video-on-demand broadcasting protocols: A comprehensive

study. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE (Vol. 1, pp. 508-

517). IEEE.

[58] Mahanti, A., Eager, D. L., Vernon, M. K., & Sundaram-Stukel, D. (2001,

August). Scalable on-demand media streaming with packet loss recovery. InACM

SIGCOMM Computer Communication Review (Vol. 31, No. 4, pp. 97-108).

ACM.

[59] Dan, A., Sitaram, D., & Shahabuddin, P. (1996). Dynamic batching policies for

an on-demand video server. Multimedia systems, 4(3), 112-121.

[60] Makaroff, D., Neufeld, G., & Hutchinson, N. (2001). Design and implementation

of a VBR continuous media file server. Software Engineering, IEEE

Transactions on, 27(1), 13-28.

116

[61] Salehi, J. D., Zhang, Z. L., Kurose, J., & Towsley, D. (1998). Supporting stored

video: Reducing rate variability and end-to-end resource requirements through

optimal smoothing. Networking, IEEE/ACM Transactions on, 6(4), 397-410.

[62] Wang, Y., Zhang, Z. L., Du, D. H. C., & Su, D. (1998, April). A network-

conscious approach to end-to-end video delivery over wide area networks using

proxy servers. In INFOCOM'98. Seventeenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE (Vol. 2, pp.

660-667). IEEE.

[63] McManus, J. M., & Ross, K. W. (1996). Video-on-demand over ATM: Constant-

rate transmission and transport. Selected Areas in Communications, IEEE

Journal on, 14(6), 1087-1098.

[64] Feng, W. C. (1996). Video-on-demand services: Efficient transportation and

decompression of variable bit rate video (Doctoral dissertation, The University

of Michigan).

[65] Wong, W. M. R., & Muntz, R. R. (2001). Providing guaranteed quality of service

for interactive visualization applications. PERFORMANCE EVALUATION

REVIEW, 28(1; SPI), 104-105.

[66] Gao, L., Kurose, J., & Towsley, D. (2002). Efficient schemes for broadcasting

popular videos. Multimedia Systems, 8(4), 284-294.

[67] Birk, Y., & Mondri, R. (1999, July). Tailored transmissions for efficient near-

video-on-demand service. In Multimedia Computing and Systems, 1999. IEEE

International Conference on (Vol. 1, pp. 226-231). IEEE.

117

[68] Sen, S., Gao, L., & Towsley, D. (2001, April). Frame-based periodic broadcast

and fundamental resource tradeoffs. In Performance, Computing, and

Communications, 2001. IEEE International Conference on. (pp. 77-83). IEEE.

[69] Bulterman, D., Grassel, G., Jansen, J., Koivisto, A., Layaïda, N., Michel, T., ... &

Zucker, D. (2005). Synchronized multimedia integration language (smil

2.1).W3C Recommendation, 13.

[70] Sato, J., Hashimoto, K., Katsumoto, M., & Shibata, Y. (1999). Performance

evaluation of media synchronization for multimedia presentation. In Parallel

Processing, 1999. Proceedings. 1999 International Workshops on (pp. 608-613).

IEEE.

[71] http://en.wikipedia.org/wiki/PAL (last visited 10-12-2013)

[72] http://en.wikipedia.org/wiki/NTSC (last visited 10-12-2013)

[73] Claypool, M., & Tanner, J. (1999, October). The effects of jitter on the

perceptual quality of video. In Proceedings of the seventh ACM international

conference on Multimedia (Part 2) (pp. 115-118). ACM.

[74] Ghiasi, S., Huang, P. K., & Jafari, R. (2006). Probabilistic delay budget

assignment for synthesis of soft real-time applications. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 14(8), 843-853.

[75] Santos, R. M., Santos, J., & Orozco, J. (2000). Scheduling heterogeneous

multimedia servers: different QoS for hard, soft and non real-time clients.

InReal-Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference

on (pp. 247-253). IEEE.

[76] Goode, B. (2002). Voice over internet protocol (VoIP). Proceedings of the

IEEE, 90(9), 1495-1517.

http://en.wikipedia.org/wiki/PAL
http://en.wikipedia.org/wiki/NTSC

118

[77] Janssen, J., De Vleeschauwer, D., & Petit, G. H. (2000, April). Delay and

distortion bounds for packetized voice calls of traditional PSTN quality.

InProceedings of the 1st IP Telephony workshop (IPTEL 2000) (pp. 105-110).

[78] Krasic, C., Li, K., & Walpole, J. (2001). The case for streaming multimedia with

TCP. In Interactive Distributed Multimedia Systems (pp. 213-218). Springer

Berlin Heidelberg.

[79] Pittet, A. (1996, June). Performance Issues in CD-ROM based Storage Systems

for Multimedia. In Proceedings of the 1996 International Conference on

Multimedia Computing and Systems (p. 0259). IEEE Computer Society.

[80] Ebrahimi, T., & Kunt, M. (1998). Visual data compression for multimedia

applications. Proceedings of the IEEE, 86(6), 1109-1125.

[81] Reusens, E., Ebrahimi, T., Le Buhan, C., Castagno, R., Vaerman, V., Piron, L.,

& Kunt, M. (1997). Dynamic approach to visual data compression.Circuits and

Systems for Video Technology, IEEE Transactions on, 7(1), 197-211.

[82] Milward, M., Nunez, J. L., & Mulvaney, D. (2004). Design and implementation

of a lossless parallel high-speed data compression system. Parallel and

Distributed Systems, IEEE Transactions on, 15(6), 481-490.

[83] Ozden, B., Rastogi, R., & Silberschatz, A. (1995, May). A framework for the

storage and retrieval of continuous media data. In Multimedia Computing and

Systems, 1995., Proceedings of the International Conference on (pp. 2-13).

IEEE.

[84] Kurose, J. (1993). Open issues and challenges in providing quality of service

guarantees in high-speed networks. ACM SIGCOMM Computer Communication

Review, 23(1), 6-15.

119

[85] Chen, S., & Nahrstedt, K. (1998). An overview of quality of service routing for

next-generation high-speed networks: problems and solutions. Network,

IEEE,12(6), 64-79.

[86] Nagarajan, R., & Kurose, J. F. (1992, May). On defining, computing and

guaranteeing quality-of-service in high-speed networks. In INFOCOM'92.

Eleventh Annual Joint Conference of the IEEE Computer and Communications

Societies, IEEE (pp. 2016-2025). IEEE.

[87] Ghosh, D., Sarangan, V., & Acharya, R. (2001). Quality-of-service routing in IP

networks. Multimedia, IEEE Transactions on, 3(2), 200-208.

[88] Ghandeharizadeh, S., Zimmermann, R., Shi, W., Rejaie, R., Ierardi, D., & Li, T.

W. (1997). Mitra: A scalable continuous media server. Multimedia Tools and

Applications, 5(1), 79-108.

[89] Li, K., & Shen, H. (2005). Coordinated enroute multimedia object caching in

transcoding proxies for tree networks. ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMCCAP), 1(3), 289-314.

[90] Ng, J. K. Y., Song, S., & Tang, B. (2002). A Computation Method for Providing

Statistical Performance Guarantee to an ATM Switch. Real-Time Systems,23(3),

297-317.

[91] Wen, J., & Lu, X. (2002). The design of QoS guarantee network subsystem.ACM

SIGOPS Operating Systems Review, 36(1), 81-87.

[92] Menth, M., Milbrandt, J., & Kopf, S. (2004, June). Impact of routing and traffic

distribution on the performance of network admission control. In Computers and

Communications, 2004. Proceedings. ISCC 2004. Ninth International

Symposium on (Vol. 2, pp. 883-890). IEEE.

120

[93] Xia, Z., Yen, I. L., & Li, P. (2003, December). A distributed admission control

model for large-scale continuous media services. In Global Telecommunications

Conference, 2003. GLOBECOM'03. IEEE (Vol. 7, pp. 4001-4005). IEEE.

[94] Papadimitriou, C. H., Ramanathan, S., & Rangan, P. V. (1994, May).

Information caching for delivery of personalized video programs on home

entertainment channels. In Multimedia Computing and Systems, 1994.,

Proceedings of the International Conference on (pp. 214-223). IEEE.

[95] Ramarao, R., & Ramamoorthy, V. (1991, June). Architectural design of on-

demand video delivery systems: the spatio-temporal storage allocation problem.

In Communications, 1991. ICC'91, Conference Record. IEEE International

Conference on (pp. 506-510). IEEE.

[96] Ryoo, J. D., & Panwar, S. S. (1999). Algorithms for determining file distribution

in networks with multimedia servers. In Communications, 1999. ICC'99. 1999

IEEE International Conference on (Vol. 2, pp. 875-879). IEEE.

[97] Lüling, R. (1999, May). Static and dynamic mapping of media assets on a

network of distributed multimedia information servers. In INTERNATIONAL

CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (Vol. 19, pp. 253-

261). IEEE Computer Society Press.

[98] Kalpakis, K., Dasgupta, K., & Wolfson, O. (2001). Optimal placement of

replicas in trees with read, write, and storage costs. Parallel and Distributed

Systems, IEEE Transactions on, 12(6), 628-637.

[99] Burch, H., & Cheswick, B. (1999). Mapping the internet. Computer, 32(4), 97-

98.

121

[100] Broido, A. (2001, July). Internet topology: Connectivity of IP graphs. In ITCom

2001: International Symposium on the Convergence of IT and

Communications(pp. 172-187). International Society for Optics and Photonics.

[101] Smith, A. J. (1978). Bibliography on paging and related topics. ACM SIGOPS

Operating Systems Review, 12(4), 39-56.

[102] Shahabi, C., & Banaei-Kashani, F. (2002). Decentralized resource management

for a distributed continuous media server. Parallel and Distributed Systems,

IEEE Transactions on, 13(7), 710-727.

[103] Kostin, A. E., & Savchenko, L. V. (1988). Modified E-nets of distributed

information processing system performance analysis. Automatic Control and

Computer Sciences, 22(6), 26-33.

[104] Aybay, I., & Shah M. A., Load management in a distributed multimedia

streaming environment using a fault tolerant hierarchical system. Turkish

Journal of Electrical Engineering & Computer Science, Paper accepted waiting

for publication.

