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ABSTRACT 

The purpose of this study is to carry out an investigation on the existing truss 

systems in order to introduce a mathematical formulation relating to the geometrical 

shape of the truss so that the mid-span deflection of the truss can be optimized. Every 

time there is a need to use a truss structure it is difficult to decide which truss type, 

bay width and height would produce the optimum truss shape with minimum mid-

span deflections and its corresponding minimum bottom chord stress for a specific 

span length. The results of this study is expected to produce a set of guidelines to 

help researchers, designers and practicing engineers to determine the most 

appropriate and efficient truss system for their specific usages. In order to achieve 

this aim, a total of two sets of two-dimensional trusses with eleven different shapes 

of common symmetry, made of steel with pinned and roller supports were studied to 

identify which truss shapes and sizes are efficient for the purpose of this study. The 

design loads are applied to the joints so that there is no moment to be resisted by the 

members.  Initially, the virtual work method was applied on selected truss shapes in 

order to obtain the amount of deflection at mid-span of the trusses. Afterwards, hand 

calculation was carried out followed by computer analysis using MAPLE 12 and 

then the use of TABLE CURVE 2D v5.01 for mathematical approach to derive the 

deflection formula. Finally, STAAD Pro was used to analyze and design the truss 

structures. The analysis of all sets of trusses enabled the comparison among the 

various spans, height and bay width of trusses. Thus, the changes in mathematical 

deflection formula, due to the number of bays and shapes of trusses were lead to 

obtain the specific optimum height and minimum deflection for each truss system. In 
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other words, the occurrence of minimum deflection along the truss span and 

optimum height presents the optimum truss. 

Besides the above mentioned outcomes a significant advantage was achieved due 

to mathematical formulation. The formula derived demonstrates an easy, fast and 

accurate way of calculating the deflection value at mid-span of trusses. Currently, 

virtual work method is the most efficient and accurate way of determining the 

deflection. Although this method is the most common one it is dependent on long 

and complicated procedure. The formula derived in this study has introduced a new 

approach to determine the mid-span deflection of trusses in an extremely short and 

easy way. 
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ÖZ 

Bu araştırmanın amacı mevcut makas sistemlerini inceleyerek geometrik şekillerine 

ilişkin bir matematiksel formül üretmek ve böylece makas orta noktasında oluşacak 

sehimi olabilecek en az seviyeye çekmektir. Makas kullanımına ihtiyaç duyulan her 

durumda, hangi makas şekli, dikey eleman açıklıkları, yükseklikleri ve makas 

uzunluğunun kullanımı ile optimum makas şekli ve buna bağlı olarak makas orta 

noktasında en az sehim ve makas altı gerilme elemanlarında en az çekme basıncının 

oluşacağına karar vermek çok zordur. Bu çalışmanın sonuçlarının, araştırmacı, 

tasarım yapan ve pratikte çalışan mühendislerin, kullanım ihtiyaçları doğrultusunda 

en uygun ve etkin makas sistemini bulmaları  için yol gösterici olması 

beklenmektedir.   

Bu amaca ulaşmak için çelikten yapılmış, destekleri basit ve yatay yönde 

hareketli, iki gurup, iki düzlemli  ve ortak sistemi olan 11 adet makas seçilmiş ve 

hangilerinin bu amaca uygun oldukları incelenmiştir. Tasarım için kullanılan yükler 

taşıyıcı elemanlarda herhangi bir momente neden olmaması için yatay ve dikey 

elemanların birleştiği düğüm noktalarına yüklenmiştir. Önce sanal çalışma yöntemi 

kullanılarak seçilmiş makaslara yükleme yapılmış ve makas uzunluğunun orta 

noktasında oluşan sehimler elde edilmiştir. Bunu takiben, önce elde ve sonrasında 

bigisayar kullanarak (MAPLE 12 ve TABLE CURVE 2D v5.01) matematiksel bir 

sehim formülü üretmek için analizler yapılmıştır. En sonunda STAAD Pro 

kullanılarak makas yapıları analiz ve tasarımı yapılmıştır. Tüm makasların analiz 

sonuçları kendi içerisinde açıklıkları, yükseklikleri ve de dikey eleman açıklıkları 

açısından karşılaştırılmasına olanak sağlamıştır.  
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Böylece, sehim formülünde makas şekli ve dikey aralıklardan dolayı oluşan 

değişimler her makas yapısı için optimum yükseklik ve en az sehimin elde 

edilmesine yardımcı olmuştur. Diğer bir değişle, makas boyunda elde edilen en az 

sehim ve en az yükseklik o makasın optimum bir makas şekli olduğunu 

göstermektedir.   

Matematiksel formülasyon yukarıda belirtilen sonuçlara ilaveten önemli bir 

avantaj elde edilmesine neden olmuştur. Oluşturulan yeni formül kullanılarak makas 

orta noktalarında kolay, hızlı ve doğru bir şekilde sehim hesaplaması 

yapılabilmektedir. Şu anda, sanal çalışma yöntemi sehim hesaplamaları için en doğru 

ve etkin sonuç veren yaklaşımdır. Bu yöntem hernekadar da yaygın bir şekilde 

kullanılıyor olsa da uzun ve karmaşık prosedür gerektiren bir yaklaşımdır. Bu 

araştırma sonucunda elde edilen formül, makas orta noktalarında oluşan sehimi çok 

kısa sürede ve kolayca hesaplayabilecek yeni bir yaklaşımdır.  
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Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

“A truss is a structural element composed of a stable arrangement of slender 

interconnected bars. The  pattern of  bars, which often subdivides the truss into 

triangular areas, is selected to produce an efficient, lightweight, load-bearing 

member” [1]. Since the members are connected at joints by frictionless pins, no 

moment can be transferred through this joints. Truss members are assumed to carry 

only axial forces, either tension or compression. Because of the fact that stress is 

produced  through the length of truss members, they carry load efficiently and often 

have relatively small cross section [1]. 

Basically, in truss design, compressive and tensile forces act seperately on each 

member, causing less consumption of material and increase in the economic revenue. 

In fact, the structural beheviour of many trusses is similar to that of a beam. The 

chords of a truss correspond to the flanges of beam. The forces that developed in 

these members make up the internal couple that carries the moment produced by the 

applied loads. The webs give stability to the truss system. Therefore, they transfer 

vertical force (shear) to the supports at the ends of the truss [1]. 

Before steel became an economically useful material, trusses  were made of wood 

or iron. Nowadays, most of the trusses are made of wood, steel, wood and steel, or 

aluminium. Concrete trusses are not common but do exist, usually in very large 

structure. 
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The members of the most modern trusses are arrenged in triangular patterns 

because even when the joints are pinned, the triangular form is geometrically stable 

and will not collaps under load. In contrast, a pin-connected rectangular element, 

which acts like an unstable connection, will collapse under load. On the grounds that 

the triangel configuration gives them high strength- to-weight ratios, which permit 

longer spans than conventional framing, and offers greater flexibility in floor plan 

layouts. Long spans without intermediate supports create large open spaces that 

architects and designers can use with complete freedom [1]. 

The design of truss structures has to be carried out according to the two important 

requirements; the best geometrical layout and the most adequate cross-sections. In 

general, the structural shape depends on the design standards and partially on 

economical, aesthetical, construction techniques, application and environmental 

aspects. Moreover, for any truss design there must be an optimum shape and a cross-

section that is adapted for external loads [2].  

In the past decades, the subject of optimization has made important progress in 

most of the scientific fields. In recent years, the development in computational 

abilities made an impressive improvement in design optimization schemes for 

majority of the engineering issues, including those issues relating to structural 

engineering. The development of structural optimization algorithms has obtained an 

adequate horizon for engineers to find the most suitable structural shape for a 

particular loading system.  

1.2 Objectives of Research 

This research is aimed to carry out an investigation on the existing truss systems 

in order to introduce a mathematical optimization approach. This approach is 

expected to produce a set of guidelines to help researchers and practicing engineers 
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in order to select a suitable truss system for their specific usages. Therefore, 

objective of the optimization was to minimize deflection at mid-span with 

constraints; loading, spans and truss chord member spacing. Finally, the research has 

fulfilled the following objectives: 

• To identify the efficient truss shapes in terms of deflection among the eleven 

selected geometry of truss shapes in proportion of height and distance 

between joints (Bay) using mathematical formulation. 

• To develop the general deflection formulas using existing virtual work 

method to demonstrate an easy, fast and accurate way of calculating the 

deflection value.  

• To compare the deflection of the selected and optimized truss shape with the 

same ones in the construction industry.  

•   To determine which optimum shape of truss can be applied to a given span, 

under height and bay circumstances. 

1.3 Outline of Research 

Chapter 2 provides a discussion of characteristic of truss systems, structural 

optimization and background with regard to behavioural construction, mathematical 

formulation for optimal and effective solution procedures to introduce the different 

techniques to obtain the optimal truss structure. 

In chapter 3, the eleven shapes of common symmetry trusses in 2-D position are 

categorized to find the most appropriate type for the design of the selected truss 

structure. Therefore, a mathematical assessment carried out to introduce a common 

formula to guide engineers, designers and decision makers in choosing the most 

optimal deflected truss type for given spans. 
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Chapter 4 reveals the methods in detail based on the objective of the research. 

Initially, the virtual work method (force method) applied on selected truss structure 

in order to obtain the amount of deflection. Then hand calculation was carried out 

followed by a computer application analysis using MAPLE and then the use of Table 

Curve 2D for mathematical approach to create the deflection formula. Finally 

STAAD Pro computer software was used to analyze and design the truss structure.  

As a result the deflection formula was derived and applied to the selected models in 

order to determine the optimum truss. Therefore, the output of simulated models for 

different span lengths and bays would demonstrate the least deflection and minimum 

stress simultaneously. 

Consequently, Chapter 5 provides the advantages of introduced method for 

engineers, designers and decision makers to make the most efficient and accurate 

truss design.  
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Chapter 2 

2 LITERATURE REVIEW 

2.1 Trusses 

2.1.1 Characteristics of Triangulation, Joints and Member Forces of Trusses 

A truss is an assembly of long, slender structural elements that are arranged in a 

triangle or series of triangles to form a rigid framework. Since a basic triangle of 

members is a stable form, it follows that any structure made of an assembly of 

triangulated members is also a rigid and stable structure. This idea is the fundamental 

principle of the viability and usefulness of trusses in buildings as a light and un-

yielding structure. The most usages of trusses are in single story industrial buildings, 

large span and multi-storey building roofs carrying gravity loads. Also it is used for 

the walls and horizontal planes of industrial buildings to resist lateral loads and 

provide lateral stability [1].  

The joints of a truss are usually rigid and the members being either welded to each 

other or welded or bolted to a gusset plate. The behaviour of a braced framed is 

essentially the same as pin joints. As a result joints could be considered as pinned in 

any sort of construction mode. In addition, the procedure of analysis is greatly 

simplified when considering the implementation of joints. 

All truss members are acting as a two force member and as a result, the forces at 

the ends of member must be delivered to the axis of member length. If the force has a 

tendency to elongate the member, then it is a tensile force (T), Fig 1a; otherwise it is 

a compressive force (C) and would try to shorten the member, Fig 1b. In terms of 
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truss design, it is important to state the nature of the force at first (tensile or 

compressive).  

Often, compression members must be heavier and/or stronger than tension 
members because of the buckling or column effect that occurs when a 
member is in compression. [3] 

 

 

(a)                      (b) 
     Tension          Compression 

 
Figure 1: Truss Force Members 

 

2.1.2 Determinacy and Stability of Trusses 

Before deciding on the determinacy or indeterminacy of a structure the stability of 

structural system should  be assessed. “Stability is the ability of a component or 

structure to remain stationary or in a steady state” [4]. Therefore, stability is an 

inherent quality generally having to do with the nature of arrangement of members 

and joints or with the support conditions. 

Determinacy is the ability to compute support reactions using statics. That 
is, if a structure is determinate, the equations of equilibrium are sufficient to 
find all the forces. If it is indeterminate, there are too many reactions to 
solve for. This is the classic problem of having more unknowns than 
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independent equations to solve for the unknowns. If there are too few 
reactions, then the structure is unstable. [4] 

A large percentages of the trusses used in buildings have regular forms with 

limited number of ordinary situations. The basic device of trussing that may be used 

in order to produce a range of possible structures is triangulation framework. When 

truss forms are complex or unusual, a basic determination that must be made early in 

the design phase is the condition of the particular truss configuration with regard to 

its stability and determinacy.  

In general, all of the joints and members of a truss are in equilibrium if the loaded 

truss is in the equilibrium. If the load is only applicable in the joints and all truss 

members are supposed to bear only axial load, then the forces acting on free-body 

diagram of a joint will constitute a simultaneous force system. In other words, a 

stable truss system is dependent on equilibrium of the below given equations: 

∑ Fx =0     (1) 

∑ Fy =0     (2) 

There are two equilibrium for each joint in a truss, therefore in order to determine 

the unknown bar forces (b) and reactions (r) there would be totally 2n number of 

equilibrium equations which is given below: 

Where 𝑛 is equal to the total number of joints: 

(1)  If        b + r = 2nb + r = 2n                  Truss is stable and determinate. 

(2)  If        b + r > 2𝑛𝑏 + 𝑟 > 2𝑛                  Truss is stable and indeterminate.  

    The degree of indeterminacy  𝐷 equals   D = r + b − 2n      

(3)  If        b + r < 2𝑛𝑏 + 𝑟 < 2𝑛                  Truss is unstable.          

The figure 2 is demonstrated the conditions for stability and determinacy of a 

truss system to find out stability and instability of that system [1].  
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Figure 2: Classifying Trusses  

It is noticed that the statical  determinacy of a truss structure does not depend on 

to the applied load system. It only depends on the geometry of the framework. 

2.2 Structural Optimization 

After four decades the structural optimization is still a new and developing field 

for research and study. In recent years, the approaches in structural optimization had 

enough reason to make it a helpful device for designers and engineers. Despite the 40 

years of investigation on structural optimization it has not been frequently used  as an 

engineering device for design until high performance computing systems become 

widely available. Structures are becoming lighter, stronger and cheaper as industry 

adopts higher forms of optimization. Therefore, the main objective of the current 

engineering industry should be to find a solution and improvement for the above 

mentioned issues. 

Unstable Truss 
b + r =15 < 2n =16 

 
 
 
 
 

 
Stable Truss (Stabilized by completion  
of triangulation pattern).  
b + r =16 =2n =16 

 
 
 
 
Stable and Indeterminate Truss 
b + r =17 > 2n =16 
D= r + b – 2n =1 
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According to the article of In Structural Optimization, by N.Olhoff and J.E.Taylor 

(1983) in their paper entitled On Structural Optimization, in optimization of 

structures, experience has shown that particular attention must be paid to the 

following five principle points so that an efficient and practical design may be 

obtioned: 

(1) The objective or cost function must be taken as realistic as possible; 

(2) The largest possible number of design variables for different types of trusses 

must be selected; 

(3) As much as possible, many realistic design requirements (behavioral 

constructions) must be considered; 

(4) The mathematical formulation must accomodate for unexpected properties of 

the optimal solution; and 

(5) Effective solution procedures are necessery.  

2.2.1 Optimization Problem 

Optimization problems are categorized according to design variables by 

considering the type of equations. 

In other words a design is optimum if a certain objective function is minimum (or 

maximum) while it meets its design requirments. 

Optimization techniques, which are based on an optimality criteria approach, 

mathematical programming and genetic algorithms are widely employed (Kuntjoro 

and Mahmud 2005).  

In the mathematical optimization if the objective function and the 
constraints involving the design variable are linear then the optimization is 
termed as linear optimization problem. If even one of them is nonlinear it is 
classified as the non-linear optimization problem [5]. 

This research deals with structural optimization based on mathematical 

programming. The deflection of the structure is to be minimized and it is formulated 
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as the objective function. The design variables are structural parameters,  the values 

that  are going to be varied during the optimization process. The design requirments, 

such as height and width, are formulated as the design constraints. The flow chart of 

the design optimization which is obtained  by using a mathemathical programming is 

shown in Figure 3. 

 

Figure 3: Flow Chart of Optimization Procedure  

2.2.2 Structural Optimization Problem Statements  

In structural optimization problems for design variables, objective function and 

constraints are summarized in the following formulation of the optimization problem.  



 

11 
 

Minimize    f(x) 

Such that    gi(x) ≥ 0           j = 1, … , ng                         

                     hk(x) = 0         k = 1, … , ne                               (3) 

Where x is denoted as a vector of design variables with components; xi , i =

1, … , n xi and i = 1, … , n. The equality constraints hi(x) and the inequality 

constraints gi(x) are assumed to be transformed into the form (3). The optimization 

problem is assumed to be the minimization rather than a maximization problem. 

Therefore, it is not restrictive since, instead of maximizing a function it is always 

possible to minimize its negative value. Similarly, if we have an inequality of 

opposite type, that is  

gi(x) ≤ 0        (4) 

 It can be transformed into a greater – than –zero type by multiplying Eq. (4). 

An optimization problem is said to be linear when both the objective function and 

the constraints are linear functions of the design variables  xi , xi , that is to say they 

can be expressed in the form of: 

f(x) = c1x1 + c2x2 +  … cnxn = cTx .                                   (5) 

Linear optimization problems are solved by a branch of mathematical programming 

called linear programming. 

The linear programming problem was interpreted as maximizing or minimizing a 

linear function which is subjected to linear constraints. The constraints were stated as 

either equalities or inequalities. “In fact, linear programming is the process of taking 

various linear inequalities relating to a specific situation and finding the "best" value 

obtainable under those conditions” [6]. In this research, linear programming has been 

used for the mathematical approach of the deflection formula. 
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2.3 Previous Researches in Truss Optimization  

In recent decades, optimization of truss design has become a significant term in 

structural optimization. Classical optimization problems are divided into three types: 

size, geometry/shape and topology.  In fact in comparison to other types of 

structures, the design and analysis of trusses are quite simple process which could be 

easily written in a mathematical form. As a result, to obtain the optimal truss 

structure due to classical optimization methods, different investigation has been 

developed in research papers.  Early works were based on the deterministic methods 

such as mixed integer programming [7], branch and bound techniques [8], dual 

formulation [9], penalty approach [10], segmental approach with Linear 

programming [11], and so forth.  

Another category of methods that belongs to the nondeterministic methods is 

simulated annealing [12], genetic algorithm [13] and other methods have been used 

successfully to solve optimal design problem with discrete variable. “Structural 

optimization with discrete design is usually very much complicated” [13]. Yates et 

al. (1982) have mathematically proven that discrete optimization problems are NP- 

complete and consequently they are unsolvable by polynomial algorithms. Also 

genetic algorithm is one of the efficient subset of discrete variable optimization 

method [14]. Genetic algorithms are based on the concepts of natural selection and 

natural genetics (Holland 1975; Goldberg 1989). Although these algorithm are 

randomized, genetic algorithm are not a simple random walk in the space of solution 

[15]. Rajeev and krishnamoorthy (1997) presented a genetic algorithm(GA)-based 

methodologies for obtaining optimal design solution simultaneously considering 

topology, configuration, and cross sectional parameters in unified manner [16] . They 

have already presented a genetic algorithms-based method for discrete optimization 
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of trusses [13]. Two improved methods are presented in this paper; the first one, 

simple genetic algorithm (SGA), is adopted to solve size and configuration 

optimization problem and “second method based on a variable string length genetic 

algorithm (VGA), addresses the topology optimization problem, taking into account 

a number of practical issues” [13]. The classical 10 and 18-bay truss problems are 

solved to illustrated working of the methods and then the values of design variables 

compared with the previous researches. Comparison of results with those of the 

report, genetic algorithms-based optimal design methodologies are simple and less 

mathematically complex and better solutions are obtained using the proposed 

methodologies than those obtained from the classical optimization methods based on 

mathematical programming techniques. Komousis et al. (1994) have solved the 

sizing optimization problem of steel roof truss with a genetic algorithm. They have 

proved that traditional optimization methods based on mathematical programming 

are not effective in discrete optimization problem and robust algorithm can satisfy 

the design purposes [17]. It is indicated in Numerical method in engineering (Kaveh 

and kalatjari, 2003) the optimization of trusses due to their size and topology by 

using a genetic algorithm (GA), the force method concept and some perception of 

graph theory.  

Whereas the optimization with genetic algorithm has a difficulty in the 
cognition of parameters, existence the application of some concepts of the 
force method, together with theory of graphs and genetic algorithm make 
the generation of a suitable initial population well-matched with critical 
paths for the transformation of internal forces feasible. [18] 

The examples studied in this research show that the optimal form of structure 

depends on the number of nodes considered for the ground structure. Indeed the 

application of this concept can easily be extended to rigid jointed structures, since 
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more efficient combinational approaches are available for the analysis by the force 

method.  

Until now most of the discussed papers related to this subject dealt with optimal 

design under static displacement and stresses constraints. On the other side, a little 

effort has been made due to optimal design based on structural dynamic aspect. Tong 

and Liu suggested:  

Two-step optimization procedure for the optimal design of truss structures 
with discrete design variables under dynamic constraints. At first, a global 
normalized constraint function (GNCF) has been defined. At the second 
step, the discrete values of the design variable are determined by analysing 
differences quotient at the feasible basic point and by converting the 
structural dynamic optimization process into a linear zero-one 
programming. [19]  

Since, the above mentioned optimization procedure for optimal design has 

successfully been applied to some of the truss structures; the result demonstrated that 

the method is practical and efficient. Also, it is noted that the optimal design deal 

with constraints of stress and displacement, simultaneously with natural frequency 

and frequency response. 

As has been perceived in the previous paragraphs, a considerable amount of work 

has been carried out relating to optimization with genetic algorithm method while the 

other methods of optimization has been investigated far less due to their complexity. 

Therefore, some methods developed using size; geometry and topology for 

optimization are presented. Rahami et al. (2008), in Journal of Engineering Structure 

“have used a combination of energy and force method for minimizing the weight of 

truss structures. The main idea proposed in this research is the manner in which the 

input variables are reduced” [20]. As a result, the formulation based on energy 

concepts permits an efficient use of GA in optimization. In fact a mixed formulation 

is presented for the optimization of structures using a genetic algorithm. “The 
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method employs basic idea from the force method and the complementary energy 

approach, and uses a simple genetic algorithm as a powerful optimization technique” 

[14]. Moreover Farshi and Alinia-ziazi (2010) have described a force method based 

on the method of centre points as a new approach to optimum weight design of truss 

structures. It is indicated in their research that:  

Design variables are the member cross-sectional areas and the redundant 
forces evaluated for each independent loading condition acting on structure. 
Forces in each member are consisted to have two parts; the first part 
corresponds to the response of the determinate structure as defined from the 
whole structure, and the second part takes care of the effect of forces in the 
redundant members. [21] 

The comparison of the results of this research with the examples selected from 

similar works has illustrated that: 

The analysis step is embedded within the optimization stage using the force 
formulation; avoiding tedious separate analyses. Also it should be noted that 
in cases of low degrees of redundancy effectiveness of the proposed method 
will be more prominent, since few additional variables (i.e. redundant 
forces) should be added to the design variables (cross-sectional areas), 
requiring less computational efforts. [21] 

One of the other approaches in optimal truss design that has been widely 

investigated is truss optimization under stress, displacement, and local buckling 

constraints with minimum weight. It was introduced in journal of structural and 

multidisciplinary optimization, Gou et al. made a new appeal to “the solution of 

singular optimal of truss topology optimization problems caused by stress and local 

buckling constraints. First, a second-order smooth-extended technique is used to 

make a disjoint feasible regions connect, and then the so-called 𝜀𝜀-relaxed method is 

applied to eliminate the singular optima from the problem formulation” [22]. As a 

result the given numerical examples in this study indicated an efficient approach to 

optimization of truss topology problems which are subjected to local bukling and 

stress constraints. In addition, it was concluded that the traditional stress formulation 
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method is not appropriate especialy in case of  local bukling constraints.  Therefore, 

the proposed εε-relaxed approach is recommended in order to truss topology 

optimization with local buckling constraints [22] . Bojczuk and Mroz (1999) in the 

journal structural optimization were presented “a heuristic algorithm for optimal 

design of trusses with account for stress and buckling constraints. The design 

variables are constituted by cross-sectional areas, configuration of nodes and the 

number of nodes and bars” [23]. The main idea of this study was associated with “the 

assumption that topology variation occurs at a discrete set of states when the optimal 

design evolves with the selected size parameter” [23]. In fact this research was 

introduced three virtual topology variation modes with their applicability by solving 

particular examples;  

(1) A new node at the centre of the existing bar that connected to the closest 
existing node.  
(2) The separate existing node and a new bar that connected to two nodes.  
(3) Two nodes at the centre of a compressed bar that separated by a 
connecting bar. As a result, the examples demonstrate that topology 
variations coupled with configuration optimization can provide very 
effective designs. [23] 

In the geometry and topology optimization subject, W. Achtziger (2007) has 

introduced the classical problem of optimal truss design where cross-sectional areas 

and the position of joints are simultaneously optimized. In fact, he focused on the 

difference between simultaneous and alternating optimization of geometry and 

topology and recalled a rigorously mathematical approach based on implicit 

programming technique which considers the classical single load minimum 

compliance problem subject to a volume constraint. Two numerical examples are 

presented to illustrate that simultaneous optimization of geometry and topology may 

result in very reasonable structures even for small problem size and very sparse 

ground structures [24]. Then after, Martinez et al. (2007) in journal of journal of 
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structural and multidisciplinary optimization studied about “a novel growth method 

for the optimal design in a sequential manner of size, geometry, and topology of 

plane trusses without the need of ground structure. Actually, the most used method 

for truss topology design by computational methods is the ground structure 

approach” [25]. This method was associated with the design of optimal plane trusses 

which are subjected to the stress constraints.  

The growth method begins with a simplest structure and would continually 
modify it by adding iteratively, joints and members optimizing the variable 
of size, geometry and topology at each step. The characteristic of method 
and the result of the three examples illustrated that this method requires a 
minimal amount of initial data and allows the optimal structure to be 
obtained with a given number of joints. [25] 

Also the research was clarified that this method “is very flexible and permits the 

fulfilment of different design conditions. Moreover, the computational cost is lower 

than the procedures based on the Ground Structure approach” [25].  

A few attempts have also been reported on configuration optimization, in which 

both size and configuration variables. Wang et al. (2002) were proposed “an 

evolutionary optimization method to optimize the shape and size of a truss structure 

for its weight minimization. The stress, local buckling and displacement constraints 

in one load case are imposed on the structure” [26]. The research was argued that 

“the FSD algorithm is an intuitive and efficient optimality criterion for size 

optimization of structural members. In fact the elements designed with FSD are fully 

stressed only for statically determinate structures” [26]. The concluded of the study 

stated, this “approach needs further study to be extended to more general situation 

with constraints of stress, local stability and multiple nodal displacements under 

multiple load cases” [26] . Gil and Andreu (2001) were presented a new approach for 

the identification of the optimal shape and cross-sections of a plane truss structure 

under stress and geometrical constraints. The optimization algorithm includes the 
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treatments of constraints using penalty functions, optimization of cross section and 

optimization of nodal coordinates. In the study, the cross-section optimization is 

achieved by the fully stress design (FSD) strategy and the coordinates optimization is 

driven by the conjugate-gradients strategy. In fact the strategy outlined in this paper 

has demonstrated to be highly stable, even when starting from initial structures which 

are very far from optimum. So the optimized structure is observed to the applied load 

or related shapes to the bending stress [2]. Nishino and Duggal (1990) have carried 

out a shape optimum design of trusses under multiple loading conditions. The weight 

of a truss is minimized subject to nodal equilibrium and permissible stress 

constraints, and constraints to ensure uniqueness of the stress-free length of each 

member. The optimization procedure includes selection of topology, geometry and 

sectional properties [27].  
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Chapter 3 

3 METHODOLOGY 

3.1 Introduction 

In architecture and structural engineering, truss is a structure that is constructed 

out of one or more triangular units with straight members which ends are connected 

at joints referred to as nodes.  

So far due to the literature studies, structural optimisation is dealing with; largest 

possible number of design variables, behavioural construction, mathematical 

formulation for optimal solution and effective solution procedures. As a result truss 

systems also turned to be a remarkable issue in structural optimization. The simple 

characteristics of truss systems in design and analysis made an easy mathematical 

model opportunity for classical truss optimization when compared to other types of 

structures. Therefore, different techniques are introduced to obtain the optimal truss 

structures. These developed methods are listed as below: 

A) Deterministic methods 

Mixed integer programming 

Branch and bound techniques Dual formulation 

Penalty approach 

Segmental approach with LP 

B) Nondeterministic methods 

Simulated annealing 

Genetic algorithm 
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This research is aimed to carry out an investigation on the existing truss systems 

in order to introduce a mathematical optimization approach. This approach is 

expected to lead to an efficient method for designers and decision makers so that 

they can find the most appropriate truss structure (listed in this research) for their 

design purposes. The suggested method is clarified in detail based on the below 

given critical questions to identify which of the selected trusses (in this research) 

could be suitable for the chosen span based on: 

• How the optimal truss is identified among different changes in proportion 

of height and distance between joints (Bay)? 

• What would be the amount of deflection of optimized truss?   

To achieve these some of the common types of trusses made of steel are studied to 

identify their efficient sizes and shapes. Therefore, it is decided to produce a 

mathematical deflection formula by considering loading and truss spaces as our 

constraints and defined variables as; shape, span and height. Also deflection of the 

structure is minimized and formulated as an objective function.  

Initially the force method is applied on truss structure in order to obtain the 

amount of deflection. Then hand calculation was carried out followed by computer 

application analysis using MAPLE and then the use of Table Curve 2D for 

mathematical approach to create the deflection formula. Finally STAAD Pro 

structural design computer software has been used to analyse and design the truss 

structure.  

As a result, the changes in mathematical deflection formula, due to the number of 

frames and shapes of trusses, are lead to obtain the specific optimum height and 

minimum deflection for each truss system. In other words, the occurrence of 
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minimum deflection along the truss span and optimum height presents the optimum 

truss. 

 

Figure 4: Scheme of methodology stages 

3.2 Truss Shapes 

Basically 11 shapes of common symmetry trusses in 2-D position are categorized 

into 2 groups as shown below: 

a) Trusses with horizontal top chords 

b) Trusses with a constant slope top chords 

  

Selected 2-dimentional 
common symmetry truss

Virtual Work 
Method MAPLE 12

TABLE 
CURVE 2-D

Mathematical 
Formulation STAD PRO
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                                    Truss 1                                        Truss 2 

 

                                     Truss 3                                        Truss 4 

                      

                                    Truss 5 

Figure 5: Trusses with Horizontal Top Chords 

 

 

                                     Truss 6                                       Truss 7 

                     

                                     Truss 8 

 

                                   Truss 9                                          Truss 10 

                  

                                 Truss 11 

Figure 6: Trusses with Constant Slope 
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Figures 5 and 6 show the 11 truss models; flat, warren and triangular with 5, 3 and 3 

types of each one are used respectively. Different span lengths 10, 20, 30 and 40 

meters were applied for all types of the trusses to find the least deflection mode. It 

should be noted that the variety of trusses selected are not randomly assumed. These 

are the most frequently used trusses in real life. When flat trusses are considered the 

five types used in this research are generally the ones used in real life. However, for 

warren and triangular type trusses a sample of the most common types were 

considered. In order to reduce the wide range of analysis and to achieve more 

accurate outputs from the analysis only 3 types from each of warren and triangular 

trusses were studied. 

3.3 Assumptions Used in this Research 

This research is aimed to present a mathematical method for the optimum 

deflection of the plane truss structures subject to multiple loads and stresses. To 

achieve a mathematical statement with constraints and variables, the proportion 

between the height of the truss and the horizontal distances between the joints are 

investigated in advance.  As a result, the cross sectional areas of members, distance 

between joints of chords and heights of trusses are assumed to be as variables of 

design. Therefore, objective of the optimization is specified as the minimization of 

deflection at mid-span with constraints on loading, spans and truss chord member 

spacing.  

The structural analysis is further base on the following assumptions: 

a) The mathematical model for the plane truss consists of a set of joints 

which are connected by straight members and carry only axial load. Also 

the deadweight of the members is neglected. 
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b) All members are connected to joints by frictionless pins. That is to say, no 

moment can be transferred between the ends of a member and the joints to 

which they are connected. 

c) The selected trusses are loaded in a similar manner and only dead and live 

loads are considered, 1.25kN/m2 and 0.75kN/m2, respectively. Also, 

cladding system, insulation, self-weight of truss members and purlins are 

considered as dead load.  

d) All loads on the structure are applied only at joints. Purlins are arranged in 

such a way that the loads are applied on the purlins that are placed directly 

where the vertical truss member joins the top chord. These are considered 

to be nodes of the truss. Hence, all members of truss are assumed to be 

subjected to pure axial loads. Moments acting on the joints or intermediate 

loads acting directly on the members is not permitted. No shear force or 

bending moment exists in the members.    

e) Only translation restraints may exist at the support joints. Therefore, only 

pinned or roller supports which translate in the plane of the structure are 

permitted. 

f) Each shape of truss (in terms of geometrical arrangement of members) is 

constant while the distance between vertical members (bays) and height of 

the truss are changed.  
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Chapter 4 

4 MATHEMATICAL FORMULATION AND RESULTS 

4.1 Mathematical Formulation 

4.1.1 Hand Calculation  

4.1.1.1 Virtual Force Method  

When a structure is loaded, deformation on stressed elements will take placed. As 

a result of the changes on the structural shape, the nodes of the structure will be 

displaced. In a well-designed structure, these displacements are substantially small. 

For instance, Figure 6 shows that the changes occurred on the structural elements 

will have some effect on the displacement point of the given truss. The applied load 

𝑃 produced the axial forces 𝐹1, 𝐹2 and 𝐹3 in the members. It is obvious (Fig. 7) that 

the members are deformed axially (dashed lines) and joint B of the truss is displaced 

diagonally to𝐵′.  

 

 

 

 

 

 

Figure 7: Deformations of Truss after Load is Applied 



 

26 
 

The Virtual force method is applied to determine the deflection of trusses. The 

virtual work principle is defined as such that the deflection can be calculated by the 

following equation: 

1(∆) = ∑𝑛(𝛿)                                                         (6) 

Where 𝑛 is equal to the virtual force in the member and 𝛿 equal to the change in 

length of the member.  

Therefore, the deflection that occurred due to the changes in length of the truss 

members can be calculated. These changes in length are caused by; the effect of 

applied loads on the behaviour of each truss member, changes in temperature and 

fabrication errors.   

In order to determine the member forces in a truss one can use either the method 

of joints or the method of sections [3]. Once the member forces are known then the 

axial deformation of each member can be determined by using the below given 

equation:  

𝛿 = 𝑁𝐿
𝐴𝐸

                                                  (7) 

The deflection formula can be modified by the substitution 1. (∆) , from equation 

(6) instead of 𝛿 in equation (7).  

1. (∆) = ∑𝑛𝑁𝐿
𝐴𝐸

                                                   (8) 

Here: 

1= external virtual unit load acting on the truss joint in the stated direction of  ∆ 

∆= joint displacement caused by the real loads on the truss 

 𝑛= internal virtual force in a truss member caused by the external virtual unit load 

N= internal force in a truss member caused by the real loads 

L= length of the member 
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A= cross-sectional area of member 

E= modulus of elasticity of a member 

The external virtual unit load creates internal virtual “n” forces in each of truss 

members. When the real loads are applied to the truss, then the truss joint will 

displaced ∆ in the same direction as the virtual unit load, and each member 

undergoes a displacement 𝑁𝐿 𝐴𝐸⁄ , in the same direction as its respective 𝑛 force. 

Consequently, the external virtual 1.∆ is equals to the internal virtual work or the 

internal (virtual) strain energy stored in all the truss members, i.e., Equation 6. 

4.1.2 Problem Statements 

As it has been explained in the previous chapters, this research is aimed to provide 

an optimum truss shape which is subjected to minimum deflection by using the 

virtual force method. Hence, this method is applied in order to create a general 

deflection formula to achieve a specific approach in deflection minimization.  

In each type of trusses that is categorized at the beginning of this chapter, 

deflection of trusses are calculated to create a general formula based on an assumed 

interval for k (k=1 till k=10), whereas n is the number of bays in one side of a 

symmetrical truss. In this way some mathematic software like “MAPLE 12” and 

“TABLE CURVE 2D” are used for mathematical approach of deflection formula.  

First approach is investigated based on a 2-D symmetrical warren type flat truss 

(Fig. 8) with a  multiple load (W) that are applied on the joints to determine the 

vertical deflection at joint E (the mid-span of truss). 
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Figure 8: Warren Type Flat Truss with Multiple Loads 

4.1.3 Analysis Procedure  

The following procedure provides a method that may be used to determine the 

displacement of any joint on a truss, by applying  the virtual force method. The 

internal force on each element, are determined in two sections. Once it is caculated 

based on real forces (N) then  the virtual force is applied. Based on outputs of hand 

calculation an individual deflection formula  (∆) for each n (1< k <10) is generated. 

As a result, the investigation on the deflection formulas and by using the 

mathematical software helped to lead us to create a general deflection formula (∆𝑛) 

for each of the 11 trusses. Finally, the formula was entered into the MAPLE program 

under a paticular mathematical circumastences; deflection, virtual force method 

formula is generated. The following sections of this chapter discusses the derivation 

of the formula in mor detail. 

STEP 1:  Calculate the Internal Forces, N 

Initially the internal forces in each member should be determined. These forces 

are resulted solely from the real behaviour of truss under the applied external loads. 
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It is assumed that the tensile forces are positive and the compressive forces are 

negative.  

a) Calculate the Support Reactions, due to the Applied Real Loads   

 

 

 

 

 

 

 

 

Figure 9: Frame Structure with Applied Real Forces 

Calculate the support reactions (caused by the applied loads in Figure 9) through 

summation of the moments at A and E: 

�𝑀𝐴 = 0 ⇒  𝑌𝐼 × 4𝑎 − 𝑤 × 𝑎 − 𝑤 × 2𝑎 − 𝑤 × 3𝑎 = 0 ⇒ 𝑌𝐼 =
3
2
𝑊 

Since, the truss is symmetrical then: 

   𝑌𝐴 =  𝑌𝐼 =  
3
2
𝑊 

�𝐹𝑋 = 0 ⇒  𝑋𝐴 = 0 
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Figure 10: Support Reactions due to Applied Real Loads 

b) Use the Method of Joints to Determine The Internals Force in Each Member, 

due to the Applied Real Loads  

For equilibrium at joint A; 

 

                                                   

 

 

 

Figure 11: Joint Equilibrium at joint A  

Summation of vertical and horizental forces to determine the forces in each member 

�𝐹𝑌 = 0 ⇒  𝐹𝐴𝐵 + 
3𝑤
2

= 0 ⇒ 𝐹𝐴𝐵 = −
3𝑤
2

 

�𝐹𝑋 = 0 ⇒  𝐹𝐴𝐶 = 0 

Hence, by applying  this method for each joint the internal forces on each member is 

caculated as shown in Figure 12. 
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Figure 12: Truss Diagram with Internal Forces due to Applied Real Loads 

STEP 2: 

a) Apply Virtual Force, n  

Place the virtual unit load on the truss at the joint where the desired displacement 

is to be determined. The load should be directed along the line of action of the 

displacement. With the unit load so placed and all the real loads removed from the 

truss, the internal n force in each truss member is calculated. Agian, it was assumed 

that the tensile forces are positive and the compressive forces are negative. The unit 

load was applied at point E with the intention of determining the deflection at that 

point (Fig. 13) which is in the center of the assumed symetrical truss system.  

 

 

Figure 13: Truss with Virtual Unit Force Applied 
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b) Solve For the Support Reactions due to The Virtual Force 

The aformentiond procedure is applied to caculate the reaction at each support 

which is resulted by the virtual forces (Fig. 14).  

 

 

 

 

 

Figure 13: Support Reactions due to Virtual Unit Force 

Figure 14: Support Reactions due to Applied Virtual Forces 

c) Use Method of Joints to Determine the Virtual Force in Each Member 

The virtual forces on each member are calculated by applying the method of joints 

that is illustrated in the applied real load (Fig. 15).  

 

Figure 15: Truss Diagram with Internal Forces due to Virtual Force 

STEP 3:   

a) Calculate the Deflection 

The deflection of the truss can now be determined by computing the equation 3:  

1. (∆) = ∑𝑛𝑁𝐿
𝐴𝐸

    (8) 
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Table 1: Calculate the mid-span Deflection at Joint E 
Member n N L nNL 

AB −1 2⁄  −3𝑊 2⁄  𝑏 3𝑊 4⁄  
AC 0 0 𝑎 0 

BC √𝑎2 + 𝑏2

2𝑏
 

3𝑊√𝑎2 + 𝑏2

2𝑏
 �𝑎2 + 𝑏2 

3𝑤
𝑏2

 (𝑎2 + 𝑏2)�𝑎2 + 𝑏2 

BD −𝑎
2𝑏�  −3𝑎𝑤

2𝑏�  𝑎 
3𝑎3𝑤

4𝑏2�  

CD −1 2⁄  −3𝑊 2⁄  𝑏 3𝑊 4⁄  

CE 𝑎
2𝑏�  3𝑎𝑤

2𝑏�  𝑎 
3𝑎3𝑤

4𝑏2�  

ED √𝑎2 + 𝑏2

2𝑏
 
𝑊√𝑎2 + 𝑏2

2𝑏
 �𝑎2 + 𝑏2 

𝑤
4𝑏2

 (𝑎2 + 𝑏2)�𝑎2 + 𝑏2 

DF −𝑎
𝑏�  −2𝑎𝑤

𝑏�  𝑎 
2𝑎3𝑤

𝑏2�  

EF 0 𝑤 𝑏 0 

FH −𝑎
𝑏�  −2𝑎𝑤

𝑏�  𝑎 
2𝑎3𝑤

𝑏2�  

EH √𝑎2 + 𝑏2

2𝑏
 
𝑊√𝑎2 + 𝑏2

2𝑏
 �𝑎2 + 𝑏2 

𝑤
4𝑏2

 (𝑎2 + 𝑏2)�𝑎2 + 𝑏2 

EG 𝑎
2𝑏�  3𝑎𝑤

2𝑏�  𝑎 
3𝑎3𝑤

4𝑏2�  

GH −1 2⁄  −3𝑊 2⁄  𝑏 3𝑊 4⁄  

HJ −𝑎
2𝑏�  −3𝑎𝑤

2𝑏�  𝑎 
3𝑎3𝑤

4𝑏2�  

GJ √𝑎2 + 𝑏2

2𝑏
 

3𝑊√𝑎2 + 𝑏2

2𝑏
 �𝑎2 + 𝑏2 

3𝑤
𝑏2

 (𝑎2 + 𝑏2)�𝑎2 + 𝑏2 

GI 0 0 𝑎 0 

IJ −1 2⁄  −3𝑊 2⁄  𝑏 3𝑊 4⁄  

The total deflection (for selected case) at point E is: 

∆𝑘= 7𝑤
𝑏2

 𝑎3 + 3𝑤𝑏 + 2𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2  /𝐴𝐸    (9) 

In this case the number of the frame on one half of the structure is equal to two then : 

∆𝑘= ∆2= 7𝑤
𝑏2

 𝑎3 + 3𝑤𝑏 + 2𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2/𝐴𝐸  (10) 

Following the same procedure used previously, calculate the deflections (k=1 until  

k=10) to find the general deflection formula. 
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Table 2: Determine the deflection formulas due to the number of bays on one half of 
the symmetrical flat truss 

k Deflection Formula (∆𝒌) 

1 ∆1=  
1
2
∗
𝑤
𝑏2

 𝑎3 +  
1
2
∗ 𝑤𝑏 +  

1
2
∗
𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2 / 𝐴𝐸 

2 ∆2= 7 ∗
𝑤
𝑏2

 𝑎3 +  3 ∗ 𝑤𝑏 + 2 ∗
𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2 / 𝐴𝐸 

3 ∆3=
69
2
∗
𝑤
𝑏2

 𝑎3 +
13
2
∗ 𝑤𝑏 +

9
2
∗
𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2/ 𝐴𝐸 

4 ∆4= 108 ∗
𝑤
𝑏2

 𝑎3 + 11 ∗ 𝑤𝑏 + 8 ∗
𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2/ 𝐴𝐸 

5 ∆5=  
525

2
∗
𝑤
𝑏2

 𝑎3 +
33
2
∗ 𝑤𝑏 +

25
2
∗
𝑤
𝑏2

  (𝑎2 + 𝑏2)
3
2 / 𝐴𝐸 

6 ∆6= 543 ∗
𝑤
𝑏2

 𝑎3 + 23 ∗ 𝑤𝑏 + 18 ∗
𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2/ 𝐴𝐸 

7 ∆7=  
2009

2
∗
𝑤
𝑏2

 𝑎3 +
61
2
∗ 𝑤𝑏 +

49
2
∗
𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2 / 𝐴𝐸 

8 ∆8= 1712 ∗
𝑤
𝑏2
𝑎3 + 39 ∗ 𝑤𝑏 + 32 ∗

𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2/ 𝐴𝐸 

9 ∆9=  
5481

2
∗
𝑤
𝑏2

 𝑎3 +
97
2
∗ 𝑤𝑏 +

81
2
∗
𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2 / 𝐴𝐸 

10 ∆10= 4175 ∗
𝑤
𝑏2

 𝑎3 + 59 ∗ 𝑤𝑏 + 50 ∗
𝑤
𝑏2

 (𝑎2 + 𝑏2)
3
2/ 𝐴𝐸  

 

4.1.4 Calculate the General Formula Using Maple 12 

MAPLE is a powerful mathematical software package. It can be used to obtain 

symbolic and numerical solutions of problems in arithmetic, algebra, and calculus 

and to generate plots of the solutions it generates [28]. 

In this section, constructing a deflection formula by MAPLE to obtain a different 

mathematical approach for the calculation of the deflection of trusses will be 

discussed.  
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4.1.5 Equation of the Coefficients 

The first step is to specify the data as a collection of points, or as separate 

collection of independent and dependent values.  Table 3 shows the coefficients of 

the previous deflection formulas as a collection of points 

Table 3: The Coefficients of Deflection Formula 

k 
Coefficients 

𝒂𝟑 𝒃 (𝒂𝟐 + 𝒃𝟐)
𝟑
𝟐 

1         1 1 1 
2         14 6 4 
3         69 13 9 
4         216 22 16 
5         525 33 25 
6         1086 46 36 
7         2009 61 49 
8         3424 78 64 
9         5481 97 81 
10         8350 118 100 
 

The second step is to provide a mathematical formula for the specific datas by 

using the CurveFitting [Interactive] command in MAPLE (Fig. 16).  

 

Figure 16: Determiniation of coeficient equation in MAPLE 
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Finally, the general deflection formula (∆𝑘) has been calculated : 

∆𝑘= 1
2
�1
6
𝑘2 + 5

6
𝑘4� 𝑤

𝑏2
𝑎3 + 1

2
(𝑘2 + 2𝑘 − 2)𝑤𝑏 + 1

2
𝑘2 𝑤

𝑏2
(𝑎2 + 𝑏2)3 2⁄ /𝐴𝐸        (11) 

Here:  

∆= joint displacement caused by the real loads on the truss 

𝑘= number of bays on one half of the symmetrical truss 

w= multiple loads on the structure that are applied at joints  

a= distance between the joints of truss members (bay width) 

b= height of the truss 

A= cross-sectional area of members 

E= modulus of elasticity of a members 

4.1.6 Ratio of Height 

The main aim of this section is to find a relative optimum height of truss to reach 

the minimum optimum deflection in each truss case. For this purpose, the deflection 

formula obtained in the previous section is converted into a mathematical function 

(f(k)). Since a and b are the two parametric values which are representing the 

distance between the horizontal truss joints (bay width) and the height of the truss 

system respectively, then it is assumed that the ratio of b to a can be equal to one 

single parameter, x. As a result, instead of getting the derivative of a and b in (f (k)), 

based on one single parameter of x, the calculation and results will become less 

complicated and more accurate.  

𝑓(𝑘) =
1
2

 �
1
6
𝑛2 +

5
6
𝑛4�

𝑤
𝑏2
𝑎3 +

1
2

 (𝑛2 + 2𝑛 − 2)𝑤𝑏 +
1
2

 𝑛2
𝑤
𝑏2

(𝑎2 + 𝑏2)3 2⁄              (12)    

Assume: 

𝑏
𝑎

= 𝑥 ⇒ 𝑏 = 𝑎𝑥     (13) 

then by substituting equation (13) in equation (12) the following is obtained: 
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𝑓(𝑥) =
1

12
𝑘2𝑤𝑎 

1 + 5𝑘2 + 6𝑥3 �1 + 2
𝑘 −

2
𝑘2� + 6√1 + 𝑥2 + 6√1 + 𝑥2𝑥2

𝑥2
        

           =
1
2
𝑘2𝑤𝑎 𝑔(𝑥)                                                                                                          (14) 

in which: 

𝑔(𝑥) =
1 + 5𝑘2 + 6𝑥3 �1 + 2

𝑘 −
2
𝑘2� + 6√1 + 𝑥2 + 6√1 + 𝑥2𝑥2

𝑥2
                         (15) 

The derivative of equation read: 

𝑑𝑔
𝑑𝑥

= 

6𝑘2√1 + 𝑥2𝑥3 + 12𝑥3√1 + 𝑥2𝑘 − 12𝑥3√1 + 𝑥2 − 2𝑘2√1 + 𝑥2 − 10√1 + 𝑥2𝑘4

𝑘2√1 + 𝑥2𝑥3
 

+
6𝑥4𝑘2 − 6𝑥2𝑘2 − 12𝑘2

𝑘2√1 + 𝑥2𝑥3
                                                                                                 (16) 

 Set   
𝑑𝑔
𝑑𝑥

= 0 which implies;  

2(3𝑘2𝑥3 + 6𝑘𝑥3 − 6𝑥3 − 𝑘2 − 5𝑘4)�1 + 𝑥2 + 6𝑘2(𝑥4 − 𝑥2 − 2) = 0             (17) 

To find 𝑥, plot the later function in terms of 𝑥 for different values of 𝑘. This is 

illustrated in Figure 17 which in captured from MAPLE application. The ratio of 

height to joint distance is obtained via the assumed parameter of x and the next step 

is to determine the amount of deflection corresponding to this ratio. 
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Figure 17: Calculation of x according to the graph drawn in MAPLE application 

Following the same procedure would lead to the calculation of the ratio (b/a) for 

different values of k (k=1 ...k=10) for each assumed truss model. It is important to 

identified that the interval assumed for x = b/a, and the selection of values of k 

between 1 to 10 is purely intended to get more accurate and adequate results for x 

(Table 4). 

Then the calculated ratios (x= b/a)  are brought togather in order to create an 

equation out of the determined series of x. To achieve the expected equation, the 

TABLE CURVE application is used. 

 

  



 

39 
 

Table 4: Different ratios of b/a based on the interval assumed for n 
 

 

 

 

 

 

 

 

4.1.7 Calculation of Ratio by using Table Curve 2D v5.01 

Table Curve 2D is a linear and non-linear Curve fitting software package for 

engineers and scientists that automates the curve fitting process and in a single 

processing step instantly fits and ranks 3,600+ built-in frequently encountered 

equations enabling users to easily find the ideal model for their 2D data within 

seconds [29]. 

The expected final equation is done by TABLE CURVE computer application 

instead of MAPLE application. TABLE CURVE is used for the formation of the 

equation since it has extensive variety of equations (2600 equation only for each 

curve fitting) and variety of equation formats (e.g. linear and non-linear equation at 

the same time with wider interval). In addition, equations with insignificant terms 

have been removed from the equation list at the end of the curve fitting. Some other 

equations that may be absent from the list are due to not being fitted. For example, 

there is no point in fitting an equation with an ln(x) term if there are negative x 

values in the data set. 

Therefore, among the possible equations one of the best studied equations is 

selected for further approaches (Fig. 18). 

k b/a 
1 1.33330000 

2 1.58870000 

3 1.97493600 

4 2.35418000 

5 2.71584870 

6 3.06026000 

7 3.38936800 

8 3.70514060 

9 4.00928040 

10 4.30319927 
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Figure 18: Determining Equation Ratio by applying TABLE CURVE 

The equation was constructed based on 10 different b/a ratio’s from the best fitted 

to the input set as below: 

𝑓(𝑥) = 6.470 − 0.6075𝑥 −
18.5754

𝑥
+ 0.1037𝑥2 +

34.2931
𝑥2

− 0.00653𝑥3

−
32.7393
𝑥3

+ 0.0001673𝑥4 +
12.392
𝑥4

                                           (18) 

The resulted equation for the TABLE CURVE application is imported in MAPLE 

so that the minimum amount of k can be achieved.  
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Figure 19: Curve plotted in MAPLE selected out of the imported TABLE 
CURVE equations  

Therefore, the minimum value of k is calculated based on the plotted graphs in 

MAPLE (Fig. 19). In other words the minimum value of k is introduced for the truss 

model that promised to deliver the minimum deflection among all the 10 selected 

models. Briefly, the truss with the minimum value of k demonstrated the minimum 

mid-span deflection for the truss. 

 

Figure 20: Determining the minimum value of n from the TABLE CURVE  

Number of bay  
        (k)   

Value of ratio (b/a) (m) 
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For instance, for the selected truss model as shown in Figure 20 the minimum 

value in the X coordinate (1.13807) is presented the minimum value for k to achieve 

the minimum deflection in the truss span. Furthermore, the minimum value of k on X 

coordinate (1.13807) is intersected with Y coordinate at point 1.23 only, which is 

named as height ratio (b/a). Therefore, the selected symmetrical truss model is 

delivered the minimum deflection amount (among the ten defined possibilities for n) 

if and only if the frame carried maximum of 2 frames on each side.  In other words 

when,  1 < 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑖𝑛𝑡 < 2  we are allowed to assign a minimum of one and a 

maximum of two frames on each half of the selected symmetrical truss model.  

4.1.8 Loading  

It is discussed earlier in this chapter that the selected trusses were loaded in a 

similar manner and only dead and live loads were considered with 1.25kN/m 2 and 

0.75kN/m2 load factors respectively (wind load was not considered). Also, it was 

assumed that the weight of the cladding system, isolation and self-weight of the truss 

and the purlins were considered as dead load. Therefore, the load of flat truss is 

calculated as a sample to illustrate the whole procedure followed to achieve the total 

load acting on the nodes for each type of truss models.  

 

Figure 21: Typical Layout of Trusses with Labels 
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Data:  

Spacing of Truss                                        = 2.5 m 

Height of Truss                                          = 2.95 m  

Dead Load (on Plan)                                 = 1.25 kN/m2 

Live Load (on Plan)                                  = 0.75 kN/m2 

Calculation of point load on nodes: 

Dead load (on slope)                                 = 1.25 kN/m2 

Total dead load                                         = 1.25 ×  0.625 = 0.78125 kN/m ×2 = 1.5625 kN/m 

                                                                  = 1.5625 ×2.5 = 3.90   kN 

Live load (on slope)                                  = 0.75 kN/m2 

Total dead load                                         = 0.75 ×  0.625 = 0.46875 kN/m ×2 = 0.9375 m 

                                                                  = 1.5625 ×2.5 = 2.34   kN 

Total Point load, p                                    = 1.4 DL +1.6 LL 

                                                                 = 1.4 (3.90 kN) +1.6 (2.34 kN)  

                                                                 = 9.2 kN    

The point loads determined were applied on each node (Fig. 22) in order to 

analyses the truss model in STAAD Pro. Similarly, the load on each joint is obtained 

for all assumed truss models as is shown in Table 5. 

 

Figure 22: Point Loads Acting on Nodes 
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Table 5: The Calculated loads associated with the selected spans and bays 

Span (m) 
Truss 
Spaces 

(m) 

DL 
(kN/m2) 

LL 
 (kN/m2) 

Total DL 
(kN) 

Total LL 
(kN) 

Total PL 
(kN) 

k=4 

10 2.5 1.25 0.75 3.90 2.34 9.20 
20 5 1.25 0.75 15.60 9.40 36.88 
30 5 1.25 0.75 23.44 14.10 55.32 
40 5 1.25 0.75 31.25 18.75 73.75 

k=5 

10 2.5 1.25 0.75 3.12 2.00 7.57 
20 5 1.25 0.75 12.50 7.50 29.50 
30 5 1.25 0.75 18.75 11.25 44.25 
40 5 1.25 0.75 25.00 15.00 59.00 

k=8 

10  
20 5 1.25 0.75 7.80 4.70 18.44 
30 5 1.25 0.75 11.72 7.00 27.10 
40 5 1.25 0.75 15.62 9.40 36.91 

k=10 

10  
20 
30 5 1.25 0.75 9.40 5.60 22.12 
40 5 1.25 0.75 12.5 7.50 29.50 

 

4.1.9 Analysis by using STAAD Pro  

It is indicated at the beginning of this chapter that the methodology of optimal 

truss determination mentioned in this research is by hand calculation, then creating 

the general formula in Maple, followed by  the ratio calculated from Table Curve 2D 

and finally identify the member section properties required as a result of the analysis 

by STAAD Pro (Fig. 23). To achieve the deflection for each of the 11 Analysis 

procedures selected trusses, section properties from the analysis of all the truss 

members were substituted in the deflection formula (Δ) created in Maple. Therefore, 

the numerical amount of deflection for each selected truss is calculated and then 

compared to each other as detailed in the following chapter (Discussion and 

Conclusion). 
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Figure 23: Section Property Resulted from STAAD Pro Analysis 

4.2 Analysis Results 

The deflection formula is derived and applied to the selected models in order to 

predict the optimal truss. The results are analysed based on the ratio of b/a for each 

truss model to highlight the least deflection value. The determination of the optimum 

truss is investigated by considering the characteristics of minimum deflection and 

stress as discussed below.   

4.2.1 Determination of Optimal Truss 

The deflections resulted from the analysis of different span lengths for all 11 types 

of flat, triangular and warren trusses were recorded. Hence, the least deflection and 

minimum stress was identified for each truss due to its model, type and span length. 
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The following tables and graphs are prepared to demonstrate the least deflection and 

minimum stress for the number of bays in each type and model of truss systems.  

4.2.2 Deflection outputs 

The deflection calculated for each model (flat, triangular and warren) are grouped 

in 3 individual tables (Tables 6, 7 and 8). Also the deflections for each stated 

circumstance of truss model, type and number of bays are presented for further 

discussions.  

• Flat Truss: The mid-span deflections for the 5 different types of flat trusses 

are calculated as given below (Table 6). 

Table 6: Deflections for various spans of Flat Trusses 
            Type 
 
Span(m) 

Deflection (Δ) (mm) 
1 2 3 4 5 

k=4 
10 2.12 0.85 1.12 1.07 1.30 
20 4.33 1.72 2.70 2.55 3.80 
30 5.83 2.66 3.94 3.74 4.52 
40 6.88 3.14 5.00 4.73 5.73 

k=5 
10 2.53 1.81 1.50 1.02 1.92 
20 4.83 3.45 3.86 2.27 4.33 
30 7.00 4.12 4.61 3.00 5.84 
40 7.30 5.22 5.83 4.24 6.60 

k=8 
10  
20 7.60 3.70 5.40 4.25 7.03 
30 9.00 4.40 7.70 5.04 8.31 
40 11.88 5.60 10.22 6.43 11.04 

k=10 
10  
20 
30 9.50 5.70 8.41 6.40 8.95 
40 10.7 6.40 9.47 7.20 10.1 
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Figure 24: Graphical comparison of deflections obtained for Flat Trusses with k=4 

 

Figure 25: Graphical comparison of deflections obtained for Flat Trusses with k=5 
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Figure 26: Graphical comparison of deflections obtained for Flat Trusses with k=8 

 

Figure 27: Graphical comparison of deflections for the Flat Trusses with k=10 

• Warren Truss: Three different types of warren trusses with three different 

slopes of 10%, 15% and 20% were considered and the deflections for each 

type and top chord slope were calculated in Table 7.   
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Table 7: Deflections of Warren trusses with different top chord slopes 
        Type 
 
Span 
 (m) 

Deflection (Δ) (mm) 

1 2 3 
𝟏𝟎% 𝟏𝟓% 𝟐𝟎% 𝟏𝟎% 𝟏𝟓% 𝟐𝟎% 𝟏𝟎% 𝟏𝟓% 𝟐𝟎% 

k=4 

10 1.80 1.67 1.55 0.64 0.61 0.58 0.99 0.93 0.87 
20 4.46 4.13 3.78 1.53 1.45 1.40 2.40 2.30 2.10 
30 5.30 4.92 4.58 2.40 2.27 2.16 3.50 3.30 3.10 
40 7.00 6.50 6.00 2.80 2.67 2.54 4.40 4.15 3.90 

k=5 

10 2.15 1.98 1.85 1.10 1.00 0.96 1.48 1.37 1.28 
20 5.50 5.10 4.73 3.00 2.80 2.66 3.34 3.11 2.90 
30 6.36 5.87 5.46 4.04 3.80 3.60 4.51 4.20 3.90 
40 8.70 8.00 7.50 4.80 4.50 4.24 5.33 5.00 4.60 

k=8 

10  
20 6.92 6.30 5.75 3.10 2.97 2.80 6.00 5.50 5.03 
30 7.88 7.16 6.53 4.30 3.98 3.74 6.90 6.30 5.80 
40 10.86 9.80 9.00 5.10 4.75 5.92 9.52 8.70 7.94 

k=10 

10  
20 
30 10.38 9.36 8.48 5.20 4.80 4.50 7.92 7.20 6.50 
40 12.13 10.94 9.91 6.86 6.35 5.91 10.88 9.84 8.90 

 

 

Figure 28: Graphical comparison of deflections of Warren Trusses Type 1 with k=4 
and for the three different top chord slopes 
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Figure 29: Graphical comparison of deflections of Warren Trusses Type 2 with k=4 
and for the three different top chord slopes 

 

 

Figure 30: Graphical comparison of deflection of Warren Trusses Type 3 with k=4 
and for the three different top chord slopes 
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Figure 31: Graphical comparison of deflection of Warren Trusses with n=k and for 
the three different top chord slopes 
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Figure 32: Graphical comparison of deflection of Warren Trusses with k=8 and for 
the three different top chord slopes 
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Figure 33: Graphical comparison of deflection of Warren Trusses with k=10 and for 
the three different top chord slopes 
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The comparison of the deflection values of warren trusses for three different 

slopes resulted in identifying the degree of slope that contributes to the most 

optimum deflection. The results are given in the following graphs in Figures 34 to 37 

for n values of 4, 5, 8 and 10 respectively. 

 

Figure 34: Graphical comparison of deflection occurred due to optimal slope for 
Warren Truss with k=4 

 

Figure 35: Graphical comparison of deflection occurred due to optimal slope for 
Warren Truss with k=5 
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Figure 36: Graphical comparison of deflection occurred due to optimal slope for 
Warren Truss with n=8 

 

Figure 37: Graphical comparison of deflection occurred due to optimal slope for 
Warren Truss with k=10 

• Triangular Truss: Three different types of triangular trusses were 

investigated, deflections calculated and presented in Table 8 and Figures 38, 

39 and 40. 
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Table 8: Deflection obtained from the analysis of Triangular Trusses 
              Type 
Span(m) 

Deflection (Δ) (mm) 
1 2 3 

k=4 
10 0.80 0.58 0.82 
20 1.93 1.39 1.96 
30 2.73 1.98 2.78 
40 2.16 1.58 2.21 

k=5 
10 0.66 0.46 0.677 
20 1.75 1.24 1.80 
30 2.81 1.98 2.90 
40 2.23 1.60 2.30 

k=8 
10  
20 1.83 1.24 1.86 
30 2.00 1.37 2.05 
40 2.12 1.44 2.15 

 

 

Figure 38: Graphical comparison of deflections obtained from the analysis of 
Triangular Trusses with k=4 
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Figure 39: Graphical comparison of deflections obtained from the analysis of 
Triangular Trusses with k=5 

 

 

Figure 40: Graphical comparison of deflections obtained from the analysis of 
Triangular Trusses with k=8 

4.2.3 Truss Members’ Axial Stresses 

The minimum stress obtained as a result of the analysis of each model (flat, 

triangular and warren) is grouped in similar manner as the deflection for each model 

in 3 single tables (Tables 9, 10 and 11). Also each stress obtained from different truss 

models, truss types and numbers of bays are plotted individually in Figures 41 to 55.  

• Flat Truss: The trusses selected are flat top chord with 5 different types. The 

stresses were calculated for each type. 
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Table 9: Stress values obtained for Flat Trusses  
          Type 
 
Span(m) 

Stress (σ) (kN/mm2) 
1 2 3 4 5 

k=4 
10 0.0434 0.0322 0.0400 0.0380 0.0430 
20 0.0510 0.0325 0.0477 0.0464 0.0514 
30 0.0507 0.0340 0.0470 0.0455 0.0500 
40 0.0480 0.0300 0.0440 0.0432 0.0480 

k=5 
10 0.0500 0.0400 0.0466 0.0380 0.0588 
20 0.0740 0.0610 0.0650 0.0430 0.0697 
30 0.0680 0.0468 0.0520 0.0390 0.0626 
40 0.0670 0.0450 0.0500 0.0420 0.0530 

k=8 
10  
20 0.1000 0.0660 0.0800 0.0710 0.1000 
30 0.0812 0.0520 0.0770 0.0560 0.0800 
40 0.0800 0.0500 0.0760 0.0540 0.0790 

k=10 
10  
20 
30 0.0830 0.0640 0.0785 0.0684 0.0810 
40 0.0700 0.0530 0.0660 0.0570 0.0670 

 

 

Figure 41: The comparison of stresses for Flat Trusses with k=4 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4 5 6

St
re

ss
 (σ

)(
kN

/m
m

2 )

Type of Truss

Flat Truss, k=4

Span 10 m

Span 20 m

Span 30 m

Span 40 m



 

59 
 

 

 

 

Figure 42: The comparison of stresses for Flat Trusses with k=5, 8, and 10 
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• Warren Truss: Since the truss assumed to be Warren with 3 different types, 

therefore related deflection are calculated and compared first based on 

assumed slopes and then through the stated characteristics of stress. 

Table 10: The obtained amount for stress with 3 assumed slope in Warren Truss 
         Type 
 
Span 
  (m) 

Stress (σ) (kN/mm2) 
1 2 3 

𝟏𝟎% 𝟏𝟓% 𝟐𝟎% 𝟏𝟎% 𝟏𝟓% 𝟐𝟎% 𝟏𝟎% 𝟏𝟓% 𝟐𝟎% 

k=4 

10 0.062 0.061 0.060 0.028 0.027 0.026 0.037 0.036 0.035 
20 0.077 0.075 0.074 0.033 0.032 0.031 0.044 0.043 0.042 
30 0.065 0.064 0.063 0.034 0.033 0.032 0.043 0.042 0.041 
40 0.060 0.059 0.058 0.030 0.029 0.028 0.041 0.040 0.039 

k=5 

10 0.070 0.068 0.066 0.041 0.040 0.039 0.053 0.052 0.050 
20 0.097 0.095 0.092 0.058 0.057 0.056 0.063 0.061 0.059 
30 0.071 0.070 0.068 0.052 0.051 0.050 0.056 0.054 0.052 
40 0.073 0.072 0.070 0.046 0.045 0.044 0.049 0.048 0.046 

k=8 

10  
20 0.110 0.106 0.103 0.063 0.061 0.058 0.100 0.097 0.094 
30 0.083 0.081 0.078 0.056 0.055 0.053 0.077 0.075 0.072 
40 0.086 0.083 0.079 0.050 0.049 0.047 0.080 0.077 0.074 

k=10 

10  
20 
30 0.106 0.103 0.097 0.065 0.063 0.061 0.084 0.081 0.077 
40 0.092 0.089 0.085 0.064 0.062 0.060 0.087 0.083 0.079 

 

 

Figure 43: Graphical comparison of stress of Warren Truss, Type 1, with k=4 and for 
the three different top chord slopes  
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Figure 44: Graphical comparison of stress of Warren Truss, Type 2, with k=4 and for 
the three different top chord slopes 

 

 

Figure 45: Graphical comparison of stress of Warren Truss, Type 3, with k=4 and for 
the three different top chord slopes 
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Figure 46: Graphical comparison of stress of Warren Trusses with k=5 and for the 
three different top chord slopes 
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Figure 47: Graphical comparison of stress of Warren Trusses with k=8 and for the 
three different top chord slopes 
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Figure 48: Graphical comparison of stress of Warren Trusses with k=10 and for the 

three different top chord slopes 
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The comparison of warren truss stresses were carried out for the three different 

slopes first and then it was done for the optimum slope selected. The following 

graphs in Figures 49 to 52 gives the stress values for the truss types with the 

optimum slope values. 

 

Figure 49: The comparison of stresses due to optimal slope for Warren Trusses with 

k=4 

 

Figure 50: The comparison of stresses due to optimal slope for Warren Trusses with 

k=5 
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Figure 51: The comparison of stresses due to optimal slope for Warren Trusses with 

k=8 

 

Figure 52: The comparison of stresses due to optimal slope for Warren Trusses with 

k=10 

• Triangular Truss: Three different types of triangular trusses are analyzed 

and the stresses are presented in (Table 11). 
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Table 11: Triangular Truss stresses obtained from the analysis 
             Type 
Span(m) 

Stress (σ) (kN/mm2) 
1 2 3 

k=4 
10 0.0186 0.0134 0.0188 
20 0.0220 0.0160 0.0225 
30 0.0212 0.0150 0.0213 
40 0.0126 0.0090 0.0127 

k=5 
10 0.0140 0.0103 0.0142 
20 0.0193 0.0143 0.0196 
30 0.0206 0.0153 0.0209 
40 0.0123 0.0091 0.0125 

k=8 
10  
20 0.0184 0.0145 0.0185 
30 0.0136 0.0107 0.0137 
40 0.0102 0.0080 0.0103 

 

 

Figure 53: The comparison of stress for Triangular Trusses with k=4  
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Figure 54: The comparison of stress for Triangular Trusses with k=5 

 

Figure 55: The comparison of stress for Triangular Trusses with k=8 

So far, the deflections and stresses obtained from the analysis of trusses are 

presented numerically and graphically. The main aim is to determine the truss type 

with the least deflection and minimum stress value. This will lead to the optimum 

truss type. Chapter 5 (Discussions and Conclusion) will discuss in details about the 

study of finding the optimum truss type via investigating all the results from the truss 

types considered. In addition, a brief discussion of results is included about each 

optimum truss identified.  
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Chapter 5 

5 DISCUSSION AND CONCLUSION 

5.1 Discussion 

The truss models selected for this research and the details given in  chapter 3 

(methodology) were studied for different span lengths (chapter 4 Mathematical 

Formulation and Analysis). The investigation was carried out by applying multiple 

point loads at truss nodal points by considering height and bay as parametric terms. 

The purpose was to find the optimum truss with sufficient height and bay for the 

various  selected spans. Meanwhile this approach was emerged solely by obtaining 

the minimum stress and the minimum deflections at mid span of trusses (chapter 4). 

As a result Tables 12 and 13 give the types of trusses that satisfy the minimum stress 

and deflection values. The optimum trusses among the 11 selected models with 

various span lengths are highlighted. Moreover these results are compared with the 

existing cases. Hence it was found out that there is a substantial difference between 

the deflection values of the two approaches.  

It is stated in previous chapter that the truss span lengths were applied in a 

different manner to various types of the truss models. Therefore, in case of trusses 

with 4 and 5 bays spans of 10, 20, 30 and 40 meters were considered. But in the case 

of 8 and 10 bays the span lengths used were 20, 30 and 40 meters and 30 and 40 

meters, respectively. In other words, if the length of span is increasing the number of 

bays (k) should increase correspondingly. Otherwise the proportion for each bay 

length to the height of the related truss member would be a non-practical geometrical 
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shape with inefficient long length in each bay. In addition, the optimum truss types 

were satisfied in all the selected span lengths but because of the above mentioned 

reasons only the most suitable ones were considered for further comparison with the 

existing method.  

Thus the results obtained are only focused on specific span lengths which 

produced the optimum trusses. It should be noted that the following given table is 

generated by using different span lengths for the given number of bays. Moreover, 

the optimum truss types were changed due to the use of odd and even numerical 

values for the bays.  

In order to get a better perception of the optimum truss, clarification of all the 

above discussions were investigated in each truss model numerically and graphically. 

5.1.1 Deflection and Stress Approaches 

Optimum truss for group one (flat truss) is obtained for the selected span lengths 

for types 2 and 4 in case of even number of bays and odd number of bays 

respectively. It is obvious that, for all the selected  span lengths with k=4 the 

optimum flat truss is obtained for type two truss having the least mid-span deflection 

equal to 0.85 mm. As it is given in Table 12, for the same truss type, the minimum 

deflection is obtained as 1.83 mm by using the current available method of deflection 

calculation, and this value is greater than the 0.85 mm deflection obtained from the 

optimized deflection formula. Similarly, for 30 meters of span length with k= 8 and 

for 40 meters of span length with k=10 the optimum trusses are from type two with 

considerable differences when compared to the current available method of 

deflection calculation. Only in case of truss span with 20 meter length and k=5 the 

optimum truss was obtained from type four. Although the optimum truss is type four 



 

71 
 

in this case, there is still substantial difference between the values of optimized 

minimum deflection and the one obtained from the current method.  

Table 12: Comparison of optimum truss deflections for three groups of truss models 
Span = 10 m , k= 4 

 Optimal Truss 
Deflection Formula 

Existing Deflection 
Calculation Method 

Decrease in 
Deflection (%) 

Group 1 Truss 2       (0.85 mm) Truss 2        (1.83 mm) 53.55 
Group 2 Truss 7       (0.58 mm) Truss 7        (1.07 mm) 45.80 
Group 3 Truss 10     (0.58 mm) Truss 10      (2.58 mm) 77.52 

Span = 20 m , k= 5 
Group 1 Truss 4       (2.27 mm) Truss 4        (6.47 mm) 65.00 
Group 2 Truss 7       (2.66 mm) Truss 7        (3.82 mm) 30.40 
Group 3 Truss 10     (1.24 mm) Truss 10      (9.30 mm) 86.70 

Span = 30 m , k= 8 
Group 1 Truss 2       (4.40 mm) Truss 2      (11.15 mm) 60.54 
Group 2 Truss 7       (3.74 mm) Truss 7        (5.36 mm) 30.22 
Group 3 Truss 10     (1.37 mm) Truss 10    (12.93 mm) 89.40 

Span = 40 m , k= 10 
Group 1 Truss 2       (6.40 mm) Truss 2      (14.60 mm) 56.20 
Group 2 Truss 7       (5.91 mm) Truss 7        (8.00 mm) 26.12 
Group 3  

 

Figures 56 show the comparison of the amount of deflection obtained from the 

optimized deflection formula and the deflection of the same truss type by using the 

current available method of deflection calculation.   
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Optimized Truss Deflection 

 

 

Existing Truss Deflection 
 

 

Figure 56: Comparison of optimum flat truss and existing flat truss system in case 
k=4 and S= 10 m 
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The following graphs in Figures 57 to 60 gives the comparison of deflection 

values between the optimum and existing flat truss type with the different span 

lengths.  

 

 

Figure 57: The graphical comparison of deflection values between the optimum truss 
and the traditional truss system in case of k=4 and S=10 m 

 

 

Figure 58: The graphical comparison of deflection values between the optimum truss 
and the traditional truss system in case of k=5 and S=20 m 
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Figure 59: The graphical comparison of deflection values between the optimum truss 
and the traditional truss system in case of k=8 and S=30 m 

 

 

Figure 60: The graphical comparison of deflection values between the optimum truss 
and the traditional truss system in case of k=10 and S=40 m 
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for optimum truss and the ones from STAAD Pro analysis in Table 13. Since the 

least deflection with minimum stress is existed for the above identified types of 

trusses then there would be no other optimum truss for the specified model.  

Table 13: Comparison of optimum truss stresses for three groups of truss models 
Span = 10 m , k= 4 

 Optimal Truss 
kN/mm2 

Existing Truss 
kN/mm2 

Decrease in 
Stress (%) 

Group 1 Truss 2      (0.032) Truss 2      (0.100) 68.00 
Group 2 Truss 7      (0.027) Truss 7      (0.054) 50.00 
Group 3 Truss 10    (0.013) Truss 10    (0.050) 74.00 

Span = 20 m , k= 5 
Group 1 Truss 4      (0.043) Truss 4      (0.083) 48.20 
Group 2 Truss 7      (0.056) Truss 7      (0.093) 40.00 
Group 3 Truss 10    (0.014) Truss 10    (0.085) 83.53 

Span = 30 m , k= 8 
Group 1 Truss 2      (0.052) Truss 2      (0.134) 61.20 
Group 2 Truss 7      (0.053) Truss 7      (0.086) 38.40 
Group 3 Truss 10    (0.011) Truss 10    (0.066) 83.40 

Span = 40 m , k= 10 
Group 1 Truss 2      (0.053) Truss 2      (0.133) 60.15 
Group 2 Truss 7      (0.060) Truss 7      (0.093) 35.48 
Group 3  

 
The following graphs in Figures 61 to 64 gives the comparison of stress values 

between the optimum and existing flat truss type with the different span lengths.  

 

 

Figure 61: The graphical comparison of stress values between the optimum truss and 
the traditional truss system in case k=4 and S=10 m 
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Figure 62: The graphical comparison of stress values between the optimum truss and 
the traditional truss system in case of k=5 and S=20 m 

 

Figure 63: The graphical comparison of stress values between the optimum truss and 
the traditional truss system in case of k=8 and S=30 m 
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Figure 64: The graphical comparison of stress values between the optimum truss and 
the traditional truss system in case of k=10 and S=40 m 
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minimum stress and the deflection are observed at the same time then the truss type 

is an optimal warren truss. 

The third group of truss model (Triangular model) was studied almost in a similar 

manner as the flat and warren truss models. Also the 10m truss span cannot be used 

for this study due to its non-practical geometrical shape and irregular distance 

between the joints. As a result the occurred deflections obtained for 10, 20 and 30 

meter span are 0.58, 1.24 and 1.37 mm respectively. A comparison between the 

optimized truss systems with traditional approach of truss design proved to be 

considerably different from each other.     

The stresses for the truss members (Table 13) followed the same trend those for 

the deflection in triangular trusses. Consequently, the optimum triangular truss was 

achievable due to the least deflection and minimum stress. 

5.1.2 Revised Deflection Calculation  

Besides the above mentioned outcomes a significant advantage is achieved due to 

mathematical formulation. The mathematical formula created an easy, fast and 

accurate way to calculate the deflections of trusses considered in this research. 

Currently, the most efficient and accurate way for determining the deflection value is 

virtual work method. Although the current method is the most widely used method 

for this purpose it is dependents on long and complicated procedure. The suggested 

formula is introduced a new approach to determine the deflections for the trusses in 

an extremely short and easy procedure. Essentially, the proposed deflection 

calculation method is specified an individual formula for each type of the truss 

models (Table 2) studied in this thesis. Thus, by deciding on the values of the 

unknowns (n, a, b, w, A and E) and substituting them into the related formula the 

deflection can be calculated for the first type of flat truss (Eq. 11). 
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Since the above given unknowns are available in each truss type simply by 

substituting them in the suggested formula for the specific truss type the deflection 

could be obtained in a very short time with minimum mathematical calculation and 

less possibility of making a mistake due to long mathematical calculations.  

Although the new approach given is opened a considerable perception in design of 

truss system, still there are further studies out of scope of this research like; non-

linear optimization of the weight, cost, stress, height and deflection of trusses at 

once. 

5.2 Conclusion  

A unique set of design methods or guides for truss systems with different span 

lengths is not yet established. Although there are some reliable experimental 

estimation methods and considerable mathematical optimization formula for design 

of trusses still there is no standards for the design of three truss models; flat, warren 

and triangular truss.  

Therefore, a mathematical assessment is carried out to introduce a common 

formula to guide engineers, designers and decision makers in choosing the truss type 

with the optimum deflection for the given spans. The created mathematical formula 

is based on virtual work method to achieve the truss type with the least deflection 

and minimum stress in order not to unnecessarily over design and also to reduce the 

secondary effects. Simultaneously, effort was made to derive a formula that can be 

applicable for most common types of the flat, warren and triangular truss models.  

The information provided in the previous chapters and the discussions in this 

chapter makes it clear of how to choose the most efficient truss type and geometrical 

shape for different span lengths.  
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The approach introduced as a result of this study would lead the engineers, 

designers and decision makers to be able to carry out the most efficient and accurate 

truss design. As a result, the matters relating to over design, inaccurate design 

estimation and time consumption due to lengthy calculations can be a matter of 

history with this approach. Also a large number of possible design variables with 

mathematical formulation for optimal solution and effective solution procedures are 

achieved. 

To conclude it is suggested to undertake the investigated method to design 

optimized truss systems instead of using existing methods. 
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