
Parallel Implementation of Orthogonal Matching

Pursuit in OpenCL

Amirhossein Jofreh

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Electrical and Electronic Engineering

Eastern Mediterranean University

August 2013

Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Electrical and Electronics

 Prof. Dr. Aykut Hocanin

 Chair, Department of Electrical and Electronics

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Electrical and

Electronics.

 Prof. Dr. Runyi yu

 Supervisor

 Examining Committee

1. Prof. Dr. Huseyin Ozkarmanli ____________________

2. Prof. Dr. Runyi Yu ____________________

3. Assoc. Prof. Dr. Hasan Demirel ____________________

iii

ABSTRACT

Orthogonal matching pursuit (OMP) is one of the most effective techniques to

recover a sparse signal from limited number of measurements. However, when the

number of measurements necessary is very large recovering the sparse signal would a

challenge for CPU.

In this thesis we aim to improve the performance of large array reconstruction by

using parallel computing technology. We use Open Computing Language (OpenCL)

in implementing parallel OMP in CPU and GPU. We also make some modification

in pseudoinverse algorithm (i.e. using QR decomposition instead of naive matrix

inverse) to improve the robustness of the implementation.

To examine the performance and quality of implementation, we consider signals of

four different sizes (i.e. small, medium, large and massive) and evaluate the results.

We can obtain better performance (over 2 times faster) for signals of large and

massive sizes in terms of the speed and accuracy of the reconstruction.

Thanks to portability of OpenCL, the proposed implementation can be run on all kind

of devices such as embedded devices, smart phones, and laptops.

Keywords: Compressive Sensing, Orthogonal Matching Pursuit, OpenCL, Graphic

Processing Unit, Central Processing Unit

iv

ÖZ

Dik Eşleştirme Takib tekniği, sınırlı sayıda ölçümlerden bir seyrek sinyal kurtarmak

için en cazip tekniklerinden biridir. Ancak, bu sınırlı sayıda ölçümlerin pek çok

olduğu zaman, orijinal sinyal kurtarma işi CPU için çok zor olacaktır. Bu tezde

önerilen yöntem, CPU tarafından kurtarılması zor olan büyük sayıda olan ölçümler

için iyidir.

Bu tezde, Heterojen bilgisayar teknolojisini kullanarak, büyük miktarda olan

ölçümlerin hızlıca hesaplanması için yeni bir yöntem öneriyoruz. Bu son teknolojinin

gücünü kullanmak için, bize ölçümleri işlemekte tüm kaynakları kullanmak için

OpenCL yi kullanıyoruz.

Deneylere göre, işlem hızında hemen hemen üç kat iyileştirme vardır. Ayrıca bu

hesaplama deneyi bize küçük bir hata ile çok net bir sonuç verebilir olduğunu

gösteriyoruz. Eğer OpenCL yeni atom fonksiyonunu kullanırsak, kata yakın daha

hıza ulaşmamız mümkün olacaktır. Ayrıca, en yüksek performans elde etmek için

daha hızlı bir donanım kullanmak da mümkündür.

Önerdiğimiz yöntem ile, gömülü cihazlar, akıllı telefonlar ve dizüstü bilgisayarlar

gibi her türlü cihazları çalıştırmak için OpenCLyin taşınabilirliğinden

yalarlanabiliriz.

Anahtar Kelimeler: Ortogonal Eşleştirme Takip, OpenCL, Grafik İşleme Birimi,

Merkezi İşlem Birimi

v

TTo My Beloved Family

vi

ACKNOWLEDGMENTS

First of all, I would like to thank Professor Dr. Runyi Yu for helping me in my study

of signal processing and also for being my supervisor for the thesis. Without his

advice this thesis would have ended as a collection of incoherent work.

The help from other professors in the department during this project are very much

appreciated.

I would also like to thank others who help me to achieve the result of this thesis.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ... iv

DEDICATION .. v

ACKNOWLEDGMENTS ... vi

LIST OF FIGURES .. ix

LIST OF TABLES.. xi

LIST OF ABBREVIATIONS .. xii

1 INTRODUCTION ... 1

 1.1 Motivation and Thesis Object ... 1

 1.2 Thesis Overview .. 2

2 BACKGROUND .. 4

 2.1 Compressed Sensing ... 4

 2.1.1 Data Reconstruction ... 8

 2.1.2 Approach .. 8

 2.2 Orthogonal Matching Pursuit ... 10

 2.3 OpenCL .. 16

 2.3.1 Platform Model .. 16

 2.3.2 Execution Model .. 17

 2.3.3 Memory Model... 18

 2.3.4 OpenCL Program Structure .. 19

 2.3.5 AMD Architecture .. 20

 2.3.6 Open CL Running on AMD GPU .. 21

viii

 2.3.7 ViennaCL ... 22

3 PROPOSED APPROACH AND ALGORITHM .. 23

 3.1 Approach .. 23

 3.1.1 Function ViennaCL ... 24

 3.1.2 Generating Data for OMP ... 25

 3.1.3 Generating Normalize Dictionary ... 26

 3.1.4 Generating Measurements ... 27

 3.2 Implementation of OMP ... 29

4 PERFOMANCE AND RESULTS ... 34

 4.1 Environment of Test .. 34

 4.2 Test Data and Evaluation... 35

 4.3 Challenge of Bandwidth .. 36

 4.4 Results for Signal of Small Size ... 37

 4.5 Results for Signal of Medium Size ... 42

 4.6 Results for Signal of Large Size .. 46

 4.7 Results for Signal of Massive Size ... 50

 4.8 Discussions .. 54

5 CONCLUSIONS ... 55

 5.1 Conclusion .. 55

 5.2 Future Work ... 56

REFERENCES .. 57

APPENDIX ... 60

ix

LIST OF FIGURES

Figure 2.1: Transformation between Spaces ... 7

Figure 2.2: Least Square Method .. 11

Figure 2.3: The Signal and Measurement Space during First Iteration 13

Figure 2.4: The Signal and Measurement Space during Second Iteration 14

Figure 2.5: OpenCL Platform Model .. 16

Figure 2.6: OpenCL Execution Model .. 17

Figure 2.7: OpenCL Memory Model .. 18

Figure 2.8: OpenCL Program Flow... 19

Figure 2.9: Radeon HD6850Architecture ... 21

Figure 2.10: Radeon HD6850Architecture ... 21

Figure 3.1: Generated Sparse Signal by Code .. 25

Figure 3.2: Generate and Copy Data ... 26

Figure 3.3: Generated Dictionary ... 27

Figure 3.4: Generate Measurements ... 28

Figure 3.5: Matrix-Matrix multiplications .. 29

Figure 3.4: New Dictionaries after k Sparse ... 30

Figure 3.5: QR Decomposition Hybrid Method ... 32

Figure 4.1: Flow-Chart of Processing in Given Method ... 36

Figure 4.2: Execution Time CPU-OpenCL Small Signal .. .37

Figure 4.3: Input, Recovered and Error Small Signal OpenCL39

Figure 4.4: Input, Recovered and Error Small Signal CPU .. 40

Figure 4.5: Gaussian Noise added to Measurements .. 41

Figure 4.6: Execution Time CPU-OpenCL Medium Signal ... 42

x

Figure 4.7: Input, Recovered and Error Medium Signal OpenCL44

Figure 4.8: Input, Recovered and Error Medium Signal CPU .. 45

Figure 4.9: Execution Time CPU-OpenCL Large Signal ... 46

Figure 4.10: Input, Recovered and Error Large Signal OpenCL48

Figure 4.11: Input, Recovered and Error Large Signal CPU .. 49

Figure 4.12: Execution Time CPU-OpenCL Massive Signal ... 51

Figure 4.13: Input, Recovered and Error Massive Signal OpenCL52

Figure 4.14: Input, Recovered and Error Massive Signal CPU 53

Figure 4.15: CL Benchmark .. 55

xi

LIST OF TABLES

Table 2.1: Algorithm of OMP ... 12

Table 3.1: Functions .. 24

Table 3.2: Generate Sparse Signal .. 25

Table 3.3: Generate Normalize Data ... 27

Table 3.4: Generate Measurements ... 28

Table 3.5: Argmax Algorithm.. 30

Table 3.6: Least Square ... 33

Table 4.1: High Performance Device Specification .. 34

Table 4.2: Size on Testing Signal .. 35

Table 4.3: Speedup Ratio Small Signal ... 38

Table 4.4: Recovery Error for Small Sizes signal ... 38

Table 4.5: Small Signal Error in Presentation of Noise by Given Implementation 41

Table 4.6: Speedup Ratio Medium Signal ... 42

Table 4.7: Recovery Error for Medium Sizes signal ... 43

Table 4.8: Medium Signal Error in Presentation of Noise by Given Implementation 43

Table 4.9: Speedup Ratio Large Signal ... 46

Table 4.10: Recovery Error for Large Sizes signal ... 47

Table 4.11: Large Signal Error in Presentation of Noise by Given Implementation 47

Table 4.12: Speedup Ratio Massive Signal ... 50

Table 4.13: Recovery Error for Massive Sizes signal ... 51

Table 4.14: Massive Signal Error in Presentation of Noise by Given Implementation .. 51

xii

LIST OF ABBREVIATIONS

 API Application Interface

CPU Central Processing Unit

 CS Compressed Sensing

 GPU Graphic Processing Unit

LSE Least Square Error

OMP Orthogonal Matching Pursuit

 OpenCL Open Computing Language

 QR Right Hand Side and Orthogonal Matrix

 RIP Restricted Isometry Property

1

Chapter 1

INTRODUCTION

This chapter provides the motivation and aim of our study. It also gives an outline of

this thesis.

1.1 Motivation and Thesis Object

Around 2004 Candes, Tao and Donoho found important results to reconstruct the

image from deemed insufficient amount of data [1][2].

The phrase of compressed sensing comes from the problem of realization of sparse

signal x using a few linear measurements that possess incoherent properties. This

technique usually uses tremendous resources to acquire large signals, so it takes a

long time to process. The main question then is whether or not we can reduce the

time of this process. We have two choices for this purpose.

The first choice to achieve better processing time is to change the method of

calculation of reconstructed signal (i.e. orthogonal matching pursuit, matching

pursuit,...). This way has its own downside like complexity of codes and formulas.

Also, for a large amount of data this would not guarantee that computational device

gives us better performance.

2

The second method is to change the way of processing. It means that instead of using

traditional sequential processing, one can use heterogeneous processing (parallel

processing) to process the large amount of data. It would be helpful for us to

calculate a huge amount of data in a parallel way and also gives us a great

performance.

The objective of this research is to improve the performance of large array

reconstruction by using the mentioned methods introduced i.e., orthogonal matching

pursuit (OMP) in parallel processing. In this study Computing Language (OpenCL)

has been used for implementing these methods. They have been modeled over the

computational resource of the computer. It is expected to have an improvement in

calculation performance of large array signal, especially in term of computation time.

1.3 Thesis Overview

This thesis is consisting of our main chapters: chapter two introducing

reconstruction-method and its materials, analyses the existent algorithms and

compares the obtained results of implementations. It begins with some basic

concepts of compressed sensing(݈଴-norm, measurements, restricted isometry

property and mutual coherence), it then presents the reconstruction method (OMP)

with an example; OpenCL software, and AMD GPU architecture are introduced.

Chapter three contains anaïve implementation of OMP algorithm by using QR

decomposition instead of computing pseudo-inverse to solving least square problem.

This implementation helps improve stability of solving least square problem and

reduces the computation time. Moreover, the speed improvement in solving least

square problem, speedup of in matrix product for argmax; result in a fast

3

reconstruction process. The ViennaCL library is used in implementing this algorithm

on the high performance processors.

Chapter four presents the implementation results for four different sizes of signals

(small, medium, large and massive). Based on the experiment results of this thesis, In

the case of small and medium size there is no significant difference between CPU

and OpenCL implementation. But, for the massive and the large array the

improvement two times in speed is observed. Also, results in terms of complexity of

calculation and improvement in the algorithm are discussed. At the end conclusion

and future works are given.

4

Chapter 2

BACKGROUND

2.1 Compressed Sensing

Compressive (or compressed) sensing is a framework for signal reconstruction from

a measurement vector which is assumed to be smaller in size than the Nyquist-

sampled signal vector and that this signal vector is inherently sparse (most of the

signal vector components are zero). The measurement acquisition process is

described by a matrix multiplication with a fat sensing-matrix and thus the

reconstruction problem is an under-determined system of linear equations. The

challenge in compressive sensing lies in two main things:

Firstly, how to produce measurement vector in practice and secondly, based on

known the measurement vector and measurement matrix, how to find the correct

underlying sparse signal vector. The theory behind compressive sensing is based on

the observation that many natural signals, such as sound or images can be well

approximated with sparse representation in some domain. For example, it turns out

that most of the energy in a typical image signal is preserved within the 2% to 4%

dominating wavelets [1][2][3].

This chapter is divided into three important parts. In part one: we introduce the

compressive sensing problem and formulas. In part two: we will talk about the

5

method of recovery of signal. In part three we introduce OpenCL structure and the

relevant information.

To introduce compressed sensing problem first we need to define “݈଴-norm”

Definition 1: “݈଴-norm” [1]

݈଴-norm (‖ݔ‖଴ ≜	Number of nonzero components of signal x) (1.1)

݈଴-norm is not a true norm because it does not have absolute homogeneity (∀ߙ ≠

ݔ∀	݀݊ܽ	0 ≠ 0, ‖ݔߙ‖ = property. We abuse ݈଴–norm name to say the vector (‖ݔ‖|ߙ|

x is sparse: when the size of x is much larger than its݈଴-norm. Indeed we say x is k-

sparse if ‖ݔ‖଴= k<<N, where N is the size of vector x.

Definition 2: “Measurements” [1]

To find the sparse signal x, we can use measurement y, the measurement-matrix A

and under-determined set of equations as[1]

ݕ = 	ݔܣ	 + 	݁								A ∈ ℝெ௫ே	, x ∈ ℝே		, y ∈ ℝெ	 (1.2)

The Gaussian noise (e) is a member of ℝெ	 which represents some measurement

noise. Note that, sparsity level (k) in x is smaller than M (k<M<N).

In this thesis, we will construct A by picking individual elements independently. This

is not a common assumption, but it will simplify the notation. Performance of

reconstruction of signal x depends on A and e.

6

To find how good a matrix A is in compressive sensing measurement (to construct

and reconstruct), we introduce two fundamental properties of matrix-measurement A,

namely, mutual coherence and restricted isometry property (RIP).

Definition 3: “Restricted Isometry Property” [10]

Matrix A fulfills the restricted isometry property with	ߜ௞ if

ଶଶ‖ݔ‖(௞ߜ−1) ≤ ଶଶ‖ݔܣ‖ ≤ ଶଶ (1.3)‖ݔ‖(௞ߜ+1)

Holds for any k-sparse signal x, where ߜ௞ > 0 is the smallest value to satisfy the

inequality mentioned (1.3). Matrix A is the transformation matrix between two

spaces of measurements and signal, where the size of signal is much larger than that

of the measurements [1]. It characterizes the change of Euclidian norm of x by

transformation of A, or if we consider two elements from x RIP can be interpreted as

distance change between those two elements by the transformation of A.

Consider two signals x1 and x2, which are transformed noiselessly by transformation

matrix to two measurement y1 and y2 as shown in Figure 2.1. By finding the

distance of two elements in the metric space, we can find this relation

ଵݕ‖ − ଶ‖ଶଶݕ

ଵݔ‖ − ଶ‖ଶଶݔ
=
ଶଶ‖ݔܣ‖

ଶଶ‖ݔ‖

(1.4)

7

Figure 2.1: Transformation between Two Spaces

Based on (1.3) and (1.4), we determineߜ௞. This is an upper- and lower bound of

change in Euclidian distance of A.

RIP is used in theory to characterize the recovery performance of compressive

sensing, but in practice finding a RIP is challenging. It happens because of the

difficulty of findingߜ௞. In practice instead of RIP, we can use mutual coherence.

Definition 4: “Mutual Coherence” [3]

Let ܽ௜ and ௝ܽ be columns of transformation A. Then, we can define mutual coherence

by of A by

(ܣ)ߤ																				 ≜ sup{	ห〈ܽ௜ , ௝ܽ〉ห:∀݅, ݅	hereݓ,݆ ≠ ݆}									 (1.5)

 ଵݔ

 ଶݔ

ଵݕ

 ଶݕ

A

8

2.1.2 Data Reconstruction

In data reconstruction, the problem is to find vector x based on matrix A and

measurement vector y [12]. There is no obvious formula to find the answer to this

problem. A natural attempt is to solve least squares problem

	min
௫ො
ොݔܣ‖ − ଶଶ (1.6)‖ݕ

However, this problem has infinitely many solutions (because of matrix A is of

column-rank deficient). Instead, the knowledge of sparsity should be used to find the

answer. We can solve the problem based on this constraint

	min
௫ො
 ො=y (1.7)ݔܣ ො‖଴ such thatݔ‖

2.1.2 Approaches

There is a different approach to solve this problem ݈ଵ-minimization approach and

Greedy pursuit.

݈ଵ-minimization

The ݈ଵ-minimization approach in most cases based on RIP can recover exact k-sparse

vector x. But this approach does not have linear bound (RIP problem) on the runtime,

Moreover, the speed is usually not optimal.

Greedy pursuit

Another approach to reconstruct vector x is greedy pursuit. “Greedy pursuit means

iterative signal recovery algorithm to calculate the support of signal, and it makes the

locally optimal choice at each time to build up an approximation and repeats until the

9

criterion fulfilled” [3]. Orthogonal matching pursuit (OMP) is one of the greedy

algorithms for recovering signal. Before introducing of OMP method, we recall the

solution to the least square problem in OMP.

Least square estimation

Least square estimation is one of the main tools for many greedy pursuit algorithms.

The full compressive sensing problem could not be solved with LSE because that

problem represents an under-determined set of linear equations from which it is not

clear which solution to choose. However, suppose one accurately detects the true

support-set ݏ of x, then it is in the noiseless case straight-forward to see that

Ax=ܣ௦ݔ௦. Here, y=ܣ௦ݔ௦ represents an over-determined set of linear equation, to

which least square can be used to find a unique solution. By limiting ourselves to

findݔ௦, we can then reconstruct the full x by padding zeros in the remaining

positions.

A least square estimation ݔො௦ of x is given by the following problem

	min
୶ො౩

ݕ‖ − ො௦‖ଶଶ (1.8)ݔ௦ܣ

In this thesis we are only interested in case where ܣ௦ has full column rank, in which

case the result can be obtained from

ො௦ݔ = ௦ܣ) =ݕା(௦ܣ)
௦ܣ௦)ିଵܣ்

்y (1.9)

In practice we don’t have access to the true support-set ݏ of x but an estimatêݏ

instead. Note that by further multiplying the result with ܣ௦ gives the orthogonal

projection of y, denote by	ݕ௣, onto space spanned by columns of	ܣ௦.

10

2.2 Orthogonal Matching Pursuit (OMP)

Orthogonal matching pursuit is a greedy algorithm for recovering signal. Mallat and

Zhang[4] proposed this algorithm and Gillbert and Tropp [5] analyzed it. Assume

signal vector x is a k-sparse signal, and A is measurement matrix by

columns	ܽଵ ,ܽଶ , … , ܽே.And we have M-dimensional measurement vector y (ݕ = .(ݔܣ

Signal x has only k non-zero component so y can be defined as a linear combination

of k columns from A. The most critical part to recover a signal is to find a location of

these nonzero components of x. It is critical to determine which column in matrix-

measurement A participates in vector y [2]. OMP is a greedy algorithm that picks the

columns from matrix A by finding maximum correlation between the columns and

the residual of y. In every iteration, for the support of signal x one coordinate would

be calculated. When iterations reached the sparsity level(i.e.k), the entire support of

signal can be identified.

The OMP algorithm has four steps in each iteration:

(1) Choose the index ߚ௜ by finding the largest correlation between { ௝ܽ}ଵேand residual

of y.

(2)Unite the chosenߚ௜ with the index set	 ௜ܵ = [ܵ௜ିଵ	ߚ௜], and ܽఉ೔with matrix 	ܣ௜ =

 .(0is an empty setܽ)[௜ିଵܽ௜ܣ]

(3) Use the LSE (more detail after the algorithm) to find the projection of y on to the

range of matrix-measurement column	ܽ௜. Thus the residual of y is always orthogonal

to	ܣ௜.

11

Figure 2.2: Least Square Method

(4) Calculate the new residual of ݎ௜ and do this process while we reach to k.

Once we found S (support of signal x), then we can calculate the approximation of

signal ݔො by	ݔෝ = Table 2.1 gives the algorithm of orthogonal matching.ݕା(௦ܣ)

pursuit.

Table 2.1Algorithm of OMP
Input: Measurement-matrix A, Measurement y, Sparsity level k of signal vector x

Output: Index set ܵ, Measurement estimate ߠ௜, residual ݎ௜ (i = 0,1,…,k)
૙࢘ = ,࢟ ૙ࡿ	 = ∅, ࢏ = ૙

While ࢏ ≤ ࢕ࢊ	࢑

࢏ .1 = ࢏ + ૚

࢏ࢼ .2 = argmax{࢐ୀ૚,…ࡺ}ห〈ି࢏࢘૚ ห〈࢐ࢇ,

࢏ࡿ .3 = 	 ૚ି࢏ࡿ ∪ {࢏ࢼ}

࢏࡭ .4 = ൧࢏ࢼࢇ૚ି࢏࡭ൣ

࢏࢞ .5 = 	argmin࢞࢏࡭‖࢞− ૛‖࢟

࢏ࣂ .6 = ,࢏࢞࢏࡭ ࢏࢘ = ࢟ − ࢏ࣂ

End while

For better understanding the principle of OMP, we provide a simple noiseless

example [12]. Assume the following data is given:

௜ߠ = ܽ௜ݔ௜ = Pro݆௔೔ݕ

ܽ௜
y

12

A=ቀ0.4033 0.3257 −0.0198
0.9150 0.9455 −0.9998ቁ, y=ቀ 0.9307

−0.4271ቁ.

The corresponding signal- and measurement space are shown in Figure 2.3, where in

Figure 2.3b, the sought signal x (in gray) is shown as a reference. In Figure 2.3a, the

column vectors	ܽଵ,ܽଶ and ܽଷ from A, the measurement vector y in red is given.

Starting OMP, the initialization phase of the algorithm is executed:

i=0, ݎ଴=y and ܵ଴=∅ . It then proceeds to the first iteration:

Step 2, i=1 and in step 3 the residual vector ݎ଴ is correlated with every column-vector

in A:

ቀ0.4033=ݕ்ܣ=଴ݎ்ܣ 0.3257 −0.0198
0.9150 0.9455 −0.9998ቁ

்
ቀ 0.9307
−0.4271ቁ =൭

0.7662
−0.1007
0.4086

൱ .

(a) Measurement Space ℝଶ	(b) Signal Space ℝଷ	

Figure 2.3: The Signal and Measurement Space during First Iteration

13

Consequently, the index corresponding to the maximum in amplitude value is chosen

by argmax (…) and found to be r=1. We can verify the result by studying Figure

2.3a. where we see that the index corresponding to the vector ܽଵgives the smallest

angle	߮ଵ.

Step 4 in algorithm one, the support set become ܵଵ = 	 ܵ଴ ∪ ∅={ଵߚ} ∪ {1}={1}

In the final step we find new residual-vector by finding LSE:	ݔଵ = 	argmin௫‖ܽଵݔ −

,ଶ‖ݕ θଵ = aଵxଵ, rଵ = y − θଵwhere θଵ=[0.3090	,−	0.7011]் andnew residual

is	[0.6217	, 0.2470]୘which is shown in Figure 2.3a

The first iteration now we can show howݔොwould look like in signal space if the

algorithm stopped here. One point with ݔොଵ at this stage is that we can verify that

OMP found the dominating base vector ݁ଵ of x. We now proceed to the second

iteration in figure 2.4.

Step 2 of this iteration i =2.

(a) Measurement Space ℝଶ	(b) Signal Space ℝଷ	

Figure 2.4: The Signal and Measurement Space during Second Iteration

14

Step 3 of this iteration the residual vector ݎଵ is correlated with every column-vector

in A:

ଵ =ቀ0.4033ݎ்ܣ 0.3257 −0.0198
0.9150 0.9455 −0.9998ቁ

்
ቀ 0.9307
−0.4271ቁ = ൭

0.000
0.4615
−0.2862

൱ .

Now we can see the first element is zero because of 	ݎଵ is orthogonal to ܽଵ. Thus

argmax gives r=2, which can be verified in Figure 2.4as the index corresponding to

the vector	ܽଶ. Step 4 of this iteration tells ܵଶ = 	 ܵଵ ∪ 1={ଶߚ} ∪ {2}={1,2}. Then, in

the last step we find new residual vector via least square ݔଶ = 	argmin௫‖ܽଶݔ −

ଶandθଶ‖ݕ = aଶxଶ , rଶ = y − θଶ where θଵ=[0.9307	,−	0.4271]் andnew residual

is	[0.000	, 0.000]୘.

The second iteration of OMP is now finished and we note that the estimated ݔො is a

perfect recovery of x.

This example gives us a good idea of recovery of signal based on LSE and

orthogonal matching pursuit. In the next part we will talk about the structure of

OpenCL and how the program executes in OpenCL.

2 .3 OPENCL (Open Computing Language)

Nowadays, computers, handhelds and embedded computer industry often have a

highly parallel computing power such as multi core CPUs (central processing unit)

and GPUs (graphic processing unit)[5]. This power helps software developers to use

full advantage of heterogeneous processing. Indeed, OpenCL attempts to give the

developers an ability to use the parallel computing power. It includes libraries, an

Application Programming Interface (API), a language and a runtime system to help

15

software development on all OpenCL supported devices. It is a subset of the C99

standard [6].

2.3.1 Platform Models

The platform model of OpenCL is shown in Figure 2.3. As in the figure the host (like

CPU) is connected to many OpenCL compute devices (like Multi-GPU). Every

compute device contains many Compute Units. Each compute units is divided into

many processing elements, and this is where the actual processing takes place.

Figure 2.5: OpenCL Platform Models[6]

2.3.2 Execution Model

We can separate execution of OpenCL program to two main parts:1) host code which

runs on the host device like CPU, and 2) device code which runs on compute

devices. Indeed, the host code defines the context of device code,it also manages the

execution of code [5]. Every device code contains some kernels. The kernel is the

place of actual processing. OpenCL uses two level hierarchical models to divide the

work-items, likes CUDA programming framework. NDRange is an N-dimensional

16

space of workgroups, which defines the execution of a kernel on a device. The

number N can be between one to three-dimensional. Each work-group also consists

of N dimensional space of work-items. The actual processing happens in the work-

item, which is mapped on the processing element.

Figure 2.6: OpenCL Execution Model[6]

2.3.3 Memory Model

Figure 2.7shows the memory model used inside a compute device. The execution

model is mapped onto this model. Any workgroup is mapped to compute unit, and

work-item runs on a Processing Element (PE) [5]. Work-items access to different

memory regions like Global memory, Constant memory, Local memory and Private

memory. All work-item and work-groups are permitted to read and write from global

memory. The Global memory has a Constant memory region, which remains

constant during the execution of the kernel. Also, local memory region is just

17

accessible for work-items inside the same work-group. Sometimes, depending on the

capabilities of devices, local memory would be mapped onto some dedicated

memory region or, if there was no available local memory there, it would be mapped

onto the global memory. Each work-item has its own Private memory that is not

available to the other work-item.

Figure 2.7: OpenCL Memory Models[6]

2.3.4 OpenCL Program Structure

Every program follows these steps to run. At first the host by using OpenCL API,

queries the system for OpenCL support. Then, it selects the target device for running

OpenCL kernel [5].After that, a context will be created for OpenCL runtime to

manage objects like memory, program and kernel objects. Command-queue is part of

context which is used for operations on the objects. Then, OpenCL kernel code read

and compiled into a binary code file. The OpenCL ICD(installable Client

Driver)checks that the kernel is compiled for chosen target. Next step, the data for

18

kernel will be copied to the target device. When this operation happened the host will

stall and wait for kernel to be finished. At the end the result will be copied back to

the host.

Figure 2.8: OpenCL Program Flow[6]

2.3.5 AMD Architecture

The first cards of the Radeon HD 6850 series were launchedinOctober22, 2010.

Performance is differentiated between the GPUs by the number of SIMD arrays each

GPU has, the core clock speed, the memory bus width and the number of texture

units and Render Output Units(ROP) [21].A GPU consists of 12 compute units (also

called SIMD Engines) and each compute unit comprise 80 stream cores, which

consists of four processing elements, depending of the GPU model. See Figure 2.9

for a diagram of the GPU architecture and Figure 2.10 for a diagram of a stream

core. All the stream cores within a compute unit will perform the same instruction in

19

a lock-step fashion, at each cycle. A VLIW6 is utilized to issue the instructions to the

processing elements. All of the processing elements can perform single-precision

floating point operations.

Every compute unit has 32 kB of local, on-chip memory called local data share

(LDS) and a 8 KB L1 cache. L2 cache is shared by several compute units. The local

data share is divided into 32 memory banks, which are four bytes wide and 256 bytes

deep [22]. One memory operation can be performed for each bank each cycle, but if

more than one operation is map into the same memory bank, a bank conflict occurs

and the operations are serialized. A compute unit also has 256 kB of available

registers. The register space comprises 16384 general purpose registers, where one

register contains four 32-bit values.

Figure 2.9: Radeon HD6850Architecture. [16]

20

Figure 2.10: Radeon HD6850Architecture. [23]

2.3.6 OpenCL Running on AMD GPU

When work-items are executed on a GPU, they are grouped together in wave fronts.

A wave front consists of 64 work-items, that are executed in lockstep on a compute

unit. Every work-group is divided into an integer number of wave fronts and to

achieve optimal performance, the number of work-items within a work-group should

be divisible with the wave front size [22].

As a kernel is being executed, a work-group is assigned to a single compute unit and

a work-item runs on a stream-core. Four work-items from the wave front being

executed are pipelined on one stream core to hide memory latencies. At each cycle,

16 of the work-items in a wave front execute one instruction. When a wave-front is

looked at as a whole, this give the appearance that one instruction is executed every

four cycles. If the executions paths of work-items within a wave front diverge, their

executions are serialized.

The use of private memory in kernels will map the general purpose registers as long

as the capacity allows (Figure 2.10). If more memory is required, the compiler will

21

solve this by generating spill code, and move remaining blocks over to general

memory.

2.3.7 ViennaCL

The Vienna Computing Library (ViennaCL) is a scientific computing library written

in C++ and based on OpenCL. It allows simple, high-level access to the vast

computing resources available on parallel architectures such as GPUs and is

primarily focused on common linear algebra operations (BLAS levels 1, 2 and 3) and

the solution of large systems of equations by means of iterative methods with

optional preconditioned [24]. More relevant information is given in chapter 3.

22

Chapter 3

PROPOSED APPROACH AND ALGORITHM

3.1 Approach

In any OpenCL application we have two parts. The first part is OpenCL C kernel,

which defines the computation for a one instance in the index space, and the second

part is C/C++ host program that uses API for configuring and managing behavior of

kernel and execution of kernel.

In this thesis, we use ViennaCL to implement OMP over the high performance

device. ViennaCL is C++ template which manages the execution of kernel. Also, It

selects the high performance device. Indeed ViennaCL is an OpenCL API which do

most of process mentioned in chapter 2such as automatic execution of kernel.

In this chapter our main emphasize is to introduce the algorithms and in the net

chapter we specifically look on some devices and the performance of

implementation.

3.1.1 Function of ViennaCL

The main focus of ViennaCL is on linear algebra operation. Also, ViennaCL uses

unified layer to access OpenCL under the hood. To use this library we must know its

function and how to use this function. Table 3.1 gives important functions that we

want to use in this thesis.

23

Table 3.1 Table Functions
Function name application

Viennacl This the main name space for all library

Viennacl::linalg Namespace of all linear algebra
operation

Viennacl::linalg::norm_2 Function to get norm two of vector

Viennacl::linalg::prod Function to dot product of matrix or
vector

Viennacl::linalg::inner_prod Function to inner product jest to vector

Viennacl::copy Function to copy data between CPU and
GPU

Viennacl::inplace_QR Function to find RHS

Viennacl::Custom kernel Use this for optimize performance

Viennacl::inplace_solve Function to find the least square

3.1.2 Generating Data for OMP

In the compressive sensing experiment, the first thing is to construct sparse signals.

So, we create one-dimensional signal by putting few nonzero value coefficient in it.

Choosing places of these values happen randomly. These values are generated from

normal distribution probability. To implement the signal we use ublas(C++) library.

The code is given in Table 3.2 and Figure 3.1 shows a generated signal.

24

Table 3.2: Generate Sparse Signal

std::fill(signal_cpu.begin(),signal_cpuend(),0);

for (inti=0;i<sparse;i++){

intindx=(std::rand()%n_component);

indice(i)=indx;

signal_cpu(indx)= randgauss(-20,20);”////put random number in random place

viennacl::fast_copy(signal_cpu,signal); ////copy the signal into high

performance

Figure 3.1: Generated Sparse Signal

This was the algorithm that makes a sparse signal. Figure 3.2 gives of process in

detail.

25

Figure 3.2 Generate and Copy Data

3.1.3 Generate Normalize Dictionary

According to Zhangand Mallat [3] to get stable result the dictionary must be

normalized. Thus, we generate dictionary by dimensions of our signal and

measurements. After that we extract its columns as vector and divided those by norm

2 of each vector to get normalize vector. Then, vectors must be rejoined together to

make a new normalized dictionary. This process can be done by the set of codes in

Table 3.3. In Figure 3.2 depicts one generated dictionary

Random position
selector

Copy data from
host to device

Random Number
generator

26

Table 3.3: Generate Normalized Data
boost::numeric::ublas::scalar_value<float> h1;

for (int i1 = 0; i1 < n_component;i1++){

v_cpu=(boost::numeric::ublas::column(dictionary_cpu, i1));

h1=(boost::numeric::ublas::norm_2(v_cpu));

v_cpu =(1/h1) * v_cpu; ////multiply of vector to inverse

norm

 (boost::numeric::ublas::column(dictionary_cpu, i1))= v_cpu;}

viennacl::copy(dictionary_cpu,dictionary); ////copy the Dictionary into hp

Figure 3.3: Generated Dictionary

The same process as Figure 3.2 happens for generating data. First, the data is

generated in host then it is copied to the device.

27

3.1.4 Generate Measurements

Based on chapter 2 to create reliable measurement we need to have some idea of the

RIP or mutual coherence. To obtain measurement of the signal, dictionary must be

multiplied by the signal. This process happens in the high performance device.

Linear algebra features of using ViennaCL can easily do the task. See Table 3.4 and

Figure 3.3 for codes and outputs.

Table 3.4: Generate Measurement
////create measurment

#include <viennacl/vector.hpp>

m = viennacl::linalg::prod(dictionary,signal); ////m is our measurement in hp

Figure 3.4: Generate Measurements

X =
Generated

Dictionary

Measurements

Signal

28

Figure 3.5 is given to show the process of the matrix vector production on device.

Figure 3.5 Matrix-Matrix multiplications

3.2 Implement of Orthogonal Matching Pursuit

Now we describe the details of the implementation of OMP:

Step1.In step one of implementation of OMP recovery we must set the condition to

recovery of the signal. This condition is the level of sparsity (k) of signal or an

upper-bound number of the non-zero coefficient of signal. Then, we should find the

maximum correlated atom of dictionary. To do so we choose the index ߚ௜ by finding

the largest correlation between { ௝ܽ}ଵே and residual of y. in this implementation by

using for loop and using indexerwe can to find the argmax. The complexity of this of

this step is O(ܯ × ܰ).

29

Table 3.5: Argmax code

Figure 3.6 New Dictionary after k iteration

The same process as Figure 3.5 is used in this algorithm.

After k iterations we have new dictionary that obtain columns from each of these

iteration. See figure 3.4 for an illustration.

z=viennacl::linalg::prod(trans(dictionary),residual);

//std::cout<<z<<std::endl;

viennacl::fast_copy(z,killer);

for (int i=0;i<n_component;i++){

killer[i]=fabs(killer[i]);}

float elem=*std::max_element(killer.begin(),killer.end());

//std::cout<<elem<<std::endl;

intpos = std::find(killer.begin(), killer.end(), elem) - killer.begin();

indcol(j)=pos;

viennacl::range col(pos,pos+1);

viennacl::range col1(j,j+1);

viennacl::project(new_dictionary,all_row,col1)=viennacl::project(dictionary,all_row,

col); ////reweight dictionary

[] …

 a1 a2 a3 aN

 Dictionary

[] …

 a3 a1 a4 ak

 new_Dictionary

 =>

30

Step2.This step is the most important step in the whole recovery of signal. By using

the new dictionary and solve optimization problem of below we can estimate the

signal. The most difficult thing in this method for the computation of signal is matrix

inverse of the dictionary, in solution the LSE problem: ࢏࢞ = 	argmin࢞࢏ࢇ‖࢞ − ૛to‖࢟

solve the above optimization problem we can use pseudoinverse.

																																																									ܵ௜ = (3.1) ݕ	௜்ܣଵି(௜ܣ௜்ܣ)

this method is computationally expensive and also for large scale of data it tends to

be unstable. So to find the answer of this equation we need to find more stable also

less expensive method. Onesuch method is called QR decomposition.

Step2.1.QR factorization is a method that uses Gram-Schmidt to make Q and R such

that where Q is orthogonal and R is upper triangular matrix [7].

By using QR decomposition we can find the answer of least square problem as:

௜ݔ																																																					 = ܴ௜ିଵ்ܳ
௜ݕ																																																																(3.2)

Just by using upper right hand side of new dictionary we can get the estimate signal

to implement it in the OpenCL device. We must define Gram-Schmidt kernel at first.

Then, vectorize the matrix as before and put that vector in that kernel then make new

right hand side matrix after that. At the end are must inverse this matrix and then do

perform of the product to new dictionary with the measurement.

Note that ViennaCL has a very fast and good template to find QR decomposition of

matrix. thus, to implement our problem over high performance device we use this

template as it is shown in Table 3.6Based on QR decomposition the complexity at

this level is O (ܯଷ).Another important thing in calculation of Q and R is setting up

31

block size for parallel computing which is implemented by find the auto_block size

code in Table 3.6.

Figure 3.7 QR Decomposition Hybrid Method

32

Table 3.6 Least Square
std::vector<float>hybrid_betas = viennacl::linalg::inplace_qr(help,1024);

//std::cout<<help<<std::endl;

// compute modified RHS of the minimization problem:

// b := Q^T b

viennacl::linalg::inplace_qr_apply_trans_Q(help, hybrid_betas, vcl_b);

viennacl::range vcl_range(0,j+1);

viennacl::matrix_range<VCLMatrixType> vcl_R(help, vcl_range, vcl_range);

viennacl::vector_range<VCLVectorType> vcl_b2(vcl_b, vcl_range);

// Final step: triangular solve: Rx = b'.

// We only need the upper part of A such that R is a square matrix

viennacl::linalg::inplace_solve(vcl_R, vcl_b2, viennacl::linalg::upper_tag());

gama=viennacl::linalg::prod(new_dictionary,vcl_b2);

Step3. The important thing that we get in step 2 is that we find the orthogonal

projection of dictionary over measurements, and because of that we call this method

orthogonal matching pursuit. At the end we must re-update the residual to find the

next correlated column.

33

Chapter 4

PERFORMANCE AND RESULTS

In this chapter, the experimental results and performance are presented. We first

describe the environment of test we then give results of our experiment.

4.1 Environment of Test

This test includes two different high performance devices. Both devices are on the

same platform. The first device is GPU from advanced micro devices

(AMD),codename BARTS with 12 compute units and 1024 MB global memory and

The second device is Intel® core 2 Dou dual Core CPU with 4096 MB RAM size.

All programs were compiled in Eclipse IDE by G++ compiler in LINUX operating

system. The specifications of both devices are showed in Table 4.1.

Table 4.1: High Performance Device Specification
Property AMD 6850 Intel core 2 Dou4500
Graphic Bus Technology PCI-

Express16X
NA

Memory(MB) 1024 4096

Core Clock(MHZ) 775 2400

Compute Unit 12 2

Stream processor 128 NA

Memory Bandwidth(MHZ) 134400 6400

34

4.2 Test Data and Evaluation

Various sparsity levels are chosen, and for each level k, the minimum acceptable

measurement number M is decided [7]. Table 4.2 provide all the data used in our

experiment.

Table 4.2: Size on Testing Signal
N(signal size) M (measurement size) k (Sparsity Level)

Small Signal

Size

1024

60 4

120 8

240 16

360 28

Medium Signal

Size

2048

240 8

360 16

512 24

768 32

Large Signal

Size

4096

512 16

768 24

890 32

2048 64

 Massive Signal

Size

16384

768 32

1024 64

1536 78

2048 256

35

The performance of OMP implemented in OpenCL will be evaluated against that of

CPU implementation in forms of the time and accuracy.

4.3 Challenge of Bandwidth

The biggest issue in running the OpenCL software or any high performance language

is a time of transfer data between graphic card global memory and the RAM.

Because of this problem we decide to introduce new solution. In this solution we

decide to run some of functions which have a very poor performance on the GPU on

a CPU. This is type of heterogeneous computing. For this reason first of all we load

all dictionary, signal and measurement on both CPU and CPU then, We just set

indexer and send it to device choose column to process and save it in device then at

the end load the data into RAM to view these result.

4.4 Results for Signal of Small Size

We now in this section give test results speed for signal of small size (N=1024):

Figure4.2: Execution Time CPU-OpenCL for Small Signal (N=1024)

13.55 40.29

291.99

1704.07

5.77
39.54

321.89

1742.01

0

200

400

600

800

1000

1200

1400

1600

1800

2000

k=4 m=60 k=8 M=120 k=16 M=240 k=28 M=360

Time (ms)

Number of sparsity and measurments

OpenCL

CPU

36

Figure 4.2shows the execution time for OpenCL and CPU implementation.

We see that for small size array of signals there is little difference between using

OpenCL and CPU. Table 4.3 gives information about the ratio in execution time.

 Table 4.3: Speedup Ratio Small Signal (N=1024)
M

 (Measurements Size)

k

(Sparse Size)

Ratio in Time

OpenCL / CPU

60 4 0.42

120 8 0.92
240 16 1.02

360 28 1.03

To show the results of this recovery input and output and error of signal plotted in

Figures: 4.3 and 4.4. Table 4.4 gives performance of estimation. RMSE is calculated

according to formula (4.1).

RMSE = ଵ
√ே
ݔ‖ − ‖ොݔ

(4.1)

 Table 4.4: Recovery Error for Small Sizes Signal (N=1024)
(M)

Measurements

(k)
Sparse
Level

RMSE

OpenCL

RMSE

CPU

60 4 1.98e(-7) 2.06e(-7)

120 8 4.56e(-7) 3.83e(-7)

240 16 6.15e(-7) 5.06e(-7)

360 28 1.15e(-6) 1.07e(-6)

37

Figure 4.3: Input, Recovered and Error Small Signal OpenCL

38

Figure 4.4 Input, Recovered and Error Small Signal CPU

39

To show the stability of algorithm and implementation we now add some Gaussian

noise to the measurement. Figure 4.5 shows the noise by mean 0 and variance 1

N(0,1).

Figure 4.5 Gaussian Noise added to Measurements

Table 4.5 gives the error with presentation of error by implemented method in this

thesis, where the SNR is calculated as follows:

SNR=20 log (
‖௫‖

‖௫ି௫ො‖
)

(4.2)

Table 4.5: Small Signal Error in Presentation of Noise by Given Implementation
(M)

Measurement

(k)
Sparse Level

RMSE

Percentage

SNR

dB

60 4 2.16 67.41

120 8 4.06 61.57

240 16 9.01 56.07

360 28 15.82 45.60

40

4.5 Results for signal of Medium Size

In this part first condition for medium signal size will be checked.

Figure4.6: Execution Time CPU- OpenCL Medium Signal (N=2048)

We see that for medium size array of signals there is a same speed difference

between using OpenCL and CPU. Table 4.6 gives information about the ratio in

execution time.

 Table 4.6: Speed up Ratio Medium Signal (N=2048)
(M)

Measurement

(k)

Sparse Level

Ratio in Time

OpenCL / CPU

240 8 0.62

360 16 0.76

512 24 0.94

768 32 1.06

210.81

885.156

1810

4832

190

667.235

1699

5145

0

1000

2000

3000

4000

5000

6000

k=8 M=240 k=16 M=360 k=24 M=512 k=32 M=768

Time (ms)

Number of sparsity and measurments

OpenCL

CPU

41

To show the error of this recovery Figures: 4.7 and 4.8 are plotted. Table 4.7 gives

error for all set of medium size signal.

 Table 4.7: Recovery Error for Medium Sizes Signal (N=2048)
(M)

Measurement

(k)
Sparse
Level

RMSE

OpenCL

RMSE

CPU

240 8 1.37e(-7) 1.25e(-7)

360 16 6.33e(-7) 5.92e(-7)

512 24 7.45e(-7) 4.38e(-7)

768 32 2.44e(-6) 1.83e(-6)

When a Gaussian noise is added to the measurement. Table 4.8 gives output error in

the presentation of noise.

Table 4.8: Medium Signal Error in Presentation of Noise by Given Implementation
(N=2048)

(M)

Measurement

(k)

Sparse Level

RMSE

Percentage

SNR

dB

240 8 2.23 60.78

360 16 6.86 55.31

512 24 7.37 51.43

768 32 13.05 43.38

42

Figure 4.7: Input, Recovered and Error Medium Signal OpenCL

43

Figure 4.8: Input, Recovered and Error Medium Signal CPU

44

4.6 Results for Signal of Large Size

Time result for large signal size showed in Figure 4.9.

Figure4.9: Execution Time CPU-OpenCL Large Signal (N= 4096)

Figure 4.9 shows strength of parallel computing for large array of signal. It shows

when computational complexity goes higher OpenCL will give a better performance.

Table 4.9 shows the ratio of speedup.

 Table 4.9: Table 4.6: Speed up Ratio Large Signal (N=4096)
(M)

Measurement

(k)

Sparse Level

Ratio in Time

OpenCL / CPU

512 16 0.72

768 24 1.24

890 32 1.48

2048 64 1.54

910.89 2387.02 4056.73

43605.032

664.94
3023.51

6017.02

67538.32

0

10000

20000

30000

40000

50000

60000

70000

80000

k=16 M=512 k=24 M=768 k=32 M=890 k=64 M=2048

Time (ms)

Number of sparsity and measurments

OpenCL

CPU

45

To show the error Figures: 4.10 and 4.11 are plotted. Table 4.10 gives error ratio for

all large signals.

 Table 4.10: Large Signal Size Error Ratio (N=1024)
(M)

Measurements

(k)
Sparse
Level

RMSE

OpenCL

RMSE

CPU

512 16 2.12e(-7) 2.83e(-7)

768 24 4.83e(-7) 4.15e(-7)

890 32 5.22e(-7) 4.48e(-7)

2048 64 4.27e(-6) 2.13e(-6)

A Gaussian noise is added to the measurement to show the robustness for large size

signal. Table 4.11 gives output error in presentation of noise in dB.

Table 4.11: Large Signal Error in Presentation of Noise by Given Implementation
(N=4096)

(M)

Measurements

(k)

Sparse Level

RMSE

Percentage

SNR

dB

512 16 2.86 66.09

768 24 6.24 52.18

890 32 7.02 50.90

2048 64 7.56 50.71

46

Figure 4.10: Input, Recovered and Error Large Signal OpenCL

47

Figure 4.11: Input, Recovered and Error Large Signal CPU

48

4.7 Results for Signal of Massive Size

Massive size of signal compared results shown in Figure 4.12.

Figure4.12: Execution Time CPU-OpenCL Massive Signal (N=16384)

Figure 4.12 showed that OpenCL completely outperform CPU in calculation. Table

4.12 gives the ratio of speedup.

 Table 4.12: Massive size Signal Speed up Ratio (N=16384)
(M)

Measurements

(k)

Sparse Level

Ratio in Time

OpenCL / CPU

768 32 1.89

1024 64 1.49

1536 78 1.48

2048 128 2.60

3548.01
23587.02

47235.35

97264.225

6739.29

35321.02

76802.22

253245.53

0

50000

100000

150000

200000

250000

300000

k=32 M=768 k=64 M=1024k=78 M=1536 k=128
M=2048

Time (ms)

Number of sparsity and measurments

OpenCL

CPU

49

To show the error Figures: 4.13 and 4.14 are plotted. Table 4.13 gives error ratio for

all massive signals.

 Table 4.13: Massive Signal Size Error Ratio (N=16384)
(M)

Measurements

(k)

Sparse
Level

RMSE

OpenCL

RMSE

CPU

768 32 1.92e(-7) 1.35e(-7)

1024 64 3.63e(-7) 3.04e(-7)

1536 78 7.11e(-7) 7.04e(-7)

2048 128 5.42e(-6) 5.08e(-6)

Then a Gaussian noise added to the measurement to show the stability of algorithm

in massive signal size. Table 4.14 gives output error in presentation of noise.

Table 4.14: Massive Signal Error in Presentation of Noise by Given Implementation
(N=16384)

(M)

Measurements

(k)

Sparse Level

RMSE

Percentage

SNR

dB

768 32 4.46 50.67

1024 64 8.43 43.81

1536 78 7.36 47.82

2048 128 9.56 46.91

50

Figure 4.13: Input, Recovered and Error Massive Signal OpenCL

51

Figure 4.14: Input, Recovered and Error Massive Signal CPU

52

4.8 Discussions

First we recall computational complexity of operation in argmax and QR

decomposition. Complexity of the argmaxis O(ܯ × ܰ) and the QR complexity is

O(ܯଷ).

The results are evaluated in terms of speed and accuracy. The purpose is to show

performance and quality of this implementation.

In the case of small size, OpenCL has a little improvement in calculation time (Table

4.3). And the accuracy of reconstruction is very good with or without noise.

In the case of medium size the results give the similar evaluation to those for small

size signals.

The situation begins to change for large sized signals. That is the reason why we use

parallel processing. We see an improvement (over two times in speed) of OpenCL

over the CPU implementation (Table 4.9). This has no change in error (Table 4.10,

4.11).

The effect of parallel implementation becomes apparent for massive size of signals.

More improvement in speed at a cost of slightly more error achieved (Table 4.10,

4.11, 4.12).

53

Chapter 5

CONCLUSIONS

5.1 Conclusion

In this thesis, we have implemented OMP algorithm on high performance devices for

both CPU and GPU. With respect to the obtained results and outputs we have the

following conclusions:

First, the fast signal recovery of OMP can be achieved by parallel implantation, when

appropriate devices are chosen. It is particularly faster when the size of the signal is

large.

Second, in view of OpenCL portability, It is possible to run this implementation over

multi-platforms. It is also possible to use all computing resources available in the

system.

This study also demonstrates the need of heterogonous computing for reconstruction

of large size signal, as they require expensive computation.

54

5.2 Future Work

This work in the thesis can be further improved by following:

 Implementing batch OMP by HP device.

 Online dictionary learning

 Multi-dimensional data recovery in Compressive sensing

 Optimize the OpenCL in the kernel of Linux

 Implementing QR OMP in OpenCL

55

REFERENCES

[1] D.L. Donoho, "Compressed Sensing," IEEE Transaction on Information

Theory, vol. 52, pp. 1289-1306, Apr. 2006.

[2] E.J. Candes, J. Rombergand T. Tao, "Robust uncertainty principles:exact

signal reconstruction from highly incomplete frequency information," IEEE

Transaction Information Theory, vol. 52, pp. 489-509, Feb. 2006.

[3] S. Mallat and Z. Zhang, "Matching Pursuits with time-frequency dictionaries,"

IEEE Transaction on Signal Processing, vol. 41, pp. 3397-3415, Jul. 1993.

[4] R.G. Baraniuk and M.F. Durate, "Model-based compressive sensing," IEEE

Transactions on Information Theory, vol. 56, pp. 297-312, Apr. 2010.

[5] K. O. W. Group, The OpenCL Specification, Khronos Group, Jun. 2011.

[6] A. Mushi, B. Gaster, and T.G. Mattson, OpenCL Programming Guide, Jul.

2011.

[7] A. Majumdar, N. Krishnan, and S.B. Pillai, "Extinctions to orthogonal

Matching Pursuit for Compressed Sensing," Indian Institute of Technology, Signal

Processing, Jun. 2010.

[8] M. Elad, Sparse and Redundant Representations: From Theory to

56

Applicationsin Signaland Image Processing, Springer, Haifa, Israel, 2010.

[10] E. J. Candes, “The restricted isometry property and its implications for

compressed sensing,” Comptes Rendus Mathematique, vol. 346, pp.589–592, May

2008.

[11] E.J. Candes and T. Tao, “Near-optimal signal recovery from

randomprojections: universal encoding strategies,” IEEE Transactions on

Information Theory, vol. 52, pp. 5406–5425, Dec. 2006.

[12] E.J. Candes and T. Tao, “Decoding by linear programming,” IEEE

Transactions on Information Theory, vol. 51, pp. 4203–4215, Dec. 2005.

[13] D.L. Donoho and X. Huo, “Uncertainty principles and ideal atomic

decomposition,” IEEE Transactions on Information Theory, vol. 47, pp.2845–

2862, Nov. 2001.

[14] Justin Romberg and Michael Wakin, “Compressed Sensing: A Tutorial,”

IEEE Statistical Signal Processing Workshop, Aug. 2007.

[15] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of block-

sparse signals with an optimal number of measurements,” IEEE Transaction

Signal Processing, vol. 57, no. 8, pp. 3075–3085,Aug. 2009.

[17] Y. Eldar and M. Mishali, “Robust recovery of signals from a structured union

57

of subspaces, ”IEEE Transactions on Information Theory, vol. 55, no. 11, pp.

5302–5316, Nov. 2009.

[18] J. Tropp and A.C. Gilbert, “Signal recovery from partial information via

orthogonal matching pursuit,” IEEE Transactions on Information Theory, vol. 53,

no. 12, pp. 4655-4666, 2007.

[19] T. Blumensath and M. E. Davies, “Sampling theorems for signals from the

union of finite-dimensional linear subspaces,” IEEE Transactions on Information

Theory, vol. 55, no. 4, pp. 1872–1882, Apr. 2009.

[20] AMD Inc., http://developer.amd.com/sdks/AMDAPPSDK/assets/

AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf,AMD

Accelerated Parallel Processing OpenCL Programming Guide.

[21] B.R. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa, Heterogeneous

Computing with OpenCL. Morgan Kaufmann, 2012.

[22] AMD,http://developer.amd.com/libraries/appmathlibs/pages/default.aspx,

Accelerated Parallel Processing Math Libraries, 2012.

[23] Vienna University of Technology, http://viennacl.sourceforge.net,ViennaCL

58

APPENDIX

OMP OPENCL CODE

59

//#include <boost/numeric/mtl/mtl.hpp>

#include <iostream>

#include <cmath>

#include <cstdlib>

//#include <vector>

#include <viennacl/scalar.hpp>

#include <viennacl/vector.hpp>

#include <viennacl/matrix.hpp>

#include <viennacl/matrix_proxy.hpp>

#include <viennacl/linalg/norm_2.hpp>

#include <viennacl/linalg/norm_1.hpp>

#include <viennacl/linalg/prod.hpp>

#include <viennacl/linalg/inner_prod.hpp>

#include <viennacl/linalg/qr.hpp>

#include "viennacl/linalg/lu.hpp"

#include "viennacl/traits/size.hpp"

#include <boost/numeric/ublas/vector.hpp>

#include <boost/numeric/ublas/matrix.hpp>

#include <boost/numeric/ublas/io.hpp>

#include <boost/numeric/ublas/storage.hpp>

#include <boost/numeric/ublas/matrix_proxy.hpp>

#include "viennacl/ocl/device.hpp"

#include <viennacl/ocl/forwards.h>

#include "viennacl/ocl/backend.hpp"

#include "viennacl/ocl/program.hpp"

#include "viennacl/ocl/context.hpp"

#include "viennacl/ocl/kernel.hpp"

#include "CL/cl.hpp"

#include <chrono>

#include "examples/benchmarks/benchmark-utils.hpp"

60

floatrandgauss(float min, float max)

{

float r = (float)rand() / (float)RAND_MAX;

return min + r * (max - min);

}

const char * argmax =

"__kernel void argmax(\n"

" __global float * mat1,\n"

" __global float * vec2,\n"

" __global float * newmat,\n"

" __global float * indcol,\n"

" unsignedint j, \n"

" unsignedint component, \n"

" unsigned int feature) \n"

" { float y=0; \n"

" float v3=0; \n"

"unsignedconstintgid= get_global_id(0);\n"

"for(unsigned int z=0;z<component;z++){\n"

" for (unsigned inti= gid; i< feature; i += get_global_size(0)){\n"

" v3 += vec2[i]*mat1[(z*feature)+i];}\n"

" if(y<fabs(v3))\n"

" { y=v3; \n"

" indcol[gid+(j)]=z;\n"

" for (unsigned int n= gid; n < feature; n += get_global_size(0)){\n"

" newmat[((j*feature)+n)]=mat1[((z*feature)+n)];}}\n"

"}};\n";

//typedefstd::vector<viennacl::ocl::platform >platforms_type;

//typedefstd::vector<viennacl::ocl::device>devices_type;

//typedefstd::vector<cl_device_id>cl_devices_type;

//randgauss function for dictionary

61

int main(){

viennacl::ocl::set_context_device_type(0, viennacl::ocl::gpu_tag());

std::vector<viennacl::ocl::device> devices = viennacl::ocl::current_context().devices();

viennacl::ocl::current_context().switch_device(devices[0]);

Timer timer;

//std::cout<<viennacl::memory_types()<<std::endl;

std::cout<<viennacl::ocl::current_device().info() <<std::endl;

//evices_.push_back(devices[0]);

//intlast_nf=128;

intstart_sparse=2;

int sparse=0;

for (int benchmark=0;benchmark<1;benchmark++){

constintn_feature=1024;/*2*(last_nf); */ //measurments

sparse+= start_sparse;

start_sparse=sparse;

constintn_component=8192;

srand (time(NULL));

typedefviennacl::matrix<float, viennacl::column_major>VCLMatrixType;

typedefviennacl::vector<float>VCLVectorType;

boost::numeric::ublas::vector<float>
 landa(sparse),indice_cpu(sparse),m_cpu(n_feature),signal_cpu(n_component),v_cpu(n_featu
re);

boost::numeric::ublas::vector<int> indcol(sparse);

viennacl::scalar<float>

thetha(0),eps(0),scalarh(1),alpha(0);

VCLVectorType indcol_gpu(sparse),/*

tuple(n_feature)*/realgama(sparse),error(n_component),vcl_b(n_feature),z(1),indice(sparse),m(n_feat
ure),signal(n_component),v(n_feature),residual(n_feature),gama(n_feature);

VCLMatrixType help(0,n_component),dictionary(n_feature,n_component),
new_dictionary(0,n_component),tuple(n_feature,1);

boost::numeric::ublas::matrix<float>
 dictionary_cpu(n_feature,n_component), new_dictionary_cpu(0,n_component);

62

//generate dictionary

for (int i1 = 0; i1 < n_feature;i1++) {

for (int i2 = 0; i2 < n_component;i2++) {

dictionary_cpu(i1, i2)= randgauss(-10,10);

}

}

v.clear();

boost::numeric::ublas::scalar_value<float> h1;

for (int i1 = 0; i1 < n_component;i1++){

v_cpu=(boost::numeric::ublas::column(dictionary_cpu, i1));

h1=(boost::numeric::ublas::norm_2(v_cpu));

v_cpu=(1/h1) * v_cpu;

(boost::numeric::ublas::column(dictionary_cpu, i1))= v_cpu;

}

timer.start();

viennacl::copy(dictionary_cpu,dictionary);

viennacl::ocl::get_queue().finish(); //wait for copy operations to finish.

//std::cout<<timer.get() <<std::endl;

viennacl::backend::finish();

//std::cout<<"Dictionary:"<<dictionary<<std::endl;

//dictionary end

//generate sparse signal

std::fill(signal_cpu.begin(),signal_cpu.end(),0);

for (inti=0;i<sparse;i++){

intindx=(std::rand()%n_component);

indice(i)=indx;

signal_cpu(indx)= randgauss(-20,20);

}

viennacl::fast_copy(signal_cpu,signal);

63

viennacl::backend::finish();

//std::cout<<"Random signal:"<<signal_cpu<<std::endl<<"indices:"<<indice<<std::endl;

//end generate signal

//generate measurment

m = viennacl::linalg::prod(dictionary,signal);

//m.switch_memory_domain(viennacl::MAIN_MEMORY);

//std::cout<<"measurments:"<<m<<std::endl;

//end generate measurment

//orthogonal matching pusuit

// Solves [1] min || D * gamma - x ||_2 subject to || gamma ||_0 <= m

// or [2] min || gamma ||_0 subject to || D * gamma - x || <= eps

// Parameters

// ----------

// D, array of shape n_features x n_components

// x, vector of length n_features

// m, integer <= sparsity level

// eps, float (supersedes m)

//residual

residual=m;

std::fill(indcol.begin(),indcol.end(),-1); // idx

viennacl::range all_col(0,n_component);

viennacl::range all_row(0,n_feature);

viennacl::fast_copy(indcol,indcol_gpu);

eps=0;

std::cout<<"============================"<<std::endl;

std::cout<<"OMP START"<<std::endl;

std::cout<<"============================"<<std::endl;

auto start = std::chrono::high_resolution_clock::now();

for (int j=0;j<sparse;j++){

64

//viennacl::traits::resize(new_dictionary,n_feature,j+1);

new_dictionary.resize(n_feature,j+1);

//viennacl::traits::resize(help,n_feature,j+1);

help.resize(n_feature,j+1);

viennacl::scalar<float> theta(0);

for (inti=0;i<n_component;i++){

viennacl::range row(i,i+1);

viennacl::range col(i,i+1);

tuple=viennacl::project(dictionary,all_row,col);

tuple,static_cast<cl_uint>(i),static_cast<cl_uint>(direction),static_cast<cl_uint>(tuple.size())
));

//std::cout<<tuple<<std::endl;

tuple=viennacl::project(dictionary,all_row,col);

// timer.start();

z=viennacl::linalg::prod(trans(tuple),residual);

//std::cout<<timer.get() <<std::endl;

//timer.start();

alpha=viennacl::linalg::norm_1(z);

if (theta<alpha){

theta=alpha;

//landa(j)=alpha;

indcol(j)=i;

viennacl::range col(j,j+1);

viennacl::project(new_dictionary,all_row,col)=tuple;

tuple,static_cast<cl_uint>(j),static_cast<cl_uint>(direction),static_cast<cl_uint>(tuple.size())
));

}

}

//viennacl::ocl::program &my_prog = viennacl::ocl::current_context().add_program(argmax,
"argmax");

65

//viennacl::ocl::kernel &my_kernel = my_prog.add_kernel("argmax");

//viennacl::ocl::enqueue(my_kernel(dictionary,
residual,new_dictionary,indcol_gpu,static_cast<cl_uint>(j),static_cast<cl_uint>(n_componen
t),static_cast<cl_uint>(n_feature)));

//least square slove

vcl_b = m;

help=new_dictionary;

//std::cout<<"help"<<help<<std::endl;

std::vector<float>hybrid_betas = viennacl::linalg::inplace_qr(help,256);

// compute modified RHS of the minimization problem:

// b := Q^T b

viennacl::linalg::inplace_qr_apply_trans_Q(help, hybrid_betas, vcl_b);

viennacl::range vcl_range(0,j+1);

viennacl::matrix_range<VCLMatrixType> vcl_R(help, vcl_range,
vcl_range);

viennacl::vector_range<VCLVectorType> vcl_b2(vcl_b, vcl_range);

// Final step: triangular solve: Rx = b'.

// We only need the upper part of A such that R is a square matrix

viennacl::linalg::inplace_solve(vcl_R, vcl_b2, viennacl::linalg::upper_tag());

//new residual

gama=viennacl::linalg::prod(new_dictionary,vcl_b2);

residual=m-gama;

/*scalarh=viennacl::linalg::inner_prod(residual,residual);

if(eps>=scalarh){

break;

}

eps=scalarh.

realgama(j)=vcl_b2(j);

}

66

std::cout<<"============================"<<std::endl;

std::cout<<"OMP STOP"<<std::endl;

std::cout<<"============================"<<std::endl;

//error of method

auto finish = std::chrono::high_resolution_clock::now();

std::cout<< std::chrono::duration_cast<std::chrono::nanoseconds>(finish-start).count() <<
"ns\n";

//unsparse the measurment

//error.clear();

for (inti=0;i<sparse;i++){

error(indcol(i))=realgama(i);

}

std::cout<<"Dimension="<<n_feature<<"*"<<n_component<<std::endl;

//std::vector<float>error_cpu(n_component);

//viennacl::copy(error,error_cpu);

signal-=error;

alpha = viennacl::linalg::norm_2(signal);

std::cout<<"error in percent="<<(alpha)<<std::endl;

std::cout<<"check"<<indcol<<std::endl<<indice;

}

return EXIT_SUCCESS;

}

	Highjadid
	Table Of Contents2 jjj- for merge
	Revisedthesisjadid

