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ABSTRACT

In this thesis, we propose an algorithm of sparse representation using structurally
directional dictionaries to super resolve a single low resolution input image. We have
focused on the designing structured dictionaries for different clusters of patches
instead of a global dictionary for all the patches. Due to highly directional nature of
image content, designing structurally directional dictionaries promises to better
capture the intrinsic image characteristics. Furthermore, designing multiple

dictionaries with smaller sizes leads to less computational complexity.

The proposed algorithm is based on dictionary learning in the spatial domain. In
order to design dictionaries the K-SVD algorithm is used and for this purpose for
each of the structured dictionaries a structured training set is prepared. In order to
classify the patches into different data sets, a set of templates are designed and each
patch is clustered using template matching. Each and every of the templates is
modeled according to a specific direction. Then using a similarity measurement, the
HR patches and the corresponding features (LR patches) are clustered into
directional clusters. Then structurally directional dictionaries are learned by
employing the structured training clusters via the K-SVD algorithm. For every
cluster two dictionaries are designed: one for the HR patches and the other one for

the features.

In the reconstruction part, a LR input image comes in and all the features are coded
sparsely with the most suitable directional LR dictionary; and the sparse coding

coefficients are then used together with the corresponding HR dictionary to



reconstruct the HR patch. In order to choose the best dictionary in sense of direction,
a dictionary selection model is needed. Many approaches are tried to find the best
dictionary selection method which are mostly error based. But it is not an easy issue
while the LR patches (features) are the main criteria to select the most appropriate
HR dictionary; it does not always yield to correct selection. However the core idea of
the proposed method, designing structurally directional dictionaries, is demonstrated
to have superior results compared to the state-of-the-art algorithm proposed by R.
Zeyde et.al [23], both visually and quantitatively with an average of 0.2 dB

improvements in PSNR over Kodak set and some bench mark images.

Keywords: super resolution, sparse representation, structurally directional

dictionary.
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Bu tez caligmasinda, diisiik c¢oziintirliiklii tek bir giris goriintiisii milkemmel bir
seklilde doniistiiriilmek tizere yapisal yonlii sézliikler kullanilarak bir seyrek tasarim
algoritmasi tasarlanmistir. Calismada, tiim parcalar i¢in global bir sozliik yerine,
farkli parga kiimeleri icin yapilandirilmis soézliikklerin  tasarlanmasi {izerinde
yogunlasilmistir. Goriintii igeriginin c¢ok yonlii yapisi nedeniyle yapisal yonli
sOzliiklerin tasarimi ger¢ek goriintii karakteristiklerinin daha iyi bir sekilde ele
alinmasii saglamaktadir. Ayrica ¢ok daha kiglk boyutlara sahip ¢oklu sozltklerin

tasarimi daha diisiik hesaplama karmasikligina yol agmaktadir.

Tasarlanan algoritma, uzaysal alanda sozliikk 6grenimine dayanmaktadir. Sozliiklerin
tasarlanmas1 amaciyla K-SVD algoritmasi kullanilmis olup bu amag ile her bir
yapilandirilmis sozliik i¢in yapilandirilmis bir ¢alisma seti hazirlanmistir. Parcalarin
farkli veri gruplart arasinda smiflandirilmasi amaciyla bir sablon seti tasarlanmis
olup sablon eslestirmesi kullanilarak her bir par¢a toparlanmistir. Sablonlarin her biri
belirli bir yon dikkate alinarak modellenmistir. Daha sonra bir benzerlik 6l¢iimii
yardimiyla, yiiksek ¢oziintirliiklii pargalar ve bunlara karsilik gelen 6zellikler (diisiik
¢Oziinlirlikli pargalar) yonlii kiimelerde toplanmistir. Daha sonra ise yapisal yonlii
sozlikler K-SVD algoritmasi tiizerinden yapilandirilmis ¢alisma kiimelerinden
yararlanilarak 6grenilmistir. Her bir kiime i¢in, biri yiiksek ¢oziiniirliiklii pargalar

icin ve digeri 6zellikler i¢in olmak {izere iki sozliik tasarlanmustir.

Yeniden yapilandirma kisminda, diisiik ¢oziintirliiklii bir giris goriintiisii giris yapip

tim Ozellikler en uygun yonlii disik c¢oziintirliiklii sézliik yardimiyla seyrek bir



sekilde kodlanmakta ve daha sonra ise, yiiksek ¢Oziiniirliklii parcanin yeniden
yapilandirilmast amaciyla, ilgili yiksek ¢Ozunurlukli sozlik ile seyrek kodlama
katsayilar1 birlikte kullanilmaktadir. YO6n acisindan en iyi sozliiglin secilmesi
amaciyla bir sozliik se¢im modeline gereksinim duyulmaktadir. En iyi sozlik secim
yonteminin bulunmasit amaciyla ¢ogunlukla hata bazli olan bircok yontem
denenmistir. Ancak bu kolay bir konu olmayip diisiik ¢Oziniirliikli parcalar
(6zellikler) en uyugn yiiksek ¢oziniirlikli sozliigiin temel se¢im kriteri oldugu
stirece her zaman dogru se¢im ile sonuglanmamaktadir. Ancak yine de tanitilan
yontemin temel fikri olan yapisal yonli sozliiklerin tasariminin, model se¢iminin her
zaman en uygun sozligi se¢mesi halinde, Kodak seti ve bazi kriter goriintiiler
iizerinden PSNR’da ortalama 0.2 dB iyilestirme ile hem gorsel hem de nicel olmak
tizere iki agidan R. Zeyde et.al [23], tarafindan One siiriilen benzer algortimaya

iistiinliik sagladig1 gosterilmistir.

Anahtar Kelimeler: stper ¢ozinirlik, seyrek gosterim, yapisal yonlii sozliik
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Chapter 1

INTRODUCTION

1.1 Sparse Representation

In recent years, the sparse representations have become one of the most active areas
of research. Many new algorithms have been proposed in a wide range of image
processing applications including inpainting, denoising, super resolution and
compression. A lot of them are used the advantage of sparse representations and

achieve the state-of-the-art results.

The problem of sparse representation consists of two main parts: one is a generally
over-complete basis which is called the dictionary and the other one is an algorithm
which selects basis vectors which are termed the atoms and the sparse coefficients
that are produced in order to approximate an input signal. The algorithm uses only a
small number of atoms to represent a signal which leads to the name of sparse
representation. In order to use the sparse representation, the signal of interest has to
be compressible. A signal is termed compressible when the signal vectors can be
represented sparsely with an acceptable error.

1.1.1 Problem Formulation

According to the Sparseland model [1], a signal can be represented sparsely by a
vector which has just a few nonzero components. Representation is done over an
over-complete dictionary by employing a linear combination of atoms. To be more

precise, consider a given over-complete dictionary D € R™X which consists of k



bases, and a vectorized signal of interest x € R™. Thus signal can be represented over
dictionary D as follows:

x =Da (1.2)
Such a system is ill-posed and has many solutions. Not only a unique solution is
required but also it has to have the minimum number of nonzero components. So the
signal x can be sparsely represented as x ~ Da, where just a few elements in the
vector o, € R are nonzero (« k). The sparse representation can be obtained by
solving the following optimization problem:

argmin|x — Da| subjectto |lallo < T (1.2)

o

where the [, norm |[. |, counts the number of non-zero coefficients in a vector and T
defines sparsity of the signal.
In order to solve the vector selection problem above, all possible combinations of the
atoms should be tried to find the best one which is not an easy problem to solve. So
the complexity of this approach is intractable. In order to find a solution which is
more feasible in sense of complexity, various authors have developed different
algorithms.
1.1.2 Matching Pursuit Family
One of the well-known family of algorithms which is employed to obtain an
approximation solutions of (1.2) is the matching pursuit family (MPF).
The MPF algorithms select a new atom d; in every iteration i. Considering the
selected atoms from first up to iteration i is represented by S*.

St=1[d, ... d;] (1.3)
The MPF algorithms, iteratively, proceed to solve a simplification of the

optimization problem in (1.2):



arg min|x — [S©t]d;]a!|, (1.4)
di,a‘

where the coefficients are represented by a! = [a; ... @;]"which correspond to each
atom d;. The resulting estimation of x at iteration i is:
&t = Stat (1.5)

We will talk about three MPF methods which are named matching pursuit (MP),
orthogonal matching pursuit (OMP) and optimized orthogonal matching pursuit
(OOMP). They are proposed by [2], [3] and [4] respectively.
1.1.2.1 Matching Pursuit (MP)
For the case of the matching pursuit (MP) algorithm, the defined residue vector is in
charge of choosing the updated atom-index/ coefficient pair:

rivl=x —xt-1 (1.6)
The MP atom/coefficient selection is done based on the following equations. Where
there is the assumption of ° = x and at iteration i a single atom representation a;. d;

is used.

arg mde_1x|dl-T.ri‘1| (1.7)

a;=dl.rt (1.8)
Although the MP coefficient selection criteria enjoys of the low complexity but at the
same time it suffers from the problem which says the residual norm never will be
zero even for i > d (where d is the dimension of x).

i=x ©i—>x (1.9)

1.1.2.2 Orthogonal Matching Pursuit (OMP)
Orthogonal matching pursuit (OMP) overcomes the above difficulty. The OMP

algorithm, at every iteration i uses all the atoms which are selected up from the first,



and conduct a subspace of span of all those atoms and then updates all the
coefficients at that iteration using the projection onto the subspace.

The OMP atom/coefficient pair selection criterion is as following:

arg rr}iax|diT.ri‘1| (1.10)

of = StTx (1.11)
where S'T is pseudo-inverse of St. Actually the OMP at every iteration optimizes all
the coefficients which are obtained for the previously selected atoms. But MP only
considers the residual = in every iteration i and obtains the atom/coefficient pair
of only that iteration.

Thus the OMP enjoys from the property that says:
x4 =x (1.12)

1.1.2.3 Optimized Orthogonal Matching Pursuit (OOMP)

An extension of the OMP algorithm idea is optimized orthogonal matching pursuit
(OOMP). The OOMP not only modifies all coefficients by looking back to the
previous iterations but also selects a better atom in each iteration i. The OOMP using

the following atom selection rules, is able to solve (1.4) exactly:
arg rrba}x|[5i‘1 |di][Si‘1|di]Tx| (1.13)

al = Sity (1.14)
The same as OMP algorithm, OOMP again enjoys from the exact reconstruction
property (1.12) for i = d, where the selection of coefficients o are the same as well.
1.1.3 Choice of Dictionary
The signal vectors in the sparse representation problem are considered to be
compressible. This is a common assumption when the sparse representation is used.

Compressibility of a signal means that the signal vectors can be well-represented



using an over-complete dictionary while it uses only a small number of dictionary
atoms. Signal compressibility depends on the dictionary which is used to obtain the
representation; in order to have dictionaries which are adapted to a particular signal
class; various authors have come up with new training algorithms. There are many
proposed state-of-the-art algorithms that employ sparse representation using trained

dictionaries.

The advantage of using learned dictionary instead of a fixed dictionary shows up
when using trained dictionary D, gives low-error approximations Da of the training
signal x with sufficiently sparse coefficient . The representation error for all the

training vectors can be obtained as following:

E = ||X — DA||? (1.15)
Let ||. ||z denote the Frobenius norm of a matrix. And is a set of given training
vectors X = {xy,x,,x3,...,xy} And matrix A contains the sparse coefficients a,

A={a;,a,,as,...,ay}.

The coefficient matrix A depends on the dictionary D where given a dictionary D, the
columns of A are calculated by employing one of the atom selection algorithms such
as the matching pursuit family. Thus, dictionary training algorithms are iterative
methods which in every iteration calculate one of the quantities D or A while the

other one is considered to be fixed.

The approaches which have been proposed so far in order to design such dictionary
are two-fold process: i) sparse coding step; given the dictionary, find the sparse

coefficients and then ii) updating dictionary while the coefficients assume to be



known and fixed. The difference between the algorithms is the method of finding

those coefficients and procedure of modifying the dictionary.

Olshausen and Field proposed one of the earliest dictionary training algorithms [5].
In their method, the optimal dictionary is estimated using maximum-likelihood
estimation. They assumed a Gaussian or Laplace prior on the sparse representation
coefficients while optimal dictionary is estimated. In order to update both dictionary

and the sparse coefficients, they employed the steepest descent method.

Method of Optimal Direction (MOD) [6] which is proposed by Engan et.al enjoys of
simple dictionary update procedure while uses OMP or FOCUSS algorithms in
sparse coding stage. They used overall representation error (1.15) and take the
derivative of this error respect to D. Then update the dictionary by forcing the
derivative to zero when sparse coefficients are assumed to be fixed (X — DA)AT =
0). Such a method update dictionary in one step and thus suffers from high

complexity.

There are approaches which are proposed to simplify the training task and reduce the
complexity. In such methods, dictionaries are considered to be the unions of
orthonormal bases [7]. The coefficients of sparse representation A is decomposed to
the same number as orthonormal bases and every of them correspond to a different
bases.

D = [Dy]..|D,] (1.16)

Q = [A"1..]4]



Such methods enjoy of simplicity of pursuit algorithm needed for sparse coding
stage. The proposed algorithms update every orthonormal matrices sequentially
using singular value decomposition.

1.1.3.1 K-SVD Dictionary

The K-SVD algorithm is different from discussed approaches above where they
freeze A and try to update the dictionary D while the K-SVD is update the dictionary

sequentially and let the relevant coefficient change as well.

The joint dictionary learning and sparse representation of a signal can be defined by
the following optimization problem:

IBin”X — DA|l2  subject to Vi, laillo <T (1.17)
,a

where ||.]|2 denotes the Frobenius norm. Frobenius norm of a matrix is defined as
the square of every element in the matrix. The K-SVD algorithm first uses an initial
estimation for dictionary and by employing a pursuit algorithm calculates the best
atoms from the current dictionary for representing the data X. Then with the
representation coefficients calculated, it updates both the dictionary and the
representation coefficient as well. In every iteration, just one atom is replaced in the
updated dictionary and it is selected such that reduces the error. In this iterative
method, the error of the representation reduces or at the worst situation it remains the
same as previous iteration. This approach will be disused in more details in the next
chapter.

1.1.3.2 Online Dictionary (ONLD)

In order to have dictionaries which are more suitable to online tasks such as
streaming data processing like video, there need to learning algorithms with lower

complexity and consequently faster. Such approaches are generally based on



Stochastic Gradient Descent (SGD) methods. These methods instead of training over
the entire set as batch, use a single or a small number of training example at a time to
process. So they advantage of lower memory requirement and result in faster

convergence rates [8].

The Image Signature Dictionary (ISD) proposed by Aharon et.al [9] is one of those
methods. Based on this approach, in order to have more compact dictionary some of
the dictionary redundancies are sacrificed. Thus such a method enjoys from reduced
training complexity and consequently becomes an interesting approach for online
tasks. Based on this approach, dictionary is represented as a small image of N pixels
when size of dictionary assumed to be d X N. And every one of N pixels of the ISD
is surrounded by dictionary atoms d, € R* as a block. The same as before,
dictionary update is a two-step process where either the sparse representations a or

the dictionary D are getting update when the other one is fixed.

Based on the work of Mairal et.al [8] [10] a variation of this approach is proposed.
According to this method, at the time t, x; is used together with the D,_, obtained
from previous iteration and the sparse coefficient a, is computed. Dictionary update
is done based on the block-coordinate descent.

(1.18)

t
1wl
D, = arg mDm?ZE l; — De_q |l + Alle; 1l
i=

1.2 Application of Sparse Representation using Dictionary

Learning

There are wide ranges of sparse representation applications and in this section we

briefly describe some of them.



1.2.1 Inpainting

Image inpainting is a useful application in several scenarios of image processing.
This application is used to fill in pixels which are missed in the image. It is used in
the data transmission in order to provide an alternative for the channel codes [11],
[12] and also in image manipulation to remove the superposed text, road-signs or

publicity logos [13].

Considering an image patch x = [xI xI,]T which is made of two sub-vectors, sub-
vector x, is defined for the available pixels in the patch and x,,, contains the missing
pixels where image inpainting is used to estimate. Guleryuz [14] proposed a method
to estimate the missing sub-vector x,,,. They approximate the missing data employing
a concatenation of orthonormal bases that render y compressible. Compressibility of
a signal x means that given D, there exists some sparse vector a which satisfies
x = Da. Consider the diagonal matrices A,, A, and A,,which are diagonalized with
1/0-value and are used to define the non-zero entries of «, the available entries and
missing entries of x respectively. Thus the i-th estimate of x can be expressed as:

. X . .
2= (27) = 8aET + A (DADTIE (1.19)
m

1.2.2 Denoising

Sparse representations have also used to denoise the images and videos [1], [15]. The
denoising problem is formulated as a MAP estimation problem when a sparse prior is
considered on the data. By obtaining the sparse estimation of image blocks which are
overlapped, the solution of MAP approximation is defined; and then the denoised

data is specified by averaging over all blocks.



Consider a noisy image Y of size R x d all overlapping patch y, are extracted and
then reshaped to the vectors. Then by employing an over-complete dictionary D
using K-SVD, all the patches are sparsely coded using OMP. The best atom dj, is
represented the meaningful parts y, so the noisy of these parts of y, are discarded.

Z; = D. a; (120)

At the end all the denoised patches are reshaped to the 2-D patches. Then by
averaging pixel value in the overlapping patches and merging them, the denoised
image is obtained. This overlapping also suppresses the noise.

1.2.3 Texture Separation and Classification

There are a series of works using the application of sparse representations to texture
separation [16], [17], [18]. According to this application every image block x is

assumed to consist of a mixture of overlapping component layers u,:

. Z - (1.21)

k

This problem can be adapted by sparse representation if assume an available
dictionaries D, which can render u; compressible. In order to use this tool, two issues
come up: (i) forming the D, and then (ii) using them in order to separate the various

layers of the image.

Peyre et.al [18] proposed such an approach. According to this approach, two kinds of
dictionaries are used for edge/contours textures layers (named cartoon layers) and
one for more complex texture layers (oscillatory texture layers). The cartoon layers
are modeled using a combination of off-the-shelf dictionaries (fixed for all the image
patches) and also the learned, adaptive dictionaries are employed in order to sample

the more complex texture layers. Then solve the problem in three stages:
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() Using linear programming methods to find sparse coefficient «.

(if) Employing conjugate gradient descent in order to solve texture layers.

(iii) Solving the adaptive dictionary using gradient descent.

1.2.4 Image Compression

Recently in the case of image compression, using learned over-complete dictionaries
which are adapted to a signal class result to successful result. The advantage of using
a learned dictionary which is very beneficial for the image encoder is the grater
compressibility of the consider signal class. An example of a such approach is the
work which is introduced by Bryt and Elad [19] based on the learned K-SVD
dictionary [20]. In their approach, they use some pre-specified face templates. Each
of the face templates which are not overlapped with the others, are used in order to
specify a class of the signals. And then they are represented employing the
corresponding K-SVD dictionary. The discussed approach, results in a wide PSNR
improvement over the state-of-the-art JJEG2000 [21] algorithm but at the same time,
it suffers from the expense of a large storage for the dictionaries.

1.2.5 Image Super Resolution

The problem of super resolution is an important active area of research, due to wide
demand for high resolution image in many applications. Obtaining a high-resolution
(HR) image from single or multiple low-resolution (LR) images, that have lost higher
frequency information during acquisition, transmission or storage, is known as
“super-resolution”. Conventional SR methods, require using several LR images to
reconstruct the HR one. In situations where the number of available input images is
small, these algorithms are not practical. In such cases Single Image Super

Resolution (SISR) becomes more important.
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The most recent and successful approach to this purpose uses sparse representation to
enhance the quality of an image. This approach will be discussed in more detail in

the next chapter.

Previously, J. Yang et.al [22] and R. Zeyde et.al [23], have proposed their
approaches to super resolve a single LR image via sparse representation.

The method is proposed by J. Yang et.al [22], [24] uses a set of HR images, then by
down sampling and blurring operators the corresponding LR images are obtained.
They subtract mean value for each patch and then use them in order to learn. A pair
of high and low resolution dictionary is trained. There is a main assumption which
considers the same sparse representation for both HR and LR patches. At the end,
HR patch is reconstructed by multiplying HR dictionary with the sparse

representation of corresponding LR patch.

R. Zeyde et.al [23] use the basic idea of J. Yang. They also assume that HR and LR
patches have the same sparse representation. They try to super resolve the high
frequency components of an image which is most difficult part where Bicubic
interpolation is not successful. They learnt both HR and LR dictionaries over high
frequency components of the patches and features using KSVD algorithm. Then in
the reconstruction part by employing OMP algorithm, the sparse representation of
LR patches is found and then using sparse representation coefficient together with

HR dictionary the HR patches are recovered.

In this thesis we use J. Yang’s idea about the same sparse representation for both HR
and LR patches and extend the concepts by designing structurally directional
dictionaries and apply them to the process of SR. The core difference is that instead

12



of learning a single dictionary for all the patches, we have trained eight pairs of
structured dictionaries for different class of patches. It has been shown in [25] that
designing multiple dictionaries is more beneficial than a single one; furthermore, in
[26] it is pointed out that designing several dictionaries using clustering improves

both quality and computational complexity.

The approach is a two-fold scheme, the dictionary training phase and reconstruction
phase. In the first stage, in order to learn structurally directional dictionaries, we first
form structurally directional training sets. The proposed method is template matching
based; thus for this purpose, eight sets of directional templates are designed. For
every direction, the corresponding templates including all shifted versions are
modeled. Then both HR and LR training sets where the LR version is constructed
using down sampling and blurring operators, together with the templates are
employed to cluster the corresponding patches. The classification is done using a
similarity measurement. We also consider a cluster for non-directional patches. Then
for every cluster, two dictionaries are learned by employing the K-SVD algorithm;
one for LR features and the other one for the HR patches. In the next step,
reconstruction phase, an input LR image comes in and after extracting patches, the
most proper dictionary pair is selected to reconstruct the corresponding HR patch.
Dictionary selection criterion is based on the error in representation of LR features
via LR dictionaries. The OMP algorithm is used in the reconstruction part to find the

sparse representation coefficients and then super resolve the LR patches.
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Chapter 2

SUPER RESOLUTION VIA SPARSE
REPRESENTATION

2.1 Introduction

Obtaining a high-resolution (HR) image X from the single low-resolution (LR) image
Y is known as “single image super-resolution (SISR)”. The LR image is a version of
the HR image which has lost its higher frequency information during acquisition,
transmission or storage. In order to solve such a problem which has so many
solutions, two constraints are assumed: (i) reconstruction constraint: Based on image
observation model, reconstructed HR image X should be in agreement with the LR
image; and (i) sparsity prior: HR image can be sparsely represented over an over-

complete dictionary and it can be recovered from the LR version.

To be more precise, consider LR image Y which is down sampled and blurred
version of HR image X. And assume that there is a HR over-complete dictionary
D, € R™¥ of k bases which is a large matrix learned using HR image patches. Then
the vectorized patches of image X, x € R™ can be sparsely represented over
dictionary Dy,. So the high resolution patch x can be represented as x = D,a, Where
a, € R¥ is a vector with very few nonzero elements (< k). The relationship between
a HR patch x and its LR counterpart y can be expressed as:

y = SBx = Lx = LDy, (2.1)
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Note that S is representing a down sampling operator, B represents a blurring filter
and L denotes their combined effect. Substituting the representation for the HR patch
x into (2.1) and noting that D; = LD, one gets:

y = LDpay = D« (2.2)

Equation (2.2) implies that the LR patch y will also has the same sparse
representation coefficients «,. Now given the LR patches, one can obtain the
representation coefficients using a vector selection such as OMP.

After obtaining the sparse coefficients, one can reconstruct the high resolution
patch x.

Dpa (2.3)

=
I

The sparse representation problem (vector selection) has the formulation as an
optimization problem which results in finding the sparse coefficient a using
dictionary D,. For obtaining the sparse representation coefficients for the LR patch y,
one solves the following optimization problem:

min||y — Dyayll, subjectto ||apllo <T (2.4)
xo

where T is a threshold which is used to control the sparseness of the representation.
The [, norm is used to identify the number of nonzero elements of the vector a,. An

error based formulation of the vector selection problem can also be employed.

In order to represent the signal of interest, a suitable dictionary and a sparse linear
combination of the dictionary atoms is needed. The sparse representation problem
subject to find the most proper selection of those linear combination vectors from an

over-complete dictionary D;. To find such a representation different pursuit
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algorithm can be used such as OMP and the over-complete dictionary can be formed
using K-SVD.

2.1.1 K-SVD Approach

As it was mentioned previously, an over complete dictionary together with the sparse
coefficients are needed to represent a signal. The joint dictionary learning and sparse
representation of a signal can be defined by the following optimization problem:

rginlIY — D/A|l2  subject to Vi, laillo < T (2.5)
La

Consider a set of over-complete basis vectors Y, and an initial dictionary which is
formed by choosing its elements from the set randomly, D;. In order to find the
sparse coefficients of such a set over the dictionary, one the dictionary is assumed to
be fixed and then the sparse coefficients are calculated using OMP by solving
following optimization problem for each and every input signal y;

min|ly; — D;a;||3  subjectto |eill, i=12,..,N (2.6)
ai

Since the K-SVD algorithm attempts to update dictionary by replacing one atom at a
time to reduce the error in representation, thus in every iteration, the dictionary and
effective sparse coefficient vectors are considered to be fixed and just one atom in
the dictionary is questioned to be replaced and the corresponding sparse coefficient is
calculated.

For this purpose, the objective function (2.5) is written as following:

2 2.7)

K 2
Y — D,A||%2 = Y—Zd{a,- = (Y—Zdljaj)—d{‘ak
j=1

F j*k

= [|Ex - dé‘“k”;
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where the E} is the overall error matrix for training signals when the k-th atom of the
dictionary d, and its corresponding coefficient aj is not involved. Then all the
signals which use atom d,, and coefficient a;, in their representation form a matrix
{Y}* and the corresponding error matrix {E,}* is then obtained. Now (2.7) is

rewritten as (2.8) and dictionary can be updated by minimizing it:

1B — af (a3 (28)
where {a,}* is the k-th row of matrix coefficients which its zero entries are
discarded. Using singular value decomposition (SVD), {E}* is decomposed to
{E.}* = UAVT. Solution is the vectors corresponding to the maximum value which
modifies the updated atom df as normalized version of the first column of U

(uy/luqll,) and {ax}* as the first column of V multiplied by A(1,1), (s;v,).

The K-SVD algorithm is summarized in the following flowchart:
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e Initial guess from the input training set.

e Training set is vectorized overlapped
Initialize patches_
dictionary
lL e Find sparse coefficients of all signals.
. e Minimize error in representation.
Sparse coding P
(OMP)
¢ Finding one atom with minimally
represented signal.
¢ Identify signals which are using the k-th
< atom.
Update e Deselect k-th atom from dictionary.
dictionary ¢ Find the coding error of those signals.
Y oneatomata e Using SVD and minimize the error.
time e Replace the atom d | with d, =u, /|u,], and
corresponding coefficient with S, Vv,

Figure 2.1. The K-SVD Algorithm [20]

2.1.2 Orthogonal Matching Pursuit (OMP) for Calculating the
Representation Coefficients of LR Features

As it was mentioned before, finding an exact sparse representation of a signal is not

easily achievable. As the result, many researchers have aimed to find the best

approximate solution. Among all the methods Orthogonal Matching Pursuit has been

the main choice. The OMP is a simple method which enjoys from the fast running

time.

Given a dictionary, the OMP as a greedy algorithm, aims to find sparse
representation of the signals of interest over that dictionary. It is an iteratively
algorithm which updates the basis vector in every iteration and as the result reduces

the error in the representation. According to this scheme, the dictionary atoms with
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the largest absolute projection on the error vector are selected. This results into
selection of atoms which contain maximum information and consequently reduce the
error in the reconstruction. According to the Figure (2.2), the OMP algorithm selects

the code vector « in three steps, by given signal y and dictionary D;:

Select d,“ with
P maximum projection —
on residue

7

D,andy

a, = arg min Hy—d,kaku =D o

Check terminating Update residue
condition r=y-d,‘a,

Figure 2.2. The OMP Algorithm [3]
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Chapter 3

THE PROPOSED SUPER RESOLUTION APPROACH

3.1 Introduction

In order to have better capture of the intrinsic image characteristic we have focused
on the designing structured dictionaries instead of designing a global dictionary for
all kind of patches. As we know image content are highly directional. In order to
have more proper dictionaries to reconstruct directional patches, structurally
directional dictionaries are learnt. Another advantage of such an approach is less
computational complexity due to the fact that structural dictionaries can be much

smaller than a global dictionary.

Our proposed algorithm consists of two main parts, dictionary training and
reconstruction HR image from the LR image. We have learnt several sets of
structurally directional high and low resolution dictionaries in training part and then
we use them in the reconstruction part to recover a HR image from the LR version.
3.2 Training Phase

This part starts by collecting a set of HR images. Then the LR version of all those
images are constructed by using down-sampling and blurring operators. To reach
destination size, LR images are scaled up to the size of HR image via Bicubic

interpolation. This scaling serves mainly for rendering the coding part easy.
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The main focus in this phase is learning the most appropriate dictionaries to
reconstruct edges and texture content of an image accurately. The edges and texture
regions constitute the high frequency components of an image. To follow this idea, in
order to learn the HR dictionaries from the high components only, the HR images are
subtracted from the mid-resolution one (LR image which are scaled up to the size of
HR image termed mid-resolution image); Then local patches are extracted and

vectorized to form the HR training set X.

In order to ensure that the reconstructed HR patch is the best estimation, the
calculated coefficients must fit to the most relevant part of LR signal. Thus the
Laplacian and Gradient high-pass filters are employed to remove low frequency
content of LR images similar to the approach in [22], [27]. This choice is reasonable

while people are sensitive to the high frequency component of an image.

Instead of applying high-pass filters on the image patches which results in boundary
problems due to small patch sizes [28], we first filter whole the image using four 1-D
filters (3.1) to extract first and second derivatives as the features for the low-
resolution patch. Then local features corresponding to the gradient maps are
extracted and reshaped to the vectors. Features in the same location are concatenated

to form a big vector as a feature for LR training set Y.

fi= [-1,0,1] fo= f1T (3.1)

f3=[1101_21011] ﬁl-szT

To have more detailed result, we decided to have more than one pair of dictionary; a
pair of suitable dictionary for every specific direction. To cover 2D space we chose
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eight directions, one pair of dictionary for each and every 22.5 degree. In order to
have an exact model for every direction, some templates are modeled to cover all
possibilities of a single direction. All patches and features are clustered to eight

different sets based on their similarity to those templates.

Before training dictionaries, a dimensionality reduction algorithm is applied over LR
features. The basic idea of dimensionality reduction technique is projection; so using
dimensionality reduction results into employing only the real dimensions in the data
and in our case saves computations in the training phase and super resolution
algorithm. Among all proposed methods for this purpose, the Principal Component

Analysis (PCA) is used. This method preserves 99.9% of patches average energy.

At the end, For every cluster, the features from the LR training sets Y,, S RN are

given to the KSVD algorithm and then the corresponding LR dictionary is trained

{Dl}m € ]RNXM:

D} () = arg mink}mZu{yk}m ~ (Dl (32)

{D¥mAa
s.t.l{a*}nllo < T VEk.
where a* is the sparse representation coefficient vectors which belong to the feature
y*. And index k defines the k-th feature in each training set Y,, and index m is used
to determine the corresponding cluster. After learning all directional and non-
direction LR dictionaries, each and every HR dictionaries are calculated from the HR
training sets X,,, together with the sparse coefficients of corresponding LR dictionary
for every cluster m.

Noting that:
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{xk}m = {Dh}m-{alf:}m (3.3)

And using the fact that:

{@hm = {af I (3.4)

We obtain:
{xk}m ~ {Dh}m-{alk}m (3.5)
{Dn}m = m(Am)T(Am(Am)T)_l (3.7)

where A4,, is the matrix coefficients contains all coefficients vector obtained from the
LR dictionaries for each cluster m.

All the steps to classify training sets are explained in the following.

3.2.1 Directional Templates

In order to have an exact model of any direction to classify the patches, we have
designed eight sets of templates. Each and every one corresponds to a direction and
consists of all shifted versions of that direction. Using all those eight directions we
covered two-dimensional space. Figure 3.1 shows the designed templates. Templates
are at the size of 6 by 6 which are proper to compare with HR patches with the same
size From top to the end templates are: 0°(horizontal), 22.5°,45°,67.5°,90° (vertical),

112.5°, 135°,157.5".
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Figure 3.1. Directional 6 x 6 Templates with Shifts.
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3.2.2 Clustering

According to the purpose of designing structurally directional dictionaries, it is
needed to have directional training data set for each and every of dictionaries. To
classify patches and features corresponding to HR and LR image patches
respectively, we tried three different approaches to find the best one in order to have
groups of patches and features with the same direction of image content: using

dummy dictionaries, Euclidean distance and Correlation.

Using all training data, we collected 6 by 6 patches of high resolution images, and
corresponding LR features from mid-resolution images which are the scaled up
version of LR images.

3.2.2.1 Clustering via Dummy Dictionaries

Using templates of every direction and their shifted versions, we constructed non-
repeated linear combination of them in order to have a big matrix of all possibilities
of every direction as a dummy dictionary (Figure 3.2). Then by employing OMP
method which chooses the best atoms in the dictionary iteratively, coefficients of
every HR patch are found using all dummy dictionaries, then the corresponding

patch is recovered by all those dictionaries.
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Figure 3.2. Designed dummy di
22.5°,45°,67.5°,90°(vertical), 112.5°, 135°,157.5".

The amount of error between the original patch and the reconstructed ones is
obtained and the minimum error is used to determine which group the patch in
question belongs to. In order to have a non-directional dictionary for the patches
which are less directional, we decided to have a threshold for every cluster which is
chosen according to the error histograms. Those patches that did not belong to any of
the directional clusters are designated to belong to the non-directional cluster.

3.2.2.2 Euclidean Distance Between Patches and Templates

According to this approach, reshaped HR patch to the vector of size 36 by 1 together
with vectorized templates of the same size are used to find the most similar template

to the patch. The criterion for clustering is Euclidean distance; thus the Euclidean
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distances between the HR patch and all templates are obtained and the minimum
value defines the cluster which the patch in question and corresponding feature (LR
patch) belongs to. A non-directional cluster is defined which contains those patches
with the distance bigger than a specific threshold.

3.2.2.3 Correlation Between Patches and Templates

Based on correlation, the vectorized HR patch is correlated by the reshaped templates
of the same size; and the first choice which has the biggest value concatenates the
HR patch and corresponding feature to its own template cluster. We use correlation
to show the similarity between the patches and templates and as our templates are
directional this comparison gives us the most directional patches. The same as the
previous method, a non-directional cluster is considered. A single threshold decides
about the directional or non- directional nature of the patches; if a patch was
directional then structurally clustering starts, if not it goes to non-directional

category. Figure 3.3 summarizes the basic steps in the training phase.
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Figure 3.3. Flowchart of Training Phase.

3.3 Reconstruction Phase

Reconstruction phase should conform to the training phase. In that sense, steps

reminiscent of the ones used in the learning steps is encountered. Given a LR image

28



to be reconstructed, it first needs to be rescaled to the same size as the HR image.
This is done by Bicubic interpolation. Using this so called mid-resolution image, we
first filter it to extract the meaningful features in exactly the same way that the
learning stage did. Then the features are extracted to be recovered using the most

suitable dictionary.

In order to have the best reconstruction result, we need proper criteria for dictionary
selection. For this purpose, we tried two out of three approaches which we used in
the training phase for classification. These are correlation and Euclidean distance
between features and templates. Then the chosen LR dictionary and OMP algorithm
are used to sparsely represent the feature. Then the HR patch is recovered using
corresponding HR dictionary together with the sparse representation coefficients of
the feature.

3.3.1. Dictionary Selection

The most important issue in reconstruction part is dictionary selection criteria. The
two most proper approaches are used to come up with the best result; the first one is

correlation.

The correlation between the LR feature to be super resolved and the designed
templates is first calculated. The template that gives the highest correlation
determines the LR dictionary to be used. Using the OMP algorithm and the selected
LR dictionary, the sparse representation coefficients are calculated. The same sparse
representation coefficients are then used together with the HR dictionary to
reconstruct the HR patch.

The second approach is Euclidean distance between LR features and templates;

according to this approach, every LR feature will be reconstructed by all the LR
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dictionaries and the error between the reconstructed feature and the original one is
found.
Gm = D} @ m (3.8)
{ectm = Y = 9F)m (3.9)
The one with least error is used to determine which directional dictionary one needs
to use for reconstructing the HR patch. Figure 3.4 shows a summary of the

reconstruction stage.
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Figure 3.4. Flowchart of Reconstruction Phase.
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Chapter 4

SIMULATION AND RESULTS

4.1 Introduction

In this chapter, the performance of the proposed method is evaluated by simulation.
We show the result of applying our method on the Kodak set and some benchmark
images in two quantitative and qualitative subsections. Our approach is compared to
Bicubic interpolation and the state-of-the-art method proposed by R. Zeyde et.al
[23]. The super resolution is done herein scales up test images from a 384x256
dimension to a 768x512 dimension mostly for both our proposed method and

baseline algorithm [23].

We first conduct an experimental study which shows the ability of designed
dictionaries to super-resolve images using different setting for patch size and
dictionary redundancy. Then using the optimal patch size and redundancy, further
tests are performed.

In order to show the quantitative performance, the Peak Signal-to-Noise Ratio
(PSNR) is used.

2552 4.1)

PSNR(X,X) =10 log,g ——————
(x.%) 910 MSEX, %)

where X is true image and X is the estimated version of it and MSE (X, X) denotes the

mean square error between X and X and is defined by:
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R 1 & (4.2)
MSE(X,X) = —Nz z (xij — Rij)?
=
Both X and X are 8-bit (gray level) with M x N pixels. To measure the perceptual
image quality, the structural similarity index measure (SSIM) is used. The SSIM is
believed to be more fit with human perception rather than PSNR.

(Luxug + c1)(20xx +¢3) (4.3)

SSIM(X,X) =
(x.%) (UE + p} +c) (07 + 0f +¢2)

where puy, ug are the average of X and X respectively and o3, 0)% are the variance of

X and X respectively and o4 is the covariance of X, X. Two variables c;, c, are used

to stabilize the devision.

4.2 Effect of Patch Size and Number of Dictionary Atoms on the

Representation Quality:

According to [29] the dictionary redundancy is an important concept in sparse
representation. The sparse representation problem is a patch-based method; the
redundancy of the dictionary in the problem is defined by the ratio of the number of
dictionary atoms to the patch size. It is expected that choosing a large patch size
helps to better represent the image structures. But at the same time, larger patch sizes
result in larger dictionary atoms. In addition, to learn dictionaries with larger patch
sizes, one needs significantly bigger training set of images. Therefore, although
representation can enjoy from larger patch sizes but it suffers from increased

computation complexity as well.

Figure 4.1 illustrates the average PSNR of reconstructed Kodak set images based on
different settings of the aforementioned two parameters. The horizontal axis
represents the redundancy as the ratio of the number of dictionary columns (atoms)

to the number of dictionary rows (patch size), and the vertical axis represents the
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PSNR performance for four different HR patch sizes 4 x 4, 6 X 6,8 x 8, 10 X 10
(which are correspond to the 2 x2, 3x3, 4x4,5x5 for LR image patches
respectively). Dictionaries are trained using the K-SVD algorithm with sparsity
parameter S=3, and 20 iterations. Then for each image in the Kodak set, the
reconstruction algorithm is employed and the average PSNR is plotted for three
different patch sizes. The images which are used in the reconstruction part are not the
same as training part (Test image is not involved in training set). Thus the ratio
between the number of atoms in the dictionary and the patch size is defined as the
dictionary redundancy. The vectorized HR patch sizes are 16 X 1, 36 X 1, 64 x 1,

100 x 1.

32.4

32.3

Average PSNR

4x4
--®- 6x6
—d— 8x8
-~ 1010

31.7

I
d
1 2 3 4 5 6 7
Ratio of the number of dictionary atoms to the vectorized patch size

Figure 4.1. Average Kodak set PSNR vs. dictionary length-width
using four different HR patch sizes, 4 x 4, 6 X 6, 8 X 8, 10 x 10.

According to the Figure 4.1, for all patch sizes increasing the size of dictionary

atoms improves the reconstruction performance rather than using a complete
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dictionary. It can be observed from the Figure that the patch size of 6x6 is the best
choice in order to have good PSNR quality. For this patch size, it can be seen that by
increasing the dictionary redundancy more than 4 the average PSNR does not change
significantly and improvement getting slow after redundancy 4. Therefore,
considering 6x6 patch size and dictionary redundancy of 4 is a good compromise in

terms of performance and computational complexity.
4.3 Learned Dictionaries

The proposed dictionary learning phase used three approaches to classify training
data. Over which directional dictionaries are learned. These are: dummy dictionaries,
Euclidean distance and correlation based classification.

4.3.1 Designed Directional Dictionaries Based on Classification via Dummy

Dictionaries

To remind, we designed eight dummy dictionaries which are structurally directional,
then training set is classified to eight structured sets and one non-directional set from
the patches which are not directional. The criteria for defining a patch as one of those
eight directions was OMP selection based on the least error in the reconstruction.
The designed HR dictionaries are shown in Figure 4.2. They are ordered by:
0°(horizontal), 90°(vertical), 45°,135°,22.5°,67.5°,112.5°,157.5° and non-

directional one. All learned dictionaries are of size 130.
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Figure 4.2. Designed HR dictionaries using classification via dummy dictionaries
from top left: 0°(horizontal), 90°(vertical), 45°,135°,22.5°,67.5°,112.5°,157.5"and
non-directional.

According to Figure 4.2, some directional atoms can be seen in the dictionaries but
none of dictionaries have the specific direction.
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4.3.2 Designed Directional Dictionaries Based on Classification via Euclidean
Distance

Based on this approach we designed structured dictionaries using structured training

sets which are obtained by the gathering all patches which have the least error with

the templates. The dictionaries which are designed using this approach are

demonstrated in the Figure (4.3). Learned dictionaries all have 130 atoms.
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I al .
Figure 4.3. Designed HR dictionaries using classification via Euclidean distance,
from top left: 0°(horizontal), 90°(vertical), 45°,135°,22.5°,67.5°,112.5°,157.5"and
non-directional.

The learned dictionaries contain obviously more directional atoms rather than the
previous approach. By looking at the dictionaries, the direction of them can be
observed. Horizontal and vertical dictionaries are the richest one where many of their

atoms have correct directions.

4.3.3 Designed Directional Dictionaries Based on Classification via Correlation
The third and the last approach is designing dictionaries using correlation to classify
training data. According to this approach, every single patch is correlated with the
templates and the largest similarity between the patch in question and any of those
templates (the template that has the biggest value in correlation with the patch)
defines the correct direction of that patch. Figure 4.4 illustrates the designed HR

dictionaries using correlation method. All dictionaries are at size 130.
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Based on designed dictionaries, it can be observed that classification using
correlation is the most successful approach compared to the last two approaches.
Dictionaries contain more directional atoms specially for horizontal and vertical

dictionaries which almost all their atoms have correct direction.
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Figure 4.4. Designed HR dictionaries using classification via correlation; from top
left: 0°(horizontal), 90°(vertical), 45°,135°,22.5°,67.5°,112.5°,157.5" and non-
directional.

4.3.4 Performance Test of Designed Directional Dictionaries with Correct
Model Selection
According to the Figures of designed HR dictionaries especially for the last method,
it can be observed that the purpose of designing structurally directional dictionaries
is partially achieved. In order to demonstrate the efficiency of training such
dictionaries, an experimental study is done. Based on this study, using all structured
dictionaries and non-directional one a set of low resolution input image is
reconstructed. The dictionary selection model in the reconstruction part is error based
where the HR image patches of corresponding LR images are assumed to be known.
Thus the LR features are reconstructed using the most appropriate chosen pair of
dictionaries based on the minimum error of the representation the corresponding HR

patches with HR dictionaries.
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4.3.4.1 Quantitative Result

This experiment indicates that it is indeed possible to improve the performance of
SISR with directionally structured dictionaries provided that the correct model is
selected. The obtained PSNR results correct model selection, illustrate improvement

over the state-of-the-art results proposed by R.Zeyde et.al [23].

Table 4.1 shows the PSNR results using Bicubic interpolation, state-of-the-art results
[23], and result of our study. It is evident from Table that the test performance using
designed structurally directional dictionaries shows better results in terms of PSNR
with much better improvement of 1.48 dB on average over Bicubic interpolation and

an improvement of 0.2 dB over the-state-of-the-art result.

From the result in this Table, it can be observed that for the images with directional
nature, the PSNR improvements are noticeable. For example for the Barbara image
which is a highly directional image, the PSNR is improved about 0.5 dB over the-
state-of-the-art results while it is 1.18 dB over Bicubic interpolation. Also for the
zone-plate image which is a curvy directional image, the PSNR result using the
structurally directional dictionaries, shows about 1 dB improvement over the state-
of-the-art result and also it gives much better result over Bicubic interpolation with
about 1.54 dB improvements. The image set in the result Tables are shown from top

left.
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Table 4.1. PSNR results, corresponding to Bicubic,
R. Zeyde and Proposed method

Name Bicubic R. Zeyde Method Proposed Method
PSNR SSIM PSNR SSIM PSNR SSIM
(dB) (dB) (dB)
K.1 26.7 0.9597 27.85 0.9806 28.15 0.9783
K.2 34.0 0.9697 35.04 0.9763 35.14 0.9741
K.3 35.0 0.9842 36.66 0.9855 36.66 0.9843
K.4 34.6 0.9813 36.03 0.9847 36.03 0.9833
K.5 27.1 0.9775 28.95 0.9852 29.21 0.9842
K.6 28.3 0.9628 29.42 0.9809 29.66 0.9785
K.7 343 0.9923 36.33 0.9905 36.36 0.9900
K.8 243 0.9668 25.50 0.9829 25.94 0.9812
K.9 331 0.9856 35.04 0.9873 35.16 0.9860
K.10 329 0.9848 34.75 0.9874 34.79 0.9862
K.11 29.9 0.9717 31.14 0.9830 31.39 0.9813
K.12 33.6 0.9773 35.58 0.9872 35.58 0.9856
K.13 247 0.9576 25.54 0.9780 25.80 0.9758
K.14 29.9 0.9773 31.30 0.9810 31.47 0.9797
K.15 329 0.9824 34.90 0.9868 34.90 0.9858
K.16 321 0.9705 32.84 0.9770 33.10 0.9752
K.17 329 0.9880 34.38 0.9827 34.47 0.9818
K.18 28.8 0.9755 29.89 0.9841 30.07 0.9827
K.19 28.8 0.9719 30.04 0.9782 30.43 0.9766
K.20 324 0.9865 34.11 0.9864 34.18 0.9850
K.21 29.3 0.9816 30.36 0.9841 30.65 0.9831
K.22 314 0.9753 32.59 0.9821 32.72 0.9806
K.23 359 0.9924 37.90 0.9877 37.97 0.9873
K.24 27.6 0.9764 28.62 0.9818 28.82 0.9804
Baboon 24.9 0.9651 25.46 0.9756 25.77 0.9739
Barbara 28.0 0.9577 28.66 0.9813 29.14 0.9792
boat 34.1 0.9863 33.78 0.9817 33.97 0.9807
Face 34.8 0.8463 35.56 0.8485 35.64 0.8489
Lena 347 0.9893 36.23 0.9820 36.29 0.9813
Man 29.2 0.9820 30.51 0.9822 30.69 0.9813
Zebra 30.6 0.9877 33.21 0.9806 33.35 0.9800
Z-plate 12.7 0.7054 13.27 0.8680 13.97 0.8654
Elaine 311 0.9767 31.31 0.9718 31.32 0.9703
Average 30.29 31.8456 31.59 32.1731 31.77 32.128
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The same improvement can be seen for the directional images in Kodak set as well.
For the Kodak image number one which contains a lot of directional edges, the
improvement is 0.33 dB and 1.48 dB over the state-of-the-art result and bicubic
respectively. For the Kodak image number 8 and 24 which are both directional

images, the improvement is 0.46 dB, 0.2 dB over the state-of-the-art results.

It is evident that, using structurally directional dictionaries to super-resolve LR
images especially directional ones, provides superior results compared to employing
only one global dictionary for all kind of images.

4.3.4.2 Qualitative Result

Figures 5 and 6 present visual comparisons of different reconstruction methods for
zone-plate and Barbara respectively. Figures show insets of selected zoomed scenes
to clarify the comparison. The visual comparison is between the Bicubic
interpolation, the-state-of-the-art [23] and the proposed method with correct model
selection respectively. The improvements over the-state-of-the-art can be seen

visually as well.

Figure 4.5 shows original image and reconstructions from Bicubic, R. Zeyde and
proposed method with correct model selection of Zone-plate image. It can be
observed that the reconstructed Zone-plate image using proposed method with
correct model selection contains more information compared to Bicubic and the-
state-of-the-art result. While the proposed method with correct model selection
solves the blurring problem in the Bicubic method, it recovered the edges better than

the-state-of-the-art approach.
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Figure 4.5. Visual comparison for zone plate, from top left insets of: the original,
Bicubic, R. Zeyde and the proposed method with perfect model selection.

The same as zone-plate image, Figure 4.6 illustrates original and the reconstructions
from Bicubic, R. Zeyde and the proposed method with correct model selection of
Barbara image respectively. Again the result of proposed method enjoys of less
blurring rather than Bicubic interpolation while reconstructed directions more
accurate than the-state-of-the-art [23].

Our qualitative results are in line with the PSNR results presented in the Table 4.1.
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Figure 4.6. Visual comparison for Barbara, from top left insets of: the original,
Bicubic, R. Zeyde and the proposed method with perfect model selection.

4.4 Simulation Results of the Reconstruction Phase

According to the proposed method, in order to reconstruct a HR image, two
dictionary model selections are proposed: correlation and Euclidean distance based
approaches. Using these models together with the three classification schemes, the

simulation results are presented.

PSNR results are shown in Tables 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 for three
classification methods and two dictionary model schemes. Results are obtained with
the patch size of 6 by 6 and sparsity 3 for all dictionaries and image resolution is
increased by factor of 2 in both directions for proposed method and baseline

algorithm [23]. Two different settings are defined for the dictionary sizes (number of
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atoms in the dictionary). One of the configurations is defined according to the
experimental study which is discussed earlier. According to this category, dictionary

redundancy is 4 while the vectorized patch size is 36 by 1.

Besides the aforementioned setting, we consider another possibility for the number
of dictionary atoms. In this category, the dictionary sizes are defined according to
how often they are used to recover an image. To decide on the dictionary sizes,
simple tests are conducted using the Kodak set. The test results demonstrate that non-
directional dictionary and dictionaries corresponding to horizontal and vertical
directions are used more than other dictionaries for reconstructing the HR patches
respectively. The dictionaries which belong to 45 and -45 degree are at the third

place and the rest fall in the bottom of the list.

The configurations of two categories are shown in the Table 4.2. The first category
belongs to the dictionaries with the same size based on optimal redundancy. The

second category shows the dictionary sizes according to our empirical study.

Table 4.2. Size of Trained Dictionaries

Category | Non-directional | Horizontal and vertical | 45 and -45 degree | others

1 130 130 130 130

2 190 150 130 110

4.4.1.1 Simulation Results Using Designed Dictionaries Based on Classification
via Dummy Dictionaries
Using designed dictionaries employing classification via dummy dictionaries for

reconstruction a HR image, the PSNR performances in Tables 4.3 and 4.4 are
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obtained. The test images are Kodak set and some benchmark images. Two Tables
are defined to show the results of using such dictionaries and reconstruct the LR
images via two different dictionary model selections. The PSNR results using
correlation and Euclidean distance as the dictionary selection methods are shown in

Tables 4.3, 4.4 respectively.

According to the correlation model selection, the LR features are correlated to the all
designed templates and the biggest value determines the direction of feature
corresponding to that template. Then the corresponding dictionary pair is used to
reconstruct the HR patch. Euclidean distance model selection, select the most
suitable HR dictionary based on minimum error of the representation of each feature

with all LR dictionaries.

Each Table represents PSNR for two categorizes. As it was mentioned before, the
category 1 belongs to the reconstruction results using learned dictionaries with the
same size and the second category is for the result of designing dictionaries using
different sizes. It can be observed from the Tables that the Euclidean distance model
selection chooses dictionaries more accurate than the correlation based model
selection while it shows on average 1 dB improvement over Bicubic interpolation
and 0.26 dB less than the state-of-the-art proposed by R. Zeyde [23] for the second
category while results of correlation based model selection illustrates 0.55 dB over

Bicubic and 0.75 dB less than R. Zeyde results.
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Table 4.3. PSNR results using
classification via dummy dictionaries
and correlation based model selection,
corresponding to Bicubic, R.Zeyde

and proposed method.

Table 4.4. PSNR results using

classification via dummy dictionaries
and Euclidean dictance based model
selection, corresponding to Bicubic, R.

Zeyde and proposed method

Categoryl

Category2

Categoryl

Category2

Name Bicubic R.Zeyde Proposed R.Zeyde Proposed Name Bicubic R.Zeyde Proposed R.Zeyde Proposed
PSNR PSNR Method PSNR PSNR Method PSNR PSNR PSNR Method PSNR PSNR Method PSNR
(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)
K.l 26.7 27.85 27.16 27.85 27.22 K.1 26.7 27.85 27.52 27.85 27.62
K.2 34.0 35.04 34.43 35.04 34.46 K.2 34.0 35.04 34.80 35.04 34.84
K.3 35.0 36.66 35.67 36.66 35.67 K.3 35.0 36.66 36.18 36.66 36.28
K.4 34.6 36.03 35.24 36.03 35.24 K.4 34.6 36.03 35.67 36.03 35.78
K.5 27.1 28.95 27.78 28.95 27.79 K.5 27.1 28.95 28.42 28.95 28.54
K.6 28.3 29.42 28.70 29.42 28.71 K.6 28.3 29.42 29.10 29.42 29.17
K.7 34.3 36.33 35.12 36.33 35.16 K.7 34.3 36.33 35.82 36.33 35.96
K.8 243 25.50 24.84 25.50 24.86 K.8 243 25.50 25.18 25.50 25.24
K.9 33.1 35.04 33.96 35.04 33.98 K.9 33.1 35.04 34.50 35.04 34.69
K.10 32.9 34.75 33.65 34.75 33.66 K.10 32.9 34.75 34.20 34.75 34.36
K.11 29.9 31.14 30.41 31.14 30.42 K.11 29.9 31.14 30.80 31.14 30.90
K.12 33.6 35.58 34.17 35.58 34.17 K.12 33.6 35.58 34.72 35.58 34.91
K.13 24.7 25.54 25.08 25.54 25.07 K.13 24.7 25.54 25.34 25.54 25.38
K.14 29.9 31.30 30.46 31.30 30.47 K.14 29.9 31.30 30.90 31.30 30.99
K.15 32.9 34.90 33.64 34.90 33.65 K.15 32.9 34.90 34.54 34.90 34.73
K.16 321 32.84 32.45 32.84 32.45 K.16 32.1 32.84 32.68 32.84 32.72
K.17 32.9 34.38 33.43 34.38 33.44 K.17 32.9 34.38 33.93 34.38 34.09
K.18 28.8 29.89 29.26 29.89 29.26 K.18 28.8 29.89 29.60 29.89 29.66
K.19 28.8 30.04 29.50 30.04 29.51 K.19 28.8 30.04 29.79 30.04 29.81
K.20 32.4 34.11 33.03 34.11 33.04 K.20 32.4 34.11 33.53 34.11 33.67
K.21 29.3 30.36 29.77 30.36 29.76 K.21 29.3 30.36 30.11 30.36 30.17
K.22 31.4 32.59 31.90 32.59 31.90 K.22 31.4 32.59 32.25 32.59 32.32
K.23 35.9 37.90 36.80 37.90 36.81 K.23 35.9 37.90 37.43 37.90 37.54
K.24 27.6 28.62 28.07 28.62 28.07 K.24 27.6 28.62 28.37 28.62 28.42
Baboon 24.9 25.46 25.16 25.46 25.16 Baboon 24.9 25.46 25.36 25.46 25.38
Barbara 28.0 28.66 28.34 28.66 28.34 Barbara 28.0 28.66 28.53 28.66 28.57
boat 34.1 33.78 33.06 33.78 33.08 boat 34.1 33.78 33.47 33.78 33.54
Face 34.8 35.56 35.19 35.56 35.20 Face 34.8 35.56 35.43 35.56 35.47
Lena 34.7 36.23 35.40 36.23 35.41 Lena 34.7 36.23 35.87 36.23 35.97
Man 29.2 30.51 29.74 30.51 29.74 Man 29.2 30.51 30.12 30.51 30.19
Zebra 30.6 33.21 31.74 33.21 31.73 Zebra 30.6 33.21 32.49 33.21 32.64
Z-plate 12.7 13.27 13.11 13.27 13.11 Z-plate 12.7 13.27 13.23 13.27 13.23
Elaine 311 31.31 31.18 31.31 31.18 Elaine 311 31.31 31.27 31.31 31.28
Average 30.29 31.59 30.83 31.59 30.84 Average 30.29 31.59 31.24 31.59 31.33
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The results of second category are in line with the first category with 0.95 dB and
0.54 dB improvements over Bicubic interpolation and 0.35 dB and 0.76 dB below R.
Zeyde results for Euclidean distance and correlation based model selection
respectively.

4.4.1.2 Simulation Results Using Designed Dictionaries Based on Classification

via Euclidean Distance

Based on this approach we are designing structured dictionaries using structurally
directional training sets which are obtained by the gathering all patches which have
the least error with the templates. Such designed dictionaries were shown in Figure

4.3.

Tables 4.5, 4.6 illustrate the corresponding PSNR results of the super resolution of
test images in two different categories with the same configuration as the previous
approach. The same as previous method, results show the superior of using
Euclidean distance rather than the correlation method in sense of dictionary
selection. Although the result of category 2 for both Tables does not have big
difference from categoryl but it shows a slightly improvement.

4.4.1.3 Simulation Results Using Designed Dictionaries Based on Classification

via Correlation

The PSNR performances listed in Tables 4.7 and 4.8 are obtained by running the
proposed algorithm in the two mentioned categories. The same way of the previous
approaches the test images are reconstructed using both dictionary selection models.
The learned dictionaries have visually slightly sharper directions rather than the
designed dictionaries using the Euclidean distance which lead to a slightly

improvement in the PSNR result.
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Table 4.5. PSNR results using
classification via Euclidean distance,
and correlation based model selection,
corresponding to Bicubic, R. Zeyde
and proposed method.

Table 4.6. PSNR results using

classification via Euclidean distance,
and Euclidean dictance based model
selection, corresponding to Bicubic, R.

Zeyde and proposed method.

Categoryl Category2 Categoryl Category2
Name Bicubic R.Zeyde Proposed R.Zeyde Proposed Name Bicubic R.Zeyde Proposed R.Zeyde Proposed
PSNR PSNR Method PSNR PSNR Method PSNR PSNR PSNR Method PSNR PSNR Method PSNR
(dB) (@8 (B) (@) (@) (dB) (8) (@B) (8 (8)
K.1 26.7 27.85 27.79 27.85 27.79 K.1 26.7 27.85 27.81 27.85 27.81
K.2 34.0 35.04 34.89 35.04 34.89 K.2 34.0 35.04 34.99 35.04 35.00
K.3 35.0 36.66 36.36 36.66 36.31 K.3 35.0 36.66 36.61 36.66 36.63
K.4 34.6 36.03 35.77 36.03 35.82 K.4 34.6 36.03 35.96 36.03 35.96
K.5 27.1 28.95 28.59 28.95 28.59 K.5 27.1 28.95 28.91 28.95 28.91
K.6 28.3 29.42 29.27 29.42 29.17 K.6 28.3 29.42 29.39 29.42 29.39
K.7 34.3 36.33 35.83 36.33 35.95 K.7 34.3 36.33 36.19 36.33 36.21
K.8 24.3 25.50 25.38 25.50 25.33 K.8 24.3 25.50 25.46 25.50 25.48
K.9 33.1 35.04 34.78 35.04 34.83 K.9 33.1 35.04 34.97 35.04 34.95
K.10 32.9 34.75 34.36 34.75 34.36 K.10 32.9 34.75 34.71 34.75 34.73
K.11 29.9 31.14 30.97 31.14 30.97 K.11 29.9 31.14 31.09 31.14 31.10
K.12 33.6 35.58 35.17 35.58 34.97 K.12 33.6 35.58 35.52 35.58 35.47
K.13 24.7 25.54 25.42 25.54 25.42 K.13 24.7 25.54 25.49 25.54 25.49
K.14 29.9 31.30 31.08 31.30 31.07 K.14 29.9 31.30 31.25 31.30 31.25
K.15 32.9 34.90 34.60 34.90 34.62 K.15 32.9 34.90 34.88 34.90 34.96
K.16 32.1 32.84 32.76 32.84 32.77 K.16 321 32.84 32.81 32.84 32.80
K.17 329 34.38 34.12 34.38 34.13 K.17 32.9 34.38 34.32 34.38 34.29
K.18 28.8 29.89 29.72 29.89 29.71 K.18 28.8 29.89 29.83 29.89 29.84
K.19 28.8 30.04 29.90 30.04 29.92 K.19 28.8 30.04 30.02 30.04 29.97
K.20 324 34.11 33.68 34.11 33.71 K.20 32.4 34.11 33.98 34.11 34.01
K.21 29.3 30.36 30.22 30.36 30.22 K.21 29.3 30.36 30.30 30.36 30.29
K.22 31.4 32.59 32.43 32.59 32.38 K.22 31.4 32.59 32.52 32.59 32.53
K.23 35.9 37.90 37.58 37.90 37.57 K.23 35.9 37.90 37.86 37.90 37.88
K.24 27.6 28.62 28.46 28.62 28.46 K.24 27.6 28.62 28.58 28.62 28.57
Baboon 249 25.46 25.38 25.46 25.39 Baboon 24.9 25.46 25.45 25.46 25.45
Barbara 28.0 28.66 28.57 28.66 28.59 Barbara 28.0 28.66 28.58 28.66 28.57
boat 34.1 33.78 33.58 33.78 33.67 boat 34.1 33.78 33.74 33.78 33.75
Face 34.8 35.56 35.47 35.56 35.49 Face 34.8 35.56 35.57 35.56 35.55
Lena 34.7 36.23 36.01 36.23 36.06 Lena 34.7 36.23 36.22 36.23 36.22
Man 29.2 30.51 30.28 30.51 30.28 Man 29.2 30.51 30.43 30.51 30.45
Zebra 30.6 33.21 32.92 33.21 32.93 Zebra 30.6 33.21 33.13 33.21 33.13
Z-plate 12.7 13.27 13.21 13.27 13.24 Z-plate 12.7 13.27 13.21 13.27 13.20
Elaine 311 31.31 31.28 31.31 31.29 Elaine 311 31.31 31.31 31.31 31.31
Average 30.29 31.59 31.38 31.59 31.41 Average 30.29 31.59 31.54 31.59 31.55
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Table 4.7. PSNR results using
classification via correlation, and
correlation based model selection,
corresponding to Bicubic, R. Zeyde
and proposed method.

Table 4.8. PSNR results using

classification via correlation, and
Euclidean distance based model
selection, corresponding to Bicubic, R.

Zeyde and proposed method.

Categoryl Category2 Categoryl Category?2
Name Bicubic R.Zeyde Proposed R.Zeyde Proposed Name Bicubic R.Zeyde Proposed R.Zeyde Proposed
PSNR PSNR Method PSNR PSNR Method PSNR PSNR (dB) PSNR Method PSNR PSNR Method PSNR
(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)
K.1 26.7 27.85 21.77 27.85 27.81 K.1 26.7 27.85 27.86 27.85 27.93
K.2 34.0 35.04 3491 35.04 3491 K.2 34.0 35.04 35.03 35.04 35.02
K.3 35.0 36.66 36.37 36.66 36.38 K.3 35.0 36.66 36.61 36.66 36.58
K.4 346 36.03 35.90 36.03 35.81 K.4 34.6 36.03 35.93 36.03 35.99
K.5 271 28.95 28.61 28.95 28.63 K.5 271 28.95 28.95 28.95 28.95
K.6 283 29.42 29.26 29.42 29.26 K.6 28.3 29.42 29.28 29.42 29.35
K.7 343 36.33 35.90 36.33 35.90 K.7 343 36.33 36.23 36.33 36.22
K.8 243 25.50 25.37 25.50 25.37 K.8 243 25.50 25.45 25.50 25.46
K.9 331 35.04 34.84 35.04 34.83 K.9 331 35.04 35.03 35.04 35.03
K.10 329 34.75 34.36 34.75 34.40 K.10 32.9 34.75 34.75 34.75 34.75
K.11 29.9 3114 30.98 3114 31.01 K.11 29.9 31.14 3111 31.14 31.13
K.12 336 35.58 35.24 35.58 35.27 K.12 33.6 35.58 35.30 35.58 35.38
K.13 24.7 25.54 25.42 25.54 25.43 K.13 247 25.54 25.49 25.54 25.50
K.14 29.9 31.30 31.07 31.30 31.10 K.14 29.9 31.30 31.24 31.30 31.25
K.15 329 34.90 34.68 34.90 34.65 K.15 32.9 34.90 34.93 34.90 34.72
K.16 321 32.84 32.75 32.84 32.77 K.16 321 32.84 32.82 32.84 32.82
K.17 329 34.38 34.12 34.38 34.17 K.17 32.9 34.38 34.33 34.38 34.38
K.18 28.8 29.89 29.72 29.89 29.73 K.18 28.8 29.89 29.85 29.89 29.85
K.19 28.8 30.04 29.98 30.04 29.90 K.19 28.8 30.04 30.07 30.04 30.01
K.20 324 34.11 33.71 34.11 33.75 K.20 324 34.11 34.03 34.11 34.04
K.21 29.3 30.36 30.22 30.36 30.23 K.21 29.3 30.36 30.29 30.36 30.32
K.22 314 32.59 32.42 32.59 3243 K.22 314 32.59 32.52 32.59 32.56
K.23 359 37.90 37.58 37.90 37.57 K.23 35.9 37.90 37.95 37.90 37.98
K.24 276 28.62 28.45 28.62 28.47 K.24 27.6 28.62 28.57 28.62 28.57
Baboon 249 25.46 25.37 25.46 25.38 Baboon 24.9 25.46 25.46 25.46 25.46
Barbara 28.0 28.66 28.58 28.66 28.58 Barbara 28.0 28.66 28.55 28.66 28.55
boat 34.1 33.78 33.56 33.78 33.57 boat 34.1 33.78 33.71 33.78 33.75
Face 348 35.56 35.46 35.56 35.47 Face 34.8 35.56 35.54 35.56 35.54
Lena 34.7 36.23 36.01 36.23 36.03 Lena 34.7 36.23 36.24 36.23 36.23
Man 29.2 30.51 30.30 30.51 30.31 Man 29.2 30.51 30.46 30.51 30.48
Zebra 30.6 3321 3291 3321 32.95 Zebra 30.6 33.21 33.10 33.21 33.12
Z-plate 12.7 13.27 13.22 13.27 13.22 Z-plate 12.7 13.27 13.20 13.27 13.20
Elaine 311 31.31 31.27 3131 31.28 Elaine 311 31.31 31.30 31.31 31.31
Average 30.29 31.59 31.40 3159 31.42 Average 30.29 31.59 31.54 31.59 31.56
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According to the last two approaches, the obtained results are much better than
Bicubic method by 1.12 dB And 1.13 dB improvement respectively when
dictionaries are designed using Euclidean distance and correlation classification
approaches and both are reconstructed using correlation based dictionary selection
method. Also by 1.26 dB and 1.27 dB improvement over Bicubic interpolation when

the Euclidean distance approach is used as the dictionary selection model.

Tables illustrate that selecting dictionaries by employing Euclidean distance
approach as the dictionary selection model, gives us better result in comparison with
the correlation model selection. Thus according to Tables 4.6, 4.8 our method results
are comparable to the-state-of-the-art proposed by R. Zeyde with just a very small
difference less, 0.04 dB and 0.03 dB for the classification using Euclidean distance

and correlation respectively.

The PSNR and SSIM values listed in the Tables were obtained by running the
proposed algorithm with sparsity 3 and 6x6 patch size such that the trained
dictionaries have a dimension of 36x130. With this configuration on an Intel Pentium
dual Core, 2200 MHz laptop PC under Matlab 2013a, the execute time in order to
learn all nine dictionaries together are measured to be 170s, 280s and 140s for the
first, second and the third approach respectively for 20 K-SVD iterations. The time
required to train a single dictionary of size 36x1170 and the same number of
iterations and sparsity for the method proposed by R. Zeyde is about 830s. For both

method Bicubic interpolation of factor 2 were used.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis we have proposed an algorithm for single image super resolution based
on sparse representation, in terms of structurally directional dictionaries. The
proposed algorithm is based on dictionary learning in the spatial domain. Structured
dictionaries in eight directions and one non-directional one are trained employing

KSVD algorithm.

Designing structurally directional dictionaries is template matching based where
templates are designed to model eight directions which all together cover 2-D space.
Training data is classified in nine clusters, eight directional and one non-directional.
Classification is done using a similarity measurement together with templates and

then corresponding HR and LR dictionaries are learned.

In the reconstruction part, LR input image is reconstructed using nine HR designed
dictionaries together with the sparse coefficients obtained using LR dictionaries.
Dictionary selection model is error based while the criteria to choose the most

appropriate HR dictionary is LR feature.

The effect of dictionary redundancy is empirically studied and it is found that a

patch of size 6x6 for the HR patches (3x3 for LR patches) and dictionary size of 130
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for all the dictionaries is a good compromise between representation quality and
computational complexity. After training structured dictionaries, an experimental
study is done to show the effectiveness of designing such dictionaries compared to a
single global one. Results indicate the effectiveness of directional dictionaries
compared to Bicubic, the proposed method with correct model selection gives 1.5 dB
for Kodak set and some benchmark images; and also 0.2 dB improvements over the-

state-of-art result proposed by R. Zeyde et.al.

Although structurally directional dictionaries are shown via simulation to have
superior performance over state-of-the-art, it should be mentioned choosing the best
HR dictionary based on LR patches (features) is not a trivial task. Using two
proposed dictionary model selections which choose the HR dictionaries based on LR
features, it is observed that the correct HR dictionary is not always chosen. Thus the
results are not the same as it is expected from the test performance. Results illustrate
1.3 dB improvements over Bicubic interpolation while they are almost the same as
the-state-of-the-art result presented by R. Zeyde with 0.03 dB lower PSNR on

average.
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5.2 Future Work

According to the results which were discussed in the previous chapter, we found out
that designing structurally directional dictionaries is an effective approach in order to
improve the enhancement of an image. For this purpose, we need a strong dictionary

selection model when the only criterion is LR input image patches.

Thus as the future work:
e Propose a powerful model selection to select the most suitable dictionary
where using LR patches yield in the best HR dictionary selection.
e In order to have stronger result not only for directional patches but also for
all different patch structures, design more complicated templates and learn

corresponding dictionaries.
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