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ABSTRACT 

Orthogonal matching pursuit (OMP) is one of the most effective techniques to 

recover a sparse signal from limited number of measurements. However, when the 

number of measurements necessary is very large recovering the sparse signal would a 

challenge for CPU. 

In this thesis we aim to improve the performance of large array reconstruction by 

using parallel computing technology. We use Open Computing Language (OpenCL) 

in implementing parallel OMP in CPU and GPU. We also make some modification 

in pseudoinverse algorithm (i.e. using QR decomposition instead of naive matrix 

inverse) to improve the robustness of the implementation. 

To examine the performance and quality of implementation, we consider signals of 

four different sizes (i.e. small, medium, large and massive) and evaluate the results. 

We can obtain better performance (over 2 times faster) for signals of large and 

massive sizes in terms of the speed and accuracy of the reconstruction. 

Thanks to portability of OpenCL, the proposed implementation can be run on all kind 

of devices such as embedded devices, smart phones, and laptops. 

 

Keywords: Compressive Sensing, Orthogonal Matching Pursuit, OpenCL, Graphic 

Processing Unit, Central Processing Unit 
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ÖZ 

Dik Eşleştirme Takib tekniği, sınırlı sayıda ölçümlerden bir seyrek sinyal kurtarmak 

için en cazip tekniklerinden biridir. Ancak, bu sınırlı sayıda ölçümlerin pek çok 

olduğu zaman, orijinal sinyal kurtarma işi CPU için çok zor olacaktır. Bu tezde 

önerilen yöntem, CPU tarafından kurtarılması zor olan büyük sayıda olan ölçümler 

için iyidir. 

Bu tezde, Heterojen bilgisayar teknolojisini kullanarak, büyük miktarda olan 

ölçümlerin hızlıca hesaplanması için yeni bir yöntem öneriyoruz. Bu son teknolojinin 

gücünü kullanmak için, bize ölçümleri işlemekte tüm kaynakları kullanmak için 

OpenCL yi kullanıyoruz. 

Deneylere göre, işlem hızında hemen hemen üç kat iyileştirme vardır. Ayrıca bu 

hesaplama deneyi bize küçük bir hata ile çok net bir sonuç verebilir olduğunu 

gösteriyoruz. Eğer OpenCL yeni atom fonksiyonunu kullanırsak, kata yakın daha 

hıza ulaşmamız mümkün olacaktır. Ayrıca, en yüksek performans elde etmek için 

daha hızlı bir donanım kullanmak da mümkündür. 

Önerdiğimiz yöntem ile, gömülü cihazlar, akıllı telefonlar ve dizüstü bilgisayarlar 

gibi her türlü cihazları çalıştırmak için OpenCLyin taşınabilirliğinden 

yalarlanabiliriz. 

Anahtar Kelimeler: Ortogonal Eşleştirme Takip, OpenCL, Grafik İşleme Birimi, 

Merkezi İşlem Birimi 
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Chapter 1 

INTRODUCTION 

This chapter provides the motivation and aim of our study. It also gives an outline of 

this thesis. 

1.1 Motivation and Thesis Object 

Around 2004 Candes, Tao and Donoho found important results to reconstruct the 

image from deemed insufficient amount of data [1][2]. 

The phrase of compressed sensing comes from the problem of realization of sparse 

signal x using a few linear measurements that possess incoherent properties. This 

technique usually uses tremendous resources to acquire large signals, so it takes a 

long time to process. The main question then is whether or not we can reduce the 

time of this process. We have two choices for this purpose. 

The first choice to achieve better processing time is to change the method of 

calculation of reconstructed signal (i.e. orthogonal matching pursuit, matching 

pursuit,...). This way has its own downside like complexity of codes and formulas. 

Also, for a large amount of data this would not guarantee that computational device 

gives us better performance. 
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The second method is to change the way of processing. It means that instead of using 

traditional sequential processing, one can use heterogeneous processing (parallel 

processing) to process the large amount of data. It would be helpful for us to 

calculate a huge amount of data in a parallel way and also gives us a great 

performance. 

The objective of this research is to improve the performance of large array 

reconstruction by using the mentioned methods introduced i.e., orthogonal matching 

pursuit (OMP) in parallel processing. In this study Computing Language (OpenCL) 

has been used for implementing these methods. They have been modeled over the 

computational resource of the computer. It is expected to have an improvement in 

calculation performance of large array signal, especially in term of computation time. 

1.3 Thesis Overview 

This thesis is consisting of our main chapters: chapter two introducing 

reconstruction-method and its materials, analyses the existent algorithms and 

compares the obtained results of implementations. It begins with some basic 

concepts of compressed sensing(݈଴-norm, measurements, restricted isometry 

property and mutual coherence), it then presents the reconstruction method (OMP) 

with an example; OpenCL software, and AMD GPU architecture are introduced. 

Chapter three contains anaïve implementation of OMP algorithm by using QR 

decomposition instead of computing pseudo-inverse to solving least square problem. 

This implementation helps improve stability of solving least square problem and 

reduces the computation time. Moreover, the speed improvement in solving least 

square problem, speedup of in matrix product for argmax; result in a fast 
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reconstruction process. The ViennaCL library is used in implementing this algorithm 

on the high performance processors.  

Chapter four presents the implementation results for four different sizes of signals 

(small, medium, large and massive). Based on the experiment results of this thesis, In 

the case of small and medium size there is no significant difference between CPU 

and OpenCL implementation. But, for the massive and the large array the 

improvement two times in speed is observed. Also, results in terms of complexity of 

calculation and improvement in the algorithm are discussed. At the end conclusion 

and future works are given. 
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Chapter 2 

BACKGROUND  

2.1 Compressed Sensing 

Compressive (or compressed) sensing is a framework for signal reconstruction from 

a measurement vector which is assumed to be smaller in size than the Nyquist-

sampled signal vector and that this signal vector is inherently sparse (most of the 

signal vector components are zero). The measurement acquisition process is 

described by a matrix multiplication with a fat sensing-matrix and thus the 

reconstruction problem is an under-determined system of linear equations. The 

challenge in compressive sensing lies in two main things: 

Firstly, how to produce measurement vector in practice and secondly, based on 

known the measurement vector and measurement matrix, how to find the correct 

underlying sparse signal vector. The theory behind compressive sensing is based on 

the observation that many natural signals, such as sound or images can be well 

approximated with sparse representation in some domain. For example, it turns out 

that most of the energy in a typical image signal is preserved within the 2% to 4% 

dominating wavelets [1][2][3]. 

This chapter is divided into three important parts. In part one: we introduce the 

compressive sensing problem and formulas. In part two: we will talk about the 
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method of recovery of signal. In part three we introduce OpenCL structure and the 

relevant information. 

To introduce compressed sensing problem first we need to define “݈଴-norm” 

Definition 1: “݈଴-norm” [1] 

݈଴-norm (‖ݔ‖଴ ≜	Number of nonzero components of signal x) (1.1) 

 

݈଴-norm is not a true norm because it does not have absolute homogeneity (∀ߙ ≠

ݔ∀	݀݊ܽ	0 ≠ 0, ‖ݔߙ‖ =  property. We abuse ݈଴–norm name to say the vector (‖ݔ‖|ߙ|

x is sparse: when the size of x is much larger than its݈଴-norm. Indeed we say x is k-

sparse if  ‖ݔ‖଴= k<<N,  where N is the size of vector x. 

Definition 2: “Measurements” [1] 

To find the sparse signal x, we can use measurement y, the measurement-matrix A 

and under-determined set of equations as[1] 

ݕ = 	ݔܣ	 + 	݁								A ∈ ℝெ௫ே	, x ∈ ℝே		, y ∈ ℝெ	 (1.2) 

The Gaussian noise (e) is a member of ℝெ	 which represents some measurement 

noise. Note that, sparsity level (k) in x is smaller than M (k<M<N). 

In this thesis, we will construct A by picking individual elements independently. This 

is not a common assumption, but it will simplify the notation. Performance of 

reconstruction of signal x depends on A and e. 
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To find how good a matrix A is in compressive sensing measurement (to construct 

and reconstruct), we introduce two fundamental properties of matrix-measurement A, 

namely, mutual coherence and restricted isometry property (RIP). 

Definition 3: “Restricted Isometry Property” [10] 

Matrix A fulfills the restricted isometry property with	ߜ௞ if 

ଶଶ‖ݔ‖(௞ߜ−1) ≤ ଶଶ‖ݔܣ‖ ≤  ଶଶ (1.3)‖ݔ‖(௞ߜ+1)

Holds for any k-sparse signal x, where ߜ௞ > 0 is the smallest value to satisfy the 

inequality mentioned (1.3). Matrix A is the transformation matrix between two 

spaces of measurements and signal, where the size of signal is much larger than that 

of the measurements [1]. It characterizes the change of Euclidian norm of x by 

transformation of A, or if we consider two elements from x RIP can be interpreted as 

distance change between those two elements by the transformation of A.  

Consider two signals x1 and x2, which are transformed noiselessly by transformation 

matrix to two measurement y1 and y2 as shown in Figure 2.1. By finding the 

distance of two elements in the metric space, we can find this relation     

ଵݕ‖ − ଶ‖ଶଶݕ

ଵݔ‖ − ଶ‖ଶଶݔ
=
ଶଶ‖ݔܣ‖

ଶଶ‖ݔ‖
 

(1.4) 
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Figure 2.1: Transformation between Two Spaces 

Based on (1.3) and (1.4), we determineߜ௞. This is an upper- and lower bound of 

change in Euclidian distance of A. 

RIP is used in theory to characterize the recovery performance of compressive 

sensing, but in practice finding a RIP is challenging. It happens because of the 

difficulty of findingߜ௞. In practice instead of RIP, we can use mutual coherence. 

Definition 4: “Mutual Coherence” [3] 

Let ܽ௜ and ௝ܽ be columns of transformation A. Then, we can define mutual coherence 

by of A by 

(ܣ)ߤ																				 ≜ sup{	ห〈ܽ௜ , ௝ܽ〉ห:∀݅, ݅	hereݓ,݆ ≠ ݆}									 (1.5) 

 

 
 ଵݔ

 ଶݔ

ଵݕ

 ଶݕ

A 
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2.1.2 Data Reconstruction   

In data reconstruction, the problem is to find vector x based on matrix A and 

measurement vector y [12]. There is no obvious formula to find the answer to this 

problem. A natural attempt is to solve least squares problem 

	min
௫ො
ොݔܣ‖ −  ଶଶ (1.6)‖ݕ

However, this problem has infinitely many solutions (because of matrix A is of 

column-rank deficient). Instead, the knowledge of sparsity should be used to find the 

answer. We can solve the problem based on this constraint  

	min
௫ො
 ො=y      (1.7)ݔܣ ො‖଴ such thatݔ‖

 

2.1.2 Approaches 

There is a different approach to solve this problem ݈ଵ-minimization approach and 

Greedy pursuit.  

݈ଵ-minimization 

The ݈ଵ-minimization approach in most cases based on RIP can recover exact k-sparse 

vector x. But this approach does not have linear bound (RIP problem) on the runtime, 

Moreover, the speed is usually not optimal. 

Greedy pursuit 

Another approach to reconstruct vector x is greedy pursuit. “Greedy pursuit means 

iterative signal recovery algorithm to calculate the support of signal, and it makes the 

locally optimal choice at each time to build up an approximation and repeats until the 
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criterion fulfilled” [3]. Orthogonal matching pursuit (OMP) is one of the greedy 

algorithms for recovering signal. Before introducing of OMP method, we recall the 

solution to the least square problem in OMP. 

Least square estimation 

Least square estimation is one of the main tools for many greedy pursuit algorithms. 

The full compressive sensing problem could not be solved with LSE because that 

problem represents an under-determined set of linear equations from which it is not 

clear which solution to choose. However, suppose one accurately detects the true 

support-set ݏ of x, then it is in the noiseless case straight-forward to see that 

Ax=ܣ௦ݔ௦. Here, y=ܣ௦ݔ௦ represents an over-determined set of linear equation, to 

which least square can be used to find a unique solution. By limiting ourselves to 

findݔ௦, we can then reconstruct the full x by padding zeros in the remaining 

positions. 

A least square estimation ݔො௦ of x is given by the following problem 

	min
୶ො౩

ݕ‖ −  ො௦‖ଶଶ (1.8)ݔ௦ܣ

In this thesis we are only interested in case where ܣ௦ has full column rank, in which 

case the result can be obtained from  

ො௦ݔ = ௦ܣ) =ݕା(௦ܣ)
௦ܣ௦)ିଵܣ்

்y                                        (1.9) 

In practice we don’t have access to the true support-set ݏ of x but an estimatêݏ 

instead. Note that by further multiplying the result with ܣ௦ gives the orthogonal 

projection of y, denote by	ݕ௣, onto space spanned by columns of	ܣ௦. 
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2.2  Orthogonal Matching Pursuit (OMP) 

Orthogonal matching pursuit is a greedy algorithm for recovering signal. Mallat and 

Zhang[4] proposed this algorithm and Gillbert and Tropp [5] analyzed it. Assume 

signal vector x is a k-sparse signal, and A is measurement matrix by 

columns	ܽଵ ,ܽଶ , … , ܽே.And we have M-dimensional measurement vector y (ݕ =  .(ݔܣ

Signal x has only k non-zero component so y can be defined as a linear combination 

of k columns from A. The most critical part to recover a signal is to find a location of 

these nonzero components of x. It is critical to determine which column in matrix-

measurement A participates in vector y [2]. OMP is a greedy algorithm that picks the 

columns from matrix A by finding maximum correlation between the columns and 

the residual of y. In every iteration, for the support of signal x one coordinate would 

be calculated. When iterations reached the sparsity level(i.e.k), the entire support of 

signal can be identified. 

The OMP algorithm has four steps in each iteration: 

(1) Choose the index ߚ௜ by finding the largest correlation between { ௝ܽ}ଵேand residual 

of y. 

(2)Unite the chosenߚ௜ with the index set	 ௜ܵ = [ܵ௜ିଵ	ߚ௜], and ܽఉ೔with matrix 	ܣ௜ =

 .(0is an empty setܽ)[௜ିଵܽ௜ܣ]

(3) Use the LSE (more detail after the algorithm) to find the projection of y on to the 

range of matrix-measurement column	ܽ௜. Thus the residual of y is always orthogonal 

to	ܣ௜. 
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Figure 2.2: Least Square Method 

(4) Calculate the new residual of ݎ௜ and do this process while we reach to k. 

Once we found S (support of signal x), then we can calculate the approximation of 

signal ݔො by	ݔෝ =  Table 2.1 gives the algorithm of orthogonal matching.ݕା(௦ܣ)

pursuit. 

Table 2.1Algorithm of OMP 
Input: Measurement-matrix A, Measurement y, Sparsity level k of signal vector x 

Output: Index set ܵ, Measurement estimate ߠ௜, residual ݎ௜ ( i = 0,1,…,k ) 
૙࢘ = ,࢟ ૙ࡿ	 = ∅, ࢏ = ૙ 

While ࢏ ≤  ࢕ࢊ	࢑

࢏  .1             = ࢏ + ૚ 

࢏ࢼ  .2             = argmax{࢐ୀ૚,…ࡺ}ห〈ି࢏࢘૚  ห〈࢐ࢇ,

࢏ࡿ  .3             = 	 ૚ି࢏ࡿ ∪  {࢏ࢼ}

࢏࡭  .4             =  ൧࢏ࢼࢇ૚ି࢏࡭ൣ

࢏࢞  .5 = 	argmin࢞࢏࡭‖࢞−  ૛‖࢟

࢏ࣂ   .6             = ,࢏࢞࢏࡭ ࢏࢘ = ࢟ −  ࢏ࣂ

End while 

 
 

For better understanding the principle of OMP, we provide a simple noiseless 

example [12]. Assume the following data is given: 

௜ߠ = ܽ௜ݔ௜ = Pro݆௔೔ݕ 

ܽ௜  
y 
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A=ቀ0.4033 0.3257 −0.0198
0.9150 0.9455 −0.9998ቁ,     y=ቀ 0.9307

−0.4271ቁ. 

The corresponding signal- and measurement space are shown in Figure 2.3, where in 

Figure 2.3b, the sought signal x (in gray) is shown as a reference. In Figure 2.3a, the 

column vectors	ܽଵ,ܽଶ and ܽଷ from A, the measurement vector y in red is given.  

Starting OMP, the initialization phase of the algorithm is executed: 

i=0, ݎ଴=y and ܵ଴=∅ . It then proceeds to the first iteration: 

Step 2, i=1 and in step 3 the residual vector ݎ଴ is correlated with every column-vector 

in A: 

ቀ0.4033=ݕ்ܣ=଴ݎ்ܣ  0.3257 −0.0198
0.9150 0.9455 −0.9998ቁ

்
ቀ 0.9307
−0.4271ቁ =൭

0.7662
−0.1007
0.4086

൱ . 

 

 

(a) Measurement Space ℝଶ	(b) Signal Space ℝଷ	 

Figure 2.3: The Signal and Measurement Space during First Iteration 
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Consequently, the index corresponding to the maximum in amplitude value is chosen 

by argmax (…) and found to be r=1. We can verify the result by studying Figure 

2.3a. where we see that the index corresponding to the vector ܽଵgives the smallest 

angle	߮ଵ. 

Step 4 in algorithm one, the support set become ܵଵ = 	 ܵ଴ ∪ ∅={ଵߚ} ∪ {1}={1} 

In the final step we find new residual-vector by finding LSE:	ݔଵ = 	argmin௫‖ܽଵݔ −

,ଶ‖ݕ θଵ = aଵxଵ, rଵ = y − θଵwhere θଵ=[0.3090	,−	0.7011]் andnew residual 

is	[0.6217	, 0.2470]୘which is shown in Figure 2.3a 

The first iteration now we can show howݔොwould look like in signal space if the 

algorithm stopped here. One point with ݔොଵ at this stage is that we can verify that 

OMP found the dominating base vector ݁ଵ of x. We now proceed to the second 

iteration in figure 2.4. 

Step 2 of this iteration i =2. 

 
(a) Measurement Space ℝଶ	(b) Signal Space ℝଷ	 

Figure 2.4: The Signal and Measurement Space during Second Iteration 
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Step 3 of this iteration the residual vector ݎଵ is correlated with every column-vector 

in A:  

ଵ =ቀ0.4033ݎ்ܣ 0.3257 −0.0198
0.9150 0.9455 −0.9998ቁ

்
ቀ 0.9307
−0.4271ቁ = ൭

0.000
0.4615
−0.2862

൱ . 

Now we can see the first element is zero because of 	ݎଵ is orthogonal to ܽଵ. Thus 

argmax gives r=2, which can be verified in Figure 2.4as the index corresponding to 

the vector	ܽଶ. Step 4 of this iteration tells ܵଶ = 	 ܵଵ ∪ 1={ଶߚ} ∪ {2}={1,2}. Then, in 

the last step we find new residual vector via least square ݔଶ = 	argmin௫‖ܽଶݔ −

ଶandθଶ‖ݕ = aଶxଶ , rଶ = y − θଶ where θଵ=[0.9307	,−	0.4271]் andnew residual 

is	[0.000	, 0.000]୘. 

The second iteration of OMP is now finished and we note that the estimated ݔො is a 

perfect recovery of x. 

This example gives us a good idea of recovery of signal based on LSE and 

orthogonal matching pursuit. In the next part we will talk about the structure of 

OpenCL and how the program executes in OpenCL. 

2 .3 OPENCL (Open Computing Language) 

Nowadays, computers, handhelds and embedded computer industry often have a 

highly parallel computing power such as multi core CPUs (central processing unit) 

and GPUs (graphic processing unit)[5]. This power helps software developers to use 

full advantage of heterogeneous processing. Indeed, OpenCL attempts to give the 

developers an ability to use the parallel computing power. It includes libraries, an 

Application Programming Interface (API), a language and a runtime system to help 
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software development on all OpenCL supported devices. It is a subset of the C99 

standard [6]. 

2.3.1 Platform Models 

The platform model of OpenCL is shown in Figure 2.3. As in the figure the host (like 

CPU) is connected to many OpenCL compute devices (like Multi-GPU). Every 

compute device contains many Compute Units. Each compute units is divided into 

many processing elements, and this is where the actual processing takes place. 

 

Figure 2.5: OpenCL Platform Models[6] 

2.3.2 Execution Model 

We can separate execution of OpenCL program to two main parts:1) host code which 

runs on the host device like CPU, and 2) device code which runs on compute 

devices. Indeed, the host code defines the context of device code,it also manages the 

execution of code [5]. Every device code contains some kernels. The kernel is the 

place of actual processing. OpenCL uses two level hierarchical models to divide the 

work-items, likes CUDA programming framework. NDRange is an N-dimensional 
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space of workgroups, which defines the execution of a kernel on a device. The 

number N can be between one to three-dimensional. Each work-group also consists 

of N dimensional space of work-items. The actual processing happens in the work-

item, which is mapped on the processing element. 

 

Figure 2.6: OpenCL Execution Model[6] 

2.3.3 Memory Model 

Figure 2.7shows the memory model used inside a compute device. The execution 

model is mapped onto this model. Any workgroup is mapped to compute unit, and 

work-item runs on a Processing Element (PE) [5]. Work-items access to different 

memory regions like Global memory, Constant memory, Local memory and Private 

memory. All work-item and work-groups are permitted to read and write from global 

memory. The Global memory has a Constant memory region, which remains 

constant during the execution of the kernel. Also, local memory region is just 
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accessible for work-items inside the same work-group. Sometimes, depending on the 

capabilities of devices, local memory would be mapped onto some dedicated 

memory region or, if there was no available local memory there, it would be mapped 

onto the global memory. Each work-item has its own Private memory that is not 

available to the other work-item. 

 

Figure 2.7: OpenCL Memory Models[6] 

2.3.4 OpenCL Program Structure 

Every program follows these steps to run. At first the host by using OpenCL API, 

queries the system for OpenCL support. Then, it selects the target device for running 

OpenCL kernel [5].After that, a context will be created for OpenCL runtime to 

manage objects like memory, program and kernel objects. Command-queue is part of 

context which is used for operations on the objects. Then, OpenCL kernel code read 

and compiled into a binary code file. The OpenCL ICD(installable Client 

Driver)checks that the kernel is compiled for chosen target. Next step, the data for 
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kernel will be copied to the target device. When this operation happened the host will 

stall and wait for kernel to be finished. At the end the result will be copied back to 

the host. 

 

Figure 2.8: OpenCL Program Flow[6] 

2.3.5 AMD Architecture 

The first cards of the Radeon HD 6850 series were launchedinOctober22, 2010. 

Performance is differentiated between the GPUs by the number of SIMD arrays each 

GPU has, the core clock speed, the memory bus width and the number of texture 

units and Render Output Units(ROP) [21].A GPU consists of 12 compute units (also 

called SIMD Engines) and each compute unit comprise 80 stream cores, which 

consists of four processing elements, depending of the GPU model. See Figure 2.9 

for a diagram of the GPU architecture and Figure 2.10 for a diagram of a stream 

core. All the stream cores within a compute unit will perform the same instruction in 
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a lock-step fashion, at each cycle. A VLIW6 is utilized to issue the instructions to the 

processing elements. All of the processing elements can perform single-precision 

floating point operations.  

Every compute unit has 32 kB of local, on-chip memory called local data share 

(LDS) and a 8 KB L1 cache. L2 cache is shared by several compute units. The local 

data share is divided into 32 memory banks, which are four bytes wide and 256 bytes 

deep [22]. One memory operation can be performed for each bank each cycle, but if 

more than one operation is map into the same memory bank, a bank conflict occurs 

and the operations are serialized. A compute unit also has 256 kB of available 

registers. The register space comprises 16384 general purpose registers, where one 

register contains four 32-bit values. 

 

Figure 2.9: Radeon HD6850Architecture. [16] 
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Figure 2.10: Radeon HD6850Architecture. [23] 

2.3.6 OpenCL Running on AMD GPU 

When work-items are executed on a GPU, they are grouped together in wave fronts. 

A wave front consists of 64 work-items, that are executed in lockstep on a compute 

unit. Every work-group is divided into an integer number of wave fronts and to 

achieve optimal performance, the number of work-items within a work-group should 

be divisible with the wave front size [22]. 

As a kernel is being executed, a work-group is assigned to a single compute unit and 

a work-item runs on a stream-core. Four work-items from the wave front being 

executed are pipelined on one stream core to hide memory latencies. At each cycle, 

16 of the work-items in a wave front execute one instruction. When a wave-front is 

looked at as a whole, this give the appearance that one instruction is executed every 

four cycles. If the executions paths of work-items within a wave front diverge, their 

executions are serialized. 

The use of private memory in kernels will map the general purpose registers as long 

as the capacity allows (Figure 2.10). If more memory is required, the compiler will 
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solve this by generating spill code, and move remaining blocks over to general 

memory. 

2.3.7 ViennaCL 

The Vienna Computing Library (ViennaCL) is a scientific computing library written 

in C++ and based on OpenCL. It allows simple, high-level access to the vast 

computing resources available on parallel architectures such as GPUs and is 

primarily focused on common linear algebra operations (BLAS levels 1, 2 and 3) and 

the solution of large systems of equations by means of iterative methods with 

optional preconditioned [24]. More relevant information is given in chapter 3. 
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Chapter 3 

PROPOSED APPROACH AND ALGORITHM 

3.1 Approach 

In any OpenCL application we have two parts. The first part is OpenCL C kernel, 

which defines the computation for a one instance in the index space, and the second 

part is C/C++ host program that uses API for configuring and managing behavior of 

kernel and execution of kernel. 

In this thesis, we use ViennaCL to implement OMP over the high performance 

device. ViennaCL is C++ template which manages the execution of kernel. Also, It 

selects the high performance device. Indeed ViennaCL is an OpenCL API which do 

most of process mentioned in chapter 2such as automatic execution of kernel.  

In this chapter our main emphasize is to introduce the algorithms and in the net 

chapter we specifically look on some devices and the performance of 

implementation. 

3.1.1 Function of ViennaCL 

The main focus of ViennaCL is on linear algebra operation. Also, ViennaCL uses 

unified layer to access OpenCL under the hood. To use this library we must know its 

function and how to use this function. Table 3.1 gives important functions that we 

want to use in this thesis. 
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Table 3.1 Table Functions 
Function name application 

Viennacl  This the main name space for all library 

Viennacl::linalg Namespace of all linear algebra 
operation 

Viennacl::linalg::norm_2 Function to get norm two of vector 

Viennacl::linalg::prod Function to dot product of matrix or 
vector 

Viennacl::linalg::inner_prod Function to inner product jest to vector 

Viennacl::copy Function to copy data between CPU and  
GPU 

Viennacl::inplace_QR Function to find RHS 
 

Viennacl::Custom kernel Use this for optimize performance 

Viennacl::inplace_solve Function to find the least square  

 

3.1.2 Generating Data for OMP 

In the compressive sensing experiment, the first thing is to construct sparse signals. 

So, we create one-dimensional signal by putting few nonzero value coefficient in it. 

Choosing places of these values happen randomly. These values are generated from 

normal distribution probability. To implement the signal we use ublas(C++) library. 

The code is given in Table 3.2 and Figure 3.1 shows a generated signal. 
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Table 3.2: Generate Sparse Signal 
 
std::fill(signal_cpu.begin(),signal_cpuend(),0); 

for (inti=0;i<sparse;i++){ 

intindx=(std::rand()%n_component); 

indice(i)=indx; 

signal_cpu(indx)= randgauss(-20,20);”////put random number in random place 

viennacl::fast_copy(signal_cpu,signal);   ////copy the signal into high 

performance 

            

 

Figure 3.1: Generated Sparse Signal 

This was the algorithm that makes a sparse signal. Figure 3.2 gives of process in 

detail. 
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Figure 3.2 Generate and Copy Data 

3.1.3 Generate Normalize Dictionary 

According to Zhangand Mallat [3] to get stable result the dictionary must be 

normalized. Thus, we generate dictionary by dimensions of our signal and 

measurements. After that we extract its columns as vector and divided those by norm 

2 of each vector to get normalize vector. Then, vectors must be rejoined together to 

make a new normalized dictionary. This process can be done by the set of codes in 

Table 3.3. In Figure 3.2 depicts one generated dictionary 

 
 
 
 
 
 
 
 
 
 
 

 

Random position 
selector  

Copy data from 
host to device 

Random Number 
generator 



26 
 

Table 3.3: Generate Normalized Data 
boost::numeric::ublas::scalar_value<float> h1; 

for (int i1 = 0; i1 < n_component;i1++){ 

v_cpu=(boost::numeric::ublas::column(dictionary_cpu, i1)); 

h1=(boost::numeric::ublas::norm_2(v_cpu)); 

v_cpu =(1/h1) * v_cpu;                                     ////multiply of vector to inverse 

norm 

 (boost::numeric::ublas::column(dictionary_cpu, i1))= v_cpu;} 

viennacl::copy(dictionary_cpu,dictionary);      ////copy the Dictionary into hp 
 

 

               

Figure 3.3: Generated Dictionary 

The same process as Figure 3.2 happens for generating data. First, the data is 

generated in host then it is copied to the device. 
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3.1.4 Generate Measurements 

Based on chapter 2 to create reliable measurement we need to have some idea of the 

RIP or mutual coherence. To obtain measurement of the signal, dictionary must be 

multiplied by the signal. This process happens in the high performance device. 

Linear algebra features of using ViennaCL can easily do the task. See Table 3.4 and 

Figure 3.3 for codes and outputs. 

Table 3.4: Generate Measurement 
////create measurment 
 
#include <viennacl/vector.hpp> 
 
m = viennacl::linalg::prod(dictionary,signal); ////m is our measurement in hp 

 

Figure 3.4: Generate Measurements 

 

 

 

X = 
Generated  

Dictionary 

Measurements 

Signal 
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Figure 3.5 is given to show the process of the matrix vector production on device. 

Figure 3.5 Matrix-Matrix multiplications 

3.2 Implement of Orthogonal Matching Pursuit 

Now we describe the details of the implementation of OMP: 

Step1.In step one of implementation of OMP recovery we must set the condition to 

recovery of the signal. This condition is the level of sparsity (k) of signal or an 

upper-bound number of the non-zero coefficient of signal. Then, we should find the 

maximum correlated atom of dictionary. To do so we choose the index ߚ௜ by finding 

the largest correlation between { ௝ܽ}ଵே and residual of y. in this implementation by 

using for loop and using indexerwe can to find the argmax. The complexity of this of 

this step is O(ܯ × ܰ).  
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Table 3.5: Argmax code 

 

Figure 3.6 New Dictionary after k iteration 

The same process as Figure 3.5 is used in this algorithm. 

After k iterations we have new dictionary that obtain columns from each of these 

iteration. See figure 3.4 for an illustration. 

z=viennacl::linalg::prod(trans(dictionary),residual); 

//std::cout<<z<<std::endl; 

viennacl::fast_copy(z,killer); 

for (int i=0;i<n_component;i++){ 

killer[i]=fabs(killer[i]);} 

float elem=*std::max_element(killer.begin(),killer.end()); 

//std::cout<<elem<<std::endl; 

intpos = std::find(killer.begin(), killer.end(), elem) - killer.begin(); 

indcol(j)=pos; 

viennacl::range col(pos,pos+1); 

viennacl::range col1(j,j+1); 

viennacl::project(new_dictionary,all_row,col1)=viennacl::project(dictionary,all_row,

col);   ////reweight dictionary 

[ ] …

 a1        a2         a3              aN 

 Dictionary 

[ ] …

 a3        a1         a4                 ak 

 new_Dictionary 

 => 
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Step2.This step is the most important step in the whole recovery of signal. By using 

the new dictionary and solve optimization problem of below we can estimate the 

signal. The most difficult thing in this method for the computation of signal is matrix 

inverse of the dictionary, in solution the LSE problem: ࢏࢞ = 	argmin࢞࢏ࢇ‖࢞ −  ૛to‖࢟

solve the above optimization problem we can use pseudoinverse. 

																																																									ܵ௜ =  (3.1) ݕ	௜்ܣଵି(௜ܣ௜்ܣ)

this method is computationally expensive and also for large scale of data it tends to 

be unstable. So to find the answer of this equation we need to find more stable also 

less expensive method. Onesuch method is called QR decomposition. 

Step2.1.QR factorization is a method that uses Gram-Schmidt to make Q and R such 

that where Q is orthogonal and R is upper triangular matrix [7]. 

By using QR decomposition we can find the answer of least square problem as: 

௜ݔ																																																					 = ܴ௜ିଵ்ܳ
௜ݕ																																																																(3.2)  

Just by using upper right hand side of new dictionary we can get the estimate signal 

to implement it in the OpenCL device. We must define Gram-Schmidt kernel at first. 

Then, vectorize the matrix as before and put that vector in that kernel then make new 

right hand side matrix after that. At the end are must inverse this matrix and then do 

perform of the product to new dictionary with the measurement. 

Note that ViennaCL has a very fast and good template to find QR decomposition of 

matrix. thus, to implement our problem over high performance device we use this 

template as it is shown in Table 3.6Based on QR decomposition the complexity at 

this level is O (ܯଷ).Another important thing in calculation of Q and R is setting up 
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block size for parallel computing which is implemented by find the auto_block size 

code in Table 3.6. 

 

Figure 3.7 QR Decomposition Hybrid Method 
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Table 3.6 Least Square  
std::vector<float>hybrid_betas = viennacl::linalg::inplace_qr(help,1024); 

//std::cout<<help<<std::endl; 

// compute modified RHS of the minimization problem: 

// b := Q^T b 

viennacl::linalg::inplace_qr_apply_trans_Q(help, hybrid_betas, vcl_b); 

viennacl::range         vcl_range(0,j+1); 

viennacl::matrix_range<VCLMatrixType> vcl_R(help, vcl_range, vcl_range); 

viennacl::vector_range<VCLVectorType> vcl_b2(vcl_b, vcl_range); 

// Final step: triangular solve: Rx = b'. 

// We only need the upper part of A such that R is a square matrix 

viennacl::linalg::inplace_solve(vcl_R, vcl_b2, viennacl::linalg::upper_tag()); 

gama=viennacl::linalg::prod(new_dictionary,vcl_b2); 

 

Step3. The important thing that we get in step 2 is that we find the orthogonal 

projection of dictionary over measurements, and because of that we call this method 

orthogonal matching pursuit. At the end we must re-update the residual to find the 

next correlated column.  

 

 

 



33 
 

Chapter 4 

PERFORMANCE AND RESULTS 

In this chapter, the experimental results and performance are presented. We first 

describe the environment of test we then give results of our experiment. 

4.1 Environment of Test 

This test includes two different high performance devices. Both devices are on the 

same platform. The first device is GPU from advanced micro devices 

(AMD),codename BARTS with 12 compute units and 1024 MB global memory and 

The second device is Intel® core 2 Dou dual Core CPU with 4096 MB RAM size. 

All programs were compiled in Eclipse IDE by G++ compiler in LINUX operating 

system. The specifications of both devices are showed in Table 4.1.  

Table 4.1: High Performance Device Specification 
Property AMD 6850 Intel core 2 Dou4500 
Graphic Bus Technology PCI-

Express16X 
NA 

Memory(MB) 1024 4096 

Core Clock(MHZ) 775 2400 

Compute Unit 12 2 

Stream processor 128 NA 

Memory Bandwidth(MHZ) 134400 6400 

 

 



34 
 

4.2 Test Data and Evaluation 

Various sparsity levels are chosen, and for each level k, the minimum acceptable 

measurement number M is decided [7]. Table 4.2 provide all the data used in our 

experiment.  

Table 4.2: Size on Testing Signal 
N(signal size) M (measurement size) k (Sparsity Level) 

Small Signal 

Size 

1024 

 

60 4 

120 8 

240 16 

360 28 

Medium Signal 

Size 

2048 

240 8 

360 16 

512 24 

768 32 

Large Signal 

Size 

4096 

512 16 

768 24 

890 32 

2048 64 

 Massive Signal 

Size 

16384 

768 32 

1024 64 

1536 78 

2048 256 
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The performance of OMP implemented in OpenCL will be evaluated against that of 

CPU implementation in forms of the time and accuracy. 

4.3 Challenge of Bandwidth 

The biggest issue in running the OpenCL software or any high performance language 

is a time of transfer data between graphic card global memory and the RAM. 

Because of this problem we decide to introduce new solution. In this solution we 

decide to run some of functions which have a very poor performance on the GPU on 

a CPU. This is type of heterogeneous computing. For this reason first of all we load 

all dictionary, signal and measurement on both CPU and CPU then, We just set 

indexer and send it to device choose column to process and save it in device then at 

the end load the data into RAM to view these result. 

4.4 Results for Signal of Small Size 

We now in this section give test results speed for signal of small size (N=1024): 

 

Figure4.2: Execution Time CPU-OpenCL for Small Signal (N=1024) 
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Figure 4.2shows the execution time for OpenCL and CPU implementation. 

We see that for small size array of signals there is little difference between using 

OpenCL and CPU. Table 4.3 gives information about the ratio in execution time. 

  Table 4.3: Speedup Ratio Small Signal (N=1024) 
M 
 

 (Measurements Size) 

k 
 

(Sparse Size) 
 

Ratio in Time 
 

OpenCL / CPU 

60 4 0.42 

120 8 0.92 
240 16 1.02 

360 28 1.03 

 

To show the results of this recovery input and output and error of signal plotted in 

Figures: 4.3 and 4.4. Table 4.4 gives performance of estimation. RMSE is calculated 

according to formula (4.1).  

RMSE = ଵ
√ே
ݔ‖ −  ‖ොݔ

 

(4.1) 

  Table 4.4: Recovery Error for Small Sizes Signal (N=1024) 
(M) 

 
Measurements 

 
 

(k) 
Sparse 
Level 

 

RMSE 
 

OpenCL 
 

RMSE 
 

CPU 
 

60 4 1.98e(-7) 2.06e(-7) 

120 8 4.56e(-7) 3.83e(-7) 

240 16 6.15e(-7) 5.06e(-7) 

360 28 1.15e(-6) 1.07e(-6) 
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Figure 4.3: Input, Recovered and Error Small Signal OpenCL 
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Figure 4.4 Input, Recovered and Error Small Signal CPU 
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To show the stability of algorithm and implementation we now add some Gaussian 

noise to the measurement. Figure 4.5 shows the noise by mean 0 and variance 1 

N(0,1). 

 

Figure 4.5 Gaussian Noise added to Measurements 

 
Table 4.5 gives the error with presentation of error by implemented method in this 

thesis, where the SNR is calculated as follows: 

SNR=20 log (
‖௫‖

‖௫ି௫ො‖
) 

 

(4.2) 

Table 4.5: Small Signal Error in Presentation of Noise by Given Implementation 
(M) 

Measurement 
 

(k) 
Sparse Level  

 

RMSE 
 

Percentage 
 

SNR  
 

dB 

60 4 2.16 67.41 

120 8 4.06 61.57 

240 16 9.01 56.07 

360 28 15.82 45.60 
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4.5 Results for signal of Medium Size 

In this part first condition for medium signal size will be checked. 

Figure4.6: Execution Time CPU- OpenCL Medium Signal (N=2048) 

We see that for medium size array of signals there is a same speed difference 

between using OpenCL and CPU. Table 4.6 gives information about the ratio in 

execution time. 

 Table 4.6: Speed up Ratio Medium Signal (N=2048) 
(M) 

 
Measurement 

 

(k) 
 

Sparse Level  
 

Ratio in Time 
 

OpenCL / CPU  
 

240 8 0.62 

360 16 0.76 

512 24 0.94 

768 32 1.06 
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To show the error of this recovery Figures: 4.7 and 4.8 are plotted. Table 4.7 gives 

error for all set of medium size signal. 

  Table 4.7: Recovery Error for Medium Sizes Signal (N=2048) 
(M) 

 
Measurement 

 

(k) 
Sparse 
Level  

 

RMSE 
 

OpenCL 

RMSE 
 

CPU 

240 8 1.37e(-7) 1.25e(-7) 

360 16 6.33e(-7) 5.92e(-7) 

512 24 7.45e(-7) 4.38e(-7) 

768 32 2.44e(-6) 1.83e(-6) 

 

When a Gaussian noise is added to the measurement. Table 4.8 gives output error in 

the presentation of noise. 

Table 4.8: Medium Signal Error in Presentation of Noise by Given Implementation 
(N=2048) 

(M) 
 

Measurement 
 

(k) 
 

Sparse Level  
 

RMSE 
 

Percentage 
 

SNR 
 

dB 

240 8 2.23 60.78 

360 16 6.86 55.31 

512 24 7.37 51.43 

768 32 13.05 43.38 
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Figure 4.7: Input, Recovered and Error Medium Signal OpenCL 
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Figure 4.8: Input, Recovered and Error Medium Signal CPU 
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4.6 Results for Signal of Large Size 

Time result for large signal size showed in Figure 4.9. 

Figure4.9: Execution Time CPU-OpenCL Large Signal (N= 4096) 

Figure 4.9 shows strength of parallel computing for large array of signal. It shows 

when computational complexity goes higher OpenCL will give a better performance. 

Table 4.9 shows the ratio of speedup. 

 Table 4.9: Table 4.6: Speed up Ratio Large Signal (N=4096) 
(M) 

 
Measurement 

 

(k) 
 

Sparse Level  
 

Ratio in Time 
 

OpenCL / CPU  
 

512 16 0.72 

768 24 1.24 

890 32 1.48 

2048 64 1.54 
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To show the error Figures: 4.10 and 4.11 are plotted. Table 4.10 gives error ratio for 

all large signals. 

  Table 4.10: Large Signal Size Error Ratio (N=1024) 
(M) 

 
Measurements 

 
 

(k) 
Sparse 
Level 

 

RMSE 
 

OpenCL 
 

RMSE 
 

CPU 
 

512 16 2.12e(-7) 2.83e(-7) 

768 24 4.83e(-7) 4.15e(-7) 

890 32 5.22e(-7) 4.48e(-7) 

2048 64 4.27e(-6) 2.13e(-6) 

 

A Gaussian noise is added to the measurement to show the robustness for large size 

signal. Table 4.11 gives output error in presentation of noise in dB. 

Table 4.11: Large Signal Error in Presentation of Noise by Given Implementation 
(N=4096) 

(M) 
 

Measurements 
 
 

(k) 
 

Sparse Level 
 
 

RMSE 
 

Percentage 
 

SNR  
 

dB 
 

512 16 2.86 66.09 

768 24 6.24 52.18 

890 32 7.02 50.90 

2048 64 7.56 50.71 
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Figure 4.10: Input, Recovered and Error Large Signal OpenCL 
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Figure 4.11: Input, Recovered and Error Large Signal CPU 
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4.7 Results for Signal of Massive Size 

Massive size of signal compared results shown in Figure 4.12. 

Figure4.12: Execution Time CPU-OpenCL Massive Signal (N=16384) 

Figure 4.12 showed that OpenCL completely outperform CPU in calculation. Table 

4.12 gives the ratio of speedup. 

 Table 4.12: Massive size Signal Speed up Ratio (N=16384) 
(M) 

 
Measurements 

 

(k) 
 

Sparse Level 
 

Ratio in Time 
 

OpenCL / CPU  
 

768 32 1.89 

1024 64 1.49 

1536 78 1.48 

2048 128 2.60 
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To show the error Figures: 4.13 and 4.14 are plotted. Table 4.13 gives error ratio for 

all massive signals. 

  Table 4.13: Massive Signal Size Error Ratio (N=16384) 
(M) 

 
Measurements 

(k) 
 

Sparse 
Level 

 

RMSE 
 

OpenCL 
 

RMSE 
 

CPU 
 

768 32 1.92e(-7) 1.35e(-7) 

1024 64 3.63e(-7) 3.04e(-7) 

1536 78 7.11e(-7) 7.04e(-7) 

2048 128 5.42e(-6) 5.08e(-6) 

 

Then a Gaussian noise added to the measurement to show the stability of algorithm 

in massive signal size. Table 4.14 gives output error in presentation of noise. 

Table 4.14: Massive Signal Error in Presentation of Noise by Given Implementation 
(N=16384) 

(M) 
 

Measurements 
 

(k) 
 

Sparse Level 
 
 

RMSE 
 

Percentage 
 

SNR 
 

dB 
 

768 32 4.46 50.67 

1024 64 8.43 43.81 

1536 78 7.36 47.82 

2048 128 9.56 46.91 
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Figure 4.13: Input, Recovered and Error Massive Signal OpenCL 
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Figure 4.14: Input, Recovered and Error Massive Signal CPU 
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4.8 Discussions 

First we recall computational complexity of operation in argmax and QR 

decomposition. Complexity of the argmaxis O(ܯ × ܰ) and the QR complexity is 

O(ܯଷ).  

The results are evaluated in terms of speed and accuracy. The purpose is to show 

performance and quality of this implementation. 

In the case of small size, OpenCL has a little improvement in calculation time (Table 

4.3). And the accuracy of reconstruction is very good with or without noise.  

In the case of medium size the results give the similar evaluation to those for small 

size signals. 

The situation begins to change for large sized signals. That is the reason why we use 

parallel processing. We see an improvement (over two times in speed) of OpenCL 

over the CPU implementation (Table 4.9). This has no change in error (Table 4.10, 

4.11). 

The effect of parallel implementation becomes apparent for massive size of signals. 

More improvement in speed at a cost of slightly more error achieved (Table 4.10, 

4.11, 4.12). 
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Chapter 5 

CONCLUSIONS 

5.1 Conclusion 

In this thesis, we have implemented OMP algorithm on high performance devices for 

both CPU and GPU. With respect to the obtained results and outputs we have the 

following conclusions: 

First, the fast signal recovery of OMP can be achieved by parallel implantation, when 

appropriate devices are chosen. It is particularly faster when the size of the signal is 

large. 

Second, in view of OpenCL portability, It is possible to run this implementation over 

multi-platforms. It is also possible to use all computing resources available in the 

system. 

This study also demonstrates the need of heterogonous computing for reconstruction 

of large size signal, as they require expensive computation. 
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5.2 Future Work 

This work in the thesis can be further improved by following: 

 Implementing batch OMP by HP device. 

 Online dictionary learning 

 Multi-dimensional data recovery in Compressive sensing 

  Optimize the OpenCL in the kernel of Linux 

 Implementing QR OMP in OpenCL 
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//#include <boost/numeric/mtl/mtl.hpp> 

#include <iostream> 

#include <cmath> 

#include <cstdlib> 

//#include <vector> 

#include <viennacl/scalar.hpp> 

#include <viennacl/vector.hpp> 

#include <viennacl/matrix.hpp> 

#include <viennacl/matrix_proxy.hpp> 

#include <viennacl/linalg/norm_2.hpp> 

#include <viennacl/linalg/norm_1.hpp> 

#include <viennacl/linalg/prod.hpp> 

#include <viennacl/linalg/inner_prod.hpp> 

#include <viennacl/linalg/qr.hpp> 

#include "viennacl/linalg/lu.hpp" 

#include "viennacl/traits/size.hpp" 

#include <boost/numeric/ublas/vector.hpp> 

#include <boost/numeric/ublas/matrix.hpp> 

#include <boost/numeric/ublas/io.hpp> 

#include <boost/numeric/ublas/storage.hpp> 

#include <boost/numeric/ublas/matrix_proxy.hpp> 

#include "viennacl/ocl/device.hpp" 

#include <viennacl/ocl/forwards.h> 

#include "viennacl/ocl/backend.hpp" 

#include "viennacl/ocl/program.hpp" 

#include "viennacl/ocl/context.hpp" 

#include "viennacl/ocl/kernel.hpp" 

#include "CL/cl.hpp" 

#include <chrono> 

#include "examples/benchmarks/benchmark-utils.hpp" 
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floatrandgauss(float min, float max) 

{ 

float r = (float)rand() / (float)RAND_MAX; 

return min + r * (max - min); 

} 

const char * argmax = 

"__kernel void argmax(                \n" 

"          __global  float * mat1,\n" 

"          __global  float * vec2,\n" 

"          __global  float * newmat,\n" 

"          __global  float * indcol,\n" 

"             unsignedint j,    \n" 

"             unsignedint component,    \n" 

"             unsigned        int feature)   \n" 

" { float y=0; \n" 

"  float v3=0;  \n" 

"unsignedconstintgid= get_global_id(0);\n" 

"for(unsigned int z=0;z<component;z++){\n" 

"  for (unsigned inti= gid; i< feature; i += get_global_size(0)){\n" 

"     v3 += vec2[i]*mat1[(z*feature)+i];}\n" 

"       if(y<fabs(v3))\n" 

"      {      y=v3;     \n" 

"  indcol[gid+(j)]=z;\n" 

" for (unsigned int n= gid; n < feature; n += get_global_size(0)){\n" 

"      newmat[((j*feature)+n)]=mat1[((z*feature)+n)];}}\n" 

"}};\n"; 

//typedefstd::vector<viennacl::ocl::platform >platforms_type; 

//typedefstd::vector<viennacl::ocl::device>devices_type; 

//typedefstd::vector<cl_device_id>cl_devices_type; 

//randgauss function for dictionary 
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int main(){ 

viennacl::ocl::set_context_device_type(0, viennacl::ocl::gpu_tag()); 

std::vector<viennacl::ocl::device> devices = viennacl::ocl::current_context().devices(); 

viennacl::ocl::current_context().switch_device(devices[0]); 

Timer timer; 

//std::cout<<viennacl::memory_types()<<std::endl; 

std::cout<<viennacl::ocl::current_device().info() <<std::endl; 

//evices_.push_back(devices[0]); 

//intlast_nf=128; 

intstart_sparse=2; 

int sparse=0; 

for (int benchmark=0;benchmark<1;benchmark++){ 

constintn_feature=1024;/*2*(last_nf); */                       //measurments 

sparse+= start_sparse; 

start_sparse=sparse; 

constintn_component=8192; 

srand (time(NULL)); 

typedefviennacl::matrix<float, viennacl::column_major>VCLMatrixType; 

typedefviennacl::vector<float>VCLVectorType; 

boost::numeric::ublas::vector<float>
 landa(sparse),indice_cpu(sparse),m_cpu(n_feature),signal_cpu(n_component),v_cpu(n_featu
re); 

boost::numeric::ublas::vector<int>    indcol(sparse); 

viennacl::scalar<float>      

thetha(0),eps(0),scalarh(1),alpha(0); 

VCLVectorType       indcol_gpu(sparse),/* 

tuple(n_feature)*/realgama(sparse),error(n_component),vcl_b(n_feature),z(1),indice(sparse),m(n_feat
ure),signal(n_component),v(n_feature),residual(n_feature),gama(n_feature); 

VCLMatrixType help(0,n_component),dictionary(n_feature,n_component), 
new_dictionary(0,n_component),tuple(n_feature,1); 

boost::numeric::ublas::matrix<float>  
 dictionary_cpu(n_feature,n_component), new_dictionary_cpu(0,n_component); 
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//generate dictionary 

for (int i1 = 0; i1 < n_feature;i1++) { 

for (int i2 = 0; i2 < n_component;i2++) { 

dictionary_cpu( i1, i2)= randgauss(-10,10); 

} 

} 

v.clear(); 

boost::numeric::ublas::scalar_value<float> h1; 

for (int i1 = 0; i1 < n_component;i1++){ 

v_cpu=(boost::numeric::ublas::column(dictionary_cpu, i1)); 

h1=(boost::numeric::ublas::norm_2(v_cpu)); 

v_cpu=(1/h1) * v_cpu; 

(boost::numeric::ublas::column(dictionary_cpu, i1))= v_cpu; 

} 

timer.start(); 

viennacl::copy(dictionary_cpu,dictionary); 

viennacl::ocl::get_queue().finish();        //wait for copy operations to finish. 

//std::cout<<timer.get() <<std::endl; 

viennacl::backend::finish(); 

//std::cout<<"Dictionary:"<<dictionary<<std::endl; 

 

//dictionary end 

//generate sparse signal 

std::fill(signal_cpu.begin(),signal_cpu.end(),0); 

for (inti=0;i<sparse;i++){ 

intindx=(std::rand()%n_component); 

indice(i)=indx; 

signal_cpu(indx)= randgauss(-20,20); 

} 

viennacl::fast_copy(signal_cpu,signal); 
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viennacl::backend::finish(); 

//std::cout<<"Random signal:"<<signal_cpu<<std::endl<<"indices:"<<indice<<std::endl; 

//end generate signal 

//generate measurment 

m = viennacl::linalg::prod(dictionary,signal); 

//m.switch_memory_domain(viennacl::MAIN_MEMORY); 

//std::cout<<"measurments:"<<m<<std::endl; 

//end generate measurment 

//orthogonal matching pusuit 

// Solves [1] min || D * gamma - x ||_2 subject to || gamma ||_0 <= m 

// or     [2] min || gamma ||_0         subject to || D * gamma - x || <= eps 

// Parameters 

// ---------- 

//   D, array of shape n_features x n_components 

//   x, vector of length n_features 

//   m, integer <= sparsity level 

//   eps, float (supersedes m) 

 

//residual 

residual=m; 

std::fill(indcol.begin(),indcol.end(),-1);          // idx 

viennacl::range all_col(0,n_component); 

viennacl::range all_row(0,n_feature); 

viennacl::fast_copy(indcol,indcol_gpu); 

eps=0; 

std::cout<<"============================"<<std::endl; 

std::cout<<"OMP START"<<std::endl; 

std::cout<<"============================"<<std::endl; 

auto start = std::chrono::high_resolution_clock::now(); 

for (int j=0;j<sparse;j++){ 
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//viennacl::traits::resize(new_dictionary,n_feature,j+1); 

new_dictionary.resize(n_feature,j+1); 

//viennacl::traits::resize(help,n_feature,j+1); 

help.resize(n_feature,j+1); 

viennacl::scalar<float>  theta(0); 

for (inti=0;i<n_component;i++){ 

viennacl::range row(i,i+1); 

viennacl::range col(i,i+1); 

tuple=viennacl::project(dictionary,all_row,col); 

 

tuple,static_cast<cl_uint>(i),static_cast<cl_uint>(direction),static_cast<cl_uint>(tuple.size())
)); 

//std::cout<<tuple<<std::endl; 

tuple=viennacl::project(dictionary,all_row,col); 

// timer.start(); 

z=viennacl::linalg::prod(trans(tuple),residual); 

//std::cout<<timer.get() <<std::endl; 

//timer.start(); 

alpha=viennacl::linalg::norm_1(z); 

if (theta<alpha){ 

theta=alpha; 

//landa(j)=alpha; 

indcol(j)=i; 

viennacl::range col(j,j+1); 

viennacl::project(new_dictionary,all_row,col)=tuple; 

tuple,static_cast<cl_uint>(j),static_cast<cl_uint>(direction),static_cast<cl_uint>(tuple.size())
)); 

} 

} 

//viennacl::ocl::program &my_prog = viennacl::ocl::current_context().add_program(argmax, 
"argmax"); 



65 
 

//viennacl::ocl::kernel &my_kernel = my_prog.add_kernel("argmax"); 

//viennacl::ocl::enqueue(my_kernel(dictionary, 
residual,new_dictionary,indcol_gpu,static_cast<cl_uint>(j),static_cast<cl_uint>(n_componen
t),static_cast<cl_uint>(n_feature))); 

//least square slove 

vcl_b = m; 

help=new_dictionary; 

//std::cout<<"help"<<help<<std::endl; 

std::vector<float>hybrid_betas = viennacl::linalg::inplace_qr(help,256); 

// compute modified RHS of the minimization problem: 

// b := Q^T b 

viennacl::linalg::inplace_qr_apply_trans_Q(help, hybrid_betas, vcl_b); 

viennacl::range                                        vcl_range(0,j+1); 

viennacl::matrix_range<VCLMatrixType>   vcl_R(help, vcl_range, 
vcl_range); 

viennacl::vector_range<VCLVectorType>   vcl_b2(vcl_b, vcl_range); 

 

// Final step: triangular solve: Rx = b'. 

// We only need the upper part of A such that R is a square matrix 

 

viennacl::linalg::inplace_solve(vcl_R, vcl_b2, viennacl::linalg::upper_tag()); 

//new residual 

gama=viennacl::linalg::prod(new_dictionary,vcl_b2); 

residual=m-gama; 

/*scalarh=viennacl::linalg::inner_prod(residual,residual); 

if(eps>=scalarh){ 

break; 

} 

eps=scalarh. 

realgama(j)=vcl_b2(j); 

} 
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std::cout<<"============================"<<std::endl; 

std::cout<<"OMP STOP"<<std::endl; 

std::cout<<"============================"<<std::endl; 

//error of method 

auto finish = std::chrono::high_resolution_clock::now(); 

std::cout<< std::chrono::duration_cast<std::chrono::nanoseconds>(finish-start).count() << 
"ns\n"; 

//unsparse the measurment 

//error.clear(); 

for (inti=0;i<sparse;i++){ 

error(indcol(i))=realgama(i); 

} 

std::cout<<"Dimension="<<n_feature<<"*"<<n_component<<std::endl; 

//std::vector<float>error_cpu(n_component); 

//viennacl::copy(error,error_cpu); 

signal-=error; 

alpha = viennacl::linalg::norm_2(signal); 

std::cout<<"error in percent="<<(alpha)<<std::endl; 

std::cout<<"check"<<indcol<<std::endl<<indice; 

} 

return EXIT_SUCCESS; 

} 
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