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ABSTRACT 

The field of 3D computer graphics deals with ways of generating 2D images from 

3D scene representations. This process is called rendering and its performance is one 

of the central problems in the field. Understanding performance implications of 3D 

graphics algorithms and testing them in different scenarios enables professionals in 

game, film, scientific and military industries to make informed decisions on which 

algorithms are best suited for their problem. In this thesis a close look was taken at 

performance of two most popular rendering approaches in real-time 3D graphics – 

deferred shading and forward shading. We investigated four different scenarios: 

many small lights, many big lights, many big lights with shadows and a mixed case of 

many small lights along with several big shadow-casting lights. Deferred shading 

showed better performance than forward shading in all tests, with the biggest gain 

obtained in case of having high numbers of small lights. When shadow-casting lights 

were present, the difference in performance, although significant, was not as hugely 

different as in case of small lights alone. 

 

Keywords: 3D Computer Graphics, Rendering, Deferred Shading, Forward 

Shading 
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ÖZ 

3B bilgisayar grafik çalışmaları, 3B görüntülerden 2B imgeler üretme yöntemleri 

üzerindedir. Bu işlem imge oluşturma olarak bilinmekte ve başarımı bu alandaki esas 

problemlerden birisi olarak kabul edilmektedir. 3B grafik algoritmalarının 

başarımlarının etkilerini anlamak ve farklı senaryolar için onları test etmek, oyun, 

film, bilimsel ve askeri endüstrilerde hangi algoritmanın en uygun olacağı konusunda 

daha bilinçli karar almaya olanak sağlamaktadır. Bu tezde gerçek zamanlı 3B grafik 

alanında iki popüler imge oluşturma yöntemi - erteleme tabanlı gölgelendirme ve 

ileri gölgelendirme yakından incelenmiştir. Dört farklı senaryo üzerinde çalışılmıştır: 

çoklu küçük ışık, çoklu büyük ışık, gölgeli çoklu büyük ışık ve çoklu küçük ışık ile 

birkaç gölge oluşturan ışık karışımı. Erteleme tabanlı gölgelendirme, tüm testlerde 

ileri gölgelendirme yöntemine göre daha iyi başarım göstermiş, en yüksek kazanımı 

da çoklu küçük ışık durumunda sağlamıştır. Gölge oluşturan ışıkların olduğu 

durumda, belirgin bir başarım farkı olmakla birlikte yalnızca küçük ışıkların 

kullanıldığı durumdaki gibi büyük olmamıştır. 

 

Anahtar Kelimeler: 3B Bilgisayar Grafiği, Imge Oluşturma, Erteleme Tabanlı 

Gölgelendirme, Ileri Gölgelendirme 
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Chapter 1 

1 INTRODUCTION 

This work is concerned with 3D graphics and focuses specifically on performance 

characteristics of forward and deferred shading, which are the two most popular 

rendering approaches in real-time graphics applications.  

The term rendering means producing a 2D image of a 3D scene. A 3D scene 

consists of light sources and objects. Shading is the process of calculating an object’s 

illumination due to light sources. Transforming geometric primitives (typically 

triangles) of objects is part of the rendering process and is done before shading.  

Forward shading is the straightforward (and thus default) way of rendering, in 

which shading of an object is done immediately after its geometric primitives are 

transformed. Performance of this approach does not scale well as number of light 

sources in a 3D scene increases. 

Deferred shading (Saito and Takahashi, 1990) defers the shading operation, 

separating the rendering process into the geometry pass (transformation of geometric 

primitives) and the shading pass. It has grown in popularity, substituting the standard 

forward approach in many high-profile engines. The motivation for this move is the 

fact that deferred approach allows cheaper rendering of high number of light sources. 

Most previous publications, such as (Hargreaves and Harris, 2004), (Shishkovtsov, 

2005), (Filion and McNaughton, 2008) and (Koonce, 2008), discuss implementation 

details, limitations, trade-offs and optimizations, reporting increase in performance, 

but avoiding detailed analysis. More performance-centric works, such as (Postma, 
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2009), (Hoef and Zalmstra, 2010), (Lauritzen, 2010) and (Olsson, 2010), focus on 

limited cases only.  

The goal of this work is to conduct a case study and look at some conditions not 

mentioned in literature. We look at four different scenarios and see how performance 

scales in each of the following: 

 many small area of influence light sources without shadows 

 many large area of influence light sources without shadows 

 many large area of influence shadow-casting light sources 

 some large shadow-casting light sources and many small non-shadow-

casting light sources 

While first two scenarios are the most popular to look at in literature, the third and 

fourth ones are, to the best of our knowledge, never seen to be investigated, even 

though the mixed case of many small and several big lights is most representative of 

real-world situations. This work is intended to fill this gap.  

Chapter 2 of this work covers the fundamentals of computer graphics, describing 

the components constituting a 3D scene, the mathematical apparatus for producing a 

2D image of a 3D scene and the modern graphics processing unit (GPU) pipeline. 

After dealing with fundamentals, the chapter covers the concepts of forward shading 

and deferred shading. Chapter 3 describes the experiment setup, providing 

descriptions of both forward and deferred shading renderers’ implementations. The 

test scene, test runs’ specifics and hardware used are specified in this chapter as well. 

Chapter 4 provides the results of the experiments done and analysis of the two 

methods’ observed behaviors in different tests. Chapter 5 offers conclusions and 

outlines future work. 
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Chapter 2 

2 FUNDAMENTALS AND CONCEPTS OF COMPUTER 

GRAPHICS 

2.1 Computer Graphics and Its Applications 

The central problem of 3D computer graphics is creation of a 2D image out of a 

mathematical description of a 3D scene. This is an important problem for many 

fields of human activity, because humans rely on visualization for conveying and 

consuming information. For instance, in physics, a physical process is better 

understood when one sees a 3D graphics simulation of the process. On the other 

hand, computer aided design (CAD), would be impossible without 3D computer 

graphics. 3D computer graphics is also used in military simulations (Figure 2.1), 

automotive crash tests, film and computer games industries. By now, it is a mature 

discipline and is a separate branch of Computer Science. We will refer to 3D 

computer graphics simply as graphics throughout this text. 
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Figure 2.1: Military F-15 Jet Simulator  

Source: www.ign.com/blogs/jeydt/2012/12/14/feature-press-x-to-kill-the-

relationship-between-video-games-and-the-military 

 

It is common to separate offline and real-time graphics. Offline graphics refers to 

methods of generating imagery at non-interactive frame rates (below the threshold of 

15 frames per second); whereas real-time graphics refers to methods that enable 

generation of images at frame-rates above that threshold. Real-time methods are used 

in cases where user input affects what is being drawn to the output device. In cases 

where user input does not affect the computer generated imagery, computation may 

be done offline and displayed at a later time. 

Film industry is a perfect example where offline graphics makes sense. Since the 

viewer has no agency over what happens on the screen, imagery may be generated 

beforehand. This allows use of scenes and visual effects of very high complexity. 

Generating a single frame even on a cluster of computers may take a couple of hours, 

but it is still acceptable, because the constraint on interactivity is lifted. 

Real-time methods are used in CAD applications, military simulators, training 

simulators in automotive and airspace industries, as well as in the computer games 

industry, where visual output depends on user input. The majority of research and 
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innovation is happening within the computer games industry. This is not surprising, 

since computer games industry has been reported to have become bigger than film 

industry and continues to grow. As the industry grows it demands better solutions 

and attracts talent to find those solutions. 

As hardware becomes faster, some methods from the offline domain move into 

the real-time domain. This might give a wrong impression that all techniques in real-

time graphics are simply borrowed from offline graphics, once they become feasible. 

Professionals in real-time graphics still need solutions that work faster because of 

tight performance constraints. They tend to optimize heavily and come up with 

approaches that would not be pursued by those working in offline graphics. 

 

2.2 3D Graphics Concepts 

In order to understand the problem explored in this work, familiarity with the 

process of producing a 2D image of a 3D scene and how graphics hardware operates 

is needed. The following subsections will describe how a 3D scene is represented, 

how a frame is generated from this information about the scene, how this process 

maps to hardware and the job of a renderer. 

 

2.2.1 Scene Representation 

A scene consists of objects, light sources and a camera. Objects are the 3D 

entities needed to be displayed, and lights (short for light sources) are the entities that 

make those objects visible in the first place. A scene must have at least one source of 

light. Otherwise, none of the objects in the scene would be visible. Conversely, if 

there are no objects in the world, there is nothing to see even in the presence of 
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thousands of lights, because there is nothing to illuminate. An observation point has 

to be present in the scene in order to see something, which is what a camera is for. 

In graphics applications, representation and storage of objects and lights in a 

computer is an important problem. For objects, the mainstream approach is to 

represent them as an array of 3D space points. Each point is a 3-tuple containing 

Cartesian coordinates (x, y, z), and is called a vertex. Vertices comprise triangles 

which represent the visible surface of an object. Figure 2.2 depicts an object, with the 

first view showing only points, the second view showing all the edges of triangles 

and the third one showing the illuminated object. 

 

 

Figure 2.2: Vertices, Triangles and Lit Surface of an Object  

Source: www.magic.ubc.ca/artisynth/pmwiki.php?n=OPAL.MarkoMarjanovic 

 

As for lights, since there are several types of light sources, each of them is 

represented by distinct attributes. The four most common types are ambient, 

directional, point and spot lights. Figure 2.3 shows conceptual pictures for three and 

Figure 2.4 shows all four in action. 
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Figure 2.3: Types of Light Sources  

 

An ambient light is a simplified approach to simulate indirect illumination, 

whereby surfaces receive light even if they do not face the light source. This can be 

represented by a single value – the amount of light the whole scene receives. This 

yields a uniformly lit scene, which lacks any feeling of depth, as can be seen in 

Figure 2.4. 

Directional light is a representation of sunlight or moonlight. This type of light 

has the same direction at any point in a given scene. Since the source itself is so far 

away from the objects in the scene, the light is considered to be coming from an 

infinite distance. Hence the fixed direction and intensity should be stored for 

representing such a source. 

A point light is akin to a candle or light bulb, where light emanates from a certain 

point in space in all directions around it. Defining such a light requires specification 

of the origin position and its intensity. 

A spot light mimics behavior of a flashlight. In this case a cone of light is shining 

from a certain point in space. Representation of a spot light requires the light’s 

position, direction and the angle of the bounding cone to be specified. 
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Figure 2.4: Illumination Effects of Different Light Sources. Left Top to Right 

Bottom: Ambient Light, Directional Light, Point Light and Spot Light 

 

A camera representation needs to store at least five parameters: camera’s position, 

direction of view, field of view (FOV), near plane and far plane. These parameters 

define a frustum (a pyramid with a chopped off top) as shown in Figure 2.5. 

Everything located within this frustum will be visible. Everything outside will be 

clipped and not visible. FOV is an angle which defines how wide the region of view 

is. Far plane bounds the maximum distance of vision. Near plane is the bound on 

closest objects that are visible. Visible parts of the scene are projected onto the near 

plane. 
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Figure 2.5: Camera Frustum 

 

Having a number of objects (instances of object representations described above), 

a number of lights (instances of the four types of light) and a camera means having 

defined a scene. This information is enough to generate a sequence of images called 

frames, which are displayed to the user. Next section describes how the above 

mentioned scene data is used to construct a frame. 

 

2.2.2 Generation of a Frame 

A frame is essentially an image that contains projection of a scene onto a surface. 

In 3D graphics the principle is very similar to the way human eye or a camera works. 

However we are no longer dealing with the physical process – there are no photons 

hitting a retina of an eye or a matrix of a camera. This process needs to be simulated 

with mathematical operations. In fact, 3D graphics is all about coming up with a 

mathematical model for human vision and efficiently executing it on hardware. 

Taking an object as a collection of vertices in 3D space and making it visible on a 

flat surface is achieved by applying a series of transformations and then rasterizing 

the triangles. Rasterization means turning 3D representation of an object into a 2D 

image. That is, having three vertices of a triangle it needs to be decided which pixels 
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the triangle covers. Before applying rasterization, coordinates of the object’s vertices 

need to be transformed into a suitable space, which is convenient for performing 

rasterization. 

 

2.2.2.1 Transformations 

Change of position and change of orientation can be represented by a translation 

operation and a rotation operation, respectively. Translation and rotation operations 

on vectors in computer graphics are applied using matrices, as described below. To 

specify a rotation in 3D space a 3x3 matrix Mrotation is sufficient:  

 

            

      
      
      

  (2.1) 

 

where vectors Axyz, Bxyz and Cxyz represent the new coordinate basis (after rotation) 

defined in terms of the old basis (before rotation) and each basis vector is specified 

using three coordinates of the old basis (x, y, z). Multiplication of a 3D column 

vector v (which may represent, for example, a vertex or a normal) by a 3x3 rotation 

matrix Mrotation yields a rotated vector: 

 

 

            

      
      
      

  
 
 
 
   

  

           

           

           
   

  
  

  

  

(2.2) 
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For example, an identity rotation matrix has no effect on a vector, leaving it 

unchanged: 

 

             
   
   
   

  
 
 
 
   

        
        
        

   
 
 
 
  (2.3) 

 

To give another example, one of the useful rotations is the rotation around the x-axis, 

represented as (Vince, 2006, p. 77): 

 

            

   
              

             
  (2.4) 

 

As a numerical example, a 30° rotation around the x-axis changes the 3D space 

position of a (4, 3, 2) vertex to (4, 1.61, 3.24): 

 

 

            
   
                  

                 
  

 
 
 
   

  
           

                
                

   
 
    
    

  

(2.5) 

 

A sequence of several rotations (each represented by a 3x3 matrix) can be 

represented by a single rotation matrix: 

 

               (2.6) 

 

It is very important that a whole chain of transformations represented by N 

matrices can be condensed into a single resulting transformation represented by one 
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matrix. This way each vertex has to be multiplied by one matrix instead of having to 

be multiplied by N matrices. This saves a lot of space and computation time. 

A translation operation can be performed by adding a translation vector vtranslation 

(specifying displacement along the xyz axes) to a 3D vector v: 

 

                 

  
  
  

   
 
 
 
   

    
    

    
   

  
  

  

  (2.7) 

 

For example, a translation vector (1, -2, 3) applied to a vertex (4, 3, 2) will result 

into the vertex (5, 1, 5).  

However, this representation does not allow a series of transformations (some of 

them rotations and some of them translations) to be merged into a single matrix. 

Unlike rotation, translation cannot be represented by a 3x3 matrix. There is no 

component in a 3x3 matrix which, during multiplication of said matrix by a 3D 

vector, could be added into the resulting value without being multiplied by one of the 

three components of the vector. A translation can alternatively be represented in the 

following way: 

 

 
                      

 

(2.8) 

 
                      

 

(2.9) 

                       (2.10) 

 

This representation is equivalent to multiplying a 4D vector (with the last 

component being equal to 1) by a 4x3 matrix: 
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  (2.11) 

 

Merging N 4x3 translation matrices into one by multiplying them is not possible 

because their dimensionality is incompatible. Adding an extra row solves this 

problem: 

 

               

     
     
     
    

  (2.12) 

 

A similar modification of a 3x3 rotation matrix yields a 4x4 equivalent matrix: 

 

            

      
      
      

   

       

       

       

    

  (2.13) 

 

Using 4x4 matrices allows a chain of rotation and translation 4x4 matrix 

transformations to be reduced to a single matrix by multiplying the 4x4 matrices in 

this series of transformations.  

In order to use the 4x4 matrix convention to represent transformations, 4D vectors 

have to be used. The coordinates in which these operations are performed are called 

4D homogeneous coordinates. To bring a vertex from 3D Cartesian space into 4D 

homogeneous coordinates, a fourth coordinate (w) is added with a value of 1: 

 

  

  
  
  
   

  
  
  
 

   

  
  
  
  

  (2.14) 
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After multiplying 4D homogeneous coordinates by matrices the fourth component 

may have a value other than 1. To bring 4D homogeneous coordinates back to 3D 

Cartesian coordinates (project from 4D space to 3D space), all four components have 

to be divided by the w component: 

 

  

  
  
  
  

  

 

 
 
 

  
  
  
  
  
  
  
   

 
 
 
 

 

 
 

  
  
  
  
  
  

  

 
 
  

  
  
  
  (2.15) 

 

Initially, vertex coordinates are specified in object space in which the object is 

modeled. The center of an object is usually at the origin of object space. Any object 

has position and orientation within world space. To bring object vertex coordinates 

from object space to world space each vertex coordinate has to be multiplied first by 

a rotation matrix and then by a translation matrix: 

 

 

                                       

  

     
     
     
    

  

       

       

       

    

 = 

  

        
        
        
    

  

(2.16) 

 

 Objects in a scene could be arranged hierarchically, i.e. an object could be the 

parent of a number of child objects. In this case, a child’s transformation is specified 

with respect to the parent’s frame of reference. Consequently, a transformation from 
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object space to world space would involve a chain of transformation matrices 

representing rotation and translation. This chain, as was mentioned earlier, would be 

reduced to a single 4x4 object-to-world space matrix. 

To bring the object vertices from world space to camera space (also called eye 

space) appropriate rotation and translation matrices have to be applied to the world 

space coordinates. In camera space the object vertex coordinates have values relative 

to the camera’s frame of reference – camera is at the origin and facing down the 

negative direction of z-axis (for a right-hand coordinate system). 

All the previous transformations (object to world space and world space to camera 

space) are done prior to projection. They are necessary to bring all vertices to a 

coordinate system in which perspective projection can be done.  

When a 3D shape is projected onto a plane the result is a 2D shape. This is exactly 

what is needed to produce a 2D image of a 3D object. If the xy-plane is agreed to be 

the projection plane, the projection could be done by discarding the z-coordinate, as 

shown in Figure 2.6.  

 

Figure 2.6: Projection of a Triangle 

 

Taking object vertices in camera space and discarding the z-coordinate produces 

the orthographic projection of the object. This means that the object will look the 
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same size whether it is far away or close to the projection plane. To account for the 

fact that the farther away an object is, the less area it will occupy on the projection 

plane, camera space has to be mapped to another space in which projection can be 

done by discarding the z-component. The idea of mapping from camera space to a 

space that accounts for the perspective effect is illustrated in Figure 2.7.  

 

 

Figure 2.7: Perspective Effect Adjustment 

 

The mapping from the previous example does not take place as a separate step. 

For convenience the view frustum is mapped to a unit cube, as shown in Figure 2.8. 

In this space, planes x=1, x=-1, y=1, y=-1, z=1, z=-1 are now bounds of the view 

frustum. This is called normalized device coordinates (NDC) space. Coordinates are 

no longer 4D in NDC space, but rather in 3D Cartesian coordinates. That means 

perspective division of homogeneous coordinates happened. Right before this 

conversion, vertex coordinates were in clip space. That is where clipping of triangles 

outside the camera frustum is performed. Magnitude of xyz components are checked 

to be less than magnitude of the w component, which is equivalent to the vertex 

being within the unit cube of NDC space. 
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Figure 2.8: Camera Space to NDC Space Transformation 

 

To get from camera space to clip space, vertex coordinates in camera space are 

multiplied by a projection matrix. This projection matrix is constructed from 

parameters of the camera (FOV, near plane, far plane) and the framebuffer (aspect 

ratio). 

Before rasterization can take place, one last transformation is necessary – from 

NDC space to window space. The transformation applied is called viewport 

transformation. This operation maps xy-coordinates from (-1,1) range to (0, Wmax) 

range; and z-coordinate is typically mapped from (-1,1) range to (0,1) range. Wmax is 

the maximum window extent in x and y for corresponding coordinates. For example, 

with a resolution of 1600x1200 x-coordinate would be mapped to a range (0,1600) 

and y-coordinate to (0,1200). Figure 2.9 shows mapping to window resolution of 40 

across X. 
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Figure 2.9: NDC Space to Window Space Transformation 

 

2.2.2.2 Rasterization 

After all work on geometry is done, triangles can be rasterized. 

 

 

Figure 2.10: Rasterization 

 

An image can be viewed as a grid where each cell is assigned a particular color. 

Having three vertices of a triangle in window space, it has to be decided which cells 

of the grid are covered by this triangle, as in Figure 2.11. To simplify, we assume the 

whole triangle is of one color.  
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Figure 2.11: Rasterization of a Triangle 

 

The cells of an image are called pixels (for picture element). A triangle may cover 

some part of a pixel but will not necessarily produce a pixel. A pixel is generated 

only if its center is covered by the triangle. On current mainstream hardware, 

graphics programmers do not have to implement rasterization by themselves. 

Graphics processing units (GPUs) run a scan conversion algorithm and produce 

pixels from geometric representation. This stage is an example of fixed-function 

operation. Hardware vendors choose the fastest way to implement scan conversion in 

hardware and a graphics programmer has no control over it. 

Today, all computations from transformation to rasterization are done on the 

GPU. More than a decade ago, graphics chips had fixed function pipelines. This 

means that their operation was rigid and they were not programmable. Today, 

although some stages are still fixed to allow dedicated hardware perform a narrow 
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subset of tasks efficiently (i.e. rasterization, texture sampling etc.), there are many 

programmable stages. With the help of this flexibility a graphics programmer can run 

an arbitrary algorithm, for example, for simulating physical light transport. Future 

hardware is expected to become even more programmable; and many professionals 

believe that graphics processing may even move to the CPU entirely. 

Next section gives a brief overview of what happens inside the GPU. 

 

2.2.3 GPU Pipeline Overview 

Is has to be mentioned that the modern GPU pipeline is very complicated. Here 

only a general and simplified overview is given. Figure 2.12 depicts the most 

important stages in the GPU pipeline. 

 

 

Figure 2.12: Simplified GPU Pipeline 

 

The GPU pipeline consists of a mix of fixed-function and programmable stages. 

The core of the pipeline is the following chain: vertex processing, primitive 

assembly, clipping, rasterization, interpolation, fragment processing and per-

fragment operations. Of these, only vertex processing and fragment processing are 

programmable, every other stage is either fixed-function or has configurable 
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behavior. Modern GPUs and graphics APIs provide some additional stages, which 

we do not consider. 

The most interesting parts are obviously the programmable stages. All of them run 

shaders. A shader is a program written in a C-like language specifically developed 

for graphics. There are currently three shading languages for real-time applications. 

These languages are listed in Table 2.1. Shading languages are closely related to 

graphics APIs (OpenGL and Direct3D) which will be mentioned later. 

 

Table 2.1: Shading Languages 

 Full Name API Organization 

GLSL OpenGL Shading Language OpenGL Khronos 

HLSL High Level Shading Language Direct3D Microsoft 

Cg C for Graphics OpenGL, Direct3D Nvidia 

 

We will consider only two types of shaders: vertex and fragment. A vertex shader 

is executed per vertex, i.e. all submitted vertices are fed as input into the vertex 

shader. A vertex shader typically transforms vertex coordinates to clip space. After 

that, the GPU combines vertices into triangles, discards those that lie outside the 

view frustum and clips those that lie on boundaries. 

The following step is to rasterize surviving triangles – turn three vertices of a 

triangle into pixels. This is done by the fixed-function hardware in a process called 

scanline conversion, during which the GPU decides which pixels (picture elements 

of the final frame) are potentially covered by the triangle. This yields fragments – 

potential pixels. Each fragment will have vertex information interpolated (from 

vertex shader output) and available for each fragment in the fragment shader. Figure 

2.13 shows a triangle defined by three vertices rasterized into many fragments. Each 

vertex has a different color value and those were interpolated across the whole 
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triangle for all fragments. For example, fragments around the center of a triangle 

have roughly the same percentage of red, blue and green in them.  

Interpolated values do not have to be colors. They may be vectors indicating 

direction of normals of triangle’s surfaces, they could be texture coordinates or any 

other piece of data that is specified per-vertex but will be needed per-fragment. 

 

 

Figure 2.13: Scanline Converted Triangle  

Source: http://web.eecs.umich.edu/~sugih/courses/eecs487/pa1.html 

 

The fragment shader (alternatively referred to as pixel shader) is executed per 

fragment. The fragment shader computes and outputs a color value for a certain pixel 

in the frame (written to the framebuffer). The fragment shader is where illumination 

computation is usually performed. 

Before a fragment actually becomes a pixel, it has to pass several tests – scissor 

test, stencil test and depth test – which could all be individually turned on or off, as 

well as configured. If the tests are passed, the fragment is written to the framebuffer. 

This section went through the whole pipeline and gave a general picture of GPU 

workflow and dataflow. In the following section, the main function of a renderer in a 

graphics engine is explained. 
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2.2.4 Concept of a Renderer 

Rendering is the process of generating an image for display from a scene 

representation. It is still the responsibility of the programmer to define how scenes 

are to be rendered. The GPU provides all the stages presented in Figure 5 and all the 

horsepower, but rendering does not happen automatically. Precisely defining the 

mathematical model and then making the CPU and GPU execute this model is the 

job of a graphics programmer.  

For mainstream renderers, access to GPU hardware and implementation of the 

mathematical model is done using a graphics application programming interface 

(API) with a compatible shading language. The two most popular APIs are listed in 

Table 2.2. In a similar way that a conventional programming language (e.g. C++) 

with its standard library facilities exempt the programmer from writing assembly 

code and accessing raw memory, the graphics API along with the shading language 

provides higher-level access to GPU hardware. 

 

Table 2.2: Graphics APIs 

API Name Platform Shading Languages Organization 

OpenGL Windows, Linux, OSX GLSL, Cg Khronos 

Direct3D Windows HLSL, Cg Microsoft 

 

The software produced by a programmer to do rendering is called a renderer. 

Because a renderer has to run real-time with interactive frame-rates, straightforward 

implementation of a chosen mathematical model is usually not good enough. 

Graphics programmers look for tradeoffs and exploit hardware strengths to build the 

most efficient solutions. The same mathematical model may be implemented in 

various ways with different performance characteristics and a lot of research in the 
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field is concentrated on this problem – finding the fastest way to render content on 

current and future generations of hardware. 

 

2.3 Forward Shading 

Forward shading is the straightforward application of GPU pipeline to render an 

object. That is, triangles representing an object are submitted to the GPU, 

transformed, clipped and then rasterized; the resulting fragments are shaded and 

written to the framebuffer – all done in one draw call, i.e. one invocation of the GPU 

pipeline. During shading, contribution of one or several light sources is calculated.  

There are some problems, inherent to this approach, which occur when trying to 

scale forward shading to many light sources. For instance, if only one light’s 

contribution is computed in the fragment shader (multi-pass forward rendering), but 

the object is affected by many lights, then this object has to be re-rendered many 

times with different input to the fragment shader (different per-light data) and results 

should be additively blended into the framebuffer. In this case, a lot of unnecessary 

processing is done – same transformation is applied to vertices multiple times, same 

vertices are rasterized multiple times and bandwidth is wasted by writing to the 

framebuffer at the end of each pass, instead of computing the sum of all contributions 

and writing it once. The benefit of this approach is that it is the easiest forward 

shading implementation to program. 

Alternatively, contribution of multiple light sources can be calculated in the 

shader, so as to apply all lighting to an object at once – in one invocation of the GPU 

pipeline (single-pass). If the list of lights is different for each object and there are 

thousands of objects, then light data has to be switched before rendering each object, 
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resulting in delays due to GPU-CPU synchronization and hindering performance 

severely.  

The workaround is to batch objects by lights, i.e. form groups of objects affected 

by same lights and dispatch them to GPU without intermediate data uploads. Doing 

this requires certain compromises. Because perfect grouping would mean having too 

many groups (potentially as many, as there are objects), grouping has to be rather 

coarse. This implies possibly skipping lights for objects that should be affected by 

those lights, or instead doing computation for lights that in fact do not reach the 

objects rendered.  

If these problems are ignored and perfect grouping is done with the assumption of 

instant light data upload without synchronization issues, there is still another big 

problem. With forward shading, even if a light source affects only a small part of an 

object, the whole object has to be transformed and rasterized, and each resulting 

fragment must be shaded. For example, suppose that there is a wall with a torch on it. 

The torch is significantly affecting only a small part of this wall. The wall covers the 

whole screen and the lit part occupies only a small part of the screen. In this case 

shading is actually necessary only for a small percent of fragments (those which 

receive light). Nevertheless, with forward shading, all fragments will be processed, 

resulting into a lot of useless work. 

A possible workaround for this case is to break down big objects into smaller 

pieces. However, it trades-off geometry batching efficiency. Consequently, the right 

balance can never be reached. For this reason, having many small objects is not a 

suitable solution either. 

The core of these problems is tight coupling of geometry operations (vertex 

processing) and lighting operations (fragment processing). Performing lighting in a 
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separate stage, after all geometric computation is done, is the idea behind deferred 

shading (shading is being deferred, hence the name) which is described below. 

 

2.4 Deferred Shading 

Deferred shading (Saito and Takahashi, 1990) at its core is separation of lighting 

calculations for each pixel on screen from obtaining per-pixel attributes necessary to 

do those lighting calculations. Classic deferred shading is done in two passes, namely 

geometry pass and lighting pass. In the geometry pass, all necessary information for 

each pixel is resolved and stored in the G-buffer (geometric buffer). In the lighting 

stage, the G-buffer is sampled and lighting calculations are performed (Hargreaves, 

2004). 

 

 

Figure 2.14: G-buffer Components in the Renderer of the Game Killzone 2  

(Valient, 2007) 

Left Top to Right Bottom: Depth, Normal, Specular Intensity, Specular Power,  

2D Motion Vector, Diffuse Color  
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Figure 2.15: Final Image of the Game Killzone 2 (Valient, 2007) 

 

During the geometry pass, all vertices are transformed, triangles are rasterized, 

and all necessary per-pixel information about visible geometry is stored into the G-

buffer. The G-buffer is essentially a set of textures components of which store per-

pixel geometry information such as pixel view space position, diffuse color, normal 

vector, specular parameters and potentially any other piece of data (Valient, 2007). 

Figure 2.14 illustrates the G-buffer components used in the engine for the game 

Killzone 2, developed by Guerilla Games. Figure 2.15 shows the final frame image 

produced using information from the G-buffer. 

When the color of the actual pixels needs to be computed, i.e. when lighting or 

any post-processing is done (motion blur, screen-space ambient occlusion etc), 

information from the G-buffer is sampled. This way any lighting or post-processing 

becomes just an additional screen-space pass. 
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In order to develop a more clear understanding of the difference between forward 

and deferred shading, let us juxtapose them using their loosely formulated 

algorithms: 

 

Forward shading: 

for each light in Lights 

    for each object in Objects 

        transform 

        shade 

    end for 

end for 

 

Deferred shading: 

for each object in Objects 

    transform 

    output per-pixel geometry data 

end for 

for each light in Lights 

    shade 

end for 

 

The inner and outer loops in forward shading can be re-ordered, and the choice 

depends only on which one will be faster (depends on implementation).  

From the pseudo-code given above, it can be seen that deferred shading separates 

the nested loops of the forward shading algorithm and executes them separately in a 

sequence. This characteristic is exactly what gives deferred shading its nice 

algorithmic property of shading load being independent from geometric load. A more 

detailed description of deferred shading and an in-depth look at its properties can be 

found in a survey done by Thaler (2010).  
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When deferred shading started being actively talked about in the game 

development industry from around 2004 and later, it may have seemed that 

developers came up with a new and original way of handling rendering in their 

engines. In fact, the approach itself is not new at all, and has been considered by 

researchers many years ago. 

 Deering et al (1988) was the first to introduce the idea of shading a pixel only 

once, after its visibility has been determined. At the time it was not called deferred 

shading and no G-buffer was used. 

Modern version of deferred shading with a G-buffer was first proposed by Saito 

and Takahashi (1990). With this approach geometry processing is separated from 

shading (thus geometry is processed only once) and lighting or any visual 

enhancement is applied as a post-process using information from the G-buffer. 

Authors did not call it deferred shading either. 

Ellsworth et al. (1991) is probably the first to use the name deferred shading. 

Authors used it on Pixel-Planes 5, which was a massively parallel SIMD machine, 

and noted that deferred shading avoids redundant calculations and conveniently maps 

to parallel architectures. 

Creators of PixelFlow (another parallel machine for real-time rendering) 

incorporated deferred shading into their initial architecture (Molnar et al., 1992) and 

retained it as PixelFlow evolved into its final realization (Eyles et al. 1997). 

As any good idea, deferred shading evolved over time into the modern approach 

we know today. Still, no real-time implementation on mainstream graphics cards or 

game consoles was attempted up until 2001. 

The very first implementation of deferred shading in a commercial game was 

done by Geldreich in “Shrek” on Xbox1 in 2001. He and his colleagues later gave a 
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talk (Geldreich, 2004) at GDC2004 with demos on PC (DX9), Xbox1 and 

PlayStation2. Hargreaves also gave talks on deferred rendering at GDC2004 

(Hargreaves, 2004). Since then more and more developers started looking into 

deferred shading and publishing their results.  

As most mainstream hardware obtained multiple render targets (MRT) 

capabilities, and GPUs grew faster, deferred shading implementations started 

appearing in commercial games. For example, Shishkovtsov (2005) discusses 

implementation in “STALKER”, going into detail on design decisions, tradeoffs and 

optimizations. Valient (2007) looks at implementation of deferred shading in 

“Killzone2” on Playstation3. Koonce (2008) discusses problems and solutions found 

during work on “Tabula Rasa”. Filion (2008) elaborates on why deferred shading 

was chosen for “Starcraft2” and what special effects this allowed to achieve. 

Main disadvantages of deferred shading, which result into significant performance 

penalties, are increased bandwidth and GPU memory storage. As screen resolution 

increases the renderer becomes bandwidth bound. These shortcomings of deferred 

shading motivated development of variations called light pre-pass (also referred to as 

deferred lighting) (Engel, 2009) and inferred lighting (Kircher, 2009). 

Light pre-pass consists of three passes: geometry pass, light pass and forward 

pass. Geometry pass outputs normals and specular exponent into a single render 

target (RT). Light pass evaluates diffuse and specular equations, accumulating these 

values for each light in two RTs. Alternatively specular light accumulation color may 

be discarded and only specular luminosity written into alpha channel of diffuse RT, 

thus reducing RTs to one. Forward pass renders geometry the second time, fetching 

diffuse and specular material colors and applying them on accumulated diffuse and 

specular light values. The benefits of light pre-pass are possibility of using only one 
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RT (making it suitable for older and embedded hardware), reduction in bandwidth 

consumption on per-fragment attributes and also capability of utilizing materials. If 

geometric complexity of the scene is high, overhead of second pass on geometry may 

result in worse performance than deferred shading. 

Inferred lighting is very similar to light pre pass and uses three passes as well: 

geometry pass, light pass and material pass. The first two render at lower than 

framebuffer resolution. Lighting information is upscaled in the material pass using a 

trick with a discontinuity sensitive filter (DSF), avoiding severe lighting artifacts. 

This allows significant savings in bandwidth. Inferred lighting also provides a 

solution for rendering translucent objects, in which alpha geometry is rendered with a 

stipple pattern in geometry pass. With DSF this allows reconstruction of both 

translucent and opaque geometry from the G-buffer. 

Current state-of-the-art is tiled deferred shading first used by Engstad (2008) in 

Uncharted, popularized by Andersson (2009) in Battlefield 3 and promoted from 

research side by Lauritzen (2010, 2012). The idea is to build a screen-space grid, 

intersect all light sources with the grid and compose a light list for each tile. The 

lighting shader is then executed for each pixel only once, fetching light data for the 

relevant tile and applying all relevant lights in one pass. This way during shading the 

G-buffer is read only once per pixel alleviating the bandwidth overhead problem that 

plagues deferred shading. 

A spin-off of this idea is tiled forward shading introduced by Olsson (2011), 

which handles transparency and anti-aliasing easily while keeping the benefits of 

many cheap lights. 

Many more companies use deferred shading or deferred techniques, but do not 

publish their results. One could say that by now deferred shading has become 
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mainstream. However, there are few publications with detailed performance analysis 

of deferred shading versus forward shading. Obviously results will vary a lot, 

because they would heavily depend on various factors: target hardware, geometric 

complexity of scenes and their layout, how much computation does it take to shade a 

pixel in a certain engine etc. Unfortunately it is not possible to establish a universal 

benchmark, because each solution is developed with specific needs in mind, 

incorporating different features and different implementations of these features. 

Nevertheless it is still useful to provide detailed results from case studies, because 

even if “your mileage may vary”, more data about technique’s behaviour becomes 

available, which helps understand what the general performance trend is for this 

particular technique.  
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Chapter 3 

3 EXPERIMENTAL SETUP 

3.1 Renderer and Hardware Setup 

In this study standard deferred shading renderer and multi-pass forward shading 

renderer are implemented. Below is a description of features shared by both 

renderers. Features relevant to individual implementations are described in the 

corresponding subsections. 

Four types of light sources are supported, namely ambient, directional, point and 

spot lights. Directional, point and spot lights can be rendered with or without the use 

of shadow maps. In our implementation, we did not combine ambient and directional 

light passes, because it is assumed there could be more than one directional light.  

Since both implementations compute lighting contribution for one light at a time, 

shadow map textures are reused. Directional lights and spot lights have different 

requirements for shadow map resolution, so a 512x512 depth texture is used for spot 

lights and a 2048x2948 one is used for directional lights. Point lights use a 512x512 

depth cube map and rendering is done into each face separately (using layered 

rendering to do everything in one pass proved to be several times slower). Each light 

uses an appropriate light list (discussed below) for generating shadow maps. 

In order to avoid redundant computation, light lists are built for each light. In 

other words, for each light, a list of objects affected by the light is composed by 

intersecting light bounding volumes with objects’ axis-aligned bounding boxes 

(AABBs) by performing collision-detection tests. Also, a camera visibility list is 
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built – objects visible to the camera are determined by intersecting the camera 

bounding volume with objects’ AABBs. Additionally, visibility light lists, which are 

set intersections of light lists and the camera visibility list, are built. How each 

renderer uses those lists is mentioned in respective sections. Some of the collision-

detection code is based on (Ericson, 2004). 

Light contribution computation is done per-fragment and uses normal mapping. 

For this reason per-vertex information includes texture coordinates, a normal and a 

tangent. Two textures are used per fragment, namely diffuse and normal map.  

Both implementations write lighting computation results into a 16-bit floating 

point texture in order to perform high dynamic range (HDR) rendering (Debevec, 

1997). This accumulation buffer is then used for post-processing, consisting of tone-

mapping and blooming. Reinhard tone-mapping operator is used in this study 

(Reinhard, 2002). In the final pass, blooming, tone-mapping and light accumulation 

buffers are used to write the end result into the default framebuffer. 

 

3.1.1 Collision Detection 

The term collision detection is usually used in the context of physics calculations. 

However, it is useful not only for physics simulations. Collision detection is also 

generally used to avoid unnecessary computation. Specifically, if collision detection 

is not performed to determine visible objects, all objects in the scene have to be 

submitted to the pipeline and transformed only to discard many of them later on 

because they lie outside the view frustum. This is the reason why collision detection 

algorithms are used to perform intersection tests between objects’ bounding volumes 

and camera view volume (to determine visible objects), as well as between objects’ 

bounding volumes and light volumes (to determine objects affected by each light). 
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A widespread bounding volume type for objects is axis-aligned bounding box 

(AABB). An AABB of an object consists of a minimum and a maximum extent of an 

object along each axis. That is, for each of the three axes (x,y,z) a minimum and a 

maximum value are stored. These six numbers are enough to represent an AABB. 

To determine the objects inside the view frustum, the view pyramid and objects’ 

AABBs are tested for intersection. The same test is used for obtaining the light list 

for spot lights. Bounding pyramids are found for spot lights’ cones and then tested 

against objects’ AABBs. 

To perform this pyramid-AABB test, the pyramid is broken down into five planes 

(base and four sides) such that planes' normals point inside the pyramid. Having 

three vertices on a plane, v1, v2 and v3, specified in counter-clockwise order, the 

plane equation components n and d are obtained: 

 

   
               

                 
 (3.1) 

 

        (3.2) 

 

where n is the plane unit normal and d is the closest signed distance from plane to 

origin. The × symbol signifies vector cross-product. Vector cross-product is defined 

such that in an expression c = a × b magnitude of vector c is defined to be ||c|| = 

sin(θ)·||a||·||b|| (where θ is the angle between vectors a and b) and the unit vector ĉ 

is defined to be perpendicular to both a and b in the direction given by the right-hand 

rule. 

The plane equation is used to determine which side of the plane (relative to the 

plane normal) a vertex lies. If distance from plane to vertex is positive, the vertex lies 

in the half-space the plane normal points into. Conversely, if the distance is negative, 
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the vertex lies in the half-space opposite the plane normal direction. Distance from 

AABB's points to a plane is calculated as: 

 

       (3.3) 

 

where v is the vertex tested. 

To determine if a vertex lies inside the pyramid, signed distances from all five 

planes to the vertex have to be positive: 

 

                             (3.4) 

 

If at least one point of AABB is inside the pyramid, the AABB intersects the 

pyramid and the pyramid-AABB test returns true. 

For building the point light list, another type of test is necessary. In this case a 

sphere-AABB intersection test has to be performed. Distance from center of the 

sphere to the AABB is calculated. If distance is less than sphere radius, the sphere 

intersects the AABB. The pseudo code for the functions IntersectSphereAABB and 

DistSquareFromPointToAABB, which are used to perform the test described, are 

taken from (Ericson, 2004) and provided below. 

 

IntersectSphereAABB(sphere, aabb) 

begin 

    return DistSquareFromPointToAABB(sphere, aabb) < sphere.center 

end 

 

DistSquareFromPointToAABB(point, aabb) 

begin 

    distance <= 0 

    if (point.x > aabb.max.x)  
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        distance += (point.x - aabb.max.x) * (point.x - aabb.max.x) 

    end if 

    if (point.x < aabb.min.x)  

        distance += (aabb.min.x - point.x) * (aabb.min.x - point.x) 

    end if 

    repeat the two if statements above for Y and Z coordinates 

    return distance;  

end 

 

For the purposes of producing point light shadow maps for each face of the cube 

map, the bounding sphere of the point light is split into six pyramids (approximately 

spanning the bounding sphere). Before the objects are rendered into each face of the 

cube map, the objects from the point light list are also intersected against the above 

mentioned pyramids. This is done with the pyramid-AABB intersection test 

described previously. 

 

3.1.2 Shading 

Illumination for each fragment is computed according to the Phong reflection 

model (Phong, 1975). The RGB fragment color for the four types of light sources 

(ambient, directional, point and spot) is calculated using the following formulas: 

 

                      (3.5) 

 

                                     (3.6) 

 

                                 (3.7) 

 

                                  (3.8) 
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where RGBD is diffuse color of the surface material, RGBS is specular color of the 

surface material, RGBI is intensity of light, D is the diffuse term, S is the specular 

term, A is light attenuation due to distance from light source and F is the spot light 

factor. 

The diffuse term D is calculated as: 

 

          (3.9) 

 

where N is fragment normal and L is light incidence vector. D is clamped to the 

[0…1] range. 

The specular term S is calculated as: 

 

          (3.10) 

 

where R is light incidence vector (L) reflected relative to fragment normal (N), C is 

camera direction vector and p is specular power of the surface material The dot 

product is clamped to [0…1] range before the exponent is applied.  

Light attenuation term A is calculated as: 

 

   
 

    
 (3.11) 

 

where d is the distance to the light source.  

The spot light factor F is calculated as: 

 

   
         
         

 (3.12) 
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where Ocos is the outer angle cosine, Icos is the inner angle cosine and Scos is the 

cosine of the angle between light direction and light incidence vectors. 

When shadows are enabled, directional, point and spot light color is also 

multiplied by a shadow factor. The shadow factor is in range [0, 1] and represents 

obstruction of the object surface from the light source by other objects. If the 

fragment is in shadow, shadow factor is equal to 0. In this case fragment color, after 

being multiplied by zero, becomes black, i.e. not illuminated. Conversely, if the 

fragment is not in shadow, shadow factor is equal to 1. Consequently, the fragment 

color is multiplied by one, preserving the computed color. 

 

 

Figure 3.1: Shadow Mapping 

Source: http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter09.html 

 

Figure 3.1 illustrates the principle of shadow mapping. The scene is rendered from 

light’s point of view with the resulting depth stored in the shadow map. During 

shading, the fragment’s position is transformed into the coordinate space of the 

shadow map. The fragment’s xy components are used as texture coordinates to 

sample the shadow map. The value fetched (Za) corresponds to the surface being lit 
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by the light. Za is compared to the fragment’s actual depth (Zb). If Zb < Za, the 

fragment is in shadow, and if Zb = Za, the fragment is lit. 

In our implementation of shadow-mapping, hardware PCF (percentage-closer 

filtering) is enabled for the depth texture (Reeves, 1987). In the lighting shader, view 

space position of the fragment is multiplied by a matrix which applies the following 

chain of transformations: view space, world space, light space, clip space from 

light’s perspective and window space (except x and y components are in [0…1] 

range). The resulting four-component vector is used for lookup from the shadow map 

texture. 

 

3.1.3 Forward Renderer 

The forward renderer implementation uses the multi-pass approach for light 

accumulation. Each light requires a separate pass and only one light’s contribution is 

computed at a time in the fragment shader.  

Camera visibility list is used for ambient light and directional lights shading since 

both light types affect all objects in the scene and only objects seen by the camera 

should be shaded. Point lights and spot lights use visibility light lists to render and 

shade appropriate objects, because only the objects that are visible to the camera and 

are affected by the light need to be rendered. 

On a high level, the rendering loop consists of two steps: 

Rendering loop 

begin 

    ShadingPass() 

    Postprocessing() 

end 

The shading pass can be described with the following pseudo code: 
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Shading pass: 

begin 

    AmbientLightPass(ambient_light) 

    for each directional_light in DirectionalLights 

        DirectionalLightPass(directional_light) 

    end for 

    for each point_light in PointLights 

        PointLightPass(point_light) 

    end for 

    for each spot_light in SpotLights 

        SpotLightPass(spot_light) 

    end for 

end 

The four blocks of pseudo code below describe the four light passes used in the 

shading pass above.  

Ambient light pass: 

begin 

    upload ambient light data 

    for each object in VisibilityList 

        upload transformation data 

        draw object  

    end for 

end 

Directional light pass: 

begin 

    if shadow enabled  

        render directional light shadow map 

    end if 

    upload directional light data 

    for each object in VisibilityList 

        upload transformation data 

        draw object 

    end for 

end 
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Point light pass: 

begin 

    if shadow enabled  

        render point light shadow map 

    end if 

    upload point light data 

    for each object in LightList 

        upload transformation data 

        draw object  

    end for 

end 

Spot light pass: 

begin 

    if shadow enabled  

        render spot light shadow map 

    end if 

    upload spot light data 

    for each object in LightList 

        upload transformation data 

        draw object 

    end for 

end 

 

3.1.4 Deferred Renderer 

Deferred renderer implementation uses the standard approach with the geometry 

pass and the shading pass (no light pre-pass or inferred lighting used). G-buffer 

consists of normal information, diffuse color and position information in the form of 

fragment depth, as illustrated in Figure 3.2. 
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Figure 3.2: G-buffer Render Targets  

Left to Right: Depth, Normals, Diffuse Color 

 

View space position is reconstructed using screen space fragment coordinates 

(window position and depth). For both normal and diffuse buffers, RGB8 render 

targets are used (8 bits per color component). Depth is calculated as part of geometry 

pass rasterization, which helps avoid additional overhead for storing position data. 

Depth is stored in an FP32 depth texture (32-bit floating point). This constitutes a 

rather slim G-buffer – only 10 bytes need to be read per fragment. Tests with “fatter” 

formats for normal and diffuse data showed that bandwidth problems crippled 

performance. 

In the geometry pass, camera visibility list is used to rasterize all visible geometry 

and dump geometry information into the G-buffer. During shading, crude light 

volume geometry is used for point and spot lights (low poly spheres and cones), and 

full-screen quads are used for ambient and directional lights. 

For view space fragment position reconstruction, the following procedure is 

performed. Window space x and y components are divided by respective window 

resolution values. The z value is sampled from the depth texture. This xyz triple is 

used as the position to be multiplied by a matrix. The matrix is the inverse of the 

following chain of transformations: view space, clip space and window space (except 

x and y components being in [0…1] range). After multiplying the above mentioned 

position by the matrix, the resulting four-component vector is divided by the fourth 
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component. Post-division, the first three components of the vector are the view space 

fragment position. 

The rendering loop of the deferred shading renderer consists of three steps: 

Rendering loop: 

begin 

    GeometryPass() 

    ShadingPass() 

    Postprocessing() 

end 

The geometry pass can be described with the following pseudocode: 

Geometry pass: 

begin 

    for each object in VisibilityList   

        upload transformation data 

        draw object (output to Render Targets) 

    end for 

end 

The shading pass is identical to the one in the forward shading renderer, however 

each light pass (inside the shading pass) is different.  

Ambient light pass: 

begin 

    upload ambient light data 

    draw fullscreen quad 

end 

Directional light pass: 

begin 

    if shadow enabled  

        render directional light shadow map 

    end if 

    upload directional light data 

    draw fullscreen quad 
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end 

Point light pass: 

begin 

    if shadow enabled  

        render point light shadow map 

    end if 

    upload transformation data 

    upload point light data 

    draw unit sphere 

end 

Spot light pass: 

begin 

    if shadow enabled  

        render spot light shadow map    

    end if 

    upload transformation data 

    upload spot light data 

    draw unit cone 

end 

 

3.1.5 Hardware and System Software 

Tests were done on a laptop with 2.1 GHz Dual-Core AMD Athlon II, 4GB RAM 

and AMD HD 5145 video card with 512 MB VRAM, running Windows 7 operating 

system. Catalyst 13.1 driver was used for the video card (latest legacy driver 

available). All tests were run under 1366x768 resolution (highest available) and one 

particular test was done under 800x600. 

 

3.2 Scene Setup 

For the experiments to be representative of actual performance “in real world”, a 

sufficiently complicated scene should be used. For example, if there is not enough 
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geometric complexity, vertex transformation becomes very cheap and results are 

skewed. Similarly, if there is not enough object overlap, the overhead of overdraw is 

underplayed. 

In our experiments, the widely used Atrium Sponza Palace model from (Meinl, 

2010) was used. It is a good approximation of a game scene for purposes of our work 

and the result image can be seen in Figure 3.3. 

  

 

Figure 3.3: The Atrium Sponza Palace Scene Shaded 

 

The Sponza model is broken down into sub meshes. This allows to treat them as 

separate objects and to do culling. Performing culling is very important to get a good 

approximation of how a renderer with deferred or forward architecture would 

behave. 

Constructing different illumination layouts for up to a hundred of light sources by 

hand is impractical. For this reason, positions, intensities and other light parameters 

are generated randomly. In order to get desirable characteristics within some limits 
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but still observe variation, appropriate bounds are set for random distributions and 

generated numbers are then adjusted to meet needed constraints. For tests to be 

repeatable, a fixed seed value is used for the random number generation engine.  

 

3.3 Tests Description 

It is expected that deferred and forward rendering approaches have different 

performance characteristics under different conditions. We wish to explore the 

following illumination conditions: 

 big lights (large influence area) have shadows enabled (Figure 3.6) 

 big lights without shadows (Figure 3.5) 

 small lights without shadows (Figure 3.4) 

 mixed case with many small lights and a few big shadow-casting lights 

 

 

Figure 3.4: Sponza Scene with Many Small Lights (Bounding Volumes Are Drawn) 
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Figure 3.5: Sponza Scene with Many Non-Shadow Casting Big Lights  

 

 

Figure 3.6: Sponza Scene with Many Shadow-Casting Big Lights 

 

For each case the number of light sources is varied to see the general behavior of 

the rendering technique tested. Number of lights is scaled from 1 to 100, and tests are 
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taken in increments of one light for [1-10] range, in increments of two for (10-20] 

range and increments of ten for (20-100] range. 

At all times one ambient light and one directional light are present. When 

shadows are enabled for big light sources, directional light also uses shadows. 

The performance data collected is average frame time and average fps (frames per 

second) for a 20 second run. Frame time is used to compare speed of shading 

methods and fps is used to get a general picture of how observed performance 

difference translates into perceived user experience difference. 
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Chapter 4 

4 EXPERIMENTAL RESULTS 

In order to evaluate performance of deferred and forward renderers with variable 

number of lights, two metrics, specifically, average time spent rendering a frame 

(frame time) and frames per second (fps) are employed. Frame time measures the 

cost of rendering, and it is generally used for comparing efficiency of rendering 

techniques. FPS is a user-experience metric. It helps to measure whether interactive 

frame rate (around 15 fps) is maintained at particular loads and it illustrates how fast 

user-experience degrades as the computation load increases.  

 

4.1 Rendering Big Lights 

In Figure 4.1, it can be seen that deferred variant exhibits smaller render time. In 

contradiction with the expectation that deferred would be slower for few lights and 

would catch up with forward as the number of lights increases, deferred variant is 

immediately faster. As seen from the figure, additional cost of maintaining the G-

buffer is amortized at once, showing that deferred approach is suitable performance-

wise even for small numbers of lights. 
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Figure 4.1: Frame Time While Rendering Big Lights with Shadows 

 

It can be seen in the figure that for both deferred and forward approaches, the 

render time is linearly dependent on the number of lights where the cost for each 

additional light is almost constant, being roughly 7 ms for deferred and 10 ms for 

forward shading. 

 

 

Figure 4.2: FPS While Rendering Big Lights with Shadows 
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Figure 4.2 presents the user-experience as light count increases. It can be seen that 

fps does not decrease linearly but exponentially. For the used hardware configuration 

fps drops below interactive (< 10-15 fps) very fast – to 8 fps for forward and 10 fps 

for deferred at only 10 lights. Although deferred shading is faster, the difference is 

not significant. As expected, rendering shadow maps takes the biggest fraction of the 

cost to render a light. 

Figures 4.3 and 4.4 present results for big lights without shadow maps. 

Performance gap has widened and deferred shading is on average almost two times 

faster. Cost per light is now different – 4.6 ms in case of forward shading and 2.3 ms 

in case of deferred shading. 

 

 

Figure 4.3: Frame Time While Rendering Big Lights without Shadows 
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whereas deferred degrades to 10 fps only at 30 lights. This test clearly shows 

superiority of deferred over forward shading. 

 

 

Figure 4.4: FPS While Rendering Big Lights without Shadows 

 

Figures 4.5 and 4.6 illustrate the experimental results for a setup identical to the 

one above, except with lower resolution – 800x600 instead of 1366x768. Lower 

resolution means a smaller G-buffer and thus lower consumption of memory and 

bandwidth. Memory occupancy is not a significant factor, but decreased bandwidth 

usage is expected to result into higher performance for deferred approach. 

It can be seen in Figure 4.5 that the gap between deferred and forward shading is 

wider than before. In Figure 4.6, after about 20 lights, deferred shading becomes 2 

times faster and, as more lights are added, the difference becomes even higher. This 

confirms that deferred rendering is a bandwidth-hungry approach, and implies that at 

much higher resolutions performance of deferred will be impaired due to the need of 

sampling the G-buffer for many more pixels. 
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Figure 4.5: Frame Time While Rendering Big Lights without Shadows at 800x600 

Resolution 

 

 

Figure 4.6: FPS While Rendering Big Lights without Shadows at 800x600 Resolution 

 

4.2 Rendering Small Lights 

Previous measurements were done for big lights covering from 20% to 100% of 

screen. Figures 4.7 and 4.8 present the results for small lights that cover 0.25% to at 

most 5% of the screen.  
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Figure 4.7: Frame Time While Rendering Small Lights without Shadows 

 

It can be seen in Figure 4.7 that rendering small lights is a strong advantage of 

deferred rendering – rendering cost per light is 0.17 ms for deferred and 0.84 ms for 

forward. Deferred variant renders one small light 5 times faster than forward, 

resulting in very smooth fps degradation as number of lights grows. A linear 

dependence can be seen in Figure 4.8 which is a much more desirable behavior than 

exponential decay in previous tests. 
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Figure 4.8: FPS While Rendering Small Lights without Shadows 

 

The main reason for deferred shading exhibiting superior performance when 

rendering many small lights compared to forward shading is that the computational 

complexity is linearly dependent on the number of pixels affected by the light in the 

case of deferred shading whereas, for forward shading, it is linearly dependent on the 

screen space size of objects affected by the light. This means that, when a light 

affects only 10% of a pillar, deferred shading will compute illumination only for that 

10% of the pillar. However, forward shading will do lighting calculations for the 

whole pillar, even though 90% of it is not affected by the light at all. 
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the forward renderer, a big shadowed light costs 10 ms and a small one costs 0.84 

ms. Thus, even if there are many small lights, each additional big light will bring 

performance of deferred and forward closer, because rendering time of big lights will 

dominate total frame time and the cost difference of deferred versus forward for big 

lights is not remarkably different. 

To test this hypothesis, a ratio of “number of big lights to number of small lights” 

is picked and the tests are made for multiples of this ratio. For example, in Figures 

4.9 and 4.10, the first data point reflects a scene with 1 big and 10 small lights, and 

the last data point – a scene with 10 big lights and 100 small ones. Figures 4.11 and 

4.12 follow the same idea but with a different ratio – 1 to 5 instead of 1 to 10. 

 

 

Figure 4.9: Frame Time While Rendering Big and Small Lights (1x10 Ratio) 
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Figure 4.10: FPS While Rendering Big and Small Lights (1x10 Ratio) 

 

 

Figure 4.11: Frame Time While Rendering Big and Small Lights (1x5 Ratio) 
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Figure 4.12: FPS While Rendering Big and Small Lights (1x5 Ratio) 

 

While there are minor differences between 1x10 and 1x5 ratio setups, the trend is 

very similar. Rendering big lights with shadows takes the majority of total frame 

time and thus, while still being faster, deferred shading does not show an advantage 

as significant, as was seen for rendering small lights exclusively. 
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Chapter 5 

5 CONCLUSIONS AND FUTURE WORK 

Two rendering approaches were benchmarked in this work, namely multi-pass 

forward shading and traditional deferred shading. The goal was to indentify how 

deferred and forward shading perform relative to each other in the following 

scenarios: 

 many small lights 

 many big lights 

 many big lights with shadows 

 many small lights and several shadow-casting big lights 

Deferred shading was faster in every test for any number of lights. As the number 

of lights increased, deferred shading provided a bigger advantage in performance. As 

expected, the gap in performance between forward and deferred depended on the 

lighting setup.  

For small lights, deferred shading provided the highest gain in performance over 

forward shading. In this scenario, per-light cost for deferred shading was very small 

and adding more light sources affected performance insignificantly, allowing high 

frame rate even with a hundred of lights. 

With big lights, the advantage lessened, but was still very large, roughly two times 

faster for a high number of lights. However, when big lights used shadows, although 

visible and substantial, the difference was not as dramatic as in previous cases. 
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In the scenario with many small lights and several big shadow-casting lights, the 

picture was almost the same as for big lights with shadows exclusively. Shadow map 

rendering dominated the cost in the whole lighting computation time budget. 

In summary, deferred shading was faster in every case and offered enormous 

benefits when rendering small light sources.  

We did not test some more advanced current approaches – tiled deferred and tiled 

forward rendering. These are expected to perform significantly faster than traditional 

techniques and will be tested in our future work. 

Another important item that didn’t make it into experiments is skinned meshes 

(animated characters), which would put a lot more pressure on vertex transformation 

stage and presumably skew results in favor of deferred shading even more. 

Also, results presented in this work were done on five year old mobile platform 

hardware. It would be useful to run the same tests on current desktop-class hardware 

and see if same behavior is observed. 
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