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ABSTRACT 

A multi-frame super resolution process can be used for enhancing the resolution of 

video frames by employing the information of consecutive low-resolution frames 

taken from almost the same scene. Most of these super resolution algorithms are only 

suitable for global motion model. Nevertheless, if a local motion pattern such as 

movements of some objects happens between the low resolution frames a global 

motion model cannot provide efficient performance. Considering this problem, we 

propose a novel super resolution framework, where the moving and static regions in 

video frames are processed separately. Occlusion is another issue, which is not 

considered in most of the video super resolution processes. This problem occurs when 

a new object appears or an object disappears in the video frames. The proposed motion-

block based super resolution method not only offers a local motion model but also 

deals with the occluded areas in a proper way.  

This thesis presents a new video super resolution technique, based on the motion and 

static areas of the low resolution video frames. In order to separate the motion and 

static blocks, a block motion estimation method is employed between a reference and 

its neighbouring frames. Among the motion blocks, the occluded blocks are identified 

using an adaptive threshold applied on each block individually. Structure-adaptive 

normalized convolution (SANC) reconstruction method is used to generate the high 

resolution static and motion blocks where discrete wavelet transform (DWT) based 

interpolation is used to produce the high resolution occluded blocks. The static and 

motion blocks are combined into a high resolution frame. Finally, a sharpening process 
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is performed on the high resolution frame in order to generate the super resolved high 

resolution output frame. The experimental results show that the proposed technique 

generates significantly better qualitative visual results as well as higher quantitative 

PSNR and SSIM than the state of the art video super resolution algorithms. 

   

Keywords: Super resolution, resolution enhancement, multi-frame super resolution, 

video super resolution, motion estimation, local motion patterns. 
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ÖZ 

Çok çerçeveli süper çözünürlük işlemi video dizilerinin çözünürlüğünü  

hemen hemen aynı ayardaki düşük çözünürlüklü görüntülerden yararlanarak  

iyileştirmekte kullanılabilir. Çoğu süper çözünürlük algoritmaları sadece  

evrensel haraket modeli için uygundur. Yine de, eğer yerel hareket  

şablonunda bazı nesnelerin düşük çözünürlüklü çerçevelerde sedece yerel hareketleri 

olursa evrensel haraket modeli yeterli bir performans ortaya çıkarmaz. Bu problemi 

dikkate alarak, görüntü dizilerindeki  haraketli ve sabit  

bölgelerin ayrı ayrı işlendiği yeni  bir çözünürlük çerçeve modelini önermekteyiz. 

Kapanma çoğu süper görüntü çözünürlük işlemlerinde dikkate alınmayan başka  

bir problemdir. Bu problem görüntü dizilerinde yeni bir nesne oluşunca yada  

yok olunca oluşur. Önerilen blok tabanlı süper çözünürlük yöntemi sadece  

yerel hareket modeliyle değil kapanan alanlarla da uyumlu bir şekilde  

çalışmaktadır.  

Bu çalışmada düşük çözünürlüklü görüntü dizinlerinin haraketli ve sabit  

alanlarından oluşan yeni bir süper görüntü çözünürük tekniği  

sunulmaktadır. Haraketli ve sabit blokları ayırmak için, referans noktası  

ile komşu dizinler arasında hareketli blok kestirimi yöntemi kullanılmaktadır. 

Haraketli blokların arasındaki kapanmış bloklar, her blok için uygun eşik değerleri 

kullanılarak belirlenir.Yapısal-uyarlanır düzgeleme konvolüsyon (SANC) geriçatım  

yöntemi yüksek çözünürlükte hareketli ve sabit bloklar üretmek için 

kullanılırken, interpolasyon tabanlı ayrık dalgacık dönüşümü (DWT) yüksek 

çözünürlüklü kapalı blok üretmek için kullanılmaktadır. Sabit ve hareketli bloklar 
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birleştirilerek yüksek çözünürlüklü çerçeveler oluşturulmaktadır. Son olarak da bir 

bileme işlemi yüksek çözünürlüklü çerçeve üzerinde süper yüksek çözünürlüklü çıktı 

çerçevesini yaratmak için uygulanmaktadır. Deneysel sonuçlar önerilen yöntemin 

literatürde yer alan video süper çözünürlük algoritmalarına göre görsel görüntü kalitesi 

ve sayısal göstergeler ,PSNR ve SSIM gibi metrikler, aracılığı ile daha başarılı 

olduğunu ortaya koymaktadır. 

 

Anahtar Kelimeler: Süper çözünürlük, çözünürlük iyileştirme, çoklu-çerçeve süper 

çözünürlük, video süper çözünürlük, hareket kestirimi, yerel hareket örüntüleri.  
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CHAPTER 1      

    

                           INTRODUCTION 

 

In an imaging system, the imaging acquisition device that is usually a Charge-Coupled 

Device (CCD) or a Complementary Metal-Oxide-Semiconductor (CMOS) active-

pixel sensor limits the image spatial resolution. Generally, to capture two-dimensional 

image signals, these sensors are set in a two dimensional array. The spatial resolution 

of the captured image is obtained by the number of sensor elements per unit area or in 

other word the sensor size. Obviously, a higher density of the sensors results in a 

higher spatial resolution achievable of the imaging system. In contrast, an imaging 

system with insufficient sensors produces low-resolution images with blocky effects, 

as a result of the aliasing from low spatial sampling frequency. 

A basic solution to enhance the spatial resolution of an imaging system is to reduce 

the sensor size in order to increase the sensor density. Nevertheless, decreasing the 

sensor size decreases the total light incident on each sensor, which ends up with a 

problem called shot noise. In addition, increasing sensor density or corresponding 

image pixel density increases the hardware cost of a sensor. Thus, the spatial 

resolution of an image that can be captured is restricted by the hardware limitation on 

the size of the sensor. 

As the image sensors limit the spatial resolution of the image, the optics also limits 

the image details or the high-frequency bands, due to lens aberration effects, lens blurs 

(related with the sensor Point Spread Function -PSF), aperture diffractions, and optical 

blurring due to motion. In most real applications such as surveillance cameras and cell 
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phone built-in cameras, it is not practical to make imaging chips and optical 

components with high resolution image capturing ability because of its cost. Other 

limitations of the resolution of a surveillance camera are the camera speed and 

hardware storage. Furthermore, it is difficult to use high resolution sensors in other 

applications such as satellite imagery due to physical restrictions. 

An alternative solution is to apply signal processing to post-process the captured 

degraded image in order to trade off computational cost with the hardware cost. There 

is crucial information in low resolution images, hardly visible to the human eye. 

However, simply magnifying an image causes blurring or blocking effect. A 

straightforward method is using an interpolation technique, which only adds pixels to 

sharpen the image. However, these methods are not able to recreate the detail 

information in the low resolution image since there is no additional information 

provided. This means, the quality of an interpolated image is very much limited 

because the lost frequency components cannot be recovered. To overcome these 

problems an effective and economic technique is Super-Resolution (SR) 

reconstruction. 

Super-Resolution techniques generate high-resolution (HR) images from several 

observed low-resolution (LR) images by combining the non-redundant information of 

multiple low-resolution frames. This combination produces a high resolution image 

by increasing the high-frequency components and eliminating the degradations caused 

by the imaging process of the low-resolution camera. The subpixel shifts between LR 

images provide the required non-redundant information.  

These subpixel shifts can be the result of uncontrolled motions between the imaging 

device and scene such as handshakes during capturing image, or due to controlled 

motions like the satellite imaging system orbits the earth with predefined speed and 
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path.  In a SR process estimating subpixel shifts or motion parameters between images 

is called registration, where projecting the low-resolution image onto the high-

resolution lattice is referred as reconstruction [1]. 

1.1 History of Super Resolution 

  Tsai and Huang [2] were the first people who demonstrate a super resolution 

algorithm. Their method was implemented in the frequency-domain. Keren et al. 

described spatial-domain based methods for both registration and restoration parts of 

super resolution algorithm. In the registration step, a global translation and rotation 

was considered and the restoration step had two stages [13]. Akar et al. [93] proposed 

different resolution enhancement methods to get the high definition colour images. 

The methods were suggested to beat the colour artifacts on super resolution image and 

decrease the computational complexity in HSV domain applications.  The other work 

[94] was focused on the definition, implementation and analysis on well-known 

techniques of super resolution in order to understand the improvements of the super 

resolution methods over single frame interpolation techniques. 

 Irani and Peleg [4] demonstrated another method for solving the restoration 

problem in super resolution process, which was using iterative back-projection 

technique. The suggestion in [5] is a set-theoretic method for super-resolution 

restoration problem. Defining convex sets is the main effect that improves the results. 

In order to generate an enhanced image Ng et al. [6] progressed a controlled, 

regularized, total least squares. Their idea was taking into account that except noise, 

there exist translational errors in around each pixel. To overcome the problem of 

transform-based preconditioned system of equations, Ng and Bose [7] indicated that 

the errors caused by the displacement effect the convergence rate in an iterative 

method. Developing a simple restoration system for colourful images is their other 
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contribution [8]. To deal with the Tikhonov-regularized super-resolution Nguyen et 

al. [9] illustrated circulant block pre-conditioners. By using this method, they 

accelerate the conjugate gradient descent algorithm. Schultz et al. [10] proposed A 

Maximum A Posteriori (MAP) estimator with Huber-Markov random field (MRF) 

prior. In the other methods, a MAP-MRF-based super-resolution algorithm, using blur 

is involved [11]. They applied defocus cue to restore the intensity of the scene with 

good quality and the depth field. Elad and Feuer [12] employed a mixture of MAP, 

Maximum likelihood (ML) and projection onto convex sets (POCS) methods to solve 

the problem of super resolution for degraded images.  

In a reconstruction based super-resolution approach Lin et al. [13] obtained the 

quantitative limits. To determine the up-sampling limits they used conditioning 

analysis of the coefficient matrix. 

Baker and Kanade [14] and Freeman et al. [15] proposed that greater super-

resolution could be achieved by taking advantage of local regularities inherent in 

natural images. Local groups of pixels in natural images have much less variability 

than they would have in randomly generated images. Such regularities can be used to 

predict more accurately the interpolated pixels from the ones in the original image and 

thus generate visually plausible fine spatial details in the expanded image. 

Since research in [2] shows that spatial domain super-resolution methods are 

computationally expensive procedures, it is acceptable to start with a “rough guess" 

and to achieve successfully finer estimates. For example, Elad and Feuer [12] used 

different approximations to the Kalman filter and examined their performance. In 

particular, recursive least squares (RLS), least mean squares (LMS), and steepest 

descent (SD) were considered.  
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Reddy et al. [16] demonstrated a Fourier domain based registration method to 

align images. These images were translated and rotated version of a reference image. 

Using a log-polar transform of the magnitude of the frequency spectra, image rotation 

and scale can be converted into horizontal and vertical shifts. 

 Lucchese and Cortelazzo [17] developed a registration process in the 

frequency domain. The estimation of relative motion parameters between the 

reference image and each of the other input images are based on the Fourier domain 

properties [15]. 

1.2 Problem Definition  

A super resolution method with less error is essential for the success of many 

applications. Various SR algorithms have been introduced for enhancing the 

resolution of images. Most of these super resolution methods are only suitable for 

global motion model. However, for a local motion like movements of some objects 

between the low resolution frames a global motion model cannot offer effective 

performance. In light of this scope, a novel motion block based video super resolution 

method is proposed and studied. 

Appearing or disappearing an object, which is called occlusion in the video 

frames, is another problem in the video super resolution processes. The occlusion 

problem, which is often ignored, is an important problem which should be taken into 

account for improved quality in SR processes.  

The objectives of the proposed motion block based super resolution technique can be 

listed as follows:  
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1) High performance in terms of PSNR and SSIM in comparison to 

conventional and state-of-art techniques.  

2) Achieving better visual quality. 

3) Robustness of the technique on the area of occlusions. 

4) Block based processing which would be laying the foundations of using 

the macro blocks, which are already utilized in state of the art advanced 

video coding standards.  

  

1.3 Contributions of the Dissertation 

A new super resolution technique for enhancing the resolution of the degraded video 

sequences has been introduced. The main contributions of this thesis can be 

summarized as follows: 

1) Improving the resolution of low resolution videos by localizing the 

movements through consecutive frames and processing them individually 

during the super resolution process. 

2) Introducing a new block based processing using information taken from 

an optical flow estimation method.  

3) Recognizing the occluded areas using an adaptive threshold and dealing 

with them in a proper manner to improve the quality of the generated high 

resolution frame. 

4) Refining the generated high resolution frame by using a de-blocking 

and a wavelet based de-blurring method.  

5) Utilizing a block based processing approach, which is capable of using 

the macro blocks that are already used in state of the art advanced video 

coding standards.  
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The proposed technique benefits from state of the art super resolution methods for 

enhancing the resolution of the static and motion parts of the low resolution frames.  

In this work, after dividing each frame into blocks, each block is labelled as static, 

motion or occluded block to be treated differently through the super resolution process. 

Employing an appropriate way of resolution enhancement method for each kind of 

frame blocks results in an output frame with higher resolution. 

1.4 Overview of the Thesis 

A comprehensive background on super-resolution techniques is given at the 

beginning of Chapter 2. In multi-frame super-resolution methods, it is possible to 

extract the details from each individual image and combine them to reconstruct a 

single high-resolution one. Second chapter presents an inclusive survey of the multi-

frame super-resolution along with some of the necessary background material.  

Multi-frame SR methods have been trying to solve two independent and 

sequential steps, registration and reconstruction, both of which have an extensive 

literature [2-4,16-19]. It is therefore impossible to understand and approach the topic 

without a strong background in these areas. Hence, this work attempts to present 

overviews of these fields before implementation of the approaches. 

Recently wavelet based approaches are emerging in various applications. A 

good review of applications of wavelets to signal processing can be found in [20, 21]. 

One of these applications is the contribution of the wavelet transform in image 

resolution enhancement. The basic idea behind wavelet-based resolution enhancement 

techniques is to preserve the information at the high-frequency subbands of the low 

resolution image [22,29]. In chapter 3, after a comprehensive bibliographic study of 
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the existing wavelet-based resolution enhancement techniques, three methods are 

proposed and introduced. Various experiments are performed, in order to evaluate the 

performances of these proposed methods. The first method performs the image 

resolution enhancement using Discrete Wavelet Transform (DWT) [30], while the 

other algorithms use Dual Tree Complex Wavelet Transform (DT-CWT).  

In all three methods after decomposing the image into different subbands 

various resolution enhancement approaches are used to increase the resolution of these 

subbands. At the end of each section, the results of these algorithms are presented in 

results and discussions. Additionally, chapter 3 focuses on the motion-based localized 

super resolution of video sequences. Various motion based SR algorithms using 

different wavelet transforms have been developed and presented in this part of thesis 

[30, 31 and 32]. These methods attempt to improve the resolution of low resolution 

videos by localizing the movements through consecutive frames. Among the presented 

motion localized SR techniques, [31] is outperformed by other higher-order techniques 

in terms of accuracy and visual appearance of the warped images. The proposed 

method produces noticeably sharper images with less blocking effect. Corresponding 

SSIM and PSNR of these methods in different video frames shows that this approach 

has the best performance in order to enhance the quality of the low resolution video 

frames between other approaches. 

Considering the occlusion problem and using an optical flow estimation 

method [34] chapter 4 presents the last proposed method which is, a new video super 

resolution technique [33] including three modules of pre-processing module, motion 

block processing module and post processing module. These three modules and their 

effects on the super resolution process have been discussed in details in Chapter 4. The 

performance of this SR technique is evaluated using different benchmark video 
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sequences. The results in terms of PSNR and SSIM values and visual evaluation 

demonstrated the superiority of the technique presented among the alternative methods 

in the literature. Finally, chapter 5 concludes the thesis.  
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CHAPTER 2  

               RESOLUTION ENHANCEMENT METHODS 

2.1 Background  

Resolution is the ability to identify details in an image. In this framework, we 

are mostly concerned in spatial resolution. In digital imaging, the expression 

spatial resolution often refers to the pixel density in an image. However, the effect of 

a low-pass filter on the resolution of an image is more than increasing the pixel 

numbers by repeating each pixel. The International Organization for Standardization 

(ISO) measures the visual resolution of a digital camera using line widths per picture 

height (LW/PH) which is the highest frequency pattern of dark and light lines where 

each individual line can still be visually resolved [35].  

High-resolution image/video is required in most of the electronic imaging 

applications, since it contains more details that can be critical for that application. An 

Image processing approach attempts to generate a high resolution (HR) Image from 

one or more low resolution (LR) versions of it. 

The image/video observation model is employed to relate the desired 

referenced HR image/frame to all the observed LR images/frames. Usually, the image 

acquisition process involves warping, followed by blurring and down-sampling to 

generate LR images from the HR image. The detailed observation model for video HR 

reconstruction model is illustrated in Figure 2.1. Let the original HR image be a vector 

form by h= [h1, h2,…, hL1R1×L2R2]
T, where L1R1×L2R2 is the size of the original HR 

image. If L1 and L2 indicate the down-sampling factors in the horizontal and vertical 

directions, respectively, then, each observed LR image has the size R1×R2. Therefore, 

the LR image can be represented as yk=[yk,1,yk,2,…,yk,R1×R2]
T. Here, k=1,2,…,N, 

http://en.wikipedia.org/wiki/Pixel
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which N is the number of LR images. Assuming that each observed image is affected 

by additive noise, the observation model can be formulized as  

yk=DBkWkh+nk                           (1) 

where Wk and Bk are warp and blur matrices, with the same size 

of  L1R1L2R2×L1R1L2R2, respectively.  D is a R1R2×L1R1L2R2 down-sampling matrix, 

and nk stands for the R1R2×1 noise vector. Note that all the images have the same 

blurring function [36]. 

High resolution grid 

sampling
Motion model blurring Down sampling

Original continuous 

scene

HR video frame Warped HR video 

frame 

Observed LR video 

frames

noise

 

Figure 2. 1: Observation model for video HR reconstruction [37]. 

There are different approaches to increase the resolution of the blurred, 

downsampled images such as linear interpolator, adaptive image interpolation 

algorithms and edge directed interpolation techniques. However, a reasonable 

approach is to use signal processing techniques to obtain a high-resolution (HR) image 

from observed multiple low-resolution (LR) images. Such a resolution enhancement 

approach has been one of the most dynamic study areas, called multi frame super 

resolution (SR) [37-40]. Multi-frame super-resolution presents a way out to produce 

high-resolution images with finer details, by combining the information in a series of 

low-resolution frames, with relative sub-pixel shifts. It consists of two main phases: 
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first estimating motion parameters (registration) and then projecting the low resolution 

images onto a high resolution pattern (reconstruction).  

Acquiring various images, at different times, from different point of views, 

and/or using different sensors, results in distorted images with respect to one another 

[2-4, 11, 12, 16-19, 41, 42]. The problem occurs when the information about this 

displacements are unknown. Image registration is the process of obtaining the best 

possible transformation matrix in which, it brings the distorted images back into 

spatial alignment. An accurate reconstruction of a high-resolution image is dedicated 

to a precise image registration [4, 16, 17, and 11]. Therefore, Image registration is the 

basis and also the challenging step of any multi-frame super resolution algorithm.  

The image registration process is illustrated in Figure 2.2 and Figure 2.3. The 

first upper left image is the reference image and the three other images have been 

aligned with respect to the reference image. 

 

 

Figure 2. 2: Four LR shifted and 

rotated images of face (125x125) 

 

Figure 2. 3: SR using [54] and [55] 

(250x250)             
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This chapter targets an introduction to image resolution enhancement methods, 

by reviewing different interpolation and SR methods. After a discussion about Bicubic 

and edge directed interpolation methods, various SR algorithms consist of different 

registration and reconstruction methods will be explained.  

2.2 Interpolation methods 

The process of obtaining the values of a function at positions lying between its 

samples is called interpolation. This is achieved by fitting a continuous function 

through the discrete input samples. In this process, not only the input values defined at 

the sample points but also at arbitrary locations are evaluated. 

In an image, interpolation determines the pixel values at non-integer 

coordinates by employing the pixel values at integer coordinates. The image quality 

highly depends on the applied interpolation technique. Various interpolation methods 

have been developed and can be found in the literature. Nearest neighbor, linear and 

bicubic interpolation are the most frequently used methods [3, 43].  

2.1.1 Nearest neighbor interpolation 

This method is also called as point pixel replication and shift algorithm. Nearest 

neighbor interpolation is the simplest method in comparison to the other interpolation 

methods. The pixel values of the interpolated image are determined using the value of 

their nearest sample point in the input image. 

As shown in Figure 2.4, the projection of black point shown in image I to point 

p1 in image I1 can yield non-integer values. In this figure, four neighboring pixels 

around a pixel are shown. p1 is the pixel value of the nearest neighbor interpolated 

image I at pixel p(2,1) since it is the nearest pixel to the black point in image I. 
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P(1,1)

P(2,2)P(2,1)

P(1,2)

p1

x

y

I

I1

 

Figure 2. 4: Nearest neighbour interpolation for non-integer coordinates [44].  

[45] Although nearest neighbor interpolation is the fastest and simplest 

methods and the simplest to implement, it has often the disadvantage of generating 

undesired artifacts such as, the distortion of stair-stepped effect around diagonal lines 

and curves and dropping or duplication of data values. 

2.1.2 Bilinear interpolation 

The output pixel value is assigned the value of a weighted average of pixels in 

the nearest 2-by-2 neighborhood in the input image. In figure 2.5, using non- integer 

values for x and y causes a mapping onto locations of the target grid. Therefore, it is 

necessary to involve the values at those locations based on the pixel values at integer 

coordinate locations. The bilinear interpolated value p1(x , y) can be stated as:  

)2,2()2,1()1()1,2()1()1,1()1)(1(),(1 dxdypdxpdypdxdypdydxyxp   (2) 
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P(1,1)

P(2,2)P(2,1)

P(1,2)

p1

x

y
dy

dx

I1

I
 

Figure 2. 5: Bilinear interpolation for non-integer coordinates [44].  

 

The bilinear interpolated image is smoother than the nearest neighbor 

interpolated image.  

2.2.1 Bicubic interpolation 

As illustrated in Figure 2.6, the unknown pixel value is calculated from the 

value of a weighted average of the closest 4x4 neighbourhoods of known pixels for a 

total of 16 pixels. Given that, the known pixels are located at various distances from 

the unknown pixel, closer pixels are given a higher weighting than the further ones in 

producing Bicubic interpolated image. 
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y

P(4,4)P(4,3)P(4,2)P(4,1)

P(3,4)P(3,3)P(3,2)P(3,1)

P(2,4)P(2,3)P(2,2)P(2,1)

P(1,4)P(1,3)P(1,2)P(1,1)

d

P1(1)

P1(4)

P1(3)

P1(2)

I1
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Figure 2. 6: Bicubic interpolation [44]. 
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 (3) 

The generated image is sharper compared to Bi-linear Interpolated one. 

However, it has less contrast in comparison to Nearest Neighbour interpolated image. 

2.2.2 New Edge Directed interpolation 

An interpolated image usually has problems in image edges, including the 

blurring of edges, blocking artifacts in diagonal directions and inability to generate 

fine details [46]. However, preserving edges is essential in many image applications. 

To solve these problems, Edge Directed Interpolation (EDI) is proposed by Allebach 

et.al [39]. 

Figure 2.7 shows an image, which contains three groups of pixels. This is a HR 

image, with the enlargement factor of 2, which is filled by EDI in three steps. First, 

dark pixels, which are the pixels in LR image, take place in the HR image from left to 
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right and up to down. In the next step, red pixels or pixels indexed by two odd values 

are determined as a weighted average of its four diagonal neighbors. Finally, white 

pixels, which are the rest of the pixels, are filled with its vertical and horizontal 

neighbors (red and dark pixels) by the same rule.  

2j   2j+1  2j+2 2j   2j+1  2j+2

2i

   2i+1

   2i+2

2i

   2i+1

   2i+2

 

Figure 2. 7: Illustration of interpolation using EDI [47]. 

 

Li et.al [48] presented the idea of New Edge-Directed Interpolation (NEDI) 

which improved the performance of EDI. In NEDI method, no direction determination 

is considered, and the weights of new pixels are computed by assuming the local image 

covariance constant in a large window and at different scales. NEDI obtains a 

resolution enhanced image which is not smooth perpendicular to edges and is smooth 

parallel to edges.  

Figure 2.8, illustrates image Q that is the interpolated version of input image P 

by the enlargement factor of 2. Each square in image P represents a single pixel. The 

last column and row of image Q is cropped away for easier explanation. As it is shown 

in Figure 2.8, image Q contains two types of pixels: ‘a’ and ‘b’. Where ‘a’ pixels are 

located at Q (2x, 2y) = P(x,y) and 'b' pixels correspond to those that are at Q (2x+1, 
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2y+1) in the interpolated image Q. NEDI consists of two steps.  It first computes the 

values for 'b' pixels, and then for 'a' pixels.  'b' pixels are determined using their 4 

known neighbor pixels. Afterwards, 'a' pixels are calculated using obtained 4 neighbor 

‘b’ pixels.  Assigning the calculated intensity values to ‘a’ and ‘b’ pixels results in a 

resolution enhanced image with sharp edges.  

The low-resolution covariance can be easily estimated from a local window of 

the low-resolution image using the classical covariance method [48]. 

CC
M

R T

2

1
  ,      ylC

M
r T

2

1
  (4) 

 

where yl = [yl1, yl2, ... , ylM
2]T is the data vector containing the MxM pixels inside the 

local window and C is a 4xM2 data matrix whose Kth column vector is the four nearest 

neighbors of ylk along the diagonal direction. 

R is a 4x4 matrix, and r is a vector with 4 columns.  According to Wiener filtering 

the optimal Minimum Mean Squared Error (MMSE) linear interpolation weights can 

be computed using the following. 

    α=R-1  ,   r = ( CT   . C)-1 (CT   . y)   (5) 

 

 

where, vector α, contains 4 interpolating weights for the 4 neighbor pixels.  These 

weights are multiplied by the corresponding neighbor pixels and the results are added 

up to generate the new pixel.  
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P                                        Q 

Figure 2. 8: (P) input image (Q) the interpolated image P [49]. 

 

Figure 2.9 shows a comparison between the results of an interpolated LR image using 

different interpolation methods. As you can see, new edge directed interpolated image 

has less blurred edges or artifacts around its edge area in comparison to Bicubic 

interpolated image. The generated artifacts in Bicubic interpolated image are the result 

of smoothing property of this method. 
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    (a)                                  (b)                                                     (c) 

                  

                                             (d)                                                   (e) 

Figure 2. 9: The results of different interpolations (with enlargement factor of 4) of 

(a) LR image, using (b) Bilinear interpolation (c) bicubic interpolation (d) EDI (e) 

NEDI. [48] 

 

2.3 Multi-frame super-resolution  

Multi-frame super-resolution presents a way out to produce high-resolution 

images with finer details, by combining the information in a series of low-resolution 

images, with relative sub-pixel shifts. The information is embedded in the form of 

aliasing in this sequence of low-resolution images. The existing aliasing artifact in each 
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individual image degrades the visual quality of the image. A typical solution for this 

problem is applying a smoothing filter in the imaging sensor device prior to sampling. 

Smoothing filter causes blurring which is another degradation factor in images. 

 A less costly way to create a higher-quality image is utilizing the aliasing 

between the images. Usually, to reconstruct a single high-resolution image, these 

methods register several observed images to a common reference image in order to 

formulate multiple observed data. Thus, image registration process requires 

information of motion displacements involved in the observed image sequence. The 

unknown displacement information must be estimated from the observed image 

sequence to be employed in the reconstruction process [2, 16, 17, 50]. 

After registration another process is required in order to handle the resulting 

output grid with irregularly spaced sampling points. Therefore, any multi-frame super 

resolution is finalized by an image reconstruction process.   

Figure 2.10 illustrates the graphical model of a multi-frame super-resolution 

process. A set of images are acquired from the same point of view with small 

movement using a single camera. The differences between these consecutive low-

resolution images are used in the multi-frame super-resolution processes. 

Different frequency and spatial-domain registration and reconstruction 

methods will be discussed in the next subsections.  

      Determining the proper mathematical model which relates the pixel 

coordinates in one image to pixel coordinates in another, is the difficulty of image 

alignment. In this part a basic 2D motion model and the transformation of a defined 

coordinates is reviewed. 
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    LR input images                HR blurred intermediate                       SR output 

Figure 2. 10: Multi-frame super-resolution process [51].  

 

 

Figure 2. 11: 2D plane transformation 

 

A 2D translations can be defined as txx '  or 

      xIthx ~'     (6) 

where ),(~ yxx  and I  are the projective 2D coordinate and (2 x 2) identity matrix, 

respectively. 

Another kind of transformation is considering rotation and translation in images. This 

transformation is also named as 2D rigid body motion or the 2D Euclidean 

transformation because of preserving Euclidean distances. This transformation is as 

follows: 

    tRxx '    (7) 
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R         (8) 

where R is an orthonormal rotation matrix with IRRT   and 1R . 

2.3.1 Frequency-Domain Image Super resolution Methods  

 

Typically, frequency-domain registration methods are based on the Fourier 

transform properties such as shifting and rotation. According to the shifting property 

of Fourier transform, rotation only changes the relationship between the amplitudes of 

two relatively warped versions of similar images. The amplitudes rotate with respect 

to each other at the origin of the spatial frequencies by the same angle as their spatial 

domain counterparts. Consequently, firstly the rotational component from the 

amplitudes of the Fourier transform is estimated and then, after compensating the 

rotation, and using phase correlation methods, the translational component is estimated 

[17]. 

Tsai and Huang [2] are the first researchers who present the analysis of Super 

resolution in frequency-domain. Their idea was extended by Kim et al. [41] by 

addressing the existing noise and blur during acquisition. The Expectation-

Maximization algorithm demonstrated in [52], formulate an estimation of registration 

parameters. 

Two frequency domain image registration methods [53, 54] are explained in 

this part. These algorithms are representative of a frequency domain method used in 

practice for image registration. The methods discussed utilize separability of rotational 

and translational components property of the Fourier transform [16] to model global 
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translational scene motion and take advantage of results from the sampling theory to 

affect super-resolution image registration from the data available in the observed 

image sequence.  

2.3.1.1 Marcel et al. method 

Marcel et al. [53] proposed an image registration approach which employed the 

Fourier domain properties to align images which are translated and rotated with respect 

to one another. They utilized the phase correlation methods to approximate camera 

movements under the assumption that these displacements are composed of 

translations and rotations in the imaging plane. The idea is to exploit the magnitudes 

of the Fourier transforms of the two images in polar coordinates. Consequently, two 

functions will be attained that differ in a translational displacement corresponding to 

the rotation angle. By applying a log-polar transform of the magnitude of the frequency 

spectra, image scale and rotation is converted into vertical and horizontal shifts which 

can be estimated using a phase correlation method. Their method uses the property of 

Fourier transform, which is the possibility of separating the rotational and translational 

components. According to this property, the translation only changes the phase data, 

while the rotation concerns with both phase and amplitude of the Fourier transform. A 

property of the 2D Fourier Transform is that, rotating the image causes the rotation of 

the spectrum in the same direction. Figure 2.12 shows an example of this property. In 

this example, figure 2.12 (c) is the rotated version of figure 2.12 (a) by 34 degrees. 

Accordingly, │F2 (u)│, which is the Fourier transform of figure 2.12 (c) is rotated in 

comparison to │F1(u)│( Fourier transform of figure 2.12 (a)) over the same angle as 

the spatial domain rotation.  
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Thus, by estimating and compensating the rotational component, using phase 

correlation techniques, the translational component is predicted.  

Transforming │F1(u)│ and │F2(u)│ into polar coordinates, reduces the 

rotation over the angle α to a circular shift over α. Therefore, α can be calculated as the 

phase shift between │F1(u) │ and │F2(u) │. Hence, the image is transformed from 

Cartesian(x, y) grid into polar coordinates(r, α), for further rotation estimation.  

 

 

                                                                a                                          b 

 

 

                                                              c                                  d 

Figure 2. 12: a) Reference image b) │F1(u)│: Fourier transform of image a c) 

Rotated image 34 degree d) │F2(u)│ Fourier transform of image c rotated 34 

degree.[43] 

After estimating the rotation angle through phase correlation, they counter-

rotate one of the two Fourier transforms and again apply a phase correlation technique 

to compensate the translation vector. Using this method the rotation angle is estimated 
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with an error less than the minimum discernible angle. The estimated error reported is 

about 0.9 degrees. In another experiment, they demonstrated that a minimum 

overlapping of 55% between the two images is necessary for their method to work.  

Essentially for the low frequencies, which generally contain most of the energy, 

the interpolations are based on very few function values and thus introduce large 

approximation errors. An implementation of this method is also computationally 

intensive.  

2.3.1.2 Vandewalle et al. method 

Vandewalle et al.[54] presented a frequency domain method to estimate the 

motion parameters between a set of aliased images, based on their low-frequency, 

aliasing-free part. In their method only planar motion parallel to the image plane is 

used. The motion was defined as a function of three components: horizontal and 

vertical shifts, Δx1 and Δx2, and a planar rotation angle φ. 

Let F1(u) and F2(u) be the Fourier transforms of the reference signal f1(x) and 

shifted and rotated version of ,f2(x). They relate as 

    ))(()( 12 xxRfxf     (9) 
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 where, R is the rotation matrix.  

Let xxx  , then the fourier domain expression of (4) is  
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The power spectrum or the amplitudes of the Fourier transforms are related as: 



 

26 
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 |F2 (u)| is the rotated version of |F1 (u)| over the same angle φ as the rotation 

between two images. It is well known that the power spectrums of two images do not 

depend on shift values Δx since the spatial domain translations affect only the phase 

values of the Fourier transform due to the shifting property of Fourier transform. 

Therefore, at first the rotation angle φ is calculated from the amplitudes of the Fourier 

transforms and then the translation Δx can be calculated by applying phase correlation 

methods. 

The steps of Vandewalle et al. registration method is as follows: 

Step 1: All low resolution images, fLR,m (m=2,…,M), are multiplied by a Tukey 

window for making them circularly symmetric. Where, M is the total 

number of low resolution images for registration. The resulting 

windowed images are called fLR,w,m. 

Step 2: FLR,w,m which is the Fourier transform of fLR,w,m is calculated. 

Step 3: Rotation estimation: in this step the rotation angles between fLR,w,m and 

the reference image fLR,w,1 are approximated as follows: 

(I) The polar coordinates, (r, θ), of the fLR,w,m are calculated. 

(II) The average value hm(α) of the fourier coefficient for every 0.1 

degrees angle, α ,is computed. Where, α-1<θ < α+1 and 

0.1ρ<r<ρmax. Where, ρ is the image radius or half of the image 

size and ρmax is set to 0.6.  

(III) The rotation angle, Φm ,is estimated by finding the maximum of 

correlation between hm(α) and h1(α).  

(IV) The rotation of the image fLR,w,m is recovered by rotating it by -

Φm. 
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Step 4: Shift estimation: shift parameters consist of horizontal and vertical 

shifts between every images with respect to reference frame is 

approximated as below: 

(I) The phase difference between images in comparison to the 

reference image is computed as < (fLR,w,m/ fLR,w,1). 

(II) The calculated phase differences with unknown slopes Δx, is 

used to define a plane for all frequencies –us+ umax < u <us- umax 

Where, us and umax are sampled and maximum frequencies, 

respectively.    

(III) The shift parameters are estimated as the least square of the 

equations. 

 

2.3.1.3 Structure Adaptive Normalized Convolution method  

 Pham et al.[55] presented a structure-adaptive algorithm based on the 

framework of normalized convolution (NC). This method applied for image fusion 

from irregularly sampled data. The local signal or in two dimensional image, is 

approximated through a projection onto a subspace spanned by set of basis functions. 

For improving signal-to-noise ratio and reducing diffusion across discontinuities, the 

window function of adaptive NC is adapted to local linear structures, so that more 

samples of the same modality gather for the analysis. 

One of the methods for local signal modeling from projections onto a set of 

basis functions is Normalized convolution (NC) [56]. Generally, a polynomial basis 

{1, x, y, x 2, y 2, xy, . . .} is used in this method. Where, the vectors, 1 = [1 1 · · · 1]T (N 

entries), x = [x1 x2 · · · xN] T, ]...[ 22
2

2
1

2
Nxxxx  , and etc. are constructed from local 
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coordinates of N input samples. Applying polynomial basis functions changes the 

traditional NC equivalent to a local Taylor series expansion. The intensity value at 

position s = {x + x0, y + y0} within a local neighborhood centered at s0 = {x0, y0}, is 

estimated by a polynomial expansion as follows: 

   ...)()()()()()(),(ˆ 2
0504

2
030201000  yspxyspxspyspxspspssf   (13) 

where, p(s0) = [p0 p1 p2 · · · pm] T( s0) are the projection coefficient onto the 

corresponding polynomial basis functions at s0. {x,y} are the local coordinates of 

sample s with respect to the center of analysis s0. 

NC requires the signal certainty to be known. For this purpose, a Gaussian 

function forms the robust certainty as: 
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  (14) 

where, f(s) and ),(ˆ 0ssf  are measured and estimated intensities at position s, 

respectively. 

In order to localize the polynomial fit, NC applies an applicability function, 

which is an isotropic, radially decaying function with a size proportioned to the scale 

of analysis. Pham et al. applied an adaptive anisotropic Gaussian kernel, which adapts 

its shape and orientation along the underlying image structure, for this purpose.  To 

construct an adaptive kernel at an output pixel, an initial estimation of the output 

intensity is calculated.  The initial estimation helps to approximate the gradient 

structure tensor (GST), [57] which contains the local image structure information such 

as ϕ and the anisotropy A. The adaptive applicability function is: 
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where, ρ is a function cantered at the origin and limits the kernel support to a 

certain radius and s- s0 ={x,y} are the local coordinates of input samples with respect 

to s0. u  and v  are the directional scales of the anisotropic Gaussian kernel. 

Figure 2.13 depicts Pham et al. image reconstruction scheme. The registered 

LR images with their displacement parameters are fused in a fixed HR grid using robust 

and adaptive fusion method. A de-convolution is applied for de-blurring and de-noising 

the output image. 

 

Figure 2. 13: Pham et al. image reconstruction scheme [55]. 

2.3.2 Spatial-domain Super-resolution methods  

As mentioned another major category of multi-frame super-resolution 

registration methods are based on spatial domain formulation. The term spatial domain 

refers to the image plane itself, and the approaches manipulate the pixel of a given 

image for enhancement. In the other words, spatial domain methods are procedures 

that operate directly on pixels [43]. Their advantages include a great flexibility in the 

choice of motion model, motion blur, optical blur, and the sampling process. Another 

important factor is that the constraints are much easier to formulate.  
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The iterative methods are the most significant among the spatial domain 

methods, and are the focus of the present work. The most important advantages of an 

iterative technique lie in the ability to handle large image sequences, easy inclusion of 

a priori knowledge in the spatial domain, and the ability to handle spatially varying 

degradations. 

There are many iterative methods to solve super-resolution reconstruction 

problems. Since previous researches [2] show that spatial domain super-resolution 

methods are computationally expensive procedures, it is acceptable to approach it by 

starting with a “rough guess" and achieving successfully finer estimates. For example, 

Elad and Feuer [12] use different approximations to the Kalman filter and examine 

their performance. In particular, recursive least squares (RLS), least mean squares 

(LMS), and steepest descent (SD) are considered. 

As mentioned before, Keren, et al. [3] illustrated a spatial-domain based 

method to align the images by applying a global translation and rotation model. They 

proposed a two-step method restoration algorithm. As graphically illustrated in Figure 

2.14 the image registration procedure assumes R observed images from which a 

gradient-based scheme estimates shift and rotation parameters for each of R - 1 images 

relative to a chosen reference image. With the image registration parameters estimated, 

the first stage of the restoration procedure registers the observed images and a high-

resolution restoration grid is imposed on the “stack” of observed images. Each pixel in 

the high-resolution image is then chosen as the mean of the values in the set of 

observed image pixels whose centers fall within the area of the high-resolution pixel 

under consideration.  
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The Iterative Back projection (IBP) algorithm suggested by Irani and Peleg [4], 

which will be explained in detail in the following section, originated from computer-

aided Tomography (CAT). The algorithm simulates the imaging process, back-projects 

the error between the simulated low-resolution images and the observed low-resolution 

images to the super-resolution image. Later in [58], they modify their method to handle 

more complicated motion types, which can include local motion, partial occlusion, and 

transparency. The fundamental back-projection scheme remains identical to the 

previous one, which is not very flexible in terms of incorporating a priori constraints 

on the solution area. Shah and Zakhor [59] use a reconstruction method similar to that 

of Irani and Peleg. They also propose a novel approach to motion estimation that 

considers a set of possible motion vectors for 

 

Figure 2. 14: Iterative Back-Projection Approach [4] 
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each pixel and eliminate those that are inconsistent with the surrounding pixels. In 

order to reduce the noise, Stark et al. applied a set theoretic algorithm, projection onto 

convex sets (POCS), to the super-resolution reconstruction [58]. It is convenient to 

integrate a priori information in POCS. However, the set theoretic algorithm suffers 

from non-uniqueness of the solution, slow convergence and high computational cost. 

The main idea behind the registration is to detect accurate displacements 

between the sequences of images taken from the same point of view.  

Irani et al. [4] proposed a spatial domain based motion estimation method, 

which uses translations and rotations. This method creates a group of low resolution 

images from original images; using Gaussian pyramids the set of input images are 

converted into multiple low pass filtered sets. Using the coarsest image sets, motion 

parameters are found and applied to finer sets. Thus it is an efficient and fast iterative 

back projection algorithm. 
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CHAPTER 3  

LOCALIZED SUPER-RESOLUTION TECHNIQUES 

 

3.1 Introduction 

 

Determining motion parameters between consecutive frames is the goal of all 

multiframe registration tasks. Methods for performing these tasks are usually based on 

representing an image using global displacement in comparison to neighbour frames. 

The relevant representations and corresponding displacement parameter measures can 

vary significantly. Displacements are often represented using global shift and rotation 

estimators. However in many applications only shift parameter is sufficient for a 

qualified super resolution [17]. Although these measurements are variable, they share 

the same basic assumption that there exist a global shift and a global rotation difference 

between images. This assumption, however, may be so effective, we can clearly notice 

that there are some parts in image, which is not shifting or rotating in comparison to 
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other frames. In other words, there are stationary regions with no need to be shifted or 

rotated. In contrast, there exist regions in image with local displacements. What makes 

these regions distinct is the fact that each part of these portions is moving (shifting and 

rotating) in different direction. The effect of local motion is even stronger in the video 

sequences that the camera is stable and one or more objects are moving in the scene. 

Thereupon, separating motion regions from static part of the consecutive frames and 

registering only the motion part of images improves the ability to estimate the 

displacement parameters. The above process allows to do better registration. 

Nevertheless if each part of these objects moves in different orientation this process 

still suffers from the similar inherent problem. To work out this issue, using a motion 

detection algorithm, we detect the motion regions. Then the motion block extraction 

algorithm divides and extracts the motion parts into sufficient small blocks. This is 

mainly because we tend to have a single direction of motion in each block. These 

blocks can then be treated as if taken from different low resolution images for 

registration proposes. Therefore, separating motion regions from the static regions and 

processing them separately, results in a more accurate registration process. The motion 

regions go through multiframe super resolution for the localized resolution 

enhancement. On the other hand the static regions go through a resolution 

enhancement process. 

The main loss of a video frame after being super resolved is on its high frequency 

components (i.e. edges), which is due to the smoothing caused within the super 

resolution processes. Therefore, in order to increase the quality of the super resolved 

video sequence, preserving the edges (high frequencies) of each frame can increase the 
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quality of the super resolved sequence. Recently, employing a wavelet transform in 

super resolution processes is a solution for this problem [60-62]. 

A small wave with its energy concentrated in time is called wavelet. It is an 

appropriate tool for transient, non-stationary or time-varying phenomena. One of the 

important properties of the wavelet is the ability to allow simultaneous time and 

frequency analysis [63, 64]. Figure 3.1 (a) shows a sinusoidal wave which is smooth 

predictable and everlasting. They are suitable for deterministic basis functions in 

Fourier analysis in order to expand a time invariant, or stationary signal function.  A 

wavelet is illustrated in Figure 3.1 (b). A wavelet is of limited duration, irregular and 

sometimes asymmetric. They can be used as non-deterministic or deterministic basis 

to produce and analyze natural signals and achieve an accurate time-frequency 

representation.  These types of analysis, which are not possible with waves using 

conventional Fourier analysis, are from the important characteristics of a wavelet.  

 

(a)                                                                (b) 

Figure 3. 1: (a) a sinusoidal wave, (b) a wavelet. 

The wavelet analysis process adopts a “mother wavelet” or “analyzing wavelet” 

function prototype. A contracted, high frequency version of the prototype wavelet 

obtains the temporal analysis, where a dilated, low frequency version of the same 

wavelet achieves the frequency analysis [65]. An analogous to the Fourier transform 
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(FT) pair is the Wavelet Transform (WT) pair, which is obtained by a mathematical 

formulation of signal expansion using wavelet.  

In [20,21] the authors explained the applications of wavelets to signal processing 

in details. An application of the wavelet transform is its contribution to image 

resolution enhancement. Wavelet-based resolution enhancement techniques improve 

the resolution of the given image by approximating the preserved information at its 

high-frequency subband [22-29]. Wavelet transform decomposes the image into 

different low and high frequency subbands. The key idea of these techniques is that, 

the intention is to estimate the high frequency subbands of wavelet transform and the 

resolution enhanced image is the low frequency subband amongst wavelet-transformed 

subbands of the original one. As a result, a resolution-enhanced image with more 

information at its high frequency subbands can be obtained. 

Chang et al.[22] presented a wavelet based interpolation in which the coefficients 

of the high-frequency subbands were obtained using the regularity of edges across 

various scales. The method was successful in estimating the coefficients having 

significant magnitude whereas, approximating small coefficients were difficult. Later 

on, a Crouse et al.[26] demonstrated a hidden Markov model in order to predict the 

coefficients a high levels. The model represented the statistical relations among the 

coefficients at lower level. The problem occurred when the extracted information from 

a set of training images, was not efficiently matched with the input image. Another 

wavelet based resolution enhancement method was presented by Temizel et al. [28]. In 

this method, cycle spinning components were affected by the local edge direction. They 

recovered the problem of ringing artifacts caused by decimation, by averaging the 

translated zero-padded reconstructed images.  
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In this chapter, different localized super resolution techniques using various 

wavelet transforms are proposed and explained in details. 

 

3.2 Motion-based Localized Super Resolution using frame differences and 

Discrete Wavelet Transform (MSR)   

 

In this section, the method presented in [30] which applies a motion based 

localized super resolution, is demonstrated in details. In this thesis this method is 

abbreviated as MSR. 

 

 

 

 

 

 

 Super resolution is consist of two main parts, registration and reconstruction. 

As mentioned earlier registration is to estimate displacements (motion parameters) 

between two images. According to this property we can divide every image into two 

parts: motion regions and constant regions. For the region of frame which has no 

movement in comparison of last frames we can do only reconstruction because there 

is no displacement to estimate. This is the basic idea of MSR method which causes an 

appropriate registration. The illustrated method in [30] involves the following steps:  

Step 1: determining motion regions and separating them from constant region. 
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Step 2: decomposing the static and motion regions into different frequency 

subbands using DWT. 

Step 3: super resolving the subbands of motion regions and interpolating the 

subbands of constant region. 

Step 4: applying IDWT to the subbands of motion and static region in order to 

generate super resolved static and motion regions. 

Step 5: combining super resolved and interpolated region and produce the 

super resolved frame. 

The block diagram of the algorithm of MSR method is shown in figure 3.2.  
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Figure 3. 2: The block diagram of the MSR method presented in [30] 
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3.2.1 Discrete Wavelet Transform (DWT) 

The function ψ(t) is called a mother wavelet. The family of a mother wavelet 

function is obtained by shifting and scaling the function as follows: 
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where, a is a real positive scaling factor and b is a real shifting factor 

A filterbank is used to implement a single level DWT [66]. The detailed scheme 

of this implementation is shown in figure 3.3. As a result, three sub-images called HL, 

LH and HH, corresponding to horizontal, vertical and diagonal directions and a low 

resolution image called LL are produced. An example of this decomposition is shown 

in figure 3.4.  
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Figure 3. 3: Single level analysis filter bank for DWT. 
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Figure 3. 4: (a) test image, (b) single level DWT decomposition of the test image. 

An important property of DWT is perfect reconstruction, or in the other word, 

the proper retrieval of image. This process is performed by Inverse DWT (IDWT). The 

analysis filters decomposes the image into different sub-images and the synthesis 

filters composes the sub-images in order to reconstruct the input image.  
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Figure 3.5 shows a multilevel decomposition of an image which is achieved by 

performing the same process on the generated LL image.  

Original 
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LLH
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LLLL

Level 1
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Figure 3. 5: A multilevel decomposition of an image using DWT. 

The size of a parent image is four times larger than the size of the child images 

after decomposition.  

An application of DWT is in enhancing the resolution of images which is 

explained in details in subsection 3.2.3. 

 

3.2.2 Detection of motion and static region  

Using pixel subtraction operator two input images produces a third image as an 

output where, pixel values are simply those of the first image minus the corresponding 

pixel values from the second image. For instance, considering 2 consecutive images I 

n(x,y) and I n-1 (x,y), the difference image I d (x,y) is produced by  

I d (x,y) = I n(x,y) - I n-1 (x,y)  (17) 
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 Moving objects are recognized by an image subtraction algorithm in this 

method. The major advantage of the algorithm is its simplicity where the 

implementation is possible in real-time processing of the image processing board, since 

it simply compares the previous frame with the current one.  

If two images have the same pixel value the result of subtraction will be a zero matrix, 

otherwise, the pixel have a value else than zero, which shows the displacement in the 

frames. In the video sequences with local motions, subtraction is a simple way to find 

the motions in sequences. 

In this multi frame SR implementation, super resolution is achieved by 

registering 4 frames. This means all 4 frame differences are required. One way to have 

these differences is as follows: 

 Subtracting reference image (the image that we want to super resolved) 

from the other 3 input images. 

 Applying thresholding for each subtracted image (Id (x,y)) as follows: 

For each pixel of Id (x,y), if the value of the pixel is; 
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where  and  are mean and standard deviation of the pixels in Id (x,y).         

 Thresolding is applied to remove the noises in the subtracted images. In this 

way, more than 90% of the data is thresholded that contains motion regions with less 

noise. 

 OR them up to have all the differences. 
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 Connected component labeling followed by dilation produces the moving 

region. 

3.2.3 Super Resolution Process 

 Each moving object is taken as an individual image that will be super resolved 

separately. Using DWT each motion region of input frames is divided into 4 frequency 

subbands of LL, LH, HL and HH. In this method, Irani et al. super resolution method 

is applied to each subband motion regions of video sequences separately. This process 

results in 4 resolution enhanced subbands. Next step is to combine the resolution 

enhanced subbands using IDWT to produce the super resolved motion region. The 

resulting super resolved motion region contains sharper edges. This is due to the fact 

that, the super resolution of isolated high frequency components in HH, HL and LH 

preserves more high frequency components after the super resolution of the respective 

subbands separately than super resolving the low resolution image directly. Also the 

local registration of the motion region results in a more accurate registration process 

which improves the quality of the super resolved frame in comparison to the classical 

super resolution with global registration. In parallel the static region is also 

transformed into wavelet domain for further processing. Bicubic interpolation takes 

the place of Irani et al. reconstruction and a similar process is applied to the subbands 

of static region, in order to obtain the resolution enhanced static region. Finally, super 

resolved motion regions are combined with interpolated static region in order to 

generate the final super resolved frame.   

3.3 Motion-Block-based Localized Super Resolution using Complex Wavelet 

Transforms (MBSR) 

This section gives the details explanation about the super resolution technique 

discussed in [31]. In this method (MBSR) after detecting the motion region, it is 
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divided into small blocks in order to increase the possibility of having one direction in 

each block.  DT-CWT is used to decompose the motion and static blocks of the frame 

into different subbands. The acquired subbands are processed separately and IDT-

CWT is used to compose them back and form the super resolved block.  

Any classical multi-frame super resolution can be used in this method. The selected 

registration algorithms used in this work for comparison purposes are:  

- Marcel et al.[53], 

- Vandewalle et al. [54], 

- Keren et al. [3], 

The reconstruction methods following the registration process are listed below: 

- Interpolation 

- Iterated Back Projection (IBP) [4], 

- Robust super resolution technique [67], 

- Structure Adaptive Normalized Convolution (SANC) [55]. 

3.3.1 Dual Tree Complex Wavelet Transform (DT-CWT) 

The ordinary decimated DWT is shift variant due to the decimation operation exploited 

in the transform. So that, a small shift in the input signal can results in a very different 

set of wavelet coefficients. Kingsbury [68] introduced decompositions that not only 

remove the above problem but also, improve the directional selectivity and perfect 

reconstruction in comparison to decimated DWT. This wavelet transform is called 

dual-tree complex wavelet transform (DT-CWT) [69-71] which includes two parallel 

real filtered wavelet trees with the wavelets forming (approximate) Hilbert pairs. One 

tree generates the real part of the transform while the other is used in generating 

complex part [72]. As shown in figure 3.6, {h0(z), h1(z)} is a Quadrature Mirror Filter 
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(QMF) pair in the real-coefficient analysis branch. For the complex part, {g0(z), g1(z)} 

is another QMF pair in the analysis branch. 
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Figure 3. 6: Block diagram for a 3-level DT-CWT [72]. 

All filter pairs are orthogonal and real-valued. It has been shown [72] that if filters in 

both trees are made to be offset by half-sample, two wavelets satisfy Hilbert transform 

pair condition and an approximately analytic wavelet is given by  

ψ (t) = ψh (t) + jψg (t)                                    (19) 

 

 

(a) 
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(b) 

Figure 3. 7: Impulse response of dual-tree complex wavelets at 4 levels and 6 

directions. (a) Real part. (b) Magnitude. 
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(b) 

 

(c) 

Figure 3. 8:(a) Sample image for transformation. (b) The magnitude of the 

transformation. (c) The real part of the transformation [73]. 

where ψh (t) and ψg (t) are two real discrete wavelet transforms employed in parallel to 

generate the real and imaginary parts of complex wavelet ψ (t). 

It has the ability to differentiate positive and negative frequencies and produces six 

subbands oriented in ±15˚, ±45˚, ±75˚. 

 Figure 3.7 shows the impulse responses of the dual-tree complex wavelets. It is 

evident that the transform is selective in 6 directions in all of the scales except the first. 
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Figure 3.8 shows the magnitude and real part of a face image processed using the DT-

CWT [73].  

In this work DT-CWT is chosen due to its strength in directional selectivity. High 

frequency details in six different directions are isolated in different subbands and 

processed separately. This approach helps to minimize the effect of one directional 

high frequency component over the other directional high frequency component 

through the super resolution process.  

Restoring the high frequencies of a low resolution image is a key to improve its 

resolution. Various interpolation methods and wavelet transforms are used to solve this 

problem in [46, 47]. These methods try to recover the original image by processing a 

low resolution image. The consecutive frames in a video sequence usually contain the 

same point of view with a small difference. Combining the information of these frames 

results in a frame with higher resolution.   

3.3.2 Motion detection 

The principle of motion detection algorithm is to generate a reliable background 

model and thus significantly improve the detection of moving objects. The three major 

classes of methods for motion detection are background subtraction, temporal 

differencing, and optical flow [75]. A recent state-of-the-art motion detection algorithm 

involving three modules: a background modeling (BM) module, an alarm trigger (AT) 

module and an object extraction (OE) module is used in this work [32]. The block 

diagram of the motion detection method is shown in Figure 3.9. 

For the BM module, a unique two-phase background matching procedure is 

performed using rapid matching followed by accurate matching in order to produce 

optimum background pixels for the background model. 
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At first, for each pixel (x, y), the modified moving average (MMA) is used to 

compute the average of frames 1 through K for the initial current background model, 

Bt(x, y) generation. 

Optimum background modeling is performed by rapid matching to determine 

the candidates for the next stage which is stable signal trainer. This is accomplished by 

verifying whether or not the respective pixel values for the incoming video frame It(x, 

y) are equal to the corresponding pixel values of the previous video frame It-1(x, y). 

The candidate pixels then pass through the stable signal trainer as follows: 

),( yxM t =












),(),(,),(

),(),(,),(

1

1

yxMyxifIpyxM

yxMyxifIpyxM

ttt

ttt   (20) 

The initial background candidate value M0(x, y) is set at I0(x,y) where, Mt(x, y) 

is the corresponding pixel within the most recent set of background candidates, Mt-1(x, 

y) is the corresponding pixel within the previous set of background candidates, and p 

represents the real value which is experimentally set at 1. Accurate matching procedure 

obtains the optimum background pixels when the pixels of   Mt(x, y) are equal to It(x, 

y). To smooth the background model a simple moving average method updates it. The 

absolute difference Δt(x, y) is generated by the absolute differential estimation between 

the updated background model Bt(x, y) and current incoming video frame It(x, y) to be 

used in the next stage of the motion detection method. 

The AT module eliminates the unnecessary examination of the entire background 

region, allowing the subsequent OE module to only process blocks containing moving 

objects.  
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In this part, each w × w block (i, j) within the Δt(x, y) is composed of V discrete 

gray-levels. The block-based probability density function ),( ji

hP  is defined as follows: 

2),(),( / wnP ji

h

ji

h    (21) 

where h represents the arbitrary gray-level within each w × w block (i, j) and 

),( ji

hn  denotes the number of pixels corresponding to arbitrary gray-level h. h is reset to 

0 when it is smaller than τ, where w and τ are experimentally set at 8 and 10 

respectively. Detection of each possible motion block candidate is accomplished by the 

block-based entropy evaluation (E(i, j)).  

Consequently, after each w × w entropy block E(i, j) is calculated and the 

motion block A(i, j) containing pixels of moving objects is labeled with “1,” where the 

static ones are labeled with “0.”  

Elimination of some of the detected background blocks and completed motion 

blocks is then performed via the block-based morphological erosion and dilation 

operations shown below: 

))((
2

* AA bb 
   (22) 

where ε is the morphological erosion, δ is the morphological dilation, and bλ, 

is a ball of radius λ which acts as the elemental structure and experimentally is set at 1.  

The OE module forms the binary object detection mask in order to achieve 

highly complete detection of moving objects. 

A threshold selection algorithm for use with the OE module in order to produce 

the binary motion detection mask obtains a suitable threshold for binarization. 
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A variance value Vt(x, y) is calculated at each frame and finally, the binary 

motion detection mask D(x, y) is formed by detecting the pixels of moving objects 

within each motion block as follows:                              
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The input to the motion detection method is a video.  A multi-frame super 

resolution method is performed in this method which uses four consecutive frames. 

Therefore, each group of four consecutive frames is utilized as a sequence to be used 

as the input video to the motion detection method. The current frame of each of these 

video sequences is the frame to be super resolved (reference frame).  As a result the 

total motion regions of the frames with respect to the reference frame can be extracted.  
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Figure 3. 9: Block diagram of the motion detection method. 

 

3.3.3 Extraction and insertion of the motion blocks 

Once the motion regions are detected, they should be extracted in blocks for 

further processing. MBSR method separates the motion regions from the background 

and extracts the motion regions into multiple 32x32 motion blocks. These blocks will 

be treated as a low resolution image to be super resolved via a multi-frame super 

resolution algorithm and then to be inserted back to the background. However, the main 

drawback of SR algorithms is the generated artifacts around the boundary of the super 
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resolved image. These artifacts cause degradation in the quality of the final result. This 

degradation is within a 4-row pixels distance of the boundary. In order to overcome 

this problem, the central 28x28 pixels region (see figure 3.10) of the extracted 32x32 

pixels is inserted into the final image. Figure 3.11 shows the block diagram of the 

motion block extraction algorithm.  
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Figure 3. 10: Two neighboring motion blocks. Measures are in pixels.  
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Figure 3. 11: Block diagram of the motion block extraction.  
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Consider the “detected motion region” shown in figure 3.11. As the motion 

detection algorithm dictates, this region consists of 8x8 motion blocks. In this example, 

the maximum width (mw) of the region is 48 pixels, where the maximum height (mh) 

of it is 40 pixels. The next stage is to find a region in which we can position an integer 

number of 32x32 pixel blocks. For this purpose a formula is defined as follows:  

824  ww    (24) 

824  hh    (25) 

where w and h  are two positive integer numbers and w  and h  are the width 

and the height of the “final selected region” respectively (mw≤ w and mh ≤ h ). In figure 

3.11 the size of “detected motion region” is 40x48 pixels which are extended to 56x56 

pixels for the “final selected motion region”. w  and h  are both calculated as 2, which 

means we can place two rows and two columns of 32x32 pixel blocks over the “final 

selected motion region”. At this point, the algorithm checks the existence of the motion 

region in the central 28x28 pixels block of each placed 32x32 pixel blocks. If motion 

region exists the 32x32 pixels block will be sent to the SR process, otherwise it is 

ignored. After the SR process the size of each 32x32 motion blocks will be α32xα32. 

The central α28xα28 part of the super resolved motion block is inserted into the 

background, which is free of boundary artifacts. 

 

3.3.4 Super Resolution Process 

Figure 3.12 illustrates the complete procedure of the resolution enhancement 

technique.  A one-level DT-CWT decomposes the motion blocks and remaining static 

background to complex-valued low and high frequency subbands with more directivity 
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in comparison to DWT [64, 74]. Then six complex-value high frequency subbands with 

+75°, +45°, +15°, -15°, -45°, and -75° orientations of the respective stationary part 

have been enlarged by using bicubic interpolation. In parallel a super resolution method 

is applied to the same subbands related to small region. Having found the enlarged 

subbands of static and motion regions, we can compose them back by exerting Inverse 

DT-CWT. At this point, super resolved motion and stationary regions are ready to be 

combined and form the result of this resolution enhancement technique. 

  Step by step description of MBSR method is given below: 

Step 1: Acquire frames from video and detect motion region(s) by motion detection 

algorithm [32].  

Step 2: Extract the 32x32 motion blocks using the developed motion block extraction 

algorithm. 

Step 3: Apply CT-DWT to decompose the motion blocks into different subbands 

Step 4: Super resolve extracted motion blocks obtained in step 2. 

Step 5:   Apply bicubic interpolation to the high frequency subbands of each motion 

blocks separately. 

Step 6: Generate super resolved motion blocks by using ICT-DWT for low frequency 

subband generated in step 4 and high frequency subbands obtained from step 5. 

Step 7: Apply CT-DWT to decompose the background region into different subbands. 

Step 8: Apply bicubic interpolation to the entire static region and to the high frequency 

componants obtained in step 7. 

Step 9: Generate interpolated background by using ICT-DWT for the subbands 

generated in step 8. 
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Step 10: Inserting the super resolved motion blocks obtained from step 6 into the 

interpolated background attained in step 9. 
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Figure 3. 12: The block diagram of the MBSR method presented in [31]. 

 

3.4 Motion-block-based Localized Super Resolution using New Edge Directed 

Interpolation and Complex Wavelet Transforms (MBSR using NEDI) 

The idea of super resolution is based on the theory that there exists a 

mathematical model which could have generated the LR observation from the 

unknown high-resolution (HR) image. The goal of every SR method is to resolve this 

mathematical model; nevertheless, because of the inaccuracies in estimation of its 

parameters an erroneous model may be obtained. These errors, even small in number, 

can result in an undesirable image reconstruction. In such a case interpolating the 

reference frame, results in achieving a higher resolution image in comparison to an 

image created using incorrect motion parameters [54].  Robust procedures are 

necessary to provide reliable estimates. Cheng et al. [37] presented an interesting SR 

approach for video sequences using modified non-local means. They defined the so 

called complex areas in the LR reference that included non-translation motion, 

occluded, and new-appearing object areas. They named the remaining part of the frame 

as simple area which contained the static and near translation motion areas. In their 

approach each reference frame was divided into multiple patches of the same size. If 

the patch was located in a simple area, it could be easily super resolved using various 

similar patches. The problem occurred when there were few sub-similar patches related 

to the patches in the complex area. This caused degradation in the visual quality of the 

final video SR. To solve this issue, they reduced the size of the patch so that the 

probability of finding similar patches would increase. Due to their priorities to reduce 

the computational complexity of this method, the visual quality of the reported results 

has limited performance increase. 



 

60 

 

 In this technique dividing every frame into stationary and motion parts helps 

in determining proper registration. However, in the motion part of an image there may 

be different activities in different directions which cause incorrect motion estimation. 

Similar to [37], dividing the motion region of the image into small blocks is the solution 

of this method to this problem. Increasing the probability of having dedicated direction 

of shift and rotation in each block, results in obtaining less error in the registration of 

images. These blocks can then be treated as if taken from different low resolution 

images for registration purposes.  

 

Figure 3. 13: Block diagram of the MBSR using NEDI technique [31]. 
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Bicubic interpolation is one of the well-known interpolation methods, which 

has been used in different wavelet based image resolution enhancement methods [76]. 

However, blurred edges or artifacts around edge area are the results of smoothing 

property of the bicubic interpolation. As many SR algorithms [36, 40, 48] tried to work 

out this issue, edge-directed interpolation (EDI) [48] is used as an alternative 

interpolation method in wavelet based image resolution enhancement method [77]. In 

this work we applied new edge-directed interpolation (NEDI) [40] which improved the 

performance of EDI [78] by obtaining a resolution enhanced image which is not 

smooth perpendicular to edges and is smooth parallel to edges.  

Figure 3.13 illustrates the complete procedure of this resolution enhancement 

technique.  

The stages of the technique demonstrated in [31] are outlined below: 

Step 1: Acquire frames from the low resolution video and detect motion 

region(s) by motion detection algorithm [32]. 

Step 2: Extract the 32x32 motion blocks using motion block extraction 

algorithm. Employ DT-CWT to decompose the low resolution motion blocks into Low 

and high frequency subbands. 

Step 3: Super resolve extracted motion blocks of step 2 using classical SR 

methods. 

Step 4: Apply NEDI to the high frequency subbands (with +75°, +45°, +15°, -

15°, -45°, and -75° orientations) of each motion blocks separately. 
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Step 5: Generate super resolved motion blocks by using IDT-CWT for low 

frequency subband generated in step 3 and high frequency subbands obtained from step 

4. 

Step 6: Super resolve the static region using classical SR methods.  

Step 7: Apply DT-CWT to decompose the background region into different 

subbands. 

Step 8: Use NEDI to the high frequency components obtained in step 7. 

Step 9: Generate the super resolved background by using IDT-CWT for the 

subbands generated in step 8 and 6. 

Step 10: Insert the super resolved motion blocks obtained from step 5 into the 

interpolated background attained in step 9. 

Occlusion refers to covering or uncovering a part of an object or scene due to 

object or camera motion which causes problem in determining the HR image. To deal 

with this problem, Alvarez et al. [79] labeled each pixel of the LR image as 

“Observable” and “unobservable”. In this method the unobservable pixels were 

assumed to be constants and the observable pixels were used in the SR reconstruction. 

Shen et al.[80] applied the same terms to denote the type of pixels. They defined a 

threshold for a more appropriate approximation of the unobservable pixels. 

Consequently, the artifacts were effectively suppressed around motion boundaries and 

occlusion regions when compared with [79]. 

Occlusion is one of the problems, which is not directly addressed in this work. 

However, the idea of using multiple consecutive low resolution frames to generate the 



 

63 

 

high resolution super resolved frame, indirectly incorporates the occluded pixels in 

some of the LR frames into the output HR frame. 

3.5 Simulation Results and Discussions 

The MBSR using NEDI technique is tested on three well known benchmark video 

sequences such as Akiyo”, “Mother & daughter” and “Container”. The original high 

resolution benchmark video sequences have the size of 512x512 pixels per frame which 

are reserved as the ground truth for evaluating the performance of the enhancement 

quality in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). 

The input low resolution frames with 128x128 pixels are enerated such that, each 

ground truth frame is blurred by a Gaussian low-pass filter with the mask size of 4x4 

and standard deviation of 1. Then, the blurred frames are down-sampled vertically and 

horizontally with a factor of 4 and Gaussian noise was added to down-sampled frames.  

One of the most important parts of the MBSR using NEDI technique is the super 

resolution process (denoted by black box in figure 3.13) applied for the static region as 

well as the blocks extracted from the motion regions. In this work, a state of art 

registration (Vandewalle et al. [54]) and reconstruction ((SANC) [55]) methods are 

selected to be used in this technique.  

In the first experiment, as a preliminary step towards creating an algorithm which 

can deal with each motion direction individually, we perform a block size searching. 

The resulting average PSNR and SSIM performances of the MBSR using NEDI 

technique using different block sizes have been shown in Table 3.1. The results indicate 

that, in all three video sequences the highest performance is obtained for the 32x32 

pixels block size. Large block sizes such as 64x64 decreases the local registration 

accuracy. On the other hand the small block size such as 16x16 lacks the required 

information content and hence generates relatively lower PSNR and SSIM 
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performance. Based on the results, 32x32 block size has been utilized in the MBSR 

using NEDI technique. 

 

Table 3. 1: Average PSNR (dB) and SSIM values obtained after applying different 

motion block sizes in the MBSR using NEDI technique. 

Block Size 
Mother &daughter Akiyo Container 

PSNR SSIM PSNR SSIM PSNR SSIM 

128X128 31.73 0.9223 30.01 0.9380 27.83 0.8401 

64X64 33.84 0.9462 32.98 0.9498 29.32 0.8763 

32X32 34.02 0.9458 33.76 0.9531 29.54 0.8775 

16X16 33.60 0.9461 33.01 0.9505 29.30 0.8770 

 

The focus of this work is on two issues, obtaining the best size of the motion block 

to be used in SR so that registration parameters can be determined properly and 

employing an interpolation method which can possibly preserve the edges. Next 

experiment considers the optimal motion block size and different interpolation methods 

to be used in this technique. The experimental results are given in Table 3.2. This table 

is organized in a way that it specifies the improvements introduced by each part of the 

proposed algorithms. In the Classical SR each full frame is processed through 

Vandewalle registration followed by SANC reconstruction and the resulting average 

PSNR and SSIM is reported for each video. As mentioned before MSR method detects 

the motion region and uses DWT to improve the resolution of each frame. To find out 

the improvements achieved by each part of this method, in the next experiment motion 

region is detected and each rectangular motion region is super resolved separately. The 
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static background is resolution enhanced using bicubic interpolation. In fact, DWT is 

removed from MSR to show the improvement achieved by just separating the 

rectangular motion regions from the static background. Adding DWT to the experiment 

shows the effect of DWT on the MSR method. To show the disadvantage of not 

dividing the motion region into 32x32 blocks and leaving the motion part as a single 

rectangular region, motion based methods are utilized. Bicubic interpolation vs NEDI 

are used to show the effectiveness of NEDI on preserving the edge quality. Two 

different motion region detections are introduced in sections      . Both methods are 

applied on MBSR and the results show that     method comes up with a slightly better 

SSIM and PSNR. DWT is applied on MBSR in another experiment to specify the 

improvement achieved by DT-CWT in comparison with DWT. In all cases the MBSR 

using NEDI technique achieves better results in comparison to the classical SR 

methods. 

The performance gain achieved by the MBSR using NEDI technique can be 

attributed primarily to the localization of motion blocks going through a dedicated SR 

process. On the other hand, DT-CWT helps to decompose the given motion and static 

region images into different high frequency directional subbands which isolates the 

edge details in different directions and hence reduces the undesirable inter-directional 

interference in the SR process. 

In order to show the superiority of the MBSR using NEDI technique for each frame 

we have devised a separate experiment. The PSNR of each resolution enhanced frame 

in “Mother & daughter” video sequence is plotted in figure 3.14 for classical SR 

method versus MBSR using NEDI technique. Note that the MBSR using NEDI 

technique outperforms the classical SR for every frame in the video sequence.  
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Table 3. 2: The average PSNR (dB) and SSIM values of different resolution 

enhancement methods on the test video sequences. 

RESOLUTION ENHANCEMENT 

METHODS 

Mother &daughter Akiyo Container 

PSNR SSIM PSNR SSIM PSNR SSIM 

Bicubic Interpolation 27.44 0.8884 27.20 0.9152 23.12 0.8111 

NEDI [48] 28.78 0.8959 28.01 0.9263 24.71 0.8233 

Classical SR [54,55] 30.25 0.9148 29.30 0.9312 26.82 0.8226 

MSR without DWT 31.45 0.9221 30.56 0.9367 27.82 0.83.44 

MSR [30] 32.12 0.9324 31.82 0.9404 28.19 0.8422 

MSR using NEDI 32.65 0.9348 32.35 0.9489 28.71 0.8427 

MBSR using Frame differences 33.12 0.9439 32.88 0.9504 28.93 0.8710 

MBSR using DWT 32.83 0.9412 32.65 0.9497 28.78 0.8672 

MBSR  33.22 0.9441 32.92 0.9505 28.98 0.8713 

MBSR using NEDI 34.02 0.9458 33.76 0.9531 29.54 0.8775 
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Figure 3. 14: PSNR and SSIM result of resolution enhancement of “Mother & 

daughter” video sequence obtained from Vandewalle and SANC SR versus MBSR 

using NEDI technique for 200 consecutive frames. 
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Frame 59: a                             b                     c (30.12, 0.9108)        d ( 33.89, 0.9458) 

                               

Frame 80: a                                b                  c (30.14, 0.9114)        d (33.75, 0.9444) 
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Frame 195: a                            b                    c(29.93, 0.9085)          d(33.52, 0.9466)   

                                                       

Figure 3. 15: Result of different SR methods on ”Mother & daughter” video frames 

(PSNR, SSIM in parenthesis),(a) Reference HR frame. (b) Input LR frame. (c) SR 

using [54] [55] (d) MBSR using NEDI technique. 

                                 
Frame 7: a                              b                   c (26.74, 0.8157)      d (29.18, 0.8750) 
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Frame 68: a                             b                 c (26.46, 0.8142)       d (29.10, 0.8751)                        

           
Frame 120: a                              b               c (26.93, 0.8173)      d (29.62, 0.8772) 

 

Figure 3. 16: Result of different SR methods on “Container” video frames (PSNR, 

SSIM in parenthesis), (a) Reference HR frame. (b) Input LR frame. (c) SR using [54] 

[55] (d) MBSR using NEDI technique. 
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Frame 3: a                              b                     c (29.23, 0.9310)     d (33.45, 0.9522)                    

        

Frame 106: a                              b                c (29.02, 0.9315)      d (33.48, 0.9521) 

                   

  Frame 165: a                             b                   c (29.48, 0.9366)    d (33.85, 0.9544) 

Figure 3. 17: Result of different SR methods on “Akiyo” video frames (PSNR, SSIM 

in parenthesis), (a) Reference HR frame. (b) Input LR frame. (c) SR using [54] [55] 

(d) MBSR using NEDI technique. 

 

Figure 3.15, figure 3.16 and figure 3.17 show frames from “Mother & daughter”, 

“Container” and “Akiyo” which are randomly selected for visual analysis of the 

generated results.The visual improvement of the MBSR using NEDI technique in 
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comparison to the classical SR is based on the fact that we are separating the motion 

and the static regions to be treated differently. The motion parts benefit from the 

calculated motion parameters in the registration process. The block based approach 

also provides more accurate registration of the consecutive frames. This is simply 

because localized registration is more efficient than global registration of the entire 

frame. Furthermore, using DT-CWT based decomposition with 6 directions preserves 

the integrity of the high frequency components such as edges throughout the this SR 

process. 

The performance of the MBSR using NEDI technique is compared with the state of 

the art Generalized NLM-SR presented by Protter et.al[81].Three real video sequences, 

“Foreman”, “Miss America” and “Suzie” are used in this experiment. The average 

PSNR and SSIM results on these test sequences are shown in Table 3.3. As you noticed, 

MBSR using NEDI technique generates better results in comparison to NL-Means 

method in most of the cases.  Precise motion estimation and using the information of 

several LR images are the advantage of the MBSR using NEDI technique over the 

challenging NLM-SR. The PSNR and SSIM of each super resolved frame in 

“Foreman” sequence is plotted in figure 3.18 for Protter et al. method versus MBSR 

using NEDI technique. The PSNR and SSIM values are higher for the MBSR using 

NEDI technique when compared with NLM-SR [81]. Figure 3.19 shows visual results 

of this comparison. The results show that NLM-SR method produces excessively sharp 

edges in the form of block effects while the MBSR using NEDI technique does not 

suffer from this problem. 
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Figure 3. 18: PSNR result of resolution enhancement of “Foreman” video sequence 

obtained from Protter et al. SR versus MBSR using NEDI technique for various 

frames. 
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                         (a) 

 

                         (b) (PSNR=29.35 SSIM=0.8991) 

                                                                      

                          (c)  (PSNR=31.74 SSIM=0.9168) 

                      

Figure 3. 19:  (a) Reference HR image (12th frame) of Foreman video sequence. (b)  

Protter et al. super resolution (c) MBSR using NEDI technique.  

 

Groundtruth

Protter et.al

Proposed



 

75 

 

Table 3. 3: The average PSNR (dB) and SSIM values of different resolution 

enhancement methods on the test video sequences. 

Video Sequence 
Protter et.al [81] MBSR using NEDI technique 

SSIM PSNR SSIM PSNR 

Foreman 0.8932 29.01 0.9129 31.51 

Miss America 0.9165 35.47 0.9261 35.33 

Suzie 0.8770 32.60 0.8765 33.01 

 

Another simulation investigates the effect of motion region detection on the 

registration part of super resolution algorithms. In this simulation, each frame of the 

synthetic video sequence (with 100 frames) is formed by rotating and translating an 

image in the middle of a constant background image. The size of frames is 256x256 

and the motion region has the size of 64x64. The rotation and translation parameters 

are known and varying in each frame in comparison to the neighbor frame.  

 

 

 

 

 

 

                             (a)                                                                     (b) 

Figure 3. 20: Frame (b) is the translated and rotated version of frame (a). 

As expected and shown in Table 3.4, the rotation and translation parameters obtained 

by different registration methods have less error (in terms of degrees for rotation and 

pixels for translation) in the case of block based registration. Figure 3.20 shows two 
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frame of this video sequence. The frame shown in Figure 3.20 (b) is the translated and 

rotated version of the frame shown in Figure 3.20 (a). 

Table 3. 4: Absolute rotational and translational errors for the synthetic test video 

sequence. 

Method  
Average Rotation 

error (10 degrees) 

Average horizontal 

shift error (10 pixels) 

Average vertical shift 

error (10 pixels) 

Keren  10.56 3.96 4.17 

Block based keren 1.18 1.04 0.83 

Marcel 13.25 4.70 6.10 

Block based Marcel 2.34 1.40 1.30 

Vandewalle 11.24 5.13 5.40 

Block based Vandewalle 1.01 1.18 0.87 
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CHAPTER 4  

THE PROPOSED MOTION BLOCK BASED VIDEO 

SUPER-RESOLUTION 

  

4.1 Introduction 

 

 When a number of low resolution images hold slightly different perspectives 

of the same frame, by employing an accurate global registration method, the obtained 

total information about the frame surpasses information from any single frame. When 

camera moves and the scene are stationary, the relative displacements are global since 

the whole frame is displaced. In this case, the above mentioned registration methods 

are able to produce precise results. However, if there are individual objects moving 

within a frame, it is beneficial to identify the local motion which is determining the 

motion of each object individually. If an object is static in all frames, no extra 

information can be gained. Note that, wrong registration can result in an image with a 

lower quality than the input LR image.  

To overcome this problem a block based motion estimation technique using 

optical flow estimation is proposed. Optical flow estimation is a method to approximate 

the displacement field between two images. Lucas et al.[83] and Horn et al.[84] were 

the first researchers to introduce algorithms in this research area. Later on, many new 

concepts were presented for dealing with shortcomings of previous models [85, 86]. 

Brox et al. [34] developed an algorithm for computing optical flow by combining a 
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brightness constancy assumption, a gradient constancy assumption, and a 

discontinuity-preserving spatio-temporal smoothness constraint. In this work Brox et 

al. optical flow method has been adapted for estimating the motion field between 

consecutive frames. 

This thesis presents a new video super resolution technique which consists of 

three modules: pre-processing module, motion block processing module and post 

processing module. At the pre-processing module, using an optical flow estimation 

method [34] the input LR frame is divided into motion and static blocks. A classical 

SR is applied on the static blocks which generates the high resolution static region. The 

obtained motion blocks from the pre-processing module go through a reconstruction 

process in the initial motion block reconstruction phase of the motion block processing 

module in order to produce the high resolution motion blocks. Then, the occluded 

blocks, which deteriorate the accuracy of the registration process, are identified by 

calculating an adaptive threshold for each block and are replaced with an interpolated 

motion block, which more accurately characterizes the occluded region. The last 

module is the post processing module. At this module, since the blocking artifacts often 

occur at boundaries between the interpolated occluded blocks and the super resolved 

blocks, a simple de-blocking filter is applied to the block boundaries. Finally, a de-

blurring process is applied to generate the output super resolved frame. The de-blurring 

is achieved by adding the high frequency subbands of the DWT based interpolated LR 

input frame to the super resolved frame. 

In order to evaluate the performance of the proposed technique, four benchmark 

CIF video sequences, ice, foreman, news and ice are used. The performance of the 
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proposed technique in terms of PSNR values and visual quality shows the superiority 

of the technique presented over the alternative methods in the literature.  

The rest of this chapter is organized as follows: section 2 presents the proposed SR 

technique. The experimental results and discussion is provided in section 3. Finally we 

concluded in section 4. 

4.2 Proposed resolution enhancement method 

Multiframe SR improves the spatial resolution of the output frames by 

combining information of a sequence of subpixel displaced low-resolution frames. The 

first step in a Multiframe SR is motion estimation. The objective of motion estimation 

in super resolution is to find a prediction of the pixel displacements in an image with 

respect to a reference image. Using the computed motion estimation the images are 

being registered for further processing. Accurate image registration is a fundamental 

stage in all Super-Resolution processes. Various image registration methods [3, 53, 54] 

produce good results under global translational motion. However, in practical 

applications, the global motion pattern is rarely found in the real LR inputs.Instead, 

typically a combination of isolated local displacements characterizes the motion. 

Therefore, global registration algorithms are not necessarily appropriate for video 

super resolution tasks. Interpolating the LR image results in a higher resolution image 

in comparison to a super resolved image with inappropriate image registration.  

In this work a new super resolution technique based on the localization of the 

motion and static regions in consecutive frames is proposed. Block diagram of the 

proposed super resolution technique is shown in figure 4.1. The method consists of 

three modules: pre-processing, motion block processing and post processing. The 

proceeding subsections explain these three modules in detail.  
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Figure 4. 1: Block diagram of the proposed super resolution technique. 

 

 

4.2.1 Pre- processing module 

The inputs to the proposed technique are three consecutive frames, in which, 

the middle frame is the reference frame to be super resolved. Let In-1, I n and I n+1denote 
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the three input frames which are a frame before the reference frame, the reference frame 

and the frame after the reference frame respectively.  

 

MVnb(x,y) MVnf(x,y)

In-1
In In+1

 

 

Figure 4. 2: Two motion vectors between three low resolution input frames, 

corresponding to a motion block at the reference frame. 

 

A more accurate estimation of the local displacements in the consecutive 

frames is utilized by dividing each frame into blocks of size 8x8 pixels. Matrices MVnb 

and MVnf contain the estimated motion vectors which are obtained by applying motion 

estimation [34] on In and In-1, and, In and In+1, respectively. Figure 4.2 illustrates the 

motion blocks on the three consecutive frames and the motion vectors MVnb and MVnf 

in one of the 8x8 motion block. Based on the magnitude of the motion vectors assigned 

to each block, the block is labeled as static or motion block as follows:   

Given the three consecutive frames, 

),(),,(),,( 11 yxIyxIyxI nnn   

then 
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)x,yk(staticblocyxMVyxMVif

)x,yk(motionblocyxMVyxMVif

nbnf

nbnf





0),(&0),(

0),(0),(
 (26) 

where x and y are the row and the column location of the block at the frame 

respectively. Operators and & correspond to logical OR and AND operations 

respectively. At this point motion blocks are separated from the static blocks. Static 

blocks are sent to be super resolved and generate the high resolution background, Hns, 

using one of the state of the art [55] reconstruction methods. 

Figure 4.3 shows the detailed block diagram of the pre-processing module. As 

shown in figure 4.3 an interpolation method is applied to the input reference frame In. 

The resulting image is called Hnd which will be used in the other two modules. The 

reason is clarified in section 5.2.2.  
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Figure 4. 3: Detailed block diagram of the pre-processing module.  
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4.2.2 Motion block processing module 

4.2.2.1 Initial motion block reconstruction 

Here, the focus is to register the motion blocks in an accurate manner. According 

to MVnb and MVnf each block in the reference frame In (x,y) has two corresponding 

matching blocks, In-1 (x+xnb ,y+ynb)  and In+1 (x+xnf ,y+ynf) in the other two frames. 

Where (xnb, ynb) and (xnf, ynf) are the motion vectors associated with block In (x,y) in 

frames, In-1 and In+1 respectively. Here, x and y corresponds, to block indices in 

horizontal and vertical directions, respectively. Top module of Figure 4.4 explains the 

details of the initial motion block reconstruction.  
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Figure 4. 4:  Block diagram of the motion block processing consisting of   initial and 

final motion block reconstruction.  
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In each frame there exist some blocks with no similar blocks in the neighboring 

frames. These blocks are declared as occluded blocks. Occlusion refers to the 

appearance of new objects and disappearance of the existing objects when comparing 

frames. Super resolving the occluded blocks is a discussion which is not considered in 

many super resolution algorithms. However occluded blocks can be found in many 

frames of the video sequences. Detecting and super resolving these blocks with a 

proper approach, results in a frame with higher resolution.  

 

 

                                                                       

                                                     (a)                               (b) 

              

                                                    (c)                                (d) 

 

Figure 4. 5: Occluded area in frame 90 and 91 of Foreman video sequence. (a) and(b) 

show occluded areas in frames 90 and 91 respectively. (c) Super resolved area using 

Keren et al.[3] registration and SANC reconstruction[55]. (d) Interpolated area using 

DWT based interpolation [72]. 
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Figure 4.5 shows frame numbers 90 and 91 of the Foreman video sequence. In 

frame 90 and 91 the corresponding area is regarded as occluded due to the fact that in 

frame 90 there is no teeth where in frame 91 teeth are noticeable. The appearance of 

the new object, which in this case is teeth, causes occlusion. The proposed technique 

employs DWT based interpolation in order to obtain the high resolution occluded areas.   

figure 4.5 (c) and (d) show the super resolved occluded blocks in figure 4.5 (a) and (b)  

using a classical SR (Keren et al.[3] registration and SANC reconstruction [55] )and 

DWT based interpolation [72] respectively. Given that frame 91 is the reference frame, 

as you can see interpolation based method outperforms the super resolution in the case 

of occluded areas. 

In order to identify the occluded blocks, the motion compensated error (MC 

error) is calculated for each block using the sum of absolute differences (SAD). The 

formula is as follows: 

 

    ),( ),(),( 1 nbnbnnnb yyxxIyxIyxSAD  

   ),(),(),( 1 nfnfnnnf yyxxIyxIyxSAD  

(27) 

The computed MC errors are compared with an adaptive threshold Tn(x,y), so 

that if the compared error is larger than the threshold the block is declared to be 

occluded.  
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occluded)),(),((&)),(),((  yxTyxSADyxTyxSADif nnfnnb  (3) 

Typically, the MC error is proportional to the variance, σn(x,y), of the absolute 

difference (AD) of ADnb(x,y) and ADnf(x,y). A threshold is adaptively determined as 

follows:  

Tn(x,y) = α. σn(x,y) + Tm (28) 

Tm and α, are heuristically founded to be 140 and 0.8 using several training 

frames which are different than the test video sequences. Tm is the average of all the 

thresholds that the proposed technique obtains the best PSNR for the training frames. 

α is determined from the boundary between the lower 90% and upper 10% of the 

histogram of σ.  

After separating the occluded and non-occluded motion blocks, a state of the 

art reconstruction method is used to enhance the resolution of the non-occluded motion 

blocks and form the high resolution image Hnb and Hnf. These reconstructed blocks will 

be inserted into the super resolved background. However, a main drawback of 

reconstruction algorithms is the generated artifacts within a maximum 4 pixels distance 

of the boundary of reconstructed image. To overcome this problem, the size of the 

blocks is expanded to 2+8+2by 2+8+2which after the reconstruction process the 

central λ8xλ8 pixels region of it is inserted into the final super resolved image. Where, 

λ is the enlarging factor. The details of these block expansions are shown in figure 4.6. 
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Figure 4. 6: Three consecutive frames In-1Inand In+1are aligned on a common motion 

block. The blocks are expanded by 2 pixels from sides in each frame. 

Four motion blocks of the 88th frame of News sequence are shown in figure 

4.7(a). Figure 4.7(b) is the reconstructed motion blocks without block expansion by the 

enlargement factor of 2. The observed artifacts around the boundary of the 

reconstructed block are disappeared in figure 4.7(c). This is achieved by applying block 

expansion before reconstruction. The blocks shown in figure 4.7 (c), are extracted from 

the central 16x16 pixels of the reconstructed expanded motion block.   

 

(a)                    (b)                             (c) 

 

Figure 4. 7: A part of the 88th frame of News with four motion blocks: (a) reference 

blocks (b) reconstructed blocks without block expansion (c) reconstructed blocks 

with block expansion.  
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4.2.2.2 Final motion block reconstruction 

 

After reconstructing the motion blocks in Hnb(x,y) and Hnf(x,y), it is time to combine 

them into a single high resolution motion block. In+1 (x+xnf ,y+ynf) and In-1(x+xnb 

,y+ynb) both contain information which help in reconstructing the high resolution block 

Hn(x,y) from In(x,y). In the proposed technique during the SR process the attempt is to 

involve more relevant information which can generate a block with higher resolution. 

It is clear that In+1 (x+xnf ,y+ynf) and In-1(x+xnb ,y+ynb) does not hold the same 

information. It is beneficial to involve the block with more relevant information to the 

reference frame, in the SR process. Bottom module of Figure 4.4 illustrates the details 

of the final motion block reconstruction. 

In the proposed technique a larger weight is assigned to the block with more 

relevant information to the reference block. Determining the weights is of crucial 

importance that affects the quality of the output block. In this context, SADnb(x,y) and 

SADnf(x,y) are used to calculate the weight of resolution enhanced motion blocks (i.e. 

Hnf(x,y) and Hnb(x,y)). Since the block with less SAD contains more relevant 

information to the reference block, a higher weight is assigned to the matching block 

and a formula is designated as follows: 
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One of the problems in image registration is determining the motion vectors in 

the areas of occlusion. Many algorithms try to solve this problem [87-89] however; 

their main disadvantage is their high computational complexity. In spite of all these 

methods, rather than finding a motion vector for the occluded blocks, we try to 

reconstruct the block using the available blocks after interpolation. As mentioned 

interpolating an image produces more accurate result than super resolving it with 

wrong image registration. If block is located at an occluded area, the most efficient 

way is to interpolate the reference block. Recently wavelet based interpolation 

algorithms show outstanding results in comparison to other well-known interpolation 

methods. Wavelet-based methods [72, 76 and 90, 91] enhanced the image resolution 

by estimating the preserved high frequency information from the given images. They 

were based on the assumption that the image to be enhanced was the low frequency 

subband among wavelet-transformed subbands of the original one and the target is to 

estimate the high frequency subbands of wavelet transform, so that a resolution-

enhanced image can be obtained. Using this fact, the occluded block is replaced by its 

interpolated LR block using DWT based interpolation [72]. 

The reconstruction of the occluded block or the block with wrong motion 

estimation is formulated as below: 
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where, Hnd (x,y) denote the high resolution interpolated block In (x,y). 

  After, all of the motion blocks in the high resolution frame are generated; these 

blocks are inserted into the super resolved static background. This process completes 

the respective high resolution frame which will go through the post processing in the 

next module. Bottom part of figure 4.4 illustrates the block diagram of the final motion 

block reconstruction. 

 

4.2.3 Post processing module 

Both high resolution motion and static blocks are generated using same super 

resolution algorithm. However the occluded blocks are resolution enhanced using 

DWT based interpolation method. Therefore, at the boundaries between the 

interpolated occluded blocks and super resolved motion blocks, we can observe 

blocking artifacts, as the blocks are derived from different algorithms. To decrease the 

blocking artifacts, a smoothing filter is applied to the boundary pixels (Figure 4.8) [92]. 
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This is done by averaging the pixels at the boundaries of the neighboring blocks. The 

remaining pixels at the center of the blocks stay unchanged. 

Interpolated 

block

Super resolved 

block

 

 

Figure 4. 8: The boundary (yellow) pixels of two neighbor blocks filtered using 

averaging. 

 

The loss of high frequency components produces blurring. If the high frequency 

components could be restored, then image would posse its normal contrast for the 

relatively smaller objects. A sharpening process is applied to restore the high 

frequencies by adding a high frequency layer to the initial estimated high resolution 

frame Hn. As presented in [72] since the LR image is processed at different high 

frequency channels, the interpolated Hnd carries extra information at its high 

frequencies.  Thus, in the following algorithm we add the high frequencies of the Hnd 

to Hn in order to improve the resolution of Hn. The steps of the algorithm are as follows: 

 

 

 

____________________________________________________________________ 
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Step 1:      Hnd is decomposed into different low and high frequency subbands using 

discrete wavelet transform (DWT).  

Step 2:      At the LL subband   the coarse features that are illustrated by low frequencies 

exist. On the other hand, fine details presented by higher frequency are 

available in the high frequency subbands. The information in the LL subband 

is not required. Thus, by placing zero instead of LL subband all the low 

frequency information will be removed. 

Step 3:      Composing all the subbands using inverse DWT (IDWT), generates a full 

high frequency image (HHnd). 

Step 4:      Finally, enhancement of the high frequency details is achieved by adding 

the high frequency layer (HHnd) to the initial estimated high resolution frame 

Hn. This produces an end result SRn in which the high frequencies have been 

boosted closer to the original high resolution frame and the low frequencies 

remain as before. 

Figure 4.9 shows the sharpening algorithm in details. 

____________________________________________________________________ 
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Figure 4. 9: Block diagram of the sharpening process. 

4.3 Experimental Results 

In order to show the performance of the proposed technique, four benchmark 

video sequences, Ice, Foreman, News and Container are used in this section. The sizes 

of the LR video sequences are 256x256 pixels which are the blurred and down-sampled 

version of the original videos of size 512x512 pixels. The frame rate of all the test 

video sequences is 30 frames per second and each of the videos has 200 frames.  

At the pre-processing module the motion blocks are identified using the optical 

flow algorithm [34]. A motion vector is assigned to each block of equal size in the LR 

reference frame according to its displacement in the neighboring frames.  First 

experiment is dedicated to determine an optimum size for the blocks. The density of 

motion fields is decreased from one motion vector per 8x8 pixel blocks to one motion 

vector per 16x16, 32x32 and 64x64 pixel blocks. The minimum block size is chosen 

as 8x8 because this is the limit size for a block to be reconstructed using the 

reconstruction method [55]. Each motion block and its matching block in the 

neighboring frame are found using the computed motion vector. The average PSNR of 
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each motion block and its matching blocks are calculated and shown in Table 4.1. As 

can be noticed, the highest PSNR is achieved for the blocks of size 8x8 pixels since 

large block sizes decreases the motion estimation accuracy. Therefore, the block size 

8x8 pixels is chosen for identifying and reconstructing the motion blocks in the 

proposed SR technique. 

Table 4. 1: Average PSNR of the motion compensated blocks with different sizes in 

the various test sequences.   

BLOCK 

SIZE 

AVERAGE PSNR VALUES FOR BENCHMARK VIDEO SEQUENCES 

(dB) 

FOREMAN NEWS CONTAINER ICE 

64x64 18.80 27.44 28.24 20.02 

32x32 21.62 30.81 31.73 22.45 

16x16 25.70 32.48 33.51 25.02 

8x8 29.10 34.45 35.34 29.82 

In this experiment the results achieved by applying “final motion 

reconstruction” is discussed. As stated before, a weight is assigned to each of the 

reconstructed blocks (Hnb(x,y)  and Hnf(x,y)) for final reconstruction process. These 

weights are given to each block according to their similarity with the reference block. 

To show the effect of the assigned weights, the blocks are once reconstructed without 

any weight.  This is done by simply averaging the blocks. The results are compared 

with the reconstructed weighted blocks. Table 4.2 illustrates the average PSNR of this 

comparison. The obtained PSNR values approve the superiority of the reconstructed 

weighted blocks over the averaged blocks. 
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Table 4. 2: Average PSNR of the reconstructed blocks with and without 

assigning weight. 

Weight  

AVERAGE PSNR VALUES FOR BENCHMARK VIDEO 

SEQUENCES (dB) 

FOREMAN NEWS CONTAINER ICE 

without weight 39.35 37.18 36.22 38.65 

with weight 39.90 37.43 36.46 38.85 

As discussed before the high frequency components of the resolution enhanced 

input reference frame is added to the super resolved input LR frame. The average PSNR 

of the super resolved frames before and after high frequency addition is evaluated in 

the last two rows in Table 4.3. The comparison shows that DWT based interpolation 

contains useful information in which it increased the average PSNR of the video 

frames. This is due to the fact that DWT based interpolation has the ability to estimate 

the preserved high frequency information of the given LR frame with high accuracy. 

We compared the performance of the proposed technique with those of six state 

of the art algorithms: NEDI [48], DWT based interpolation[34], Keren et al. 

registration[3] and SANC reconstruction[55], Marcel et al. registration[53] and SANC 

reconstruction and Vandewalle et al. registration[54] and SANC reconstruction. 

Emphasizing the edges (high frequency) of the images using DWT based interpolation 

[34], causes enhancement in the resolution of the images. This method preserves the 

edges of the interpolated image (using bicubic interpolation) in three orientations of 0, 

45 and 90 degrees.  By using directional high-pass filters, the performance of this 

method is evaluated and called as, HPF based interpolation in Table 4.3. To do this 

experiment, first, bicubic interpolation is applied to the low resolution frame. 

Afterwards, three high-pass filters with the directions similar to DWT is chosen, and 

the edges of the interpolated frame are emphasized in these directions. Table 4.3 shows 
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the average PSNR results of the super resolved test videos using different resolution 

enhancement methods. Note that the proposed technique provides better results in 

terms of PSNR measures and visual quality. 

Table 4. 3: The average PSNR results of the super resolved test videos using different 

resolution enhancement methods (enlargement factor of 2). 

Resolution Enhancement Method 

AVERAGE PSNR VALUES FOR BENCHMARK 

VIDEO SEQUENCES (dB) 

FOREMAN NEWS CONTAINER ICE 

NEDI[48] 35.01 32.29 31.41 34.68 

Keren reg.[3]& SANC Recon.[55] 36.20 32.50 31.72 35.47 

Marcel reg.[53]& SANC Recon.[55] 36.16 32.53 31.66 35.33 

Vandewalle reg.[54]& SANC Recon.[55] 36.28 32.65 31.74 35.61 

DWT [72] 37.02 34.54 33.72 36.80 

HPF based interpolation 35.72 32.83 32.82 35.42 

Proposed SR without sharpening 39.01 36.88 35.60 38.12 

Proposed SR with sharpening 39.90 37.43 36.46 38.85 

 

Figure 4.10 shows the frame by frame PSNR values of super resolved Ice 

sequence, using different algorithms. The superiority of the proposed technique over 

the conventional SR algorithms is due to the fact that the registration is performed more 

precisely, the occluded blocks are identified and treated properly and the loss of the 

high frequency is decreased. 
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Figure 4. 10: Frame by frame PSNR results of resolution enhancement of “Ice” video 

sequence obtained from various resolution enhancement methods versus proposed 

technique. 

 

Figure 4.11 and Figure 4.12 shows a part of super resolved 100th and 50th frames 

of Foreman and Container video sequences using various algorithms, respectively.  
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(a) 

 

(b) 
 

(c) 
 

(d) 
 

(e) 
 

(f) 
 

Figure 4. 11: A part of 100th frame of Foreman video sequence: (a) Reference HR 

image, (b) Input LR image, (c) Resolution-enhanced image by NEDI, (d) Marcel 

registration and SANC reconstruction, (e) DWT, (f) proposed technique. 
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                             (c)                                                        (d)                                                                   

 

                           (e)                                                           (f) 

Figure 4. 12: A part of 50th frame of Container video sequence: (a) Reference HR 

image, (b) Input LR image, (c) Resolution-enhanced image by NEDI, (d) Keren reg. 

and SANC rec., (e) DWT, (f) proposed technique. 

 

In order show the importance of accurate registration, different part of 3rd frame 

is illustrated in figure 4.13 and figure 4.14. Figure 4.13 contains motion blocks in which 

the erroneous motion displacements are estimated using Vandewalle registration 

method. The quality of the reconstructed part using NEDI interpolation is better than 

nedicut classic srcut

dwtcut mysrcut
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the one reconstructed by Vandewalle-SANC super resolution. The PSNR of these parts 

are compared. As you can see, the proposed technique generates the best results; 

however because of inaccurate registration of Vandewalle registration method NEDI 

outperforms the Vandewalle-SANC super resolution. Figure 4.14 shows another part 

of the same frame in which the registration using Vandewalle registration method is 

more precise. As you notice, in this case Vandewalle-SANC super resolution 

outperforms NEDI in both PSNR value and visual quality.  

Note that the proposed technique achieves much better visual and PSNR results 

in all the cases.  

   

                      (a)                                   (b)                     (c) PSNR=34.21 
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          (d)PSNR=31.96 dB                  (e) PSNR=24.65 

 

Figure 4. 13: A part of 3rd frame of News video sequence, (a) reference HR image. 

(b) input LR image (c) Resolution-enhanced input LR image by proposed technique 

(d) NEDI  (e) Vandewalle registration and SANC reconstruction with incorrect 

registration. 

 

 

 

nedicut classic srcut
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                         (a)                             (b)                   (c) PSNR=30.72 dB 

 

 

(d) PSNR=31.23 dB                            (e)PSNR=36.25 dB 

 

Figure 4. 14: A part of 3rd frame of News video sequence, (a) reference HR image. 

(b) input LR image (c) Resolution-enhanced input LR image by NEDI (d) 

Vandewalle registration and SANC reconstruction with correct registration (e) 

proposed technique. 

 In chapter 3, we have demonstrated various super resolution techniques called 

MSR, MBSR and MBSR using NEDI, in which the size of super resolved frames were 
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four times larger than the size of input low resolution frames. However, this chapter 

presented a super resolution technique that changes the size of input low resolution 

frames by a factor of two. In order to compare the performances of these techniques, 

we need to have the same enlargement factor. To do this, the proposed SR is repeated 

two times on the test video sequences and the average PSNR and SSIM results are 

shown in Table 4.4.  

Table 4. 4: The average PSNR and SSIM results of the super resolved test videos 

using MSR, MBSR and MBSR using NEDI and Proposed SR methods (e. f: 4). 

Resolution Enhancement Method 

AVERAGE PSNR AND SSIM VALUES FOR 

BENCHMARK VIDEO SEQUENCES (dB) 

FOREMAN NEWS ICE 

SSIM PSNR SSIM PSNR SSIM PSNR 

MSR 0.9280 31.10 0.8913 25.02 0.9501 31.33 

MBSR 0.9399 31.80 0.9008 25.89 0.9600 32.12 

MBSR using NEDI 0.9402 32.21 0.9010 26.15 0.9601 32.4 

Proposed SR 0.9605 32.99 0.9350 27.47 0.970 33.00 

 

Figures 4.15, 4.16 and 4.17 show a part of super resolved 25th , 5th and 13th 

frames of Foreman, Ice and News video sequences using MBSR using NEDI and 

Proposed SR algorithms, respectively.  

The proposed SR has the best performance when the enlargement factor is two. 

However, Table 4.4 and Figures 4.15, 4.16 and 4.17 show that the proposed SR 

achieves better visual, PSNR and SSIM results also for the enlargement factor of four 

in comparison to the other SR methods. 
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           (a)                                                   (b) 

 

 

 

 

 

 

 

  (c) PSNR=31.44 SSIM=0.9325        (d) PSNR=32.21 SSIM=0.9538         

Figure 4. 15: A part of 25th frame of foreman video sequence, (a) reference HR 

image. (b) input LR image (c) Resolution-enhanced input LR image by MBSR using 

NEDI (d) proposed technique. 
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  (c) PSNR=30.02 SSIM=0.9399        (d) PSNR=31.02 SSIM=0.9554         

Figure 4. 16: A part of 5th frame of foreman video sequence, (a) reference HR image. 

(b) input LR image (c) Resolution-enhanced input LR image by MBSR using NEDI 

(d) proposed technique. 
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(c) PSNR=26.16 SSIM=0.9001        (d) PSNR=27.48 SSIM=0.9344         

Figure 4. 17: A part of 13th frame of foreman video sequence, (a) reference HR 

image. (b) input LR image (c) Resolution-enhanced input LR image by MBSR using 

NEDI (d) proposed technique. 
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CHAPTER 5   

CONCLUSION and FUTURE WORK 

 

5.1  Conclusions 

In this thesis a motion block based super resolution technique for low resolution 

video enhancement is proposed. Super resolution can be used for enhancing the 

resolution of images or video sequences. However, because of the error rate, super 

resolving video sequences is not a common procedure to enhance the resolution of 

video sequence. In order to overcome this problem we proposed a method by the help 

of multi frame super resolution approaches which performs less error. 

The proposed technique presented a novel video super resolution technique based 

on the motion, occluded and static blocks of the input LR frames. Precise registration 

was obtained by dividing the frames into motion and static blocks using optical flow 

algorithm. The new SR technique proposed a new threshold calculation for identifying 

the occluded blocks based on the mean and the variance of the motion blocks. It solves 

the problem of occluded block reconstruction by replacing them with the interpolated 

blocks using DWT interpolation. A new sharpening process formed the super resolved 

output frame using the high frequency sub-bands of the DWT based interpolated 

reference frame.  

The method implemented and investigated with a large number of test sequences. 

Experimental results demonstrated that, the proposed SR technique outperforms the 

conventional super resolution algorithms in terms of PSNR measures and visual 

quality. This is mainly due to the fact that the images are registered more accurately, 
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when compared with the other registration methods. Furthermore, it provides 

information about occlusion. 

 

5.2 Future Work 

Although the system that we have established provides better results in terms 

of PSNR and visual quality in comparison to the other methods, it is considered to have 

moderate computational complexity, which prevents it from being used in real-time 

applications. Using other programming languages such as C or C++ can be helpful for 

possible real time applications.  

In addition, reducing the size of blocks in super resolving images, allows the 

system to function faster. Lack of information in a small block prevents a precise 

reconstruction in all investigated super resolution methods. We believe that applying a 

super resolution algorithm, which can work on pixels or use only the 2d motion object 

instead of the rectangular region not only can reduce the computational complexity but 

also can increase the quality of the super resolved image. 
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