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Gazimağusa, North Cyprus



Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yilmaz
Director

I certify that this thesis satisfies the requirements as a thesis for the degree of
Master of Science in Physics.

Prof. Dr. Mustafa Halilsoy
Chair, Department of Physics

We certify that we have read this thesis and that in our opinion, it is fully adequate,
in scope and quality, as a thesis of the degree of Master of Science in Physics.

Prof. Dr. Mustafa Halilsoy
Supervisor

Examining Committee

1. Prof. Dr. Mustafa Halilsoy

2. Prof. Dr. Özay Gürtuǧ
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ABSTRACT

We investigate the existence of Reissner-Nordström (RN) type black holes in f (R)

gravity. Our emphasis is to derive, in the presence of electrostatic source, the nec-

essary conditions which provide such static, spherically symmetric (SSS) black holes

available in f (R) gravity by applying the ”near horizon test” method. In this method

we expand all the unknown functions about the horizon and we obtain zeroth and first

terms of these fuctions. We also study the Extremal RN type black hole in this frame-

work. In this thesis we show that it seems impossible to have a closed form of f (R) for

these types of black holes. Since, finding the total energy is rather difficult we derive

the Misner-Sharp (MS) energy in f (R) gravity by using the properties of black hole

thermodynamics.

Keywords: Reissner-Nordström; f (R) Gravity; Black Hole Thermodynamics
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ÖZ

f (R) yerçekim modelinde Reissner-Nordström (RN) tipi karadelik çözümlerinin varlığı

incelenmektedir. Statik elektrik kaynak durumunda static küresel simetrik çözümlere

”ufuk yanı testi” uygulayarak gereklı varlık şartları elde edilmiştir. Bilinmeyen fonksiy-

onlar ufuk civarında açılımlara tabi tutulup sıfır ve birinci mertebeden denklemler

türetilmiştir. Özel bir hal olarak Ekstrem RN çözümünün varlığı da incelenmiştir. Bu

tip kara deliklerin f(R) fonksiyonları kapalı bir formda elde edilememiştir. Kara delik

termodinamiği kullanılarak Misner-Sharp (MS) türü enerji tanımı yöntemimizde esas

alınmıştır.

Anahtar Sözcükler: Reissner-Nordström, f (R) Çekim Kuramı, Kara Delik Termodi-

namiği
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Chapter 1

INTRODUCTION TO f(R) GRAVITY

The Big-Bang theory of cosmology assumes that the universe started from an initial

singularity. Very early universe, Early universe, Nucleosynthesis, Matter-Radiation-

Equality, Recombination and Structure formation are the main stages that the universe

has experienced. At the present epoch we know that the universe is homogenous and

isotropic for large scales (larger than 100 Mpc). The cosmic microwave background

(CMB) (as observed by the satellites COBE and WMAP), the huge low-redshift galaxy

surveys (such as the 2-degree field galaxy redshift survey (2dfGRS)) and the Sloan

digital sky survey (SDSS) have convinced most cosmologists that homogeneity and

isotropy are, in fact, reasonable assumptions for the universe. On the other hand, the

universe is passing through an accelerating phase of expansion which is discovered

by high redshift surveys of type Ia Supernovae, the position of acoustic peak from the

CMB observations, the size of baryonic acoustic peak, etc[1].

Based on recent Planck’s space telescope, modern cosmology claims that total energy

density of the universe consist of 4.9% of baryonic mater,26.8% of cold dark mater,

and 68.3% of dark energy. This distribution of energy density led the framework for

describing these observational data to be proposed. ΛCDM model is one of the in-

valuable possibilities among other concordance models in which energy budget at the
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present epoch is dominated by cold dark matter (CDM) and dark energy in the form of

a cosmological constant Λ[1].

Structure formation is one of the most challenging stages in cosmology. Large scale

structure (LSS) formation which is due to the tiny perturbations in the very early uni-

verse has started when the fractal nature of the universe stoped at a certain scale. In

the standard ΛCDM cosmology the very small deviation from uniformity, density fluc-

tuations in the early universe (that grow rapidly due to the inflation) are the cosmic

seeds of structure formation. It is determined that baryonic gravitational effect could

not create LSS that can be seen in the universe today. These collapsing overdensities,

which are primarily composed of dark matter halos, provide the initial potential wells

for baryons to condense and begin the process of galaxy formation[2].

There are numerous competing theories and speculations regarding what dark matter

might be made of. From astrophysical measurements we can deduce some properties

of Dark Matter like non-baryonic, stable against decay, weak interaction, etc. It seems

that one of the simplest ways by which the mystery of the dark matter can be solved is

to assume that an unknown exotic particle exists[2].

For the dark energy models one can assume that (i) the universe is filled with an exotic

fluid with the property of having a negative pressure that dominates in the late time and

results in an accelerating expansion, (ii) modification of the matter sector is described

by quantum fields instead of perfect fluid[2].
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For solving these problems there exists another possible scenario by considering mod-

ification of Einstein’s equations of gravity (i.e. modified gravity) which is mentionned

for the first time by Hermann Weyl in 1919[3].

Modified gravity, in which the origin of inflation is considered purely geometrical,

may explain several fundamental cosmological problems. For instance, expansion of

the universe may be described by modified gravity especially by f(R) gravity. Indeed,

it also explains naturally the unification of earlier and later cosmological epochs as

the manifestation of a different role of gravitational terms relevant at the small and

large curvature as it happens in the model with negative and positive powers of cur-

vature. Moreover, expansion of the universe can solve the coincidence problem. By

considerating string/M-theory, same type of modified gravity can be anticipated[4].

On the other hand, modified gravity may describe dark matter completely. It may be

helpful in high energy physics. As an example, it can be useful in solving the hierarchy

or gravity-GUTs unification problems. Finally, modified gravity may pass the local

tests and cosmological bounds[4].

Thus, these reasons show how this field is rich, invaluable and fruitful in application to

many aspects of gravity and cosmology.

In this thesis, we wish to look at f (R) gravity from a different angle which was in-

troduced by Bergliaffa and Nunes[5].Our approach is to extract information for our

unknown quantities from the geometrical behavior near the horizon in order to declare

horizon as a physical reality. This approach which gives us the existence conditions
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for the relevant quantities maybe called as a ”near horizon test”[6].

In this test, for specific static and spherically symmetric (SSS) black holes we consider

that there is an arbitrary f (R) gravity model. Then, we use the Taylor expansion

F(r) = F(r0)+F ′(r0)(r− r0)+O
(
(r− r0)

2
)
, (1.1)

in series of the distance to the horizon for all unknown functions we have, to take

an account matematically the strong gravity existing near the event horizon. Conse-

quently, when we substitute back all series into the equations of motion we shall obtain

a necessary condition that the f (R) must satisfy for the existence of the SSS black hole

solution.

Indeed, ”near horizon test” makes the strong restriction that we cant propose arbitrar-

ily any polynomial forms of f (R) as the representative black holes.

Beside these, different aspects of additional external sources have been previously dis-

cussed (some examples of f (R) black hole with charge are given in[7, 8, 9, 10, 11,

12, 13]), which makes the principal aim of the present thesis. We consider an exter-

nal static electric field as source and adopt the Reissner-Nordström (RN)-type black

hole within f (R) gravity. then we derive an infinite series representation for the near-

horizon behavior of our metric functions. The exact determination of the constant

coefficients in the series is theoretically possible, at least in the leading orders. The

addition of further external sources beside electromagnetism will naturally make the

problem more complicated. An equally simple case is the extremal RN black hole
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which is also considered in our study.

Based on our work[14] this thesis is organized as follows. In Chapter 2 we review

the concept of action in General Relativity and f (R) gravity. In Chapter 3 we investi-

gate the necessary conditions for the existence of a RN-type/Extremal RN-type black

holes in f (R) gravity. Thermodynamics properties and in particular the Misner-Sharp

(MS) Energy for such black holes are presented in Chapter 4. The thesis ends with

Conclusion which appears in Chapter 5.
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Chapter 2

THEORETICAL FRAMEWORK

In this Chapter we shall review the concept of action Lagrangian in the general rela-

tivity and f (R) gravity. However, since we are familiar with this concept in classical

physics we will discuss it for future use.

2.1 Introduction

In the classical mechanics the action is defined as

S =
∫

L(q, q̇)dt, (2.1)

and Hamilton’s principle claims that the trajectory of a body, described by the La-

grangian L(q, q̇) should satisfy

δS = 0, (2.2)

or

∂L
∂q
− d

dt
(
∂L
∂q̇

) = 0. (2.3)
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The Lagrangian’s definition is not very different in GR than in classical mechanics.

The main difference between classical and relativistic Lagrangians lies in the fact that

in GR, we have a curved space-time, and so, we must associate a Lagrangian to the

vacuum space.

We know that the curved spacetime is defined by metric tensor gµν, therefore the La-

grangian should be related to gµν and its derivatives[15]. Also the Lagrangian must

depend on the Riemman and Ricci tensors which provide the information about the

curved spacetime. So these constraints lead us to use Ricci scalar in the Lagrangian.

Using Ricci scalar in the Lagrangian raises two problems. First, Ricci scalar asso-

ciates with the second order drivatives of the metric tensor. So we cannot write the

Lagrangian in the form of 1.3 . Second, is that integrated function must be invariant.

Because of this we add another term to make it invariant. So, one can write the form

of the Lagrangian as

L =
√
−gR. (2.4)

Finally, we derive the simplest form of Lagrangian which contains all needed proper-

ties. Now we are able to write the form of action in four dimensional vacuum spacetime

as

S =
1

2κ

∫
Ld4x, (2.5)

where κ= 8πG. So, by using 1.2 we can write Einstein equations with variation respect

to gµν in vacuum. Also, by adding matter term Sm to the action we can write the
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Einstein equation in presence of matter which is known as the Einstein-Hilbert action.

2.2 f (R) Gravity Actions

In the f (R) gravity where the f (R) is the function of Ricci scalar the Lagrangian is

written as

L =
√
−g f (R). (2.6)

The reason that we use the f (R) gravity as a function of Ricci scalar is only because

of the simplicity. Also, we know that f (R) action includes some main properties of

higher order gravities. In the rest of this section we will review the different types of

f (R) gravities[16].

2.2.1 Metric f (R) Gravity

The action in the vacuum for this type of f (R) gravity is

S =
1

2κ

∫ √
−g f (R)d4x+Sm, (2.7)

where Sm stands for the physical source. By taking variation with respect to gµν we

can derive the equations of motion

FRν
µ−

1
2

f δ
ν
µ−∇µ∇

νF +δ
ν
µ�F = κT ν

µ , (2.8)

where T ν
µ is the physical energy-momentum tensor[16].
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2.2.2 Palatini f (R) Gravity

Palatini method was proposed as the candidate for inflation shortly after metric f (R)

theories were proposed. In the Palatini method not only gµν but also Christoffel sym-

bols Γ
ρ

µν are independent variables. As a result, we have two independent Ricci scalars.

Form of action in this method is

S =
1

2κ

∫ √
−g f (R̃)d4x+Sm, (2.9)

after some manipulation one can find the field equations as

f ′(R̃)R̃αβ−
f (R̃)

2
gαβ = κTαβ, (2.10)

∇̃γ(
√
−g f ′(R̃)gαβ)− ∇̃δ(

√
−g f ′(R̃)gδ(β)δ

β)
γ , (2.11)

where the matter part of action does not depend on the Christoffel symbols Γ
ρ

µν[16].

2.2.3 Metric-Affine f (R) Gravity

The only diffrence between this approach and Palatini approach is that the matter part

of action depends on the Christoffel symbol. This leads to a torsion associated with

matter, and to a modern revival of torsion theories. These were originally introduced

within a non-cosmological context, with the spin of elementary particles coupling to

the torsion. Metric-affine f (R) gravity still needs to construct many concepts and

definitions specially for cosmological application[17].
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Chapter 3

NECESSARY CONDITIONS FOR BLACK HOLES IN f(R)

GRAVITY

In this Chapter we shall derive coditions for Reissner-Nordström (RN)-type and Ex-

tremal RN-type black hole in f(R) gravity by using ”near horizon test” where the action

is given by

S =
∫ √
−g(

f (R)
2κ
− F

4π
)d4x, (3.1)

in which F = 1
4FµνFµν and κ = 8πG .

3.1 RN-type Black Hole

We choose RN-type black hole metric as

ds2 =−e−2Φ

(
1− 2M

r
+

Q2

r2

)
dt2 +

dr2(
1− 2M

r + Q2

r2

) + r2 (dθ
2 + sin2

θdϕ
2) , (3.2)

in which Q and M are integration constants that represent the charge and the mass of

the black hole, respectively. The real unknown fuction Φ = Φ(r) is well behaved ev-

erywhere and dies off at large r determines the gravitational redshift[18]. The Maxwell

10



electric two-form field F provides the matter source which is given by

F = E(r)dt ∧dr, (3.3)

and it’s dual form

∗F =−E(r)eΦr2sinθdθ∧dϕ, (3.4)

where E(r) is radial electric field. Therefore from d∗F = 0 we can derive

E(r) =
q
r2 e−Φ, (3.5)

where the integration constant q is equal to the charge of black hole Q. From field

equation 2.8 we obtain

�F =�
d f
dR

=
1√
−g

∂r
(√
−ggrr

∂rF
)
, (3.6)

∇
t
∇tF = gαt [F,t,α−Γ

m
tαF,m] , (3.7)

because the line element 3.2 is static spherically symmetric metric so α = t. The Ricci

sacalar is the function of r and F = F(r) = d f
dR therefore F,t,t = d2F

dt2 = 0 and the only

non zero Γm
tt term is Γr

tt so that

∇
t
∇tF =

1
2

gttgrrgtt,rF,r. (3.8)
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Similarly for r, θ and ϕ components we have

∇
r
∇rF = grrF,r,r−grr

Γ
r
rrF,r = grrF,r,r−

1
2
(grr)2grr,rF,r, (3.9)

∇
ϕ
∇ϕF = ∇

θ
∇θF =

1
2

gθθgrrgθθ,rF,r. (3.10)

The stress-energy tensor in 2.8 is given by

T ν
µ =

1
4π

(
F δ

ν
µ−FµλFνλ

)
, (3.11)

whereas from 2.3 we know that only Frt 6= 0 therefore

F =
1
4

FµνFµν =
1
4
(FtrF tr +FrtFrt) =

1
4
(2gttgrr(Ftr)

2) =
Q2

2r4 . (3.12)

Consequently the stress-enegy tensor components are

T t
t =

1
4π

(
F δ

t
t−FtrF tr)= 1

4π

(
Q2

2r4 −
Q2

r4

)
=− 1

8π

Q2

r4 , (3.13)

T r
r =

1
4π

(
F δ

r
r−FtrF tr)= 1

4π

(
Q2

2r4 −
Q2

r4

)
=− 1

8π

Q2

r4 , (3.14)

T θ

θ
=

1
4π

(
F δ

θ

θ
−FθλFθλ

)
=

1
4π

(
Q2

2r4 −0
)
=

1
8π

Q2

r4 , (3.15)

T ϕ

ϕ =
1

4π

(
F δ

ϕ

ϕ−FϕλFϕλ

)
=

1
4π

(
Q2

2r4 −0
)
=

1
8π

Q2

r4 , (3.16)
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or

T ν
µ =

1
8π

Q2

r4 diag[−1,−1,1,1]. (3.17)

It is clear that T = T ν
µ = 0 so the trace of equation of motions is

FR−2 f +3�F = 0, (3.18)

and by using the trace equation 2.8 we can siplify the field equations and rewrite them

as

FRν
µ−

1
4

δ
ν
µ(FR−�F)−∇µ∇

νF = κT ν
µ . (3.19)

From metric 3.2 one can find the horizon of the black hole from gtt = 0 or

r± = M±
√

M2−Q2, (3.20)

where r+ is called outer horizon and r− is inner horizon. We use the r+ = r0 as an

event horizon in the following and we replace the mass of black hole by M =
r2

0+Q2

2r0

equation.

Based on the near horizon test introduced in [5, 6] we expand all the unknown func-

tions about the horizon. This would lead to the expansions

R(r) = R0 +R′0 (r− r0)+
1
2

R′′0 (r− r0)
2 +O

(
(r− r0)

3
)
, (3.21)
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Φ(r) = Φ0 +Φ
′
0 (r− r0)+

1
2

Φ
′′
0 (r− r0)

2 +O
(
(r− r0)

3
)
, (3.22)

F = F0 +F ′0 (r− r0)+
1
2

F ′′0 (r− r0)
2 +O

(
(r− r0)

3
)
, (3.23)

where sub zero shows the value of quantity at the horizon and the prime denotes deriva-

tive with respect to the coordinate r. Then, we put equations 3.21, 3.22 and 3.23 into

the equation 3.19 and after some calculations for the zeroth order we obtain the three

equations

f0r4
0−
(
E0R′0 +3Φ

′
0F0
)

r3
0 +Q2 (E0R′0 +3Φ

′
0F0
)

r0 +2Q2 (F0−1) = 0, (3.24)

f0r4
0−2r3

0E0R′0 +2Q2r0E0R′0−2Q2 (F0−1) = 0, (3.25)

R0 =
3Φ′0

(
r2

0−Q2)
r3

0
. (3.26)

From the first order equations we derive

F0R′0r4
0 +
[(

2Φ
′2
0 −5Φ

′′
0
)

F0−3Φ
′
0E0R′0−3H0R′20 +4 f0−3E0R′′0

]
r3

0

−2
(
3E0R′0 +5Φ

′
0F0
)
+
[(
−2Φ

′2
0 +5Φ

′′
0
)

F0 +3Φ
′
0E0R′0 +3H0R′20

+3E0R′′0Q2r0 +6Q2E0R′0 +4Φ
′
0F0Q2 = 0, (3.27)
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F0R′0r4
0 +4

(
f0−E0R′′0−H0R′20 +

1
2

Φ
′
0E0R′0

)
r3

0−2
(
Φ
′
0F0 +3E0R′0

)
r2

0

+
(
4E0R′′0−2Φ

′
0E0R′0 +4H0R′20

)
Q2r0 +2Φ

′
0F0Q2 = 0, (3.28)

R′0 =

(
5Φ′′0−2Φ′20

)
r3

0−2Φ′0r2
0 +
(
2Q2Φ′20 −5Q2Φ′′0

)
r0 +8Q2Φ′0

r4
0

. (3.29)

In these equations E = d2 f
dR2 = dF

dR and H = d3 f
dR3 = dE

dR . From zeroth, first and higher

order equations we can derive the neccesary coditions for f , R and also F when we

keep Φ as a known function as shown below

Φ = β1ε+β2ε
2 +O

(
ε

3) , (3.30)

f = f0−
1
6
( f0r4

0−6Q2)×

[
2r0
(
r2

0−Q2)β2
1 +2

(
r2

0−4Q2)β1−5r0
(
r2

0−Q2)β2
]

r4
0
(
r0
(
r2

0−Q2
)

β1−Q2
) ε+O

(
ε

2) , (3.31)

F =
f0r4

0−6Q2

6
(
β1r0

(
r2

0−Q2
)
−Q2

) + 3β1
(
r2

0−Q2)(r4
0 f0 +2Q2)−4 f0r3

0Q2

6
(
r2

0−Q2
)(

β1r0
(
r2

0−Q2
)
−Q2

) ε+O
(
ε

2) ,
(3.32)

R =
3β1
(
r2

0−Q2)
r3

0
−

2r0
(
r2

0−Q2)β2
1 +2

(
r2

0−4Q2)β1−5r0
(
r2

0−Q2)β2

r4
0

ε+O
(
ε

2) ,
(3.33)
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here ε = r− r0, β1, β2 are known constants and

f0 =−
6Q2

r3
0
×

8r0
(
r2

0−Q2)2
β2

1−2
(
r2

0−Q2)(Q2 +5r2
0
)

β1−5r0
(
r2

0−Q2)2
β2

16r2
0
(
r2

0−Q2
)2

β2
1 +2r0

(
r2

0−Q2
)(

5r2
0−23Q2

)
β1 +5r2

0
(
r2

0−Q2
)2

β2 +24Q4
.

(3.34)

The only parameter which remains unknown is Φ0, but by redefinition of time we can

absorb it to the time and consider it as Φ0 = 0.

3.2 Special Examples

In this section we shall study some special f (R) gravities in RN-type black holes and

derive the necessary conditions for extremal RN-type black holes.

3.2.1 Examples of f (R) gravity Models

We know that for the case of f (R) = R our results should satisfy in general relativity.

In this case we have f0 = R0 and F = 1 so

(
β1
(
r2

0−Q2))r0−2Q2

2
(
β1r0

(
r2

0−Q2
)
−Q2

) = 1, (3.35)

it means β1 = 0. By using β1 = 0 we can show that

f0 = R0→−
6Q2

r3
0

−5r0
(
r2

0−Q2)2
β2

5r2
0
(
r2

0−Q2
)2

β2 +24Q4
= 0, (3.36)
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which leads us to conclude β2 = 0. So, we proof that our general conditions with

β1 = 0 = β2 are satisfied in this model.

The other simple case that one can study in this method is f (R) = R2 where by appling

the necessary conditions we get

R2
0 =−

6Q2

r3
0
×

8r0
(
r2

0−Q2)2
β2

1−2
(
r2

0−Q2)(Q2 +5r2
0
)

β1−5r0
(
r2

0−Q2)2
β2

16r2
0
(
r2

0−Q2
)2

β2
1 +2r0

(
r2

0−Q2
)(

5r2
0−23Q2

)
β1 +5r2

0
(
r2

0−Q2
)2

β2 +24Q4
,

(3.37)

and

2R0 =
R2

0r4
0−6Q2

6
(
β1r0

(
r2

0−Q2
)
−Q2

) . (3.38)

From 3.37 and 3.38 we can derive

β1 =
1
6

4Q+2
√

4Q2−2r4
0

r0
(
r2

0−Q2
) , (3.39)

and

β2 =
−4Q[Q2(20Q2−11r4

0)+15r2
0(r

4
0−2Q2)]

√
4Q2−2r4

0

45r2
0
(
r2

0−Q2
)2
(

2
(
r4

0−Q2
)
−Q

√
4Q2−2r4

0

) +

−4Q2[20Q2(2Q2−3r2
0)+ r4

0(r
2
0(2r0 +45)−32Q2)]

45r2
0
(
r2

0−Q2
)2
(

2
(
r4

0−Q2
)
−Q

√
4Q2−2r4

0

) . (3.40)
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To avoid complex results 4Q2− 2r4
0 ≥ 0 must be satisfied. One of the special case is

that

r4
0 = 2Q2. (3.41)

We rewrite 3.20 as

r2
0−2Mr0 +Q2 = 0, (3.42)

having 3.41 implies

r2
0−2Mr0 +

r4
0
2
= 0, (3.43)

or

M = r0 +
1
2

r3
0. (3.44)

As a result, for this case ( f (R) = R2 and r4
0 = 2Q2) we obtain the mass of RN-type

black hole. Also, for this f (R) model we have

β1 =
2
√

2
3

1
r0(2− r2

0)
, (3.45)

β2 =
8
45

4r2
0−15(

r2
0−2

)2 , (3.46)

and f0 = R0 = 1 while F0 = 2.
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3.2.2 Extremal RN-type Black Hole

Equation 3.20 shows that mass of black hole should be M ≥Q to have physical mean-

ing. One of the intresting cases is called Extremal RN-type when M = |Q|. In this case

we have only one horizon and r0 = r− = r+ = |Q|. By choosing Q = b0 ≥ 0 the line

element reduces to

ds2 =−e−2Φ

(
1− b0

r

)2

dt2 +
dr2(

1− b0
r

)2 + r2(dθ
2 + sin2

θdϕ
2), (3.47)

in which r0 = b0. As we will discuss later this black hole doesn’t radiate and the

TBH = 0 but it has a specific entropy. Thus, we can define the entropy of the extremal

black hole as a zero temperature entropy.

By appling the ”near horizon test” for this metric we derived the following conditions

R = 6
β

r2
0

ε− 6β

r2
0

(
2β+

5
r0

)
ε

2 +
β

r2
0

(
93β2

4
+

71β

r0
+

90
r2

0

)
ε

3 +O
(
ε

4) , (3.48)

f = 6
β

r2
0

ε− 3β

r2
0

(
3β+

10
r0

)
ε

2 +
β

r2
0

(
57β2

4
+

49β

r0
+

90
r2

0

)
ε

3 +O
(
ε

4) , (3.49)

F =

(
d f
dR

)
= 1+βε− β

2

(
β+

2
r0

)
ε

2 +β

(
3β2

8
+

3β

4r0
+

1
r2

0

)
ε

3 +O
(
ε

4) , (3.50)

and

Φ = Φ0 +βε− β

8

(
5β+

8
r0

)
ε

2 +β

(
73β2

120
+

73β

60r0
+

1
r2

0

)
ε

3 +O
(
ε

4) , (3.51)
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in which β 6= 0 and it’s known as an arbitrary constant. In 3.51 as we did before we

can absorb Φ0 into time. It is clear that equations 3.48, 3.49 and 3.50 imply R and f

are zero at the horizon but
(

d f
dR

)
= 1. This leads us to write one of the possible f (R)

gravity model in the form of

f (R) = R+a2R2 +a3R3 +a4R4 + ..., (3.52)

where the necessary condiditions can determin the constant coefficients ai. As an

example, up to the third order one can get

f (R)∼ R+
r2

0
12

R2 + r3
0

(
5

72
r0 +

19
108β

)
R3, (3.53)

where all necessary conditions are satisfied up to the second order for this form of

f (R). Another f (R) model that can be deduced from 3.52 is f (R) ∼ Rν. For this

model, necessary conditions are satisfied when we chose β = 0. It implies ν = 1 or GR.

Also, f (R) = R
1−R is another f (R) model which at least satisfies the above conditions

up to the first order.
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Chapter 4

THERMODYNAMICS OF ANALOG BLACK HOLE

4.1 Introduction to Black Hole Thermodynamics

Thermodynamics of black holes plays a key role to learn about quantum gravity and

statistical mechanics. Also we can study black hole thermodynamics in modified grav-

ity. If studying the thermodynamics of the black holes helps us to learn quantum

gravity better, it will be more logical to use it in extended gravity. Gravity quantum

corrections, renormalization, the low-energy limit and string theories can bring for-

ward extra gravitational scalar fields which is coupled to curvature non-minimally and

higher derivative corrections to general relativity[19].

Considering black hole as a thermodynamics system was mentioned for the first time

by the J. M. Greif in 1969[20]. Then, Bardeen, Bekenstein, Carter, Penrose and Hawk-

ing tried to explain and formulate it. Bekenstein suggested that the area of the black

hole can be considered as an entropy of the black hole. After that, first law af black

hole thermodynamics was proved by Bardeen, Carter and Hawking. Finally, Hawking

discovered black hole temperature TH =
∂

∂r gtt
4π

∣∣∣∣
r=r0

by using quantum field theory in

1974[21]. In 1995 Jacobson used the local Rindler horizon and derived the entropy of

the black hole as SBH = A
4G where G is Newton’s constant. He showed that the field

equations in GR are related to a macroscopic effective equation of state[22].

21



In general relativity the first law of thermodynamics can be written as

THδS = δM−ΩHδJ−ϕδQ, (4.1)

where in the left hand side S and TH are the entropy and Hawking temperature and M,

ΩH , J , ϕ and Q, in the right hand side are defined as mass, angular velocity , angular

momentum, electric potential and charge of the black hole, respectively. This law is

akin to the M, J and Q that are measured at infinity with the S, T , A, ΩH and ϕ which

are local quantities and defined on the horizon.

In f (R) gravity, where equation of motion are derived by using the thermodynam-

ics of local Rindler horizon, we have to redefine the entropy expression to satisfy

that property correctly. There are some attempts to define black hole entropy in ex-

tended gravity like Bekenstein-Hawking entropy in scalar-tensor and extended gravity,

Wald’s Noether charge, field redefinition techniques and the Euclidean path integral

approaches[19].

In 1996 Kang[23] realized that the second law of thermodynamics (area law) is violated

in extended gravity when he studied black hole entropy in Brans-Dicke gravity. He

introduced another definition for the entropy

SBH =
1
4

∫
Σ

d2x
√

g(2)φ, (4.2)

here φ is Brans-Dicke scalar and g(2) is the determinant of the restriction g(2)µν ≡ gµν |Σ

of the metric gµν to the horizon surface Σ.
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One can write this equation by replacing G with the effective gravitational coupling

Ge f f = φ−1 so that

SBH =
A

4Ge f f
. (4.3)

We replaced this quantity because we want to write the field equation as an effective

Einstein equation and consider scalar field or geometry in f (R) gravity terms as an

effective form of matter. One can easily show that Einstein frame goes to the Brans-

Dicke theory by conformal rescaling of the metric[19].

In the following sections we shall derive the Hawking temperature, entropy and heat

capacity of RN-type/extremal RN-type black holes then Misner-Sharp (MS) energy

will be calculated from the first law of thermodynamics.

4.2 Hawking Temperature, Entropy and Heat Capacity of Analog Black Holes

The Hawking temperature expression remains unchanged in modified gravity

TH =
∂

∂r gtt

4π

∣∣∣∣∣
r=r0

= T (RN)
H =

1
4πr0

(
1− Q2

r2
0

)
, (4.4)

in which T (RN)
H implies RN Hawking temperature. By using the equivalence between

Brans-Dicke theory and metric f (R) gravity for 4.3 we derive the

SBH =
A
4G

F
∣∣∣∣
r=r0

= πr2
0F0, (4.5)
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as a form of entropy in which A |r=r0
= 4πr2

0 is the surface area of the black hole at the

horizon and F |r=r0
= F0. So we derived the exact values for TH and S in order to find

the heat capacity of the black hole

Cq = T
(

∂S
∂T

)
Q
=C(RN)

q I , (4.6)

in which

I = 12Q2 (r2
0−Q2)

Π, (4.7)

where

Π =
5r3

0
((

r4
0−Q4)β1−4Q2r0

)
β2 +16r3

0β3
1
(
r4

0−Q4)[
r2

0
(
r2

0−Q2
)2 (5β2 +16β2

1
)
+2r0

(
r2

0−Q2
)(

5r2
0−23Q2

)
β1 +24Q4

]2+

4Q2r2
0β2

1
(
7r2

0−23Q2)+ 2Q2(24Q4−r0β1(15r4
0+32r2

0Q2−59Q4))
(r2

0−Q2)[
r2

0
(
r2

0−Q2
)2 (5β2 +16β2

1
)
+2r0

(
r2

0−Q2
)(

5r2
0−23Q2

)
β1 +24Q4

]2 . (4.8)

From 4.6 one can easily check that in the GR limit Cq goes to C(RN)
q (i.e., βi→ 0) or I

becomes unit as expected.

As we discussed before for extremal case the Hawking temperature is

TH =
∂

∂r gtt

4π

∣∣∣∣∣
r=r0

=
2

4π
e−2φ(1− b0

r
)
b0

r2

∣∣∣∣
r=b0

= 0, (4.9)

however S = A
4GF

∣∣∣
r=r0
6= 0 and Cq = 0.
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4.3 Misner-Sharp Energy

From general relativity we know that gravitational field is totally intertwined with the

energy. Although defining the energy in this case is one of the most challenging parts,

Arnowitt-Deser-Misner (ADM) energy and Bondi-Sachs (BS) energy are two well-

known expressions for the energy in GR at spatial and null infinity, respectively, which

are described in an asymptotic flat spacetime for the isolated system[24].

Eenergy-momentum pseudotensor of the gravitational field which is related to metrics

and its first derivative, in a locally flat coordinate will die in any point of the space-

time therefore its local energy density cannot help us to define the total energy in

other cases. Consequently, it leads us to define the quasilocal energy. There are some

well-known definition for the quasilocal energy like Brown-York energy, Misner-Sharp

energy, Hawking-Hayward energy and Chen-Nester energy[24].

Among all, we can only define Misner-Sharp energy in the spherically symmetric

spacetime and also it has a nice connection between the first law of thermodynam-

ics and Einstein equation in the Friedmann-Robertson-Walker (FRW) cosmological

and black hole metrics[24].

In this section in order to derive the Misner-Sharp energy in non-asymptotic flat space-

time, we will use the equation of motion with the previous section results and first law

of thermodynamics as shown below

Gν
µ = κ

[
1
F

T ν
µ +

1
κ

Ť ν
µ

]
. (4.10)
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Here Gν
µ is the Einstein tensor,

Ť ν
µ =

1
fR

[
∇

ν
∇µF−

(
�F− 1

2
f +

1
2

RF
)

δ
ν
µ

]
, (4.11)

and in this case we consider general form of the metric

ds2 =−e−2ΦUd2t +
1
U

d2r+ r2dΩ
2. (4.12)

Since we want to derive the Misner-Sharp energy from equations of motion, from the

tt component of field equation we have

G0
0 = κ

[
1
F

T 0
0 +

1
κ

1
F

[
∇

0
∇0F−

(
�F− 1

2
f +

1
2

RF
)]]

, (4.13)

where

G0
0 =

U ′r−1+U
r2 , (4.14)

∇
0
∇0F =

1
2
(
−2Φ

′U +U ′
)

F ′, (4.15)

and

�F =
2
3

f − 1
3

RF. (4.16)

Because MS energy is introduced at the horizon we have to write the equations of
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motion at the horizon (where U (r0) = 0) which yields

G0
0 =

U ′0r0−1
r2

0
,∇0

∇0F =
1
2

U ′0F ′0, (4.17)

Thus, field equation 4.13 can be written as

F0U ′0
r0
− F0

r2
0
= κT 0

0 +

(
1
2

U ′0F ′0−
1
6
( f0 +R0F0)

)
. (4.18)

Now, we have to derive the first law of thermodynamics from the field equation there-

fore we multiply both sides by the spherical volume element at the horizon dV0 =Adr0

to get

F0U ′0
r0

Adr0 =

(
F0

r2
0
+

1
2

U ′0F ′0−
1
6
( f0 +R0F0)

)
Adr0 +κT 0

0 dV0. (4.19)

Using A
r0
= 1

2
d

dr0
A and some calculation we obtain

U ′0
4π

d
dr0

(
2πA

κ
F0

)
dr0 =

1
κ

(
F0

r2
0
+U ′0F ′0−

1
6
( f0 +R0F0)

)
Adr0 +T 0

0 dV0. (4.20)

By comparing this equation with the first law of thermodynamics T ds = dE +PdV

where TH =
U ′0
4π

, SBH = 2πA
κ

F0 and P = T r
r = T 0

0 we can write the Misner-Sharp energy

as the fallowing expression

E =
1
κ

∫ (F0

r2
0
+U ′0F ′0−

1
6
( f0 +R0F0)

)
Adr0, (4.21)

in which the integration constant is set to zero[25] (also for a BH-like solutions see

[26]).
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Chapter 5

CONCLUSION

Extending R-theory to f (R) theory of gravity is a big change and entails much novelties

in general relativity. All these, however, are not free from mathematical complexity.

Existence of exact solutions in f (R) gravity has already been extensively studied in

the literature. For this reason we concentrate on a particular type of solution, namely

the Rissner-Nordström (RN) type solution. This is the static, spherically symmet-

ric (SSS) black hole solution that carries a static electric charge. In Einstein’s the-

ory RN is the unique solution of its kind, but in the extended theories the uniqueness

property is no more a valid argument. Owing to it’s utmost importance, we consider

RN type black hole solutions thoroughly in f (R) gravity. Specifically, we apply the

”near horizon test” to this kind of black hole solutions and derive the underlying equa-

tions/conditions. For this purpose, we expand analytically all the involved functions in

the vicinity of the event horizon. Herein, by functions it is implied all metric functions

plus f (R) and its higher derivatives. Analyticity conditions/regularity, which amounts

to admitting such expressions in the afore mentioned region, their continuity etc., all

determine the necessary conditions for the existence of a RN-type black hole solutions.

The equations obtained in this manner are labelled as zeroth, first, second and higher

order constraint conditions. Given the intrinsic non-linearity of the theory the obtained

equations are far from being solved analytically in higher orders. At least for the zeroth
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and first order equations we were able to handle them consistently and construct in this

manner the necessary f (R) function. This has been achieved as an infinite expansion

in (r−r0), which is a small quantity around the horizon located at r = r0. Next, expan-

sion of scalar curvature R in terms of (r− r0) helps us to establish a relation between

f (R) and R, albeit in an infinite series form. Our analysis shows that a closed form of

f (R), unless the obtained infinite series are summable, is not possible. This is not an

unexpected result as a matter of fact. Depending on the given physical source the first

few dominating terms serve our purpose well. This is the prevailing strategy that has

been adopted so far. Determining f (R) alone may not suffice : additional conditions

such as d f
dR > 0 and d2 f

dR2 > 0 must also be satisfied.

These are simply the conditions to avoid non-physical ghosts and instabilities[27, 28].

Again to the leading orders of expansions these can be tested. The RN-type black hole

solutions that have been obtained have been studied thermodynamically. Definition of

energy has been adapted from the Misner-Sharp (MS)[23]formalism (which is suitable

for our formalism) and the first law of thermodynamics has been verified accordingly.

The same MS definition has been used consistently before[29].

In conclusion, we have based our arguments entirely on the necessary conditions ob-

tained from the ”near horizon test” of RN-type and extremal RN-type black holes.

It would be much desirable to obtain sufficient conditions as well, unfortunately this

aspect has not been discussed in this thesis.
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We admit also that since our necessary conditions for the existence of RN-type black

holes are entirely local they don’t involve the requirements for asymptotic flatness.

Stability of such black holes must also be considered separately when one considers

exact solutions.
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