# **Developing Equations for Ideal Gas Air Properties**

Alireza Sadeghi

Submitted to the Institute of Graduate Studies and Research in partial fulfillment of the requirements for the Degree of

> Master of Science in Mechanical Engineering

Eastern Mediterranean University May 2013 Gazimağusa, North Cyprus Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yılmaz Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master of Science in Mechanical Engineering.

Assoc. Prof. Dr. Uğur Atikol Chair, Department of Mechanical Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in scope and quality as a thesis for the degree of Master of Science in Mechanical Engineering.

> Assoc. Prof. Dr. Fuat Egelioğlu Supervisor

> > **Examining Committee**

1. Prof. Dr. Hikmet Ş. Aybar

2. Assoc. Prof. Dr. Uğur Atikol

3. Assoc. Prof. Dr. Fuat Egelioğlu

#### ABSTRACT

The equations for property data of air as an ideal gas are developed. The equations are presented as a function of temperature. Although there are several software capable of using property tables for example, EES, VisSim and etc., others require equations for property calculations such as FORTRAN. Equations are developed by using the "CurveFitting Expert" software. Equations are presented for air properties as a function of temperature are; enthalpy, internal energy, entropy, reduced pressure and reduced volume. Many equations were developed but only those which have high correlations are presented (i.e., equations with highest  $R^2$ ). Moreover, the percent deviations of the calculated properties were studied and the equations which have more than one percent deviation from the tabulated data were neglected. Two equations to calculate temperature as a function of reduced pressure and enthalpy are also presented. The property equations developed in this study were used to simulate a 320 hp actual gas power turbine engine of a small military ship with reheater and recuperator. EES, MATLAB software and the developed equations were used to calculate various properties and the efficiency of the cycle. The difference in the final result (i.e., thermal efficiency) obtained by using the developed equations compared with the result obtained by using the EES software was around 0.1 % which indicated that the developed equations are accurate.

Keywords: Curve fitting, air properties, ship propulsion, EES software.

Havanın mükemmel gaz varsayımıyla özelliklerini hesaplamak için denklemler Denklemler sıcaklığın fonksiyonu olarak sunulmuştur. geliştirilmiştir. Özellik tablolarını kullanabilecek çeşitli yazılımlar olmasına rağmen örneğin EES, VisSim vb., diğerleri, FORTRAN gibi yazılımlar özellik hasaplamaları için denklemlerin kullanımını gerektirir. Denklemler "CurveFitting Expert" yazılımını kullanarak geliştirildi. Sıcaklığın fonksiyonu olarak sunulan havanın özellik bağıntıları; özgül entalpi, özgül iç enerji, özgül entropi, indirgenmiş basınç ve sanki-indirgenmiş özgül hacimdir. Birçok denklem geliştirilmiş ancak korelasyonu yüksek olanlar (en yüksek R<sup>2</sup>'li denklemler) sunuldu. Ayrıca, hesaplanan özelliklerin tablo değerleri incelendi ve yüzdelik sapması 1'den fazla olan denklemler ihmal edildi. Sıcaklık hesaplamaları için indirgenmiş basınç ve özgül entalpinin fonksiyonu olarak iki farklı denklem sunuldu. Bu çalışmada geliştirilen özellik denklemleri, küçük bir askeri geminin araısıtıcılı ve rejenaratörlü 320 BG gücünde gerçek gaz türbin motorunu simüle etmek için kullanıldı. EES, MATLAB yazılımları ve geliştirilmiş denklemler kullanılarak havanın özellikleri ve gaz turbininin çevrim verimliliğini hesaplamada kullanıldı. EES yazılımı kullanılarak elde edilen sonuçlar (ısıl verim) denklemlerin kullanılmasıyle elde edilen sonuçlar karşılaştırıldığında farkın % 0.1 civarında bulunması. gelistirilen denklemlerin oldukca doğru olduğunu göstermektedir.

Anahta Kelimeler: Eğri uydurma, hava özellikleri, gemi tahrik gaz türbini, EES yazılım.

# ACKNOWLEDGMENT

I would like express my sincere appreciation to my supervisor Assoc. Prof. Dr. Fuat Egelioğlu for his interminable contribution and guidance to preparing this dissertation. Without his precious supervision accomplishment of this goal would not be possible for me.

I should thank to my parents for supporting me financially and emotionally in all parts of my life, specially their encouragement to continuing my education in Cyprus.

# **TABLE OF CONTENTS**

| ABSTRACT                                              | iii  |
|-------------------------------------------------------|------|
| ÖZ                                                    | iv   |
| ACKNOWLEDGMENT                                        | V    |
| LIST OF TABLES                                        | viii |
| LIST OF FIGURE                                        | ix   |
| LIST OF SYMBLES                                       | X    |
| 1 INTRODUCTION                                        | 1    |
| 2 CURVE FITTING OR REGRESSION                         | 3    |
| 2.1 Curve Fitting                                     | 3    |
| 2.2 Why Curve Fitting Is Necessary                    | 4    |
| 2.3 Different Types Of Curve Fitting                  | 4    |
| 2.4 Correlation Coefficient (The Goodness Of Fitting) | 4    |
| 2.5 Fitting Functions                                 | 5    |
| 2.5.1 Polynomial Functions                            | 5    |
| 2.5.2 Power Law Functions                             | 6    |
| 2.5.2.1 Power Regression                              | 6    |
| 2.5.2.2 Shifted Power Regression                      | 6    |
| 2.5.2.3 Hoerl Regression                              | 6    |
| 2.5.3 Sigmoidal Growth Models                         | 7    |
| 2.5.4 Decline Models                                  | 7    |
| 3 METHODOLOGY IN THERMODYNAMIC AIR PROPERTIES CU      | RVE  |
| FITTING                                               | 8    |

| 3.1    | Ideal And Actual Air Treatment                                  | 8       |
|--------|-----------------------------------------------------------------|---------|
| 3.2    | Thermodynamics Properties                                       | 8       |
| 3.3    | Different Methods To Obtain Thermodynamic Properties            | 9       |
| 3.4    | Curve Fitting Of The Gas Properties Of Air                      | 9       |
| 3.5    | The Methodology For Calculating The Equations                   |         |
| 4 EQ   | UATIONS DEVELOPED FOR CALCULATING IDEAL                         | GAS-AIR |
| PROPE  | RTIES                                                           | 13      |
| 4.1    | The Accuracy Of The Obtained Equations                          | 21      |
| 5 CAS  | E STUDY                                                         | 22      |
| 5.1    | Gas Power Cycle                                                 | 22      |
| 5.2    | Gas Power Turbine Details                                       | 24      |
| 5.3    | Analysis Of The Gas Power Turbine                               | 25      |
| 6 DISC | CUSSION AND CONCLUSION                                          | 29      |
| REFER  | ENCES                                                           | 31      |
| APPEN  | IDICES                                                          | 34      |
| Appe   | endix A: Programming By EES and MatLab                          | 35      |
| 8      | a. Solving The Problem By Using The Tables And EES Equation     |         |
| ł      | b. Solving The Problem By Using The Obtained Equations In EES.  | 40      |
| C      | c. Solving The Problem By Using The Obtained Equations In Matla | ıb45    |
| Appe   | endix B: Thermodynamic Ideal Gas Air Tables                     | 48      |

# LIST OF TABLES

| Table 4.1: Property equations for air, T – h table                          | 14 |
|-----------------------------------------------------------------------------|----|
| Table 4.2: Property equations for air table, T – Pr table                   | 15 |
| Table 4.3: Property equations for air table, T – u table                    | 16 |
| Table 4.4: Property equations for air table, T – Vr table                   | 17 |
| Table 4.5: Property equations for air table, $T - S^0$ table                | 18 |
| Table 4.6: Property equations for air table, Pr – h table                   | 19 |
| Table 4.7: Property equations for air table, h-T    table                   | 20 |
| Table 5.1: Collected results by using obtained equations in MATLAB software | 28 |
| Table B.1: Air thermodynamic property table, T-Pr                           | 49 |
| Table B.2: Air thermodynamic property table, T-h                            | 50 |
| Table B.3: Air thermodynamic property table, h-Pr                           | 51 |
| Table B.4: Air thermodynamic property table, T-u                            | 52 |
| Table B.5: Air thermodynamic property table, T-Vr                           | 53 |
| Table B.6: Air thermodynamic property table, T-S <sup>0</sup>               | 54 |

# LIST OF FIGURES

| Figure 2.1a: (Left diagram) illustrate a straight line regression                    |
|--------------------------------------------------------------------------------------|
| Figure 2.1b: (Right diagram) shows non-linear regression by a cure                   |
| Figure 3.1: The flow chart of the methodology for calculating the equations12        |
| Figure 5.1: Actual gas power turbine engine of the small military ship with reheater |
| and recuperator                                                                      |
| Figure 5.2: EES result window for cycle analysis by using the thermodynamic air      |
| tables26                                                                             |
| Figure 5.3: EES result window for the cycle analysis by using obtained equations .26 |
| Figure 5.4: Enthalpy and temperature obtained by using table and EES equations27     |
| Figure 5.5: Enthalpy and temperature obtained by using developed equations27         |

# LIST OF SYMBOLS

| R <sup>2</sup>                    | coefficient of determinations               |
|-----------------------------------|---------------------------------------------|
| h                                 | enthalpy                                    |
| Τ                                 | temperature                                 |
| pr                                |                                             |
| u                                 | internal energy                             |
| Vr                                | reduced volume                              |
| S <sup>0</sup>                    | standard entropy                            |
| T_amb & T <sub>amb</sub>          | ambient temperature                         |
| P_atm & P <sub>atm</sub>          | ambient pressure                            |
| $T_t_in \& T_{t,in}$              | turbine inlet temperature                   |
| rp_c & rp <sub>c</sub>            | compressor pressure ratio                   |
| rp_pt & rp <sub>pt</sub>          | power turbine pressure ratio                |
| eta_c & $\eta_c$                  | compressor efficiency                       |
| eta_gt & $\eta_{gt}$              | gasifier turbine efficiency                 |
| eta_pt & $\eta_{pt}$              | power turbine efficiency                    |
| DT_rec                            | recuperator approach temperature difference |
| S                                 | entropy                                     |
| s_s                               | entropy balance on reversible equipment     |
| h_s & h <sub>i</sub>              | enthalpy leaving reversible equipment       |
| Q_dot_rec & $\dot{Q}_{rec}$       |                                             |
| eff_rec & $\eta_{rec}$            | effectiveness of recuperator                |
| w_dot_out & $\dot{w}_{out}$       | output work of the both turbines            |
| w_dot_in & <i>w</i> <sub>in</sub> | input work of the compressor                |

| $q_dot_in \& \dot{q}_{in} \dots$ | input thermal energy            |
|----------------------------------|---------------------------------|
| w_dot_net & $\dot{w}_{net}$      | net output energy of the system |
| eta_th & $\eta_{th}$             | efficiency                      |

# **Chapter 1**

## **INTRODUCTION**

Problem solving in Thermodynamics, fluid mechanics and heat transfer require values of fluid properties, such as air, water, refrigerants, carbon dioxide, etc. The properties of substances are presented as tables. This is due to the complex thermodynamics property relations of substances and usually equations developed for finding properties are not simple.

The property tables for various substances are readily available and easy to use. On the other hand property equations are useful in computer applications where the use of tables are not possible (i.e., not all software are capable to use tables such as FORTRAN) or use of equations are desirable. Thermodynamics systems simulations require the properties of the substances used in the systems. In engineering system design, it is required to design and produce more efficient parts compared to the available products. Computer simulation is an effective and efficient way to improve the design efficiency. For example, it is not economically feasible to build a huge steam power plant condenser and test its efficiency by experimentation, but computer simulations to improve the design in small systems is also more effective compared to real experiments. Reynolds in his book presented equations for finding the properties of various substances [1]. Recently, Zhao et al. [2] in their study developed equations by curve fitting for calculating the properties of refrigerants (CO<sub>2</sub> and R410A) in supercritical region and indicated that the calculation time is 100 times faster than those using more accurate methods whereas the total mean relative deviation is less than 1%. Researchers have divided the calculation methods of thermodynamic properties of refrigerants into two; the first one is accurate method in which equations of states are used and the second one is fast method where curve fitting method is used Lui et al. [3] indicated that the time taken for the simulation of a heat exchanger was more than 10 h if accurate method was employed and the simulation time for optimization will be very long. In the fast method the computer simulation time can be shortened effectively [4] have developed a dimensionless implicit curve fitting method (i.e., fast property calculation method) for two phase properties of R407C.

Curve fitting is important in engineering applications. Extensive studies on curve fitting were done and different approaches were used. Even though the appearance of some curves may look similar to each other, a curve may be an exponential, polynomial, or a complicated logarithmic function. The main aim of this study is to obtain curves for air properties. In this study different curve fitting methods were used to obtain equations of the air properties. The equations developed can be used for calculating the properties of air for computer simulation that involves the use of air properties such as gas power cycles. The results obtained from the equations developed were compared with the EES software solutions. Equations for finding the properties such as carbon dioxide, carbon monoxide, nitrogen and other substances can be obtained in a similar manner.

## **Chapter 2**

# **CURVE FITTING OR REGRESSION**

## 2.1 Curve Fitting

Curve fitting or regression is a statistical technique for investigation of the relations between data and variables that express the variable value as a function of the other value. The curve fitting operation has two principal branches, such as linear regression which approximate the best straight line through the variables and nonlinear regression that approximate the relationship of a best curve. Where in the two dimensional diagrams two kinds of variables are defined the explanatory (or independent variable) and the response (or dependent variable), see Fig. 2.1.

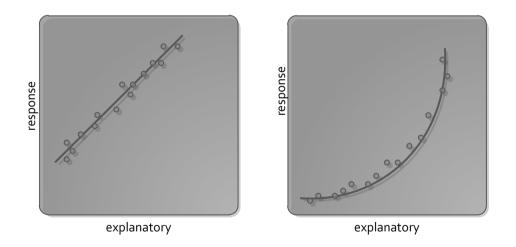



Figure 2.1a: (Left diagram) illustrate a straight line regressionFigure 2.1b: (Right diagram) shows non-linear regression by a cure.

#### 2.2 Why Curve Fitting is Necessary

The aim of curve fitting is to describe the experimental data in theoretical ways by modeling them in equations or in functions; moreover to find related variable with these functions and equations.

The fitted experimental data is to acquire a specific function to determine interpolation, the first and second derivatives between the data. Unfortunately sometimes there are dramatically differences between the experimental data and the data that obtained by fitted curves [5].

### 2.3 Different types of curve fitting

As mentioned earlier linear regression is one type of curve fitting in which a straight line was used for regression. Polynomial regression could be a very accurate approximation for the regression function by increasing the power of polynomial. The non-linear method which mostly calculate more accurate fitted equations with the lowest deviation from the experimental data or variables, is divided in various kind; the power law fitting, the exponential fitting, logarithmic fitting, sigmoidal model, in which some of them have similar diagrams that may cause misdiagnosis between them.

#### 2.4 Correlation Coefficient (The goodness of fitting)

The parameter which presents the quality of curve fitting is the correlation coefficient (usually marked as R) that shows how closely one variable related to the other variable. The range of R is from (-1) to (+1) which it is perfectly correlated in beginning and the end of the range in negative and positive direction and when it is equals to zero the variables are not correlated[6].

It could be illustrated by coefficient of determinations that is pronounced as R-squared; it is a number between 0 and 1 that represents how the regression line is accurate and fitted on the experimental points [7]. The  $R^2$  is expressed by the following equation.

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$
(2.1)

Where,  $\overline{Y}$  is the mean of Y which is the related variable obtained from experimental data and " $\hat{Y}$ " is the predicted values which were obtained from the fitted equation [7].

One of the objectives of this study is to develop accurate functions by employing the  $R^2$  for air property calculations.

#### 2.5 Fitting Functions

Functions such as polynomial, power law, power regression and etc., are employed in curve fitting. The functions used in this study are briefly explained in the following sub-sections.

#### 2.5.1 Polynomial Functions

Polynomial function fits data into the curve to the form of:

$$Y = A + B * X + C * X^{2} + \dots + K * X^{10} + \dots$$
(2.2)

Where A, B, C... K and etc. are the constants that should be calculated. X and Y are the independent and dependent variables respectively [5]. The more complex and higher polynomial order equations the accuracy of the fitted data would be higher.

#### 2.5.2 Power Law Functions

The Power family includes rising the independent parameter or some parameters to the power of independent variable, and there is no min/max or fluctuation. They are mostly concave or convex curves.

#### 2.5.2.1 Power Regression

Power Curve fitting fit the data through the following functions:

$$Y = A^* X^B \tag{2.3}$$

where A and B are the constants that they should be calculated; X and Y are the explanatory and response variables respectively. The variables should not be zero or negative.

#### 2.5.2.2 Shifted Power Regression

The shifted power regression is also similar to power regression; however before the effect of the power (constant C) on the independent value, the specific amount would be subtract from it (constant B). The function is defined as:

$$Y = A^* (X - B)^C \tag{2.4}$$

Where "X" is independent and "Y" is dependent variables.

#### 2.5.2.3 Hoerl Regression

The Hoerl Model is complicated, both raising the independent variable (i.e., X) to the power of a constant and a constant to the power of independent variable, exist in this regression such as in the following function:

$$Y = A^* B^X X^C \tag{2.5}$$

Where, A, B and C are constants and Y and X are response and explanatory variables.

#### 2.5.3 Sigmoidal Growth Models

The sigmoidal model is an "S" shape function that has various types; Morgan-Mercer-Flodin (MMF) Regression is from sigmoidal regression family that frequently approximated more accurate predictions in this study which is explained by the below function:

$$Y = \frac{A * B + C * X^D}{B + X^D} \tag{2.6}$$

Where A, B, C, and D are constants and X is the explanatory variable and Y is response value [8].

#### 2.5.4 Decline Models

The Decline curve fitting is the old and commonly used in industrial and production which relate the production rate to the time; the hyperbolic decline method function is as follows:

$$q_{t} = \frac{q_{0}}{(1+bD_{t}t)^{\frac{1}{b}}}$$
(2.7)

Where  $q_t$  is response variable and *t* is explanatory variable.  $q_0$ , b and D<sub>t</sub> are constants [9].

In the following chapter equations developed for air gas properties by using the functions explained above are presented.

## Chapter 3

# METHODOLOGY IN THERMODYNAMIC AIR PROPERTIES CURVE FITTING

#### 3.1 Ideal and Actual Air Treatment

Air is a mixture of different gasses and contained some liquid and solid components; it is mainly 78% of nitrogen and 21% of oxygen and the remaining 1% is including Argon, Helium, Neon,  $H_2O$  and etc. Various gases are differing in their behavior even in very small proportion; which are caused by intermolecular forces and the atomic weight. The gases behave much similar to each other, so the idea of an ideal gas was developed. In the concept of ideal gas there are no forces between molecules and molecules volume are not considered. However the estimated properties are closely like actual gases under the most conditions [10].

#### **3.2** Thermodynamics Properties

Each thermodynamic property is identified by several different manners. There are three specific ways to distinguish the properties; such as the measured properties which are calculated for example, volume, temperature, pressure and etc. The fundamental properties which are directly related to the fundamental thermodynamics laws such as internal energy and entropy these properties can be identified in laboratories. Moreover, the properties that should be derived by some specific relations for example enthalpy and etc., these are also could not be measured in the laboratories [11]. Some of the thermodynamics properties are directly related to the size of the system, like volume but the value of some of those properties are unrelated, such as pressure and temperature which they are called extensive and intensive properties respectively.

#### **3.3** Different Methods to Obtain Thermodynamic Properties

The thermodynamics properties of air can be determined from five different methods. Primary method is the usage of thermodynamics equations of state. Second method is by using the thermodynamics tables. Finding the property value by using thermodynamic charts is the third method. The forth method is to obtain the property value by direct experimental measurements. The final method to determine property is by employing formulae developed from statistical thermodynamics.

In this study thermodynamic properties of ideal gas air are obtained by curve fitting of air table values. By curve fitting the air property values obtained from the thermodynamic tables equations would be obtained which can be used in the analyses of thermodynamic problems instead of using the tables.

These equations could be employed in various software for designing and analyses of thermodynamic issues. However the accuracy and the simplicity of these equations are important.

#### 3.4 Curve Fitting of the Gas Properties of Air

The regression process is performed by using the "Curvefitting Expert" software, the Curvefitting Expert software has a wide database of the variety of the functions, and easy to use. The equation that has the nearest amount of R-squared to "one" has to be chosen. The plot of the best curve along the original data also gives visual feedback about the curve fit.

As the air can be treated as an ideal gas, thermodynamic properties of air are functions of temperature only. (Air property table is presented in the appendix B). In this study, the air properties as a function of temperature are presented; and in order, to increase the accuracy, the temperature was divided into several intervals as needed.

Calculating the deviation experienced by each calculated parameter could illustrate the amount of error; in this study less than one percent deviation was used as a benchmark for developing the equations i.e., equations having more than 1 percent deviation were rejected. The deviations were calculated as follows.

$$Deviation = \left| \frac{(Value \ of \ experimental \ Parameter) - (Value \ of \ obtained \ parameter)}{(Value \ of \ experimental \ Parameter)} \right| \times 100$$
(3.1)

Equations are calculated with the lowest deviation and with an R-squared value greater than 0.999 were obtained and presented.

One of the aims is to obtain simple and accurate equations for the air properties. However, accurate equations may not be very simple. The equations obtained are presented in the following tables having the R—squared values of one or near one, are slightly complicated; however, these equations can be employed easily in several software such as FORTRAN, MATHLAB, VisSim, Excel and etc., to calculate air properties for design and analyses of thermodynamic systems.

The thermodynamic variables are divided in two or three parts in order to obtain firstly, more accurate equations and secondly to obtain more simple equations. The equations such as the power regression, has the simplest form, by dividing the data into several intervals simple and relatively accurate equations can be obtained. The equations obtained by curve fitting are presented in the tables 3.1 to 3.7.

#### **3.5** The Methodology for Calculating the Equations

The Fig.3.1 illustrates the flow chart of the methodology for the calculation of the equations. These equations can be used instead of the ideal gas air property thermodynamic tables. The parameters "X" and "Y" in this flowchart represent the explanatory and the response variables of the air properties from the tables, moreover the parameter " $\hat{Y}$ " is the mount of the value of response variable obtained by using the developed equations. All the obtained equations are presented in the next chapter.




Figure 3.1. The flow chart of the methodology for calculating the equations

### **Chapter 4**

# EQUATIONS DEVELOPED FOR CALCULATING IDEAL GAS-AIR PROPERTIES

The developed equations are presented in the following sections as tables. The Table 4.1 shows the relation between enthalpy and the temperature of the air where temperature is the explanatory and the enthalpy is the response variable. Table 4.2 illustrates the relation among the reduced pressure and the temperature. The reduced pressure can be calculated by inserting the temperature into the developed equations between the ranges from 250 to 1500 Kelvin. Table 4.3 represents the relationship of the internal energy and the temperature that temperature is independent variable and the internal energy is dependent variable in those equations. Table 4.4 indicates the equations which relate the reduced volume to the temperature by using the property table and the curve fitting method where temperature and reduced volume are explanatory and response variables respectively. Tables 4.5 demonstrate equations which standard entropy is dependent to the temperature.

Tables 4.6 and 4.7 unlike the previous tables; temperature is not the explanatory variable because in some part of thermodynamic problem solving the enthalpy should be calculated by using the reduced pressure. The table 4.6 illustrates the relation between reduced pressure and the enthalpy and the table 4.7 shows the enthalpy as explanatory and temperature as response variable which mostly used in the thermodynamic cycles problems.

13

| Equations                                                                                                     | <b>Regression Method</b> | Average Deviation<br>(Percent) | $\mathbf{R}^2$ |
|---------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|----------------|
| $h = 13.2818824 + 919.093 \times 10^{-3} T + 123.4542653$ $\times 10^{-6} T^2 - 9.6778505 \times 10^{-9} T^3$ | Polynomial degree of 3   | 0.0941932                      | 0.999998       |
| $200 \le T \le 1500$                                                                                          |                          |                                |                |
| $h = 9.4649778 + 937.5687231 \times 10^{-3} T + 98.7740772$ $\times 10^{-6} T^{2}$                            | Polynomial degree of 2   | 0.190688                       | 0.999997       |
| × 10 T                                                                                                        |                          | 0.07109133                     |                |
| $200 \le T \le 500$                                                                                           |                          |                                |                |
| $h = 1.0469353 + 953.8210000 \times 10^{-3} T + 91.3465559$ $\times 10^{-6} T^{2}$                            |                          |                                | 0.999999       |
| $500 \le T \le 1500$                                                                                          |                          |                                |                |
| $h = 1.09450727 \times 1.000105777152^{T} \times T^{0.9780635945}$                                            | Hoerl                    | 0.1365502                      | 0.999994       |
| $200 \le T \le 1500$                                                                                          |                          |                                |                |
| $h = 0.96736098220213 T^{1.0059942128}$ $200 \le T \le 525$                                                   | Power                    | 0.0737011                      | 0.999991       |
| $h = 0.6368407038627 T^{1.0726866461}$                                                                        |                          |                                |                |
| $525 \le T \le 1500$                                                                                          |                          | 0.4402566                      | 0.99977        |

\* Table Parameters Unit: T (degree of Kelvin), h (kJ/kg)

# Table 4.2: Property equations for air table, T – Pr\* table

| Equations                                                                                                                                                                         |                                          | Regression<br>Method | Average Deviation (Percent) | $\mathbf{R}^2$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|-----------------------------|----------------|
| $Pr = 1.1328623 - 11.3723411 \times 10^{-3} T + 38.3805517 \times 10^{-6} T^2 - 19.0563752 \times 10^{-9} T^3 + 79.56892607 \times 10^{-12} T^4 + 25.4252534 \times 10^{-15} T^5$ |                                          | Polynomial           | 0.003163633                 | 1.000000       |
|                                                                                                                                                                                   |                                          | Degree of 5          |                             |                |
|                                                                                                                                                                                   | $250 \le T \le 1500$                     |                      |                             |                |
| $Pr = 114.476 \times 10^{-6} \left(1 + 36.7919818 \times 10^{-3} T\right)^{3}$                                                                                                    | 3.7791609                                | Hyperbolic           | 0.488669183                 | 0.99981        |
| $Pr = 23.07 \times 10^{-3} \left(1 + 4.9068494 \times 10^{-3} T\right)^{4.78}$                                                                                                    | $250 \le T \le 650$                      | Decline              | 0.076939259                 | 0.99999        |
|                                                                                                                                                                                   | $650 \le T \le 1500$                     |                      |                             |                |
| $Pr = 9.228466 \times 10^{-9} \times 1.000653233^{T} T^{3.267167}$                                                                                                                |                                          | Hoerl                | 0.15728075                  | 0.999999       |
| $Pr = 3.9206 \times 10^{-9} \times 1.000561503^{T} T^{3.407010356}$                                                                                                               | $250 \le T \le 750$ $750 \le T \le 1500$ |                      | 0.1109775                   | 0.999998       |
| $Pr = 2.9853848 \times 10^{-9} T^{3.49892662062}$                                                                                                                                 | $250 \le T \le 400$                      | Power                | 0.0933774                   | 0.99999        |
| $Pr = 1.82799619965 \times 10^{-9} T^{3.58090341235}$                                                                                                                             | $400 \le T \le 600$                      |                      | 0.2463938                   | 0.99998        |
| $Pr = 4.427663223 \times 10^{-10} T^{3.8015654126}$                                                                                                                               |                                          |                      | 0.5001761                   | 0.99979        |
| $Pr = 5.9390432956 \times 10^{-11} T^{4.0940332738}$                                                                                                                              | $600 \le T \le 950$ $950 \le T \le 1500$ |                      | 0.4669045                   | 0.99985        |

\* Table Parameters Unit: T (degree of Kelvin), pr (-)

| Equations                                                                 | Regression Method    | Average<br>Deviation<br>(Percent) | $\mathbf{R}^2$ |
|---------------------------------------------------------------------------|----------------------|-----------------------------------|----------------|
| $u = 10.0208553 + 649.0183445 \times 10^{-3} T + 99.5613344$              | Polynomial degree of | 0.117                             | 0.999995       |
| $\times 10^{-6} T^2$                                                      | 2                    |                                   |                |
| $250 \le T \le 1500$                                                      |                      |                                   |                |
| $u = 0.823963804 \times 1.0001496893^T T^{0.9662646128}$                  | Hoerl                | 0.189312                          | 0.999995       |
| $250 \le T \le 1500$                                                      |                      |                                   |                |
| $u = 30.8361045 \left(1 + 13.3289392 \times 10^{-3} T\right)^{1.2038600}$ | Hyperbolic Decline   | 0.22815                           | 0.999982       |
| $250 \le T \le 1500$                                                      |                      |                                   |                |
| $u = 0.1704418202047 (T + 75.0246909149)^{1.2038599986}$                  | Shifted Power        | 0.22815                           | 0.999982       |
| $250 \le T \le 1500$                                                      |                      |                                   |                |

Table 4.3: Property equations for air table,  $T - u^*$  table

\* Table Parameters Unit: T (degree of Kelvin), u (kJ/kg)

# Table 4.4: Property equations for air table, $T - Vr^*$ table

| Equations                                                                                                                                                                                                                                                                                                                                                                  | <b>Regression Method</b> | Average Deviation<br>(Percent) | $\mathbb{R}^2$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|----------------|
| $Vr = 16.3779242 \times 10^{3} - 185.3304161 T + 986.87 \times 10^{-3} T^{2}$<br>- 3.1483772 \times 10^{-3} T^{3} + 6.5602831 \times 10^{-6} T^{4} - 9.2561765<br>\times 10^{-9} T^{5} + 8.9203031 \times 10^{-12} T^{6} - 5.7869862 \times 10^{-15} T^{7}<br>+ 2.4169985 \times 10^{-18} T^{8} - 586.8730057 \times 10^{-24} T^{9}<br>+ 62.9358124 \times 10^{-27} T^{10} | Polynomial degree of 10  | 0.948635163                    | 0.999997       |
| $250 \le T \le 1500$                                                                                                                                                                                                                                                                                                                                                       |                          |                                |                |
| $Vr = \frac{9.756956485 \times 10^8 - 5.51218185 T^{2.49852359}}{2.10052359}$                                                                                                                                                                                                                                                                                              | MMF                      | 0.105557                       | 0.999994       |
| $\frac{VF}{10924.48536721 + T^{2.49852359}}$                                                                                                                                                                                                                                                                                                                               |                          |                                |                |
| $Vr = \frac{2.5382604 \times 10^9 - 2.7246498 T^{2.6520597}}{29.6835548 \times 10^3 + T^{2.6520597}}$                                                                                                                                                                                                                                                                      |                          |                                |                |
| $29.6835548 \times 10^3 + T^{2.6520597}$                                                                                                                                                                                                                                                                                                                                   |                          |                                | 0.999843       |
| $600 \le T \le 1500$                                                                                                                                                                                                                                                                                                                                                       |                          |                                |                |
| $Vr = \frac{4.218090861 \times 10^8 \times 0.9994502192952^T}{T^{2.325175719758}}$                                                                                                                                                                                                                                                                                         | Hoerl                    | 0.132753                       | 0.999994       |
| $Vr = \frac{2.67368675261013 \times 10^8 \times 0.9992729922^T}{T^{2.236336682036}}$                                                                                                                                                                                                                                                                                       |                          | 0.255969                       | 0.99997        |
| $480 \le T \le 1500$                                                                                                                                                                                                                                                                                                                                                       |                          |                                |                |

\* Table Parameters Unit: T (degree of Kelvin), Vr (-)

# Table 4.5: Property equations for air table, $T - S^0 *$ table

| Equations                                                                                                                                                                                             | <b>Regression Method</b> | Average Deviation<br>(Percent) | $\mathbf{R}^2$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|----------------|
| $S^{0} = 1.5182413 \times 10^{-1} + 7.7136561 \times 10^{-3} T - 1.1145342 \times 10^{-5} T^{2} + 1.0203442 \times 10^{-8} T^{3} - 4.9002046 \times 10^{-12} T^{4} + 9.4465845 \times 10^{-16} T^{5}$ | Polynomial degree of 5   | 0.05006                        | 0.999994       |
| $250 \le T \le 1500$                                                                                                                                                                                  |                          |                                |                |
| $S^{0} = 0.31024645483 (T - 135.89734834675)^{0.333798344934}$                                                                                                                                        | Shifted power            | 0.1055307                      | 0.999971       |
| $250 \le T \le 1500$                                                                                                                                                                                  |                          |                                |                |
| $S^{0} = \frac{-45.95743308 + 16.981540473 T^{0.274237709055}}{15.88727341324 + T^{0.274237709055}}$                                                                                                  | MMF                      | 0.106002                       | 0.999973       |
| $15.88727341324 + T^{0.274237709055}$                                                                                                                                                                 |                          |                                |                |
| $250 \le T \le 1500$                                                                                                                                                                                  |                          |                                |                |
| $S^0 = 0.07113442802057$                                                                                                                                                                              | Hoerl                    | 0.437117                       | 0.99955        |
| $\times \ 0.9998165492855^T T^{0.56732441234046}$                                                                                                                                                     |                          |                                |                |
| $250 \le T \le 1500$                                                                                                                                                                                  |                          |                                |                |

\* Table Parameter Unit: T (degree of Kelvin), S<sup>0</sup> (kJ/kg. k)

Table 4.6: Property equations for air table,  $Pr - h^*$  table

| Equations                                                                              | <b>Regression Method</b> | Average Deviation<br>(Percent) | $\mathbf{R}^2$ |
|----------------------------------------------------------------------------------------|--------------------------|--------------------------------|----------------|
| $h = \frac{279.1522686 + 13319.743517  pr^{0.299578}}{48.769311 + pr^{0.299578}}$      | MMF                      | 0.17794                        | 1.00000        |
| $o \le pr \le 600$                                                                     |                          |                                |                |
| $h = 275.4627599 \times 0.999948564^{pr} pr^{0.2828553754}$                            | Hoerl                    | 0.2115                         | 0.999989       |
| $o \le pr \le 600$                                                                     |                          |                                |                |
| $h = 273.52503 (pr - 0.00236346)^{0.286189}$                                           | Shifted Power            | 0.039738                       | 0.999998       |
| $0 \le pr \le 20$<br>h = 283.5347093756 (pr - 0.097539691634) <sup>0.27470816112</sup> |                          | 0.276147                       | 0.999988       |
| $20 \le pr \le 600$                                                                    |                          |                                |                |
| $h = 275.185562  pr^{0.2826645}$                                                       | Power                    | 0.325978                       | 0.99988        |
| $0 \le pr \le 190$                                                                     |                          |                                |                |
| $h = 281.025957  pr^{0.275304247782}$                                                  |                          | 0.4654198                      | 0.999855       |
| $190 \le pr \le 600$                                                                   |                          |                                |                |

\* Table Parameter Unit: Pr (-), h (kJ/kg)

| Equations                                                                                                                                                                    | <b>Regression Method</b> | Average Deviation<br>(Percent) | $\mathbb{R}^2$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|----------------|
| $T = -5.7559645569 + 1.03468305147 h - 0.0000376039987284 h^{2}$<br>- 5.044969502941 × 10 <sup>-8</sup> h <sup>3</sup> + 1.88651774609433 × 10 <sup>-11</sup> h <sup>4</sup> | Polynomial Degree of 4   | 0.039572                       | 0.999999       |
| $200 \le h \le 1650$                                                                                                                                                         |                          |                                |                |
| $T = 0.963362526937 \times 0.99991593073^{h} \times h^{1.011631542987}$                                                                                                      | Hoerl                    | 0.163978                       | 0.99999        |
| $200 \le h \le 1650$                                                                                                                                                         |                          |                                |                |
| $T = 2.26157693959988 (h - 43.65192520636)^{0.8813620503243}$                                                                                                                | Shifted power            | 0.248486                       | 0.999984       |
| $250 \le h \le 1650$                                                                                                                                                         |                          |                                |                |

Table 4.7: Property equations for air table, h-T \* table

\* Table Parameters Unit: T (degree of Kelvin), h (kJ/kg)

#### 4.1 The Accuracy of the Obtained equations

The tables demonstrate equations obtained which have the average deviation less than one percent from the original values furthermore, the R-squared in the entire equations are equal to one or almost one; however, they should be investigated in a real problem which deal with air tables such as a gas turbine power plant or a gas power cycle and compare the results obtained by using the developed equations with the results which are calculated by using the gas air tables.

EES is a engineering software which the thermodynamic tables are defined in it, and it has the ability to solve the thermodynamic problem by the tables. In the following chapter a case study is perused and the results are compared.

## **Chapter 5**

# **CASE STUDY**

#### 5.1 Gas Power Cycle

The system that transforms the thermal energy to shaft work to generate power is known as power cycle. If the working fluid is gaseous throughout the cycle, than the cycle is a gas power cycle. In this study a small gas turbine efficiency calculation, where the working fluid is air, is presented as a case study.

The schematic of the thermodynamic of gas turbine engine power plant is shown in Fig.5.1. This is for a small military ship which needs 320 hp power output. At the beginning, the fresh air goes into the compression stage, where the temperature and the pressure are increased. As the exhaust gas temperature from the turbine in cycle is extremely higher than the air temperature which leaves the compressor the exhaust turbine hot air flow could transfer its heat to the leaving high pressure air from the compressor, in a counter flow heat exchanger. This heat exchanger always is known as a recuperator or a regenerator [12]. The consequence of using the regeneration of the power cycle is to increase the thermal efficiency of the cycle. The portion of the heat in the exhaust air is used to preheat the air entering the combustor.

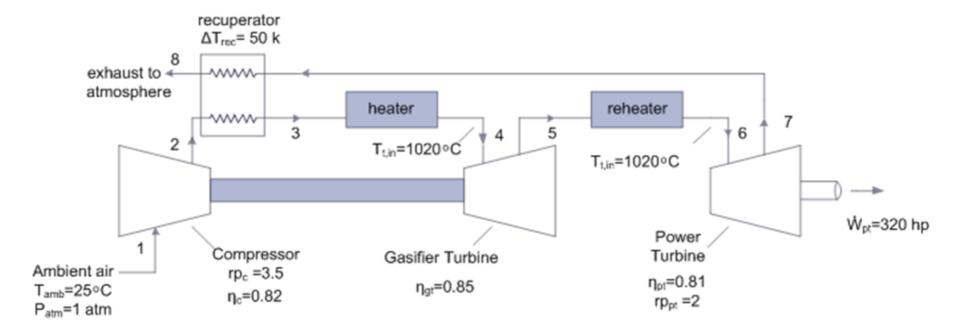
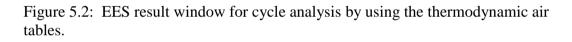



Figure 5.1: Actual gas power turbine engine of the small military ship with reheater and recuperator

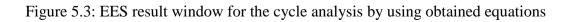
The high-pressure air proceeds into the combustion chamber (heater); the fuel is burned at constant pressure. The resulting high-temperature gases then enter the gasifier turbine equipment, the power produced by the gasifier turbine is equal to the power consumed by the compressor (the gasifier turbine provide the energy that the compressor consumed to compressing the air). The air flow entered to another combustion chamber to reheat and rise the working fluid temperature till the previous entrance temperature; then in the power turbine they expand to the atmospheric pressure and net-work is produced.

#### 5.2 Gas Power Turbine details

The gas turbine engine for ship propulsion is working in the ambient air, the temperature is 25°C in and the pressure is one atmosphere at the compressor inlet (state 1). The compressor and power turbine pressures are 3.5 and 2 respectively, and the efficiency of the compressor is 82%. The air evacuates the compressor at the state 2 and it enters the regenerator (recuperator), the temperature difference at the hot end of recuperator is 50 °C. The air enters at the first heater (i.e., combustion chamber) at the state 3 and the air temperature is 1020 °C at the exit of the combustion chamber. Then the air enters to the gasifier (state 4), the work produced by the gasifier turbine runs the compressor; the gasifier turbine isentropic efficiency is 85%. The expanded working fluid leaving gasifier turbine enters to the reheater and heated to 1020 °C. The reheated air enters to the power turbine (state 6), the air expands through the power turbine and executes propulsion power for the ship; the efficiency of the power turbine is 81%. The hot air leaves the turbine to the regenerator for preheating the compressed air at the state 3 and it released to the atmosphere at the state 8 [13].


#### 5.3 Analysis of the Gas Power Turbine

The gas power turbine is examined by using the EES software. The EES was used to obtain the following parameters: thermal efficiency, properties at various state points. Air table properties available within the EES were used in the cycle analysis. Then, the EES software again was used with the equations developed for air property calculations to calculate the same parameters. The programs developed by using EES for the analyses of the cycle are presented in the following sub-sections. The analyses of the gas power cycle by using the equations developed are presented in the Fig.5.3. and Fig.5.5.


EES software is an engineering software and mostly used in thermodynamics and mechanics. The benefit of the equations is they could be used in any software with high accuracy. This problem is also solved in the MATLAB software which it is not engineering software (Appendix A. part c) and the results are presented in the table 5.1 as it shows, for an illustration the deviation for thermal efficiency is zero.

All the deviations are less than 1%; therefore, the developed equations can be used in the analyses of thermodynamic problems involving air properties.

| EES Solution                          |                                 | ן |
|---------------------------------------|---------------------------------|---|
| Main                                  |                                 |   |
| Unit Settings: SI K Pa J mas          | ss rad                          |   |
| DT <sub>rec</sub> = 50 [K]            | eff <sub>rec</sub> = 0.9217 [-] |   |
| η <sub>c</sub> = 0.82 [-]             | η <sub>gt</sub> = 0.85 [-]      |   |
| η <sub>pt</sub> = 0.81 [-]            | η <sub>th</sub> = 0.1761        |   |
| h <sub>3,max</sub> = 1.196E+06 [J/kg] | P <sub>atm</sub> = 101325 [Pa]  |   |
| q <sub>in</sub> = 1.089E+06           | Q <sub>rec</sub> = 682363       |   |
| Q <sub>rec,max</sub> = 740336         | rp <sub>c</sub> = 3.5 [-]       |   |
| rp <sub>pt</sub> = 2 [-]              | T <sub>amb</sub> = 298.2 [K]    |   |
| T <sub>tin</sub> =1293 [K]            | w <sub>in</sub> = 157178        |   |
| w <sub>net</sub> = 191887             | w <sub>out</sub> = 349065       |   |
| Ŵ <sub>pt</sub> = 238624 <b>[W]</b>   |                                 |   |
|                                       |                                 |   |
|                                       |                                 |   |



| FEs Solution                 |                             | 3 |
|------------------------------|-----------------------------|---|
| Main                         |                             | - |
| Unit Settings: SI K Pa k     | J mass rad                  |   |
| DT <sub>rec</sub> = 50 [K]   | eff <sub>rec</sub> = 0.9218 |   |
| η <sub>c</sub> = 0.82 [-]    | η <sub>gt</sub> = 0.85 [-]  |   |
| η <sub>pt</sub> = 0.81 [-]   | η <sub>th</sub> = 0.1761    | = |
| h <sub>3,max</sub> = 1196    | P <sub>atm</sub> = 101325   |   |
| q <sub>in</sub> =1090        | Q <sub>rec</sub> = 684.6    |   |
| Q <sub>rec,max</sub> = 742.7 | rp <sub>c</sub> = 3.5 [-]   |   |
| rp <sub>pt</sub> = 2 [-]     | T <sub>amb</sub> = 298.2    |   |
| T <sub>t.in</sub> = 1293     | w <sub>in</sub> = 155.3     |   |
| w <sub>net</sub> = 191.9     | w <sub>out</sub> = 347.3    |   |
| Ŵ <sub>pt</sub> = 238624     |                             |   |
|                              |                             | ÷ |



| Es Arrays T | able  |                                 | - • •     |
|-------------|-------|---------------------------------|-----------|
| Main        |       |                                 |           |
| Sort        | 1     | ² ►<br>h <sub>i</sub><br>[J/kg] | 3         |
| [1]         | 298.2 | 298571                          |           |
| [2]         | 453.6 | 455750                          | 427457    |
| [3]         | 1080  | 1.138E+06                       |           |
| [4]         | 1293  | 1.388E+06                       |           |
| [5]         | 1160  | 1.231E+06                       | 1.194E+06 |
| [6]         | 1293  | 1.388E+06                       |           |
| [7]         | 1130  | 1.196E+06                       | 1.151E+06 |
| [8]         | 510.1 | 513723                          |           |
| •           |       |                                 | ۴.        |

Figure 5.4: Enthalpy and temperature obtained by using table and EES equations

| Es Arrays Ta | able                                  |                  | - • ×                    |
|--------------|---------------------------------------|------------------|--------------------------|
| Main         |                                       |                  |                          |
| Sort         | ¹ T <sub>i</sub> ■                    | ² h <sub>i</sub> | 3 ⊾4<br>h <sub>s,i</sub> |
| [1]          | 298.2                                 | 298.2            |                          |
| [2]          | 451.9                                 | 453.5            | 425.6                    |
| [3]          | 1080                                  | 1138             |                          |
| [4]          | 1293                                  | 1388             |                          |
| [5]          | 1162                                  | 1233             |                          |
| [6]          | 1293                                  | 1388             |                          |
| [7]          | 1130                                  | 1196             | 1151                     |
| [8]          | 508.2                                 | 511.6            |                          |
| •            | · · · · · · · · · · · · · · · · · · · |                  | ۱.<br>۲                  |

Figure 5.5: Enthalpy and temperature obtained by using developed equations

| h1      | 298.1796 | T_amb  | 298.15   | eta_th  | 0.1761 | w_dot_out     | 347.2532 |
|---------|----------|--------|----------|---------|--------|---------------|----------|
| h_s2    | 425.5603 | T_t_in | 1293.2   | eta_pt  | 0.81   | w_dot_net     | 191.9108 |
| h2      | 453.5219 | T1     | 298.15   | eta_gt  | 0.85   | w_dot_in      | 155.3424 |
| h3      | 1138.1   | Т2     | 451.8531 | eta_c   | 0.82   | Q_dot_rec_max | 742.6836 |
| h4      | 1388     | Т3     | 1080.3   | eff_rec | 0.9218 | Q_dot_rec     | 684.5803 |
| h5      | 1232.7   | T4     | 1293.2   | rp_pt   | 2      | q_dot_in      | 1089.9   |
| h6      | 1388     | T5     | 1161.6   | rp_c    | 3.5    |               |          |
| h_s7    | 1151.1   | Т6     | 1293.2   | DT_rec  | 50     |               |          |
| h7      | 1196.1   | Т7     | 1130.3   | P_atm   | 101325 |               |          |
| h8      | 511.5538 | Т8     | 508.2379 |         |        |               |          |
| h_3_max | 1196.2   |        |          |         |        |               |          |

Table 5.1: collected results by using obtained equations in MATLAB software

# **Chapter 6**

# **DISCUSSION AND CONCLUSION**

Curve fitting is a method used to calculate values of different variables which they don't have mathematical relation with each other; however the numerical relation between them is presented by experimental methods which generally calculated in laboratories (Property tables). By the contribution of curve fitting and the numerical relations between variables some equations could be determined that if the curve is fitted very carefully the equations could be used to find response variable by having the explanatory value. Some of these relations are complicated but only one relation would be needed to assume the dependent variable value in the defined range that it is suggested not to be used in the manual calculation and problem solving it would be better to use them in some software such as FORTRANT, MATLAB and etc., whereas some of the equations have less accuracy to prevent accuracy drop in equation the defined ranges are splitted into two or three separate ranges to keep the deviation of each parameter less than one in whole range of variables and also the using of the simple equation.

Thermal efficiency and the effectiveness are approximately equal as seen in Figs. 5.2 and 5.3 plus table 5.1, also the utilization of the equations in the EES software are simple. The equations can be also employed in other software. The deviations in

thermal efficiency and effectiveness of the recuperator are less than 0.01% which indicates that the equations developed are accurate.

## REFERENCES

[1] Williams C. Reynolds (1979). Thermodynamic properties in SI: Graphs, tables, and computational equations for forty substances. Dept. of Mechanical Engineering, Stanford University (Stanford, CA), Book (ISBN 0917606051).

[2] Dan Zhao, Guoliang Ding, Zhigang Wu (2009). Extension of the implicit curvefitting method for fast calculation of thermodynamic properties of refrigerants in supercritical region, International Journal of Refrigeration, Vol 32, pp. 1615-1625.

[3] Jian Liu, WenJian Wei, GouLiang Ding, Chunlu Zhang, Masaharu Fukaya, Kaijian Wang, Takefumi Inagaki(December 2004). A general steady state mathematical model for fin-and-tube heat exchanger based on graph theory, International Journal of Refrigeration Vol 27, pp. 965–973.

[4] J. Liu, G.L. Ding, Z.G. Wu (2005). Dimensionless implicit curve-fitting method for two-phase thermodynamic properties of R407C, Shanghai Jiaotong Daxue Xuebao/ Journal of Shanghai Jiaotong University, Vol 39, pp. 230-233.

[5] The Kaleida Graph Guide to Curve Fitting [Online]. Available at: www.synergy.com/Tools/curvefitting.pdf (Accessed: 16 April 2013).

[6] G.Quinn & M.Keough (2002), Experimental Design and Data Analysis for Biologists. This book Published in the United States of America by Cambridge University Press, New York, Chapter 5, pp. 72- 110.

[7] D. A. Ratkowsky (1989), Handbook of Nonlinear Regression Models, Published by Marcel Dekker Inc., New York, 264 p.

[8] Atif Akbar& Muhammad Aman Ullah, (December 2011), Nonparametric Regression Estimation for Nonlinear Systems: A Case Study of Sigmoidal. Pakistan Journal of Social Sciences (PJSS) Vol. 31, pp. 423-432.

[9] Sri Wahyuningsih, Sutawanir Darwis, Agus Yodi Gunawan, and Asep Kurnia Permadi (December 2008), Estimating Hyperbolic Decline Curves Parameters, Jurnal Matematika & Sains, Vol 13, pp. 125- 134.

[10] Prof. Ulrike Lohmann (September 2012), Thermodynamics [online]. Available at:http://www.iac.ethz.ch/edu/courses/bachelor/vertiefung/atmospheric\_physics/Slid es\_2012/thermodyn.pdf (Accessed: 16 April 2013).

[11] Stephen Turns (2006), thermodynamics concepts and applications, published by Cambridge University Press, Book (ISBN: 9780521850421).

[12] Y. A. Cengel & M. A. Boles (2006), Thermodynamics an Engineering Approach, 5th Ed, Book published by McGraw-Hill Book Co. (ISBN 10: 0072884959 / ISBN 13: 9780072884951 )

[13] Sanford Klein & Gregory Nellis, Thermodynamics, published by Cambridge University Press, United Kingdom Book (ISBN: 0521195705)

•

APPENDICES

# Appendix A: Programming By EES and MatLab

# a. Solving the Problem by using the Tables and EES equation

#### "Input conditions"

T\_amb=converttemp(C,K,25 [C])

P\_atm=1 [atm]\*convert(atm,Pa)

T\_t\_in=convertemp(C,K,1020 [C])

rp\_c=3.5[-]

rp\_pt=2[-]

W\_dot\_pt=320 [hp]\*convert(hp,W)

system"

#### "Performance parameters"

eta\_c=0.82[-] "compressor efficiency" eta\_gt=0.85[-] "power turbine efficiency" eta\_pt=0.81[-] DT\_rec=50 [K] difference"

#### "State 1"

T[1]=T\_amb "temperature" "pressure"  $P[1]=P_atm$ s[1]=entropy(Air,T=T[1],P=P[1]) "entropy" "enthalpy" h[1]=enthalpy(Air,T=T[1])

"ambient temperature" "ambient pressure" "turbine inlet temperature" "compressor pressure ratio" "power turbine pressure ratio" "power delivered to ship propulsion

"gasifier turbine efficiency" "recuperator approach temperature

35

#### "State 2"

#### compressor"

"State 4"

T[4]=T\_t\_in"temperature"P[4]=P[2]"pressure"h[4]=enthalpy(Air,T=T[4])"enthalpy"s[4]=entropy(Air,T=T[4],P=P[4])"entropy"

"entropy balance on reversible gasifier

"enthalpy leaving reversible gasifier

#### "State 5"

s\_s[5]=s[4]

## turbine"

h\_s[5]=enthalpy(Air,s=s\_s[5],P=P[5])

turbine"

h[5]=h[4]-(h[2]-h[1])

turbine"

s[5]=entropy(Air,h=h[5],P=P[5])

turbine"

T[5]=temperature(Air,h=h[5])

turbine"

P[5]=P[6]

#### "State 6"

 $T[6]=T_t_in$ P[6]=rp\_pt\*P[7] h[6]=enthalpy(Air,T=T[6]) s[6]=entropy(Air,T=T[6],P=P[6])

"State 7"

P[7]=P\_atm

s\_s[7]=s[6]

#### turbine"

h\_s[7]=enthalpy(Air,s=s\_s[7],P=P[7])

#### turbine"

 $h[7]=h[6]-(eta_pt^*(h[6]-h_s[7]))$ 

#### turbine"

s[7]=entropy(Air,h=h[7],P=P[7])

"enthalpy leaving actual gasifier

"entropy leaving actual gasifier

"temperature leaving actual gasifier

## "temperature"

"pressure"

"enthalpy"

"entropy"

"power turbine exit pressure"

"entropy balance on reversible power

"enthalpy leaving reversible power

"enthalpy leaving actual power

"entropy leaving actual power turbine"

T[7]=temperature(Air,h=h[7])

"temperature leaving actual power

#### turbine"

#### "State 3"

T[3]=T[7]-DT\_rec

P[3]=P[2]

h[3]=enthalpy(Air,T=T[3])

s[3]=entropy(Air,T=T[3],P=P[3])

## "temperature"

"pressure"

"enthalpy"

"entropy"

## "State 8"

h[2]+h[7]=h[3]+h[8]

P[8]=P[7[

T[8]=temperature(Air,h=h[8])

s[8]=entropy(Air,h=h[8],P=P[8])

"pressure"

"temperature"

"specific entropy"

 $Q_dot_rec=h[3]-h[2]$ 

#### mass"

h\_3\_max=enthalpy(Air,T=T[7])

Q\_dot\_rec\_max=h\_3\_max-h[2]

#### per unit mass"

eff\_rec=Q\_dot\_rec/Q\_dot\_rec\_max

"recuperator heat transfer per unit

"maximum enthalpy leaving cold side"

"maximum recuperator heat transfer

"effectiveness of recuperator"

## "efficiency"

 $w_dot_out=(h[4]-h[5])+(h[6]-h[7])$ 

 $w_dot_in=(h[2]-h[1])$ 

 $q_dot_in=(h[6]-h[5])+(h[4]-h[2])$ 

w\_dot\_net=w\_dot\_out-w\_dot\_in

eta\_th=w\_dot\_net/q\_dot\_in

"the output work of the both turbines"

"the input work of the compressor"

"input thermal energy"

"the net output energy of the system"

"efficiency"

# b. Solving The Problem By Using The Obtained Equations In EES

# "Input Conditions"

| T_amb=converttemp(C,K,25[C])     | "ambient temperature"               |
|----------------------------------|-------------------------------------|
| P_atm=1 [atm]*convert(atm,Pa)    | "atmospheric Pressure"              |
| T_t_in=converttemp(C,K,1020 [C]) | "turbine inlet"                     |
| rp_c=3.5[-]                      | "compressor pressure ratio"         |
| rp_pt=2[-]                       | "power turbine pressure ratio"      |
| W_dot_pt=320 [hp]*convert(hp,W)  | "power delivered to ship propulsion |
| system"                          |                                     |

#### "performance parameters"

| eta_c=0.82[-]  | "compressor efficiency"           |
|----------------|-----------------------------------|
| eta_gt=0.85[-] | "gasifier turbine efficiency"     |
| eta_pt=0.81[-] | "power turbine efficiency"        |
| DT_rec=50 [K]  | "recuperator approach temperature |
| defference"    |                                   |

## "state 1"

| T[1]=T_amb                                       | "temperature"                          |
|--------------------------------------------------|----------------------------------------|
| P[1]=P_atm                                       | "pressure"                             |
| h[1]=2.42510557613+(0.992324*T[1])-              |                                        |
| ((T[1]^2)*0.000035351212993866)+((T[1]^3)*(1.264 | 724545582e-7))-((T[1]^4)*4.004439991e- |
| 11)                                              | "specific enthalpy"                    |

| Pr[1]=1.13286229442-1.137234107131*10^(-2)*T[1]+3.8380551092451*10^(-5)*T[1]^2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| 1.9056375223946*10^(-8)*T[1]^3+7.956892602*10^(-11)*T[1]^4+2.5425253418641*10^(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |  |  |  |
| 14)*T[1]^5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "reduced pressure at the state 1"     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |  |  |  |
| "state 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |  |  |
| P[2]=rp_c*P[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | "pressure"                            |  |  |  |
| $\Pr[2] = rp_c * \Pr[1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "reduced pressure at state 2"         |  |  |  |
| $h_s[2] = ((5.723933*48.769311 + (13319.743517*Pr[2]^{0.299578}))/(48.769311 + Pr[2]^{0.299578}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "specific enthalpy leaving reversible |  |  |  |
| compressor"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |  |  |  |
| $h[2]=h[1]+((h_s[2]-h[1])/eta_c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "specific enthalpy leaving actual     |  |  |  |
| compressor"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |  |  |  |
| T[2]=-5.7559645569+1.03468305147*h[2]-0.000037603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39987284*h[2]^2-5.044969502941E-      |  |  |  |
| 08*h[2]^3+1.88651774609433E-11*h[2]^4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "eaving actual compressor"            |  |  |  |
| "state 4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |  |  |
| T[4]=T_t_in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "tempreture"                          |  |  |  |
| P[4]=P[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "pressure"                            |  |  |  |
| h[4]=2.42510557613+(0.992324*T[4])-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |  |  |
| $((T[4]^2)^*0.000035351212993866) + ((T[4]^3)^*(1.264724545582e-7)) - ((T[4]^4)^*4.004439991e-6)^*(1.264724545582e-7)) - ((T[4]^4)^*(1.264724545582e-7)) - ((T[4]^4)^*(1.2647245647245647245666666666666666666666$ |                                       |  |  |  |
| 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "specific enthalpy"                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |  |  |  |

| 1.9056375223946*10^(-8)*1[6]^3+7.9  | 56892602*10^(-11)*T[6]^4+2.5425253418641*10^(-      |
|-------------------------------------|-----------------------------------------------------|
| 14)*T[6]^5                          | "reduced pressure at the state 6"                   |
| h[6]=2.42510557613+(0.992324*T[6])- |                                                     |
| ((T[6]^2)*0.000035351212993866)+((T | [[6]^3)*(1.264724545582e-7))-((T[6]^4)*4.004439991e |
| 11)                                 | " specific enthalpy"                                |

Pr[6]=1.13286229442-1.137234107131\*10^(-2)\*T[6]+3.8380551092451\*10^(-5)\*T[6]^2-1.9056375223946\*10^(-8)\*T[6]^3+7.956892602\*10^(-11)\*T[6]^4+2.5425253418641\*10^(-

T[6]=T\_t\_in

"tempreture"

"state 6"

h[5]=h[4]-(h[2]-h[1]) T[5]=-5.7559645569+1.03468305147\*h[5]-0.0000376039987284\*h[5]^2-5.044969502941E-08\*h[5]^3+1.88651774609433E-11\*h[5]^4 "temperature leaving actual gasifier turbine" Pr[5]=1.13286229442-1.137234107131\*10^(-2)\*T[5]+3.8380551092451\*10^(-5)\*T[5]^2-1.9056375223946\*10^(-8)\*T[5]^3+7.956892602\*10^(-11)\*T[5]^4+2.5425253418641\*10^(-14)\*T[5]^5 "reduced pressure at the state 5"

"state 5"

Pr[4]=1.13286229442-1.137234107131\*10^(-2)\*T[4]+3.8380551092451\*10^(-5)\*T[4]^2-1.9056375223946\*10^(-8)\*T[4]^3+7.956892602\*10^(-11)\*T[4]^4+2.5425253418641\*10^(-14)\*T[4]^5 "reduced pressure at the state 4" "state 7"

Pr[7]=(1/rp\_pt)\*Pr[6]

| $h_s[7] = ((5.723933*48.769311 + (13319.743517*Pr[7]^{0.299578}))/(48.769311 + Pr[7]^{0.299578}))/(48.769311 + Pr[7]^{0.299578})))/(48.769311 + Pr[7]^{0.299578})))/(48.769311 + Pr[7]^{0.299578})))/(48.769311 + Pr[7]^{0.299578})))/(48.769311 + Pr[7]^{0.299578}))))/(48.769311 + Pr[7]^{0.299578}))))/(48.769311 + Pr[7]^{0.299578})))))$ |                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "specific enthalpy leaving reversible |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |  |
| power turbine"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |  |
| $h[7]=h[6]-(eta_pt^*(h[6]-h_s[7]))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "specific enthalpy leaving actual     |  |
| power turbine"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |  |
| T[7]=-5.7559645569+1.03468305147*h[7]-0.0000376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 039987284*h[7]^2-5.044969502941E-     |  |
| 08*h[7]^3+1.88651774609433E-11*h[7]^4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "temperature leaving actual power     |  |
| turbine"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |  |
| "state 3"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |  |
| T[3]=T[7]-DT_rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "temperature"                         |  |
| h[3]=13.281882397+(T[3]*0.919093)+(0.00012345420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6528*T[3]^2)-(9.677850513449*10^(-    |  |
| 9)*T[3]^3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "specific enthalpy"                   |  |
| Pr[3]=1.13286229442-1.137234107131*10^(-2)*T[3]+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +3.8380551092451*10^(-5)*T[3]^2-      |  |
| 1.9056375223946*10^(-8)*T[3]^3+7.956892602*10^(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (-11)*T[3]^4+2.5425253418641*10^(-    |  |
| 14)*T[3]^5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "reduced pressure at the state 5"     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |  |

"reduced pressure at the state 6"

"state 8"

h[2]+h[7]=h[3]+h[8]

43

"energy balance on recuperator"

| T[8]=-5.7559645569+1.03468305147*h[8]-0.000037603   | 9987284*h[8]^2-5.044969502941E-        |
|-----------------------------------------------------|----------------------------------------|
| 08*h[8]^3+1.88651774609433E-11*h[8]^4               | "tempreture"                           |
| $Q_dot_rec=h[3]-h[2]$                               | "recuperator heat transfer per unit    |
| mass"                                               |                                        |
|                                                     |                                        |
| h_3_max=2.42510557613+(0.992324*T[7])-              |                                        |
| ((T[7]^2)*0.000035351212993866)+((T[7]^3)*(1.264724 | 4545582e-7))-((T[7]^4)*4.004439991e-   |
| 11)                                                 | "maximum enthalpy leaving cold side"   |
| Q_dot_rec_max=h_3_max-h[2]                          | "maximum recuperator heat transfer     |
| per unit mass"                                      |                                        |
|                                                     |                                        |
| eff_rec=Q_dot_rec/Q_dot_rec_max                     | "effectiveness of recuperator"         |
|                                                     |                                        |
| "efficiency"                                        |                                        |
| $w_dot_out=(h[4]-h[5])+(h[6]-h[7])$                 | "the output work of the both turbines" |
| $w_dot_in=(h[2]-h[1])$                              | "the input work of the compressor"     |
| $q_dot_in=(h[6]-h[5])+(h[4]-h[2])$                  | "input thermal energy"                 |
| w_dot_net=w_dot_out-w_dot_in                        | "the net output energy of the system"  |

eta\_th=w\_dot\_net/q\_dot\_in

"the net output energy of the system"

"efficiency"

# c. Solving the problem by using the obtained equations in MATLab

T\_amb=298.15 ; P\_atm=101325 ; T\_t\_in=1293.15; rp\_c=3.5 ; rp\_pt=2 ;

eta\_c=0.82 ;

eta\_gt=0.85;

eta\_pt=0.81;

 $DT_rec=50$ ;

 $T1=T_amb;$ 

P1=P\_atm;

h1=2.42510557613+(0.992324\*T1)-

 $((T1^{2})^{*}0.000035351212993866) + ((T1^{3})^{*}(1.264724545582e-7)) - ((T1^{4})^{*}4.004439991e-11)$ 

;

Pr1=1.13286229442-1.137234107131\*10^(-2)\*T1+3.8380551092451\*10^(-5)\*T1^2-

 $1.9056375223946*10^{(-8)}*T1^{3}+7.956892602*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{4}+2.5425253418641*10^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*T1^{(-11)}*$ 

14)\*T1^5;

P2=rp\_c\*P1;

Pr2=rp\_c\*Pr1;

 $\label{eq:h_s2} \begin{array}{l} h_s2 = ((5.723933*48.769311 + (13319.743517*Pr2^0.299578))/(48.769311 + Pr2^0.299578)); \\ h2 = h1 + ((h_s2 - h1)/eta_c) \qquad ; \end{array}$ 

08\*h2^3+1.88651774609433E-11\*h2^4;

 $T4=T_t_in$ ;

P4=P2

14)\*T4^5;

h5=h4-(h2-h1);

h4=2.42510557613+(0.992324\*T4)- $((T4^2)^{0.00035351212993866}) + ((T4^3)^{(1.264724545582e-7)}) - ((T4^4)^{4.004439991e-11})$ ;

Pr4=1.13286229442-1.137234107131\*10^(-2)\*T4+3.8380551092451\*10^(-5)\*T4^2-

1.9056375223946\*10^(-8)\*T4^3+7.956892602\*10^(-11)\*T4^4+2.5425253418641\*10^(-

Pr5=1.13286229442-1.137234107131\*10^(-2)\*T5+3.8380551092451\*10^(-5)\*T5^2-

 $1.9056375223946*10^{(-8)}*T5^{3}+7.956892602*10^{(-11)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{4}+2.5425253418641*10^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-12)}*T5^{(-$ 

;

Pr6=1.13286229442-1.137234107131\*10^(-2)\*T6+3.8380551092451\*10^(-5)\*T6^2-

 $1.9056375223946*10^{(-8)}*T6^{3}+7.956892602*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{4}+2.5425253418641*10^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*T6^{(-11)}*$ 

14)\*T6^5;

14)\*T5^5;

 $T6=T_t_in$ ;

08\*h5^3+1.88651774609433E-11\*h5^4;

h6=2.42510557613+(0.992324\*T6)-

((T6<sup>2</sup>)\*0.000035351212993866)+((T6<sup>3</sup>)\*(1.264724545582e-7))-((T6<sup>4</sup>)\*4.004439991e-11);

Pr7=(1/rp\_pt)\*Pr6;

 $h_s7 = ((5.723933*48.769311 + (13319.743517*Pr7^{0.299578}))/(48.769311 + Pr7^{0.299578}));$ 

h7=h6-(eta\_pt\*(h6-h\_s7));

```
08*h7^3+1.88651774609433E-11*h7^4;
```

T3=T7-DT rec;

h3=13.281882397+(T3\*0.919093)+(0.00012345426528\*T3^2)-(9.677850513449\*10^(-9)\*T3^3) ; Pr3=1.13286229442-1.137234107131\*10^(-2)\*T3+3.8380551092451\*10^(-5)\*T3^2-1.9056375223946\*10^(-8)\*T3^3+7.956892602\*10^(-11)\*T3^4+2.5425253418641\*10^(-14)\*T3^5;

h8=h2+h7-h3;

T8=-5.7559645569+1.03468305147\*h8-0.0000376039987284\*h8^2-5.044969502941E-08\*h8^3+1.88651774609433E-11\*h8^4;

Q\_dot\_rec=h3-h2 ;

h\_3\_max=2.42510557613+(0.992324\*T7)-

 $((T7^{2})^{*}0.000035351212993866) + ((T7^{3})^{*}(1.264724545582e-7)) - ((T7^{4})^{*}4.004439991e-11)$ 

;

Q\_dot\_rec\_max=h\_3\_max-h2 ;

eff\_rec=Q\_dot\_rec/Q\_dot\_rec\_max ;

 $w_dot_out=(h4-h5)+(h6-h7)$ ;

 $w_dot_in=(h2-h1)$ ;

 $q_dot_in=(h6-h5)+(h4-h2)$ ;

w\_dot\_net=w\_dot\_out-w\_dot\_in ;

eta\_th=w\_dot\_net/q\_dot\_in ;

**Appendix B: Thermodynamic Air Table** 

| Т   | Pr      | Т   | Pr      | Т   | Pr      | Т    | Pr     | Т    | Pr      |
|-----|---------|-----|---------|-----|---------|------|--------|------|---------|
| 200 | 0.3363  | 460 | 6.245   | 720 | 32.02   | 980  | 105.2  | 1240 | 272.3   |
| 213 | 0.41979 | 473 | 6.8998  | 733 | 34.254  | 993  | 110.92 | 1253 | 284.325 |
| 226 | 0.51622 | 486 | 7.6016  | 746 | 36.61   | 1006 | 116.82 | 1266 | 296.68  |
| 239 | 0.62672 | 499 | 8.3523  | 759 | 39.078  | 1019 | 122.93 | 1279 | 309.42  |
| 252 | 0.75442 | 512 | 9.1616  | 772 | 41.718  | 1032 | 129.34 | 1292 | 322.7   |
| 265 | 0.89975 | 525 | 10.027  | 785 | 44.45   | 1045 | 135.95 | 1305 | 336.3   |
| 278 | 1.06292 | 538 | 10.954  | 798 | 47.31   | 1058 | 142.84 | 1318 | 350.34  |
| 291 | 1.24624 | 551 | 11.94   | 811 | 50.412  | 1071 | 150.12 | 1331 | 365.04  |
| 304 | 1.45208 | 564 | 12.996  | 824 | 53.592  | 1084 | 157.58 | 1344 | 380.06  |
| 317 | 1.68152 | 577 | 14.116  | 837 | 56.8485 | 1097 | 165.32 | 1357 | 395.53  |
| 330 | 1.9352  | 590 | 15.31   | 850 | 60.345  | 1110 | 173.4  | 1370 | 411.65  |
| 343 | 2.218   | 603 | 16.586  | 863 | 63.9735 | 1123 | 181.71 | 1383 | 428.145 |
| 356 | 2.5272  | 616 | 17.936  | 876 | 67.802  | 1136 | 190.42 | 1396 | 445.24  |
| 369 | 2.8654  | 629 | 19.3859 | 889 | 71.8195 | 1149 | 199.45 | 1409 | 462.875 |
| 382 | 3.237   | 642 | 20.884  | 902 | 75.966  | 1162 | 208.7  | 1422 | 480.89  |
| 395 | 3.6435  | 655 | 22.495  | 915 | 80.36   | 1175 | 218.45 | 1435 | 499.675 |
| 408 | 4.0836  | 668 | 24.194  | 928 | 84.942  | 1188 | 228.52 | 1448 | 518.98  |
| 421 | 4.5613  | 681 | 25.994  | 941 | 89.666  | 1201 | 238.84 | 1461 | 538.685 |
| 434 | 5.0818  | 694 | 27.894  | 954 | 94.684  | 1214 | 249.69 | 1474 | 559.29  |
| 447 | 5.6421  | 707 | 29.906  | 967 | 99.87   | 1227 | 260.86 | 1487 | 580.385 |
|     |         |     |         |     |         |      |        | 1500 | 601.9   |

Appendix B Table 1: Air thermodynamic property table, T-Pr [12]

| Т   | h       | Т   | h       | Т   | Н        | Т    | h         | Т    | h         |
|-----|---------|-----|---------|-----|----------|------|-----------|------|-----------|
| 200 | 199.97  | 460 | 462.02  | 720 | 734.82   | 980  | 1023.25   | 1240 | 1324.93   |
| 213 | 212.97  | 473 | 475.315 | 733 | 748.866  | 993  | 1038.0635 | 1253 | 1340.283  |
| 226 | 226     | 486 | 488.64  | 746 | 762.95   | 1006 | 1052.895  | 1266 | 1355.657  |
| 239 | 239.02  | 499 | 501.992 | 759 | 777.091  | 1019 | 1067.7475 | 1279 | 1371.0555 |
| 252 | 252.058 | 512 | 515.382 | 772 | 791.29   | 1032 | 1082.666  | 1292 | 1386.478  |
| 265 | 265.1   | 525 | 528.805 | 785 | 805.51   | 1045 | 1097.6025 | 1305 | 1401.9175 |
| 278 | 278.126 | 538 | 542.276 | 798 | 819.758  | 1058 | 1112.559  | 1318 | 1417.381  |
| 291 | 291.162 | 551 | 556.683 | 811 | 834.0665 | 1071 | 1127.5265 | 1331 | 1432.872  |
| 304 | 304.214 | 564 | 569.338 | 824 | 848.4    | 1084 | 1142.526  | 1344 | 1448.378  |
| 317 | 317.278 | 577 | 582.905 | 837 | 862.765  | 1097 | 1157.593  | 1357 | 1463.9065 |
| 330 | 330.34  | 590 | 596.52  | 850 | 877.175  | 1110 | 1172.675  | 1370 | 1479.465  |
| 343 | 343.441 | 603 | 610.173 | 863 | 891.6135 | 1123 | 1187.7735 | 1383 | 1495.037  |
| 356 | 356.544 | 616 | 623.854 | 876 | 906.102  | 1136 | 1202.912  | 1396 | 1510.624  |
| 369 | 369.661 | 629 | 637.574 | 889 | 920.6265 | 1149 | 1218.0775 | 1409 | 1526.229  |
| 382 | 382.792 | 642 | 651.344 | 902 | 935.175  | 1162 | 1233.262  | 1422 | 1541.847  |
| 395 | 395.93  | 655 | 665.155 | 915 | 949.7675 | 1175 | 1248.485  | 1435 | 1557.4925 |
| 408 | 409.092 | 668 | 679.006 | 928 | 964.396  | 1188 | 1263.72   | 1448 | 1573.158  |
| 421 | 422.277 | 681 | 692.152 | 941 | 979.0515 | 1201 | 1278.966  | 1461 | 1588.838  |
| 434 | 435.502 | 694 | 706.82  | 954 | 993.761  | 1214 | 1294.254  | 1474 | 1604.542  |
| 447 | 448.743 | 707 | 720.809 | 967 | 1008.495 | 1227 | 1309.577  | 1487 | 1620.253  |
|     |         |     |         |     |          |      |           | 1500 | 1635.97   |

Appendix B Table 2: Air thermodynamic property table, T-h [12]

| h       | Pr      | h       | Pr     | h        | Pr      | h         | Pr      | h         | Pr      |
|---------|---------|---------|--------|----------|---------|-----------|---------|-----------|---------|
| 199.97  | 0.3363  | 462.02  | 6.245  | 734.82   | 32.02   | 1023.25   | 105.2   | 1324.93   | 272.3   |
| 212.97  | 0.41979 | 475.315 | 6.8998 | 748.866  | 34.254  | 1038.0635 | 110.92  | 1340.283  | 284.325 |
| 226     | 0.51622 | 488.64  | 7.6016 | 762.95   | 36.61   | 1052.895  | 116.82  | 1355.657  | 296.68  |
| 239.02  | 0.62672 | 501.992 | 8.3523 | 777.091  | 39.078  | 1067.7475 | 122.93  | 1371.0555 | 309.42  |
| 252.058 | 0.75442 | 515.382 | 9.1616 | 791.29   | 41.718  | 1082.666  | 129.34  | 1386.478  | 322.7   |
| 265.1   | 0.89975 | 528.805 | 10.027 | 805.51   | 44.45   | 1097.6025 | 135.95  | 1401.9175 | 336.3   |
| 278.126 | 1.06292 | 542.276 | 10.954 | 819.758  | 47.31   | 1112.559  | 142.84  | 1417.381  | 350.34  |
| 291.162 | 1.24624 | 556.683 | 11.94  | 834.0665 | 50.412  | 1127.5265 | 150.115 | 1432.872  | 365.04  |
| 304.214 | 1.45208 | 569.338 | 12.996 | 848.4    | 53.592  | 1142.526  | 157.58  | 1448.378  | 380.06  |
| 317.278 | 1.68152 | 582.905 | 14.116 | 862.765  | 56.8485 | 1157.593  | 165.315 | 1463.9065 | 395.53  |
| 330.34  | 1.9352  | 596.52  | 15.31  | 877.175  | 60.345  | 1172.675  | 173.4   | 1479.465  | 411.65  |
| 343.441 | 2.218   | 610.173 | 16.586 | 891.6135 | 63.9735 | 1187.7735 | 181.71  | 1495.037  | 428.145 |
| 356.544 | 2.5272  | 623.854 | 17.936 | 906.102  | 67.802  | 1202.912  | 190.42  | 1510.624  | 445.24  |
| 369.661 | 2.8654  | 637.574 | 19.386 | 920.6265 | 71.8195 | 1218.0775 | 199.445 | 1526.229  | 462.875 |
| 382.792 | 3.237   | 651.344 | 20.884 | 935.175  | 75.966  | 1233.262  | 208.7   | 1541.847  | 480.89  |
| 395.93  | 3.6435  | 665.155 | 22.495 | 949.7675 | 80.36   | 1248.485  | 218.45  | 1557.4925 | 499.675 |
| 409.092 | 4.0836  | 679.006 | 24.194 | 964.396  | 84.942  | 1263.72   | 228.52  | 1573.158  | 518.98  |
| 422.277 | 4.5613  | 692.152 | 25.994 | 979.0515 | 89.666  | 1278.966  | 238.835 | 1588.838  | 538.685 |
| 435.502 | 5.0818  | 706.82  | 27.894 | 993.761  | 94.684  | 1294.254  | 249.69  | 1604.542  | 559.29  |
| 448.743 | 5.6421  | 720.809 | 29.906 | 1008.495 | 99.87   | 1309.577  | 260.86  | 1620.253  | 580.385 |
|         |         |         |        |          |         |           |         | 1635.97   | 601.9   |

Appendix B Table 3: Air thermodynamic property table, h-Pr [12]

| Т |     | u      | Т |     | u      | Т |     | u      | Т |      | u      | Т    | u       |
|---|-----|--------|---|-----|--------|---|-----|--------|---|------|--------|------|---------|
|   | 250 | 178.28 | 3 | 90  | 278.93 |   | 590 | 427.15 |   | 820  | 608.59 | 1220 | 951.09  |
|   | 260 | 185.45 | 4 | -00 | 286.16 |   | 600 | 434.78 |   | 840  | 624.95 | 1240 | 968.95  |
|   | 270 | 192.6  | 4 | 10  | 293.43 |   | 610 | 442.42 |   | 860  | 641.4  | 1260 | 986.9   |
|   | 280 | 199.75 | 4 | 20  | 300.69 |   | 620 | 450.09 |   | 880  | 657.95 | 1280 | 1004.76 |
|   | 285 | 203.33 | 4 | 30  | 307.99 |   | 630 | 457.78 |   | 900  | 674.58 | 1300 | 1022.82 |
|   | 290 | 206.91 | 4 | 40  | 315.3  |   | 640 | 465.5  |   | 920  | 691.28 | 1320 | 1040.88 |
|   | 295 | 210.49 | 4 | 50  | 322.62 |   | 650 | 473.25 |   | 940  | 708.08 | 1340 | 1058.94 |
|   | 298 | 212.64 | 4 | 60  | 329.97 |   | 660 | 481.01 |   | 960  | 725.02 | 1360 | 1077.1  |
|   | 300 | 214.07 | 4 | 70  | 337.32 |   | 670 | 488.81 |   | 980  | 741.98 | 1380 | 1095.26 |
|   | 305 | 217.67 | 4 | 80  | 344.7  |   | 680 | 496.62 | 1 | .000 | 758.94 | 1400 | 1113.52 |
|   | 310 | 221.25 | 4 | 90  | 352.08 |   | 690 | 504.45 | 1 | .020 | 776.1  | 1420 | 1131.77 |
|   | 315 | 224.85 | 5 | 00  | 359.49 |   | 700 | 512.33 | 1 | .040 | 793.36 | 1440 | 1150.13 |
|   | 320 | 228.42 | 5 | 10  | 366.92 |   | 710 | 520.23 | 1 | .060 | 810.62 | 1460 | 1168.49 |
|   | 325 | 232.02 | 5 | 20  | 374.36 |   | 720 | 528.14 | 1 | .080 | 827.88 | 1480 | 1186.95 |
|   | 330 | 235.61 | 5 | 30  | 381.84 |   | 730 | 536.07 | 1 | 100  | 845.33 | 1500 | 1205.41 |
|   | 340 | 242.82 | 5 | 40  | 389.34 |   | 740 | 544.02 | 1 | 120  | 862.79 |      |         |
|   | 350 | 250.02 | 5 | 50  | 396.86 |   | 750 | 551.99 | 1 | 140  | 880.35 |      |         |
|   | 360 | 257.24 | 5 | 60  | 404.42 |   | 760 | 560.01 | 1 | 160  | 897.91 |      |         |
|   | 370 | 264.46 | 5 | 70  | 411.97 |   | 780 | 576.12 | 1 | 180  | 915.57 |      |         |
|   | 380 | 271.69 | 5 | 80  | 419.55 |   | 800 | 592.3  | 1 | 200  | 933.33 |      |         |

Appendix B Table 4: Air thermodynamic property table, T-u [12]

| Т   | Vr    | Т   | Vr    | Т   | Vr    | Т    | Vr     | Т    | Vr     |
|-----|-------|-----|-------|-----|-------|------|--------|------|--------|
| 250 | 979   | 390 | 321.5 | 590 | 110.6 | 820  | 44.84  | 1220 | 13.747 |
| 260 | 887.8 | 400 | 301.6 | 600 | 105.8 | 840  | 41.85  | 1240 | 13.069 |
| 270 | 808   | 410 | 283.3 | 610 | 101.2 | 860  | 39.12  | 1260 | 12.435 |
| 280 | 738   | 420 | 266.6 | 620 | 96.92 | 880  | 36.61  | 1280 | 11.835 |
| 285 | 706.1 | 430 | 251.1 | 630 | 92.84 | 900  | 34.31  | 1300 | 11.275 |
| 290 | 676.1 | 440 | 236.8 | 640 | 88.99 | 920  | 32.18  | 1320 | 10.747 |
| 295 | 647.9 | 450 | 223.6 | 650 | 85.34 | 940  | 30.22  | 1340 | 10.247 |
| 298 | 631.9 | 460 | 211.4 | 660 | 81.89 | 960  | 28.4   | 1360 | 9.78   |
| 300 | 621.2 | 470 | 200.1 | 670 | 78.61 | 980  | 26.73  | 1380 | 9.337  |
| 305 | 596   | 480 | 189.5 | 680 | 75.5  | 1000 | 25.17  | 1400 | 8.919  |
| 310 | 572.3 | 490 | 179.7 | 690 | 72.56 | 1020 | 23.72  | 1420 | 8.526  |
| 315 | 549.8 | 500 | 170.6 | 700 | 69.76 | 1040 | 23.29  | 1440 | 8.153  |
| 320 | 528.6 | 510 | 162.1 | 710 | 67.07 | 1060 | 21.14  | 1460 | 7.801  |
| 325 | 508.4 | 520 | 154.1 | 720 | 64.53 | 1080 | 19.98  | 1480 | 7.468  |
| 330 | 489.4 | 530 | 146.7 | 730 | 62.13 | 1100 | 18.896 | 1500 | 7.152  |
| 340 | 454.1 | 540 | 139.7 | 740 | 59.82 | 1120 | 17.886 |      |        |
| 350 | 422.2 | 550 | 133.1 | 750 | 57.63 | 1140 | 16.946 |      |        |
| 360 | 393.4 | 560 | 127   | 760 | 55.54 | 1160 | 16.064 |      |        |
| 370 | 367.2 | 570 | 121.2 | 780 | 51.64 | 1180 | 15.241 |      |        |
| 380 | 343.4 | 580 | 115.7 | 800 | 48.08 | 1200 | 14.47  |      |        |

Appendix B Table 5: Air thermodynamic property table, T-Vr [12]

| Т   | S0      | Т   | S0      | Т   | S0      | Т    | <b>S</b> 0 | Т    | S0      |
|-----|---------|-----|---------|-----|---------|------|------------|------|---------|
| 250 | 1.51917 | 390 | 1.96633 | 590 | 2.3914  | 820  | 2.74504    | 1220 | 3.19834 |
| 260 | 1.55848 | 400 | 1.99194 | 600 | 2.40902 | 840  | 2.7717     | 1240 | 3.21751 |
| 270 | 1.59634 | 410 | 2.01699 | 610 | 2.42644 | 860  | 2.79783    | 1260 | 3.23638 |
| 280 | 1.63279 | 420 | 2.04142 | 620 | 2.44356 | 880  | 2.82344    | 1280 | 3.2551  |
| 285 | 1.65055 | 430 | 2.06533 | 630 | 2.46048 | 900  | 2.84856    | 1300 | 3.27345 |
| 290 | 1.66802 | 440 | 2.0887  | 640 | 2.47716 | 920  | 2.87324    | 1320 | 3.2916  |
| 295 | 1.68515 | 450 | 2.11161 | 650 | 2.49364 | 940  | 2.89748    | 1340 | 3.30959 |
| 298 | 1.69528 | 460 | 2.13407 | 660 | 2.50985 | 960  | 2.92128    | 1360 | 3.32724 |
| 300 | 1.70203 | 470 | 2.15604 | 670 | 2.52589 | 980  | 2.94468    | 1380 | 3.34474 |
| 305 | 1.71865 | 480 | 2.1776  | 680 | 2.54175 | 1000 | 2.9677     | 1400 | 3.362   |
| 310 | 1.73498 | 490 | 2.19876 | 690 | 2.55731 | 1020 | 2.99034    | 1420 | 3.37901 |
| 315 | 1.75106 | 500 | 2.21952 | 700 | 2.57277 | 1040 | 3.0126     | 1440 | 3.39586 |
| 320 | 1.7669  | 510 | 2.23993 | 710 | 2.5881  | 1060 | 3.03449    | 1460 | 3.41247 |
| 325 | 1.78249 | 520 | 2.25997 | 720 | 2.60319 | 1080 | 3.05608    | 1480 | 3.42892 |
| 330 | 1.79783 | 530 | 2.27967 | 730 | 2.61803 | 1100 | 3.07732    | 1500 | 3.44516 |
| 340 | 1.8279  | 540 | 2.29906 | 740 | 2.6328  | 1120 | 3.09825    |      |         |
| 350 | 1.85708 | 550 | 2.31809 | 750 | 2.64737 | 1140 | 3.11883    |      |         |
| 360 | 1.88543 | 560 | 2.33685 | 760 | 2.66176 | 1160 | 3.13916    |      |         |
| 370 | 1.91313 | 570 | 2.35531 | 780 | 2.69013 | 1180 | 3.15916    |      |         |
| 380 | 1.94001 | 580 | 2.37348 | 800 | 2.71787 | 1200 | 3.17888    |      |         |

Appendix B Table 6: Air thermodynamic property table, T-S<sup>0</sup>[12]