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ABSTRACT 

In this work we study the shifted linear interpolation (SLI) method and apply this 

method in wavelet domain in addition to the spatial domain. The SLI is 

computationally cheaper than the cubic interpolation and a little more computationally 

complicated than the standard linear in this way: the computed optimal shift for the 

SLI is used to change coefficients amplitude and location of the standard linear 

interpolation. In the spatial domain we achieve a noticeable improvement over the 

standard linear interpolation in cost of some simple computations. We compare the 

SLI with other interpolation methods in practical test to ensure its superiority over 

others. We then evaluate the SLI in wavelet domain, so we carry out our experimental 

tests in this domain. The SLI method is originated from the principle attempt to 

minimizing the least square error which is much in the case of the standard linear 

interpolation.  

We Evaluate the SLI with experimental results such as rotation and magnification in 

spatial and wavelet domain. In rotation experiment, we use the SNR and SSIM to 

evaluate the standard linear, the SLI, and the cubic methods and this comparison is 

carried out in spatial domain. A second practical experiment is magnification which is 

done in spatial as well as wavelet domain and the comparison between the nearest, the 

standard linear, the SLI and the cubic is hold by visual and objective evaluation. 

Keywords: Linear interpolation, Shifted linear interpolation, Super resolution, Spline 

functions, Discrete wavelet transform. 
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ÖZ 

Bu tez çalışmasında kaydırılmış bir çizgisel enterpolasyon (KÇE) yöntemi üzerinde 

çalışılmış olup yöntem zaman alanına ek olarak dalgacık alanında da dikkate 

alınmıştır. Çalışma sonucunda basit hesaplama maliyeti ile standart çizgisel 

enterpolasyon ile doğru orantılı olarak dikkate alınabilecek bir gelişme sağlanmıştır. 

Diğer yöntemlere üstünlüğü tespit edilmek üzere, KÇE, diğer enterpolasyon 

yöntemleri ile deneysel olarak karşılaştırılmıştır. Son olarak KÇE’nin dalgacık 

alanında değerlendirilmesi kararlaştırılmış olup bu neden ile deneysel testler bu alanda 

gerçekleştirilmiştir. 

KÇE yönteminin kökeni, daha çok standart çizgisel enterpolasyon konusundaki en 

düşük kare hatasının en düşük düzeye indirgenmesi yönündeki temel girişimlere 

dayanmaktadır. KÇE hesaplama açısından kübik enterpolasyondan daha ucuz olup 

hesaplama karmaşıklığı standart çizgisel enterpolasyondan açıklanan şekilde biraz 

daha  fazladır : KÇE için hesaplanan optimum kayma, standart çizgisel 

enterpolasyonun katsayı değeri ve konumunun değiştirilmesi için kullanılmış olup 

daha sonra ise standart çizgisel enterpolasyon yöntemi uygulanmıştır.  

KÇE yöntemi, zaman ve dalgacık alanlarında rotasyon ve büyütme gibi deneysel 

sonuçlar ile analiz edilmiştir. Rotasyon deneyinde, standart çizgisel, KÇE ve kübik 

yöntemlerinin değerlendirilmesi için SNR ve SSIM kullanılmış olup bu karşılaştırma 

zaman alanında gerçekleştirilmiştir. İkinci deneysel bir test ise büyütme deneyi olup 

hem zaman hem de dalgacık alanlarında gerçekleştirilmiş olup en yakın, standart 
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çizgisel, KÇE ve kübik yöntemleri arasındaki karşılaştırma görsel değerlendirme yolu 

ile geçekleştirilmiştir. 

Anahtar Kelimeler: parçalı çizgisel polinomlar, enterpolasyon, hata analizleri, 

yaklaşma yöntemleri, şerit fonksiyonları, ayrık dalgacık dönüştürme  

 

 

 

 

 

 

 

 

 

 

 



vi 

 

ACKNOWLEDGMENTS 

Thank you, first and foremost, to my research advisor, Prof. Dr. Runyi Yu, who made 

this project possible and who has always encouraged me and supported my interests. I 

am honored to have had the chance to study under the guidance of him. 

I would like to acknowledge the Eastern Mediterranean University and all faculty 

members in the Electrical and Electronic department for their unavoidable support to 

me during my M.S studies. The experience I gained studying at EMU during the past 

three years was definitely invaluable. I am grateful to have been given many 

opportunities and have learned much more than I have imagined while studying for 

my M.S degree. 

At last, but definitely not least, thanks to all my family members and my best friend, 

Vahid, who have helped me throughout my arduous endeavor; their support made it 

possible to complete my thesis. Their understanding, love is unending and has been 

present since our beginning, and without them I could not be able to finish it. 

**Thank you my dear GOD** 

 

 

 

 

 

 



vii 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................ iii 

ÖZ ............................................................................................................................... iv 

ACKNOWLEDGMENTS .......................................................................................... vi 

LIST OF FIGURES .................................................................................................... ix 

LIST OF TABLE ....................................................................................................... xii 

LIST OF SYMBOLS/ABBREVIATIONS ............................................................... xiii 

1 INTRODUCTION .................................................................................................... 1 

1.1 Introduction ........................................................................................................ 1 

1.2 Organization ....................................................................................................... 3 

2 INTERPOLATION ................................................................................................... 5 

2.1 Interpolation Methods ........................................................................................ 5 

2.1.1 The Nearest Neighbor Interpolation ............................................................ 7 

2.1.2 The Linear Interpolation .............................................................................. 8 

2.1.3 The Cubic Interpolation ............................................................................... 8 

2.1.4 The Shifted Linear Interpolation [3] ............................................................ 8 

2.2 Approximation by Interpolation ......................................................................... 9 

2.2.1Measuring Interpolation Error .................................................................... 11 

2.2.2 Asymptotic Interpolation Error .................................................................. 13 

2.2.3 The Optimal Shift ...................................................................................... 14 

2.3 SNR .................................................................................................................. 14 



viii 

 

2.4 PSNR ................................................................................................................ 14 

2.5 SSIM ................................................................................................................. 15 

3 EXPERIMENTAL RESULTS ................................................................................ 18 

3.1 Image Interpolation in Spatial Domain ............................................................ 18 

3.1.1 Rotation Experiments ................................................................................ 20 

3.1.2 Zooming Experiments................................................................................ 25 

3.2 Image Interpolation in Wavelet Domain .......................................................... 32 

3.2.1 Rotation Experiment in Wavelet Domain .................................................. 33 

3.2.2 Zooming Experiment in wavelet domain................................................... 37 

3.3 Comparison between the Spatial and Wavelet domain .................................... 44 

CONCLUSION .......................................................................................................... 47 

4.1 Conclusion and Future Work ........................................................................... 47 

REFERENCES ........................................................................................................... 50 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FIGURES 

Figure 3.1: Counter clockwise rotated Lena image by 24 ͦ degree ............................. 20 

Figure 3.2: Rotation experiment algorithm for fifteen times of 24 ͦ degree ................ 21 

Figure 3.3: Fifteen alternating rotation experiments with 24°of the Lena image, we 

observe that the SLI image is the sharpest with the highest SNR and SSIM.

 ................................................................................................................ 22 

Figure 3.4: Fifteen alternating rotation experiments with 24°of the Zebra image, we 

observe that the SLI image is the sharpest one with the highest SNR and 

SSIM. ...................................................................................................... 23 

Figure 3.5: Fifteen alternating rotation experiments with 24°of the Finger-print image, 

we observe that the SLI image is the sharpest with the highest SNR and 

SSIM. ...................................................................................................... 23 

Figure 3.6: a) Scaled the Zebra image by two: a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. .. 26 

Figure 3.7: a) Scaled the finger-print image by two a1) nearest, a2) linear, a3) SLI, and 

a4) cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. .. 27 

Figure 3.8: a) Scaled the Lena image by two a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. .. 28 

Figure 3.9: Visual comparison of Finger-print image, a1) original image, a2) linear, 

a3) SLI, a4) cubic interpolation. ............................................................. 29 

 



x 

 

Figure 3.10: Visual comparison of Zebra image, a1) original image, a2) linear, a3) SLI, 

a4) cubic interpolation. ........................................................................... 30 

Figure 3.11: Visual comparison of Finger-print image, a1) original image, a2) linear, 

a3) SLI, a4) cubic interpolation. ............................................................. 31 

Figure 3.12: Rotational experiment algorithm for fifteen times of 24 ͦ  degree in wavelet 

domain. ................................................................................................. 373 

Figure 3.13: Scaled the Lena image by two: a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. .. 34 

Figure 3.14: Scaled the Zebra image by two: a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. .. 35 

Figure 3.15: Scaled the zebra image by two: a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. .. 35 

Figure 3.16: Scaled 2 times the wavelet decomposition of an image in one stage by 

interpolation methods and subsequent inverse transform respectively...37  

Figure 3.17: Scaled the Lena image by two: a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively....38  

Figure 3.18: Scaled the Zibra image by two: a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively....39  



xi 

 

Figure 3.19: Scaled the Finger-print image by two: a1) nearest, a2) linear, a3) SLI, and 

a4) cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively....40  

Figure 3.20: S Visual comparison of Lena image, a1) original image, a2) linear, a3) 

SLI, a4) cubic interpolation.. .................................................................. 41 

Figure 3.21: S Visual comparison of Zebra image, a1) original image, a2) linear, a3) 

SLI, a4) cubic interpolation.. .................................................................. 42 

Figure 3.22: S Visual comparison of Finger-print image, a1) original image, a2) linear, 

a3) SLI, a4) cubic interpolation.. ............................................................ 43 

Figure 3.23: Visual comparison of Lena image in Spatial and Wavelet domain. ...... 44 

 

 

 

  



xii 

 

LIST OF TABLE 

Table 3.1:  Contrast table of the SNR and SSIM with linear, shifted linear, and cubic 

interpolation. ............................................................................................ 24 

Table 3.2: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for rotation experiment. ...................................................... 24 

Table 3.3: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for zoom experiment.. ......................................................... 32 

Table 3.4: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for rotation experiment.. ..................................................... 36 

Table 3.5: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for rotation experiment.. ..................................................... 36 

Table 3.6: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for zoom experiment.. ......................................................... 44 

Table 3.7: Zoom comparisons of spatial and wavelet domain. .................................. 45 

 

 

 

 

 

 



xiii 

 

LIST OF SYMBOLS/ABBREVIATIONS 

𝑎𝑘   Coefficient of Piecewise Polynomial 

𝑐𝑛   Sampling Shifted Linear Interpolation 

Coefficient 

𝑐(𝑥, 𝑦)   The Contrast Comparison of the Two 

Dimensional Function 

 

𝐶φ
int    The Interpolation Constant of the Asymptotic 

Interpolation Error 

 

𝐶φ
min    The Interpolation Constant of the Asymptotic 

Orthogonal Projection Error 

 

𝐸int    The Interpolation Error 

 

𝑓𝑛    The Uniform Samples of the Original Continuous Function 

 

𝑓(𝑥)    An Original Continuous Function 

 

𝑓𝑇(𝑥)    The Interpolated Function 

𝐻𝜏    The Casual Pre-Filter of the Shifted Linear 

Interpolation 

 

𝐻(𝑒𝑗𝜔)   The Z Transform of the Filter Coefficient 

ℎ𝑛    The Casual Filter Coefficient 

 

𝐿2    The Least Square Norm 

𝑙(𝑥, 𝑦)    The Luminance Comparison of the Two 

Dimensional Function 

𝑃𝑘(𝑥)    The Piecewise Polynomial of Degree 𝑘 

𝑃𝑇    The Orthogonal Projection 

𝒬𝑇    The Approximation Function 

sinc(x)   The Sinc Function 

𝑠(𝑥, 𝑦)    The Structure Comparison of the Two 

Dimensional Function 

 



xiv 

 

𝑇    The Sampling Step 

𝛼    The Power of the Luminance Comparison 

Function 

 

𝛽    The Power of the Contrast Comparison 

Function 

 

𝛽𝑀    B-Splines of Order 𝑀 

𝛾    The Power of the Structure Comparison 

Function 

 

𝜖𝑓    The Least Square Error 

𝜇x    The Mean of Discrete Function 𝑥 
 
𝜏𝑜𝑝𝑡    The Optimal Shift of the Shifted Linear 

Interpolation 

 

𝜑𝑖𝑛𝑡    An Interpolation Function 

𝜑𝑠𝑒𝑝(𝑥)   The Separable Interpolation Basis Function 

DWT    Discrete Wavelet Transformation 

 

IDWT    Inverse Discrete Wavelet Transform 

 

SLI    Shifted Linear Interpolation 

 

SNR    Signal to Noise Ratio 

 

SSIM   Structural Similarity Image Quality 

 

 



1 

 

Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

In this thesis, in both spatial and wavelet domain we investigate the shifted linear 

interpolation (SLI). Our main concern is the applicability of the SLI, first proposed by 

Blue, Thevenaz, and Unser on May 2004 in [1] , in image super-resolution. Having 

uniform data samples, the standard linear interpolation interpolates new desired 

samples by implementing line segments between known samples, whereas the SLI 

firstly alters the amplitude of known samples and subsequently shifts them, finally, 

exploits the same line segments as the standard one’s to interpolate new samples. The 

amount of change in amplitude and place of samples for the SLI is chosen in an optimal 

way that results in a considerable improvement in compare to the standard linear 

interpolation. 

We study the non-adaptive linear interpolation methods that suffer from edge halo, 

blurring effect and aliasing effect. The reason of these undesired properties is that the 

non-adaptive methods don’t consider the relation between discrete data. In spite of 

these apparent drawbacks, we are highly inclined to implement the non-adaptive ones 

because of their explicit algorithms and consequently time-saving algorithms. 

Performance and computational cost are two major determinants of choosing between 

interpolation methods, so we need to strike a balance between the needs of the fast 

algorithm as well as good image with less undesired mentioned effects. 
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It has been displayed, in [1] and [2] that the quality of standard interpolation methods 

is outperformed by the projection methods in the least square error sense. Particularly, 

the standard linear interpolation shows weak performance in compare to the least-

squares method in [1] and [2]. We explore SLI which decreases noticeably the least 

square error and carries out the substantial improvement over the standard version. We 

will illustrate that this optimal approach results in the reduction of aliasing caused by 

the standard linear interpolation and consequently we have sharper images. 

Interpolation instinctively diminishes the change between the intensities of pixels 

images by estimating new intensities between old intensities. This decrease of high 

frequencies in image encourages us to apply the wavelet transformation of image to 

save these high changes proportionally.  In this thesis, we use discrete wavelet 

transformation to extract high frequencies of images for one level and then in the first 

level of DWT, we magnify four sub-band images by two time. Subsequently, we apply 

the inverse of the discrete wavelet transform and evaluate images visually. In this 

domain, we also observe that the SLI produces shaper images in compare to the 

standard linear interpolation. 

In the sequence, we study the SLI from the interpolation error aspect of view. It is 

shown in [1] that the interpolation error can be remarkably diminished by using the 

SLI. This method even approaches the orthogonal projection in the case that the 

sampling steps get close to zero or, equivalently, of very low-pass functions. We 

investigate 𝐿2norm of the approximation error developed in [3] for choosing the 

optimal shift of the SLI. After theoretical superiority of the SLI over the standard one, 

another way to confirm our claims is to implement experimental results. The 

experimental analyses contribute to a proper evaluation of diverse linear interpolation 
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methods. In this thesis, we assess the effectiveness of the interpolation methods by 

means of visual and computational comparison. 

First, the visual comparison is carried out by zooming images through using different 

linear-interpolation methods as well as the SLI. In the image zooming process, the SLI 

surpasses the standard interpolation one by making images less smooth than the 

traditional one. In compare to the third order linear interpolation which is called the 

bi-cubic, the SLI apparently gets closed to it with the benefit of applying less 

computation. 

Second, we measure the difference between the original image and the interpolated 

one for the performance comparison. We apply numerical comparison methods such 

as the signal to noise ratio (SNR), the peak signal to noise ratio (PSNR), and the 

structural similarity image quality (SSIM) [4]. In our comparisons, the SLI exceeds 

the traditional linear interpolation and even the cubic interpolation method in SSIM. 

The geometric rotation transformation is a justified assessment [1] that we use, because 

we rotate an image by a specified angle until we again get the original one and we 

implement, at each time of the rotation, the particular interpolation method. These 

subsequent uses of interpolation functions boost the interpolation error therefor it is 

more convenient to compare the diverse interpolation methods. 

1.2 Organization 

Chapter two explains piece-wise polynomial [6], [8] that reconstruct the interpolation 

functions such as the nearest, linear, and cubic interpolation and also their drawbacks 

such as blurring and aliasing. We briefly depict the mathematical formula of these 

interpolation methods and also the shifted linear interpolation. Besides, we shortly 
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explain that the motivation for the SLI comes from the weak performance of the 

standard linear interpolation in compare to the projection method in [1], [2]. 

We study the SLI as a solution to minimize the least square error developed in [4] and 

[6], and based on this principle, we explain the optimal shift required for the SLI [3]. 

In this thesis, we use the SNR, PSNR, and SSIM as computational comparisons of 

interpolation methods. These two are shortly described and their mathematical 

expression is defined in this chapter. 

Next, chapter three provides experimental results that indicate imperfections of 

standard linear interpolation and superiority of its modified version in spatial and 

wavelet domain. Furthermore, it will be displayed that the optimally-shifted version 

somehow outweighs the costly cubic interpolation by implementing computational 

comparisons, such as the SNR, PSNR, and SSIM for the rotation transformation 

experiment.   

Finally, Chapter four summarize the material presented in this thesis. It also discusses 

possible future work. 
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Chapter 2 

2 INTERPOLATION 

2.1 Interpolation Methods 

Interpolation can be considered as a discrete to continuous converter [7]. The general 

form of interpolation is: 

                                                              (2.1) 

where 𝑓𝑛, is a set of the uniform samples from the original continuous function 𝑓(x) 

and 𝜑𝑖𝑛𝑡 is an interpolation function. In this section, we explore some of the 

interpolation functions belong to the piecewise polynomials. In general, a typical 

interpolator 𝜑𝑖𝑛𝑡  of this category is composed of polynomial pieces [6], [8]: 

                                                      (2.2) 

which are connected together at break points  𝜀0, 𝜀1, … , 𝜀𝑁 with guaranteed continuity 

at the break points, this continuity is reached by making the function right continuous 

for instance 𝜑(𝜀𝑖) = 𝜑(𝜀𝑖
+) = 𝑃𝑖(𝑥). In the case of uniform interpolating, the break 

points are taken as   𝜀𝑘+1 = 𝜀𝑘 + 1, so: 

                                                                                                                                 (2.3) 

 

𝑓𝑇(𝑥) = ∑ 𝑓𝑛𝜑𝑖𝑛𝑡 (
𝑥

𝑇
− 𝑛)

𝑛∈ℤ

 

𝑃𝑘(𝑥) = ∑ 𝑎𝑘[𝑙]𝑥𝑙 ,     𝜀𝑘 ≤ 𝑥 < 𝜀𝑘+1                                                          

𝑁

𝑙=0

 

𝜑𝑖𝑛𝑡 = ∑ 𝑃𝑘(𝑥)

𝑁−1

𝑘=0
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Then the piecewise polynomial interpolator is defined by its support (number of 

pieces) N. In order to determine the coefficients of the interpolation polynomial of 

degree M, we need to set some constraints such as, symmetry around the origin, 

continuity for the polynomial and some of its derivatives. The majority of (𝑀 +

1)𝑁coefficients 𝑎𝑘 are chosen to satisfy these constraints. The independent 

coefficients are used to improve interpolation approximation [6], [8]. Our interest is to 

find the most regular piecewise polynomials for a given support and degree, so we 

implement B-splines [9] with the degree M, the support N = M + 1, and K = M – 1 

times continuous derivatives. The B-splines are described in this way [9]: 

                                                                                          (2.4) 

where 𝑥+
𝑛 is the short form of the power function max (0, 𝑋𝑛) .Another good property 

of the B-splines functions is that the higher order B-splines can be reached by continual 

convolutions: 

                                                                                                                                 (2.5) 

We are highly inclined to implement these interpolation functions because of their 

explicit algorithms, however, they suffer from these drawbacks: 

 Blurring 

Blurring is a result of the non-ideality of the interpolation function for the pass-band 

region in the frequency domain. The interpolator doesn’t pass all frequencies similar 

to the ideal low-pass filter it attenuates some of frequencies. The most attenuation 

𝛽𝑀 = ∑
(−1)𝑖

𝑀!
(

𝑀 + 1

𝑖
) (𝑥 +

𝑀 + 1

2
− 𝑖)

+

𝑀𝑀+1

𝑖=0

 

𝛽𝑀 = 𝛽0 ∗ 𝛽𝑀−1 
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happens at cut-off frequencies, so the interpolators don’t act well in edges and result 

in blurred edges. 

  Aliasing 

Aliasing is emerged by improper sampling. This is caused by not omitting the 

undesired frequencies as a result of overlapping of the periodic spectrums around 

multiples of 2𝜋 . We can diminish this effect by sampling our function at proper points. 

In interpolation process, we first apply the reconstruction operation (fitting the 

continuous model to discrete data) and subsequently the re-sampling function. 

Assuming this model, unwanted frequencies can interfere into the pass-band during 

the process of re-sampling as a result of nonsufficient suppression of the frequency 

replicas during the previous step of continuous reconstruction. In sequence, we study 

the interpolation methods in one dimensional space for the sake of simplicity. 

2.1.1 The Nearest Neighbor Interpolation 

We investigate the nearest-neighbor method which is a simple rectangular function. 

Therefore this is the most convenient interpolation method from the computational 

aspect of view but at the price of causing strong blurring and aliasing effects in the 

interpolated function.  

Nearest interpolation is a simple algorithm in one or more dimensions. The simplest 

method to reconstruct a function is to take for each position the value of the nearest 

sampling point. This results in a piecewise constant function. We use the following B-

spline basis for this method. 

                                             𝛽0(𝑥) = {
1,                     0 ≤  |𝑥| < 0.5
0,                  0.5 ≤  |𝑥|

                           (2.6)                                                            
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2.1.2 The Linear Interpolation 

The linear interpolation which is more computationally complicated than the nearest 

neighbor interpolation and its function is made by convolution of two simple 

rectangular functions [10].  The linear interpolation is computationally fast, but this 

method blurs edges. The interpolation kernel can be achieved by convolving the zero-

order B-spline by itself and then the consequent function is:  

                                             𝛽1(x) = {
1 − |𝑥|,        0 ≤ 𝑥 < 1
0,                    otherwise

                                   (2.7)                                                

2.1.3 The Cubic Interpolation 

The cubic interpolation is more computationally expensive than the previous ones and 

its function is described by convolution of four simple rectangular functions [11]. 

Since cubic makes functions less blurred, jagged edges are more distinguished. 

Because cubic B-splines are symmetric, they have just to be specified in the interval 

(0, 2). Mathematically, the cubic B-spline can be written: 

                                      𝛽2(x) = {

𝑥3

2
− 𝑥2 +

4

6
 ,                       (0,1) 

−
𝑥3

6
+ 𝑥2 − 2𝑥 +

8

6
 ,         (1,2)

                           (2.8)                                             

2.1.4 The Shifted Linear Interpolation [3] 

Estimating 𝑓𝑇(𝑥) is done by utilizing lines between (𝑛 − 1)𝑇 and 𝑛𝑇 in the standaed 

linear interpolation [10], for some 𝜏 ∈ [0, 1
2⁄ ] we apply lines between (𝑛 − 1 + 𝜏)𝑇 

and (𝑛 + 𝜏)𝑇 in this following interpolation process [3]: 

                                                                                                                                 (2.9) 
𝑓𝑇(𝑥) = ∑𝑐𝑛𝛬(

𝑛∈ℤ

𝑥

𝑇
− 𝑛 − 𝜏) 
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with 

                                                                                                                               (2.10) 

Expression (2.10) relates 𝑐𝑛 and 𝑓𝑛 via the following casual filter 𝐻𝜏 with the following 

transform: 

                                                                                   (2.11) 

with 𝜏 ∈ [0, 1
2⁄ ] for having a stable filter, The Fourier transform of the equivalent 

interpolation used in (2.9) is gained by replacing the response of the filter in (2.11): 

                                              (2.12) 

2.2 Approximation by Interpolation 

 The typical problem of reconstruction of a continuous function 𝑓(𝑥) from a sample 

values with a uniform sampling step 𝑇 is considered. Typically, the 𝒬𝑇𝑓(𝑥) is an 

estimation of 𝑓(𝑥) in the sub space 𝑉𝑇; 𝒬𝑇 relies directly on 𝑇. A major concern is to 

measure the difference among 𝑓(𝑥) and 𝒬𝑇𝑓(𝑥). Besides, it is supposed that this 

change decreases as the sampling step gets smaller. In other words, when 𝑇 gets to 

zero, we expect  𝒬𝑇𝑓(𝑥) to be equal to input function 𝑓(𝑥).  We consider the 

interpolation function as an approximation operator through the following general 

process: 

                                                                              (2.13) 

𝑐𝑛 = ∑
(−1)𝑘

1 − 𝜏
(

𝜏

1 − 𝜏
)

𝑘

𝑓𝑛−𝑘

𝑘≥0

 

𝐻𝜏(z) =
1

1 − 𝜏 + 𝜏z−1
= ∑

(−1)𝑘

1 − 𝜏
(

𝜏

1 − 𝜏
)

𝑘

𝑘≥0

z−𝑘 

𝜑̂𝑖𝑛𝑡(𝜔) = 𝑒−𝑗𝜔𝜏𝐻𝜏(𝑒𝑗𝜔)sinc2 (
𝜔

2𝜋
) 

𝒬𝑇𝑓(𝑥) = 𝑓𝑇(𝑥) = ∑ 𝑐𝑛𝜑 (
𝑥

𝑇
− 𝑛)

𝑛∈ℤ
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Based on the interpolation condition, the coefficients  𝑐𝑛 are chosen in a way that 𝑓𝑇(𝑥) 

is equal to the original function 𝑓(𝑥) at uniform samples 𝑓𝑛. Here 𝜑(𝑥) is any function 

with ∫ 𝜑(𝑥)𝑑𝑥 = 1. In fact, 𝜑(𝑥) is not required to be continuous, interpolating, or 

symmetric. we can describe the interpolation function as the following filtering 

relation: 

                                                                                                                               (2.14) 

The coefficients 𝑐𝑛 can be obtained by convolving the smples 𝑓𝑛 with a filter 𝐻, the z-

transform of this filter is: . 

The interpolation formula (2.13) can be substituded by its traditional version in terms 

of the samples 𝑓𝑛: 

                                                                                          (2.15) 

where 

                                                                                            (2.16) 

We can see that the interpolation function 𝜑int(𝑥) is reached by using the filter 

coefficients to the basis function 𝜑. The explicite fourier transform of the interpolation 

function is 

                                                           𝜑̂int(𝜔) = 𝐻(𝑒𝑗𝜔)𝜑̂(𝜔)                                   (2.17)                                                    

𝑓𝑛 = ∑ 𝜑(𝑘 − 𝑛)

𝑛∈ℤ

𝑐𝑛 

𝐻(z) =
∑ z𝑛

𝑛
∑ 𝜑(𝑛)𝑛

⁄ =
∑ ℎ𝑛𝑛

∑ z𝑛
𝑛

⁄  

𝑓𝑇(𝑥) = ∑ 𝑓𝑛𝜑𝑖nt (
𝑥

𝑇
− 𝑛)

𝑛∈ℤ

 

𝜑int(𝑥) = ∑ℎ𝑛𝜑(𝑥 − 𝑛)

𝑛∈ℤ
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2.2.1 Measuring Interpolation Error 

The error induced by the interpolation process will be evaluated using the  𝐿2 norms, 

this choice makes it possible to obtain an explicit computation of interpolation error. 

The difference between function 𝑓(𝑥) and the approximated one 𝑓𝑇(𝑥) through a 

natural  𝐿2 approximation error: 

                                                               𝜖𝑓 = ‖𝑓 − 𝑓𝑇‖𝐿2(𝑅)                                        (2.18)                                                                      

Certainly, we can determine a below bound for this approximation error in this way: 

                                                         𝜖min(𝑇) = ‖𝑓 − 𝑃𝑇𝑓‖𝐿2(𝑅)                                 (2.19)                                                   

where 𝑃𝑇𝑓 is the orthogonal projection of 𝑓. 

It would be very convenient to have a quantitative way for choosing the optimal 𝜑for 

the interpolation process which minimize the 𝐿2 approximation error 𝜖𝑓 =

‖𝑓 − 𝑓𝑇‖𝐿2(𝑅). It is proven in [12] that if  𝑓 ∈ 𝑊2
𝑟 with 𝑟 >

1

2
  which means that𝑓(𝑥) 

has at least ⌊𝑟 −
1

2
⌋ continuous derivatives, then the 1D approximation is given by 

                            𝜖𝑓 = ‖𝑓 − 𝑄𝑓‖𝐿2 = [∫|𝑓(𝜔)|
2

𝐸(𝑇𝜔)𝑑𝜔]

1

2
+ 𝑒(𝑓, 𝑇)                (2.20)                              

where the correction term 𝑒(𝑓, 𝑇) = 𝑜(𝑇𝑟) is bounded as: 

                                                        |𝑒(𝑓, 𝑇)| ≤ 𝐾𝑇𝑟‖𝑓(𝑟)‖
𝐿2                                     (2.21)                                                                

with    𝐾 =
2

𝜋𝑟
√𝜁(2𝑟)‖𝐸‖∞. 
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Where 𝜁(𝑠) = ∑ 𝑛−𝑠
𝑛≥1  and for all real 𝑠 > 1. 

The approximation space for the interpolation process which defined by (2.14) is shift 

integer invariance. Hence, finding a real shift-invariant version of 𝜖𝑓 is appealing 

where we average an error over all feasible real shifts of the input signal. This averaged 

measure leads us to approximate the exact quantity of 𝜖𝑓. 

Suppose that our aim is reconstructing 𝑓𝜀 described as𝑓(. −𝜀), where 𝜀 is a real 

number. The resulting error is  𝑇 periodic of the shift increment 𝜀, i.e., 𝜖𝑓𝜀+𝑇
= 𝜖𝑓𝜀

. 

Hence, a delay-independent version of the approximation error 𝜖𝑓  can be attained over 

the period interval [0, 𝑇]. Moreover, this delay-independent version is appealing to the 

signal processors because the start point of signals is not determined .The following 

expression, which is proven in [4] and [6] is incredibly simple: 

                                                       𝜂(𝑇) = √
1

2𝜋
∫|𝑓(𝜔)|

2
𝐸(𝜔𝑇)𝑑𝜔                          (2.22)                                                                   

The term 𝐸(𝜔) in (2.22) individually depends on 𝜑̂ and can be conveniently described 

for the orthogonal and interpolation approximation in this way [1]: 

 For the orthogonal projection 𝑃𝑇 which is realized  to minimize the error 

approximation in the least square sense, so it minimize 𝐸(𝜔) by having this 

equality 𝜑̃ = 𝜑𝑑 in the orthogonal projection  

                                          𝐸(𝜔) = 𝐸min(𝜔) =
∑ |𝜑̂(𝜔+2𝑘𝜋)|2

𝑘∈ℤ\{0}

∑ |𝜑̂(𝜔+2𝑘𝜋)|2
𝑘∈ℤ

                (2.23)                                      

 

 For interpolation 
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            𝐸(𝜔) = 𝐸int(𝜔) =
|∑ 𝜑̂(𝜔+2𝑘𝜋)𝑘∈ℤ\{0} |

2
+∑ |𝜑̂(𝜔+2𝑘𝜋)|2

𝑘∈ℤ\{0}

|∑ 𝜑̂(𝜔+2𝑘𝜋)𝑘∈ℤ |2                 (2.24)              

2.2.2 Asymptotic Interpolation Error 

The distance between𝑓(𝑥) and𝑓𝑇(𝑥) goes to zero as the sampling step 𝑇 tends to zero. 

It can obviously observed from (2.22) that is the case when 𝐸(0) = 0, if we consider 

the interpolation related quantity 𝐸int(0) = 0 under proportionally weak conditions on 

𝜑(𝑥) (see [12]) which are 𝜑̂(2𝑘𝜋) = 0 for all 𝑘 ∈ ℤ\{0} and 𝜑̂(0) = 1, as are explicit 

from (2.24). It is shown in [4] that a precise general asymptotic behavior of 𝐿2 

approximation is: 

                                          ‖𝑓 − 𝒬𝑇𝑓‖𝐿2(𝑅) ≈ 𝐶𝜑‖𝑓(𝐿)‖
𝐿2(𝑅)

𝑇𝐿𝑇 → 0                      (2.25)                                                      

where 𝒬𝑇 is an integer shift invariant linear approximation, like interpolation and 𝐿 is 

the approximation order of the interpolation function, for example, the approximation 

order of Λ(x) is 2 because it’s Fourier transform is Λ̂(𝜔) = (
sin𝜔

2⁄
𝜔

2⁄
)

2

and based on the 

Strang-Fix condition [13], the approximation order is defined in this way : 

φ̂(l)(2nπ) = 0 for n ∈ ℤ\{0} and l = 0 … . L − 1. 

The asymptotic constant 𝐶𝜑 = √𝐸(2𝐿)(0)
2𝐿!

⁄  is defined for orthogonal projection and 

interpolation operator as follows: 

1. For the orthogonal projection 

                                                 𝐶𝜑
𝑚𝑖𝑛 =

1

𝐿!
√∑ |𝜑̂(𝐿)(2𝑘𝜋)|2

𝑘≠0                       (2.26)                                                    
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2. For the  interpolation function 

                                𝐶𝜑
𝑖𝑛𝑡 = √

1

𝐿!2
|∑ 𝜑̂(𝐿)(2𝑘𝜋)𝑘≠0 |2 + (𝐶𝜑

𝑚𝑖𝑛)
2
                    (2.27)                                       

2.2.3 The Optimal Shift 

It is proven in [3] that the equivalent expression of the asyptotic interpolation constant 

for the 𝜏-shifted linear interpolation is 

                                                         𝐶𝜏
int = √1

4
(𝜏2 − 𝜏 +

1

6
)

2

+
1

720
                           (2.28)                                                         

𝐶𝜏
int for the following optimal choice is minimized 

                                                             𝜏opt =
1

2
(1 −

√3

3
) ≈ 0.21                                (2.29)                                                               

2.3 SNR 

SNR is defined as the ratio of signal power to the noise power, often expressed in 

decibels. We consider Let 𝑥 = {𝑥𝑖|𝑖 = 1,2, … , 𝑁} as our original signal and 𝑦 =

{𝑦𝑖|𝑖 = 1,2, … , 𝑁} as our interpolated version, so we define the SNR for these two 

signals of the same size in this way: 

 
                                                                                                                               (2.30) 

 

 

where  𝑁 is the number of points in the signal. 

2.4 PSNR 

PSNR is the peak signal-to-noise ratio and often expressed in decibels. We consider 

Let 𝑥 = {𝑥𝑖|𝑖 = 1,2, … , 𝑁} as our original signal and 𝑦 = {𝑦𝑖|𝑖 = 1,2, … , 𝑁} as our 

 

 SNR = 10 log
∑ xi

2N
i=1

∑ (xi − yi)2𝑁
i=1
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interpolated version, so we define the PSNR for these two signals of the same size in 

this way: 

                                      𝑀𝑆𝐸 =
1

𝑁2
∑ (xi − yi)

2𝑁
i=1                                                 (2.31) 

                                        PSNR = 10 log
𝑀𝐴𝑋𝑥𝑖

2

𝑀𝑆𝐸
                                                          (2.32) 

where  𝑁 is the number of points in the signal. 

2.5 SSIM 

In this thesis, we apply the structural similarity image quality for [5] comparing 

interpolation methods. The SSIM is based on the assumption that the human visual 

system is highly inclined to take part structural information from the image, so a 

measure of structural similarity can guarantee a good approximation to evaluate image 

quality.  

Let 𝑥 = {𝑥𝑖|𝑖 = 1,2, … , 𝑁} and 𝑦 = {𝑦𝑖|𝑖 = 1,2, … , 𝑁} be the original image signals 

which have been compared with each other to evaluate how much they are similar to 

each other from human visual system. If we assume that one of the signals is the 

original one, then the similar measure can be considered as a quantitative measurement 

of the quality of the second signal. The SSIM is composed of: luminance, contrast and 

structure. First, the luminance of each signal is compared.  We estimate the mean 

intensity of the assumed discrete signal x : 

                                                                                                                               (2.33) 𝜇x =
1

N
∑ xi

N

𝑖=1
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The luminance comparison function is then a function of 𝜇x and 𝜇𝒚: 

                                                                           (2.34)

           

where 𝐶1 is a constant parameter 

Second, we remove the mean intensity from the signal. In discrete form, the resulting 

signal 𝑥 − 𝜇𝑥 corresponds to the projection of vector 𝑥 onto the hyperplane defined by 

∑ 𝑥𝑖 = 0𝑁
𝑖=1 .We apply the standard deviation (the square root of variance) as an 

estimate of the image contrast. An unbiased estimate of the standard deviation is:  

                                                                                            (2.35) 

The contrast comparison 𝑐(𝑥, 𝑦) is  

                                                                                                         (2.36) 

where 𝐶2 is a constant parameter 

Third, the signal is divided by its own standard deviation, so the two images being 

compared have unit standard deviation. The structure comparison 𝑠(𝑥, 𝑦) is conducted 

on these normalized signals 
(𝑥−𝜇𝑥)

𝜎𝑥
 and 

(𝑦−𝜇𝑦)

𝜎𝑦
  in the following way: 

                                       (2.37) 

𝜎𝑥 = (
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑥)2

𝑁

𝑖=1

)

1

2

 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2+𝐶2
 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2+𝐶1
 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦+𝐶3
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where 𝐶3 is a constant parameter. Finally, the three components are combined to yield 

SSIM: 

                                                                                                                               (2.38) 

Where 𝛼, 𝛽 and 𝛾 are determined with respect to their importance. In this work, we set 

= 𝛽 = 𝛾 = 1. 

 Next, chapter 3 we will depict our experimental results. 

 

 

 

 

 

 

 

 

 

SSIM(𝑥, 𝑦) = ([𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾) 
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Chapter 3 

3 EXPERIMENTAL RESULTS 

3.1 Image Interpolation in Spatial Domain 

In this chapter, we intend to expand the previous one-dimensional expressions for 

image processing applications [14] therefore we have to impose some constraints on 

our interpolation functions [6] .We assume that the interpolation  𝜑𝑖𝑛𝑡  or the non-

interpolating 𝜑 belongs to two dimensional space 𝑅2. We can diminish the 

computational cost by assuming that interpolation basis functions are separable. We 

define their separability in this way: 

                                                                                                                                 (3-1) 

 

The advantage of this assumption is that we are able to carry out the interpolation 

process on each dimension separately. For example, images can be analyzed 

separately, row by row, column by column, and so forth.  

We can generalize expression (2.14) for separable basis functions of a two dimensional 

space: 

                                                 (3-2)         

 

𝒬𝑇𝑓(𝑥1, 𝑥2) = 𝑓𝑇(𝑥1, 𝑥2) = ∑ 𝑐𝑛,𝑙𝜑 (
𝑥1

𝑇
− 𝑛) 𝜑 (

𝑥2

𝑇
− 𝑙)

𝑛,𝑙∈ℤ

 

𝜑𝑠𝑒𝑝(𝑥) = 𝜑(𝑥1)𝜑(𝑥2) ,     ∀𝑥1, 𝑥2 ∈ R2 
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where  𝑐𝑛,𝑙  for images can also be computed from uniform samples of image in a 

separable manner. We write the 𝐿2 approximation error for images in the following 

way [4] and [6] 

                                                                                                                                 (3-3) 

The related formula for (2.23) is [4] and [6] 

                                                                                                                                 (3-4) 

 

As one dimensional case, 𝑓(𝜔1, 𝜔2) is the fourier transform of 𝑓 ∈ 𝑅2 and Eint is its 

interpolation error kernel [3]: 

 𝐸(𝜔1, 𝜔2) = 𝐸𝑖𝑛𝑡(𝜔1, 𝜔2)                                                                                  

                          =
|∑ 𝜑̂(𝜔1+2𝑘𝜋,𝜔2+2𝑘𝜋)𝑘∈ℤ2\{0} |

2
+∑ |𝜑̂(𝜔1+2𝑘𝜋,𝜔2+2𝑘𝜋)|2

𝑘∈ℤ2\{0}

|∑ 𝜑̂(𝜔1+2𝑘𝜋,𝜔2+2𝑘𝜋)𝑘∈ℤ2 |
2                (3-5) 

The asymptotic function (2.26) can be stated in this manner by applying the Taylor 

analysis [3]: 

‖𝑓 − 𝒬𝑇𝑓‖
𝐿2(𝑅)
2 ≈ [(𝐶φ

min)
2

(‖∂𝑥
L𝑓‖

L2(R)
2 + ‖∂𝑦

L𝑓‖
L2(R)

2
) + ((𝐶φ

int)
2

−

                          (𝐶φ
min)

2
) (‖∂𝑥

L𝑓‖
L2(R)
2 + ‖∂𝑦

L𝑓‖
L2(R)

2
+ 2〈∂𝑥

L𝑓, ∂𝑦
L𝑓〉)] TL             (3-6)                          

 

By substituting𝐶φ
min  and 𝐶φ

intfrom (2.27) and (2.28) respectively, We again observe 

that the difference between the interpolation and orthogonal projection constants is 

again ∑ 𝜑̂(𝐿)(2𝑘𝜋)k≠0 , so we don’t need to evaluate the optimal shift for images (two 

dimensional signals). In the sequence, we apply the same shift as the one dimensional 

for images, i. e, 𝜏 = 0.21 

𝜖𝑓
2(𝑇) = ‖𝑓 − 𝑓𝑇‖

𝐿2(𝑅2)
2 = ∬ (𝑓(𝑥1, 𝑥2) − 𝑓𝑇(𝑥1, 𝑥2))

2
𝑑𝑥1𝑑𝑥2

∞

−∞

 

𝜂2(𝑇) =
1

2𝜋
∬ |𝑓(𝜔1, 𝜔2)|

2
Eint(𝜔1T, 𝜔2𝑇)𝑑𝜔1𝑑𝜔2

∞

−∞
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3.1.1 Rotation Experiments 

We rotate an image for example the Lena image by 24° degree and the rotated image 

is shown in Fig 3.1. 

 
Figure 3.1: Counter clockwise rotated Lena image by 24 ͦ degree 

 

As it is shown we lost some pixels through rotating our image, so super resolution is 

required to enhance the resolution of our image.  

In this work, we carry out the super resolution based on the nearest, standard linear, 

SLI, and cubic interpolation methods. We repeat the rotation and each time we 

implement the interpolation methods because these subsequent rotations increase the 

interpolation errors which contribute to better assessment on interpolation functions. 

We intend to evaluate the interpolation methods from objective point of view, so we 

hold rotation experiment for fifteen times by 24° degree each time in order to have two 

same-size images.  
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We rotate the Lena image and Zebra and Finger-print fifteen times by 24° degree each 

time. At the last rotation, computing the SNR, PSNR, and SSIM for each image 

provides computational comparisons for us. We depicts the algorithm of the rotation 

experiment in the figure 3.2. 

 

 

 

 

 

 

 

Figure 3.2: Rotation experiment algorithm for fifteen times of 24 ͦ degree 

We display the fifteenth rotated Lena image in Figure 3.3 and its SNR, PSNR, and 

SSIM in compare to the original image in Table 3.1. Figure 3.3 clearly shows us the 

superiority of the SLI method carried out on the Lena image by focusing on edges like 

her nose, the shadow under her eyes and some parts of her hat that are sharper in SLI’s 

image than others. We also notice her eyelashes which are sharper in SLI’s image in 

compare to other ones images.  

 The SNR, PSNR, and SSIM values in Table 3.1 also agree with visual comparison in 

Figures 3.3, 3.4, 3.5. The difference between the SNR, PSNR, and the SSIM values of 

the Lena image between the SLI and cubic is not too much, but less computational cost 

of the SLI encourages us to implement the SLI instead of the cubic.  

Input Image 

Output Image 

Interpolation 

Rotation by 24  ͦ

15 Times 
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Figure 3.3: Visual comparison of fifteen alternating rotation experiments with 𝟐𝟒°of 

the Lena image. 

In order to confirm the dominance of SLI over other methods, we decide to apply the 

SLI on images that possess more edges such as the Zebra and the Finger-print images. 

As is obviously displayed in Fig.3.4 and Fig.3.5, the SLI beats the standard linear 

interpolation by producing less noticeably blurred images. Another desiring visual 

feature of the shifted linear is its sharper images than the cubic interpolated ones.  

Besides, the SNR, PSNR, and SSIM numbers of images rotated by the SLI method are 

more than the standard linear and cubic interpolation methods. Fig. 3.4 and 3.5 show 

the cubic interpolated image in compare to the SLI is a bit more blurred. 
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Figure 3.4: Visual comparison of fifteen alternating rotation experiments with 24°of 

the Zebra image. 

 

 
Figure 3.5: Visual comparison of fifteen alternating rotation experiments with 𝟐𝟒°of 

the Finger-print image. 

We display the quantitative comparison results of the rotation experiment in the 

following table. In the Table 3.1, the SNR, SSIM, and PSNR related to the SLI are the 

highest ones which are in agreement with visual comparisons. 
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Table 3.1: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for rotation experiment. 
 

TESTED 

IMAGE 

SNR(dB) SSIM PSNR(dB) 

LI SLI CUBIC LI SLI CUBIC LI SLI CUBIC 

LENA 19.73 25.79 25.14 0.8 0.95 0.93 27.27 33.22 32.59 

ZEBRA 3.17 8.74 7.09 0.43 0.8 0.72 11.95 14.75 14.70 

FINGER-

PRINT 
12.32 21.49 21.33 0.58 0.95 0.94 19.00 28.17 28.16 

 

We also depict the SNR, PSNR, and SSIM results of the same rotation experiment for 

thirteen times by 12° degree each time to have better judgment. 

Table 3.2: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for rotation experiment. 

  

In this experiment, SLI also outperforms the other methods by its higher 

quantities. 

 

TESTED 

IMAGE 

SNR(dB) SSIM PSNR(dB) 

LI SLI CUBIC LI SLI CUBIC LI SLI CUBIC 

LENA 17.80 23.60 23.19 0.69 0.92 0.89 25.70 32.01 31.09 

ZEBRA 4.7 8.98 7.37 0.42 0.8 0.71 12.64 16.75 15.32 

FINGER-

PRINT 
11.55 20.37 20.27 0.30 0.93 0.92 15.94 24.17 24.65 
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3.1.2 Zooming Experiments 

In this thesis, we are inclined to evaluate the interpolation methods by converting 

images from low-resolution to high-resolution ones. We carry out the magnification 

test on the Zebra image Fig.3.6a, the Finger-print image Fig.3.7a, and the Lena image 

Fig.3.8a. In Fig.3.6, the highest contrast between black and white lines of the Zebra 

image belongs to the SLI magnified image. In Fig.3.7, we observe that the SLI makes 

the finger-print image looks brighter than the standard and cubic interpolation’s ones 

and even than the original one. In Fig.3.8, looking at the shadow on Lena’s shoulder, 

noise, and forehead in big images leads us to the sharpest and brightest image which 

belongs to the SLI. We also display some zoomed parts of all magnified images for 

having better comparison. 
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Figure 3.6: a) Scaled the Zebra image by two: a1) nearest, a2) linear, a3) SLI, and 

a4) cubic interpolation, the sharpest image belongs to the SLI’s image. b) Zoomed 

images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. 
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Figure 3.7: a) Scaled the finger-print image by two a1) nearest, a2) linear, a3) SLI, 

and a4) cubic interpolation, the sharpest image belongs to the SLI’s image. b) 

Zoomed images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. 
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Figure 3.8: a) Scaled the Lena image by two a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) Zoomed 

images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. 
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All SLI zoomed images are brighter than the original image, this visual feature can be 

considered as distortion. In order to have objective comparisons, namely, SNR, SSIM, 

and PSNR for this experiment, we down-sample our test images without using 

interpolation and then return them back to their original sizes by the linear, SLI, and 

cubic interpolation methods. Zoomed parts of resulted images together with the related 

zoomed part of the original image are shown in the Figure 3.9, 3.10, and 3.11. 

 

 
Figure 3.9: Visual comparison of Lena image, a1) original image, a2) linear, a3) SLI, 

a4) cubic interpolation. 
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Figure 3.10: Visual comparison of Zebra image, a1) original image, a2) linear, a3) 

SLI, a4) cubic interpolation. 
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Figure 3.11: Visual comparison of Finger-print image, a1) original image, a2) linear, 

a3) SLI, a4) cubic interpolation. 

We display the computational comparison results of the zoom experiment in the 

following table. The Table 3.3 states that the SLI method possesses poorer 

performance in compare to the other methods due to the lowest SLI’s quantities of 

SNR, SSIM, and PSNR. The objective comparison results agree with visual 
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comparisons, because the SLI significantly makes zoomed images brighter than the 

original image.   

Table 3.3: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for zoom experiment. 
 

TESTED 

IMAGE 

SNR(dB) SSIM PSNR(dB) 

LI SLI CUBIC LI SLI CUBIC LI SLI CUBIC 

LENA 19.91 7.62 19.79 0.82 0.5 0.83 27.81 15.52 27.64 

ZEBRA 6.03 2.71 5.78 0.66 0.41 0.68 13.97 10.65 13.72 

FINGER-

PRINT 

15.83 7.04 16.12 0.80 0.38 0.84 20.21 11.42 20.50 

 

3.2 Image Interpolation in Wavelet Domain 

Interpolation instinctively diminishes the change between the intensities of pixels 

image by estimating new intensities between old intensities. This decrease of high 

frequencies of image encourages us to apply the wavelet-based interpolation. Image 

resolution enhancement in the wavelet domain is an appealing method to image 

processors, because we get noticeable improvement in compare to the direct 

interpolation in spatial domain [15]. Due to the advantages of the wavelet-based 

interpolation a lot of new algorithms have been proposed such as [16], [17].  

 In this thesis, we exploit one of the wavelet transformations called the discrete wavelet 

transformation (DWT) [18] to extract high frequencies of images for one level and 

then in the first level of DWT [19], we carry out the zoom and rotation experiments 

over four sub-band images by using interpolation methods. Subsequently, we apply 
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the inverse of the discrete wavelet transform and evaluate images subjectively and 

objectively. 

3.2.1 Rotation Experiment in Wavelet Domain 

In this experiment, we use Daubechies 10 (db10) [20], [19] as a discrete wavelet 

transform for one level and then we rotate each resulted sub-band images; namely, 

low-low (LL), low-high (LH), high-low (HL), and high-high (HH), fifteen times by 

24° degree to have the same size sub-band images like spatial domain rotation 

experiment. Finally, we apply IDWT [19] and compare the output image with the 

original image with SSIM, SNR, PSNR. We depicts the algorithm of this experiment 

in the figure 3. 12. 

 
Figure 3.12: Rotation experiment algorithm for fifteen times of 24 ͦ degree in wavelet 

domain 

We display the fifteen-time rotated Lena image in wavelet domain in Fig 3.13 and its 

SNR, SSIM, and PSNR in compare to the original image for the linear, SLI, and cubic 

interpolation in Table 3.4. Although, visual comparison of resulted images states that 

the SLI image is sharper than the linear and cubic images, the SLI image suffers from 
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discontinuities hardly, for example in Lena’s eyebrow. From the SNR, SSIM, and 

PSNR of different interpolation methods in Table 3.4, we conclude that the SLI 

outperforms the linear interpolation, but it can’t reach the SNR, SSIM, and PSNR 

values of the cubic interpolation for the Lena image.   

 
Figure 3.13: Fifteen alternating rotation experiments with 24°of the Lena image in 

wavelet domain. 

In order to better assessment, we decide to do the above experiment on the Zebra and 

Finger-print images. It is obviously shown in Fig 3.14 and Fig 3.15 that the SLI is 

again better than the linear interpolation by producing less blurred images in compare 

to images of the standard linear interpolation. The SLI is even sharper than the Cubic’s 

image.  Conversely, for the Zebra image the SNR doesn’t agree with our visual 

comparison and states that the cubic interpolation is the best. For the Finger-print 

image, visual comparison again admits being more sharpness of the SLI’s image than 

of the other two methods’ ones. For this image, the SNR and SSIM agrees with our 

visual comparison. 
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Figure 3.14: Fifteen alternating rotation experiments with 24°of the Zebra image in 

wavelet domain. 

 
Figure 3.15: Fifteen alternating rotation experiments with 24°of the Finger-Print 

image in wavelet domain. 
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We display the computational comparison results of the rotation experiment in wavelet 

domain in the following table. In Table 3.4, the SNR, SSIM, and PSNR values of the 

SLI are more than values of the standard linear for all images. 

Table 3.4: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for rotation experiment. 

 

We also depict the SNR, PSNR, and SSIM results of the same rotation experiment for 

thirteen times by 12° degree each time to have better judgment in Table 3.5. 

Table 3.5: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for rotation experiment. 

 

 

TESTED 

IMAGE 

SNR(dB) SSIM PSNR(dB) 

LI SLI CUBIC LI SLI CUBIC LI SLI CUBIC 

LENA 15.14 17.69 18.76 0.45 0.69    0.79 21.82 23.67 25.11 

ZEBRA 3.97 4.27 5.57 0.45 0.56 0.58 11.50 11.95 12.30 

FINGER-

PRINT 
11.17 15.12 13.83 0.49 0.82 0.79 18.17 22.12 21.01 

 

TESTED 

IMAGE 

SNR(dB) SSIM PSNR(dB) 

LI SLI CUBIC LI SLI CUBIC LI SLI CUBIC 

LENA 12.88 15.30 16.22 0.38 0.53 0.68 19.43 22.01 23.88 

ZEBRA 3.8 3.9 4.38 0.41 0.49 0.50 12.3 12.58 13.4 

FINGER-

PRINT 
10.87 14.80 13.67 0.38 0.78 0.75 17.78 20.27 20.10 
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3.2.2 Zooming Experiment in Wavelet Domain 

In our following experimental results, we use Daubechies 10 (db10) [20], [19] as a 

discrete wavelet function for one level and we put a factor of magnification equal to 

two.  

 

Figure 3.16: Scaled 2 times the wavelet decomposition of an image in one stage by              

interpolation methods and subsequent inverse transform. [19] 

With visual comparison, we conclude that the SLI method performs better than the 

nearest, linear, even cubic in wavelet domain and produces the sharpest images of 

them. For example, we can recognize the superiority of the SLI’s images by looking 

at Lena’s eyes shadow and lashes which is sharper in SLI’s one in Fig.3.17) a3. For 

the Zebra image, we compare different interpolation’s images by evaluating the 

contrast between black and with lines in Fig.3.18 (a1, a2, a3, and a4). Finally, the 

Finger-print image also shows that the shifted linear interpolation method produces 

the sharpest image in compare to others in Fig.3.19 (a3). In order to better evaluation 

between interpolation methods, we also show zoomed parts of all magnified images in 

figures Fig.3.17, Fig.3.18, and Fig.3.19. 
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Figure 3.17: Scaled the Lena image by two: a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) Zoomed 

images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. 
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Figure 3.18: Scaled the Zebra image by two: a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) Zoomed 

images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. 
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Figure 3.19: Scaled the zebra image by two: a1) nearest, a2) linear, a3) SLI, and a4) 

cubic interpolation, the sharpest image belongs to the SLI’s image. b) Zoomed 

images b1, b2, b3 and b4 of a1, a2, a3, and a4, respectively. 
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In order to have objective comparisons, namely, SNR, SSIM, and PSNR for this 

experiment, we down-sample our test images without using interpolation and then 

return them back to their original sizes by the linear, SLI, and cubic interpolation 

methods in wavelet domain. Zoomed parts of resulted images together with the related 

zoomed part of the original image are shown in the Figure 3.20, 3.21, and 3.22. 

 
Figure 3.20: Visual comparison of Lena image, a1) original image, a2) linear, a3) 

SLI, a4) cubic interpolation. 
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Figure 3.21: Visual comparison of Zebra image, a1) original image, a2) linear, a3) 

SLI, a4) cubic interpolation. 
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Figure 3.22: Visual comparison of Finger-print image, a1) original image, a2) linear, 

a3) SLI, a4) cubic interpolation. 

We display the computational comparison results of the zoom experiment of the 

wavelet domain in the Table 3.6. The Table 3.6 shows that the SNR and SSIM of the 

SLI method possesses higher values in compare to the other methods for the Lena and 

Zebra image but not for the Finger-print image.    
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Table 3.6: SNR, PSNR, and SSIM results of linear, shifted linear, and cubic 

interpolation for zoom experiment. 
 

TESTED 

IMAGE 

SNR(dB) SSIM PSNR(dB) 

LI SLI CUBIC LI SLI CUBIC LI SLI CUBIC 

LENA 15.24 17.07 14.79 0.65 0.66 0.63 23.32 25.15 22.88 

ZEBRA 4.47 4.11 3.89 0.71 0.73 0.71 15.63 15.27 15.66 

FINGER-

PRINT 

8.32 7.60 7.83 0.32 0.35 0.33 16.05 15.33 15.56 

 

3.3 Comparison between the Spatial and Wavelet Domain 

We magnify test images by factor two in spatial and wavelet domain and in Fig 3.20, 

you can compare spatial and wavelet resulted images visually. We observe that the 

advantage of zoom experiment in wavelet domain is that the zoomed images are not 

brighter than the original image like spatial domain. 

Figure 3.20: Visual comparison of Lena image in Spatial and Wavelet domain 

We depicts objective results of zoom experiments in the spatial and wavelet domain 

in Table 3.7. This table confirms the superiority of the SLI in wavelet domain. 
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The Table 3.1 in spatial domain and Table 3.4 in wavelet domain recommend using 

interpolation methods for rotation experiment in spatial domain. The lower quantities 

of SNR, PSNR, and SSIM regarded to the wavelet domain can be increased by 

computing new optimal shift for the wavelet domain. 
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Chapter 4 

4 CONCLUSION 

4.1 Conclusion and Future Work 

This work is concerned with using the Shifted Linear Interpolation for the super 

resolution purpose. We explore that the SLI is explicitly originated from altering the 

standard linear interpolation’s samples amplitude and their position with regard to the 

determined shift. The SLI is motivated with the weak performance of the standard 

linear interpolation in compare to the projection method in [1], [2]. In this thesis, we 

carry out interpolation based super resolution via the SLI. 

We study the SLI as a solution to minimize the least square error and based on this 

principle, we explain the optimal shift required for the SLI [3]. Our interest in the SLI 

originates from its less least square error than of the standard linear interpolation and 

less computational cost than the cubic interpolation method. 

The subjective and objective comparison have applied for comparing the SLI method 

with other interpolation techniques. We have carried out the magnification experiment 

for the subjective evaluation and this experiment due to a great demand of big images 

is appealing. We have zoomed tested images by two time with SLI and compare it 

visually with other magnified images using nearest, bi-linear, and bi-cubic. We have 

observed that the SLI zoomed images were brighter than the original image which 

states that the SLI damages images in compare to the original test image. Besides, for 
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using quantitative comparisons, we first down-sampled the original image and then 

converted it to the original size. In this experiment, the SLI performed poorer other 

interpolation methods. 

We rotate our image fifteen times by 24° and 30° degrees and at each time of rotation 

we apply the SLI. We have done this experiment for other interpolation methods and 

have used SSIM, SNR, and PSNR for computational comparison. The SSIM, SNR, 

and PSNR of the SLI have outperformed all of the others. In spatial domain, the SLI 

has defeated the nearest, bilinear, and bi-cubic interpolation methods. 

In this thesis, we have applied the SLI for the super resolution application in wavelet 

domain. First, discrete wavelet transform [19]changes our image into four different 

frequency components and then we use interpolation methods to rescale images. Next, 

we apply the inverse discrete wavelet transform [19]and then we have bigger images 

related to the scale number. Finally, we compared images visually and recognize that 

the SLI’s images are the sharpest similar to the spatial domain.  

We have observed that images interpolated by the SLI in wavelet domain are sharper 

and not brighter than the original image like spatial domain. This improvement can be 

referred to the characteristics of discrete wavelet transform which decompose an image 

into its different frequency components that each of components displays some details 

of image. The objective comparisons’ numbers of zoom experiment in wavelet domain 

were higher than ones in the spatial domain. We also have carried out the rotation 

experiment in wavelet domain and haven’t got good results. These results can be 

improved by computing new optimal shift for this domain due to defining our images 

from spatial domain to wavelet domain. 
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In this work, practical results prefer using SLI in spatial domain in compare to using 

it in wavelet domain for rotation experiment and in wavelet domain in compare to 

using it in spatial domain for zooming experiment.  

As a future work we can compute the optimal shift for cubic interpolation method and 

apply the shifted cubic interpolation in spatial and wavelet domain. 
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