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ABSTRACT 

In this thesis we study physics on the rotating Earth by studying the moving 

coordinate systems and rotating coordinate systems. First, we illustrate briefly some kind 

of translations like Galilean transformation which consists of two inertial frames, one of 

them moving with respect the other stationary We show how to transform between the 

two reference frames. Then we give the Lorentz transformations in which time is no 

more absolute when the speed approaches to the speed of light. We review Abelian and 

Non-Abelian groups. But then we will focus on the Newton’s equations of motion on the 

Earth and we will explain in details the derivation of these equations. We derive both the 

Coriolis and centrifugal forces. 

Later on we explain some applications about rotating Earth. The most important 

example is a projectile motion. We illustrate by derivation how it is the best way to show   

the reason of the deflections of missiles in long range distances. Another famous 

example is the Foucault pendulum, which is an important example to prove that the 

Earth is rotating about its axis. And finally, we give some applications to show the effect 

of Coriolis and centrifugal forces in our daily life.  

 

 

Keywords: Coriolis and Centrifugal Force, Foucault Pendulum. 
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ÖZ 

 

                  Hareketli ve dönen  koordinat sistemlerinin dünya üzerindeki fiziğe etkileri 

incelenmiştir.Önce birbirine göre  hareketli Galile koordinat sistemleri göz önüne 

alınmıştır.İki koordinat sistemi arasındaki dönüşüm verilmiştir.Işık hızına yakın 

durumlarda, ki zamanın mutlak özelliği geçersiz olur Lorentz dönüşümleri ele alınmıştır. 

Abel/ Abel  olmayan gruplar gözden geçirilmiştir.Dönen dünya üzerindeki  Newton  

hareket denklemleri ile  Coriolis ve merkezkaç kuvetler türetilmiştir. Fırlatılmış 

cisimlerde dönmenin etkileri   incelenmiştir. Uzun menzilli roket hareketindeki sapmalar 

iyi bir örnek olarak ele alınmıştır .Foucauft sarkacı dünyanin  dönme etkisine başka  bir 

önemli örnek teşkil etmekte olup dünyanın dönüşünü  de kanıtlamaktadır.Coriolis ve  

merkezkaç kuvetlerinin günlük hayatımızdaki örnekleri irdelenmiştir. 

 

 

 

 

 

 

 

Anahtar Kelimeler: Coriolis ve Merkezkaç Kuvetleri, Foucault Sarkacı . 



v 

 

ACKNOWLEDGMENTS 

I would like to extend my deepest thanks and gratitude to Prof. Dr. Mustafa 

Halilsoy the chair of our department and my supervisor for devoting a lot of his valuable 

time for me to complete this research, he guided me and gave me countless advices, with 

enormous patience, and the door of his office was always open to me, and I would like 

to mention that by putting the knowledge I gained from his course into practice, I 

learned a lot. Moreover, I want to extend my thanks to Asst. Prof. Dr. Haval Y. Yacoob 

for his attention and encouragement. . It is also necessary for me to cordially thank Asst. 

Prof.  Dr.Sarkawt Sami, my loyal friend Jalal Yousef,  and my great friends who were 

always around to support. 

I would like to extend my appreciation for my parents, also I thank all my 

brothers and sisters and my family as well, I really appreciate the encouragement 

provided by my partner (Judy’s mother) during my study. 

 

 



vi 

 

TABLE OF CONTENTS 

ABSTRACT ...................................................................................................................... iii 

ÖZ ..................................................................................................................................... iv 

ACKNOWLEDGMENTS ................................................................................................. v 

LIST OF FIGURES ........................................................................................................ viii 

LIST OF SYMBOL/ABBREVIATIONS ......................................................................... ix 

1INTRODUCTION ........................................................................................................... 1 

2 INERTIAL AND NON INERTIOAL FRAMES............................................................ 6 

2.1 Introduction .............................................................................................................. 6 

2.2 Abelian and Non-Abelian Groups ........................................................................... 8 

2.3 Galilean Transformation .......................................................................................... 9 

2.4 Galilean Transformation in Matrix Former ........................................................... 12 

2.5 Lorentz Transformation in (1-1) Dimensions ........................................................ 14 

2.6 Coordinate Systems in Rotating Frames ................................................................ 16 

2.7 Moving Relative to Rotating Earth ........................................................................ 23 

2.8 Determine the Equation of Motion of a Particle Moving Near to Earth’s Surface 25 

2 3 APPLICATIONS ....................................................................................................... 28 

3.1 Projectile in General .............................................................................................. 28 

3.2 Apparent Weight (w`) ............................................................................................ 39 

3.3 True and Apparent Vertical ................................................................................... 40 

3.4 Centrifugal Force on Earth..................................................................................... 41 



vii 

 

3.6 Foucault Pendulum ................................................................................................ 44 

3.7 Coriolis Force on a Merry go Round ..................................................................... 46 

4 CONCLUSION ............................................................................................................. 48 

REFERENCES …………………………………………………………………………50 

 



viii 

 

LIST OF FIGURES 

Figure 1: Two Coordinate Systems .................................................................................... 8 

Figure 2: Galilean Transformation ................................................................................... 10 

Figure 3: Lorentz Transformation .................................................................................... 14 

Figure 4: Coordinate System in Rotating Frames ............................................................ 16 

Figure 5: Direction of Centrifugal Force (1) .................................................................... 22 

Figure 6:Direction of Centrifugal Force(2). ..................................................................... 23 

Figure 7: Two Coordinate System in Different Original ................................................. 23 

Figure 8: Moving of the Particle w.r.t Two Coordinates ................................................. 25 

Figure 9:  Projectile Motion ............................................................................................. 28 

Figure 10: Colatitudes Angle ........................................................................................... 39 

Figure 11: Apparent Weight ............................................................................................ 39 

Figure 12: Triangle .......................................................................................................... 40 

Figure 13: Centrifugal Force on Earth ............................................................................. 41 

Figure 14: Car in a Curved Line(2) .................................................................................. 42 

Figure 15:Car in a Curved Line(2) ................................................................................... 42 

Figure 16: Foucault  Pendulum(1) ................................................................................... 44 

Figure 17: Foucault Pendulum(2) .................................................................................... 44 

Figure 18: Merry go Round ............................................................................................. 46 

 



ix 

 

LIST OF SYMBOL/ABBREVIATIONS 

SO3   special orthogonal in 3-dimentions 

I   identity  

d   distance        

�⃗�   velocity  

X   distance 

t   time 

c   speed of light 

𝜔    angular velocity 

�̈�   acceleeration 

𝐹𝑐𝑜𝑟.   Coriolis force 

𝐹𝑐𝑒𝑛.   centrifugal force 

�̈�𝑓𝑖𝑥.   acceleration of fixed coordinate system 

�̈�𝑚𝑜𝑣.   acceleration of moving coordinate system 

F   force 

g   acceleration due to the gravity 

�̈�   acceleration in x-direction 

�̈�   acceleration in y-direction 

�̈�   acceleration in z-direction 

�̇�   velocity in x-direction 

�̇�   velocity in y-direction 



x 

 

�̇�   velocity in z-direction 

W`   apparent weight 

m   mass 

T   tension 

IF   inertial frame 

NIF   non inertial frame 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1 

1INTRODUCTION 

We live on a rotating Earth which at the same time rotates in an elliptical orbit 

around the Sun. Our solar system also moves both translational and rotationally in the 

Milky way galaxy. Ultimately everything is in motion relative to others in our universe 

and our universe undergoes an accelerated expansion for  the last 5 billion years. The 

reason of such accelerated expansion is due to the dark energy which may be attributed 

to the repulsive pressure existing in the universe. The fact that such a running away may 

not last for ever is due to the super massive black holes or wormholes lying at the heart 

of galaxies in our universe. Doıng physıcs ın such an evolutıonary envıronment becomes 

a state of art and thanks to the covarıant approach of general relativity proposed by 

Einstein ın 1916.This naturally modified Newtonian mechanics which used to be valid in 

an Inertial frame. Being universal the physical laws must be valid for all coordinate 

frames equally well. This is precisely what is meant by covariance of the physical 

laws[1]. Such an approach becomes physically feasible provided the laws of physics can 

be cast in to a tensor formalism [2,3]. Tensors are mathematically ‘good ‘objects that 

once they satisfy a relation/ equation it becomes satisfied in any other frames which are 

related to the original frame by a coordinate transformation. Physically, change of a 

coordinate frame amounts to a coordinate transformation from one frame to the other. 

Such transformations must obey certain basic requirements in order to be physically 
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admissible. For instance non-vanishing Jacobian, existence of inverse and the related 

properties cast the transformations into a canonical from which is said to form a 

particular mathematical class, named Group. Since every object moves translational and 

rotationally the Group that is to be taken into consideration is known as the Poincare 

group. This consists of an Abelian and Non-Abelian parts, so that over all the group that 

confront us is Non-Abelian. It is well-known that two successive rotations around 

different axes do not commute which is meant by Non-Abelian. However, if we restrict 

our operations into the common axis of rotation then we reduce to an Abelian subgroup 

of the overall larger group which is Non-Abelian. The concept of symmetry in physics 

relates to the transformation properties and among all these mathematical processes 

determination of invariants becomes essential. That is, the things that do not change 

while everything else is changing are the things that we label as invariants of the motion. 

To recall an analogy in the electromagnetic theory the combinations   ~ ( B2 ₋ E 2 ) and 

~ ( E ∙ B ), where E and B are the electric and magnetic fields, are frame independent 

and they are said to be the invariants of the electromagnetic field[3,4]. Similarly in 

Newton’s laws for instance, we have conservation of motion preserve their identity 

under certain classes of transformation of linear momentum under translational motion. 

This means from Newton’s second law 𝐹 ���⃗ = 𝑑𝑝�����⃗

𝑑𝑡
  that under translation no new forces 

arise to distort a given object. As a result a cube/ sphere or anything doesn’t become 

distorted under translation. Abelian character of successive translations is the reason 

why the object preserves its shape under translation and it relates to the conservation of 

linear momentum from Newton’s second law. When we come to rotations things change 

completely [5]. Although certain things do not change under rotation the physical laws 
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of Newton require modifications. The square of angular momentum, for instance, is an 

invariant under rotation whereas the angular momentum as a vector transforms in this 

process. As a matter of fact every vector change, in particular the velocity and 

acceleration vectors also do change and as a result the Newton’s laws change 

accordingly. The problem becomes therefore how to modify the Newton’s laws so that 

they become still applicable in a rotating frame. Since the time is considered ’absolute’ it 

doesn’t change from one frame to the other because the associated rule of transformation 

is the Galilean transformation. But once the speed among frames surpasses the classical 

limit and approach the speed of light then automatically the Galilean transformation is 

replaced by the Lorentz transformation in which time is no more absolute. In this 

project, however, we shall confine ourselves with the classical limit in which v << c  so 

that Lorentz transformation will be out of questions. 

  The rotation/ motion of our Earth around Sun and the motion of Sun /Solar 

system in the Galaxy will be ignored in this study. We shall consider only the rotation of 

Earth around its axis which is about Ω = 7.29 × 10-5 rad/sec . As a result, since all 

vectors change under rotation the Newton’s law of motion will change accordingly. The 

new version of the equation of motion will be derived and its consequences will be 

discussed. We shall give many examples from our daily life which change accordingly 

due to the rotation of Earth. To mention only one at this stage let us refer to rocket 

launching sites in our world. Cape Canaveral ( Florida  USA ), French Guiana ( in South 

America, for European spaces agency ( ESA) also) and Baikonur  (Kazakhistan) are all 

located nearer to the equators. The reason is to get extra advantage from the rotational 

velocity of the Earth. The choice of site causes an extra boost in velocity of the rocket up 

to 500 m/s, which amounts to saving fuel and money in the rocket launch process. 



4 

 

A simple pendulum processes on the rotating Earth, this may be used to prove,  

as it was done first by Foucault, that our Earth is rotating. The period of precession gives 

information about the location on the Earth. Depending on the parallel and meridian 

lines, i.e. latitude (colatitudes) angles, the precession period of a long pendulum changes 

and this may be used to identify any point on the Earth. 

The missiles or long ranged artilleries can’t reach their destination without taking 

into account the rotational effect of Earth. Global positioning system (GPS) also works 

feasible provided Earth’s rotation is taken into consideration, computed and loaded to 

the data. For further accuracy let us remark that the curvature of Earth due to Einstein’s 

general relativity must be added. It has been realized that the general relativistic effects 

even dominates over the special relativistic ones in the long range missile projectiles. In 

this project general relativistic contributions will be out of our scope but local effects of 

rotation are to be computed exactly. The true vertical/ weight of a projectile/ mass will 

be compared with the apparent one. Much of the physics that we are familiar in an 

inertial frame becomes modified in a non-inertial frame. Since we live on the surface of 

the Earth which rotates our frame automatically becomes a non-inertial frame. 

Fortunately Newton’s laws of motion can easily be formulated in a rotating/inertial 

frame [6]. In our calculation we shall use the rotational effects to the first order only that 

is, 𝜔2 ≈ 0 will be adopted for the square of the angular velocity to keep the  𝜔  only to 

the first order. Two famous non-inertial forces, namely the Coriolis and centrifugal 

forces will be investigated. It should be added that these two forces are not real, they 

arise only in non-inertial frame. In physics a force is real if it has a physical source, such 

as mass, energy, charge, pressure etc. which are non-zero even in an inertial frame. 
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As we move away from the source all physically real sources have vanishing 

effect, whereas non-inertial forces increase unbounded. This is precisely the case for 

Coriolis and centrifugal forces. In a car turning around a corner the outward force we 

experience is the centrifugal force which arises due to the rotation of the car. As long as 

the car moves on a straight line no such force shows itself, for this reason this frame in a 

straight line is called an inertial frame in which the Newton’s law of inertia is trivially 

satisfied.                     

Similarly, the Coriolis force/ acceleration shows itself in many real life 

processes. Deflection of flying rockets, winds, ocean water and many other cases 

involve the imprints of this effect.  

In this review project we shall investigate all these problems in a simple 

language/formalism that will provide a simple guide to those who want to know about 

the rotational effect of our Earth. 
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Chapter 2  

2 INERTIAL AND NON INERTIOAL FRAMES 

2.1 Introduction 

 In classical mechanics inertial frame is defined to be the frame in which 

Newton’s laws take the simplest form. That is �⃗�= m �⃗� , or in Cartesian components �⃗�x= 

m�⃗�x , �⃗�y= m �⃗�y  and  �⃗�z= m �⃗�z . When the frame is not inertial then Newton’s laws will 

naturally be modified accordingly to take into account the effect of rotation. That means, 

new fictitious forces emerge [7-10]. Motion in physics is associated with the group 

structures of mathematics. The group of classical mechanics is known to be the Galilean 

group. Special relativistic group is the Lorentz/Poincare group. Poincare group is the 

translational addition of the Lorentz group. The number of independent  parameters of 

the group indicate the physical degree of motion. For the Galilean group the parameter is 

the velocity vector �⃗�  in which the time is absolute. In the Lorentz group the parameters 

are 6 namely �⃗� (the translational velocity) and 𝜔��⃗  (the rotational velocity). Addition of 

the 4-translational degree of freedom xa → xa + 𝜏a where ( a= 1,2,3,4, 4 for the time 

component) and 𝜏a = constant yields the Poincare group with 10 parameters of degrees 

of freedom. In the simplest case we consider the Galilean and Lorentz transformation in 

1-dimention. 
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In classical mechanics the most important type of transformation is the canonical 

transformation. This is a transformation that preserves area in phase space. That is, the 

area in the flow of the system is conserved. If we label the coordinate by p (the 

canonical momentum) and q (the canonical coordinate) the area is dq dp. Under a time 

independent canonical transformation Q = Q(q,p) and P = P(q,p) constancy of the area 

means that we have : 

 dq dp = dQ dP. 

Let us note that the order of product also is important in this expression. It 

amounts to the fact that: 

dQ dP = |J| dq dp 

In which |J| stands for the Jacobian of the transformation so that we must take 

|J|=1. For the details of the subject we refer to the book of Goldstein [8]. 

In this chapter we shall give a definition of a group, its Abelian/Non-Abelian properties. 

The full rotation group that our Earth experiences is SO(3), the special orthogonal group 

in 3-dimentions[5]. This group is Non-Abelian however, when we restrict ourselves 

entirely to the rotation about a fixed axis, which is a planer rotation, it satisfies an 

Abelian group of motion, The same property is valid also for the Lorentz group I.e. if we 

restrict ourselves to the 2 - dimensional (that means 1 space and 1 time) motion it 

becomes an Abelian group of motion. For completeness we shall review briefly these 

mathematical concepts.       
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2.2 Abelian and Non-Abelian Groups 

What is a group? 

Suppose G is a set of certain objects and a, b, c 𝜖 G, with a given operation, such 

as matrix multiplication. 

Then if the following conditions are satisfied: 

1) Closure condition: 

     a ,b 𝜖 G                  a.b 𝜖 G 

2) associative relation: 

    (a.b).c = a.(b.c).  

3) there exists a unit element in which: 

    І.a =a. І=a 

4) for any a ϵ G, there exist a-1  in which  

    a . a-1  =  a-1. a = І       Then G is a Group. 

Example:  The set of counter clockwise coordinate relationship: 

                 R(θ) = � cosθ sinθ
−sinθ cosθ � , R1, R2, R3  ϵ G       

 

 

 

 

 

 

          

       

                                              

                                             

                                                

                          
x 

𝜃 

Figure 1: Two Coordinate Systems 

x` 

y 
y` 
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R1, R2 ϵ G 

R1 = � cosθ1 sinθ1
−sinθ1 cosθ1

�,                R2 = � cosθ2 sinθ2
−sinθ2 cosθ2

� 

 

1) 𝑅1. 𝑅2 = �
cos𝜃1cos𝜃2 − 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 cos𝜃1cos𝜃2 + 𝑠𝑖𝑛𝜃1cos𝜃2

−(𝑠𝑖𝑛𝜃1cos𝜃2 + 𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃1) −𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 + cos𝜃1cos𝜃 � 

 

     R1. R2 = �
cos (θ1 + θ2) sin (θ1 + θ2)

−(sinθ1 + θ2) cos (θ1 + θ2)�  ϵ G if  θ = θ1 + θ2 

2) (R1R2)R3 = R1(R2R3) 

3)  І = �1       0
0       1�, = � cosθ sinθ

−sinθ cosθ � , R =  І if θ = 0 

 

4) R(θ) = � cosθ sinθ
−sinθ cosθ�   , R−1(θ) = �

cos (−θ) sin (−θ)
−sin (−θ) cos (−θ)� 

           R R−1 =  І 

IF multiplication defined in the Group G is commutative (commute), means a,b ϵ 

G, then a b = b a, so this Group is called an Abelian Group, If not, it is said to be Non-

Abelian Group. 

 

2.3 Galilean Transformation 

If we have two inertial frames, one of them moving relative to the other which is 

stationary, we can transform between the two reference frames. 

As shown in fig.(2): 
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We have two reference frames together at (t = 0), and we have an event as 

shown, and also we have a distance X according to (S) frame. 

What is the position would S` measured from(S`) to event (X-) ? 

As the time changes, S` is moving with some velocity, so it moves some distance (d) to 

right, such that: 

                                           d = �⃗� t 

So we say that: 

                                                                                                                                      (2.1)               

 

This is Galilean transformation for position, 

To find   X` : 

                                                                                                                                      (2.2) 

 

Since our study is one-dimensional, we have: 

X = v�⃗  t + X` 

X` = X - v�⃗  t  

X 

Figure 2: Galilean Transformation  

X’ 

S` 

* 

v 

x 

Y

 

X

 

event 
       d= v�⃗ t 

y 

S 
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                                    ,                                ,                                                          (2.3)  

 

It means that the time that an event happens according to (S) frame, is equal to 

the time that an event happens according to ( S`)  frame. 

Therefore, 

 

 

  

 (2.4) 

 

 

 

This is Galilean transformation in the X- direction, 

Note that the general Galilean transformation should read: 

                  r′��⃑  = r��⃑  – v��⃑ t  

                  t` =   t                                                                                                         (2.5) 

Example: If an event happens at (X = 100 m), and (s`) travelling at (10 m/s) in (2)s then: 

                     d = �⃗�t 

    = (10 m/s) (2 s) = 20 m the distance between (s) and(s`) 

So:  X`  = X - v�⃗ t 

         = 100-20 = 80 m the distance between (s`) and even. 

So we convert between the two reference frames. 

y = y` z = z` t = t` 

X = v t + X`                                X` = X - vt  

   y = y`                                                              y`=    y                 

z = z`                                                                 z` =    z                    

t = t`                                                   t` =    t                 
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Example: Is the wave equation in 1- dimension: 

d2∅
dx2  - 1

c2
d2∅
dt2 = 0,  invariant under the Galilean transformation? Prove it. 

Answer:   No. 

d2∅
dx2  -  1

c2
d2∅
dt2 = 0 

d
dx

= dx′

dx
 d
dx′ = 

d
dt

 = dt′

dt
 d
dt′ +

dx′

dt
 d
dx′   

d
dt

 = d
dt′ +(−v) d

dx′   

d2∅
dx2  -  1

c2 � d
dt′ − v d

dx′� (d∅
dt′ − v d∅

dx′) = 0 

d2∅
dx′2  -  1

c2  
(d2∅

dt′2 − 2v d2∅
dt′dx′ + v2 d2∅

dx′2) = 0  

 

2.4 Galilean Transformation in Matrix Former 

�

t′

x′

y′

z′

� = �

t0
x0
y0
z0

� +  L �

t 
x
y
z

�                                                                                                                  (2.6) 

Where:   t0, x0, y0, z0 = 0 at   t = 0 

L is a transformation operator (matrix) 

L = �

 L11    L12    L13     L14      
       L21    L22    L23     L24          

    L31    L32    L33     L34        
L41    L42    L43     L44     

� 

 

  



13 

 

There fore, 

 

�

t′

x′

y′

z′

� = �

 L11    L12    L13     L14      
       L21    L22    L23     L24          

    L31    L32    L33     L34        
L41    L42    L43     L44     

� �

t 
x
y
z

�                                                                        (2.7) 

 

t`= t                   if       L11 = 1, and  L12 ,   L13  ,   L14  = 0 

X` = X  - vt        if       L21 = −u,  L22 = 1, and   L23  ,   L24  = 0   

y` = y                 if      L33 = 1,  and  L31 ,   L32  ,   L34   = 0 

z` = z                  if     L44 = 1,  and  L41 ,   L42  ,   L43   = 0 

 

So the transform matrix for Galilean is: 

 L = �

1    0    0     0
      −v    1    0     0          

       0    0    1     0        
    0    0    0      1     

� 

So: 

� 

t′

x′ 
y′

z′

� = �

1    0    0     0
      −v    1    0     0          

       0    0    1     0        
    0    0    0      1     

� � 

t 
x 
y
z

�                                                                                  (2.8) 

 

� 

t′

x′ 
y′

z′

� = � 

t
−vt + u

y
z

 � This is the Galilean transformation matrix.                                 (2.9) 

 

 

 



14 

 

t`= γ (t − v
c2 x)                                                                                                          (2.12) 

( ) 

2.5 Lorentz Transformation in (1-1) Dimensions 

 

 

 

 

 

  

  

�
𝑐𝑡′′
𝑥′

𝑦′

𝑧′

� = 𝐿 �
𝑐𝑡′
𝑥
𝑦
𝑧

�                                                                                                            (2.10)               

L  is a Lorentz transformation matrix (4×4). 

Therefore: 

 �
ct′′
x′

y′

z′

� = �

 L11    L12    L13     L14      
       L21    L22    L23     L24          

    L31    L32    L33     L34        
L41    L42    L43     L44     

� �
ct′

x
y
z

�                                       (2.11) 

 ct′ = L11 ct +  L12x +   L13 y +     L14 z 

 L11 = γ ,            L12 =  −γ v
c2    ,       L13  ,   L14  = 0 

                  

                                                                         

S S` 

v 

* 

x X` 

y y` 

event 

Figure 3: Lorentz Transformation 
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y′ = y                                                                                                                       (2.14)                                                                                                    

 

z′ = z                                                                                                                      (2.15) 

  Where { γ = 1

�1−( v
C   )

2
 = 1

�1−β2
  } 

 x′ = L21 ct +  L22x +   L23 y +    L24 z 

 L21= − γ v
c
 ,         L22= γ,        L23= L24=0 

 

 

 y′ = L31 ct +  L32x +   L33 y +     L34 z 

 L33=1    ,      L32=    L31= L34=0 

 

 z′ = L41 ct + L42 x +   L43 y +     L44 z 

 L44=1    ,      L42=    L43= L41=0 

 

 

So that Lorentz transformation matrix is: 

      L =

⎣
⎢
⎢
⎢
⎡ γ  − γ v

C
    0      0

       −γ v
C

     γ       0       0          
           0       0        1      0        

         0       0        0      1     ⎦
⎥
⎥
⎥
⎤
                                                                   (2.16)                                           

 

x′= 𝛾 (𝑥 − 𝑣𝑡)                                                                                          (2.13)                                                               
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So:  

 �
ct′′
x′

y′

z′

� =

⎣
⎢
⎢
⎢
⎡ γ  − γ v

C
    0      0

       −γ v
C

     γ       0      0          
           0       0        1      0        

         0       0        0      1     ⎦
⎥
⎥
⎥
⎤

�
ct′

x
y
z

�                                                (2.17) 

Which is Lorentz transformation matrix. 

Note that the wave equation, 

∇2∅-  1
c2

d2∅
dt2 = 0 

Is invariant under  the 1-dimensional Lorentz transformation. 

2.6 Coordinate Systems in Rotating Frames 

Let (XYZ) and (xyz) be two coordinate systems with the common origins (0), 

The system (xyz) rotates w.r.t   the system (X.Y.Z) 

 

 

 

 

 

 

 

K j 

Figure 4: Coordinate System in Rotating Frames 
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( dr�⃑
dt

)Fix =( dr�⃑
dt

)mov. + x di
dt

+ y dj
dt

+ z dk
dt

                                                                               (2.19) 

 

At the same time, a vector (  r⃑  ) which is changing during the time, to an inertial 

frame  w.r.t  rotating (x.y.z). 

Now, what is the time rate of change of the vector   r⃑ =x i + y j + z k? 

( dr�⃑
dt

 )mov. = dx
dt

i + dy
dt

j + dz
dt

k                                                                                          (2.18) 

And also the time rate of changing (r⃑) w.r.t the (XYZ) is: 

dr�⃑  
dt

 = dx
dt

i + dy
dt

j + dz
dt

k + x di
dt

+ y dj
dt

+ z dk
dt

 

This lead to: 

 

 

i.i = 1, 

Take derivative:       di
dt

  .i = 0 

Therefore:               di
dt

= a1j + a2k                                                                              (2.20)                                                                                            

j.j = 1, 

Take derivative:    di
dt

  .j = 0 

Therefore:             dj
dt

= a3k + a4i                                                                                (2.21) 

 k.k = 1, 

Take derivative:     dk
dt

  .k = 0 
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a4= −a1                                                                                                                     (2.23) 

a6= −a3                                                                                                                                    (2.24) 

a5 = −a2                                                                                                                    (2.25) 

Therefore:         dk
dt

= a5i + a6j                                                                                     (2.22)                                                                                                       

Which a1, a2, a3, a4, a5, a6 are constant, we should find them, 

As   i.j = 0 

Then by derivative 

di
dt

  .j + i. dj
dt

= 0  

a1 + a4 =0 

   

As     j . k = 0 

Then take derivative, 

dj
dt

  . k + j. dk
dt

= 0  

a3 + a6 =0 

  

And finally as,    k . i = 0 

Then take derivative, 

dk
dt

  .  i  +  k .   di
dt

= 0  

a5 + a2 =0 
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(  dr�⃑
dt

 )Fix. = (  dr�⃑
dt

 )mov. + ω����⃗ ×  r⃗                                                                                   (2.27) 

 

By substituting  eqs.(2.21), (2.22) and (2.23) into eq. (2.19), we get: 

(   dr�⃑
  dt

  )Fix= (   dr�⃑
  dt

  )mov. +x(a1 j + a2 k)+y(a3 k + a4 i) + z(a5 i + a6 j)                               (2.26)               

But we have, 

a4 = -a1 

a5 = -a2                put into eq. (2.26) 

a6 = -a3 

(  dr�⃑
dt

 )Fix  =(  dr�⃑
dt

 )mov. + x (a1j + a2k)+y (a3k – a1i) + z (-a2i – a3j) 

( dr�⃑
dt

 )Fix  = (  dr�⃑
dt

 )mov. + a1 x j + a2 x k+ a3 y k – a1 y i + -a2 z i – a3 z j 

(  dr�⃑
dt

 )Fix.  = (  dr�⃑
dt

 )mov. + (– a1y  - a2z)i+( a1 x – a3z)j + (a2x+ a3y)k 

(  dr�⃑
dt

 )Fix. =  (  dr�⃑
dt

 )mov. +�
i      j      k

  a3   −a2     a1   
x       y      z

� 

                                                     

 

OR       (r)̇ Fix = (r)̇ mov. +  ω��⃗ × r⃑  

Where,      ω��⃗   = ω1 i +  ω2 j  +  ω3 k 

                 r⃑ = x i  +  y j  +  z k 

(  dr�⃑
dt

 )Fix.  is the velocity of the vector  (  r ��⃑ ) w. r. t (XYZ), 
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(  dr�⃑
dt

 )mov. = dx
dt

i + dy
dt

j + dz
dt

k                                                                                  (2.28) 

(  d
dt

 )Fix=(  d
dt

 )mov. + ω ×                                                                                        (2.29) 

 

 and it is also said to be (True velocity ). 

      

        

Which is the velocity of  a vector (  r⃑ ) w. r. t (xyz), 

 and it is also said to be (apparent velocity ). 

From eq. (2.27) we can write this formula: 

 

 

We can also obtain the acceleration of the system: 

( r )̈ Fix = (   d2r
dt2  ) Fix   = (  d

dt
  )Fix   (   

dr
dt

  )Fix 

                 = [  ( d
dt

   )mov. + ω ×    ] [ (  dr
dt

 )mov. + ω × r ] 

                 = (  d
dt

 )mov. [ (  
dr
dt

 )mov. + ω × r ]+ ω × [ ( dr
dt

 )mov. +ω × r ] 

                 =(  d2r
dt2 ) +  dω

dt
× r + ω × dr

dt
+  ω × dr

dt
+ ω × (w × r) 

                 =(  d2r
dt2 ) + dω

dt
× r + 2ω × dr

dt
+  ω × (ω × r) 

( r )̈ Fix .= ( r )̈ Mov. +  dω
dt

× r + 2ω × dr
dt

 +  ω × (ω × r) 

Since   ω = 2π/24h   and exactly is ( 7.27 ×10-5 rad/s ), which is a constant, 

therefore, we can say that : 
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( r )̈ Fix  =  (r)̈ Mov. + 2ω × ṙ +  ω × (ω × r)                                                                 (2.30) 

 

(r)̈ mov. =  (r)̈ fix.  −2ω��⃑ ×  �̇̇�  -  ω����⃑ × (ω��⃑ ×  r⃑)                                                                     (2.31) 

 

m  r̈mov.  =  m  r̈fix  −2m (ω��⃑ ×  ṙ)���⃑   - m ω��⃑ × (ω��⃑ ×  r⃑)                                                     (2.32) 

 

dω
dt

= 0 , so we finally get: 

 

 

(r)̈ Fix   is the true acceleration. 

( r )̈ Mov. = x ̈ i + y ȷ ̈ + z k  ̈ which is an apparent acceleration. 

+[ ω × (ω × r)] is a centripetal acceleration. 

From eq. (2.30) we can get: 

 

 

Which: 

−2ω��⃑ ×  ṙ   is a Coriolis acceleration. 

- ω��⃑ × (ω��⃑ ×  r⃑)is a centrifugal acceleration. 

We can multiply eq. (2.31) by the mass (m), we obtain: 

 

 

OR  

 

Which : 

m r̈mov. =  m r̈fix  − Fcor. – F cen. 
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F = m r̈mov.   , is a factious force. 

F = m r̈Fix     , is the force of the particle in the fixed system. 

Fcor. = −2m (ω × ṙ)  , is a Coriolis force. 

Fcent.  = - m ( [ ω ×  (ω ×  r) ] )  , is a centrifugal force. 

The following figures show the direction of a centrifugal force: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z 

ω 

 

Y 
X 

ω × r 

 

ω 

 
r 

 

- ω × (ω × r) 

 

 Figure 5: Direction of Centrifugal Force (1) 
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2.7 Moving Relative to Rotating Earth 

Now, if we have two systems (as shows in the fig. (7)) with different origins, one moves 

w.r.t  to another, 

 

 

 

 

 

Let R be the distance of origin (0) to origin (0`), 

𝑟 
𝜔���⃑   

Vertical    

 

− 𝜔��⃑  ×  (𝜔��⃑ × 𝑟) 

𝜔 

𝜆 
Centrifugal acceleration 

 Figure 6:Direction of Centrifugal Force(2). 

Figure 7: Two Coordinate System in Different Original 
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( d
2r˳

dt2  )mov. = ( r˳̈)mov. =  ẍ˳ i +ÿ˳ j + z˳̈ k                                                                     (2.37) 

 

( dr˳
dt

 )mov. =  ṙ˳ mov. = ẋ˳ i + y˳ ̇ j + ż˳ k                                                                              (2.33) 

 

dβ 
dt

 = R˳̇ + r˳̇ mov. +  ω��⃑  ×  r⃑˳                                                                                     (2.36) 

 

The velocity of (m) particle relative to moving system is: 

 

Now if the distance between the particle (m) and the origin (0) is β = R˳ + r˳ , then its 

velocity   w.r.t (XYZ) system will be: 

(  dβ
dt

 ) = d
dt

( R˳+r˳ )Fix                                                                                                  (2.34) 

= ( dR˳
dt

 )Fix + ( dr˳
dt

 )Fix                                                                                                                                                     (2.35) 

 

Which   R˳̇  is the velocity of (0′)with respect to (0). 

If  R˳ = 0,  this will be the same as eq. (2.27). 

dβ
dt

  is the particle velocity relative to the Earth’s Rotation. 

Now let us find the acceleration of the particle (m) with respect to rotating Earth: 

The acceleration of the particle (m) relative to (o`) system is: 

 

 

Since the distance of the particle (m) relative to (0) is β =R˳ + r˳, then the acceleration of 

(m)in the fixed system is: 

( d
2β

dt2  )Fix. = d2

dt2 (R˳ + r˳)Fix. = ( d2R˳
dt2  )Fix.+ ( d

2r˳
dt2  )Fix.                                                     (2.38) 
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(d2β
dt2 ) Fix = R̈˳+ r˳̈mov .+ ω̇ × r˳ + 2 ω × r˳̇+ ω × (ω × r˳)                                            (2.39)                

 

 

 

2.8 Determine the Equation of Motion of a Particle Moving Near to 

Earth’s Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Recall eq. (2.39), under these facts: 

ω̇=0, because ω is constant. 

R̈ , we can neglect it for simplicity. 

aF = β̈ - ω × ( ω × r ), combine both of them as Gravity of Earth. 

β 

 

Figure 8: Moving of the Particle w.r.t Two Coordinates 
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Thus aF =- g 

Therefore eq. (2.39) becomes: 

a�⃗ (mov) =−g – 2 ( ω ����⃗  × ṙ)                                                                                            (2.40) 

ω��⃗ = ωk� 

k� = (k� . ı̂) i + (k� . ȷ̂) j + (k� . k�) k 

K . i = - sin λ 

K . j = 0 

K . k = cos λ 

k� = − sin λ ı� + cos λk�  

ωk� = −ω  sin λ ı� + ω cos λk�  

r⃑̇(mov.) =( x,̇ y,̇ z ̇) 

ω��⃗ × r⃑̇  =  �  

(+)          (−)            (+)
   i              j                  k

−ω sin λ     0         ω cosλ
ẋ             ẏ              ż

  �                                                                      (2.41) 

amov.  =  −g  -  2  �  

(+)              (−)            (+)
   i                  j                  k
−ω sin λ      0        ω cosλ

ẋ                 ẏ              ż

  �                                                        (2.42) 

 Put amov. = ( x,̈ ÿ , z̈)    and   aFix = - g  

Therefore 



27 

 

 x ̈= 2 ω y ̇  cos λ 

ÿ = 2 ω ( ẋ cos λ + ż sin λ)                                                                                          (2.43) 

z ̈= - g  + 2 ω y ̇ sin λ 

This net of equations is the summary of physics on the rotating Earth as the 

example in the next chapter will show. 
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    Chapter 3 

 
 

2 3 APPLICATIONS 

3.1 Projectile in General 

Example: A projectile is launched at angle  λ  with arbitrary initial conditions. We wish 

to determine the rest of the motion in accordance with the equations of motion on the 

rotating Earth?  
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O 

Figure 9:  Projectile Motion 
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ÿ = −2 ω ( V0x cosλ - g t sinλ + V0z sinλ)                                                                (3.3) 

 

At rest we have: 

V0x , V0y and V0z , 

Recall eqs. (2.43), 

ẍ = 2 ω cosλ  ẏ 

ÿ = −2  ω ( ẋcosλ +   ż sinλ)   

z̈  = - g +2 ω ẏ sinλ 

By integrating both ẍ and z̈  , we get: 

ẋ = 2 ω cosλ y + V0x                                                                                                    (3.1) 

ż  = - g t +2 ωy sinλ+ V0z                                                                                             (3.2) 

Substitute  ẋ , ż  in  ÿ , we get: 

ÿ = −2 ω[ (2 w cosλ y + V0x) cosλ +(- g t +2 ωy sinλ+ V0z) sinλ          

    = −2 ω[ (2 ω cos2λ y + V0x cosλ) +(- g t sinλ +2 ω sin2λ+ V0z sinλ) ] 

    = −4 ω2cos2λ y − 2 ω V0x cosλ +2ω g t sinλ −4 ω2 sin2λ - 2 ω V0z sinλ 

    = −2 ω V0x cosλ + 2ω g t sinλ -2 ω V0z sinλ 

 

 

By integrating   ÿ   we get: 
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y = t [ V0y + ω
3
 g t2 sinλ – t ω ( V0x cosλ + V0z sinλ ) ]                                             (3.6) 

ż = - g t + V0z +2 ω V0y sinλ . t                                                                                            (3.7) 

 

 If  ω =0, then:            y = V0y t                                                                                  (3.9) 

ẏ=−2 ω ( V0x cosλ t -  1
2

 g t2 sinλ + V0z sinλ t) + C1                                                    

(3.4)                                                         (3.4) 

 

By integrating   ẏ  we get, 

y= −2 ω ( 1
2

 g t2 V0x cosλ − 1
6

 g t3 sinλ + 1
2

 t2 V0z sinλ ) + V0y t + C2                       (3.5) 

  If   t = 0, then   C2 = 0  

 

 

 

 

Recall eq. (3.2), 

ż = - g t +2 ω sinλ  y + V0z 

Put eq. (3.6) in (3.2), we get: 

ż = - g t + V0z +2 ω sinλ . t [ V0y + ω
3
 g t2 sinλ – t ω (V0x cosλ + V0z sinλ ) ] 

ż = - g t + V0z +2 ω V0y sinλ . t + 2
3
 ω2 g sin2 λ t3 – 2 ω2 sinλ t2 (V0x cosλ + V0z  sinλ ) 

Put   ω2 = 0, we get: 

 

By integrating   ż , we get:  

 If    t = 0, then   C1 = V0y 

 

y = 1
3

 ω g t3 sinλ - ω t2 V0x cosλ − ω t2 V0z sinλ + V0y t                
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z= t [ V0z  -   
g
2
  t2 + ω V0y sinλ . t ]                                                                                         (3.8) 

 If  ω =0, then:            z = V0z  -  g
2
 . t2                                                                                   (3.9) 

x = t ( V0x +ω  V0y  cosλ  t )                                                                                               (3.11) 

 İf  ω = 0, then:     x =V0x t                                                                                                (3.12) 

  Z = V0z t - 
g
2
 t2 + ω V0y sinλ t2 + C3 

If  t = 0, then C3 = 0, 

 

 

 

 

Recall eq. (3.1), 

ẋ = 2 ω cosλ y + V0x 

Substitute eq. (3.6) in (3.1), we get: 

ẋ = 2 ω cosλ .t [V0y + ω
3
 g t2 sinλ – t ω (V0x cosλ + V0z sinλ) ] + V0x 

ẋ = 2 ω V0y  cosλ.t + 2
3
 ω2 g t3 sinλ cosλ –2 ω2 t2 cosλ (V0x cosλ + V0z  sinλ ) +V0x 

Put  ω2 = 0, we get: 

ẋ = 2 ω  V0y  cosλ  t + V0x                                                                                         (3.10)   

By integrating   ẋ , we get:  

x =V0x t + ω  V0y  cosλ t2 + C4 

İf  t = 0, then C4 = 0, then: 
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t max ≈
V0z

g
 (1 +  2ω V0y  

g  
 sinλ)                                                                                   (3.13)                                 

To find ( Z max )  let  dz
dt

= 0  OR  ż=0 

Recall eq. (3.7), 

ż = −gt + V0z +2ω V0y  sinλ . t 

Put  ż = 0, 

0 = −gt + V0z +2ω V0y  sinλ . t 

t max =  V0z
   g−2ω V0y  sinλ  

                   tmax = V0z 
g

 [ 1 −  2ω V0y  
g  

 sinλ]-1 

 

 

put (3.13) into (3.8), 

z = t [  V0z +(ω V0y  sinλ − g
2
 ) t  ] 

z = V0z
g

 (1 +  2ω V0y  
g  

 sinλ)[ V0z +(ω V0y  sinλ − g
2
) ( V0z

g
  ( 1 +  2ω V0y  

g  
 sinλ) ) ]    (3.14) 

 

I1 = [ V0z  + (ω V0y  sinλ − g
2
 )( V0z

g
 (1 + 2ω V0y  

g  
 sinλ) ) ] 

    = V0z  + V0z
g

 ( ω V0y  sinλ +  2ω2v20y
g

sin2λ − g
2
 - ω V0y  sinλ ) 

     Put  ω2 = 0, 

= V0z  + V0z
g

  ( ω V0y  sinλ − g
2
 - ω V0y  sinλ ) 

I1 
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I1   = V0z
2

      put in to (3.4) 

Z max  ≈   v
20z
2g

 ( 1 + 2ω V0y  
g  

 sinλ )                                                                                   (3.15) 

 

t flight ≈  2V0z
g

 ( 1 + 2ω V0y
g

  sinλ)                                                                                    (3.17) 

     = V0z +  V0z
g

 (− g
2
 ) 

     = V0z -  
V0z

2
 

 

 

Z max ≈  V0z
g

  (1 +  2ω V0y  
g  

 sinλ ) [  V0z
2

 ] 

 

 

From eq. (3.8), 

Z = t [ V0z   - 
g
2

 t + ω V0y  sinλ  . t ] 

For   Z=0, 

0= t [  V0z  -  
g
2

 t + ω V0y  sinλ . t ] 

V0z = t [  g
2

− ω V0y  sinλ ]                                                                                          (3.16) 

2 V0z = t [ g − 2 ω V0y  sinλ ] 

t =  2V0z
g− 2ω V0y  sinλ

 

t = 2V0z
g

 (1 − 2ω V0y
g

  sinλ)-1 
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X max = 2 V0z
g

  [ V0x  + 2 ω V0y
g

( V0x  sinλ + v0z  cosλ )]                                                (3.18) 

tf = tflight  =
2 V0z

g
 (1+2ω V0y

g
 sinλ )                                                                                (3.20) 

Put eq. (3.17) into eq. (3.11) to find  X max , 

X max = tflight [ V0x + ω V0y  cosλ . tflight ] 

X max = 2V0z
g

( 1 + 2ω V0y
g

  sinλ ) [ V0x + ω V0y  cosλ . 2V0z
g

�1 + 2ω V0y
g

  sinλ � ] 

Xmax = 2V0z
g

 ( 1 + 2ω V0y
g

  sinλ) [ V0x  + 2ω. V0y V0z
g

cosλ ]+ 4 ω 2 v
20y  V0z

g2  sinλ cosλ ] 

Put   ω2 = 0, 

  =  2 V0y
g

 ( 1 + 2ω V0y
g

  sinλ ) [ V0x +2 ω V0y V0z
g

 cosλ ] 

  = 2V0y
g

  [ V0x +2ω V0y V0z
g

cosλ + 2ω V0y V0z
g

sinλ ] +  4 ω2 v
20y Vz

g2  sinλ cosλ ] 

Put   ω2 = 0, 

 =  2 V0y
g

 [ V0x + 2ω V0y V0z
g

cosλ + 2ω V0y V0z
g

 sinλ ]  

 

 

To find ( y max ) , use ( t flight )  in eq (3.6 ): 

 

 

y = V0y tf  +   ω
3

 g t3
flight sinλ - t2

flight ω ( v0x cosλ +V0z sinλ ) ]                                (3.19) 

 

 

y = t [  V0y + ω 
3

 g t2 sinλ − t ω (  v0x cosλ + V0z sinλ ) ] 
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t2flight  =
4 V0z

g2  ( 1 + 4 ω V0y
g

 sinλ )                                                                                    (3.21) 

t3  = 8 v30z
g3 (1 + 6 ω V0y

g
 sinλ)                                                                                             (3.22) 

   t2 = t . t 

     =�  2V0z
g

 � ( 1 + 2 ω V0y
g

 sinλ ) (  2 V0z 
g

 ) ( 1 + 2 ω  V0y
g

 sinλ ) 

      = 4 V0z2

g2 ( 1 + 2 ω V0y
g

 sinλ )2 

         =   4V20z
g2  ( 1 + 4 ω V0y

g
 sinλ +  4ω2v20y

g2 sin2λ ) 

put  ω2 = 0, 

 

 

t3 = t . t2 

       =( 2V0z 
g

 ) ( 1+2 ω V0y
g

 sinλ ) (  4 v20z
g2   )( 1 + 4ω V0y

g
 sinλ ) 

      =  8 v30z
g3  ( 1 + 2ω V0y

g
 sinλ ) ( 1 + 2 ω V0y

g
 sinλ ) 

= 8 v30z
g3 ( 1 + 4 ω V0y

g
 sinλ + 2 ω V0y

g
 sinλ + 8 ω2 v20y

g2 sin2λ ) 

Put ω2 = 0, 

= 8 v30z
g3  ( 1 + 4 ω V0y

g
 sinλ + 2 ω V0y

g
 sinλ) 
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ymax ≈  2V0z V0y
g

 + 4ω V0z
g2  [  v0y

2  sinλ  -  1
3

  v0z
2  sinλ − v0x  v0z cosλ ]                         (3.23) 

Substitute eqs. (3.20), (3.21) and (3.22) into eq. (3.19), we get: 
 
 
ymax ≈  2 V0z V0y

g
 ( 1+2ω V0y

g
 sinλ )+ ω

3
 gsinλ . 8 v30z

g3  (1 + 6 ω V0y
g

 sinλ ) – ω ( V0x  cosλ + 

V0z  sin λ ). 4 v20z
g2 (1 + 4 ω V0y

g
 sinλ) 

           = 2 V0z V0y 
g

 (1+ 2 ω V0y
g

 sinλ )+ ωg
3

 sinλ . 8 V0z3

g3  + 16 ω2

g3  sin2λ v3
0zv0y– ω (V0x 

 cosλ + V0z  sin λ ). 4 v20z
g2 − 4 ω2 V0y

g
 sinλ ( V0x  cosλ + V0z  sin λ ). 4 v20z

g2  

Put  ω2 = 0,  

 ymax ≈  2 V0z V0y
g

 ( 1+ 2ω V0y
g

 sinλ ) + 8
3

 v0z
3   ω sinλ

g2 − 4 v20z
g2  ω ( V0x  cosλ +V0z  sin λ) 

    = 2 V0y V0z
g

 + 2 V20y  V0z
g2  ω sinλ + 8

3
 v0z

3   w
g

 sinλ − 4v20z
g2 ω (V0x  cosλ + V0z  sin λ) 

ymax ≈ 2V0z V0y
g

 +4ω V0z
g2  [v0y

2  sinλ + 2
3

v0z
2    sinλ − v0z( v0x  cosλ + v0z  sin λ) 

 

 Special Case: 

V0x = 10 m/s  = V0 cosα 

V0y = 10 m/s  = V0 sinα 

 

 

 

V0x = V0y = V0z = 10 m/s 

g =10 m/s2 

let  λ = 30 o 
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     ω = 7.29 × 10-5    rad/s 

X max = 2V0z
g

  [ V0x +2 ω V0y
g

(V0x sinλ + v0z cosλ) ] 

ymax= 2V0z V0y
g

  +  4ωV0z
g2   [ v0y

2  sinλ  -  1
3

v0z
2   sinλ − V0x V0z  cosλ ] 

Z max = V20z
2g

  ( 1 + 2ω V0y  
g  

 sinλ ) 

t flight  =
2V20z

2g
  ( 1 + 2 ω V0y

g
 sinλ ) 

tmax= V0z
g

  ( 1 + 2ω V0y  
g  

 sinλ ) 

Let us find the maximum distance in x-direction, 

X max = 2 V0z
g

  [ V0x + 2 ω V0y
g

 ( V0x sinλ + v0z cosλ ) ] 

           =2  10
10

  [ 10 + 2 ( 7.29 × 10-5 )  10 
10

  ( 10 sin 30 + 10 cos 30 ) 

              =2 (10) [ 1 +2  (7.29 × 10-5 ) ( 0.5 + .87 ) ] 

              =20 [ 1 +2  (7.29 × 10-5 ) ( 1.37 ) ] 

              =20 (1 +20 × 10-5 )    =  20 + 400 × 10-5  

               =20 + 4 × 10-3  

       X max = 20.004 m  

We show that due to the rotation of the Earth there is a deflection about (0.004) m for 

each (20) m. 
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Let us find the maximum distance in y-direction, 

ymax  = 2V0z V0y
g

 + 4 ω V0z
g2   [ v0y

2  sinλ  -  1
3

 v0z
2  sinλ − V0x V0z  cosλ ] 

           = 2(102)
10

 + 4(10)
102   ( 7.29 × 10-5  )[ 102 sin30  -  1

3
102 sin30 −  (102)  cos30 ] 

           = 2(10) + 4 (10) (7.29 × 10-5) [ sin30  -  1
3

 sin30 −  cos30 ] 

           = 2(10) + 4 (10) (7.29 × 10-5 )[ 0.5  -  1
3

 (0.5) −  0.87 ] 

           = 2(10) +4 (10) (7.29 × 10-5) [ 0.5  -  1.037 ] 

           = 2(10) +4(10) (7.29 ×10-5)[−0.537 ] 

           = 20 + (-157.6 × 10-5 )   =  19.998 m.        

Now, what is the deflection in z-direction? 

Z max. = V20z
2g

  ( 1 + 2ω V0y  
g  

 sinλ ) 

           =  (102)
2(10)

  (1 + 2 ( 7.29 * 10-5 ) � 10
10

� (sin30) 

           = 5 [1 + 2 (7.29 * 10-5 )( 0.5) 

           = 5 [1 +7.29 * 10-5] 

           = 5[1 +0.0000729] 

           = 5+0.00036   = 5.00036 m. 
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3.2 Apparent Weight (w`) 

Example: At Colatitude angle λ, let us find the apparent weight ( w`) of an object of 

mass m? 

 

 

 

 

 

 

  

 

 

 

 

 

 

By the law of cosines, 

(w`)2 = (m g)2 + (m ω 2 r sinλ) 2 - 2m g sinλ . (m ω2 r sinλ)                                    (3.24) 

  w` = m�g2 +  rω 2 sin2λ  ( ω2 r − 2 g )                                                                 (3.25) 

For λ = 0, π in North and South poles 

w`= m g = w                                                                                                               (3.26) 

For  λ = π
2
   in the Equator 

w` = m�g2 +  r ω2( ω2r − 2 g )  = m (g −  r ω2)                                                    (3.27) 

θ 
W= 𝑚𝑔 

m 𝜔 2 r sinλ 

 

π
2

−λ 
W`

 

Figure 11: Apparent Weight 

W` λ 

W= 𝑚𝑔 

m 𝜔 2 r sinλ 

Figure 10: Colatitudes Angle 

r sinλ 
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tanθ = m r ω2 sinλ cosλ
g− r ω2 sin2λ

                                                                                                (3.32) 

3.3 True and Apparent Vertical 

Example: Find tanθ, if θ Is the angle between the true and apparent vertical? 

 

 

 

 

From the law of sines: 
a

sinα
 =  b

sinβ
 = c

sinγ
                                                                                                          (3.28)                

By using figure (11): 

w′
sin ( π2−λ)

= m ω2 r sinλ
sinθ

                                                                                                   (3.29) 

But   sin �π
2

− λ� = cosλ 

               sinθ = m ω2 r sinλcosλ 
w′

                                                                                      (3.30) 

tanθ = sin θ
√1−sin θ2                                                                                                 

1- sin2θ = 1
 w′2  [  w′2 −  (m ω2 r sinλ cosλ )2 ] 

 w′2 =  m2[ g2 +  r ω2 sin2λ  ( ω2r − 2 g)]                                                             (3.31) 

Substitute (3.31) into above implies,  

 

 

 

 

 

c 

a 

b 

 
𝛼 

𝛽 𝛾 

Figure 12: Triangle 
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 = ω(cos λ r� −  sin λ�)                                                                                                            (3.33)   

w ����⃗ × r� = ω(cos λ r� −  sinλ λ� )× r r� 

         = ω r sinλ ϕ�                                                                                                                    (3.34) 

ω ����⃗ ×  (ω ����⃗ × r�) = ω(cos λ r� −  sin λ λ�) × (ω r sinλ ϕ�) 

                    = - ω2rsin λ cos λ . λ� −   ω2r  sin2 λ r�                                                (3.35) 

F ��⃗ cent. = - m ω ����⃗ ×  (ω ����⃗ × r�)                                                                                    (3.36) 

         = m ω2 rsin λ �cos λ . λ� + sin λ r��                                  

�F ��⃗ cent.� = m ω2 r sinλ                                                                                             (3.37) 

 

3.4 Centrifugal Force on Earth 

 

  

 

 

 

 

 

 

ω��⃗ = ( ω .  r � ) r� +  ( ω .  λ �  ) λ� 

 

 

 

 

 

 

 

 

 

�̂� 

𝜙� 

 

 
λ� 

 

 

𝜔 = 𝜔𝑘 

λ 

 

 

𝜙 

 

 

Figure 13: Centrifugal Force on Earth 
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Example: A car is turning around a circle corner with angular frequency ω at radius R, 

Find the Period of a simple Pendulum in such a car? 

(Hint: If the car is not moving the period is T= 2π �L
g
   , L= Length,  g = acceleration 

Due to the gravity) 

 

 

 

 

 

Answer:  
 

 

 

 

 

 

 

∑ Fy =0 

 

 

∑ Fx =0 

 

 

𝜃 

 
m 𝑔 

 

m ′𝑔 

 

T sin𝜃 - m ω2 r = 0 …………. (2) 

R 

Figure 14: Car in a Curved Line(2) 

L 

T 

 

Figure 15:Car in a Curved Line(2) 

 

T cos𝜃 

m ω2r 

L 

T sin𝜃 

T cos𝜃 - m g = 0 …………. (1) 
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From fig.(15): 

(m g′ )2 = ( m ω2r )2 + ( m g )2 

g′2 = ω4r2 + g2 

 

 

 

From eq. (1) and eq. (2)  

T sinθ
T cosθ

=
m ω2 r

m g′
 

tan𝜃 = rω2

g′
 ,     And   tan𝜃 =  r

L
 

                  r
L

= rω2

g′
    

ω2= g′
L

 

 

 

 

 T= 2πr
V

 = 

 

From (5) (4) and (3), we can get that: 

 

 

 

If a car is not Rotating ω = 0 

 

T = 2π�
L

�g2 + r2ω4
 

 

T = 2π�
L
g

 

 

ω = �g′
L

 

 

…………. (4) 

 2π
ω

 …………. (5) 

g′ = �𝜔4 𝑟2 + 𝑔2 

 

…………. (3) 
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3.6 Foucault Pendulum      

Example: Determining the equation of motion of Foucault pendulum? 

 

 

 

 

 

 

 

 

 

 

                            

 

 

 

 

 

 

 

 

 

 

ω 

 

Z 

Y 

X 

T 

i 

k 
j 

𝜔 

y 

x 

z 

Figure 16: Foucault  Pendulum(1) 

T 

i 

k 
j 

𝜔 

y 

x 

z 

Figure 17: Foucault Pendulum(2) 

L 

α 
β 

γ 
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T = Tx i + Ty j + Tz k                                                                                                   (3.38)                      

T . i = (Tx i + Ty j + Tz k).i =Tx                                                                                   (3.39) 

T . j = (Tx i + Ty j + Tz k).j =Ty                                                                                   (3.40) 

T . k = (Tx i + Ty j + Tz k).k =Tz                                                                                 (3.41) 

Thus: T = (T.i)i + (T.j)j + (T.k)k                                                                                (3.42) 

But   T.i = |T||i| cosα = T cosα = -T x
L
                                                                       (3.43)     

T.j= |T| |j| cosβ = T cosβ = -T y
L
                                                                                (3.44) 

T.k= |T||k| cosγ = T cosγ = T L−z
L

                                                                              (3.45) 

Put (3.43), (3.44) and (3.45) in (3.42) 

T = -T( x
L
)i  - T( y

L
)j  + T( L−z

L
 )k                                                                                  (3.46) 

Recall eq.(2.40), 

m (a)mov. = −mg – 2 (ω��⃗ ×r⃗) 

If we use eq. (2.39) for Foucault pendulum, we can write in this form: 

m (a)mov = T − mg – 2 (ω��⃗  × r⃗)                                                                                   (3.47)            

By using eq. (2.39) and eq. (2.41), we will get: 

m (a) mov = -T( x
L
)i - T( y

L
)j + T( L−z

L
 )k −mg – 2 �    i              j                  k

−ω sin λ     0        ω cosλ
ẋ             ẏ              ż

�                         ( 3.48) 

Put (a)mov = (ẍ, ÿ, z̈) 

mẍ = -T( x
L
) +2 m ω ẏ cosλ 

mÿ = -T( y
L
) +2 m (x ̇ω cosλ+ż ω sinλ)                                                                     (3.49)                                                            

mz̈ = T( L−z
L

) + mg + 2 m ω ẏ sinλ                                            

These are equations of motion for Foucault pendulum. 
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3.7 Coriolis Force on a Merry go Round 

Example: A pistol may be considered at the centre of a rotating platform i.e. a Merry go 

round. The deflection of the bullet is depicted as in the figure and it is due to the Coriolis 

effect. 

 

 

 

 

 

 

 

 

Answer:  

 Let: (NIF) is (Non Inertial Frame) and (IF) is (Inertial Frame) 

 s = r(∆θ) 

           = r ∆θ
∆t

 ∆t                                                                                                            (3.50) 

For ∆t = small 

 ∆θ
∆t

= ω                                                                                                             (3.51) 

           S = r ω ∆t                                                                                                         (3.52) 

           r = �⃗� t                                                                                                               (3.53) 

𝝎 

I

 
N

 

𝝂 s 

r 

 
IF NIF 

Figure 18: Merry go Round 
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           s = �⃗� 𝜔 t2                                                                                                          (3.54) 

           𝑠 = 1
2

 �⃗� 𝑡2                                                                                                        (3.55) 

 Where  

 

There is a force acting on the bullet called Coriolis force w.r.t NIF. 

The Bullet diverts (shifts) because of the rotating object w.r.t  IF. 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 a = 2 ω �⃗� 
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   Chapter 4 

4 CONCLUSION 

In this thesis we considered the Earth rotating around its axes. We ignored the 

motion of the Earth around the sun, and also the motion of the Sun and solar system in 

the Galaxy. 

We have reviewed briefly the Abelian and Non-Abelian groups of mathematics. 

Galilean transformation equations and Lorentz transformation equations are considered, 

since they are the basic mathematics of physics. Canonical transformations of classical 

mechanics is also mentioned.  

But the most important point that we have explained in chapter (2) is Newton’s 

equation of motion for the rotating Earth. In particular we have elaborated on Coriolis 

and centrifugal forces since they are the most important forces. We stressed that the 

Coriolis and centrifugal forces are not real forces; they are derived forces in non-inertial 

frames. But we can observe their effect in our daily life. After that we use these 

equations in some applications to guide us as the effect of rotating Earth in our daily life. 

We proved this effect for a projectile motion in some details. And also in this analysis 

we have proved that the missiles can’t reach their destinations without taking into 

account the rotational effect of the Earth. 

 As shown in a special case, and by using equations (Xmax., Ymax. , Zmax. ),we 

considered that the initial velocity in (x, y, z) directions are equal (v0x ,v0y , v0z = 10 m/s 
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), the angle is 300 and the angular velocity of the Earth is taken into account which is  (  

7.29 × 10 -5 ) rad/s and also the acceleration of Earth is constant (10) m/s2, We showed 

that the data will be changed because of the rotation of the Earth. As we obtained the 

maximum distance in x-direction increased by the amount (0.004) m for each (20) m, 

while in the y-direction the distance will be decreased by the amount (0.00157) m. In 

addition, the change in z-direction will be (0.0036) m which is the deflection occurred 

when z is a maximum. Finally we conclude that, if we want to get the correct data from 

the GPS system, we should take the rotating Earth in to consideration, because it directly 

affect in our daily life. Without this information loaded on the computer memory of the 

GPS system our seeking of direction will be incorrect. 
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