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ABSTRACT

The purpose of this study is to carry out an investigation on the existing truss
systems in order to introduce a mathematical formulation relating to the geometrical
shape of the truss so that the mid-span deflection of the truss can be optimized. Every
time there is a need to use a truss structure it is difficult to decide which truss type,
bay width and height would produce the optimum truss shape with minimum mid-
span deflections and its corresponding minimum bottom chord stress for a specific
span length. The results of this study is expected to produce a set of guidelines to
help researchers, designers and practicing engineers to determine the most
appropriate and efficient truss system for their specific usages. In order to achieve
this aim, a total of two sets of two-dimensional trusses with eleven different shapes
of common symmetry, made of steel with pinned and roller supports were studied to
identify which truss shapes and sizes are efficient for the purpose of this study. The
design loads are applied to the joints so that there is no moment to be resisted by the
members. Initially, the virtual work method was applied on selected truss shapes in
order to obtain the amount of deflection at mid-span of the trusses. Afterwards, hand
calculation was carried out followed by computer analysis using MAPLE 12 and
then the use of TABLE CURVE 2D v5.01 for mathematical approach to derive the
deflection formula. Finally, STAAD Pro was used to analyze and design the truss
structures. The analysis of all sets of trusses enabled the comparison among the
various spans, height and bay width of trusses. Thus, the changes in mathematical
deflection formula, due to the number of bays and shapes of trusses were lead to

obtain the specific optimum height and minimum deflection for each truss system. In



other words, the occurrence of minimum deflection along the truss span and
optimum height presents the optimum truss.

Besides the above mentioned outcomes a significant advantage was achieved due
to mathematical formulation. The formula derived demonstrates an easy, fast and
accurate way of calculating the deflection value at mid-span of trusses. Currently,
virtual work method is the most efficient and accurate way of determining the
deflection. Although this method is the most common one it is dependent on long
and complicated procedure. The formula derived in this study has introduced a new
approach to determine the mid-span deflection of trusses in an extremely short and

easy way.



Oz

Bu arastirmanin amaci mevcut makas sistemlerini inceleyerek geometrik sekillerine
iliskin bir matematiksel formiil iiretmek ve boylece makas orta noktasinda olusacak
sehimi olabilecek en az seviyeye cekmektir. Makas kullanimina ihtiya¢ duyulan her
durumda, hangi makas sekli, dikey eleman acikliklari, ytikseklikleri ve makas
uzunlugunun kullanimi ile optimum makas sekli ve buna bagli olarak makas orta
noktasinda en az sehim ve makas alt1 gerilme elemanlarinda en az ¢ekme basincinin
olusacagina karar vermek c¢ok zordur. Bu ¢alismanin sonuglarinin, arastirmaci,
tasarim yapan ve pratikte calisan miihendislerin, kullanim ihtiyaglar1 dogrultusunda
en uygun ve etkin makas sistemini bulmalari  i¢in yol gosterici olmasi
beklenmektedir.

Bu amaca ulagmak i¢in ¢elikten yapilmis, destekleri basit ve yatay yonde
hareketli, iki gurup, iki diizlemli ve ortak sistemi olan 11 adet makas se¢ilmis ve
hangilerinin bu amaca uygun olduklar1 incelenmistir. Tasarim i¢in kullanilan yiikler
tastyici elemanlarda herhangi bir momente neden olmamasi i¢in yatay ve dikey
elemanlari birlestigi diigiim noktalarma yiiklenmistir. Once sanal galisma ydntemi
kullanilarak secilmis makaslara ylikleme yapilmis ve makas uzunlugunun orta
noktasinda olusan sehimler elde edilmistir. Bunu takiben, once elde ve sonrasinda
bigisayar kullanarak (MAPLE 12 ve TABLE CURVE 2D v5.01) matematiksel bir
sehim formiilii tiretmek icin analizler yapilmistir. En sonunda STAAD Pro
kullanilarak makas yapilar1 analiz ve tasarimi yapilmistir. Tiim makaslarin analiz
sonuglart kendi igerisinde agikliklari, yiikseklikleri ve de dikey eleman acikliklari

acisindan karsilastirilmasina olanak saglamistir.



Boylece, sehim formiiliinde makas sekli ve dikey araliklardan dolayr olusan
degisimler her makas yapisi icin optimum yiikseklik ve en az sehimin elde
edilmesine yardime1 olmustur. Diger bir degisle, makas boyunda elde edilen en az
sechim ve en az yikseklik o makasin optimum bir makas sekli oldugunu
gOstermektedir.

Matematiksel formiilasyon yukarida belirtilen sonuclara ilaveten énemli bir
avantaj elde edilmesine neden olmustur. Olusturulan yeni formiil kullanilarak makas
orta noktalarinda kolay, hizli ve dogru bir sekilde sehim hesaplamasi
yapilabilmektedir. Su anda, sanal ¢alisma yontemi sehim hesaplamalari i¢in en dogru
ve etkin sonug¢ veren yaklasimdir. Bu yontem hernekadar da yaygin bir sekilde
kullaniliyor olsa da uzun ve karmasik prosediir gerektiren bir yaklagimdir. Bu
arastirma sonucunda elde edilen formiil, makas orta noktalarinda olusan sehimi ¢ok

kisa siirede ve kolayca hesaplayabilecek yeni bir yaklagimdir.

Vi
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Chapter 1

INTRODUCTION

1.1 Introduction

“A truss is a structural element composed of a stable arrangement of slender
interconnected bars. The pattern of bars, which often subdivides the truss into
triangular areas, is selected to produce an efficient, lightweight, load-bearing
member” [1]. Since the members are connected at joints by frictionless pins, no
moment can be transferred through this joints. Truss members are assumed to carry
only axial forces, either tension or compression. Because of the fact that stress is
produced through the length of truss members, they carry load efficiently and often
have relatively small cross section [1].

Basically, in truss design, compressive and tensile forces act seperately on each
member, causing less consumption of material and increase in the economic revenue.
In fact, the structural beheviour of many trusses is similar to that of a beam. The
chords of a truss correspond to the flanges of beam. The forces that developed in
these members make up the internal couple that carries the moment produced by the
applied loads. The webs give stability to the truss system. Therefore, they transfer
vertical force (shear) to the supports at the ends of the truss [1].

Before steel became an economically useful material, trusses were made of wood
or iron. Nowadays, most of the trusses are made of wood, steel, wood and steel, or
aluminium. Concrete trusses are not common but do exist, usually in very large

structure.



The members of the most modern trusses are arrenged in triangular patterns
because even when the joints are pinned, the triangular form is geometrically stable
and will not collaps under load. In contrast, a pin-connected rectangular element,
which acts like an unstable connection, will collapse under load. On the grounds that
the triangel configuration gives them high strength- to-weight ratios, which permit
longer spans than conventional framing, and offers greater flexibility in floor plan
layouts. Long spans without intermediate supports create large open spaces that
architects and designers can use with complete freedom [1].

The design of truss structures has to be carried out according to the two important
requirements; the best geometrical layout and the most adequate cross-sections. In
general, the structural shape depends on the design standards and partially on
economical, aesthetical, construction techniques, application and environmental
aspects. Moreover, for any truss design there must be an optimum shape and a cross-
section that is adapted for external loads [2].

In the past decades, the subject of optimization has made important progress in
most of the scientific fields. In recent years, the development in computational
abilities made an impressive improvement in design optimization schemes for
majority of the engineering issues, including those issues relating to structural
engineering. The development of structural optimization algorithms has obtained an
adequate horizon for engineers to find the most suitable structural shape for a
particular loading system.

1.2 Objectives of Research

This research is aimed to carry out an investigation on the existing truss systems

in order to introduce a mathematical optimization approach. This approach is

expected to produce a set of guidelines to help researchers and practicing engineers



in order to select a suitable truss system for their specific usages. Therefore,
objective of the optimization was to minimize deflection at mid-span with
constraints; loading, spans and truss chord member spacing. Finally, the research has
fulfilled the following objectives:

e To identify the efficient truss shapes in terms of deflection among the eleven
selected geometry of truss shapes in proportion of height and distance
between joints (Bay) using mathematical formulation.

e To develop the general deflection formulas using existing virtual work
method to demonstrate an easy, fast and accurate way of calculating the
deflection value.

e To compare the deflection of the selected and optimized truss shape with the
same ones in the construction industry.

e  To determine which optimum shape of truss can be applied to a given span,
under height and bay circumstances.

1.3 Outline of Research

Chapter 2 provides a discussion of characteristic of truss systems, structural
optimization and background with regard to behavioural construction, mathematical
formulation for optimal and effective solution procedures to introduce the different
techniques to obtain the optimal truss structure.

In chapter 3, the eleven shapes of common symmetry trusses in 2-D position are
categorized to find the most appropriate type for the design of the selected truss
structure. Therefore, a mathematical assessment carried out to introduce a common
formula to guide engineers, designers and decision makers in choosing the most

optimal deflected truss type for given spans.



Chapter 4 reveals the methods in detail based on the objective of the research.
Initially, the virtual work method (force method) applied on selected truss structure
in order to obtain the amount of deflection. Then hand calculation was carried out
followed by a computer application analysis using MAPLE and then the use of Table
Curve 2D for mathematical approach to create the deflection formula. Finally
STAAD Pro computer software was used to analyze and design the truss structure.
As a result the deflection formula was derived and applied to the selected models in
order to determine the optimum truss. Therefore, the output of simulated models for
different span lengths and bays would demonstrate the least deflection and minimum
stress simultaneously.

Consequently, Chapter 5 provides the advantages of introduced method for
engineers, designers and decision makers to make the most efficient and accurate

truss design.



Chapter 2

LITERATURE REVIEW

2.1 Trusses

2.1.1 Characteristics of Triangulation, Joints and Member Forces of Trusses

A truss is an assembly of long, slender structural elements that are arranged in a
triangle or series of triangles to form a rigid framework. Since a basic triangle of
members is a stable form, it follows that any structure made of an assembly of
triangulated members is also a rigid and stable structure. This idea is the fundamental
principle of the viability and usefulness of trusses in buildings as a light and un-
yielding structure. The most usages of trusses are in single story industrial buildings,
large span and multi-storey building roofs carrying gravity loads. Also it is used for
the walls and horizontal planes of industrial buildings to resist lateral loads and
provide lateral stability [1].

The joints of a truss are usually rigid and the members being either welded to each
other or welded or bolted to a gusset plate. The behaviour of a braced framed is
essentially the same as pin joints. As a result joints could be considered as pinned in
any sort of construction mode. In addition, the procedure of analysis is greatly
simplified when considering the implementation of joints.

All truss members are acting as a two force member and as a result, the forces at
the ends of member must be delivered to the axis of member length. If the force has a
tendency to elongate the member, then it is a tensile force (T), Fig 1a; otherwise it is

a compressive force (C) and would try to shorten the member, Fig 1b. In terms of



truss design, it is important to state the nature of the force at first (tensile or
compressive).
Often, compression members must be heavier and/or stronger than tension

members because of the buckling or column effect that occurs when a
member is in compression. [3]

Lo T

(@) (b)

Tension Compression

Figure 1: Truss Force Members

2.1.2 Determinacy and Stability of Trusses
Before deciding on the determinacy or indeterminacy of a structure the stability of
structural system should be assessed. “Stability is the ability of a component or
structure to remain stationary or in a steady state” [4]. Therefore, stability is an
inherent quality generally having to do with the nature of arrangement of members
and joints or with the support conditions.
Determinacy is the ability to compute support reactions using statics. That
is, if a structure is determinate, the equations of equilibrium are sufficient to

find all the forces. If it is indeterminate, there are too many reactions to
solve for. This is the classic problem of having more unknowns than



independent equations to solve for the unknowns. If there are too few
reactions, then the structure is unstable. [4]

A large percentages of the trusses used in buildings have regular forms with
limited number of ordinary situations. The basic device of trussing that may be used
in order to produce a range of possible structures is triangulation framework. When
truss forms are complex or unusual, a basic determination that must be made early in
the design phase is the condition of the particular truss configuration with regard to
its stability and determinacy.

In general, all of the joints and members of a truss are in equilibrium if the loaded
truss is in the equilibrium. If the load is only applicable in the joints and all truss
members are supposed to bear only axial load, then the forces acting on free-body
diagram of a joint will constitute a simultaneous force system. In other words, a

stable truss system is dependent on equilibrium of the below given equations:
2 Fxoo (1)
D Fy —o (2)
There are two equilibrium for each joint in a truss, therefore in order to determine

the unknown bar forces (b) and reactions (r) there would be totally 2n number of

equilibrium equations which is given below:
Where n is equal to the total number of joints:

Q) If b+r =2nb+r =2n Truss is stable and determinate.

(2) If b+r >2nb+r >2n Truss is stable and indeterminate.
The degree of indeterminacy D equals D=r+b —2n

(3) If b+r <2nb+r <2n Truss is unstable.

The figure 2 is demonstrated the conditions for stability and determinacy of a

truss system to find out stability and instability of that system [1].
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Unstable Truss
b+r=15<2n=16

Stable Truss (Stabilized by completion
of triangulation pattern).
b +r=16 =2n =16

Stable and Indeterminate Truss
b+r=17>2n=16
D=r+b-2n=1

Figure 2: Classifying Trusses

It is noticed that the statical determinacy of a truss structure does not depend on

to the applied load system. It only depends on the geometry of the framework.
2.2 Structural Optimization

After four decades the structural optimization is still a new and developing field
for research and study. In recent years, the approaches in structural optimization had
enough reason to make it a helpful device for designers and engineers. Despite the 40
years of investigation on structural optimization it has not been frequently used as an
engineering device for design until high performance computing systems become
widely available. Structures are becoming lighter, stronger and cheaper as industry
adopts higher forms of optimization. Therefore, the main objective of the current
engineering industry should be to find a solution and improvement for the above

mentioned issues.



According to the article of In Structural Optimization, by N.Olhoff and J.E.Taylor
(1983) in their paper entitled On Structural Optimization, in optimization of
structures, experience has shown that particular attention must be paid to the
following five principle points so that an efficient and practical design may be
obtioned:

(1) The objective or cost function must be taken as realistic as possible;

(2) The largest possible number of design variables for different types of trusses

must be selected:;

(3) As much as possible, many realistic design requirements (behavioral

constructions) must be considered;

(4) The mathematical formulation must accomodate for unexpected properties of

the optimal solution; and

(5) Effective solution procedures are necessery.

2.2.1 Optimization Problem

Optimization problems are categorized according to design variables by
considering the type of equations.

In other words a design is optimum if a certain objective function is minimum (or
maximum) while it meets its design requirments.

Optimization techniques, which are based on an optimality criteria approach,
mathematical programming and genetic algorithms are widely employed (Kuntjoro
and Mahmud 2005).
In the mathematical optimization if the objective function and the
constraints involving the design variable are linear then the optimization is

termed as linear optimization problem. If even one of them is nonlinear it is
classified as the non-linear optimization problem [5].

This research deals with structural optimization based on mathematical

programming. The deflection of the structure is to be minimized and it is formulated



as the objective function. The design variables are structural parameters, the values
that are going to be varied during the optimization process. The design requirments,
such as height and width, are formulated as the design constraints. The flow chart of
the design optimization which is obtained by using a mathemathical programming is

shown in Figure 3.

Define:
1) Design Variables

2) Objective Function

3) Design Constraints

Initial Design

v

> Analysis

v

Calculate Constraints

Converged?

Redesign Using

Optimization Method

Figure 3: Flow Chart of Optimization Procedure

2.2.2 Structural Optimization Problem Statements
In structural optimization problems for design variables, objective function and

constraints are summarized in the following formulation of the optimization problem.
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Minimize f(x)
Such that g;(x) =0 j=1,..,ng
hy(x) =0 k=1,..,n, (3)

Where x is denoted as a vector of design variables with components; x;,i =
1,..,nx;andi=1,..,n. The equality constraints h;(x) and the inequality
constraints g;(x) are assumed to be transformed into the form (3). The optimization
problem is assumed to be the minimization rather than a maximization problem.
Therefore, it is not restrictive since, instead of maximizing a function it is always
possible to minimize its negative value. Similarly, if we have an inequality of
opposite type, that is

g6i(x) <0 @)
It can be transformed into a greater — than —zero type by multiplying Eq. (4).

An optimization problem is said to be linear when both the objective function and
the constraints are linear functions of the design variables x;, x;, that is to say they
can be expressed in the form of:

f(x) = c1Xq + Xy + ... CpXy = CTX. (5)

Linear optimization problems are solved by a branch of mathematical programming
called linear programming.

The linear programming problem was interpreted as maximizing or minimizing a
linear function which is subjected to linear constraints. The constraints were stated as
either equalities or inequalities. “In fact, linear programming is the process of taking
various linear inequalities relating to a specific situation and finding the "best" value
obtainable under those conditions” [6]. In this research, linear programming has been

used for the mathematical approach of the deflection formula.
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2.3 Previous Researches in Truss Optimization

In recent decades, optimization of truss design has become a significant term in
structural optimization. Classical optimization problems are divided into three types:
size, geometry/shape and topology. In fact in comparison to other types of
structures, the design and analysis of trusses are quite simple process which could be
easily written in a mathematical form. As a result, to obtain the optimal truss
structure due to classical optimization methods, different investigation has been
developed in research papers. Early works were based on the deterministic methods
such as mixed integer programming [7], branch and bound techniques [8], dual
formulation [9], penalty approach [10], segmental approach with Linear
programming [11], and so forth.

Another category of methods that belongs to the nondeterministic methods is
simulated annealing [12], genetic algorithm [13] and other methods have been used
successfully to solve optimal design problem with discrete variable. “Structural
optimization with discrete design is usually very much complicated” [13]. Yates et
al. (1982) have mathematically proven that discrete optimization problems are NP-
complete and consequently they are unsolvable by polynomial algorithms. Also
genetic algorithm is one of the efficient subset of discrete variable optimization
method [14]. Genetic algorithms are based on the concepts of natural selection and
natural genetics (Holland 1975; Goldberg 1989). Although these algorithm are
randomized, genetic algorithm are not a simple random walk in the space of solution
[15]. Rajeev and krishnamoorthy (1997) presented a genetic algorithm(GA)-based
methodologies for obtaining optimal design solution simultaneously considering
topology, configuration, and cross sectional parameters in unified manner [16] . They

have already presented a genetic algorithms-based method for discrete optimization
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of trusses [13]. Two improved methods are presented in this paper; the first one,
simple genetic algorithm (SGA), is adopted to solve size and configuration
optimization problem and *“second method based on a variable string length genetic
algorithm (VGA), addresses the topology optimization problem, taking into account
a number of practical issues” [13]. The classical 10 and 18-bay truss problems are
solved to illustrated working of the methods and then the values of design variables
compared with the previous researches. Comparison of results with those of the
report, genetic algorithms-based optimal design methodologies are simple and less
mathematically complex and better solutions are obtained using the proposed
methodologies than those obtained from the classical optimization methods based on
mathematical programming techniques. Komousis et al. (1994) have solved the
sizing optimization problem of steel roof truss with a genetic algorithm. They have
proved that traditional optimization methods based on mathematical programming
are not effective in discrete optimization problem and robust algorithm can satisfy
the design purposes [17]. It is indicated in Numerical method in engineering (Kaveh
and kalatjari, 2003) the optimization of trusses due to their size and topology by
using a genetic algorithm (GA), the force method concept and some perception of
graph theory.

Whereas the optimization with genetic algorithm has a difficulty in the

cognition of parameters, existence the application of some concepts of the

force method, together with theory of graphs and genetic algorithm make

the generation of a suitable initial population well-matched with critical
paths for the transformation of internal forces feasible. [18]

The examples studied in this research show that the optimal form of structure
depends on the number of nodes considered for the ground structure. Indeed the

application of this concept can easily be extended to rigid jointed structures, since
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more efficient combinational approaches are available for the analysis by the force
method.

Until now most of the discussed papers related to this subject dealt with optimal
design under static displacement and stresses constraints. On the other side, a little
effort has been made due to optimal design based on structural dynamic aspect. Tong
and Liu suggested:

Two-step optimization procedure for the optimal design of truss structures
with discrete design variables under dynamic constraints. At first, a global
normalized constraint function (GNCF) has been defined. At the second
step, the discrete values of the design variable are determined by analysing
differences quotient at the feasible basic point and by converting the
structural dynamic optimization process into a linear zero-one
programming. [19]

Since, the above mentioned optimization procedure for optimal design has
successfully been applied to some of the truss structures; the result demonstrated that
the method is practical and efficient. Also, it is noted that the optimal design deal
with constraints of stress and displacement, simultaneously with natural frequency
and frequency response.

As has been perceived in the previous paragraphs, a considerable amount of work
has been carried out relating to optimization with genetic algorithm method while the
other methods of optimization has been investigated far less due to their complexity.
Therefore, some methods developed using size; geometry and topology for
optimization are presented. Rahami et al. (2008), in Journal of Engineering Structure
“have used a combination of energy and force method for minimizing the weight of
truss structures. The main idea proposed in this research is the manner in which the
input variables are reduced” [20]. As a result, the formulation based on energy

concepts permits an efficient use of GA in optimization. In fact a mixed formulation

is presented for the optimization of structures using a genetic algorithm. “The
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method employs basic idea from the force method and the complementary energy
approach, and uses a simple genetic algorithm as a powerful optimization technique”
[14]. Moreover Farshi and Alinia-ziazi (2010) have described a force method based
on the method of centre points as a new approach to optimum weight design of truss
structures. It is indicated in their research that:
Design variables are the member cross-sectional areas and the redundant
forces evaluated for each independent loading condition acting on structure.
Forces in each member are consisted to have two parts; the first part
corresponds to the response of the determinate structure as defined from the

whole structure, and the second part takes care of the effect of forces in the
redundant members. [21]

The comparison of the results of this research with the examples selected from
similar works has illustrated that:

The analysis step is embedded within the optimization stage using the force

formulation; avoiding tedious separate analyses. Also it should be noted that

in cases of low degrees of redundancy effectiveness of the proposed method

will be more prominent, since few additional variables (i.e. redundant

forces) should be added to the design variables (cross-sectional areas),
requiring less computational efforts. [21]

One of the other approaches in optimal truss design that has been widely
investigated is truss optimization under stress, displacement, and local buckling
constraints with minimum weight. It was introduced in journal of structural and
multidisciplinary optimization, Gou et al. made a new appeal to “the solution of
singular optimal of truss topology optimization problems caused by stress and local
buckling constraints. First, a second-order smooth-extended technique is used to
make a disjoint feasible regions connect, and then the so-called ee-relaxed method is
applied to eliminate the singular optima from the problem formulation” [22]. As a
result the given numerical examples in this study indicated an efficient approach to
optimization of truss topology problems which are subjected to local bukling and

stress constraints. In addition, it was concluded that the traditional stress formulation
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method is not appropriate especialy in case of local bukling constraints. Therefore,
the proposed ee-relaxed approach is recommended in order to truss topology
optimization with local buckling constraints [22] . Bojczuk and Mroz (1999) in the
journal structural optimization were presented “a heuristic algorithm for optimal
design of trusses with account for stress and buckling constraints. The design
variables are constituted by cross-sectional areas, configuration of nodes and the
number of nodes and bars” [23]. The main idea of this study was associated with “the
assumption that topology variation occurs at a discrete set of states when the optimal
design evolves with the selected size parameter” [23]. In fact this research was
introduced three virtual topology variation modes with their applicability by solving
particular examples;

(1) A new node at the centre of the existing bar that connected to the closest

existing node.

(2) The separate existing node and a new bar that connected to two nodes.

(3) Two nodes at the centre of a compressed bar that separated by a

connecting bar. As a result, the examples demonstrate that topology

variations coupled with configuration optimization can provide very
effective designs. [23]

In the geometry and topology optimization subject, W. Achtziger (2007) has
introduced the classical problem of optimal truss design where cross-sectional areas
and the position of joints are simultaneously optimized. In fact, he focused on the
difference between simultaneous and alternating optimization of geometry and
topology and recalled a rigorously mathematical approach based on implicit
programming technique which considers the classical single load minimum
compliance problem subject to a volume constraint. Two numerical examples are
presented to illustrate that simultaneous optimization of geometry and topology may
result in very reasonable structures even for small problem size and very sparse

ground structures [24]. Then after, Martinez et al. (2007) in journal of journal of
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structural and multidisciplinary optimization studied about “a novel growth method
for the optimal design in a sequential manner of size, geometry, and topology of
plane trusses without the need of ground structure. Actually, the most used method
for truss topology design by computational methods is the ground structure
approach” [25]. This method was associated with the design of optimal plane trusses
which are subjected to the stress constraints.
The growth method begins with a simplest structure and would continually
modify it by adding iteratively, joints and members optimizing the variable
of size, geometry and topology at each step. The characteristic of method
and the result of the three examples illustrated that this method requires a

minimal amount of initial data and allows the optimal structure to be
obtained with a given number of joints. [25]

Also the research was clarified that this method “is very flexible and permits the
fulfilment of different design conditions. Moreover, the computational cost is lower
than the procedures based on the Ground Structure approach” [25].

A few attempts have also been reported on configuration optimization, in which
both size and configuration variables. Wang et al. (2002) were proposed “an
evolutionary optimization method to optimize the shape and size of a truss structure
for its weight minimization. The stress, local buckling and displacement constraints
in one load case are imposed on the structure” [26]. The research was argued that
“the FSD algorithm is an intuitive and efficient optimality criterion for size
optimization of structural members. In fact the elements designed with FSD are fully
stressed only for statically determinate structures” [26]. The concluded of the study
stated, this “approach needs further study to be extended to more general situation
with constraints of stress, local stability and multiple nodal displacements under
multiple load cases” [26] . Gil and Andreu (2001) were presented a new approach for
the identification of the optimal shape and cross-sections of a plane truss structure

under stress and geometrical constraints. The optimization algorithm includes the
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treatments of constraints using penalty functions, optimization of cross section and
optimization of nodal coordinates. In the study, the cross-section optimization is
achieved by the fully stress design (FSD) strategy and the coordinates optimization is
driven by the conjugate-gradients strategy. In fact the strategy outlined in this paper
has demonstrated to be highly stable, even when starting from initial structures which
are very far from optimum. So the optimized structure is observed to the applied load
or related shapes to the bending stress [2]. Nishino and Duggal (1990) have carried
out a shape optimum design of trusses under multiple loading conditions. The weight
of a truss is minimized subject to nodal equilibrium and permissible stress
constraints, and constraints to ensure uniqueness of the stress-free length of each
member. The optimization procedure includes selection of topology, geometry and

sectional properties [27].
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Chapter 3

METHODOLOGY

3.1 Introduction

In architecture and structural engineering, truss is a structure that is constructed
out of one or more triangular units with straight members which ends are connected
at joints referred to as nodes.

So far due to the literature studies, structural optimisation is dealing with; largest
possible number of design variables, behavioural construction, mathematical
formulation for optimal solution and effective solution procedures. As a result truss
systems also turned to be a remarkable issue in structural optimization. The simple
characteristics of truss systems in design and analysis made an easy mathematical
model opportunity for classical truss optimization when compared to other types of
structures. Therefore, different techniques are introduced to obtain the optimal truss
structures. These developed methods are listed as below:

A) Deterministic methods
Mixed integer programming
Branch and bound techniques Dual formulation
Penalty approach
Segmental approach with LP
B) Nondeterministic methods
Simulated annealing

Genetic algorithm
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This research is aimed to carry out an investigation on the existing truss systems
in order to introduce a mathematical optimization approach. This approach is
expected to lead to an efficient method for designers and decision makers so that
they can find the most appropriate truss structure (listed in this research) for their
design purposes. The suggested method is clarified in detail based on the below
given critical questions to identify which of the selected trusses (in this research)
could be suitable for the chosen span based on:

e How the optimal truss is identified among different changes in proportion
of height and distance between joints (Bay)?
e What would be the amount of deflection of optimized truss?

To achieve these some of the common types of trusses made of steel are studied to
identify their efficient sizes and shapes. Therefore, it is decided to produce a
mathematical deflection formula by considering loading and truss spaces as our
constraints and defined variables as; shape, span and height. Also deflection of the
structure is minimized and formulated as an objective function.

Initially the force method is applied on truss structure in order to obtain the
amount of deflection. Then hand calculation was carried out followed by computer
application analysis using MAPLE and then the use of Table Curve 2D for
mathematical approach to create the deflection formula. Finally STAAD Pro
structural design computer software has been used to analyse and design the truss
structure.

As a result, the changes in mathematical deflection formula, due to the number of
frames and shapes of trusses, are lead to obtain the specific optimum height and

minimum deflection for each truss system. In other words, the occurrence of
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minimum deflection along the truss span and optimum height presents the optimum

truss.

Selected 2-dimentional Virtual Work |

common symmetry truss Method MAPLE 12

v

TABLE Mathematical

CURVE 2-D Formulation STAD PRO

Figure 4: Scheme of methodology stages

3.2 Truss Shapes

Basically 11 shapes of common symmetry trusses in 2-D position are categorized
into 2 groups as shown below:

a) Trusses with horizontal top chords

b) Trusses with a constant slope top chords
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Truss 1 Truss 2
Truss 3 Truss 4
Truss 5

Figure 5: Trusses with Horizontal Top Chords

Truss 6 Truss 7
Truss 8
),,»_-_" 7 \\ / e e ) et // '\-?\\\\\
Truss 9 Truss 10
Truss 11

Figure 6: Trusses with Constant Slope
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Figures 5 and 6 show the 11 truss models; flat, warren and triangular with 5, 3 and 3
types of each one are used respectively. Different span lengths 10, 20, 30 and 40
meters were applied for all types of the trusses to find the least deflection mode. It
should be noted that the variety of trusses selected are not randomly assumed. These
are the most frequently used trusses in real life. When flat trusses are considered the
five types used in this research are generally the ones used in real life. However, for
warren and triangular type trusses a sample of the most common types were
considered. In order to reduce the wide range of analysis and to achieve more
accurate outputs from the analysis only 3 types from each of warren and triangular

trusses were studied.
3.3 Assumptions Used in this Research

This research is aimed to present a mathematical method for the optimum
deflection of the plane truss structures subject to multiple loads and stresses. To
achieve a mathematical statement with constraints and variables, the proportion
between the height of the truss and the horizontal distances between the joints are
investigated in advance. As a result, the cross sectional areas of members, distance
between joints of chords and heights of trusses are assumed to be as variables of
design. Therefore, objective of the optimization is specified as the minimization of
deflection at mid-span with constraints on loading, spans and truss chord member
spacing.

The structural analysis is further base on the following assumptions:

a) The mathematical model for the plane truss consists of a set of joints
which are connected by straight members and carry only axial load. Also

the deadweight of the members is neglected.
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b)

d)

f)

All members are connected to joints by frictionless pins. That is to say, no
moment can be transferred between the ends of a member and the joints to
which they are connected.

The selected trusses are loaded in a similar manner and only dead and live
loads are considered, 1.25kN/m? and 0.75kN/m?, respectively. Also,
cladding system, insulation, self-weight of truss members and purlins are
considered as dead load.

All loads on the structure are applied only at joints. Purlins are arranged in
such a way that the loads are applied on the purlins that are placed directly
where the vertical truss member joins the top chord. These are considered
to be nodes of the truss. Hence, all members of truss are assumed to be
subjected to pure axial loads. Moments acting on the joints or intermediate
loads acting directly on the members is not permitted. No shear force or
bending moment exists in the members.

Only translation restraints may exist at the support joints. Therefore, only
pinned or roller supports which translate in the plane of the structure are
permitted.

Each shape of truss (in terms of geometrical arrangement of members) is
constant while the distance between vertical members (bays) and height of

the truss are changed.
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Chapter 4

MATHEMATICAL FORMULATION AND RESULTS

4.1 Mathematical Formulation

4.1.1 Hand Calculation
4.1.1.1 Virtual Force Method

When a structure is loaded, deformation on stressed elements will take placed. As
a result of the changes on the structural shape, the nodes of the structure will be
displaced. In a well-designed structure, these displacements are substantially small.
For instance, Figure 6 shows that the changes occurred on the structural elements
will have some effect on the displacement point of the given truss. The applied load
P produced the axial forces F;, F, and F; in the members. It is obvious (Fig. 7) that
the members are deformed axially (dashed lines) and joint B of the truss is displaced

diagonally toB’.

p—Bx—
B
M\\‘ 5,
s
£
£
F
A 3 C

”””” P

Figure 7: Deformations of Truss after Load is Applied
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The Virtual force method is applied to determine the deflection of trusses. The
virtual work principle is defined as such that the deflection can be calculated by the
following equation:

1(8) = Xn(6) (6)

Where n is equal to the virtual force in the member and § equal to the change in
length of the member.

Therefore, the deflection that occurred due to the changes in length of the truss
members can be calculated. These changes in length are caused by; the effect of
applied loads on the behaviour of each truss member, changes in temperature and
fabrication errors.

In order to determine the member forces in a truss one can use either the method
of joints or the method of sections [3]. Once the member forces are known then the
axial deformation of each member can be determined by using the below given
equation:

_NL
"~ AE

) 7)

The deflection formula can be modified by the substitution 1. (A) , from equation
(6) instead of & in equation (7).

nNL

L) =YX— (8)

Here:

1= external virtual unit load acting on the truss joint in the stated direction of A
A= joint displacement caused by the real loads on the truss

n= internal virtual force in a truss member caused by the external virtual unit load
N=internal force in a truss member caused by the real loads

L= length of the member
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A= cross-sectional area of member
E= modulus of elasticity of a member

The external virtual unit load creates internal virtual “n” forces in each of truss
members. When the real loads are applied to the truss, then the truss joint will
displaced A in the same direction as the virtual unit load, and each member
undergoes a displacement NL/AE, in the same direction as its respective n force.
Consequently, the external virtual 1.A is equals to the internal virtual work or the
internal (virtual) strain energy stored in all the truss members, i.e., Equation 6.

4.1.2 Problem Statements

As it has been explained in the previous chapters, this research is aimed to provide
an optimum truss shape which is subjected to minimum deflection by using the
virtual force method. Hence, this method is applied in order to create a general
deflection formula to achieve a specific approach in deflection minimization.

In each type of trusses that is categorized at the beginning of this chapter,
deflection of trusses are calculated to create a general formula based on an assumed
interval for k (k=1 till k=10), whereas n is the number of bays in one side of a
symmetrical truss. In this way some mathematic software like “MAPLE 12” and
“TABLE CURVE 2D are used for mathematical approach of deflection formula.

First approach is investigated based on a 2-D symmetrical warren type flat truss
(Fig. 8) with a multiple load (W) that are applied on the joints to determine the

vertical deflection at joint E (the mid-span of truss).
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Figure 8: Warren Type Flat Truss with Multiple Loads

4.1.3 Analysis Procedure

The following procedure provides a method that may be used to determine the
displacement of any joint on a truss, by applying the virtual force method. The
internal force on each element, are determined in two sections. Once it is caculated
based on real forces (N) then the virtual force is applied. Based on outputs of hand
calculation an individual deflection formula (A) for each n (1< k <10) is generated.
As a result, the investigation on the deflection formulas and by using the
mathematical software helped to lead us to create a general deflection formula (An)
for each of the 11 trusses. Finally, the formula was entered into the MAPLE program
under a paticular mathematical circumastences; deflection, virtual force method
formula is generated. The following sections of this chapter discusses the derivation
of the formula in mor detail.
STEP 1: Calculate the Internal Forces, N

Initially the internal forces in each member should be determined. These forces

are resulted solely from the real behaviour of truss under the applied external loads.
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It is assumed that the tensile forces are positive and the compressive forces are
negative.

a) Calculate the Support Reactions, due to the Applied Real Loads

w w w
B l D YF YH J
A A A A,
XA 5 E G A
YA Yl
a
L

Figure 9: Frame Structure with Applied Real Forces

Calculate the support reactions (caused by the applied loads in Figure 9) through

summation of the moments at A and E:
3
ZMA=0 = Y,><4a—w><a—w><2a—w><3a=0:Y,=§W

Since, the truss is symmetrical then:

29



=
=
g

B D YF VY H _ i
0 g o , S ~
_:K\%'m O C ,E - G Im:é:i
3w 3‘\:
2 2
‘ a
L

Figure 10: Support Reactions due to Applied Real Loads

b) Use the Method of Joints to Determine The Internals Force in Each Member,
due to the Applied Real Loads

For equilibrium at joint A;

> &

>

3w
2
Figure 11: Joint Equilibrium at joint A

Summation of vertical and horizental forces to determine the forces in each member

3w 3w
ZFY=0 ﬁFAB-I_ 7=O =>FAB=_7

ZFX:():}FAC:O

Hence, by applying this method for each joint the internal forces on each member is

caculated as shown in Figure 12.
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Figure 12: Truss Diagram with Internal Forces due to Applied Real Loads

STEP 2:
a) Apply Virtual Force, n

Place the virtual unit load on the truss at the joint where the desired displacement
is to be determined. The load should be directed along the line of action of the
displacement. With the unit load so placed and all the real loads removed from the
truss, the internal n force in each truss member is calculated. Agian, it was assumed
that the tensile forces are positive and the compressive forces are negative. The unit
load was applied at point E with the intention of determining the deflection at that

point (Fig. 13) which is in the center of the assumed symetrical truss system.

L

Figure 13: Truss with Virtual Unit Force Applied
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b) Solve For the Support Reactions due to The Virtual Force

The aformentiond procedure is applied to caculate the reaction at each support

which is resulted by the virtual forces (Fig. 14).
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Figure 14: Support Reactions due to Applied Virtual Forces

¢) Use Method of Joints to Determine the Virtual Force in Each Member
The virtual forces on each member are calculated by applying the method of joints

that is illustrated in the applied real load (Fig. 15).
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Figure 15: Truss Diagram with Internal Forces due to Virtual Force
STEP 3:
a) Calculate the Deflection

The deflection of the truss can now be determined by computing the equation 3:

nNL

L) =YX— (8)
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Table 1: Calculate the mid-span Deflection at Joint E

Member n N L NNL
AB ~1/2 —3W/2 b 3W /4
AC 0 0 a 0
2 2 NP 2 3w
BC V“ZZb W Zb“’ Jaz + b7 | 7 (a® + b?)a? +b?
_ _ 3a3w
BD | " | Ty, | @ fap
CD ~1/2 —3W/2 b 3W /4
3a3w
CE b saw/, a /ap?
2 2 2 2 w
ep (YOO NG A 5t | gy @+ b 42
3
DF —a/b —2aW/b a 2a W/bz
EF 0 w b 0
3
FH Yy | TRawy, a W
2 2 2 2 w
en (YD NP a2 | gy (@ 4 b 42
3acw
EG b saw/, a /ap?
GH ~1/2 —3W/2 b 3W /4
_ 3acw
HJ Yop | T3/ a /ap?
2 2 2 2 3
Gy (YT TN @bt | o7 @+ oW+ b
Gl 0 0 a 0
1J ~1/2 —3W/2 b 3W /4

The total deflection (for selected case) at point E is:
A=
In this case the number of the frame on one half of the structure is equal to two then :
A= A= a* + 3w + 2 (a? + b?):/AE

Following the same procedure used previously, calculate the deflections (k=1 until

7w
b2

2 3
a® + 3wb +b—v: (a® + b?)z JAE

k=10) to find the general deflection formula.
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Table 2: Determine the deflection formulas due to the number of bays on one half of
the symmetrical flat truss

k Deflection Formula (Ay,)
T w , 1 1 ,

1 | A= E*ﬁa +§*Wb+ E*ﬁ(a +b)2/AE

2 A2—7*ﬁa +3*Wb+2*—(a +b2)2/AE

A O.Y 3+13 b+9 (a? +b2)2 AE
—_— — — — —*—

ST R Ty Ty e /

4 A4—1O8*ﬁa +11*Wb+8*—(a +b2)2/AE
525 w , 33 25 w 5

5 |As= > %52 @ +7*wb+7*— (a? +b)z/AE

w w 3
6 | Ag= 543*b_2a3+23*Wb+18*b_2 (a® + b*)2/ AE

2000 w _ 61 49 )
2 | 4,= 5 %52 @ +7*Wb+7*—(a +b)2/AE

w w 3
g |Ag=1712 *ﬁcﬁ +39xwh+32x.5 (a* +b*)2/ AE

5481 w 3 97 b+ 81 @+ b2)2 AE
*k — — % _*_
> 12 a > w > a /

9 |Do=

Ago= 4175 * = 3+ 59« b+50*£(2+b2)% AE
10 10= ke w 2 (@ /

4.1.4 Calculate the General Formula Using Maple 12

MAPLE is a powerful mathematical software package. It can be used to obtain
symbolic and numerical solutions of problems in arithmetic, algebra, and calculus
and to generate plots of the solutions it generates [28].

In this section, constructing a deflection formula by MAPLE to obtain a different
mathematical approach for the calculation of the deflection of trusses will be

discussed.
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4.1.5 Equation of the Coefficients

The first step is to specify the data as a collection of points, or as separate
collection of independent and dependent values. Table 3 shows the coefficients of
the previous deflection formulas as a collection of points

Table 3: The Coefficients of Deflection Formula

Coefficients
K 3 3
a b (a? + b?)2
1 1 1 1
2 14 6 4
3 69 13 9
4 216 22 16
5 525 33 25
6 1086 46 36
7 2009 61 49
8 3424 78 64
9 5481 97 81
10 8350 118 100

The second step is to provide a mathematical formula for the specific datas by
using the CurveFitting [Interactive] command in MAPLE (Fig. 16).

b¢ Tl EE &= HNIOHFe F Bk 2 G
MR PO R S AR <] *Equation of (5) nd (b) = Multple Loadima ' |
Text [Math] (G 20 Input ¥ ) Lucida Bright >)(=z v) B u E = mhif =i

with( CurveFitting) -
Interactive( [[1, 1], [2 8], [3, 12], [4, 22], [S, 32], [6, 48], [7. 61], [8, 78], [9, 97], [10, 118]], » );

2+ 2+ K

[= with( CurveFitting)
Interactive( [[1, 1], [2, 6], [3, 13], [4. 22], [5 32], [6, 46], [7. B61], [B. 78], [9. 97], [10, 118]], & );

1204

1004

30

60

40

20

0

Figure 16: Determiniation of coeficient equation in MAPLE
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Finally, the general deflection formula (Aj) has been calculated :
A= %(%kz + Zk‘*)%cﬁ +2(k? + 2k — 2)wb + k2 22 (a® + b?)¥/?/AE  (11)
Here:
A= joint displacement caused by the real loads on the truss
k= number of bays on one half of the symmetrical truss
w= multiple loads on the structure that are applied at joints
a= distance between the joints of truss members (bay width)
b= height of the truss
A= cross-sectional area of members
E= modulus of elasticity of a members
4.1.6 Ratio of Height

The main aim of this section is to find a relative optimum height of truss to reach
the minimum optimum deflection in each truss case. For this purpose, the deflection
formula obtained in the previous section is converted into a mathematical function
(f(k)). Since a and b are the two parametric values which are representing the
distance between the horizontal truss joints (bay width) and the height of the truss
system respectively, then it is assumed that the ratio of b to a can be equal to one
single parameter, X. As a result, instead of getting the derivative of a and b in (f (k)),

based on one single parameter of X, the calculation and results will become less

complicated and more accurate.

1/1 5 w 1 1 _w
— (22424 342 (2 _ 22 (42 4 p2)3/2
f k) 2(6n +6n )bza +2(n +2n 2)Wb+2n bz(a +b%) (12)
Assume:
b
=X = b =ax (13)

then by substituting equation (13) in equation (12) the following is obtained:
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1+5k2+6x3(1 +%—A)+6\/1+x2+6\/1+x2x2

1 p)
flx) = Ekzwa k e
1 2
= Ek wa g(x) (14)
in which:

1+5k2+6x3(1+%—%)+6\/1+x2+6 14 x2x?

x2

glx) = (15)

The derivative of equation read:

dg
dx

6k*V1 + x2x3 + 12x3V1 4+ x2k — 12x3V1 + x2 — 2k*V1 + x%2 — 10V1 + x2k*

k?v1 + x2x3
6x*k? — 6x%k? — 12k*
(16)
KNI F 25
dg L .
Set — = 0 which implies;
dx
2(3k?x3 + 6kx3 — 6x3 — k? —5k")J1 +x2 4+ 6k?(x* —x2—-2)=0 (17)

To find x, plot the later function in terms of x for different values of k. This is
illustrated in Figure 17 which in captured from MAPLE application. The ratio of
height to joint distance is obtained via the assumed parameter of x and the next step

is to determine the amount of deflection corresponding to this ratio.
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¢ TP EE @«=2 NI OHd & BT 2 2
M Calculation {nj-Multiple Load.mw €

[rext]math  ( C 20 nput ¥ ) ( Lucida Bright (ezv) BIU E== Wi =iz
;> restart;
> k= 1; (2H3RAR AT BT AZ-BrEAZ kA2 S RkAL) Faqrt( 1+EA2)+ B RARH A4 -AD-2) = O
k=1
2(3:-8)J1+x +6x—Bx—12=0
[> plot((2*(3"xA3-6 ) sqrt (1 +xA2)+ B* 4-6*242-12, % = 1.333 .. 1.334, ¥ = -0.1 0.1},
010
] P
0.05 P
] s
/’/'
¥ 0 T T T 1
1332% 13334 13336 13338 13340
//3 X
-0.05+
-0.10-
[ > x=1.3333;
x=13333

Figure 17: Calculation of x according to the graph drawn in MAPLE application

Following the same procedure would lead to the calculation of the ratio (b/a) for
different values of k (k=1 ...k=10) for each assumed truss model. It is important to
identified that the interval assumed for x = b/a, and the selection of values of k
between 1 to 10 is purely intended to get more accurate and adequate results for x
(Table 4).

Then the calculated ratios (x= b/a) are brought togather in order to create an

equation out of the determined series of x. To achieve the expected equation, the

TABLE CURVE application is used.
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Table 4: Different ratios of b/a based on the interval assumed for n
b/a
1.33330000
1.58870000
1.97493600
2.35418000
2.71584870
3.06026000
3.38936800
3.70514060
4.00928040
4.30319927

=~

O ONOO|OTRWIN(F-

-
o

4.1.7 Calculation of Ratio by using Table Curve 2D v5.01

Table Curve 2D is a linear and non-linear Curve fitting software package for
engineers and scientists that automates the curve fitting process and in a single
processing step instantly fits and ranks 3,600+ built-in frequently encountered
equations enabling users to easily find the ideal model for their 2D data within
seconds [29].

The expected final equation is done by TABLE CURVE computer application
instead of MAPLE application. TABLE CURVE is used for the formation of the
equation since it has extensive variety of equations (2600 equation only for each
curve fitting) and variety of equation formats (e.g. linear and non-linear equation at
the same time with wider interval). In addition, equations with insignificant terms
have been removed from the equation list at the end of the curve fitting. Some other
equations that may be absent from the list are due to not being fitted. For example,
there is no point in fitting an equation with an In(x) term if there are negative x
values in the data set.

Therefore, among the possible equations one of the best studied equations is
selected for further approaches (Fig. 18).
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M Review Curve-Fit
Fle Refrrerce Scan b Windw

TSI I [ 1] 2ls] ¢l = A[+{2]7 (] % 2

C:\Documents and Settings\Operator\Desktop\Table Curve\Flat Truss - Type 1\Point
Rank 14 Eqn 6204 y=a+bx+clcrdx2te2+fix3+gix3thxd+ixt
r’=0.99999996 DF Adj r’=0.99999965 FitStdErr=0.00060966131 Fstat=3178366.1
a=6.4703656 b=-0.60701466 c=-18.561882 d=0.10303002 e=34.250594
£=-0.0065278169 g=-32.694143 h=0.0001672665 i=12.366411

B AN

(9]

o=

(=)

S
Residuals [9]

Residuals

Figure 18: Determining Equation Ratio by applying TABLE CURVE

The equation was constructed based on 10 different b/a ratio’s from the best fitted

to the input set as below:

18.5754 34.2931
f(x) =6.470 — 0.6075x — B— + 0.1037x% + Xz 0.00653x3

32.7393 12.392
— = +0.0001673x* + — (18)
X X

The resulted equation for the TABLE CURVE application is imported in MAPLE

so that the minimum amount of k can be achieved.
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Value of ratio (b/a) (m)
' 50

T Number of bay
%o -10 0| 10 20 30 (k)

=10-

Figure 19: Curve plotted in MAPLE selected out of the imported TABLE
CURVE equations

Therefore, the minimum value of k is calculated based on the plotted graphs in
MAPLE (Fig. 19). In other words the minimum value of k is introduced for the truss
model that promised to deliver the minimum deflection among all the 10 selected
models. Briefly, the truss with the minimum value of k demonstrated the minimum
mid-span deflection for the truss.

1284\

1274 |

1.26 ,\ //

125+ /

1.247 e e

T T T T T T T T T T
104 108 108 110 1.12 114 1.16 118 120 1.22
X

[1.22B17712739849567, [x = 1.13806811292415811]]

Figure 20: Determining the minimum value of n from the TABLE CURVE

41



For instance, for the selected truss model as shown in Figure 20 the minimum
value in the X coordinate (1.13807) is presented the minimum value for k to achieve
the minimum deflection in the truss span. Furthermore, the minimum value of k on X
coordinate (1.13807) is intersected with Y coordinate at point 1.23 only, which is
named as height ratio (b/a). Therefore, the selected symmetrical truss model is
delivered the minimum deflection amount (among the ten defined possibilities for n)
if and only if the frame carried maximum of 2 frames on each side. In other words
when, 1 < minimum point < 2 we are allowed to assign a minimum of one and a
maximum of two frames on each half of the selected symmetrical truss model.

4.1.8 Loading

It is discussed earlier in this chapter that the selected trusses were loaded in a
similar manner and only dead and live loads were considered with 1.25kN/m 2 and
0.75kN/m? load factors respectively (wind load was not considered). Also, it was
assumed that the weight of the cladding system, isolation and self-weight of the truss
and the purlins were considered as dead load. Therefore, the load of flat truss is
calculated as a sample to illustrate the whole procedure followed to achieve the total

load acting on the nodes for each type of truss models.

Height = 2. 95

~" Spacing=2.5m

1.25m

Span = 10 m

Figure 21: Typical Layout of Trusses with Labels
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Data:

Spacing of Truss =25m
Height of Truss =2.95m
Dead Load (on Plan) =1.25 kN/m?
Live Load (on Plan) =0.75 kN/m?

Calculation of point load on nodes:

Dead load (on slope) =1.25 kN/m?
Total dead load =1.25 x 0.625=0.78125 kN/m x2 =1.5625 kN/m

=1.5625 x2.5=3.90 kN

Live load (on slope) =0.75 kN/m?

Total dead load =0.75 x 0.625=0.46875 kN/m x2 =0.9375m
=1.5625 x2.5=2.34 kN

Total Point load, p =14DL+16LL

= 1.4 (3.90 kN) +1.6 (2.34 kN)
=9.2 kN

The point loads determined were applied on each node (Fig. 22) in order to
analyses the truss model in STAAD Pro. Similarly, the load on each joint is obtained
for all assumed truss models as is shown in Table 5.

0.2kN 9.2kN 9.2kN 9.2kN 9.2kN 9.2kN 9.2kN

RERREES

Figure 22: Point Loads Acting on Nodes
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Table 5: The Calculated loads associated with the selected spans and bays

Span (m) sTp ;“(':S:S DL LL | TotalDL | Total LL | Total PL
oy | (kN | (kNim?) (kN) (kN) (kN)
10 25 1.25 0.75 3.90 234 9.20
s |20 5 1.25 0.75 15.60 9.40 36.88
30 5 1.25 0.75 23.44 14.10 55.32
40 5 1.25 0.75 31.25 18.75 73.75
10 25 1.25 0.75 312 2.00 757
s |20 5 1.25 0.75 1250 750 29.50
= 30 5 1.25 0.75 18.75 11.25 44.25
40 5 1.25 0.75 25.00 15.00 59.00

10
g |20 5 1.25 0.75 7.80 470 18.44
30 5 1.25 0.75 11.72 7.00 27.10
40 5 1.25 0.75 15.62 9.40 36.01

10

20
k=10 35 5 1.25 0.75 9.40 5.60 2212
40 5 1.25 0.75 125 750 29.50

4.1.9 Analysis by using STAAD Pro

It is indicated at the beginning of this chapter that the methodology of optimal
truss determination mentioned in this research is by hand calculation, then creating
the general formula in Maple, followed by the ratio calculated from Table Curve 2D
and finally identify the member section properties required as a result of the analysis
by STAAD Pro (Fig. 23). To achieve the deflection for each of the 11 Analysis
procedures selected trusses, section properties from the analysis of all the truss
members were substituted in the deflection formula (A) created in Maple. Therefore,
the numerical amount of deflection for each selected truss is calculated and then
compared to each other as detailed in the following chapter (Discussion and

Conclusion).
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- X
Geometry | Property | Loading | Shear Bending | Deflection | Design Property | Steel Design

Beam no. = 15. Section: TUB1201204.0

=

Length = 2000 hf=120.00

Phyzical Properties [Unit: rarn)

A 1540 I 5.35e+006

Ay 960 Jy  |4.1e+006 Azzign/Change Property
AT 950 Iz 4.1e+008

o] 120 W 120

I4 aterial Properties

Elzsticty(kMimma) | 205 Censity(kgind) | 783341 STEEL -
Poizzon 0.3 Alpha 1.28-005

Figure 23: Section Property Resulted from STAAD Pro Analysis

4.2 Analysis Results

The deflection formula is derived and applied to the selected models in order to
predict the optimal truss. The results are analysed based on the ratio of b/a for each
truss model to highlight the least deflection value. The determination of the optimum
truss is investigated by considering the characteristics of minimum deflection and
stress as discussed below.

4.2.1 Determination of Optimal Truss

The deflections resulted from the analysis of different span lengths for all 11 types

of flat, triangular and warren trusses were recorded. Hence, the least deflection and

minimum stress was identified for each truss due to its model, type and span length.
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The following tables and graphs are prepared to demonstrate the least deflection and
minimum stress for the number of bays in each type and model of truss systems.
4.2.2 Deflection outputs

The deflection calculated for each model (flat, triangular and warren) are grouped
in 3 individual tables (Tables 6, 7 and 8). Also the deflections for each stated
circumstance of truss model, type and number of bays are presented for further
discussions.

e Flat Truss: The mid-span deflections for the 5 different types of flat trusses

are calculated as given below (Table 6).

Table 6: Deflections for various spans of Flat Trusses

Type Deflection (A) (mm)
10 | 212 | 085 | 112 | 107 | 130
eq |20 [ 438 | 172 | 290 | 255 | 880
= 30 | 583 | 266 | 394 | 3.4 | 452
40 | 688 | 314 | 500 | 473 | 573
10 | 253 | 18L | 150 | 102 | 102
_c [ 20 [ 483 | sa5 | 386 | 227 | 433
= 30 | 7.00 | 412 | 461 | 300 | 584
40 | 730 | 522 | 583 | 424 | 660
10
_g |20 [ 760 | 370 [ 540 | 425 | 702
= 30 | 9.00 | 440 | 7.70 | 504 | 831
40 | 11.88 | 560 | 1022 | 6.43 | 1104
10
20
k=10 301980 [ 570 [ 841 | 640 [ 8%
40 | 107 | 640 | 947 | 7.20 | 101
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Flat Truss, k=4

8

N
T 6
E L AN .
= == Span 10 m
s 3 ~— Span20 m
E 2 == Span 30 m
a (1) y =>= Span 40 m

0 1 2 3 4 5 6
Type of Truss

Figure 24: Graphical comparison of deflections obtained for Flat Trusses with k=4

Flat Truss, k=5

AN

P
N S
.\V.\/%F == Span 10 m

== Span 20 m

A\’\\’{/ == Span 30 m

== Span 40 m

Deflection (A) (mm)
O R, N Wb OOl OO N

Type of Truss

Figure 25: Graphical comparison of deflections obtained for Flat Trusses with k=5
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Flat Truss, k=8
14

12
o N\ A

=¢=— Span 10 m
== Span 20 m
=== Span 30 m

Deflection (A) (mm)

o N B OO ©

0 1 2 3 4 5 6

Type of Truss

Figure 26: Graphical comparison of deflections obtained for Flat Trusses with k=8

Flat Truss, k=10

12
__ 10 L\
S
E 8
Z 6
5 4 =& Span 30 m
2 == Span 40 m
5 2
Qa
0

0 1 2 3 4 5 6

Type of Truss

Figure 27: Graphical comparison of deflections for the Flat Trusses with k=10
e Warren Truss: Three different types of warren trusses with three different
slopes of 10%, 15% and 20% were considered and the deflections for each

type and top chord slope were calculated in Table 7.
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Table 7: Deflections of Warren trusses with different top chord slopes

Type Deflection (A) (mm)
Span 1 2 3
(m) 10% | 15% | 20% | 10% | 15% | 20% | 10% | 15% | 20%
10 1.80 1.67 155 | 0.64 0.61 0.58 | 0.99 0.93 | 0.87
k=4 20 4.46 4.13 3.78 | 153 1.45 1.40 | 2.40 2.30 | 2.10
- 30 5.30 4,92 458 | 2.40 2.27 2.16 | 3.50 3.30 | 3.10
40 7.00 6.50 6.00 | 2.80 2.67 254 | 440 | 4.15 | 3.90
10 2.15 1.98 1.85 | 1.10 1.00 0.96 | 1.48 1.37 | 1.28
k=5 20 5.50 5.10 4,73 | 3.00 2.80 2.66 | 3.34 3.11 | 2.90
- 30 6.36 5.87 5.46 | 4.04 3.80 3.60 | 451 | 420 |3.90
40 8.70 8.00 7.50 | 4.80 4.50 424 | 5.33 | 5.00 | 4.60
10
k=8 20 6.92 6.30 5.75 3.10 297 | 2.80 | 6.00 | 5,50 | 5.03
B 30 7.88 7.16 6.53 4.30 3.98 | 3.74 | 6.90 | 6.30 | 5.80
40 10.86 9.80 9.00 5.10 475 | 592 | 952 | 870 | 7.94
10
= 20
=10 30 10.38 9.36 8.48 5.20 480 | 450 | 7.92 7.20 | 6.50
40 12.13 10.94 | 9.91 6.86 6.35 | 5,91 | 10.88 | 9.84 | 8.90
Warren Truss Type 1, k=4
8
€ ol
£ .
g 4 .\._*.7 == Span 10 m
S 3 —8— Span 20 m
g 2 — Span 30 m
o (1) =>é= Span 40 m
0 1 2 3 4
Selected Slopes for Top Chords

Figure 28: Graphical comparison of deflections of Warren Trusses Type 1 with k=4

and for the three different top chord slopes
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Warren Truss Type 2, k=4
3
)V
E ‘\N
E 2
2 15 — =& Span 10 m
~ *R
s 1 == Span 20 m
% 05 e — === Span 30 m
(&) 0 == Span 40 m
0 1 2 3 4
Selected Slopes for Top Chords

Figure 29: Graphical comparison of deflections of Warren Trusses Type 2 with k=4
and for the three different top chord slopes

Warren Truss Type 3, k=4

5
= 4 w
é ‘\
g 3 =¢= Span 10 m
é 2 u == Span 20 m
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2
= 1 *~— - === Span 30 m
o . == Span 40 m

0 1 2 3 4

Selected Slopes for Top Chords

Figure 30: Graphical comparison of deflection of Warren Trusses Type 3 with k=4
and for the three different top chord slopes
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Warren Truss Type 1, k=5
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Warren Truss Type 3, k=5
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Figure 31: Graphical comparison of deflection of Warren Trusses with n=k and for
the three different top chord slopes
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Warren Truss Type 1, k=8
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Figure 32: Graphical comparison of deflection of Warren Trusses with k=8 and for
the three different top chord slopes
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Warren Truss Type 1, k=10
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Figure 33: Graphical comparison of deflection of Warren Trusses with k=10 and for
the three different top chord slopes

53



The comparison of the deflection values of warren trusses for three different
slopes resulted in identifying the degree of slope that contributes to the most
optimum deflection. The results are given in the following graphs in Figures 34 to 37

for n values of 4, 5, 8 and 10 respectively.

Warren Truss, k=4

7

6
E s l\
= 4 —o— Span10m
S 3 == Span 20 m
2 2
bt === Span 30 m
a) 0 =>&= Span 40 m

0 1 2 3 4
Type of Truss

Figure 34: Graphical comparison of deflection occurred due to optimal slope for
Warren Truss with k=4

Warren Truss, k=5
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= 4 \\\/)( —— Span 10 m
.5 3 “——" == Span 20 m
E 2 *— —= Span 30 m
a (1) =>&= Span 40 m

0 1 2 3 4
Type of Truss

Figure 35: Graphical comparison of deflection occurred due to optimal slope for
Warren Truss with k=5
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Warren Truss, k=8
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Figure 36: Graphical comparison of deflection occurred due to optimal slope for
Warren Truss with n=8

Warren Truss, k=10
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Figure 37: Graphical comparison of deflection occurred due to optimal slope for
Warren Truss with k=10

e Triangular Truss: Three different types of triangular trusses were
investigated, deflections calculated and presented in Table 8 and Figures 38,

39 and 40.
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Table 8: Deflection obtained from the analysis of Triangular Trusses

Type Deflection (A) (mm)
Span(m 1 2 3
10 0.80 0.58 0.82
k=4 20 1.93 1.39 1.96
- 30 2.73 1.98 2.78
40 2.16 1.58 2.21
10 0.66 0.46 0.677
-5 20 1.75 1.24 1.80
- 30 2.81 1.98 2.90
40 2.23 1.60 2.30
10
_g |20 1.83 1.24 1.86
- 30 2.00 1.37 2.05
40 2.12 1.44 2.15
Triangular Truss, k=4
3
= 25
E 2
S == Span 20 m
s 1
= \,/ Span 30 m
& 05
. 0 =>&= Span 40 m
0 1 2 3 4
Type of Truss

Figure 38: Graphical comparison of deflections obtained from the analysis of
Triangular Trusses with k=4
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Triangular Truss, k=5
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Figure 39: Graphical comparison of deflections obtained from the analysis of
Triangular Trusses with k=5

Triangular Truss, k=8
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Figure 40: Graphical comparison of deflections obtained from the analysis of
Triangular Trusses with k=8

4.2.3 Truss Members’ Axial Stresses

The minimum stress obtained as a result of the analysis of each model (flat,

triangular and warren) is grouped in similar manner as the deflection for each model

in 3 single tables (Tables 9, 10 and 11). Also each stress obtained from different truss

models, truss types and numbers of bays are plotted individually in Figures 41 to 55.
e Flat Truss: The trusses selected are flat top chord with 5 different types. The

stresses were calculated for each type.
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Table 9: Stress values obtained for Flat Trusses

Type Stress (6) (kN/mm?)

Span(m) 1 2 3 4 5
10 0.0434 0.0322 0.0400 0.0380 0.0430

s |20 0.0510 0.0325 0.0477 0.0464 0.0514

=% 30 0.0507 0.0340 0.0470 0.0455 0.0500
40 0.0480 0.0300 0.0440 0.0432 0.0480
10 0.0500 0.0400 0.0466 0.0380 0.0588

e |20 0.0740 0.0610 0.0650 0.0430 0.0697

=2 30 0.0680 0.0468 0.0520 0.0390 0.0626
40 0.0670 0.0450 0.0500 0.0420 0.0530
10

_g |2 0.1000 0.0660 0.0800 0.0710 0.1000

=° 30 0.0812 0.0520 0.0770 0.0560 0.0800
40 0.0800 0.0500 0.0760 0.0540 0.0790
10

k=10 22

= 30 0.0830 0.0640 0.0785 0.0684 0.0810
40 0.0700 0.0530 0.0660 0.0570 0.0670

Flat Truss, k=4
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Figure 41: The comparison of stresses for Flat Trusses with k=4
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Flat Truss, k=5
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Figure 42: The comparison of stresses for Flat Trusses with k=5, 8, and 10
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e Warren Truss: Since the truss assumed to be Warren with 3 different types,
therefore related deflection are calculated and compared first based on
assumed slopes and then through the stated characteristics of stress.

Table 10: The obtained amount for stress with 3 assumed slope in Warren Truss

Type Stress (6) (KN/mm?)
Span 1 2 3
(m) 10% | 15% | 20% | 10% | 15% | 20% 10% | 15% | 20%
10 | 0.062 | 0.061 | 0.060 | 0.028 | 0.027 | 0.026 | 0.037 | 0.036 | 0.035
k= 20 | 0.077 | 0.075 | 0.074 | 0.033 | 0.032 | 0.031 | 0.044 | 0.043 | 0.042
=4 30 | 0.065 | 0.064 | 0.063 | 0.034 | 0.033 | 0.032 | 0.043 | 0.042 | 0.041
40 | 0.060 | 0.059 | 0.058 | 0.030 | 0.029 | 0.028 | 0.041 | 0.040 | 0.039
10 | 0.070 | 0.068 | 0.066 | 0.041 | 0.040 | 0.039 | 0.053 | 0.052 | 0.050
k= 20 | 0.097 | 0.095 | 0.092 | 0.058 | 0.057 | 0.056 | 0.063 | 0.061 | 0.059
=5 30 [ 0.071 | 0.070 | 0.068 | 0.052 | 0.051 | 0.050 | 0.056 | 0.054 | 0.052
40 | 0.073 | 0.072 | 0.070 | 0.046 | 0.045 | 0.044 | 0.049 | 0.048 | 0.046
10
k= 20 | 0.110 | 0.106 | 0.103 | 0.063 | 0.061 | 0.058 | 0.100 | 0.097 | 0.094
=8 30 | 0.083 | 0.081 | 0.078 | 0.056 | 0.055| 0.053 | 0.077 | 0.075 | 0.072
40 | 0.086 | 0.083 | 0.079 | 0.050 | 0.049 | 0.047 | 0.080 | 0.077 | 0.074
10
= 20
=10 30 | 0.106 | 0.103 | 0.097 | 0.065 | 0.063 | 0.061 | 0.084 | 0.081 | 0.077
40 | 0.092 | 0.089 | 0.085 | 0.064 | 0.062 | 0.060 | 0.087 | 0.083 | 0.079

WarrenTruss Type 1, k=4
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Figure 43: Graphical comparison of stress of Warren Truss, Type 1, with k=4 and for
the three different top chord slopes
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Warren Truss Type 2, k=4
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Figure 44: Graphical comparison of stress of Warren Truss, Type 2, with k=4 and for
the three different top chord slopes
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Figure 45: Graphical comparison of stress of Warren Truss, Type 3, with k=4 and for
the three different top chord slopes

61



Warren Truss Type 1, k=5
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Figure 46: Graphical comparison of stress of Warren Trusses with k=5 and for the
three different top chord slopes
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Warren Truss Type 1, k=8
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Figure 47: Graphical comparison of stress of Warren Trusses with k=8 and for the
three different top chord slopes
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Warren Truss Type 1, k=10
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Figure 48: Graphical comparison of stress of Warren Trusses with k=10 and for the

three different top chord slopes
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The comparison of warren truss stresses were carried out for the three different
slopes first and then it was done for the optimum slope selected. The following

graphs in Figures 49 to 52 gives the stress values for the truss types with the

optimum slope values.

WarrenTruss, k=4
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Figure 49: The comparison of stresses due to optimal slope for Warren Trusses with

k=4
Warren Truss, k=5
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Figure 50: The comparison of stresses due to optimal slope for Warren Trusses with
k=5
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Warren Truss, k=8
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Figure 51: The comparison of stresses due to optimal slope for Warren Trusses with
k=8
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Figure 52: The comparison of stresses due to optimal slope for Warren Trusses with
k=10

e Triangular Truss: Three different types of triangular trusses are analyzed

and the stresses are presented in (Table 11).
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Table 11: Triangular Truss stresses obtained from the analysis

Type Stress (6) (kN/mmZ)
Span(m 1 2 3
10 0.0186 0.0134 0.0188
k=4 20 0.0220 0.0160 0.0225
- 30 0.0212 0.0150 0.0213
40 0.0126 0.0090 0.0127
10 0.0140 0.0103 0.0142
-5 20 0.0193 0.0143 0.0196
- 30 0.0206 0.0153 0.0209
40 0.0123 0.0091 0.0125
10
-8 20 0.0184 0.0145 0.0185
- 30 0.0136 0.0107 0.0137
40 0.0102 0.0080 0.0103
Triangular Truss, k=4
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Figure 53: The comparison of stress for Triangular Trusses with k=4
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Triangular Truss, k=5
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Figure 54: The comparison of stress for Triangular Trusses with k=5
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Figure 55: The comparison of stress for Triangular Trusses with k=8

So far, the deflections and stresses obtained from the analysis of trusses are
presented numerically and graphically. The main aim is to determine the truss type
with the least deflection and minimum stress value. This will lead to the optimum
truss type. Chapter 5 (Discussions and Conclusion) will discuss in details about the
study of finding the optimum truss type via investigating all the results from the truss

types considered. In addition, a brief discussion of results is included about each

optimum truss identified.
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Chapter 5

DISCUSSION AND CONCLUSION

5.1 Discussion

The truss models selected for this research and the details given in chapter 3
(methodology) were studied for different span lengths (chapter 4 Mathematical
Formulation and Analysis). The investigation was carried out by applying multiple
point loads at truss nodal points by considering height and bay as parametric terms.
The purpose was to find the optimum truss with sufficient height and bay for the
various selected spans. Meanwhile this approach was emerged solely by obtaining
the minimum stress and the minimum deflections at mid span of trusses (chapter 4).
As a result Tables 12 and 13 give the types of trusses that satisfy the minimum stress
and deflection values. The optimum trusses among the 11 selected models with
various span lengths are highlighted. Moreover these results are compared with the
existing cases. Hence it was found out that there is a substantial difference between
the deflection values of the two approaches.

It is stated in previous chapter that the truss span lengths were applied in a
different manner to various types of the truss models. Therefore, in case of trusses
with 4 and 5 bays spans of 10, 20, 30 and 40 meters were considered. But in the case
of 8 and 10 bays the span lengths used were 20, 30 and 40 meters and 30 and 40
meters, respectively. In other words, if the length of span is increasing the number of
bays (k) should increase correspondingly. Otherwise the proportion for each bay

length to the height of the related truss member would be a non-practical geometrical
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shape with inefficient long length in each bay. In addition, the optimum truss types
were satisfied in all the selected span lengths but because of the above mentioned
reasons only the most suitable ones were considered for further comparison with the
existing method.

Thus the results obtained are only focused on specific span lengths which
produced the optimum trusses. It should be noted that the following given table is
generated by using different span lengths for the given number of bays. Moreover,
the optimum truss types were changed due to the use of odd and even numerical
values for the bays.

In order to get a better perception of the optimum truss, clarification of all the
above discussions were investigated in each truss model numerically and graphically.
5.1.1 Deflection and Stress Approaches

Optimum truss for group one (flat truss) is obtained for the selected span lengths
for types 2 and 4 in case of even number of bays and odd number of bays
respectively. It is obvious that, for all the selected span lengths with k=4 the
optimum flat truss is obtained for type two truss having the least mid-span deflection
equal to 0.85 mm. As it is given in Table 12, for the same truss type, the minimum
deflection is obtained as 1.83 mm by using the current available method of deflection
calculation, and this value is greater than the 0.85 mm deflection obtained from the
optimized deflection formula. Similarly, for 30 meters of span length with k= 8 and
for 40 meters of span length with k=10 the optimum trusses are from type two with
considerable differences when compared to the current available method of
deflection calculation. Only in case of truss span with 20 meter length and k=5 the

optimum truss was obtained from type four. Although the optimum truss is type four
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in this case, there is still substantial difference between the values of optimized
minimum deflection and the one obtained from the current method.

Table 12: Comparison of optimum truss deflections for three groups of truss models

Span=10m, k=4
Optimal Truss Existing Deflection Decrease in
Deflection Formula Calculation Method Deflection (%0)
Group 1 Truss2  (0.85mm) | Truss?2 (1.83 mm) 53.55
Group 2 Truss7  (0.58 mm) | Truss?7 (1.07 mm) 45.80
Group 3 Truss10 (0.58 mm) | Truss10  (2.58 mm) 77.52
Span=20m, k=5
Group 1 Truss4  (2.27mm) | Truss4 (6.47 mm) 65.00
Group 2 Truss7  (2.66 mm) | Truss 7 (3.82 mm) 30.40
Group 3 Truss10 (1.24mm) | Truss10  (9.30 mm) 86.70
Span=30m, k=8
Group 1 Truss 2 (440 mm) | Truss2  (11.15 mm) 60.54
Group 2 Truss7  (3.74mm) | Truss7 (5.36 mm) 30.22
Group 3 Truss10  (1.37mm) | Truss10 (12.93 mm) 89.40
Span=40m, k=10
Group 1 Truss2 (640 mm) | Truss2  (14.60 mm) 56.20
Group 2 Truss7  (5.91mm) | Truss7 (8.00 mm) 26.12
Group 3

Figures 56 show the comparison of the amount of deflection obtained from the
optimized deflection formula and the deflection of the same truss type by using the

current available method of deflection calculation.
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Figure 56: Comparison of optimum flat truss and existing flat truss system in case
k=4 and S=10m
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The following graphs in Figures 57 to 60 gives the comparison of deflection

values between the optimum and existing flat truss type with the different span

lengths.
Flat Truss, k=4
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Figure 57: The graphical comparison of deflection values between the optimum truss
and the traditional truss system in case of k=4 and S=10 m
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Figure 58: The graphical comparison of deflection values between the optimum truss
and the traditional truss system in case of k=5 and S=20 m
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Figure 59: The graphical comparison of deflection values between the optimum truss
and the traditional truss system in case of k=8 and S=30 m
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Figure 60: The graphical comparison of deflection values between the optimum truss
and the traditional truss system in case of k=10 and S=40 m

The results of the stress output also demonstrated that the optimum truss for
deflection is also the optimum truss for the stress. Thus, the optimality is once again
for the second type for even and forth type for odd number of bays respectively. Like

the results of deflection there are noticeable differences between the stresses obtained
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for optimum truss and the ones from STAAD Pro analysis in Table 13. Since the
least deflection with minimum stress is existed for the above identified types of
trusses then there would be no other optimum truss for the specified model.

Table 13: Comparison of optimum truss stresses for three groups of truss models

Span=10m, k=4
Optimal Truss Existing Truss Decrease in
KN/mm? kN/mm? Stress (%)
Group 1 Truss2  (0.032) Truss2  (0.100) 68.00
Group 2 Truss 7  (0.027) Truss 7 (0.054) 50.00
Group 3 Truss 10 (0.013) Truss 10 (0.050) 74.00
Span=20m, k=5
Group 1 Truss4  (0.043) Truss4  (0.083) 48.20
Group 2 Truss 7 (0.056) Truss 7 (0.093) 40.00
Group 3 Truss 10 (0.014) Truss 10 (0.085) 83.53
Span=30m, k=8
Group 1 Truss2  (0.052) Truss2  (0.134) 61.20
Group 2 Truss 7 (0.053) Truss 7  (0.086) 38.40
Group 3 Truss 10 (0.011) Truss 10 (0.066) 83.40
Span=40m, k=10
Group 1 Truss2  (0.053) Truss2  (0.133) 60.15
Group 2 Truss 7 (0.060) Truss 7 (0.093) 35.48
Group 3

The following graphs in Figures 61 to 64 gives the comparison of stress values

between the optimum and existing flat truss type with the different span lengths.
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Figure 61: The graphical comparison of stress values between the optimum truss and
the traditional truss system in case k=4 and S=10 m

75



Flat Truss, k=5

0.12

0.1

0.08 S =i £l HaE—

0.06
# Optimum Truss

0.04 o
Traditional Truss

Stress (o) (KN/mm?)

0.02

Type of Truss

Figure 62: The graphical comparison of stress values between the optimum truss and
the traditional truss system in case of k=5 and S=20 m
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Figure 63: The graphical comparison of stress values between the optimum truss and
the traditional truss system in case of k=8 and S=30 m
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Figure 64: The graphical comparison of stress values between the optimum truss and
the traditional truss system in case of k=10 and S=40 m

The optimum truss type for the second group of truss model or warren truss
system is located in type 2. Before any further investigation is carried out on warren
trusses it is important to mention that the calculation of optimum warren truss is
based on 3 selected roof slopes (10%, 15% & 20%). It was observed that the amount
of deflection is decreased by increasing the degree of truss top chord slope. As
demonstrated in Table 12 the minimum deflection was obtained in truss type two
with 20% slope. Likewise for the flat truss the least deflection obtained was much
lower than the value obtained by using the current truss deflection calculation
method. Therefore, the optimum truss for 10 meter span with k=4, 20 meter span
with k=5, 30 meter span with k=8 and 40 meter span with k=10 were found to have
0.58, 2.66, 3.74 and 5.91 millimetres mid-span deflections respectively. It was
observed that there is significant difference between the deflections of optimised
truss and those that are obtained by using the existing truss deflection calculation.

Similarly, the outputs for the minimum stress values (Table 13) in warren truss are

following the same trend as the deflection values. Therefore, if and only if, the
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minimum stress and the deflection are observed at the same time then the truss type
is an optimal warren truss.

The third group of truss model (Triangular model) was studied almost in a similar
manner as the flat and warren truss models. Also the 10m truss span cannot be used
for this study due to its non-practical geometrical shape and irregular distance
between the joints. As a result the occurred deflections obtained for 10, 20 and 30
meter span are 0.58, 1.24 and 1.37 mm respectively. A comparison between the
optimized truss systems with traditional approach of truss design proved to be
considerably different from each other.

The stresses for the truss members (Table 13) followed the same trend those for
the deflection in triangular trusses. Consequently, the optimum triangular truss was
achievable due to the least deflection and minimum stress.

5.1.2 Revised Deflection Calculation

Besides the above mentioned outcomes a significant advantage is achieved due to
mathematical formulation. The mathematical formula created an easy, fast and
accurate way to calculate the deflections of trusses considered in this research.
Currently, the most efficient and accurate way for determining the deflection value is
virtual work method. Although the current method is the most widely used method
for this purpose it is dependents on long and complicated procedure. The suggested
formula is introduced a new approach to determine the deflections for the trusses in
an extremely short and easy procedure. Essentially, the proposed deflection
calculation method is specified an individual formula for each type of the truss
models (Table 2) studied in this thesis. Thus, by deciding on the values of the
unknowns (n, a, b, w, A and E) and substituting them into the related formula the

deflection can be calculated for the first type of flat truss (Eq. 11).

78



Since the above given unknowns are available in each truss type simply by
substituting them in the suggested formula for the specific truss type the deflection
could be obtained in a very short time with minimum mathematical calculation and
less possibility of making a mistake due to long mathematical calculations.

Although the new approach given is opened a considerable perception in design of
truss system, still there are further studies out of scope of this research like; non-
linear optimization of the weight, cost, stress, height and deflection of trusses at

once.
5.2 Conclusion

A unique set of design methods or guides for truss systems with different span
lengths is not yet established. Although there are some reliable experimental
estimation methods and considerable mathematical optimization formula for design
of trusses still there is no standards for the design of three truss models; flat, warren
and triangular truss.

Therefore, a mathematical assessment is carried out to introduce a common
formula to guide engineers, designers and decision makers in choosing the truss type
with the optimum deflection for the given spans. The created mathematical formula
is based on virtual work method to achieve the truss type with the least deflection
and minimum stress in order not to unnecessarily over design and also to reduce the
secondary effects. Simultaneously, effort was made to derive a formula that can be
applicable for most common types of the flat, warren and triangular truss models.

The information provided in the previous chapters and the discussions in this
chapter makes it clear of how to choose the most efficient truss type and geometrical

shape for different span lengths.

79



The approach introduced as a result of this study would lead the engineers,
designers and decision makers to be able to carry out the most efficient and accurate
truss design. As a result, the matters relating to over design, inaccurate design
estimation and time consumption due to lengthy calculations can be a matter of
history with this approach. Also a large number of possible design variables with
mathematical formulation for optimal solution and effective solution procedures are
achieved.

To conclude it is suggested to undertake the investigated method to design

optimized truss systems instead of using existing methods.
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