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ABSTRACT

This thesis provides an overview of Bernoulli and Euler numbers. It describes
the Bernoulli and Euler polynomials and investigates the relationship between the
classes of the two polynomials. It also discusses some important identities using
the finite difference calculus and differentiation. The last part of this study is con-
cerned with the Generalized Bernoulli and Euler polynomials. Furthermore, the
properties obtained in the second chapter are also examined for the generalized
Bernoulli and Euler polynomials in this part of the thesis. The Complemen-
tary Argument Theorem, the generating functions, the Multiplication and the

Euler-Maclauren Theorems are widely used in obtaining the mentioned results.

Keywords: Bernoulli -Euler Polynomials, Generalized Bernoulli -Euler Polyno-

mials; Finite Difference
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Oz

Bu calismada Bernoulli ve Euler sayilari ile Bernoulli ve Euler polinom-
lar1 arasindaki iligkiler incelenmigtir. Bernoulli sayilar: icin ardigiklik, kapalilik
ve treticilik gibi temel ozellikler ¢aligilmigtir. Bunun yaninda Bernoulli ve Euler
Polinomlar1 arasindaki iligkiler incelenip her ikisi i¢in de gecerli olan tiirev, inte-
gral, fark ve simetri ozellikleri incelenmistir. Ayrica Genellestirilmis Bernoulli ve

Euler polinomlar1 i¢in de tiirev, intregral ozellikleri caligilmigtir.

Anahtar Kelimeler: Bernulli-Euler Polinomlari, Genellestirilmis Bernoulli-Euler

Polinomlar1, Sonlu Fark
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Chapter 1

BERNOULLI AND EULER NUMBERS

1.1 Bernoulli Numbers

In Mathematics, the Bernoulli numbers B,, are a sequence of rational numbers
with important relations to number theory and with many interesting arithmetic
properties. We find them in a number of contexts, for example they are closely
related to the values of the Riemann zeta function at negative integers and appear
in the Euler-Maclaurin formula. The values of the first few Bernoulli numbers
are By =1, By = —1/2, By = 1/6, B3 = 0, By = —1/30 ( Some authors use
By = +1/2 and some write B, for By,). After B; all Bernoulli numbers with odd
index are zero and the non zero values alternate in sign. These numbers appear
in the series expansions of trigonometric and are important in number theory and

analysis.

The Bernoulli numbers first used in the Taylor series expansions of the tangent
and hyperbolic tangent functions, in the formulas for the sum of powers of the
first positive integers, in the Euler-Maclaurin formula and in the expression for

certain values of the Riemann zeta function.

Bernoulli numbers appeared in 1713 in Jacob Bernoulli’s work, who was Jo-

hanns Bernoulli’s older brother, Euler’s teacher and mentor at Bassel’s university.



Those numbers were studied at the same time independently by Japanese math-
ematician Seki Kowa. His discovery was published in 1712 in his work and in his
Arts Conjectandi of 1713. Ada Lovelace’s note G on the analytical engine from
1842 describes an algorithm for generating Bernoulli numbers with Babbage’s
machine. Also, the Bernoulli numbers have the distinction of being the main

topic of the first computer program.

Bernoulli numbers are still a bit misterious, they appear frequently in studying
Gamma function about Euler’s constant and people continue to discover new

properties and to publish articles about them.

Definition 1.1.1 Bernoulli numbers has the following closed form expression:
Sm(n) =Y K" =1"4+2"+ 40" (1.1.1)
k=1

Note that S,,,(0) = 0 for all m > 0 The equation (1.1.1) can always be written as

a polynomial in n of degree m + 1.

Definition 1.1.2 The coefficients of the polynomials are related to the Bernoulli

numbers by Bernoulli’s formula: S, (n) = —15 37" (" Btk

where By = +1/2. Bernoulli’s formula can also be stated as

1 & m+ 1 o

k=0

Here are some simple examples of Bernoulli numbers:



Example 1.1.3 Let n > 0. Taking m to be 0 and By = 1 gives the natural

numbers 0,1, 2,3, ...

1
O—|—1+1+...+1:I(Bon):n.

Example 1.1.4 Let n > 0. Taking m to be 1 and By = 1/2 gives the triangular

numbers 0,1, 3,6, ...

1 1
0+14+2+..+n= §(BOn2 +2Bn') = 5(n2 +n).

Example 1.1.5 Let n > 0. Taking m to be 2 and By = 1/6 gives the square

pyramidal numbers 0,1,5,14, ...

1 1 3 1
0+124+224+ ... +n%= 5(30713 +3Bn* + 3Bynt) = g(n?’ + §n2 + §n)

where By = —1/2.

There are many characterizations of the Bernoulli numbers where each can be

used to introduce them. Here are most useful characterizations:

1. Recursive Definition. The recursive equation is best introduced in a

slightly more general form



For x = 0, the recursive equation becomes,

n—1
po~le=0=-3 ()t
prt n—k+1

Also, when = = 1,we get the following form

5 _1_”2‘1 n\ By
"o k/ln—k+1

k=0

. Explicit Definition. Starting again with slightly more general formula

n

O (fj) SAs

For x = 0, the recursive equation becomes,

22 ()er

Also, when z = 1, we get the following from

hE

M»

n41 v 1 n
sy ()Y

k=1 v=1

. Generating Function. The general formula for the generating function

is given as




For x = 0, the recursive equation becomes,

1.1.1 Worpitzky’s Representation for Bernoulli Numbers

The definition to proceed with was developed by Julius Worpitzky in 1883.
Besides elementary arithmetic only the factorial function n! and the power func-

tion £™ are employed. The signless Worpitzky numbers are defined as

i k!
Wk = _(=1)"™*(n+ 1)”m.

n=0

One can also express W, ; through the Stirling numbers of the second kind as

follows:

n+1
Wi = k!

kE+1

A Bernoulli number is then introduced as an inclusion-exclusion sum of Worpitzky

numbers weighted by the sequence 1,1/2,1/3, ...

n

Bo= Y (-1 = > . > (A1) (5.

k=0 = n=




1.2 Euler Numbers

In Combinatorics, the Eulerian number A(n,m) is the number of permutations
of the numbers 1 to n in which exactly m elements are greater than the previous

element. The coefficients of the Eulerian polynomials are given as follows,

This polynomial appears as the numerator in an expression for the generating
function of the sequence 1™,2" 3" --.. Other notations for A(n,m) are E(n, m)

and ()nm.

In Number Theory, the Euler numbers are sequence F,, of integers defined by

the following Taylor series expansion

1 2 >~ E
— — hyn 1.2.1
cosht et+ et nz:; n! ( )

where cosh t is the hyperbolic cosine. The Euler numbers appear as a special value
of Euler polynomials. The odd indexed Euler numbers are all zero while the even
ones have alternating signs. They also appear in the Taylor series expansions of
the secant and hyperbolic secant functions. The latter is the function given in
equation (1.2.1). We also play important role in Combinatorics, especially when
counting the number of alternating permutations of a set with an even number

of elements.

John Napier who made common use of the decimal point, was a Scottish



mathematician, physicist, astronomer and astrologer. He is best known as the
discoverer of logarithms. In 1618, he published a work on logarithms which con-
tained the first reference to the constant e. It was not until Jacob Bernoulli
whom to the Bernoulli Principles named after, attempted to find the value of
a compound-interest expression. Historically Euler’s number was actually ex-
pressed as "0 until Euler himself published his work Mechanica who used ”e”
instead of 70" as the variable. Eventually the letter made its way as the standard

notation of FEuler’s number.

To find Euler numbers A(n, m) one can use the following formula,

A(n,m)=(n—m)An—1,m—1)+ (m+ 1)A(n — 1,m).

Recall that,

A(n,m) = A(n,n —m —1).

A closed form expression for A(n,m) is given by,

1.2.1 Properties of the Euler Numbers

1. It is clear from the combinatorics definition that the sum of the Eulerian

numbers for a fixed value of n is the total number of permutations of the



numbers 1 to n, so

n—1

ZA(n,m) =n! forn>1.

m=0

2. The alternating sum of the Eulerian numbers for a fixed value of n is related

to the Bernoulli number B, and

n—1
ontl(ontl _ 1) B,
> (=)™ A(n,m) = ( — ) B forn>1.
n
m=0

Other summation properties of the Eulerian numbers are:

ni(—l)mA(n’m> =(n+1)B, for n>2.

1.2.2 Identities Involving Euler Numbers

The Euler numbers are involved in the generating function for the sequence

of nt" powers

(1 —x)ntl

i knxk — Z:@:O A(”? m)xm—H )
k=1



Worpitzky’s identity expresses x™ as the linear combination of FKuler numbers

with binomial coefficients:

It follows from Worpitzky’s identity that

ol N+1l+m
S-S amm(V 1),

k=1

Another interesting identity is given as follows,

> n )xm—l—l




BERNOULLI AND EULER POLYNOMIALS

Chapter 2

The classical Bernoulli polynomials B,(x) and the classical Euler polynomi-

als F,(z) are usually defined by means of the following exponential generating

functions:

and

respectively.

defined as,

and

S g <2
s D BUAC [t < 2,
2Tt > tn
i ZEn(fﬁ)a, ] <=
n=0 ’

n+1
EBuw) = —— 3 @ =20 (" ) pygnri
n+14c~ k ’

(2.0.1)

(2.0.2)

respectively, where By := By(0) is the Bernoulli number for each k£ = 0,1,...,n.

10



Several interesting properties and relationships involving each of these poly-
nomials and numbers can be found in many books and journals ([1]- [7]) on this

subject. Some of these properties are given in the following section.

2.1 Properties of Bernoulli and Euler Polynomials

The purpose of this section is to obtain interesting properties of the Bernoulli

and Euler polynomials, and the relationship between these polynomials.

Recently, Cheon ([1]) obtained the results given below:

Bu(z +1) :2”: (Z)Bk(x), ne N (2.1.1)

k=0

E,(x+1) = (Z)Ek(x), n € Ny (2.1.2)

Bu(z)=Y" (Z) BiE,_i(), (n € Ny). (2.1.3)

Both (2.1.1) and (2.1.2) are well-known results and are obviously special cases of

the following familiar addition theorems:

n

B.(x+y) = Z (Z) By(x)y" ", (n € Np) (2.1.4)

k=0

11



and

E.(z+vy) = <Z) Ey(z)y"*, (n € Ny). (2.1.5)

Furthermore, Cheon’s main result (2.1.3) is essentially the same as the following

known relationship:

or equivalently,

2"Bo(3) = ( )BkEnk(:c), (n € No). (2.1.6)

These two polynomials have many similar properties (see [1]).

The following identity will be useful in the sequel.

OE-CaIer) e

Theorem 2.1.1 For any integer n > 0, we have

a) Bu(z+1) =31 (}) Bi(2)
b) En(z+1) =Y (1) Ex(x)

Proof. a) Letting y = 1 in equations (2.1.4) and (2.1.5), one can directly obtain

the equations (2.1.1) and (2.1.2) respectively. Also, applying (2.0.2) and (2.1.7),

12



we obtain

Bu(z+1) = Y <") By(z + 1)"*, (2.1.8)

(x+y)" = i <Z> aFynE, (2.1.9)

Using (2.1.7), the above equation becomes,

Bu(z+1) = inZkBk(jik> (jzk)xﬂ

k=0 j=0

Expanding the last expression gives

et = (@) o)2 ()L o)me (1)} +
e (V) (D ().

—_

which yields to

Hence the theorem (a) is proved.

13



b) We will now give the proof of part (b) of the theorem. Replacing x with

(x 4+ 1) in equation (2.0.1), we get,

(z+1)t n

:iEn(xﬂ)%. (2.1.10)

n=0

Also multiplying both sides of equation (2.0.1) by e’ and using the expansion
e =30y tﬁn!’
2e™tel . t
a1 T 2
t” "
- ZE 2
n=0
Now applying Cauchy Product Formula, one can obtain the following relation

xt ot ©  n

2ee th
e+l Z;E()w — k)
thogmh )
- ZZ::E’“(x)H(n—k)! (E)

which implies

This gives the desired result. m

14



2.1.1 Equivalence of Relation (2.1.3) and (2.1.6)

For both Bernoulli and Euler polynomials, the following Multiplication The-

orems are well known :

Theorem 2.1.2 For n € Ny and m € N the following relations hold:

a) Bu(mz) =m"' Y770 By (v + £),

m—1 i i
m"y (=1 B, (x4 L), (m=1,3,5,...)
b) E,(mzx) = =0 ( )
—2m" Y (<1 By (z+ L) (m=2,4,6,...)

The above theorem yields the following relationships between these two poly-

nomials when m = 2.

2 . x
By(2) = = —=2" (Bu(a) - B, (5))
Also letting n to be n — 1 and = to be x/2, we obtain
2" r+1 x
Byae) = — (Bn( . > _ B, (5)) (2.1.11)
2
— [Bn(x) _ B, @ﬂ nenN

_ % {zn—l (Bn (”2”) + B, (g)) _ "B, (g)} (2.1.12)

Also letting m = 2 in part(a), we have

B,(2z) =2"! <Bn(a:) + B, (:1: + %)) .

15



Using (2.1.2) and replacing 2z with x, we get

By(x) = 2" [Bn () + 5. (x ; 1)} |

From (2.1.12),

Since B; = —2%, by separating the second term (k = 1) of the sum in (2.1.6), we
2

have
x n
- _gEn,l(x)
Hence,

"B, (g) - Zn: (Z) BiBy () — gEn_l(x), (n € Ny)

which in the light of the second relation in (2.1.11), immediately yields to (2.1.3).

16



Chapter 3

THE GENERALIZED BERNOULLI AND EULER

POLYNOMIALS

In this chapter we study some properties of two classes of polynomials namely
Bernoulli and Euler polynomials which play an important role in the finite cal-
culus. These polynomials have been the object of much research and have been

generalized in a very elegant manner by Norlund.

We shall here approach these polynomials by a symbolic method described by
Milne-Thomson (see [4] ) by which they arise as generalizations of the simplest
polynomials, namely the powers of x. The method is applicable to whole classes
of polynomials, including those of Hermite. Considerations of space must limit
us to the discussion of only a few of the most interesting relations to which these

polynomials give rise.

3.1 The ¢ Polynomials

¢ polynomials of degree n and order « are denoted as gzﬁ,(f‘) (x) and defined

as below :

O\ (), (3.1.1)

17



where the uniformly convergent series in ¢t on the right-hand side of (3.1.1) exists

for f,(t) and g(t) in a certain range of x.

Substituting x = 0, we get

fa)e" =3 | =0 (@), (3.1.2)
n=0
where ¢£La)(a7) = gb,(f‘)(O) is a ¢ number of order a.

Writing = + y instead of x in (3.1.1) we get obtain

o0 tn

E :—'gzﬁgf‘)(x—ky) — fa(t)e(”y)”g(t),
n!

n=0

= fa(t)ewteg(t)wt

(o] tn
= ') mqbga) (y). (3.1.3)

n=0

Having put the coefficients of t", equal on both sides, we have

o) = o o)l e (D)) 31

k=0

Substituting (3.1.4) and applying the Cauchy product formula to (3.1.3), we

18



have

> ey = Yy Gt
n!™" k!l (n—k) 'k
n=0 n=0 k=0
& n! l’ktn (n)
=22 k(= e W)
n=0 k=0
0o 00 n\ " .
= 33t (5) ettt
n=0 k=0

Taking y = 0, we obtain

n « n 6% n n (0%
o) = o2+ () oeh 2 (5 ol () 7,

which shows unless ¢\ = 0 that ¢'*’(z) is actually of degree n.

Therefore we can write the below equality
O\ () = (91 + )" (3.1.5)

where after expanding the powers, each index of ¢ will be replaced by the

corresponding suffix.

In this way ¢ polynomials defined completely by ¢ numbers mentioned

in (3.1.2) and also by the equality (3.1.5).

From (3.1.5), we have

— ¢ (2) = (¢ + 2)" 7 = ol (x) (3.1.6)

19



and

z (@) _ ()
/ ¢$La) (t)dt — ¢n+1 (l;)l - (fn-i-l (CL) . (317)

Therefore as we already know differentiation will decrease the degree by one
unit and integration will increase it one unit but in both cases we will have no

changes in the order. Using A in equation (3.1.1), we will get

o0 n

> ABI() = (¢ = Dfa(t)e 0. (3.1.8)

n=0

In a similar way, using 57 in (3.1.1), we get

et

00 Ln . 1 )
> = o (1) = ——falt)e 0. (3.1.9)
n=0

3.2 The  Polynomials

A result from (3.1.8) is that if we take f,(t) = t*(e! — 1)~ in (3.1.1)
where « is any integer (either positive, negative or zero), we get a particularly
simple class of ¢ polynomials which are called S polynomials and are written as

follows

(éf_—l)oéext+g(t) = Z mﬂv(@a) (I‘) (321)
n=0

20



so that from (3.1.8)

S
Z—! B (@
=0

where

(B (z + 1) — B ()]

Replacing n 4+ 1 with n,

n=0 n'
=t =t
— (c i
= D A )= 2 B
n=0
_ t [e(z+1)t+g(t) B ezt+g(t):|
=1y
_ " sia-1)
n=0
T e _ P
@ —1)e @ —1e
ta
— (z+1)t+g(t) _ xt+g(t)
(et _ 1)a [6 € }
— Lexﬂrg(t)
(et _ 1)&—1

ey e
n=0

t a—1
Z % (TL Tl)'ﬂr(za_ll) (.73)
n=0

- " a—1
ny 85" (@)
n=0

nB Y (@).

21



Therefore we have
AR (z) = npl 7 (2). (3.2.3)

It is clear that A decreases the order and the degree both by unit one .

Using (3.1.5), we can rewrite (3.2.3) as follows
(B +z + 1)n — (B + m)n =n (Bl + x)n_l :
Substituting x = 0, we obtain
(B8 +1)" = 8@ = pple Y (3.2.4)
which results a one to one relation between the S numbers of orders o and o — 1.

3.3 Definition of Bernoulli Polynomials

The function e**t9() generates the 8 polynomials of order zero, where if
we put g(t) = 0 we will obtain the simplest polynomials of this kind e**. These
polynomials are known as Bernoulli polynomials of order zero which are defined

as follows :

B (z) = 2" (3.3.1)

22



Therefore we have

= B = S =Y B

Using (3.2.1), we can expand this definition to Bernoulli polynomials of order

a given by the identity

taezt o0 n (@)
m = Z _'Bn (ZL’) (332)
n=0
Putting z = 0, we will obtain
S pw
(e =1)* =l "

3.3.1 Fundamental Properties of Bernoulli Polynomials

Since [ polynomials are ¢ polynomials, so Bernoulli polynomials are also

¢ polynomials. Here are some properties of Generalized Bernoulli polynomials:

B (x) = (B + a:)n (3.3.3)

iB@@(x) = nB'Y, () (3.3.4)

d.T n n—1 . ..
| B = — (8 @) - 8 @) (3.3.5)

23



AB@(z) = nB»7V (). (3.3.6)

(B +1)" = B® =nB*Y. (3.3.7)

n—

Properties (3.3.3), (3.3.4), and (3.3.5) are common in an ¢ polynomials and

properties (3.3.6) and (3.3.7) are shared in all § polynomials (see [4]).
For n > a, repeated applications of property (3.3.6) will give the relation
A*B@D(z) =n(n—1)(n—2)...(n — o+ 1)z
Let us prove the first property. From (3.3.6)

A LA BW () = At (nBT(fi_ll)(x))

A2 <nB£f’f11)(;z;)) NG (n(n . 1)35:1)(1;)) .
Applying A, « times yields to

A*B@(z) = n(n—1)(n—-2)...(n—a+1)BY, (z)

= nn—1)n-2)...(n —a+1)z"" "

Here note that BY (x) = 2™ Now if n < a, the right-hand will vanish, since
we can not have a Bernoulli polynomial of negative degree. Norlund’s theory of

Bernoulli polynomials arised from relations (3.3.6) and (3.3.7).

There are some useful results gained from (3.3.6) such as the following theo-

24



rem.

Theorem 3.3.1 For any integer n,a > 0, we have

B (z+1) = B (z) + BV (). (3.3.8)

Proof. Putting z = 0 in equation (3.3.8) yields to

Using (3.3.5) and (3.3.6), we get

(z) = B Y(z). (3.3.9)

z+1 (@) 1 (@)
B\ (t)dt = A B
/x n () n 1 n+1

Replacing « + 1 by x and x by a in equation (3.3.5)

T BOMd = 89 4 1) - A ()
. n n + 1 n+1 n+1
1 (@)
= n -+ 1 A Bn+1<x>
= B (x)

and in particular

1
/ B (t)dt = B>V, (3.3.10)
0

25



3.3.2 The Complementary Argument Theorem

Theorem 3.3.2 If the arguments x and o — x are complementary, then

B9 (a —z) = (—=1)"BY(x). (3.3.11)

Proof. Considering (3.3.2),

n o, (a—x)t

BY(a—z) = Eete(——l))a

teelama)t gmat

@ e

tret

(e 1)e(e 0
tre et

(1)

(=7
= > EF 0w,

n=0

~

>

n=0

S

equating the coefficients of ¢™ on both sides of (3.2.1), we prove the theorem. =

The equation (3.2.1) is called the complementary argument theorem. The
theorem holds for any 8 polynomial with an even function as its generating func-

tion. Taking z = 0, n = 24 in (3.3.11), B{)(a) = B{®

2 5, » Which results © = «,

x = 0 as zeros of Béz) (z) — Béz).

In a similar way putting x = %oz, n = 2u + lin (3.3.11), we have
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o 1 o 1
Byla(a—5a) = (1)*'Byl,i(50)
o 1 o 1
Béul—l<§&> = —Béuzﬂ(goé)-
Resulting that
m (1

3.3.3 The Relation between Polynomials of Successive Orders

The following theorem gives the relation between the polynomials of suc-

cessive orders.

Theorem 3.3.3 For any integer n,a > 0, we have

Bt (z) = (1 - —) B@W(z) +n (E — 1> B, (z).

Proof. Differentiating both sides of the equality below

n tcve:rt

B (x) = e = 1)

4

i (3.3.13a)

n=0

!

S
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and then multiplying it by ¢, we get

tn (6%

NE

3
I
o

t{(at* et 4 twe™) (¢f — 1)7] — [ttaewta (e — 1) et]
(¢ — 1)

[Oztaext (et - 1)01] + [ta+1xezt (et _ l)a] _ [ta+16t(z+1)a (et _ 1)06—1}
- (et . 1)2&
ataext (et . 1)04 [ta-l-lxext (et o 1)04] toz—l—le(x—i-l)ta (et o 1)04_1
= 2a + 2a o 2a
(et —1) (et —1) (et —1)
ate® rtotlert atet! 6(9[:-"-1)t

@—1°  (@-1° (e@_1)

N NN NN
= QZEB,(Z )(2) +$tZEB7(Z )(z) — az ﬁBfL (x4 1).
n=0 n=0 n=0

By equating the coefficients of ¢" we have
nBY (x) = aBY(z) + anT(i)l (z) — aBlt(z +1). (3.3.14)
Using (3.3.8) we obtain
B (g + 1) = B@(z) + nBY, (2). (3.3.15)

n

Therefore we get
BO+ (g) = (1 _ g) B@(z) +n (f — 1) BY, (z) (3.3.16)

which demonstrates a relation between Bernoulli polynomials of order o and a+1,

as required. m
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Now letting z = 0, we also have

=
o
+
=
—~
[S—y
N~—
|
/N
—_
|
|3
—
e
£

nB™(0) = aB(0) - B (1)
nB@ = aBY —aBlt)(1)

aB@tY(1) = aBW —nBW

(c)
B£a+1)(1) _ (Oé - n)Bn
«
— <1 — E) B
a7

replacing o by n + « in (3.3.18), we have

_ @ pta)

Bt (1) = B
n (67

3.3.4 Relation of Bernoulli Polynomials to Factorials

Letting n = a in (3.3.16), we obtain

(3.3.18)

(3.3.19)

Bt (z) = (2—a)BY(2)=(z—a)lz—a+1)B* V() =...

a—2

= z—a)z—a+1)... (z—2)(z—1)B" ().
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Putting a for n in equation (3.3.16)

BO+D(z) :<L~JB@@%H%£—QBgmﬂ

Now putting o — 1 for «v at right side,

BYtY(z) = (z—a)lx—a+1)B* (@) =...

= r-—a)z—a+1)..(z—2)(z-1)B" ().
Therefore
Bt (z)=(z—1)(z—2)...(z —a) = (z — 1)@, (3.3.20)
Putting « + 1 for x in equation (3.3.20),
Bz 4+ 1) =g@z—1)(z—-2)...(z—a+1) =2a" (3.3.21)

Taking integral from 0 to 1 in both of the above equations and considering

(3.3.10), we get

/Ol(x —1)(z —2)...(z — a)dz = BY.

Using relation between (3.3.10) and (3.3.21) and from (3.3.15)
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Note that the above equation will be the same we put & = —1 in (3.3.19).

Using (3.3.4) and differentiating (3.3.20) o — n times (o > n), we obtain,

dO&—n
ala—1)...(a —a+n+1)B(z) = y
xaf/n/

(z — 1)

which represents an expression for B,({”l)(:c) as below

O

Bet(x) = — -
al qre—"n

[(z—1)(x—2)...(z —a)].

In Stirling’s and Bessel’s interpolation formula, we have the following coefficients:

L. a41(p) = (;;181)

2. az(p) = £ (%))

3. basy1(p) = (551%1) (p+;s_1)
4. bas(p) = (M57)

2542
5. ags+1(p) = ﬁBésﬂ p+s+1)

We will now prove the above properties. To prove the property on ass(p),we
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rewrite equation (3.3.20) as

Bet(z) = (z—-1)(z—2)..(x — a)

(x—1)(z—-2)...(r—a)(z—a—-1)...32.1
(x —a—1)!

- a!(m . 1).. (3.3.22)

Substitute z =p+s+ 1, a=2s+ 1, a+1=2s+ 2, in (3.3.22) to get

(25+2) p+s+1—1
BEps ) = (T

= (2s+1)!<p+8).

2s+1

Now, substitute « =2s — 1, a+1 =2s, x =p+ s in (3.3.22) to get

+s—1
B —@2s—1)(7 .
se—1(P+8) = (25 )< 96 — 1

Use the above relation below to obtain the desired property

ax(p) = (2]2)!(25 —1)! <p TS 1)

25 —1
_ p(pts—1
25\ 25s—1 )°
Let us prove the property (3) on bagy1(p).Substitute x = p+ s, n=2s, n+1=

2s + lin equation (3.3.22),

s + -1
B =@ (M ).
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Then, use the above relation below,

1
p—3 B(23+1)
(2s+1)17°%

w7

_ p—35 (p+s—1
(2s+1) 2s

which proves the desired property.

bast1(p) = (p+s)

Next, we prove the property on bos(p). Using the relation

1 s
bas(p) = @35 Dp+s) (3.3.23)

and substituting z = p+s, « = 2s, a4+ 1 = 2s+ 1 in equation (3.3.22), we easily

obtain

-1
B§§S+1)(p +5) = (2s)! (p +2SS )

Using the above result in (3.3.23),

) = (")

_ (pt+s—1
N 25 '

Hence the property is obtained.

Differentiating each of these coefficients m times with respect to p and

then putting p = 0 in ags.1(p) and ags(p) and also putting p = % in bys11(p) and
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bas(p), we get

1 s
D™ags1(0) = mBgﬁ)ﬂ(S +1). (3.3.24)

From (3.3.4),
d d 1 (2542)
2 2 - 41> B 1,
dpaz +1(p> dp (25 _'_ 1)‘ 28"1‘1 (p + S + )
2s+1 s
D(awn(p) = GoqyiBe w+s+1)
1 2542)
= — B 1).
(2$)| 2s (p+s+ )

Differentiating once more,

1 s
D*(aze41(p)) = D | =B (p+s+1)

(2s)!
2s 2s5+2

_ (23)'B§3+1 "p+s+1)
1 s

_ mggﬁ (p+s+1).

Repeatedly, we obtain
1 s
D™ (agsi1(p)) = —————— B (p4+s+1). (3.3.25)

(25 —m + 1)1 2

Now putting p = 0 in (3.3.25),

1
B2 (s+1). (3.3.26)

D™ (az541(0)) = @5 —m £ 1)1 Dz-mt
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Now, let us obtain the relation,

D™a,(0) = m&&ﬂm(s). (3.3.27)
From (3.3.4),
) =5 B+
thus
D(ear)) = o [BE 0 +9) + s = DB +9)].
DQ(CL?S(p)) = (2(19)'
x [(23 — 1B (p+ )+ (25 — 1)B),(p + 5)
+op(2s —1)(2s — 2)B&Y,(p + s)]
- (213)! [2(23 —1)BP,(p+ )+ p(2s — 1)(2s — 2) B (p + s)}
— G = D 2B+ 5) +p(2s = 2B + )
= G 2O+ ) 525~ B0+ 3)]
Repeatedly,
D™ (azy(p)) = m m(BE y(p + 5)) + p(25 = 2)BE 4 (p + 5)|
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Now place p = 0 in the last equation

D™ (a24(0)) = o B s).

(2s)(2s — m)

Whence the result. The next result is about the mth derivative of the coefficient

bas11(p) at p = & which is,

1 m (25+1) 1
D"bos i1 (=) = By~ =) 3.3.28

From property (3)

d d p—= z (25+1)
— by, - —|(—2 B
dp 2 +1<p> dp <<28 + 1)' 2s (p + S)

D (bass1(p)) = ﬁ B§i8“><p+s>+(p—§) <2s>B§§i”<p+s>}
Do 0) = oy [29BE 0o+ 9)+ B 0+ 5
1 [ 1 25+1
b | (p ) s = DBE G4 )
— @ [ 9+ (5 5) - DBE )

oy [P 9+ (p5) - DB )

Repeatedly,

1
(2s+1)(2s —m+1)!

S ]‘ S
B+ 9) + (p3) 2= mot DB 4 0)]

D™ (bzs+1 (p))
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We will put p = % in last equation to get,

1 1
D™ | bogy1(= =
( 2+1(2)> (2s+1)(2s —m+1)!
s 1 1 1 si1), 1
x [mBED (C4s)+ (== ) @s—m+ 1B (= + )
2 2 2 2
_ m (2s+1) 1
(25 +1)(2s —m + 1)! zs-mt (5 +5).
To prove the relation below
1 1 2541 1
D™byy(5) = ——— B (s + = 3.2
b28(2) (zs_m)' 25—m (S+2)7 (33 9)

we use equation (3.3.23) to have,

a _ 4 (1 pesny
w00) = (G0 )
1

25)!
D(baslp) = Gi29Ban (0 +9)

D*(alp) = Gy 29025 = DB 0 +9)

_ (28)(23 — 1) pei1
(2s)(2s — 1)(2s — 2)!355—2 )(p +5)

1 2s5+1
= MBES_E '(p+s).

—~

Repeatedly,

1 s
D™ (bas(p)) = mBg—ﬂ)(p +5).

We will now put p = % in last equation to obtain

. L o]
m b - ( =
( 25<2)) (28 m)' 25—m (2 8)7
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which gives the desired relation.

From equation (3.3.26),

m 1 2542
D™ags11(0) = mBés:nL(S +1)

and

m 1 25+2
D? ags41(0) = (25— 2m 1 1)!353_3%“(8 +1).

Using (3.3.12)

D2ma25+1 (O) =0.

From equation (3.3.27),

m m (25)
D™ay(0) = —— B~
a2 (0) 28(28 _ m), s m(s)
and
D5 (0) = 2m +1 (2s)

2525 — 2m — 1)1 De2m1 ()

Using (3.3.12), we obtain

D*™ta,,(0) = 0.

38



By equation (3.3.28), Dmb28+1(%) and Dzmbgsﬂ(%) become,

1 m (2s+1) 1
D™byeir (=) = B -
2511(3) (25 +1)(2s —m + 1) i1 (54 3)

and

1 2m 1
D2mb i oy B(2s+1) +
25+1(3) (25 +1)(2s — 2m + 1)! 2szm1(5 4 5)

respectively.

Now from equation (3.3.12),
D2m625+1<§) - 0
From (3.3.29),
1 1 (25+1)
D™byy(z) = —B
2 (2) (25—m)' 2s—m <S+

and

1 1 1
D2m+1b J(2) = B(2S+1) )
2 (2) (25 _ 2m + 1)‘ 25—2m+1(8 _'_ 2)

Using (3.3.12), we get

1
Dby (5) = 0.
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3.3.4.1 The Integral of the Factorial

An important function in the theory of numerical integration is the y(z)

function :

x(z) = /1$k(y —1(y—2)...(y —2n+ 1)dy (3.3.30)

~ / k B, (y)dy. (3.3.31)
1—

The above integral results with the following expression,

T . 1 . .
/ BE (y)dy = — | BE (x) — BRP(1— k)|, (3.3.32)

1—k 2n

where k is either zero or unit. Considering the Complemantary Argument Theo-

rem, substituting n = 2n, a = 2n in (3.3.11) and using (3.3.30), we have

BEY(@2n — (—k+1)) = (=1)*BEY(1 - k)

= BRY(1 - k).

Also, substituting the above equalities in (3.3.30), we have

B (2n+k—1)— B8 (1 — k)
2n
BEY(1— k) — BEP(1— k)
2n

XCn+k—-1) =

Resulting that x(2n +k —1) = x(1 — k) = 0.
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Using Complementary Argument Theorem mentioned in (3.3.11) and letting

x =1—k, we also have the following relation

BV 2n+1—2) = (~1)* BRI k)

2n+1
= _Bén:i )(1 - k)

That is,
2ntk—1 2n+k—1
/ 1-x(z)dx = —/ z(x—1)(x—2)...(z —2n+ 1)dz
1—k 1-k
_ Bk + B (k)
_ . (3.3.33)
2n+1

Rewriting the left hand side of the above equation leads to the following integral,

o2n+k—1 2n+k—1 T
/ 1 x(x)dx = / / (y—1)(y—2)...(y — 2n + 1)dydx.
1 1—k 1k

—k
Letting u = x(x) and dv = 1dx and using integration by parts method we have,

DT @) = o [ - D= 2) . (- 20k Dy [

_ 12112-13_1 r(x—1)(x—2)...(x —2n+ 1)dx

= [z x(@)] Pt = [ @ - D) (- 2) . (e - 20 4 1)da

= [@n+k—1)-x@2n+k—1)-y(1—Fk)]

- ) wz—-1)(z—-2)...(x - 2n+ 1)du.

Since x(2n+k —1) = x(1 — k) =0,

/12n+k_1 1-x(z)dr = — /jMH w(z —1)(z—2)... (v —2n+ 1)da.

—k
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Substituting 2n instead of n in (3.3.21), the above integral will be equal to the

integral given below

2n+k—1 2n+k—1
/ 1.x(x)dr = —/ BP™ (1 4 1)da.
1 1

—k —k

From (3.3.5),
antkt (2n+1) 1 (2n+1) (2n+1)
- By, (x4 1)dr = Tt By1 (2n+ k) — Byy '(2 - k)] ,
1k

which proves the relation (3.3.33).

It is easy to verify that Ban_l) = fol(y —1)(y —2)...(y —2n + 1)dy is

n—1

negative, while

2
BV (1) = / (y—1)(y —2)..(y — 2n + 1)dy
1
is positive.

Continuing in this way, when v is an integer, 0 < v < 2n,
(=) By (0) = 0.
At this point we will prove the following inequality,

(—=1)*BE" M0 —1) = (=)' B M (), l<v<n—1.(3.3.35)
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From (3.3.9), we have

BED(y — 1) — / :(y Dy —2)...(y— 20+ 1)dy, (3.3.36)

and

B = [ D=2 20 1y
— [ D=2 =20 D

n— Y y
B¢ V) = —/ 1 m(y —1)(y—2)...(y — 2n+ 1)dy. (3.3.37)

Sincev—1<y<vandv <n-—1, we have y < n—%. Thus y/(2n—y—1) is
positive and less than unity. Considering (3.3.36) and (3.3.37) it is clear that the
absolute value of the integrand of (3.3.37) is less than the absolute value of the
integrand of (3.3.36), which results (3.3.35).According to the above explanations

we will show that the function y(z) has a fixed sign whenever
1-k<z<2n+k-1.

Let v—1 <z <wv Ifv—1<y <wv, then the sign of the integrand of (3.3.30)

will not change. Hence,

v

/1; (y—1)(y—2)...(y—2n+1)dy < x(z) < /1_k(y—1)(3/—2)--'(9_2”“)@'

If we rewrite each integral using the intervals (1 —k,2—k), (2—k,3 —k),..., we
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will realize that x(x) is between the following two sums.

BE VA —k)+ B2 k) + .+ BE V(0 - 2),

2n—1 2n—1 2n—1
B V(1 k) + BE V@ —k) 4. 4+ BET V(v —1).

According to the Complementary Argument theorem, we will consider v < n,

when the terms satisfy this condition.

Considering (3.3.35) the absolute magnitude of the terms in the above

sums are in descending order and their signs alternate. Thus the sign of each sum

is the same as the sign of the first term, namely, Béi"__ll)(l — k).

Following the above applications we proved that BS2" (z) — BS™ has no

zeros in 0 < x < 2n, and

BED0—b)| 2 [BEPe k)|, frk=0orL

3.3.4.2 Expansion of z“ in Powers of =

Having differentiated (3.3.21) p times, we have
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To prove the above relation, we differentiate (3.3.21) with respect to z, that is

Bz 4+1) = 2(z—1D)(z—-2)...(r —a+1) =z

D (B (z+1)) = aB*(z+1)

—

D?* = D (@Bgyjl)(:c + 1)> — afa —1)B™ Nz +1)

D = D? <a(a —1)B*V(a + 1)) = aa - 1)(a - 2)BtV(z 1 1).

o—

Repeatedly,
DP = pr-l (a(a ~ 1BV (x + 1)) = ala—1)(a=2)... (a—p+1)B V(@ +1).

Hence,

&’ (a-+1)
wx( ) = Oé(p)Baa_p (.T+ 1)

Now, letting = = 0, using (3.3.18) and (3.3.21), we obtain

ol B (@)
(@=pla

By applying Maclaurin’s Theorem on z(®, we have

[0

P ! @ —1
(@) _ o P o p (@)
! _Zp! (a—p)!aBap_Z( s

p=0 p=0 p— 1
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3.3.4.3 Expansion of 2V in Factorials

By Newton’s Interpolation formula which is

flx) = f(a)—l—pAf(a)—i—(’27)Azf(a)+(§)A3f(a)+...+(nfl)A”_lf(a)—i-(f;)w”f(")(f)

and knowing that B (z + h) is a polynomial of degree n from (3.3.6), we get

B@(x+h) = BY +Z N B (h) (3.3.38)

n

= Y (M2®BY (h).

s n—s

s=0
By putting A = 0 in (3.3.38), we have a factorial series for B (x),

n

B (z) = Z (Z)x(s)Bf[:S).

s=0

One can easily see that, having n = 0 gives BY (x) = x which yields to the

following required expansion
=3 (M2 B, (3.3.40)

Operating A on (3.3.40) (o < n), we will obtain the differences of zeros having

taken x = 0,

Taking a = n + 1, replacing h by A+ 1 in (3.3.38) and using (3.3.21) leads to,

n

(x4 h)" = Z (Z)x(s)h("_s)

s=0
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which will be used in follows

BO(z+h+1) = Y (MaWBI T (h+1)

= Y (MBI (h+1)

The above relation is the well known Vandermonde’s theorem in factorials and

demonstrates an analogou to the Binomial Theorem as below

n

(x +h)" = Z (")ah e

s=0
Also interchanging x and h in (3.3.38), we get

n

B,(La)(x + h})l - B® (z) _ Z (7;) (h— 1)(5—1)37(;:5) (x). (3.3.41)

s=1

Taking limit when & — 0 we will get the derivative of B (x) on the left-hand

side
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we will use (3.3.4) and (3.3.41) and the definition of derivative,

a a) n
B\(x+h) = B (x) _ S ()= DEIBE I ()

h — s n—s
d _ _
— Rla) — n _ 1)\(s—1) gla—s)
- B () = ;(s)(h DB (v)
nB(@) = D (=D (s - DB ().
s=1
Specially, when x = 0
nBY =" (M (=) V(s - 1)1BYLY.

3.3.4.4 Generating Functions of Bernoulli Numbers

Using Binomial Theorem, we have

(140! = xz‘i(x—l)(x —nZ!)...(x—n)tn: o ;TL!B,(L"“)(:L“)
= :Z:](”:)t”m“
= Z()t:Z%t
_ HZL (z—1)(x 73)(}0”(316231@ —1-nt,
_ “zf(x—l)(x—;)..«x—n)tn
- L)
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Having differentiated the above equation « times with respect to x, we get

o0

(L+6)" " log(1+8)]*=> ——

n=uox

Letting x = 1 and then dividing by ¢, we obtain

[bg“%ﬂ = 3 Lt (3.3.42)

n=0
oo

tn o a-Tn
- Zﬁa+n5’g+ ). (3.3.43)

(407 og(1+ 0] = Y =B @)

(14t)'! [log(1 4 )" > =ay Pn—a
ta t

log(1+¢)1 = " n+1)
o = — B 1
R I D )

_ tn—n B(n+a+1) (1)
Zno (n+a—a) "o
[e.9] tn

_ § _B(n+a+1)(1>

nl "
n=0

o0

= Z ELB(OHM)_
na+n "

In particular, for a = 1,

log(1 +1) i t" B+l
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Integrating (1 + ¢)*~! « times with respect to z from z to z + 1 and using

(3.3.9), we have

[e.o] n

(L+8)*'te

[log(1+#)]* ~ & n!

B(n OH_I)(ZL‘).

Taking x = 0, we get

t =t
_Bn a+1
(1+1t) [log(1+ )" gon

In a particular case where a = 1, we get the generating function of By(f) numbers
as below

t ﬁB(n).

(L+t)log(1+1) “nl "

Now putting x = 1, we obtain

t N
i~

resulting that the equation (3.3.42) holds for negative o’s as well.

In particular for « = 1, we will obtain the generating function of the

numbers B{" (1),

_ i " gy, (3.3.44)
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Using (3.3.19) on (3.3.44), we get

ANEPINE PR - Vil B
log(1+1t) 2 —nln—1"

n

Below the first ten of the B,(@n) numbers are listed :

1 19087
BY = 2 B = 20
2 84
5 36799
Bf) _ 2 Bg):_ ’
6 24
9 1070017
Bég) _— Bég): ’
4 90
EQ—-%l B@__m&%3
4 307 o 20
5 475 o 134211265
po - A0 g 1BRLG
12 132

3.3.5 Bernoulli Polynomials of the First Order

In the rest of the thesis we will write B,,(z) instead of By(Ll)(x), having in
mind that the order is one. Therefore from (3.3.2), we get the below function as

the generating function of the Bernoulli polynomials :

n

te™t =t
- 1:§:7m@y (3.3.45)

n=0

The generating function of Bernoulli numbers, B,, of the first order are shown

as below

n

t oo
=2 b (3.3.46)

n=0
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Using the properties given in the subsection (3.2.1), the following properties

are satisfied

Bu(2) = (B + 2)". (3.3.47)

Putting o = 0 in equation (3.3.3)

hence

B, (z) = (B +x)".

Now, we will prove the following property.

(B+1)" =B, =0, n=234,.... (3.3.48)

We put x =0, « = 0 in equation (3.3.15),

BO(0+1) = BO0)+nB (0)

B,(1) = B,+nBY

n—1

(B+1)"—B, = 0, n=234,....
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Another property is related with differentiation.

—B,(x) =nB,_1(x). (3.3.49)

To prove this, we will differentiate both sides of equation (3.3.45) with respect to

x.

That is,

& tn—i—l

= ) (n+ 1)mBn(x)

tTL
= > n@Bn,l(x).

n=0

Thus

d
= (Bu() = nBya(2).

The following is the integral representation of B, (z)

/ " Bu()dt = — [Bysy(2) — By (a)]. (3.3.50)
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By integrating both sides of equation (3.3.45), we have

| (i %Bm) = [ (255w

n=

0
0 n x ea:t eat
— B,(t)dt = —
nz%n!/a ®) et—1 et —1

0 1 S~ 1

= D Bi@ =) B
n=0 n=0

_ i LBMI(@ _ i LBnH(a)
— (n+1)! — (n+1)!

|

_ nz; - {n_ﬂ (Bor () — Bnﬂ(a))} :

Thus,

/aa: Bn(t)dt == n—ll— 1 [Bn+1(l'> — Bn—}—l(@)] )

Next, consider the difference operator.
AB,(z) = nz" . (3.3.51)
From (3.3.15),

Btz +1) = BtY(z) 4 nBlt(z)

n

Bt (z 4+ 1) — Bt (z) = nBLt)(z)

n n

AB@(z) = pBetD(x).
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Putting a = 0,

ABWY(z) = nBW(z)

n

ABp(z) = na" .

Below the first seven polynomials are listed

By(z) = 1,
1
Bl(x) = T — 57
9 1
By(z) = = —m+6,
3 3.9 1
Bs(x) = z(z—1)(z—2) =2 — 3% + 5%
1
B _ A9 2 L
4(x) x x° 4+ 0
1 1 5 ) 1
Bs(z) = 95(9‘3—1)(95—5)(%2—%—5) :x5—§x4+§x3—6x,
5 1 1
B . ST B S
6(x) x° — 32° + 58— 5% —1—42

Also the values for the first seven numbers are :

By| By | By | Bs| By | Bs | Bg

I 0|—21]0|%

1
6

N |+

3.3.5.1 A Summation Problem

By (3.3.50) and (3.3.51), we have

1

s+1
[ Bi@is = o Buals 4 1) - Buals)

= s

25



One can easily show the obove relation as follows:

/s T B(n)dr = HLH[BM(sH)—BM(s)]

1
T on+l & Bunls)

= n+1n S

= "

Also,

a+1
Z s = /0 Bp(x)de = —— [Bpyi(a+ 1) — Byl .

As an example for n = 3, we have

;253 = {[Bia+1)- BJ
_ ﬂ(aﬂ) —2<a+1>3+<a+1)‘%_<_%)}
_ %[(QH) —2(a+1)* + (a+1)]
- [peer].

3.3.5.2 Bernoulli Numbers of the First Order

(3.3.46) results

>t t e+1
+Z—Bn:§- (3.3.52)
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we will use (3.3.46)

t =t t t

2t 2P = 3t
ottt =1)+2t
T 2(et—1)
et —1+42)
o 2(et = 1)
ot e +1
T2 et 1

Since changing ¢ to —t does not make change the function on the right-hand
side, the function on the right is even. Therefore the expansion above does not

contain any odd powers of ¢ and hence

Boys1 =0, p>0, (3.3.53)

Replacing t by 2t in (3.3.52) we get

2t o= (26)" 2t e +1
2y Bp, = 2

— n! 2 et —1
et +1
fr 62t_1

222 23t3

From (3.3.53)

22¢2 24¢4
t—+»§£: - za — 14t 4—-757-132-+ o - B,... .
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Writing ¢t instead of ¢ we get

22 244
tcoth=1— TBQ + TB4 — ... (3354)

Similarly, one can easily obtain expansions for csct and tant as follows.

1
csct = cot §t —cot t,

tant = cott— 2cot2t

—_ i(_l)n—l22n(22n — 1) 32 t2n—1
— (2n)! " ’

We have another expansion in partial fractions
2 1
mteothmt =1+ 267 R (3.3.55)
n=1

Rearranging these series and comparing with the coefficients of ¢ in (3.3.55),

and also considering the series for 7t coth 7t in (3.3.54),

o0

QW)png 1

(—1y1 TR (3.3.56)

It is clear to see that the summation on the right hand side of (3.3.56) lies
between 1 and 2. Thus, as p increases, By, increases rapidly and also the Bernoulli

numbers alternate in sign. Furthermore, we have

(-].)pilng > 0.
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In order to express the Bernoulli numbers using determinants, we use (3.3.48)

1 By
at =0

1 1B 1B,

TR T T
I 1B 1 B 1 By B
(a+1)! a1l " (a—-1r20 T 2 (a—1)

Solving the above equations, for (71&#, we have the following determinant

1 0 0 0
= 1 0 0
& % 1 0 0

(D) o  (a—1)! (a—2)!

M=

We have

1 1
B.(z) + §n:x”_1 = (z+B)"+ inx”_l

= "+ (g)m”_QBg + (Z)x”_4B4 +...,

so that B,(z) + %n:r;"_l is an even function when n is even and odd function

whenever n is odd, since By,41 =0, p > 0.
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3.3.5.3 The Euler-Maclaurin Theorem for Polynomials

Suppose that P(x) is an polynomial of degree .

Using (3.3.48) and (3.3.51) we have,

nz" ' = AB,(z)
= Bu,(x+1)— B,(x)

= (B+z+1)"—(B+a)"
resulting that
P'(z)=P(zx+ B+1)— P(x + B), (3.3.57)
and therefore

P(z+y) = Plz+y+B+1)—Pla+y+B) (3.3.58)

= P(z+1+ B(y)) — P(z + B(y)).

Applying Taylor’s Theorem, we have
1 1
P(x+B(y)) = P(as)~|—Bl(y)P'(:z:)+EBg(y)P”(a:)+...+aBa(y)P(o‘)(:v). (3.3.59)

Substituting equation in (3.3.58) and (3.3.59), we will get the Euler-Maclaurin
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Theorem for polynomials as follows:

P'(z +vy)

P(z+ 1+ B(y))

- [P+ BIP @) + BP0+t Bl P

[P(a: 1) 4+ Biy) P+ 1) + %Bg(y)P”(w +1)

1
...+ aBa(y)P(“)(x +1)

|\ P@)+ B P(x) + %Bg(y)P"(x) +oo+ iBa(y)P(o‘) (x)}
[P(z+1) = P(z)] + Bi(y) [P'(z + 1) — P'(z))]

by Bal) [P+ 1) = P'(a)] + .+

i Ba(y) [P 1) PO ()]
AH@+&@APWH£BMMUW@+M+i&@AP@@

2! ol

which gives us the Euler-Maclaurin theorem for polynomials.

In the special case when y = 0,

1 , 1
P'(z) = AP(z)+B,AP'(x +1BQAP” 2)+—=ByAPW) (2)4. . +— B, AP (),
2! 41 al

(3.3.60)

where Bs, Bs, By, ... all vanish. Now considering P(x) as :

Pa) = / "oyt

Integrating both sides of equation (3.3.60) we get,

z+1 1 1
P(z) = / O(t)dt + By & ¢(x) + 5By & ¢/ () + 1By A ¢ (x) + .. (3.3.61)

4]
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Since B = —%, we have the following equation for any polynomial ¢(x)

z+1 1 1 1
/ B(1)dt = 5 [o(a+ 1) + ()] — 5 Bo A (2) — 1 Ba Db &"(x) .
One can easily prove the above equation by substituting

z+1
/ s(t)dt = — {Bl A é(z) + %BQ A ¢(z) + %34 A ¢ (@) + ..

1 1
= _Bl JAN ¢($) - EBQ A ¢/(33) - EBZL A ¢/,/($) - ...

bz + 1) — d(a)] — %Bz A ¢(z) — %194 Ad"(z)— ...

N | —

After a finite number of terms, the series on the right-hand side will terminate.

The equation (3.3.57) shows that
u(zx) = P(x + B) = P(B(2)) (3.3.62)
is the polynomial solution of the difference equation below :
Au(z) = P'(x). (3.3.63)
Thus, as an example consider

u(z) = 334@) — Bs(z) + Bi(x) + ¢,

Au(z) = 2° — 32° + 1,
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having ¢ as an arbitrary constant.

We use (3.3.63), (3.3.62) and (3.3.47)

Au(r) == P'(z) = 2° — 32% + 1.

We then integrate both sides to get

P(z) = %—x3+x+c
P(x+ B) = u(m):(gjdl—TB)ZL—(x—i—B)?’—i—(x%—B)—i-c

= (Bu(e) = Bo(x) + Bu(a) +

Replacing ¢ by an arbitrary periodic function w(x), we will get the general solu-

tion as :

w(x+1) = w(z).

3.3.5.4 The Multiplication Theorem

Considering m as a positive integer in (3.3.45), we have,

00 m—1 m—1 s
tn S t@(z+m)t
2 B"(IJFE) = 2
n=0 s=0 m=0
B te™ (el — 1) miemx%
(et —1)(em —1)  em —1
= —B,
nz:%m — (mx)
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Thus,
B,(mz)=m"1'Y B, (:U + —) :
m

sS=

The above result is the well-known multiplication theorem for Bernoulli poly-

nomials of order one.

Letting x = 0, we get

3.3.5.5 Bernoulli Polynomials in the Interval (0,1)

Recall that

Bgn(]_ — $) = Bgn(l')

and

B2n+1(]— — [E) = —Bgn+1(17). (3364)
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We use the relation B, (1 —z) = (—1)"B,(z) and write 2n + 1 for n to get,

Byni(l =) = (=1)""" By (x)

= —an+1(l‘)-

So, the zeros of By, (x) — Ba, are 0 and 1. We must prove that they are the

only zeros in [0, 1].

Letting « = 1 in (3.3.64), we get Ba,11 (3) = 0 and also using (3.3.64)

1
2
we realize that By, 1(x) is symmetric around x = %, thus for n < 0, Bo,y1(x)

has the zeros 0, £

, 5, 1. Our aim is to prove that these are the only zeros in [0, 1].

Therefore, including n = 1 > 0, we suppose that both statements are true.

Byy2(x) — Bgyyo, vanishes at x = 0, x = 1. Also for 0 < z < 1, its’
minimum or maximum occurs only at x = %

Since

D [Baui2(2) — Boura] = (210 + 2) Baysa (2). (3.3.65)

Therefore, it cannot vanish in (0, 1).

In a similar way,

DByui3(x) = (21 + 3) [Bapsa(w) — Bauya) + (210 + 3) Bayyo

where in the interval 0 < x < % the above equation can vanish at most once.
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So Bs,+3(x) cannot vanish in 0 < z < % and consequently can not vanish in

3 <z <1by (3.3.64).
The properties will now follow by induction.

Recall that (—1)"" By, > 0. (=1)""! By, ;1(z) will have the same sign as
its derivative whenever z is sufficiently small and positive which means that it will
have the same sign as (—1)""!B,,, which also has the same sign as (—1)""!B,,
and is positive. Hence

1
(—=1)"" By, y1(z) > 0, 0<zx< 5

As z increases from 0 to %, from (3.3.65) (—1)"*! (By,i2(z) — Bauye) will

29
also exceed 0, and therefore is positive. Since the expression above vanishes only

at 0 and 1, we get

G (Bausa(z) = Bapya) > 0, 0<z<l.

3.3.6 The n Polynomials

(3.1.9) is another method for generalizing polynomials. Writing f,(t) =
2%(e' + 1)~ a new class of polynomials will be formed which are named 7 poly-
nomials and are denoted by

20¢ xt+g(t

et—l—l n‘

i 2o (3.3.66)
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so that

1" "
Z—' Zﬁng V(z). (3.3.67)
=0 n=0

Replacing 7 for ¢ and writing f,(t) = 2%(e* + 1)~ in equation (3.1.9)

X n N €t—|—1 oo .
S o) - ot

2 (et+1)
_ 2270 e
(et +1)
From (3.3.66),
00 n 204—1
D V(@) = et
“— nl (et +1)
o tn .
> L),
n=0
Therefore we have
V(M (z) = i (). (3.3.68)

As we can see, V decreases the order by one unit and makes no changes in

the degree.

Using (3.1.5), we get

(N +2+1)" +H@ +2)" =2 (n° ) +2)" (3.3.69)
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where 7 satisfies the recurrence relation below

(7@ +1)" + n{®) = 2,

3.3.7 Definition of Euler Polynomial

(3.3.70)

Letting ¢g(t) = 0 and o = 0 in the generating function, we get the simplest

n polynomials with e** as their generating function. These 1 polynomials are the

powers of x. These polynomials are also called Euler polynomials of order zero.

Therefore

and

Here E” (x) is the Euler polynomial of degree n and order zero.

68
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The Euler polynomials of order « are defined as below using (3.3.66),

(e 9]

2 _ E®)(z) (3.3.72)
(et +1)* nl " ‘ o

n=0

Generally Euler numbers are the values of Eﬁf‘)(O). In order to avoid confu-
sion with Norlund’s notation for polynomials, we will use the notations below as

Norlund did well

E9(0) =27C), (3.3.73)

2% t" 1
e — hiliaiye (C))
(et + 1)a Z nl omn n

We put z = 0 in equation (3.3.72) and (3.3.73),

20460.15 e tn
- = Z_E@ (o
(€t+ 1)04 %T“ n ( )

2% 1
- = e CO)
(et + 1) nZ:O nl2n "

Substituting x = %Oz in 27 B (x), we get the Euler numbers of order «, EY

as,

1
E@ = 2”E§f>(§a).

Euler numbers with an odd suffix vanish as we shown in (3.3.73).
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3.3.7.1 Fundamental Properties of Euler Polynomials

As we know Euler polynomials are  polynomials and hence ¢ polynomi-

als. Therefore

1 n
B = (5()(‘“) + x) (3.3.74)
and
d ) ()
d_E" (x) =nE,” (z). (3.3.75)
X

We differentiate both sides of equation (3.3.72),

1" d d [ 2%
R () - (==
; nldx " (=) dx ((et + l)a)
tQaeact

(et + 1)«

SO pow = Y W
c~nldr ™" — (n+ 1)1 "
= Y B (@)
n=0
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Let us prove the following equation representing the integral representation for
generalized Euler polynomials

’ (0% 1 (0% o
/a Bt = —— [E,Sjl(x) — E (a)]. (3.3.76)

We will integrate both sides of equation (3.3.72)

> " T T oyt
— | E9%dt = _Z - d
) w (1) /a Y

2¢ 1
(et +1)* ¢t

n=0 n=0
o tnfl o tnfl
S IR e
n=0 n=0

We replace n — 1 with n,

o0 (e 9]

" E@
2%(714-1 w1 (® Z;n+1 B (a)

_ 1 " () " (@)
= o E_O:EE”“@) - E_O mEnH(a) ;
o[ 1 [ x_ ¢n |
E . (o) _ E Uop(e) B § :_ (a)
ot n| /a' En <t>dt - n + 1 — n‘EnJrl(‘T) —~ n!EnJrl(a)

Thus, from (3.3.69) and (3.3.73),

VEW (z) = BV (z) (3.3.77)
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and
1 "ol 2
low 1) Lo~ 2oy
(1o a) s ke s 2o
Replacing F for n in equation (3.3.70) proves (3.3.74).
Theorem 3.3.4 a)(E(O‘) + 1)n + Eﬁla) = 2E7(la71)
b) B (1) + B = 2B0 Y
¢) (3@ +1)" 4+ L = 2.
Using (3.3.73) and (3.1.5),
(C@ +2)" + ) =20, (3.3.78)
Using (3.3.77) repeatedly,
V= B9 (z) = 2" (3.3.79)

since B (z) = 2.

Applying V to both sides of equation (3.3.77) once more,

VEM (x) = VE* V(z)
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Applying difference operator consecutively gives,

VOEW(z) = E°(z)

— EO()
= "
Again using (3.3.77)
E(x+1) = 2BV (x) — B (x), (3.3.80)

Since

1 a\”
E@) — o (@) (g) = (zo@ &) on 3.3.81
n n 2 . 20 + 2 ? ( )
using (3.3.74) we will get
E™ =54 0,
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Equation (3.3.81) yields to the following,

1 a\” 1 "
(@) — on(Zg@ Q) Zon(Z(c@
E! 2 <2C +2> 2 <2(C +a)>

1
= 2"— (C©
277, ( + Oé)
Therefore
@ () = Lo low)”
EXNx) = |(z— 7« + §E : (3.3.82)
" 2 N 2 '
Letting x = 1 and = —1 in terns and then adding them up, we have

(B9 +1)"+ (B -1)" = 2"EW (O‘"QH> + 2" <O‘ _ 1)

2
- 2n+1VE(a) <Oé — 1)
- n 5

- 2n+1E(a71) a—1

= 2plD)

3.3.7.2 The Complementary Argument Theorem

As we know x and n — x are called complementary. We will now show

that the following equation holds

E9(a —z) = (—1)"EY (x). (3.3.83)

74



Using (3.3.72) and putting o — « for x we have

n 2n€(afm)t
E@(q — — -
1n (Oé I‘) (et + 1)n

_ 2a€at67xt efat
(et 1) \eo
20467115

(e +1)% (e7*)"
2a€—xt
(1+e)"

o0

— Z ﬂE}f‘) (z).

n!

~+

>

n=0

S

n=0

Equating the coefficients of ¢*, (3.3.83) will be proved. Equation (3.3.83) is the
Complementary Argument Theorem. This theorem holds for any 7 polynomial

with an even generating function g(t).

Taking 2 = 0 in (3.3.83) for n = 2u, we get
EY) (o) = ES)(0) = 27205

Putting x = 0 and n = 2y in equation (3.3.83) and using equation (3.3.73) leads

to the following

= E0)

2u

2720

Therefore at x = 0 and = = «, Eéz) (z) — 2_2“053) has zeros.
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Again letting z = 2 and n = 2p1+ 1 in (3.3.83), we get
Eézll = _Eézzrh
which will result Eézzrl = 0. Thus Euler numbers with odd suffixes vanish.

3.3.7.3 Euler Polynomials of Successive Orders

Define,

2aea:t

o0 tn
— (a) = —. 3.3.84
Z n! (et + 1) ( )

n=0

Differentiating both sides with respect to ¢ and then multiplying by ¢, we

obtain

©  n 20 |zt ((ef + 1)%) — ar (ef +1)* " efter
Z lEéa) (l‘) - 2c

“—~ (n—1)! (et +1)

2 1t T 2aat6t(az+1)

(et +1)* B (et + 1)0‘Jrl

o

(a) 1 " (a+1)

By equating the coefficients of t"*!, we have
(0% 1 [e%
B (1) = 2 EP(x) = 5ol (@ +1).

Using (3.3.80)

Bt (z +1) = 2B (z) — Bt (2).
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Thus,

o 2 (o3
B (@) = ~E (2) +

Taking x = 0 in equation (3.3.85), we get the relation,

L (@)

Clett) = —or%) 4+ 20
(0%

3.3.8 Euler Polynomials of the First Order

For order one in Euler numbers we will use E,,(x) instead of E

us recall the following definitions.

Consider,

o tn
- Z_lE”@)’ - Zm on

2e3t it"En

et +1 nzon' 2n

23t =t 1
= ~E, =

21 = 2 (3)

Substituting o = 1, x = 0 in (3.3.82), we have

()

2n

77
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M(x). Let

(3.3.86)

(3.3.87)



Replacing F), (%) with % in the above equation

Putting a = 1 in equation (3.3.78),

C+2)"+C, = 200

= 22".0"
= 0.
Also,
VE.(z) = 2" (3.3.88)
DE,(x) = nE,_1(z) (3.3.89)
E,(1—-2) = (=1)"E,(2). (3.3.90)
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Below, the first seven Euler polynomial are fixed.

Eo(l’) = 1,

Also,

EO E2 E4 EG ES ElO E12

1 -1 5 =61 1385 —50521 2702765

Example 3.3.5 Use equality (3.3.90) to evaluate > 0 (—1)%s™.

s=1

Sz:(—l)ss” _ é(—l)svms)
_ % al(_1)5 [En(s + 1) + En(s)]
_ %[S:En@) — Ey(1) + EBa(3) 4 En(2) + oo + (1) En(a + 1) + (=1)°E,(a)]
_ %(—1)‘“En(oz 1) %En(ll
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3.3.8.1 Euler Numbers of the First Order

Substituting ¢ by 2t in (3.3.87), we have

n

~

E,.

et—l—e_t :Z

n=0

|

S

Putting 2t for ¢

()¢
2|5
L
Il
N
m@h

2%
—~ et +1
- e (2)
et (et 4+ e—1)
B 2
 et4et’
Therefore
secht—itE—le E+t
e 2172 T 4l
taking ¢t instead of ¢, we have
t? t
t=1— —Fy+ —-F —
sec 3 2 + I

Rearranging the expansion

'E+

4 cos %‘”

T = (=D)"@2n+1)
;(271—1-1) 2 — 2

80

(3.3.91)



and equating the coefficient of 2% in the above equation with the coefficient of

2 in series for $msec Zrobtained from (3.3.91), we get

Ep oy _ 1 1 1

(=1)P = 2 (2p)] 32511 T B2prl | Toptd

It is easy to see that Euler numbers increase and alternate in sign.

Using the method given in the subsection “Bernoulli Numbers of the First

Order”, we obtain the determinant below for (—1)*Es, / (2a)!

% 1 0 0 0
i % 1 0 0
G B 1 0
1 1 1 1 1
| 2a)! (2a-2)! (2a—4)! (2a=6)! " ol |

Regarding the numbers C,, and using (3.3.86), we have the odd function

below

= " C, et — 1 1
En_q — _tanh -t
Zn!Q” ol + 1 amis

n=0

Therefore all the numbers Cy, = 0, 1 > 0. Writing 2t for ¢, we get

3 to t7
tanht:t—gCg—aCE—ﬁC%—...,
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again as we did before, substituting ¢ by it

3 1o t7
tant2t+503—505+ﬁ07—... .

Equating the corresponding coefficients in the above series and the series in

the subsection “Bernoulli Numbers of the first order”, we get

22n(22n _ 1)

C1277,— 1= — m,

Bs,.
Since for p > 0, Oy, = 0 we have

E,(z) —a" = <x—|—%C’) —a"

xnfl n—3

n n\ ©
- (1)TC1+(3)?03+,

resulting that E,,(x) — 2™ is an even function when n is odd and is odd when n

1S even.

3.3.8.2 Boole’s Theorem for Polynomials

Putting a = 1 in equation (3.3.82), we have

EAx%#(x+%£%—%)e

Thus
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and if P(z) is a polynomial

1 1 1 1
2P(:U)#P(x+1+§E—§)+P<x+§E—§>. (3.3.92)

Replacing x by x + ,

1 1 1 1

= P(z+y+1+E(y)+Px+E®).

Now applying Taylor’s Theorem

P(x+ E(y)) = P(z) + Ey(y)P'(z) + %Eg(y)P”(x) +....

Hence

Pz +y) = VP(2) + By (y) VP (2) + %Ez(y)vp’/@) o (33.93)

which leads to Boole’s Theorem. Letting x = 0, we get an expansion for P(y)

in terms of Euler’s polynomials.

From the subsection “The Complementary Argument Theorem” |

Eas(1) = Ep(0) = 27%Cy =0
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and
Eosi1(1) = —Epy1(0) = =27 C.
Taking y = 1 in (3.3.93), we obtain
Plz+1)—P(x) = —C,V P (z) ﬁcgvp" (2)— ﬁCE,VPU(x) . (33.94)
Using (3.3.92), we get a solution for

Vu(z) = P(x) (3.3.95)

as below

For example the equation
Vu(r) = 2° + 222 + 1
has the solution below
u(x) = E3(z) + 2Ey(z) + 1.

In order to get a general solution we can add the above solution with an

arbitrary periodic function 7(z) such that m(x + 1) = —n(z).
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Chapter 4

CONCLUSION

In this thesis an overview of Bernoulli and Euler numbers is provided. In
Chapter 2, the Bernoulli and Euler polynomials are described and the relationship
between these classes of polynomials are investigated. Some important identities
involving differentiation, integration, summation are discussed using the basics of
Finite Difference Calculus and Differentiation. The last part of this study is con-
cerned with the Generalized Bernoulli and Euler polynomials. Furthermore, the
properties obtained in the second chapter are also examined for the Generalized
Bernoulli and Euler polynomials in this part of the thesis. The Complementary
Argument Theorem, the generating functions, the Multiplication and the Euler-
Maclauren Theorems are widely used in obtaining the results given in Chapter 2

and Chapter 3.

85



REFERENCES

[1] Cheon, G. S.,; A Note on the Bernoulli and Euler Polynomials, Applied

Mathematics Letters, Vol. 16, 365-368, 2003.

[2] Pan, H., and Sun, Z.W., New identities involving Bernoulli and Euler

polynomials, Journal of Combinatorial Theory, Series A 113 (2006) 156-175.

[3] Chen, K. W., Algorithms for Bernouli numbers and Euler Numbers, Journal

of Integer Sequences, Vol. 4(2001), Article 01.1.6.

[4] Milne-Thomson, L. M., The Calculus of Finite Differences, Macmillan and

Co., Limited St. Martin’s Street, London, 1933.

[5] Srivastava, H. M., and Pinter, A., Remarks on Some Relationships Between
the Bernoulli and Euler Polynomials, Applied Mathematics Letters, Vol 17.

375-380, 2004.

(6] Sun, Z. W., Introduction to Bernoulli and Euler Polynomials, A lecture

given in Taiwan on June 6, 2002.

86



[7] http://en.wikipedia.org/wiki/Bernoulli_number.

[8] http:/en.wikipedia.org/wiki/Eulerian_number.

9] http://en.wikipedia.org/wiki/Bernoulli_polynomials.

[10] http://oeis.org/wiki/Eulerian_polynomials.

[11] http://dlmf.nist.gow/24.

87



	thesis coverpage_gunes (1)
	thesis catma_19.7.13

