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ABSTRACT

This thesis consists of five chapters. The first Chapter gives general information

about the thesis. In the second Chapter, some preliminaries and auxilary results that are

used throughout the thesis are given.

The original parts of the thesis are Chapters 3, 4 and 5 which are established from

[35], [46] and [48]. In Chapter three, extended 2D Bernoulli and 2D Euler polynomials

are introduced. Moreover, some recurrence relations are given. Differential, integro-

differential and partial differential equations of the extended 2D Bernoulli and the ex-

tended 2D Euler polynomials are obtained by using the factorization method. The spe-

cial cases reduces to differential equation of the usual Bernoulli and Euler polynomials.

Note that the results for the usual 2D Euler polynomials are new.

In Chapter four, we consider Hermite-based Appell polynomials and give partial

differential equations of them. In the special cases, we present the recurrence relation,

differential, integro-differential and partial differential equations of the Hermite-based

Bernoulli and Hermite-based Euler polynomials.

In Chapter five, introducing k-times shift operators, factorization method is general-

ized. The differential equations of the Appell polynomials are obtained. For the special

case k = 2, differential equation of Bernoulli and Hermite polynomials are exhibited.

Keywords: 2D Bernoulli polynomial, 2D Euler polynomial, extended 2D Bernoulli

polynomial, extended 2D Euler polynomial, Hermite-based Appell polynomials, factor-

ization method
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ÖZ

Bu tez beş bölümden oluşmuştur. Birinci bölümde, tez ile ilgili genel bilgiler ver-

ilmiştir. İkinci bölümde, tezde kullanılan tanım ve kavramlar hakkında temel bilgiler ve

sonuçlar verilmiştir.

Bu tezin orijinal kısımları [35], [46] ve [48] nolu referanslardan ortaya çıkan üçüncü,

dördüncü ve beşinci bölümlerdir. Üçüncü bölümde, iki değişkenli genişletilmiş Bernoulli

ve Euler polinomları tanımlanmıştır. Buna ek olarak, iki değişkenli genişletilmiş Bernoulli

ve Euler polinomlarının sağladığı rekürans bağıntıları verilmiştir. Faktorizasyon metodu

kullanılarak, bu polinom ailelerinin sağladığı diferensiyel, integro-diferensiyel ve kısmi

diferensiyel denklemler bulunmuştur. Özel durumlar, Bernoulli ve Euler polinomlarının

diferensiyel denklemlerine düşer. Belirtelim ki, sonuçlar iki değişkenli Euler polinom-

ları için yenidir.

Dördüncü bölümde, Hermite tabanlı Appell polinomları göz önüne alınmış ve bu

polinomların sağladığı kısmi diferensiyel denklemler bulunmuştur. Özel durumlar olarak,

Hermite-tabanlı Bernoulli ve Hermite-tabanlı Euler polinomlarının diferensiyel, integro-

diferensiyel ve kısmi diferensiyel denklemleri verilmiştir.

Beşinci bölümde, k-defa artıran ve k-defa azaltan operatörler kullanılarak, faktoriza-

syon metodu genişletilmiş ve böylece Appell polinomlarının diferensiyel denklemleri

bulunmuştur. Özel olarak, k = 2 için Bernoulli ve Hermite polinomlarının diferensiyel

denklemleri verilmiştir.

Anahtar Kelimeler: İki değişkenli Bernoulli polinomu, iki değişkenli Euler poli-
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nomu, genişletilmiş iki değişkenli Bernoulli polinomu, genişletilmiş iki değişkenli Euler

polinomu, Hermite-tabanlı Appell polinomları, faktorizasyon metodu
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NOTATIONS and SYMBOLS 

( )nR x  
Appell     Polynomial, 

( )nB x      Bernoulli     Polynomial, 

( )nE x  Euler  Polynomial, 

( )nH x  Hermite Polynomial, 

( , )nB x y  2D  Bernoulli Polynomial,  

( , )nE x y  2D Euler Polynomial, 

( , ) ( , )j
nB x yα  Generalized 2D  Bernoulli Polynomial,  

( , ) ( , )j
nE x yα  Generalized 2D  Euler Polynomial, 

nL−  Derivative Operator,  

nL+  Multiplicative Operator, 

( , ) ( , , )j
nB x y cα  Extended 2D Bernoulli Polynomial, 

 
( , ) ( , , )j
nE x y cα          Extended 2D  Euler Polynomial, 

( , , )A nH x y z  Hermite-Based  Appell  Polynomials, 



vii 
 

( )k
nθ
−  k-times  Derivative Operator, 

( )k
nθ
+

   k-times  Multiplicative  Operator, 

( ) ( , )j
nH x y  Gould-Hopper Polynomial,  

H-K.F Hermite-Kampé  de Fériet Polynomial, 

( , ) ( , )j c
nP x y  Extended  Gould-Hopper Polynomial, 

( , , )H nB x y z  Hermite-based  Bernoulli  Polynomial, 

( , , )H nE x y z  Hermite-based  Euler  Polynomial, 

xD  Derivative with respect to x,  

1
xD−  Integral. 

 



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARY AND AUXILIARY RESULTS . . . . . . . . . . . . . . . . 9

2.1 Appell Polynomials and Gould-Hopper (or Hermite-Kampé de Fériet)

Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Some Properties of Bernoulli Polynomial . . . . . . . . . . . . . . . . . 12

2.3 Euler Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Generalized 2D Bernoulli Polynomial (G2DBP) . . . . . . . . . . . . . 15

3 DIFFERENTIAL EQUATION OF THE EXTENDED 2D BERNOULLI AND

THE EXTENDED 2D EULER POLYNOMIALS . . . . . . . . . . . . . . . 18

3.1 Construction of the E2DB and E2DE Polynomials . . . . . . . . . . . . 18

3.2 The Extended 2D Bernoulli Polynomial(E2DBP) . . . . . . . . . . . . . 18

3.3 The Extended 2D Euler Polynomial(E2DEP) . . . . . . . . . . . . . . . 25

4 HERMITE-BASED APPELL POLYNOMIALS . . . . . . . . . . . . . . . . 29

4.1 Construction and Auxilary Results . . . . . . . . . . . . . . . . . . . . 29

4.2 Recurrence Relation and Shift Operators for Hermite-Based Appell Poly-

nomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



4.3 Differential, Integro-differential and Partial Differential Equations of Hermite-

Based Appell Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 GENERALIZED FACTORIZATION METHOD FOR APPELL POLYNOMI-

ALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Construction and Auxilary Results . . . . . . . . . . . . . . . . . . . . 47

5.2 A set of finite order differential equations for the Appell polynomials via

generalized factorization method . . . . . . . . . . . . . . . . . . . . . 49

5.3 Applications of Main Theorems . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Hermite Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Bernoulli Polynomial . . . . . . . . . . . . . . . . . . . . . . . . 58

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

x



Chapter 1

INTRODUCTION

A polynomial set {Pn(x)}∞n=0 is quasi-monomial under the action of the operators

Θ+n and Θ−n , independent of n, possess the following representation

Θ+n (Pn(x)) = Pn+1(x) and Θ−n (Pn(x)) = nPn−1(x)

and if Θ+n and Θ−n are differential realizations then they satisfy the following differential

equation

Θ−n+1Θ
+
n (Pn(x)) = Pn(x)

where

P0(x) := 1 and P−1(x) := 0.

The operators Θ−n and Θ+n are called derivative and multiplicative operators, respec-

tively. The following commutation relation is satisfied by the operators Θ−n and Θ+n

[
Θ−n ,Θ

+
n

]
= I

where I is the identity operator and [,] denotes Lie paranthesis. It was Y.Ben Cheikh who

proved that "Every polynomial set is quasi-monomial" [9]. With the aid of monomiality
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principle new consequences were found for Hermite, Laguerre, Legendre and Appell

polynomials in [8], [13], [15], [20], [38].

Throughout the thesis, we take into consideration of the Appell polynomials and

their differential equations. First, we introduce some facts about Appell polynomials.

The well known Appell polynomials are generated by

A(t)ext =

∞∑
n=0

Rn(x)
tn

n!

where A(t) is given via

A(t) =
∞∑

n=0

αntn

which is an analytic function at t = 0. Considering

A′(t)
A(t)

=

∞∑
n=0

αn
tn

n!
,

it is directly seen that for any A(t), the derivatives of Rn(x) satisfy

R′n(x) = nRn−1(x).

Thus, {Rn(x)}∞n=0 are called an Appell polynomial set. The special choices of A(t) give

many well known polynomial sets. For instance,

• Taking A(t) = 1, we get the monomials Rn(x) = xn.

• If A(t) = e−
t2
2 , then Rn(x) = Hen(x), the Hermite polynomial (see [12]).
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• Choosing A(t) =
t

λet −1
(|t| < 2π when λ = 1; |t| <

∣∣∣logλ
∣∣∣ when λ , 1), then Rn(x) =

Bn(x), the Apostol-Bernoulli polynomial (see [2], [28], [40]). Note that when

λ = 1, we have the Bernoulli polynomial (see [45]).

• Letting A(t) = (1− t)−α (|t| < 1), then Rn(x) = n!L(α−n)
n (x), the modified Laguerre

polynomial (see [18]).

• By taking A(t) = ehtm , then Rn(x) = gm
n (x,h) the Gould-Hopper polynomial (see

[19]).

• Choosing A(t) =
2

λet +1
(|t| < π when λ = 1; |t| <

∣∣∣log(−λ)
∣∣∣ when λ , 1), then

Rn(x) = En(x), the Apostol-Euler polynomial (see [24], [29], [36], [42]). Note

that when λ = 1, we have the Euler polynomial (see [45]).

• Putting A(t) =
2t
λet +1

(|t| <
∣∣∣log(−λ)

∣∣∣), then Rn(x) = Gn(x), the Apostol-Genocchi

polynomial (see [26], [27], [30], [36], [42]). The case λ = 1 gives the Genocchi

polynomial.

• Letting A(t) =
m∏

i=1

αit
eαit −1

(|αit| < 2π), then Rn(x) is the Bernoulli polynomial of

oder m (see [5]). Note that, when αi = 1 (i = 1, · · · ,m) then these polynomials are

called Barnes polynomials.

• Taking A(t) =
m∏

i=1

2
eαit +1

(|αit| < π), then Rn(x) is the Euler polynomial of order m

(see [5]).

• Choosing A(t) = e

d+1∑
i=0
ξit

i

(ξd+1 , 0), then Rn(x) is the generalized Gould-Hopper

polynomial (see [13]). This polynomial include the Hermite polynomial when

d = 1 and d−orthogonal polynomials for each positive integer d.
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The differential equations of Bernoulli and Euler polynomials were found by He and

Ricci (see [20]).

Two dimensional Appell polynomials

A(t)ext+yt j
=

∞∑
n=0

Rn(x,y)
tn

n!

were defined by Bretti and Ricci (see [5]). Besides, recurrence relation and correspond-

ing equations of 2D Appell polynomials were presented in [5]. Also, for the special

case j = 2, they obtained the corresponding recurrence and differential equations for 2D

Bernoulli polynomials.

Afterward, the Hermite-Based Appell polynomials (H-B Appell) defined by Khan

et al. (see [23]) via

A(t)ext+yt2+zt3 =

∞∑
n=0

Rn(x,y,z)
tn

n!
.

Moreover, H-B Apostol Bernoulli, Euler and Genocchi polynomials were introduced

and investigated by Özarslan (see [34]).

In this thesis, we study how to obtain the differential equation, integro-differential

equation and partial differential equation of the following Appell polynomial families:

• Extended 2D Bernoulli polynomial (E2DBP),

• Extended 2D Euler polynomial (E2DEP),

4



• Hermite-based Bernoulli polynomial (H-BBP),

• Hermite-based Euler polynomial (H-BEP).

To obtain differential equations of them, we present factorization method. The main

idea of the factorization method is to find the derivative operator L−n and the multiplica-

tive operator L+n such that

L−n+1L+n (An(x,y,z)) = An(x,y,z).

In order to generalize the factorization method, for each fixed k ∈ N0, we introduce

k−times derivative operator by Θ−(k)
n

Θ
−(k)
n (Pn(x)) = Pn−k(x)

and k−times multiplicative operator by Θ+(k)
n

Θ
+(k)
n (Pn(x)) = Pn+k(x).

With the help of these operators, we introduce generalized factorization method by

(
Θ
−(k)
n+kΘ

+(k)
n

)
(Pn(x)) = Pn(x).

This thesis is organized as follows:

In Chapter 2,
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• some basic definitions and properties related with Appell polynomials,

• main definitions, some elementary properties of Bernoulli and Euler polynomials

are studied.

The original parts of the thesis are Chapters 3, 4 and 5 which are established from

the papers [35], [46] and [48].

In Chapter 3, the E2DBP [48] is introduced by

(
t

et −1
)αcxt+yt j

=

∞∑
n=0

B(α, j)
n (x,y,c)

tn

n!
, c > 1

and the E2DEP [48] is introduced via

(
2

et +1
)
α
cxt+yt j

=

∞∑
n=0

E(α, j)
n (x,y,c)

tn

n!
, c > 1.

Notice that in the case c = e and α = 1, these polynomials coincide with the usual

2DBP and 2DEP, respectively [5]. The corresponding results for the usual 2D Bernoulli

polynomial were presented in [5]. However, the results for the usual 2D Euler polyno-

mial are new. In obtaining differential equation of the E2DBP and E2DEP, we use the

factorization method.

In Chapter 4, we consider H-B Appell polynomials which are defined by

A(t)ext+yt2+zt3 =

∞∑
n=0

AHn(x,y,z)
tn

n!
,
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where

A(t) =
∞∑

k=0

αk
tk

k!
.

For the special case A(t) =
t

et −1
and A(t) =

2
et +1

, we have H-BBP and H-BEP, respec-

tively. Furthermore,

• recurrence relation,

• differential, integro-differential and partial differential equation of H-B Appell

polynomials

are obtained.

For the special case A(t) =
t

et −1
and A(t) =

2
et +1

, the corresponding equations are

presented for H-BBP and H-BEP.

In Chapter 5, for a given Appell polynomial family we introduce the generalized fac-

torization method via introducing the k−times shift operatorsΘ−(k)
n and Θ+(k)

n (k ∈ N) (see

[35]). For each k ∈ N,

• recurrence relations,

• differential equations of Appell polynomials

are obtained.
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For the special case k = 2, the differential equation of Bernoulli and Hermite polyno-

mials are shown.
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Chapter 2

PRELIMINARY AND AUXILIARY RESULTS

In this Chapter, some definitions and properties which are used throughout the thesis

are presented.

2.1 Appell Polynomials and Gould-Hopper (or Hermite-Kampé de Fériet)

Polynomials

In this section, we give some definitions and properties of the polynomial families

which are crucial in the rest of the thesis. First, we present the Hermite–Kampé de Fériet

polynomial (H-K.F), which is known as Gould-Hopper polynomial.

Definition 2.1.1 [5] For j ∈ N, the Hermite–Kampé de Fériet (H-K.F) polynomial is

defined by

ext+yt j
=

∞∑
n=0

H( j)
n (x,y)

tn

n!
. (2.1.1)

The explicit form of the H-K.F polynomial is given by

H( j)
n (x,y) = n!

[ n
j ]∑

s=0

xn− jsys

(n− js)!s!
, j ∈ N (2.1.2)

and it is the solution of the heat equation
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∂ j

∂x jG(x,y) =
∂

∂y
G(x,y), (2.1.3)

G(x,0) = xn.

Definition 2.1.2 [48] Extended H-K.F polynomial is defined by

P( j,c)
n (x,y) = n!

[ n
j ]∑

s=0

xn− jsys

(n− js)!s!
(lnc)n+s− js, c > 1 (2.1.4)

where j ≥ 2 is an integer.

Taking c = e, yields P( j,c)
n (x,y) = H( j)

n (x,y) where H( j)
n (x,y) is H-K.F polynomial.

The generating function of the extended H-K.F polynomial [48] is given by

cxt+yt j
=

∞∑
n=0

P( j,c)
n (x,y)

tn

n!
; c > 1. (2.1.5)

Furthermore, generalization of the extended H-K.F polynomial can be defined via

cx1t+x2t2+...+xrtr =

∞∑
n=0

P(c,r)
n (x1, x2, ..., xr)

tn

n!
.

It is important to state that the generalized heat equation can be obtained in terms of

the polynomial P( j,c)
n (x,y) = G(x,y,c):

(lnc)1− j ∂
j

∂x jG(x,y,c) =
∂

∂y
G(x,y,c) (2.1.6)

G(x,0,c) = xn(lnc)n .

10



Definition 2.1.3 [5] Generalized 2D Bernoulli polynomial(G2DB) is given by

(
t

et −1
)αext+yt j

=

∞∑
n=0

B(α, j)
n (x,y)

tn

n!
. (2.1.7)

Definition 2.1.4 [5] Generalized 2D Euler polynomial(G2DE) is given by

(
2

et +1
)αext+yt j

=

∞∑
n=0

E(α, j)
n (x,y)

tn

n!
. (2.1.8)

Definition 2.1.5 [48] The E2DBP is defined by

(
t

et −1
)
α
cxt+yt j

=

∞∑
n=0

B(α, j)
n (x,y,c)

tn

n!
, c > 1. (2.1.9)

Definition 2.1.6 [48] The E2DEP is defined by

2α

(et +1)α
cxt+yt j

=

∞∑
n=0

E(α, j)
n (x,y,c)

tn

n!
, c > 1. (2.1.10)

Definition 2.1.7 [23] H-B Appell polynomials are defined by

A(t)ext+yt2+zt3 =

∞∑
n=0

AHn(x,y,z)
tn

n!
, (2.1.11)

where

A(t) =
∞∑

k=0

αk
tk

k!
.
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Taking A(t) =
t

et −1
and A(t) =

2
et +1

, we get H-BBP and H-BEP which are given

by

t
et −1

ext+yt2+zt3 =

∞∑
n=0

H Bn(x,y,z)
tn

n!
, (2.1.12)

2
et +1

ext+yt2+zt3 =

∞∑
n=0

HEn(x,y,z)
tn

n!
, (2.1.13)

respectively. Besides this, Özarslan [34] defined the unification of H-B Appell polyno-

mials via the generating relation

f αa,b(x, t;k,β) = (
21−ktk

βbet −ab
)αext =

∞∑
n=0

Pαn,β(x;k,a,b)
tn

n!
. (2.1.14)

(k ∈ N0; a,b ∈ R\{0}; α,β ∈ C)

2.2 Some Properties of Bernoulli Polynomial

Bernoulli polynomial, first studied by Euler (see [3]), play an important role in the

integral representation of differentiable periodic functions and in the approximation of

such functions by means of polynomials (see [5]). Bernoulli polynomial, which is a

special kind of Appell polynomials is given by

G(x, t) =
t

et −1
ext =

∞∑
n=0

Bn(x)
tn

n!
; |t| < 2π. (2.2.1)
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First few Bernoulli polynomials are

B0(x) = 1, B1(x) = x− 1
2
, B2(x) = x2− x+

1
6
, (2.2.2)

B3(x) = x3− 3
2

x2+
1
2

x.

Bernoulli numbers are defined by Bn := Bn(0) and given by the following generating

relation

t
et −1

=

∞∑
n=0

Bn
tn

n!
. (2.2.3)

First few Bernoulli numbers are

B0 = 1, B1 =
−1
2
, B2 =

1
6
, B3 = 0, B4 =

−1
30

(2.2.4)

and B2k+1 = 0 for (k = 1,2, ...). The following properties characterizes the Bernoulli

polynomials:

Bn(x) =
n∑

k=0

(
n
k

)
Bkxn−k, (2.2.5)

Bn(1− x) = (−1)nBn(x), n ≥ 0,

B′n(x) = nBn−1(x),

Bn(x+1)−Bn(x) = nxn−1.

Bernoulli numbers appeared in several areas of mathematics. For example,
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• MacLaurin expansion of the trigonometric and hyperbolic tangent and cotangent

functions

• the sums of consecutive integer powers of natural numbers

l∑
k=0

kr =
Br(l+1)−Br+1

r+1
,

• the residual term of the Euler-Maclaurin quadrature formula (see [47]).

2.3 Euler Polynomial

Euler polynomial is given by

2
et +1

ext =

∞∑
n=0

En(x)
tn

n!
. (2.3.1)

The generating function of the Euler numbers En are given via:

2
et + e−t =

∞∑
n=0

En
tn

n!
.

In the following formulas, the special value of Euler numbers and the relation between

Euler numbers and ek are presented

En(
1
2

) = 2−nEn

(see [6], [20]) and

ek = (−1
2

)k
k∑

h=0

(
k
h

)
Ek−h, (2.3.2)

14



respectively.

It is important to mention that some extensions of these polynomials and related

polynomials were given in [16], [17], [25], [32], [33] and [44].

2.4 Generalized 2D Bernoulli Polynomial (G2DBP)

In 2004, Bretti and Ricci defined the G2DBP via [5],

(
t

et −1
)αext+yt j

=

∞∑
n=0

B(α, j)
n (x,y)

tn

n!
(2.4.1)

where

(
t

et −1
)α =

∞∑
n=0

B(α)
n

tn

n!
. (2.4.2)

In the following theorem, the relationship between the G2DBP and H-K.F polynomials

is given:

Theorem 2.4.1 [5] The explicit form of B(α, j)
n (x,y) is

B(α, j)
n (x,y) =

n∑
k=0

(
n
k

)
H( j)

k (x,y)Bαn−k . (2.4.3)

It was Bretti and Ricci, who found the recurrence relation and differential equations

of 2D Bernoulli polynomial (see [5]) .

Theorem 2.4.2 [5] For n ∈ N, we have the following recurrence for 2D Bernoulli poly-

15



nomial

B( j)
0 (x,y) = 1,

B( j)
n+1(x,y) =

−1
n+1

n−1∑
k=0

(
n+1

k

)
Bn−k+1B( j)

k (x,y) (2.4.4)

+(x− 1
2

)B( j)
n (x,y)+ jy

n!
(n− j+1)!

B( j)
n− j+1(x,y).

Shift operators are given by

L−n : =
1
n

Dx, (2.4.5)

L+n : = (x− 1
2

)−
n−1∑
k=0

Bn−k+1

(n− k+1)!
Dn−k

x + jyD j−1
x , (2.4.6)

L−n : =
1
n

D−( j−1)
x Dy, (2.4.7)

L+n : = (x− 1
2

)+ jyD−( j−1)2

x D j−1
y (2.4.8)

−
n−1∑
k=0

Bn−k+1

(n− k+1)!
D−( j−1)(n−k)

x Dn−k
y .

Corresponding equations are

[
Bn

n!
Dn

x+ ...+
B j+1

( j+1)!
D j+1

x + (
B j

j!
− jy)D j

x (2.4.9)

+
B j−1

( j−1)!
D j−1

x + ...+ (
1
2
− x)Dx+n

]
B( j)

n (x,y) = 0,

[
(x− 1

2
)Dy+ jD−( j−1)2

x D j−1
y + jyD−( j−1)2

x D j
y (2.4.10)

−
n−1∑
k=1

Bn−k+1

(n− k+1)!
D−( j−1)(n−k)

x Dn−k+1
y − (n+1)D j−1

x

B( j)
n (x,y) = 0,

16



[
(x− 1

2
)D( j−1)(n−1)

x Dy+ ( j−1)(n−1)D( j−1)(n−1)−1
x Dy+ jD( j−1)(n− j)

x (D j−1
y + yD j

y)

(2.4.11)

−
n−1∑
k=1

Bn−k+1

(n− k+1)!
D( j−1)(k−1)

x Dn−k+1
y − (n+1)D( j−1)n

x

B( j)
n (x,y) = 0; n ≥ j

respectively where

D−1
x =

x∫
0

f (ξ)dξ.

Note that, the case j = 2 is also presented by Gabriella Bretti and Paolo E. Ricci.
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Chapter 3

DIFFERENTIAL EQUATION OF THE EXTENDED 2D

BERNOULLI AND THE EXTENDED 2D EULER

POLYNOMIALS

In this Chapter, we present some results of our study [48].

3.1 Construction of the E2DB and E2DE Polynomials

The differential equation, recurrence relation, shift operators of the G2DBP and the

G2DEP have not been found before. In this Chapter, first we extend the G2DBP and

G2DEP and then, we find the differential equation, recurrence relation, shift operators

for the E2DBP and E2DEP. In the special cases, we exhibit the results for the G2DBP

and G2DEP.

3.2 The Extended 2D Bernoulli Polynomial(E2DBP)

We define the E2DBP via [48]

tα

(et −1)α
cxt+yt j

=

∞∑
n=0

B(α, j)
n (x,y,c)

tn

n!
, c > 1. (3.2.1)

The following theorem states the relation between the E2DBP and the extended H–K.F

polynomials:

18



Theorem 3.2.1 [48] The explicit form of B(α, j)
n (x,y,c) is

B(α, j)
n (x,y,c) =

n∑
k=0

(
n
k

)
P( j,c)

k (x,y)Bαn−k ; c > 1. (3.2.2)

Proof. Using (2.1.5) and (2.4.2) in the generating function of the E2DBP,

∞∑
n=0

B(α, j)
n (x,y,c)

tn

n!
=

tα

(et −1)α
cxt+yt j

,

the theorem is proved applying the Cauchy product of the series.

Note that, taking c = e and j = 2, we get the explicit representation of generalized

Bernoulli polynomials obtained in [5].

The following theorem includes the recurrence relation and corresponding operators

and equations of the E2DBP:

Theorem 3.2.2 [48] For n ∈ N the E2DBP satisfies the following recurrence relation

B(α, j)
0 (x,y,c) = 1, B(α, j)

−k (x,y,c) := 0

B(α, j)
n+1 (x,y,c) = (x lnc− α

2
)B(α, j)

n (x,y,c)+ y j
n!

(n− j+1)!
(lnc)B(α, j)

n− j+1(x,y,c)

− α
n+1

n−1∑
k=0

(
n+1

k

)
B(α, j)

k (x,y,c)Bn+1−k (3.2.3)

where Bn is given by (2.2.3).
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Corresponding operators are

L−n : =
1

n lnc
Dx, (3.2.4)

L+n : = x lnc− α
2
+ y j(lnc)(2− j)D( j−1)

x (3.2.5)

−α
n−1∑
k=0

Bn+1−k

(n+1− k)!
(lnc)(k−n)Dn−k

x ,

L−n : =
(lnc) j−2

n
D1− j

x Dy, (3.2.6)

L+n : = (x lnc− α
2

)+ y j(lnc)( j−1)( j−2)+1D−( j−1)2

x D j−1
y (3.2.7)

−α
n−1∑
k=0

Bn+1−k

(n+1− k)!
(lnc)(n−k)( j−2)D−( j−1)(n−k)

x Dn−k
y ,

where n ≥ 1, j ≥ 2 is an integer and c > 1.

The corresponding equations for the E2DBP are

[
(x− α

2lnc
)Dx+ y j(lnc)1− jD j

x (3.2.8)

−α
n−1∑
k=1

Bn+1−k

(n+1− k)!
(lnc)k−n−1Dn+1−k

x −n

B(a, j)
n (x,y,c) = 0,

[
(x lnc− α

2
)Dy+ j(lnc)( j−1)( j−2)+1D−( j−1)2

x D j−1
y (3.2.9)

+y j(lnc)( j−1)( j−2)+1D−( j−1)2

x D j
y−α

n−1∑
k=1

Bn+1−k

(n+1− k)!
(lnc)( j−2)(n−k)D−( j−1)(n−k)

x Dn−k+1
y

−(n+1)(lnc)2− jD j−1
x ]B(a, j)

n (x,y,c) = 0,
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[
(x lnc− α

2
)D( j−1)(n−1)

x Dy+ ( j−1)(n−1)D( j−1)(n−1)−1
x Dy (3.2.10)

+ j(lnc)( j−1)( j−2)+1D( j−1)(n− j)
x D j−1

y (1+ yDy)

−α
n−1∑
k=1

Bn+1−k

(n+1− k)!
(lnc)( j−2)(n−k)D( j−1)(k−1)

x Dn−k+1
y − (n+1)(lnc)2− jDn( j−1)

x


×B(a, j)

n (x,y,c) = 0.

It is important to note that (3.2.10) does not contain anti-derivatives for n ≥ j.

Proof. Taking derivative with respect to t in (3.2.1)

tα

(et −1)α
cxt+yt j

=

∞∑
n=0

B(α, j)
n (x,y,c)

tn

n!

then applying series manipulations and (2.2.4), we get the recurrence relation

B(α, j)
n+1 (x,y,c) = (x lnc− α

2
)B(α, j)

n (x,y,c)+ y j
n!

(n− j+1)!
(lnc)B(α, j)

n− j+1(x,y,c)

− α
n+1

n−1∑
k=0

(
n+1

k

)
B(α, j)

k (x,y,c)Bn+1−k.

Differentiating generating relation (3.2.1) with respect to x and comparing coefficients

of tn yields

DxB(α, j)
n (x,y,c) = n lncB(α, j)

n−1 (x,y,c).

21



Thus, the following relation holds for L−n :=
1

n lnc
Dx :

L−n (B(α, j)
n (x,y,c)) = B(α, j)

n−1 (x,y,c).

Obviously

B(α, j)
k (x,y,c) =

[
L−k+1 L−k+2...L

−
n

]
B(α, j)

n (x,y,c) (3.2.11)

=
k!
n!

(lnc)k−nDn−k
x B(α, j)

n (x,y,c),

B(α, j)
n− j+1(x,y,c) =

[
L−n− j+2 L−n− j+3...L

−
n

]
B(α, j)

n (x,y,c) (3.2.12)

=
(n− j+1)!

n!
(lnc)1− jD j−1

x B(α, j)
n (x,y,c).

Taking into account (3.2.11) and (3.2.12) in (3.2.3), we get the multiplicative operator

L+n by

L+n := x lnc− α
2
+ y j(lnc)(2− j)D( j−1)

x −α
n−1∑
k=0

Bn+1−k

(n+1− k)!
(lnc)(k−n)Dn−k

x .

By applying the factorization method (see [22], [21]),

L−n+1L+n B(α, j)
n (x,y,c) = B(α, j)

n (x,y,c)

we get

[
(x− α

2lnc
)Dx+ y j(lnc)1− jD j

x

−α
n−1∑
k=1

Bn+1−k

(n+1− k)!
(lnc)k−n−1Dn+1−k

x −n

B(a, j)
n (x,y,c) = 0.
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To obtain (3.2.9), first we take derivative with respect to y in (3.2.1). Thus, we have

(lnc)B(a, j)
n− j (x,y,c)n(n−1)...(n− j+1) =

∂B(a, j)
n (x,y,c)
∂y

.

Consequently, we have:

L−n :=
(lnc) j−2

n
D1− j

x Dy.

By using the above derivative operator in (3.2.3), we have

L+n := (x lnc− α
2

)+ y j(lnc)( j−1)( j−2)+1D−( j−1)2

x D j−1
y

−α
n−1∑
k=0

Bn+1−k

(n+1− k)!
(lnc)(n−k)( j−2)D−( j−1)(n−k)

x Dn−k
y .

Using the factorization relation

L−n+1L
+
n B(α, j)

n (x,y,c) = B(α, j)
n (x,y,c),

we get (3.2.9). Differentiating each sides of (3.2.9) with respect to x, ( j−1)(n−1) times,

we obtain

[
(x lnc− α

2
)D( j−1)(n−1)

x Dy+ ( j−1)(n−1)D( j−1)(n−1)−1
x Dy

+ j(lnc)( j−1)( j−2)+1D( j−1)(n− j)
x D j−1

y (1+ yDy)

−α
n−1∑
k=1

Bn+1−k

(n+1− k)!
(lnc)( j−2)(n−k)D( j−1)(k−1)

x Dn−k+1
y − (n+1)(lnc)2− jDn( j−1)

x


×B(a, j)

n (x,y,c) = 0.
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In the following Corollary, the important case c = e is mentioned for the generalized

2D Bernoulli polynomials.

Corollary 3.2.3 [48] The recurrence relation of the G2DBP is as follows:

B(α, j)
n+1 (x,y) = (x− α

2
)B(α, j)

n (x,y)+ y j
n!

(n− j+1)!
B(α, j)

n− j+1(x,y)

− α
n+1

n−1∑
k=0

(
n+1

k

)
B(α, j)

k (x,y)Bn+1−k.

Corresponding operators are

L−n : =
1
n

Dx,

L+n : = x− α
2
+ y jD( j−1)

x −α
n−1∑
k=0

Bn+1−k

(n+1− k)!
Dn−k

x ,

L−n : =
1
n

D1− j
x Dy,

L+n : = (x− α
2

)+ y jD−( j−1)2

x D j−1
y

−α
n−1∑
k=0

Bn+1−k

(n+1− k)!
D−( j−1)(n−k)

x Dn−k
y .

The corresponding equations are

[
(x− α

2
)Dx+ y jD j

x

−α
n−1∑
k=1

Bn+1−k

(n+1− k)!
Dn+1−k

x −n

B(a, j)
n (x,y) = 0,

[
(x− α

2
)Dy+ jD−( j−1)2

x D j−1
y + y jD−( j−1)2

x D j
y

−α
n−1∑
k=1

Bn+1−k

(n+1− k)!
D−( j−1)(n−k)

x Dn−k+1
y − (n+1)D j−1

x

B(a, j)
n (x,y) = 0,
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[
(x− α

2
)D( j−1)(n−1)

x Dy+ ( j−1)(n−1)D( j−1)(n−1)−1
x Dy

+ jD( j−1)(n− j)
x D j−1

y (1+ yDy)

−α
n−1∑
k=1

Bn+1−k

(n+1− k)!
D( j−1)(k−1)

x Dn−k+1
y − (n+1)Dn( j−1)

x

B(a, j)
n (x,y) = 0; n ≥ j.

3.3 The Extended 2D Euler Polynomial(E2DEP)

In this section, we define the E2DEP and find the differential equations of the

E2DEP. The E2DEP is given by [48]

(
2

et +1
)αcxt+yt j

=

∞∑
n=0

E(α, j)
n (x,y,c)

tn

n!
, c > 1. (3.3.1)

The next theorem states the recurrence relation, shift operators, differential, integro-

differential and partial differential equations of the E2DEP. Since the proof is similar

with the E2DBP, we only present the theorem.

Theorem 3.3.1 [48] The recurrence formula of the E2DEP is given by:

E(α, j)
n+1 (x,y,c) = (x lnc− α

2
)E(α, j)

n (x,y,c)+ y jE(α, j)
n− j+1(x,y,c)

n!
(n− j+1)!

(lnc) (3.3.2)

+
α

2

n−1∑
k=0

(
n
k

)
en−kE(α, j)

k (x,y,c).
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Corresponding operators are given by:

L−n : =
1

n lnc
Dx, (3.3.3)

L+n : = x lnc− α
2
+ y j(lnc)2− jD j−1

x (3.3.4)

+
α

2

n−1∑
k=0

en−k

(n− k)!
(lnc)k−nDn−k

x ,

L−n : =
(lnc) j−2

n
D1− j

x Dy, (3.3.5)

L+n : = (x lnc− α
2

)+ y j(lnc)( j−1)( j−2)+1D−( j−1)2

x D j−1
y (3.3.6)

+
α

2

n−1∑
k=0

en−k

(n− k)!
(lnc)(n−k)( j−2)D−(n−k)( j−1)

x Dn−k
y .

Corresponding equations are:

[
(x− α

2lnc
)Dx+ y j(lnc)1− jD j

x (3.3.7)

+
α

2

n−1∑
k=1

en−k

(n− k)!
(lnc)k−n−1Dn−k+1

x −n

E(α, j)
n (x,y,c) = 0,

[
(x lnc− α

2
)Dy+ (lnc)( j−1)( j−2)+1 jD−( j−1)2

x D j−1
y (3.3.8)

+y j(lnc)( j−1)( j−2)+1D−( j−1)2

x D j
y+
α

2

n−1∑
k=1

en−k

(n− k)!
(lnc)( j−2)(n−k)D−( j−1)(n−k)

x Dn−k+1
y

−(n+1)(lnc)2− jD j−1
x ]E(α, j)

n (x,y,c) = 0,
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[
(x lnc− α

2
)D( j−1)(n−1)

x Dy+ ( j−1)(n−1)D( j−1)(n−1)−1
x Dy (3.3.9)

+(lnc)( j−1)( j−2)+1 jD( j−1)(n− j)
x (D j−1

y + yD j
y)

+
α

2

n−1∑
k=1

en−k

(n− k)!
(lnc)( j−2)(n−k)D( j−1)(k−1)

x Dn+1−k
y − (n+1)(lnc)2− jD( j−1)n

x


×E(α, j)

n (x,y,c) = 0.

Similarly, as in (3.2.10), we should take n ≥ j in (3.3.9).

Since the case c = e reduces to the G2DEP, we thus have the following corollary:

Corollary 3.3.2 [48] For the G2DEP, we have the following recurrence:

E(α, j)
n+1 (x,y) = (x− α

2
)E(α, j)

n (x,y)+ y jE(α, j)
n− j+1(x,y)

n!
(n− j+1)!

+
α

2

n−1∑
k=0

(
n
k

)
en−kE(α, j)

k (x,y).

Shift operators:

L−n : =
1
n

Dx,

L+n : = x− α
2
+ y jD j−1

x +
α

2

n−1∑
k=0

en−k

(n− k)!
Dn−k

x ,

L−n : =
1
n

D1− j
x Dy,

L+n : = (x− α
2

)+ y jD−( j−1)2

x D j−1
y +

α

2

n−1∑
k=0

en−k

(n− k)!
D−(n−k)( j−1)

x Dn−k
y .
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The corresponding equations are :

[
(x− α

2
)Dx+ y jD j

x

+
α

2

n−1∑
k=1

en−k

(n− k)!
Dn−k+1

x −n

E(α, j)
n (x,y) = 0,

[
(x− α

2
)Dy+ jD−( j−1)2

x D j−1
y + y jD−( j−1)2

x D j
y

+
α

2

n−1∑
k=1

en−k

(n− k)!
D−( j−1)(n−k)

x Dn−k+1
y − (n+1)D j−1

x

E(α, j)
n (x,y) = 0,

[
(x− 1

2
)D( j−1)(n−1)

x Dy+ ( j−1)(n−1)D( j−1)(n−1)−1
x Dy+ jD( j−1)(n− j)

x D j−1
y (1+ yDy)

+
α

2

n−1∑
k=1

en−k

(n− k)!
D( j−1)(k−1)

x Dn−k+1
y − (n+1)D( j−1)n

x

E(α, j)
n (x,y) = 0; (n ≥ j).
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Chapter 4

HERMITE-BASED APPELL POLYNOMIALS

This Chapter consists of results of our recent study [46].

4.1 Construction and Auxilary Results

It was Khan et al. [23] who defined the H-B Appell polynomials by

G(x,y,z; t) = A(t)exp(µt) =
∞∑

n=0
HAn(x,y,z)

tn

n!
, (4.1.1)

where

µ = x+2y
∂

∂x
+3z

∂2

∂x2 (4.1.2)

denotes the multiplicative operator of the 3-variable Hermite polynomials which are

given by

exp(xt+ yt2+ zt3) =
∞∑

n=0

H(3)
n (x,y,z)

tn

n!
(4.1.3)

and

A(t) =
∞∑

n=0

antn, a0 , 0. (4.1.4)
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Using Berry decoupling identity

eA+B = e
m2
12 e((−m

2 )A
1
2+A)eB, [A,B] = mA

1
2 , (4.1.5)

they introduced H-B Appell polynomials HAn(x,y,z) as

G(x,y,z; t) = A(t)exp(xt+ yt2+ zt3) =
∞∑

n=0
HAn(x,y,z)

tn

n!
. (4.1.6)

In this Chapter, we consider the H-BBP H Bn(x,y,z), H-BEP HEn(x,y,z) and the H-BGP

HGn(x,y,z) via the following generating functions (see [23]):

t
et −1

exp(xt+ yt2+ zt3) =
∞∑

n=0
H Bn(x,y,z)

tn

n!
, |t| < 2π, (4.1.7)

2
et +1

exp(xt+ yt2+ zt3) =
∞∑

n=0
HEn(x,y,z)

tn

n!
, |t| < π, (4.1.8)

and

2t
et +1

exp(xt+ yt2+ zt3) =
∞∑

n=0
HGn(x,y,z)

tn

n!
, |t| < π, (4.1.9)

respectively.

In the special case z= 0, these generating functions reduce to the generating functions

of 2DBP, 2DEP and 2DGP. The special cases of (4.1.7) and (4.1.8) were investigated by

Bretti and Ricci, which is given in [5]. In the case y = z = 0, we have the usual Bernoulli,

Euler and Genocchi polynomials, respectively.
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4.2 Recurrence Relation and Shift Operators for Hermite-Based Appell

Polynomials

The following theorem gives the recurrence relation and shift operators for Hermite-

based Appell polynomials:

Theorem 4.2.1 [46] The recurrence relation of H-B Appell polynomials is:

HA−1(x,y,z) := 0, HA−2(x,y,z) := 0;

HAn+1(x,y,z) = (x+α0) HAn(x,y,z)+
n∑

k=1

(
n
k

)
αk HAn−k(x,y,z) (4.2.1)

+2ny HAn−1(x,y,z)+3zn(n−1) HAn−2(x,y,z)

where αk (k = 0,1,2, ...) are given by the expansion

A′(t)
A(t)

=

∞∑
k=0

αk
tk

k!
. (4.2.2)

Shift operators are as follows:

xL−n : =
1
n

Dx, (4.2.3)

yL−n : =
1
n

D−1
x Dy, (4.2.4)

zL−n : =
1
n

D−2
x Dz, (4.2.5)

xL+n : = x+α0+

n∑
k=1

αk

k!
Dk

x+2yDx+3zD2
x, (4.2.6)

yL+n : = x+α0+

n∑
k=1

αk

k!
D−k

x Dk
y +2yD−1

x Dy+3zD−2
x D2

y , (4.2.7)

zL+n : = x+α0+

n∑
k=1

αk

k!
D−2k

x Dk
z +2yD−2

x Dz+3zD−4
x D2

z , (4.2.8)
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where

Dx :=
∂

∂x
, Dy :=

∂

∂y
, ...,D−1

x :=

x∫
0

f (ξ)dξ.

Proof. Taking derivative with respect to t on both sides of (4.1.6), we have

∂

∂t
G(x,y,z; t) = G(x,y,z; t)

(
A′(t)
A(t)
+ x+2yt+3zt2

)
. (4.2.9)

Inserting the corresponding series forms for G(x,y,z; t) from (4.1.6) and for
A′(t)
A(t)

from

(4.2.2) and equating the coefficients of tn in the equation resulting from (4.2.9), we

obtain (4.2.1). Next, we take into account (4.2.1) to find the multiplicative operators

xL+n , yL+n and zL+n with respect to x, y and z. First of all, in order to obtain the derivative

operator xL−n , we differentiate both sides of the generating relation (4.1.6) with respect

to x and equate the coefficients of tn, so that we have

∂

∂x
{HAn(x,y,z)} = n HAn−1(x,y,z).

Thus, clearly, the operator given by (4.2.3) satisfies the following relation:

xL−n HAn(x,y,z) = HAn−1(x,y,z).

Differentiating the generating relation (4.1.6) with respect to y, we have

∂

∂y
{HAn(x,y,z)} = n(n−1) HAn−2(x,y,z) = n

∂

∂x
{HAn−1(x,y,z)} ,

32



so that

D−1
x Dy HAn(x,y,z) = n HAn−1(x,y,z), (4.2.10)

and therefore, we get yL−n =
1
n

D−1
x Dy.

Upon differentiating both sides of the generating relation (4.1.6) with respect to z,

we have

∂

∂z
{ HAn(x,y,z)} = n(n−1)(n−2) HAn−3(x,y,z) = n

∂2

∂x2 { HAn−1(x,y,z)} ,

so that

D−2
x Dz HAn(x,y,z) = n HAn−1(x,y,z), (4.2.11)

which yields to zL−n =
1
n

D−2
x Dz.

Next, in order to obtain the multiplicative operator xL+n , we use the following rela-

tions:

HAn−k(x,y,z) =
(

xL−n−k+1 xL−n−k+2 · · · xL−n−1 xL−n
)

HAn(x,y,z)

=
(n− k)!

n!
Dk

x HAn(x,y,z), (4.2.12)

HAn−1(x,y,z) = xL−n HAn(x,y,z) (4.2.13)

=
1
n

Dx HAn(x,y,z)
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and

HAn−2(x,y,z) =
(

xL−n−1 xL−n
)

H
An(x,y,z) (4.2.14)

=
1

n(n−1)
D2

x HAn(x,y,z).

By substituting (4.2.12), (4.2.13) and (4.2.14) into the recurrence relation (4.2.1), we

have

HAn+1(x,y,z) =

x+α0+

n∑
k=1

αk

k!
Dk

x+2yDx+3zD2
x

 HAn(x,y,z)

which yields the multiplicative operator xL+n .

To obtain the multiplicative operator yL+n , we use the following relations:

HAn−k(x,y,z) =
(
yL−n−k+1 yL−n−k+2 · · · yL−n−1 yL−n

)
H

An(x,y,z) (4.2.15)

=
(n− k)!

n!
D−k

x Dk
y HAn(x,y,z),

HAn−1(x,y,z) = yL−n HAn(x,y,z) (4.2.16)

=
1
n

D−1
x Dy HAn(x,y,z)

and

HAn−2(x,y,z) =
(
yL−n−1 yL−n

)
H

An(x,y,z) (4.2.17)

=
1

n(n−1)
D−2

x D2
y HAn(x,y,z).
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Inserting (4.2.15), (4.2.16) and (4.2.17) into the recurrence relation (4.2.1), we get

HAn+1(x,y,z) =

x+α0+

n∑
k=1

αk

k!
D−k

x Dk
y +2yD−1

x Dy+3zD−2
x D2

y


×HAn(x,y,z) (4.2.18)

which leads us to the multiplicative operator yL+n .

The derivation of the multiplicative operator zL+n would similarly make use of the

following relations:

HAn−k(x,y,z) =
(
zL−n−k+1 zL−n−k+2 · · · zL−n−1 zL−n

)
HAn(x,y,z)

=
(n− k)!

n!
D−2k

x Dk
z HAn(x,y,z),

HAn−1(x,y,z) = zL−n HAn(x,y,z)

=
1
n

D−2
x Dz HAn(x,y,z)

and

HAn−2(x,y,z) =
(
zL−n−1 zL−n

)
HAn(x,y,z)

=
1

n(n−1)
D−4

x D2
z HAn(x,y,z),
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which, in conjunction with the recurrence relation (4.2.1), yields

HAn+1(x,y,z) (4.2.19)

=

x+α0+

n∑
k=1

αk

k!
D−2k

x Dk
z +2yD−2

x Dz+3zD−4
x D2

z

 HAn(x,y,z)

and consequently, the multiplicative operator zL+n .

Taking A(t)=
t

et −1
in above Theorem , we get the following Corollary for Hermite-

based Bernoulli polynomial:

Corollary 4.2.2 [46] The recurrence formula of the H-BBP is given by:

H Bn+1(x,y,z)

= (x− 1
2 ) H Bn(x,y,z)+2ny H Bn−1(x,y,z)

+3zn(n−1) H Bn−2(x,y,z)− 1
n+1

n+1∑
k=2

(
n+1

k

)
H Bn−k+1(x,y,z)Bk

where Bk denotes the Bernoulli numbers and

H B−n(x,y,z) := 0, n ∈ N.
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Corresponding operators are:

xL−n : =
1
n

Dx,

yL−n : =
1
n

D−1
x Dy,

zL−n : =
1
n

D−2
x Dz,

xL+n : = x− 1
2
+2yDx+3zD2

x−
n+1∑
k=2

Bk

k!
Dk−1

x ,

yL+n : = x− 1
2
+2yD−1

x Dy+3zD−2
x D2

y −
n+1∑
k=2

Bk

k!
D1−k

x Dk−1
y ,

zL+n : = x− 1
2
+2yD−2

x Dz+3zD−4
x D2

z −
n+1∑
k=2

Bk

k!
D2−2k

x Dk−1
z .

Taking A(t)=
2

et +1
in above Theorem, we get the following Corollary for Hermite-

based Euler polynomial:

Corollary 4.2.3 [46] The recurrence relation of the H-BEP is:

HEn+1(x,y,z) = (x − 1
2 ) HEn(x,y,z)+ 1

2

n∑
k=1

(
n
k

)
ek HEn−k(x,y,z)

+2ny HEn−1(x,y,z)+3zn(n−1) HEn−2(x,y,z).
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Shift operators are:

xL−n : =
1
n

Dx,

yL−n : =
1
n

D−1
x Dy,

zL−n : =
1
n

D−2
x Dz,

xL+n : = x− 1
2
+2yDx+3zD2

x+
1
2

n∑
k=1

ek

k!
Dk

x,

yL+n : = x− 1
2
+2yD−1

x Dy+3zD−2
x D2

y +
1
2

n∑
k=1

ek

k!
D−k

x Dk
y,

zL+n : = x− 1
2
+2yD−2

x Dz+3zD−4
x D2

z +
1
2

n∑
k=0

ek

k!
D−2k

x Dk
z ,

where ek are the numerical coefficients that are given by (2.3.2).

4.3 Differential, Integro-differential and Partial Differential Equations of

Hermite-Based Appell Polynomials

In this section, we obtain differential, integro-differential and partial differential equa-

tions for the H-B Appell polynomials via factorization method. Furthermore, we arrange

the corresponding equations for H-B Bernoulli and H-B Euler polynomials.

Theorem 4.3.1 [46] H-B Appell polynomials satisfy the following differential equation:

(x+α0)Dx+

n∑
k=1

αk

k!
Dk+1

x +2yD2
x+3zD3

x−n

 HAn(x,y,z) = 0 (4.3.1)

where

A
′
(t)

A(t)
=

∞∑
k=0

αk
tk

k!
.
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Proof. Using factorization relation

xL−n+1 xL+n HAn(x,y,z) =H An(x,y,z)

and shift operators (4.2.3) and (4.2.6), we get the desired result.

Theorem 4.3.2 [46] H-B Appell polynomials satify the following integro-differential

equations:

(x+α0)Dy+

n∑
k=1

αk

k!
D−k

x Dk+1
y +2D−1

x Dy (4.3.2)

+2yD−1
x D2

y +3zD−2
x D3

y − (n+1)Dx
]

HAn(x,y,z) = 0,

(x+α0)Dz+

n∑
k=1

αk

k!
D−2k

x Dk+1
z +2yD−2

x D2
z (4.3.3)

3D−4
x D2

z +3zD−4
x D3

z − (n+1)D2
x

]
HAn(x,y,z) = 0,

(x+α0)Dy+

n∑
k=1

αk

k!
D−2k

x Dk
z Dy+2D−2

x Dz (4.3.4)

+2yD−2
x DzDy+3zD−4

x D2
z Dy− (n+1)Dx

]
HAn(x,y,z) = 0,

(x+α0)Dz+

n∑
k=1

αk

k!
DzD−k

x Dk
y +2yD−1

x DyDz (4.3.5)

+3D−2
x D2

y +3zD−2
x D2

yDz− (n+1)D2
x

]
HAn(x,y,z) = 0.
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Proof. Using factorization relation

L−n+1L
+
n HAn(x,y,z) =H An(x,y,z)

with the derivative operators (4.2.4)

yL−n :=
1
n

D−1
x Dy,

and the multiplicative operator (4.2.7)

yL+n := x+α0+

n∑
k=1

αk

k!
D−k

x Dk
y +2yD−1

x Dy+3zD−2
x D2

y ,

we get the following integro-differential equation

(x+α0)Dy+

n∑
k=1

αk

k!
D−k

x Dk+1
y +2D−1

x Dy

+2yD−1
x D2

y +3zD−2
x D3

y − (n+1)Dx
]

HAn(x,y,z) = 0.

Considering the shift operators (4.2.5)

zL−n :=
1
n

D−2
x Dz,

and (4.2.8)

zL+n := x+α0+

n∑
k=1

αk

k!
D−2k

x Dk
z +2yD−2

x Dz+3zD−4
x D2

z
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we get corresponding equation

(x+α0)Dz+

n∑
k=1

αk

k!
D−2k

x Dk+1
z +2yD−2

x D2
z

3D−4
x D2

z +3zD−4
x D3

z − (n+1)D2
x

]
HAn(x,y,z) = 0.

Again using above factorization relation with shift operators (4.2.4) and (4.2.8), (4.2.5)

and (4.2.7), we get the corresponding equations (4.3.4) and (4.3.5).

Theorem 4.3.3 [46] H-B Appell polynomials satisfy the following partial differential

equations:

(x+αo)D2n
x Dz+2nD2n−1

x Dz+

n∑
k=1

αk

k!
D2n−2k

x Dk+1
z +2yD2n−2

x D2
z (4.3.6)

+3D2n−4
x D2

z +3zD2n−4
x D3

z − (n+1)D2n+2
x

]
HAn(x,y,z) = 0,

(x+α0)Dn
xDy+nDn−1

x Dy+

n∑
k=1

αk

k!
Dn−k

x Dk+1
y (4.3.7)

+2Dn−1
x Dy+2yDn−1

x D2
y +3zDn−2

x D3
y − (n+1)Dn+1

x

]
HAn(x,y,z) = 0,

(x+α0)D2n
x Dy+2nD2n−1

x Dy+

n∑
k=1

αk

k!
DyD2n−2k

x Dk
z (4.3.8)

+2D2n−2
x Dz+2yD2n−2

x DzDy+3zD2n−4
x D2

z Dy− (n+1)D2n+1
x

]
HAn(x,y,z) = 0,
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(x+α0)Dn
xDz+nDn−1

x Dz+

n∑
k=1

αk

k!
DzDn−k

x Dk
y +2yDn−1

x DyDz (4.3.9)

+3Dn−2
x D2

y +3zDn−2
x D2

yDz− (n+1)Dn+2
x

]
HAn(x,y,z) = 0.

Proof. Taking derivative with respect to x, 2n−times in the integro-differential equation

(4.3.3)

(x+α0)Dz+

n∑
k=1

αk

k!
D−2k

x Dk+1
z +2yD−2

x D2
z

3D−4
x D2

z +3zD−4
x D3

z − (n+1)D2
x

]
HAn(x,y,z) = 0,

we get the partial differential equation (4.3.6)

(x+αo)D2n
x Dz+2nD2n−1

x Dz+

n∑
k=1

αk

k!
D2n−2k

x Dk+1
z +2yD2n−2

x D2
z

+3D2n−4
x D2

z +3zD2n−4
x D3

z − (n+1)D2n+2
x

]
HAn(x,y,z) = 0.

Taking derivative with respect to x, n− times in the integro-differential equation (4.3.2), we

get the partial differential equation (4.3.7). To obtain (4.3.8), we take derivatives with

respect to x,2n−times in the corresponding equation (4.3.4). To obtain (4.3.9), we take

derivatives with respect to x,n−times in (4.3.5).

Repeating the methods and shift operators that are used in previous theorems, we

obtain the following corollaries for Hermite-based Bernoulli and Hermite-based Euler

polynomials:
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Corollary 4.3.4 [46] H-BBP satisfies the following differential equation:

(x− 1
2

)Dx+2yD2
x+3zD3

x−
n+1∑
k=2

Bk

k!
Dk

x−n

 H Bn(x,y,z) = 0

where Bk denotes the Bernoulli numbers.

Corollary 4.3.5 [46] H-BBP satisfies the following integro-differential equations:

[
(x− 1

2
)Dy+2D−1

x Dy+2yD−1
x D2

y

+3zD−2
x D3

y −
n+1∑
k=2

Bk

k!
D1−k

x Dk
y − (n+1)Dx

 H Bn(x,y,z) = 0,

[
(x− 1

2
)Dz+2yD−2

x D2
z +3D−4

x D2
z +3zD−4

x D3
z

−
n+1∑
k=2

Bk

k!
D2−2k

x Dk
z − (n+1)D2

x

 H Bn(x,y,z) = 0,

[
(x− 1

2
)Dy+2D−2

x Dz+2yD−2
x DzDy

+3zD−4
x D2

z Dy−
n+1∑
k=2

Bk

k!
D2−2k

x Dk−1
z Dy− (n+1)Dx

 H Bn(x,y,z) = 0,

[
(x− 1

2
)Dz+2yD−1

x DyDz+3D−2
x D2

y +3zD−2
x D2

yDz

−
n+1∑
k=2

Bk

k!
D1−k

x Dk−1
y Dz− (n+1)D2

x

 H Bn(x,y,z) = 0,

where Bk denotes Bernoulli numbers.
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Corollary 4.3.6 [46] H-BBP satisfies the following partial differential equations:

[
(x− 1

2
)D2n

x Dz+2nD2n−1
x Dz+2yD2n−2

x D2
z +3D2n−4

x D2
z +3zD2n−4

x D3
z

−
n+1∑
k=2

Bk

k!
D2n−2k+2

x Dk
z − (n+1)D2n+2

x

 H Bn(x,y,z) = 0,

[
(x− 1

2
)Dn

xDy+nDn−1
x Dy+2Dn−1

x Dy+2yDn−1
x D2

y

+3zDn−2
x D3

y −
n+1∑
k=2

Bk

k!
Dn−k+1

x Dk
y − (n+1)Dn+1

x

 H Bn(x,y,z) = 0,

[
(x− 1

2
)D2n

x Dy+2nD2n−1
x Dy+2D2n−2

x Dz+2yD2n−2
x DzDy+3zD2n−4

x D2
z Dy

−
n+1∑
k=2

Bk

k!
D2n−2k+2

x Dk−1
z Dy− (n+1)D2n+1

x

 H Bn(x,y,z) = 0,

[
(x− 1

2
)Dn

xDz+nDn−1
x Dz+2yDn−1

x DyDz+3Dn−2
x D2

y +3zDn−2
x D2

yDz

−
n+1∑
k=2

Bk

k!
Dn−k+1

x Dk−1
y Dz− (n+1)Dn+2

x

 H Bn(x,y,z) = 0,

where Bk denotes Bernoulli numbers.

Corollary 4.3.7 [46] The differential equation that is satisfied by H-BEP is given by:

(x− 1
2

)Dx+2yD2
x+3zD3

x+
1
2

n∑
k=1

ek

k!
Dk+1

x −n

 HEn(x,y,z) = 0
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where

ek = (−1
2

)k
k∑

h=0

(
k
h

)
Ek−h.

Corollary 4.3.8 [46] H-BEP satisfies the following integro-differential equations:

[
(x− 1

2
)Dy+2D−1

x Dy+2yD−1
x D2

y +3zD−2
x D3

y

+
1
2

n∑
k=1

ek

k!
D−k

x Dk+1
y − (n+1)Dx

 HEn(x,y,z) = 0,

[
(x− 1

2
)Dz+2yD−2

x D2
z +3D−4

x D2
z +3zD−4

x D3
z

+
1
2

n∑
k=1

ek

k!
D−2k

x Dk+1
z − (n+1)D2

x

 HEn(x,y,z) = 0,

[
(x− 1

2
)Dy+2D−2

x Dz+2yD−2
x DzDy+3zD−4

x D2
z Dy

+
1
2

n∑
k=1

ek

k!
D−2k

x Dk
z Dy− (n+1)Dx

 HEn(x,y,z) = 0,

[
(x− 1

2
)Dz+2yD−1

x DyDz+3D−2
x D2

y +3zD−2
x D2

yDz

+
1
2

n∑
k=1

ek

k!
D−k

x Dk
yDz− (n+1)D2

x

 HEn(x,y,z) = 0,

where

ek = (−1
2

)k
k∑

h=0

(
k
h

)
Ek−h.
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Corollary 4.3.9 [46] H-BEP satisfies the following partial differential equations:

[
(x− 1

2
)Dn

xDy+nDn−1
x Dy+2Dn−1

x Dy+2yDn−1
x D2

y

+3zDn−2
x D3

y +
1
2

n∑
k=1

ek

k!
Dn−k

x Dk+1
y − (n+1)Dn+1

x

 HEn(x,y,z) = 0,

[
(x− 1

2
)D2n

x Dz+2nD2n−1
x Dz+2yD2n−2

x D2
z +3D2n−4

x D2
z

+3zD2n−4
x D3

z +
1
2

n∑
k=1

ek

k!
D2n−2k

x Dk+1
z − (n+1)D2n+2

x

 HEn(x,y,z) = 0,

[
(x− 1

2
)D2n

x Dy+2nD2n−1
x Dy+2D2n−2

x Dz+2yD2n−2
x DzDy

+3zD2n−4
x D2

z Dy+
1
2

n∑
k=1

ek

k!
D2n−2k

x Dk
z Dy− (n+1)D2n+1

x

 HEn(x,y,z) = 0,

[
(x− 1

2
)Dn

xDz+nDn−1
x Dz+2yDn−1

x DyDz+3Dn−2
x D2

y

+3zDn−2
x D2

yDz+
1
2

n∑
k=1

ek

k!
Dn−k

x Dk
yDz− (n+1)Dn+2

x

 HEn(x,y,z) = 0

where

ek = (−1
2

)k
k∑

h=0

(
k
h

)
Ek−h.
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Chapter 5

GENERALIZED FACTORIZATION METHOD FOR APPELL

POLYNOMIALS

This Chapter is devoted to exhibition of results of our work [35].

5.1 Construction and Auxilary Results

A polynomial set {Pn(x)}∞n=0 is called quasi-monomial if and only if there exists a

derivative operator Θ−n and a multiplicative operator Θ+n such that

Θ−n (Pn(x)) = Pn−1(x), Θ+n (Pn(x)) = Pn+1(x). (5.1.1)

It was Youssèf Ben Cheikh who proved that for a given polynomial sequence {Pn(x)}∞n=0 ,

there exists derivative and multiplicative operators Θ−n and Θ+n .Therefore, he gave an

affirmative answer to the Dattoli’s question “May all polynomial families be viewed

as quasi-monomial” [13]. More precisely, he has shown that "every polynomial set is

quasi-monomial" [9]. Using the monomiality principle, several results were obtained

for Laguerre, Laguerre–Konhauser, Legendre, Bernoulli and Appell polynomials (see

[1], [2], [5], [8], [12], [14], [41]). On the other hand, orthogonality of some polynomial

sets via quasi-monomiality was given in [41]. Obtaining the derivative and multiplicative
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operator of a given family of polynomials give rises some useful properties such as

(
Θ−n+1Θ

+
n

)
(Pn(x)) = Pn(x), (5.1.2)(

Θ+n−1 · · ·Θ
+
2Θ
+
1Θ
+
0

)
(P0(x)) = Pn(x).

Note that, if Θ−n and Θ+n are differential realizations, then (5.1.2) gives the differential

equation satisfied by Pn(x). The technique in obtaining differential equations via (5.1.2),

is known as the factorization method.

In 1935, Sheffer [37] found the infinite order differential equations for the Appell

polynomials and he showed that a necessary and sufficient condition that an Appell set

{Pn} with generating function A(t) satisfy a finite order equation is that A(t) should be

exponential type. Then, in 2002 He and Ricci [20] found the finite order differential

equations of the one variable Appell polynomials. Finally, in 2013, we found all finite

order differential equations for Appell polynomials [35]. In this chapter, for each k ∈ N

we focus on constructing two operators Θ−(k)
n and Θ+(k)

n which satisfies the following

Θ
−(k)
n [Pn(x)] = Pn−k(x) (5.1.3)

and

Θ
+(k)
n [Pn(x)] = Pn+k(x), (5.1.4)

where we call them the k−times derivative and k−times multiplicative operators, re-

spectively. Obtaining these operators for a given polynomial set will provide us several

advantageous relations for that polynomial set. For instance, when Θ−(k)
n and Θ+(k)

n are
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differential operators then, for each k ∈ N, the relation

(
Θ
−(k)
n+kΘ

+(k)
n

)
(Pn(x)) = Pn(x) (5.1.5)

gives us differential equations for this polynomial set. In this case we call such a method

which is stated by (5.1.5) as generalized factorization method. This method leads us

to obtain a set of differential equations for Pn(x), because for each k ∈ N we have one

differential equation for this polynomial. On the other hand, if n =mk+r, then by using

few number of operators, the second relation in (5.1.2) can be given as

(
Θ+n−1 · · ·Θ

+
mkΘ

+(k)
(m−1)k · · ·Θ

+(k)
k Θ

+(k)
0

)
(P0(x)) = Pn(x).

5.2 A set of finite order differential equations for the Appell polynomials via

generalized factorization method

In this section by obtaining a recurrence relation for the Appell polynomials, we de-

termine the operatorsΘ−(k)
n andΘ+(k)

n for each k ∈N. Then using generalized factorization

method, we give a set of finite order differential equations for the Appell polynomials.

We exhibit the special cases of our results for k = 1 (the known results) and k = 2. We

start with the following theorem:

Theorem 5.2.1 [35] Let

A(m)(t)
A(t)

=

∞∑
n=0

α(m)
n

tn

n!
. (5.2.1)
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Then, the recurrence is as follows

Rn+k(x) = Rn(x)
k∑

m=0

(
k
m

)
α(m)

0 xk−m+

k∑
m=1

(
k
m

)
xk−m

n−1∑
l=0

(
n
l

)
α(m)

n−lRl(x). (5.2.2)

Furthermore, the corresponding k−times operators are

Θ
−(k)
n :=

n∏
m=n−k+1

Φ−m =
n∏

m=n−k+1

1
m

Dx =
(n− k)!

n!
Dk

x

and

Θ
+(k)
n :=

k∑
m=0

(
k
m

)
xk−mα(m)

0 +

k∑
m=1

(
k
m

)
xk−m

n−1∑
l=0

1
(n− l)!

α(m)
n−lD

n−l
x . (5.2.3)

Proof. Let

G(x, t) := A(t)ext =

∞∑
l=0

Rl(x)
tl

l!
. (5.2.4)

Differentiating both sides of (5.2.4) k−times with respect to x, we get

∂kG
∂xk = tkG(x, t).

Using series expansion from (5.2.4) in the above relation and equating the coefficients

of
tn

n!
, we get

R(k)
n (x) =

n!
(n− k)!

Rn−k(x). (5.2.5)
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Introducing the familiar derivative operator by

Φ−n =
1
n

Dx,

we see from (5.2.5) that

Θ
−(k)
n [Rn(x)] :=

n∏
m=n−k+1

Φ−m [Rn(x)] = Rn−k(x).

Then differentiating both sides of (5.2.4) k−times with respect to t, we get

∂kG
∂tk
=

k∑
m=0

(
k
m

)
Dm

t {A(t)}Dk−m
t

{
ext

}
= ext

k∑
m=0

(
k
m

)
xk−m∂

mA
∂tm
=G(x, t)

k∑
m=0

(
k
m

)
xk−m A(m)(t)

A(t)
. (5.2.6)

Upon using (5.2.1) and (5.2.4) in (5.2.6), we get

∞∑
n=0

Rn+k(x)
tn

n!
=

k∑
m=0

(
k
m

)
xk−m

∞∑
n=0

α(m)
n

tn

n!

∞∑
l=0

Rl(x)
tl

l!

=

k∑
m=0

(
k
m

)
xk−m

∞∑
n=0

n∑
l=0

(
n
l

)
α(m)

n−lRl(x)
tn

n!
. (5.2.7)

Comparing coefficients of
tn

n!
on both sides of (5.2.7), we get

Rn+k(x) =
k∑

m=0

(
k
m

)
xk−m

n∑
l=0

(
n
l

)
α(m)

n−lRl(x)

or equivalently

Rn+k(x) = Rn(x)
k∑

m=0

(
k
m

)
xk−mα(m)

0 +

k∑
m=0

(
k
m

)
xk−m

n−1∑
l=0

(
n
l

)
α(m)

n−lRl(x). (5.2.8)
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Since

α(0)
n = δn,0 :=


1, n = 0

0, otherwise
(5.2.9)

we get

Rn+k(x) = Rn(x)
k∑

m=0

(
k
m

)
xk−mα(m)

0 +

k∑
m=1

(
k
m

)
xk−m

n−1∑
l=0

(
n
l

)
α(m)

n−lRl(x),

which is (5.2.2).

On the other hand, since

Rl(x) =
n∏

m=l+1

Φ−m [Rn(x)] =
l!
n!

Dn−l
x [Rn(x)] , (5.2.10)

we get from (5.2.2) that

Rn+k(x) =

 k∑
m=0

(
k
m

)
xk−mα(m)

0 +

k∑
m=1

(
k
m

)
xk−m

n−1∑
l=0

1
(n− l)!

α(m)
n−lD

n−l
x

Rn(x).

Hence, the k−times multiplicative operator is given by (5.2.3).

The next Theorem gives a set of differential equations for Appell polynomials.

Theorem 5.2.2 [35] For each k ∈ N and for all n ∈ N, the Appell polynomials Rn(x)

satisfy the following set of differential equations:

L(x)
n,k (Rn(x)) =

(
(n+ k)!

n!
− k!

)
Rn(x), (5.2.11)
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where the differential operator {L(x)
n,k}
∞
n=0 is given by

L(x)
n,k =

k∑
j=1

(
k
j

)
k!
j!

x jD j
x (5.2.12)

+

k∑
m=1

(
k
m

)
α(m)

0

k∑
j=m

(
k
j

)
(k−m)!
( j−m)!

x j−mD j
x

+

k∑
m=1

(
k
m

) n−1∑
l=0

1
(n− l)!

α(m)
n−l

k∑
j=m

(
k
j

)
(k−m)!
( j−m)!

x j−mDn−l+ j
x .

Proof. Taking into account the corresponding k−times shift operators from Theorem

5.2.1 and applying the generalized factorization method given by (5.1.5) to Rn(x), we

get

n!
(n+ k)!

Dk
x

 k∑
m=0

(
k
m

)
α(m)

0 xk−m+

k∑
m=1

(
k
m

)
xk−m

n−1∑
l=0

1
(n− l)!

α(m)
n−lD

n−l
x

Rn(x)

=
n!

(n+ k)!

 k∑
m=0

(
k
m

)
α(m)

0

k∑
j=m

(
k
j

)
Dk− j

x

(
xk−m

)
D j

x (Rn(x))

+

k∑
m=1

(
k
m

) n−1∑
l=0

1
(n− l)!

α(m)
n−l

k∑
j=m

(
k
j

)
Dk− j

x

(
xk−m

)
Dn−l+ j

x (Rn(x))


=

n!
(n+ k)!

k!Rn(x)+
k∑

j=1

(
k
j

)
Dk− j

x

(
xk

)
D j

x (Rn(x))

+

k∑
m=1

(
k
m

)
α(m)

0

k∑
j=m

(
k
j

)
Dk− j

x

(
xk−m

)
D j

x (Rn(x))

+

k∑
m=1

(
k
m

) n−1∑
l=0

1
(n− l)!

α(m)
n−l

k∑
j=m

(
k
j

)
Dk− j

x

(
xk−m

)
Dn−l+ j

x (Rn(x))

 (5.2.13)

= Rn(x).
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Thus, we have

n!
(n+ k)!

(k!Rn(x)+
k∑

j=1

(
k
j

)
k!
j!

x jD j
x(Rn(x))

+

k∑
m=1

(
k
m

)
α(m)

0

k∑
j=m

(
k
j

)
(k−m)!
( j−m)!

x j−mD j
x(Rn(x))

+

k∑
m=1

(
k
m

) n−1∑
l=0

1
(n− l)!

α(m)
n−l

k∑
j=m

(
k
j

)
(k−m)!
( j−m)!

x j−mDn−l+ j
x (Rn(x))

= Rn(x).

This gives the desired result.

The cases k = 1 and k = 2 are presented in the following Corollaries:

Corollary 5.2.3 [20] Letting k = 1 in Theorems 5.2.1 and 5.2.2, then taking

A′(t)
A(t)

=

∞∑
n=0

α(1)
n

tn

n!
; α(1)

n := αn; α(0)
n = δn,0 :=


1, n = 0

0, otherwise
,

we get the recurrence relation

Rn+1(x) = (x+α0)Rn(x)+
n−1∑
l=0

(
n
l

)
αn−lRl(x).

On the other hand, 1−times shift operators (or simply the shift operators) are given by

Θ−n := Φ−n =
1
n

Dx
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and

Θ+n := (x+α0)+
n−1∑
l=0

1
(n− l)!

αn−lDn−l
x .

Finally, for λn,1 = n, the differential equation is given by

L(x)
n,1 (Rn(x)) = nRn(x),

where the differential operator is given by

L(x)
n,1 := (x+α0) Dx+

n−1∑
l=0

1
(n− l)!

αn−lDn−l+1
x .

Note that these results are same with the results obtained in [20].

Corollary 5.2.4 [35] Letting k = 2 in Theorems 5.2.1 and 5.2.2, by setting

A′(t)
A(t)

=

∞∑
n=0

α(1)
n

tn

n!
and

A′′(t)
A(t)

=

∞∑
n=0

α(2)
n

tn

n!
,

the recurrence is as follows

Rn+2(x) =
(
x2+2α(1)

0 x+α(2)
0

)
Rn(x)+

n−1∑
l=0

(
n
l

)(
2xα(1)

n−l+α
(2)
n−l

)
Rl(x).

2−times shift operators are

Θ
−(2)
n := Φ−n−1Φ

−
n =

1
(n−1)n

D2
x
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and

Θ
+(2)
n :=

(
x2+2α(1)

0 x+α(2)
0

)
+

n−1∑
l=0

(
n
l

) (
2xα(1)

n−l+α
(2)
n−l

)
Dn−l

x .

Finally, for λn,2 = n2+3n, the differential equation is given by

L(x)
n,2 (Rn(x)) =

(
n2+3n

)
Rn(x),

where

L(x)
n,2 : =

[(
4xDx+ x2D2

x

)
+4α(1)

0 Dx+2α(1)
0 xD2

x+α
(2)
0 D2

x

+

n−1∑
l=0

2α(1)
n−l(2Dn−l+1

x + xDn−l+2
x )+α(2)

n−lD
n−l+2
x

(n− l)!

 .
5.3 Applications of Main Theorems

In this section, we apply the results of Section 5.2 to the two famous representatives

of the Appell polynomials: the Hermite and the Bernoulli polynomials. Since the case

k = 1 gives the usual results for these polynomial sets, we exhibit the case k = 2.

5.3.1 Hermite Polynomial

Hermite polynomial is generated by the following relation

e2xt− t2
2 =

∞∑
n=0

Hen(x)
tn

n!
. (5.3.1)

Taking A(t) = e−
t2
2 we get

A′(t)
A(t)

= −t =
∞∑

n=0

α(1)
n

tn

n!
(5.3.2)
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and hence

α(1)
1 = −1; α(1)

0 = α
(1)
2 = α

(1)
3 = ... = 0. (5.3.3)

On the other hand

A
′′
(t)

A(t)
= −1+ t2 =

∞∑
n=0

α(2)
n

tn

n!
, (5.3.4)

so

α(2)
0 = −1,α(2)

2 = 2; α(2)
1 = α

(2)
3 = α

(2)
4 = ... = 0. (5.3.5)

Corollary 5.3.1 [35] Using the above results for k = 2 in Theorems 5.2.1 and 5.2.2, we

get

Hen+2(x) =
(
x2−1

)
Hen(x)−2nxHen−1(x)+n(n−1)Hen−2(x), (5.3.6)

the shift operators are

Θ
−(2)
n =

1
(n−1)n

D2
x, Θ

+(2)
n :=

(
x2−1

)
−2nxDx+n(n−1)D2

x (5.3.7)

and the fourth order differential equation is given by

D2
x(x2−1−2xDx+D2

x)Hen(x) = (n+2)(n+1)Hen(x). (5.3.8)
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5.3.2 Bernoulli Polynomial

With the aid of the generalized factorization method, which is mentioned in Section

5, we apply the procedure for the case k = 2 to obtain the differential operator L(x)
m,2 such

that

L(x)
m,2 (Bm(x)) =

(
m2+3m

)
Bm(x). (5.3.9)

Here Bm(x) denotes the Bernoulli polynomial which has the generating function

t
et −1

ext =

∞∑
m=0

Bm(x)
tm

m!
.

Taking derivatives with respect to t in the above generating function, we get

∂2G(x, t)
∂t2

=G(x, t)
(

A′′(t)
A(t)

+
2xA′(t)

A(t)
+ x2

)
(5.3.10)

where A(t) =
t

et −1
. Therefore we obtain

∂2G(x, t)
∂t2

= G(x, t)(− et

et −1
− 2et(et −1− tet)

t(et −1)2 +2x(
et −1− tet

t(et −1)
)+ x2)

= G(x, t)(−1− et −1
1− et −2

et

t
(

1
et −1

− tet

(et −1)2 )+2x(
1
t
− et

et −1
)+ x2)

=

[
(

1
1− et −1)−2

et

t2
t

et −1

2
et

t(et −1)
tet

et −1
+2

x
t
−2x

et

t
t

et −1
+ x2

]
G(x, t). (5.3.11)
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Substituting the series relations, we obtain

∞∑
m=0

Bm+2(x)
tm

m!

=

∞∑
m=0

Bm(x)
tm

m!

(−1
t

∞∑
k=0

Bk
tk

k!
−1− 2

t2

∞∑
n=0

n∑
k=0

(
n
k

)
Bk

tn

n!

+
2
t

∞∑
n=0

n∑
k=0

(
n
k

)
Bk

tn

n!
+

2
t2

∞∑
n=0

n∑
k=0

k∑
l=0

(
n
k

)(
k
l

)
BlBk−l

tn

n!

+ (
2x
t
+ x2)− 2x

t

∞∑
n=0

n∑
k=0

(
n
k

)
Bk

tn

n!

 . (5.3.12)

Using (2.2.2) and (2.2.4) and comparing the coefficients of
tm

m!
, we have the following

recurrence:

Bm+2(x) = (x2− x− 2
m+2

− 2
m+1

+
7
6

)Bm(x)

−
m−1∑
k=0

m!
(m− k−1)!(k+2)!

Bm−k−1(x)Bk+2

−2
m−1∑
n=0

n+3∑
k=0

(m+2
n+3

)(
n+3

k

)
Bk −

k∑
l=0

(
m+2

k

)(
n+3

k

)(
k
l

)
BlBk−l


× Bm−n−1(x)

(m+1)(m+2)
+2(1− x)

m−1∑
n=0

n+2∑
k=0

(
m+1
n+2

)(
n+2

k

)
BkBm−n−1(x)

m+1
. (5.3.13)

Since

Bm−k−1(x) =
(m− k−1)!

m!
Dk+1

x Bm(x) (5.3.14)
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and

Bm−n−1(x) =
(m−n−1)!

m!
Dn+1

x Bm(x) (5.3.15)

the multiplicative operator can be written as

Θ
+(2)
m = x2− x− 2

m+2
− 2

m+1
+

7
6
−

m−1∑
k=0

Bk+2

(k+2)!
Dk+1

x

−2
m−1∑
n=0

n+3∑
k=0

 Bk

(n+3− k)!k!
−

k∑
l=0

(
n+3

k

)(
k
l

)
(m−n−1)!

(m+2− k)!k!
BlBk−l

Dn+1
x

+2(1− x)
m−1∑
n=0

n+2∑
k=0

Bk

(n+2− k)!k!
Dn+1

x . (5.3.16)

On the other hand, using the fact that the 2- times derivative operators for all Appell

polynomials is

Θ
−(2)
n =

1
(n−1)n

D2
x (5.3.17)

and by using the generalized factorization method with k = 2

Θ
−(2)
m+2Θ

+(2)
m Bm(x) = Bm(x). (5.3.18)

After some manipulations we obtain that the differential equation for the Bernoulli poly-

nomial for the case k = 2 as

L(x)
m,2 (Bm(x)) =

(
m2+3m

)
Bm(x), (5.3.19)
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where

L(x)
m,2 : = x2Dx+2xDx− xD2

x+2− 2
m+2

D2
x+

7
6

D2
x−

m−1∑
k=0

Bk+2

(k+2)!
Dk+3

x

−2
m−1∑
n=0

n+3∑
k=0

(
Bk

(n+3− k)!k!
Dn+3

x −
k∑

l=0

(
n+3

k

)(
k
l

)
(m−n−1)!

(m+2− k)!k!
BlBk−lDn+3

x

+2(1− x)
m−1∑
n=0

n+2∑
k=0

Bk

(n+2− k)!k!
Dn+3

x . (5.3.20)
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