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ABSTRACT 

Nanomachines are devices that are made up of nanoscale components. By 

themselves, nanomachines can perform only simple tasks. To achieve more complex 

tasks, networks of manomachines or nanonetworks are formed. Molecular 

communication is a biocompatible, bio-inspired alternative to traditional 

electromagnetic communication in nanonetworks. In molecular communication, 

molecules can be considered as information packets. Free diffusion based molecular 

communication requires no external energy and is the most basic information 

transport mechanism being considered for nanonetworks. This form of 

communication however is slow due to the random walk of the particles and the 

information packets can also be delivered out of order to the destination. These 

issues present challenges to design and implementation of molecular communication 

based nanonetworking protocols. While there are significant studies that address 

physical layer aspects of molecular communication, there is relatively less work in 

the link layer. In particular, modeling of channel delays or sojourn times of 

molecule-packets that arrive at a nanomachine is required for queueing theoretic 

analyses. To this end, simulations are performed to measure the propagation times of 

molecules between a given source and a destination in both bounded one- and two-

dimensional spaces and unbounded one-dimensional spaces. Here, one-dimensional 

settings correspond to molecular communication that take place in very thin 

capillaries and two-dimensional settings correspond to communication in junctions 

with small widths, negligible heights or on membranes. There are no closed-form 

formulas for the delay distribution of freely diffusing particles in arbitrary, bounded 

environments. The delay measurements in bounded settings are fitted to well-known 
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distributions that are commonly used in modeling time to complete a task. The fits 

can be used to generate arrival times of molecule-packets at a node. This study is 

expected to contribute to the analysis of link layer protocols and workload models 

being considered for nano communication networks.  

Keywords: Distribution Fitting, Free Diffusion, Molecular Communication, 

Nanonetworks.  
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ÖZ 

Nanomakineler nano ölçekte bileşenlerden oluşan cihazlardır. Nanomakineler kendi 

başlarına sadece basit işlemler yapabilirler. Daha karmaşık işlemler için 

nanomakinelerden ağlar, yani nano ağlar, oluşturulabilir. Moleküler iletişim 

biyolojiden ilham alınmış, biyo-uygun, geleneksel elektromagnetik iletişime 

alternatif bir iletişim şeklidir. Moleküler iletişimde paketler moleküllerdir. Serbest 

difüzyona dayalı moleküler iletişimde, harici enerji gereksinimi yoktur ve nano ağlar 

için düşünülen en temel veri taşıma mekanizmasıdır. Ancak bu mekanizma, 

parçacıkların rasgele yürüyüşünden dolayı yavaştır. Ayrıca, parçacıklar gönderilme 

sırasından farklı olarak hedefe ulaşabilirler. Bunlar, moleküler iletişim protokollerini 

tasarlamayı zorlaştırmaktadır. Moleküler iletişimin fiziksel katmanıyla ilgili birçok 

çalışma olmasına rağmen, bağlantı katmanıyla ilgili çalışmalar çok azdır. Özellikle, 

iletişim kanalında paketin yayılma zamanı kuyruklama teorisi açısından önemlidir. 

Bu bağlamda, yayılım zamanlarını ölçmek için bir ve iki boyutlu, sınırsız ve sınırlı 

ortamlarda difüzyon simulasyonları yapılmıştır. Bir boyutlu simulasyonlar kılcal 

damarlardaki iletişime karşılık gelebilir. İki boyutlu simulasyonlar ise kavşak ve zar 

üzerindeki iletişime karşılıktır. Sınırlı ortamlarda, serbest difüzyonla hareket eden 

parçacıkların gecikme zaman dağılımlarının formülü bulunmamaktadır. Sınırlı 

ortamlardaki yayılım zamanları, bilinen dağılımlara eşleştirilmi ştir. Eşleştirmeler, 

molekül-paketlerin bir nanomakineye varma zamanlarını modellemek için 

kullanılabilecektir. Dolayısıyla, bu çalışma nano ağların bağlantı katmanı 

analizlerine katkı koyacak niteliktedir.  
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Chapter 1 

INTRODUCTION 

The smaller the electronics are the less intrusive they are and generally the better 

they are for all involved. The drive for smaller and better electronics brings about the 

drive towards the nanomachine. A nanomachine refers to a well-arranged single unit 

mechanical device at nanoscale that is designed from materials and components at 

nanoscale to serve limited purposes [1] (in most cases just a single purpose). To 

appreciate the complexity of designing and achieving a machine of such a 

specification, it helps to take into cognizance that an object with a specification to the 

tune of the micro-scale cannot be seen by the naked human eye. An object with 

specifications measuring at nanoscale is smaller than that at the micro scale by a 

factor of 1000. Naturally, the quest to achieving this feat has been met with a lot of 

obstacles, but the benefit that is envisioned from it been implemented is the incentive 

that has made it possible for those challenges. One such challenge is that of energy 

consumption in communication among nanomachines. The most tempting means of 

communication in the nano arena is the use of free diffusion in which particles are let 

loose and they migrate randomly walking to the destination by the natural 

phenomenon called Brownian motion. Diffusion has major downsides: it has a very 

low range and high delay associated with transporting particles from one point to 

another. The purpose of this thesis is to analyze and characterize delay in a free 

diffusion based molecular channel so that engineers can plan and design nano 

communication networks at a level above the physical layer. It should be noted that 
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there are only a few studies that consider the link layer [2] and above of a nano 

communication network. 

1.1 Nanomachines in General 

The general definition of a nanomachine is what is given above. Due to the size of a 

nanomachine, what it is able to achieve is not so much as to be felt useful in the real 

sense, for mostly they carry out just a single task, and this task carried out is done at 

a scale that would make little or no impact in the environment. The only way to make 

this impact felt is if a group of these machines worked together towards a given goal 

either by each taking on the same task or by sharing different parts of the process to 

reach that goal. In order that this should happen in a way so as not to negate 

themselves, they must communicate with each other whilst they work. This is how 

the concept of nano communication comes to be. Nano communication is any and 

every infrastructure that enables nano machines to communicate with each other.  

Initially, when machines at the level of the nano were contemplated, the initial 

direction was the application of the traditional communication techniques at the 

nanoscale. The approaches to these methods were in the categories bottom-up and 

top-down [1]. The top-down dealt with scaling down the existing standalone units 

and their communication capabilities, such as transceivers, down to the nanoscale. 

This was found impossible with the current technological advances on ground as 

talked about in [1]. Also, the bottom up approach is very similar to the top down in 

that the traditional communication apparatus were to be applied at the nanoscale, 

only that in this case the parts making up this nanomachine would be manufactured 

separately and then assembled automatically using self assembly [3]. However, again 

this is theoretical only for the technology needed to make these components are not 
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yet in existence. Yet, there are other objections uniformly common to both these 

presented methods given other than their infeasibility. The objections to them are due 

to the principle limitations, power consumption, and bio-incompatibility. Principle 

limitations make communication between devices at the nano level different due to 

quantum effects [4].  

Power consumption is an important factor in this network setting because repowering 

it would be hard after deployment. Due to the power consumption rate during 

transmissions, no matter what power saving scheme is employed, the battery would 

eventually run out. Also, due to the diverse environments that such small devices 

could be deployed in and the limited options in the traditional computing world of 

recharging of spent power, the nanomachine would not last for so long. Also, at such 

a dimension, only simple tasks should be assigned to each nanomachine and the 

addition of power saving schemes would greatly add to its complexity. If, in 

addition, there are acknowledgments attached to each packet sent in the traditional 

sense, this also depletes the energy of the nanomachine drastically as transmitting 

and receiving are known to be the most power intensive part of any activities of a 

communicating device. 

These traditional-styled nanomachines are made from components not easily or 

readily assimilated into the natural environment. The chief need of such a small scale 

technology is deployment in places unreachable before. If deployed in the human 

body for example, it may cause some damage when its active life is over. Also, even 

when not deployed in living organisms, they could still constitute health problems as 

they can easily be carried by the wind and deposited in places not intended for.  

Since they cannot be detected visually, they will not be known to be there and may 
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prove hazardous to the environment if they cannot be assimilated into the ecosystem. 

The hazardous nature of these devices will result in greater ecological problems over 

time. For these reasons, greater strides have been made towards making biological 

nanomachines a reality those of the traditional sort. In fact according to [5], when a 

reference is made to nanomachines, more often than not, what is meant is biological 

nanomachines. 

 

1.2 Biological Nanomachines 

A third and by far the most promising approach to making nanotechnology a reality 

is the bio-hybrid approach. Biological nanomachines already exist in abundance in 

nature. These are cells with facilities synonymous to a miniature computing body. Of 

course in nature, these cells are designed to see to its survival, and the survival of 

similar cells around. As a result, they are not in a form to be readily manipulated for 

other purposes. However, with a little modification, they could do what you would 

want them to do with regards logic, sensing and/or actuating. Reference [6] speaks of 

molecular motors existing in nature, and components that could serve as building 

blocks for the formation of nanomachines such as biochemical molecules, complexes 

and circuits that can pass for processing units [7]. The construction of nanomachines 

from its base components is not the only way to create these nanomachines. 

Genetically engineered cells cited in [8] are more apt for manipulation for diverse 

purposes. 
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As in nature, these cells taken individually cannot do much, but taken as a whole, 

they get a lot done: the way they accomplish this is by working together. The way 

they are to work together is by molecular communication.  

1.2.1 Molecular Communication 

Molecular communication is used here over the term nano communication, because 

this term really does accentuate the departure of the communication technique 

encountered in the biological sphere of nano communication from the traditional way 

that network devices communicate. Earlier on, in this thesis, it was highlighted that 

due to quantum effects principles guiding well established ways of communicating, 

such as electromagnetic waves, fail. Mimicking the way cells communicate in nature, 

carrier molecules (information molecules) are employed as a way of transmitting 

information [9]. In general, the sender encodes information into these molecules 

which can either be produced by the sender, or freely available in the environment or 

attracted to the sender (as in the case of carrier bacterium [10]). Then, these are either 

sent by passive means (e.g. diffusion) or active means (e.g. directed molecular motor 

movement by chemical consumption).  

1.2.1.1 Traditional Communication Methods vs. Molecular Communication 

The method of communication by the molecular means is radically different from the 

way it is known in the traditional sense. As stated above, molecules are used in the 

latter as packets. What is truly unique is the way the packets are transmitted. In the 

traditional means, the power cost of the transmission is borne by the sender. 

However, in the case of these biological nanomachines, the propagation environment 

bears the burden of the power cost [9]. The propagation environment is an aqueous 

solution, but due to the noise inherent in this environment encountered by the 
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sojourning information molecule, whether in the passive form (e.g. diffusion where 

the erratic movement the particle makes redundancy a necessity in this 

communication type) or in the active form (e.g. molecular motors consuming 

chemical energy in order to overcome other molecules and counter energies in the 

environment), the range of this transmission falls within the nano-micro scale [11]. 

Same obstacles render the speed of the packets in the nm/s category. On the other 

hand, the conventional mode of communication boasts of ranges of communication 

in meters to kilometers and speeds of signals matching the speed of light 3 x 108 

km/s. Also, due to the stochastic nature of the information molecules, the probability 

of loss is very high, hence is unreliable relative to the conventional ones. 

Redundancy is encouraged in molecular communication to make sure that message is 

delivered because in this model, acknowledgments are not used given the number of 

information and energy considerations. 

1.3 Field of Deployment 

Nanonetworks are very attractive for deployment in so many areas. Reference [12] 

has a list of areas where this technology, even in the light of its limitations, would 

make a huge impact. These include the biomedical, industrial and consumer goods, 

and the military amongst others. The most promising of these is the medical 

profession, specifically the internal body medicine. Why this is so is that the 

disadvantages of the nanonetworks such as the its range and speed of information 

particle is downplayed by the fact that the shortest distance between the 

nanomachines can be achieved in the human body so easily as the dimensions of the 

human body is not that vast. Two case scenarios will serve to drive home this point. 

Also the size, self-sustaining attribute, self-replicating, and the biocompatibility of 

these nanomachines make them much coveted as compared to the closest competing 
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in-body silicon-based machines which need to replaced when spoilt or not in need 

anymore, or they have to be brought out for replacement of batteries. With the 

nanomachines proposed, all of these problems will be in the past as no more needed 

machines could simply be assimilated by the body, and older machines could 

replicate themselves before self-destructing, and since the machines draw little power 

they need from the environment (e.g. glucose), they never need a battery change. 

1.3.1 In-Body Drug Delivery 

This medical application cited in [13] is the use of these nanomachines to administer 

drugs at certain times when needed. This involves a trigger cell (the drug repository, 

sender) and the target cell (the receiver) [9]. The trigger cell normally has a timer 

telling it when to send the needed drug. The doctor has a time frame when this drug 

needs to be delivered, e.g. at noon period, so since the said cells are close together 

and the time frame is long enough, the needed drug will always be delivered in good 

time. Therefore, this technology could enable a person who needs to constantly take 

life saving drugs at constant intervals, such as a diabetic, live a normal life by having 

a repository of this drug in his body administered in the right interval of time. 

1.3.2 In-Body Health Monitoring 

This is the application of nanomachines in the long time, day to day monitoring of 

the health of patients. Just like in the case of the in-body drug delivery, the 

nanomachines are planted in strategic parts of the body. From these parts, they 

monitor certain cells and organs taking the note of the pH level, cell intake, etc. They 

are able to do this because they are able to translate information in DNA which has 

been found in [14] to hold up to 9.2 Mbits of information in just 2 micrometer square 

of chromosomes. This information will then at regular intervals be sent to a central 
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nanomachine which will store them and on request, will internetwork using the 

optical naturally occurring options of either fluorescent proteins or Molecular 

Organic Light Emitting Diodes (MOLED’S) [12] to get the stored up information to 

the outside world for analysis, possibly by a doctor or a personal health 

monitor/analysis device. 

1.4 Outline of the Thesis 

In Chapter 1, as already observed, the general overview of nanomachines in the bio-

hybrid category is described. In Chapter 2, notable strides in this class of 

nanomachines accomplished in research and implementation are looked into. In 

Chapter 3, the methodology and approach of this thesis with regards to the study of 

the propagation delay behavior of particles transmitted by the passive means of 

diffusion in both one- and two- dimensional bounded and unbounded spaces are 

presented. In Chapter 4, the results obtained from the simulation that are the products 

of the methodology presented in Chapter 3 are shown and analyzed. Finally, Chapter 

5 concludes the thesis. 
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Chapter 2 

NOTABLE DEVELOPMENTS IN NANO 

COMMUNICATIONS 

The setup of a nanonetwork is characterized by nanomachines, information 

molecules, and the environment which engulfs them all. The nanomachines are 

further divided into two classes, namely the sender and the receiver. The sender is 

same as the receiver except it lacks a discriminatory receptacle, but it has the added 

ability to encode information onto biological material (e.g. DNA translation). Also in 

some cases, it has the ability to synthesize information molecules from the 

environment. The receptacle in the receiver is meant to help it attract/capture an 

information molecule when the latter reaches the former. This setup is not exactly a 

new thing, in fact as [15][16] puts it, this is found abundantly in nature. What is new 

is this setup being harnessed as a network for serving purposes not designated to 

cells (naturally occurring nanomachines) by nature. To achieve certain aspects, an 

engineered molecular communication has to be developed, modified or even 

assembled from existing parts in its naturally occurring version. The generic 

architecture as illustrated in [9] shows that molecular communication contrived 

consists of the following states: encoding, sending, propagating, receiving and 

decoding. The following section will treat the developmental efforts under the 

headings below: 

• Nanomachines 
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• Propagation and engulfing environments. 

2. 1 Nanomachines 

Nanomachines are derived basically from cells in nature in a variety of ways, either 

by tinkering with already existing cells by synthesis (i.e. by creating a new variation 

of the existing cell with added functionality through genetic engineering) [9] or by 

putting together a cell-like entity with components existing in nature.  

The aspect of adding desirable communication attributes to existing cells by genetic 

engineering is illustrated in [17]. Not only that, a step further was achieved when 

certain sender nanomachines were designed to synthesize information molecules 

[18]. In the same vein, the receiver nanomachines were designed to not only receive 

information molecules but to receive specific ones. As such, by the differentiating 

amongst the different kinds of information molecules, the sender could now make 

sure that only the intended machines react to the sent messages. To make addressing 

more generic, however, work is being done on using DNA sequences to accomplish 

the addressing issue [16]. In this way, the work of coming up with as many variations 

of the information molecule types as there are receivers and also the prospect of 

getting a single nanomachine to synthesize all the various types information 

molecules can be avoided. Also, intermediary nanomachines could be employed to 

act as repeaters. The basic functioning of each nanomachine’s circuitry such as logic 

functions (biochemical inverter [19], and AND or OR gates [20], etc.), toggle 

switches [21], and oscillators [22] can be added through genetic engineering. Also, 

producing a nanomachine from base elements, making the finished product look like 

cells existing in nature is another product of research in this field [9]. The aim of this 

method is simplification so that only what is needed is included and nothing else. A 
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lipid bilayer is used to mimic the permeable membrane of a cell [5] into which 

functional natural components are added such as receptors (proteins). Even though 

this is an artificial cell, it can achieve replication using chemical components as 

proposed in [23]. As noted in the previous section, in a 2 micrometer square of 

chromosome of a bacteria, 9.2 Mbits of information can be housed as compared to 

the projected achievable storage capacity for 2014 for conventional storage devices 

for the same area, 490 bits [9]. The possibilities are limitless with regards to 

transmission except limited by the receivers’ capacity. Reference [24] found that the 

amount of information a receiver nanomachine can decode (or react to) must be 

proportional to the number of its configurations. Also, work has been done 

extensively as to how nanomachines operate in networks where the information 

molecules are bacteria.  With regards to the attractants the following questions were 

investigated: how the sender attracts these empty bacteria using attractants [25], how 

to encode the plasmids to be inserted into a bacterium with information [26], how 

these loaded bacteria are attracted to the receiver nanomachines by yet another set of 

attractants, how they are then attached to receiver by a pilus [10], and how by DNA 

synthesis the information containing plasmid is recovered by the receiver. 

2.2 Propagation and Environments 

Propagation is that period in the communication process involving nanomachines in 

which the information molecule moves through the environment engulfing both 

nanomachines from the sender to the receiver. Research has unveiled two 

propagation types: 

• Passive 
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• Active 

In the former, the basic form of communication is diffusion, and in the latter, the 

information molecules are attached to other molecules which make marked effort 

against the forces in the environment (energy and non-communication molecules) to 

get to destination. The distinction itself is as a result of the independent work of 

various researchers.  

2.2.1 Passive Propagation 

There are various forms of this class of propagation elucidated by research efforts. 

The first kind is free diffusion based molecular communication in which the 

molecules are released by the sender by opening of a gate [9] and the molecules are 

scattered in all direction due to interaction with other molecules when released 

(broadcast style) and due to its inherent physical tendency to get away from 

molecules of its kind, it exhibits a hyper willingness to mingle with other kinds of 

molecules; that is to say, molecules move from a region of higher concentration to a 

region of lower concentration. In this all, surrounding nanomachines are engulfed in 

the ensuing stream of information molecules. However, only recipients with 

receptacles sensitive to the information molecules react to them (decode them) 

[27][28]. This mode of communication embodies perfectly all the well known 

attributes of nano communication (i.e. low range, lethargically slow, and unreliable 

but also energy efficient.)  

Another class of this diffusion based communication is the gap junction mediated 

reaction. Here, cells are placed close to each other and the area from which the 

diffusion is to take place is selected so as to be directed to the next cell. This selected 
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area of diffusion is called the gap junction channel [6]. Since the cells are adjacent to 

each other and the channels connect them, the propagation is simply instantaneous. 

Imagine now a series of these cells arranged in a row connected by gap junction 

channels where the intermediary cells react to information molecules diffused into it 

by immediately diffusing some of its own to a cell next to it. The information 

molecule loss will be low, and due to the number of cells in question the distance 

achievable increases dramatically and the speed observed will be on the order of 100 

m/s [9]. This feat shown in [29] is remarkable when compared to the free diffusion, 

and for cases were each cell has two or more alternative paths, permeability and 

selectivity properties of the gap junctions have been used to put in place filtering and 

switching mechanisms [30]. This mode adds a lot of functionality to the diffusion 

based communication with one downside: this is much more structured than the free 

version. 

2.2.2 Active Propagation 

In this case, a random walk is not employed but rather molecules perform directed 

movement. To accomplish this directed motion, some sort of external energy must be 

applied in order to overcome the forces in the surrounding environment. Two major 

approaches have been brought to light through the efforts of researchers.  

2.2.2.1 Molecular Motor-Based 

The first of these involves using helper molecules to accomplish this directed motion. 

These helper molecules according to [9] fall into the category of molecular motors, 

interface molecules, and guide molecules [31][32]. The guide molecules that are 

engineered are self-organizing molecules which act as the path on which molecules 

harboring the information molecules thread to the destination; i.e. they act as a path 
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for the molecular motors to thread. The molecular motors, by using up chemical 

energy, thread the guide molecules as a train’s wheels would ride on rails, 

overcoming opposing energies and molecules with an energy efficiency of up to 90% 

[9]. Interface molecules are containers into which the sender nanomachines put in 

information molecules so as to be mounted on the molecular motor and also to 

prevent the information molecule from reacting with the encountered molecules in 

the propagation environment before it gets to the destination [33][16]. This is 

remarked to achieve distances to on the order of meters. The terrain here must be 

structured. 

2.2.2.2 Bacterial Motor-Based 

In this molecular communication mode, there are no set up paths but there are 

bacteria which act as information carriers. Bacteria propel themselves by using their 

flagella (motor). They are attracted to both the sender and the receiver attractants 

[10]. 

2.3 Intra Networking 

Attempts have been made also to link nanonetworks to the other network types. One 

such attempt is the light transduction where short range molecular information is 

converted to optical signals and vice versa [12]. The method proposed is to utilize 

fluorescent proteins [34] and Molecular Organic Light Emitting Diode (MOLED’S) 

to make this conversion possible [35].  
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Chapter 3 

METHODOLOGY 

This section of the thesis is focused on the methods and algorithms used to generate 

data which will be analyzed to construct propagation delay models. Particles will be 

assumed to freely diffuse in both bounded and unbounded one- and two-dimensional 

environments. Examples of cases for which one-dimensional (1D) analysis are valid 

are scenarios where particles are transported in capillaries with negligible width. 

Transport on a membrane, a dish, or a junction are examples for which a two-

dimensional (2D) analysis is valid. Three-dimensional analysis is proposed as future 

work. Note that the distances to be considered will be 1, 2, 4, and 8 micrometers. 

This means this investigation here will be based short-range communications.  

3.1 General Analytic Considerations 

The free diffusion talked about in Chapter 2 is very slow in packet propagation. The 

particle can wander in the environment for a very long time. Hence, a time to live 

(TTL) must be assigned to each particle so that the algorithms do not run forever by 

eliminating long-wandering particles from consideration after their TTL expire. Note 

that such assumption is realistic because generally particles decompose in the 

environment after a given time. Based on observations, a 10-second TTL is assigned 

to particles. Diffusion coefficient will be taken as D = 10-9 m2/s which is the value 

used for small molecules in water. 
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In the one-dimensional bounded case, the source is placed at the beginning of the 

capillary ensuring that no particles can diffuse behind the enclosed barrier against 

which the source is located. Also for the two-dimensional bounded case, where the 

planar junction can have a small width (but zero height), extra boundaries are set up 

in that no particles can go much further than behind were source is located or 

forward past where the receiver is located or breach the walled width of the junction. 

When diffusing particles encounter these barriers, they experience a perfect 

reflection; that is, there is no loss or gain in kinetic energy and its direction is 

reversed by a reflection angle and hence its final position is a reflection of where it 

would have been had there been no barrier in its path. This is not always true in the 

real world, as there are some losses in kinetic energy, but this approach will be 

adopted for its ease of analysis. 

3.2 One-Dimensional Setup Analysis 

There are two cases to simulate: 

1. Unbounded 

2. Bounded 

A pictorial view of what the aforementioned molecular channel is like is given in 

Figure 1 and Figure 2, respectively. 



 

17 
 

 

 

It can be observed from the figure that in the unbounded case, the molecules in 1D 

are unrestricted in both directions. This increases the possibility that some particles 

will never tend towards the intended destination. The particle’s step ∆d in the x-

direction is going to be dictated by the following equation: 

 
∆d � √2�Δt	 
 ��
�1���       (1) 

s

Source 

Possible directions 

Legend 

s
Destinatio

Emitted Particles 

Propagation Medium 

s

Source 

Possible directions 

Legend 

s
Destinatio

Emitted Particles 

Propagation Medium 

Figure 1: One-Dimensional Molecular Channel (Unbounded Case) 

Figure 2: One-Dimensional Molecular Channel (Bounded Case) 
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where rand1Dim = �1 equally likely. Here, Δt is taken as 1 µs. 

The bounded case is exactly the same as the unbounded only that in this case, there is 

an impenetrable boundary at the source.  The boundary condition is implemented by 

a perfect reflection that negates the position of the particle in question by the exact 

amount by which it would have breached the boundary.  

3.2.1 Flow Charts of Subroutines Implementing the Required Scenarios (1D) 

There are several flow charts that describe the algorithm that is implemented in this 

thesis and they are linked together chiefly by subroutines. Here is the 1D 

implementation in terms of flow charts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

3.2.1.1 One-Dimensional Driver

 
 
This phase of the subroutine is the same for both the bounded and unbounded case. 

The subroutine shown in 

transmission. There is a file which has

complete set of data for a simulat

simulations is equal to the lines

five parameters dD, ttl, tPN and dT

distance, time to live, total particle number

(mimics) the encoding process of the 

Figure 
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Dimensional Driver 

This phase of the subroutine is the same for both the bounded and unbounded case. 

shown in Figure 3 chiefly deals with preparing 

. There is a file which has the parameters of each required simulation. A 

complete set of data for a simulation is contained on a line. The number of different 

simulations is equal to the lines. The values required for a simulation is given by the 

five parameters dD, ttl, tPN and dT which correspond to destination

distance, time to live, total particle number, and time step.  This algorithm

the encoding process of the transmitter in that it gets the emission 

Figure 3:  One-Dimensional Simulation Driver 
 

This phase of the subroutine is the same for both the bounded and unbounded case. 

preparing particles for 

the parameters of each required simulation. A 

he number of different 

a simulation is given by the 

which correspond to destination (or receiver) 

This algorithm takes 

in that it gets the emission 
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requirements from the file and passes it on to the subroutine “OneSimulation” which 

in turn carries out much more complex work on the particles meant for transmission. 

The remaining parts in the flow chart are there to allow for interactivity with the user 

and minimize error in the system. The program allows for multiple simulations to be 

carried out.  
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The Subroutine “OneSimulation” 

Figure 4: The Subroutine “OneSimulation”  



 

 

Figure 4 shows the actions of the subroutine “OneSimulation”. This part mostly is 

concerned with setting up uniqu

receiver. The subroutine in 

unused file name with the smallest integer value

to the calling function.
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the actions of the subroutine “OneSimulation”. This part mostly is 

concerned with setting up unique files to record the collected hit times 

he subroutine in Figure 5 is called “AboutFiles”. “About

unused file name with the smallest integer value attachment, which is then sent

to the calling function. 

Figure 5: The Subroutine “AboutFiles” 

the actions of the subroutine “OneSimulation”. This part mostly is 

the collected hit times to the 

”. “AboutFiles” looks for a 

, which is then sent back 

 
 



 

 

Another function of the “OneS

all the unique files that have

note of the certain attributes of that transmission such as the unique file name

average time of arrival, 

also the total number of part

helps the process of comparison of data 

Another routine “AboutFilesGeneral

appending and then return

this case as in the case of creating the unique

given. This simulation

the file name of both the log file and the unique file whose run was just concluded

This helps inform the user where and what to look for in monitoring the progress of 

the simulation.  

Figure 
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Another function of the “OneSimulation” subroutine is that it maintains a log file

all the unique files that have ever been created in the transmission process. This takes 

note of the certain attributes of that transmission such as the unique file name

average time of arrival, the number of particles that reached to the destination

also the total number of particles that were transmitted in that transmission

helps the process of comparison of data across simulations during the 

boutFilesGeneral” shown in Figure 6 does

then returns a complete file name to the calling function.  The file in 

this case as in the case of creating the unique files is dependent on a general 

. This simulation, at the end of each unique transmission, print

the file name of both the log file and the unique file whose run was just concluded

his helps inform the user where and what to look for in monitoring the progress of 

Figure 6: The Subroutine “AboutFilesGeneral” 

subroutine is that it maintains a log file of 

ever been created in the transmission process. This takes 

note of the certain attributes of that transmission such as the unique file name, 

to the destination, and 

smitted in that transmission. This 

simulations during the analysis.  

does the creation or 

a complete file name to the calling function.  The file in 

is dependent on a general name 

h unique transmission, prints to the screen 

the file name of both the log file and the unique file whose run was just concluded. 

his helps inform the user where and what to look for in monitoring the progress of 

 
 



 

 

3.2.1.3 The Subroutine “Particle

Figure 7: 
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The Subroutine “ParticleJourney” 

 The Subroutine “ParticleJourney” (Unbounded
 

nbounded) 



 

 

Figure 8: The 
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The Subroutine “ParticleJourney” (Bounded) 
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the only point where

channels part way as illustrated in

of several of its own subroutines, for example the 

generates each step simultaneously

subroutine function is to indicate w

“LostStatusTime” indicates whether 

The “ArrivalReport” 

the time the particle took to gets to its destination.
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ubroutine responsible for the journey of the each particle, “ParticleJourney

ere the bounded and the unbound form of the 1D

way as illustrated in Figure 7 and Figure 8. The subrountine makes

of several of its own subroutines, for example the “step1DGen”

simultaneously as the time increases. The “destinationBreached

subroutine function is to indicate whether the destination has 

” indicates whether at any point in time a particle 

 puts in the unique file created in subroutine 

the time the particle took to gets to its destination. 

Figure 9: The Subroutine “Step1Dgen” 

ParticleJourney”, is 

bound form of the 1D molecular 

subrountine makes use 

”  given in Figure 9 

destinationBreached” 

the destination has been reached. The 

in time a particle is dead or not.  

ubroutine “OneSimulation”, 
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Figure 11: The Subroutine “ArrivalReport” 

Figure 10: The Subroutine “DestinationBreached
 

 

 

Breached” 
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3.3 Two-Dimensional Setup Analysis 

Here only the bounded case will be simulated since the time complexity of the 2D 

unbounded is high. A pictorial view of what the aforementioned molecule channel is 

like is given in Figure 12 and Figure 13, respectively. 

 

The assumption in Figure 12 is that both the source and the receiver have fixed 

positions in the medium, not free flowing like the emitted particles. In the bounded 

s

sSource Legends: Possible directions Destination Emitted Particles 
Propagation Medium 

Figure 12: Two-Dimensional Molecular Channel (Unbounded) 
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case, the source and the destination resides at the opposite ends of a junction and 

there is also the assumption that none of these particles can go beyond the opposite 

ends. If in their traversal they encounter boundaries, there is a perfect bounce back. 

In addition, there is another assumption that the channel has a width in which 

restricts the journeying particles. Again, if there is an attempt at breaching these 

walls, the particle in question will spring back by a factor equal to the amount it 

would have crossed that boundary.  

It can be seen that released particles have two elements to its step and an increased 

degree of freedom. In Figure 12 the particles are not restricted in any way, hence 

they can go as they like. In the second case, Figure 13, their movement is much more 

restricted. The step formulas to account for steps in the x- and y- directions are: 

∆x = √4�Δt	  cos ��� 
 ��
�2����      (2) 

∆y = √4�Δt	  sin ��� 
 ��
�2����     (3) 

s

sSource Legends: Possible directions Destination Emitted Particles 
Propagation Medium 0.1µm 1µm, 2µm, 4µm, or 8 

Figure 13: Two-Dimensional Molecular Channel (Bounded) 
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rand2Dim is a randomly picked number in range [0-2]. The trigonometric functions 

are in radians. PI is 3.141592654. As before, Δt=1 µs.  

3.3.1 Flow Charts of Subroutines Implementing the Required Scenarios (2D) 

The algorithm of the 2D case is closely related to the 1D one but differs in minor 

details such as the data to be read from the configuration file, the generation of the 

steps, and of course, the complexity of the boundary conditions in the bounded case.  

Most of the subroutines employed for the 1D case are employed in this case too. The 

new configuration reading not present in the previous is w, which stands for the 

width which gives us the upper and lower boundary of our molecular channel. The 

2D case also differs in the number of subroutines. The reason for the differences lies 

in the physical difference as showed in their pictorial world view as depicted in 

Figure 12  and Figure 13. In the figures, it can be seen the receiver is an aperture that 

has a width equal the 1/20 of the size of the width of the channel. The check as to 

whether the destination has been reached is as follows:  

(X_receiver – X_current_particle)2 + (Y_receiver – Y_current_particle)2 ≤ 

Aperture_Width2        (4) 

where 

X_receiver is the x-component to the position of the receiver, 

Y_receiver is the y-component to the position of the receiver,  

X_ current_particle is the x-component of the current position of the emitted particle, 
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Y_ current_particle is the y-component of the current position of the emitted particle, 

Aperture_Width is the radius of the aperture that makes up the receiver.Figure 14 to 

Figure 18 show the remaining subroutines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3.3.1.1 The Subroutine “

Figure 
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The Subroutine “TwoDimensional” 

Figure 14: The Subroutine “TwoDimensional”  ”  
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Figure 15: The Subroutine “TwoDimensionalDriver”  “TwoDimensionalDriver” 



 

 

 

Figure 16: The 
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: The Subroutine “ParticleJourneyChronicles” (Unbounded  Unbounded) 



 

 

Figure 17: The 
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The Subroutine “ParticleJourneyChronicles” (  ” (Bounded) 



 

 

 

 

3.4 Other Tools Emp

The algorithms presented above generate

in C/C++. To analyze

from Mathwave (http://www.mathwave.com) 

results and analysis are presented.
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Other Tools Employed 

sented above generate the data. The algorithms are implemented 

in C/C++. To analyze and present the data, Microsoft Excel and Easy

from Mathwave (http://www.mathwave.com) are used. In the next chapter

are presented. 

 

Figure 18: The Subroutine “WithinReach” 
 

The algorithms are implemented 

Excel and EasyFit software 

In the next chapter, the 
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Chapter 4 

RESULTS AND ANALYSIS 

4.1 Histograms of Propagation Delay in One-Dimensional (1D) and 

Two-Dimensional (2D) Molecular Communication Channel 

Scenarios 

The histograms of propagation delay data collected from representative 1D and 2D 

unbounded and bounded simulation runs are shown in Figure 19 through Figure 21. 

In each simulation, 1000 particles are transmitted. In each case, there are 50 bins. 

The size of each bin, average arrival times (propagation delay), and number of lost 

particles are also reported. The scenarios are for source-destination separation 

distances 1, 2, 4, and 8 µm.  
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Figure 19: Histograms of Propagation Delay for the 1D Unbounded Case 

 

 
Figure 20: Histograms of Propagation Delay for the 1D Bounded Case 
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1D histograms reveal the fact that unbounded scenarios have propagation times that 

are very widely dispersed. The bounded ones on the other hand have less variance. 

 
Table 1: 1D Average Propagation Times in µs (U: Unbounded, B: Bounded) 

Cx/Ry C[1-8] UB: 1µm UB: 2µm UB: 4µm UB: 8µm B: 1µm B: 2µm B: 4µm B: 8µm 

R[1-8]   54945.77 118122 222788.1 459616 534.24 2033.844 8055.63 32199 

UB: 1µm 54945.77 1 0.46516 0.246628 0.119547 102.85 27.01572 6.82079 1.706 

UB: 2µm 118122.1 2.149794 1 0.530199 0.257002 221.1 58.07825 14.6633 3.669 

UB: 4µm 222788.1 4.054691 1.88608 1 0.484727 417.02 109.5404 27.6562 6.919 

UB: 8µm 459616 8.364903 3.89102 2.063019 1 860.32 225.9839 57.0553 14.27 

B: 1µm 534.236 0.009723 0.00452 0.002398 0.001162 1 0.262673 0.06632 0.017 

B: 2µm 2033.844 0.037015 0.01722 0.009129 0.004425 3.807 1 0.25247 0.063 

B: 4µm 8055.626 0.14661 0.0682 0.036158 0.017527 15.079 3.960789 1 0.25 

B: 8µm 32198.76 0.58601 0.27259 0.144526 0.070056 60.271 15.83148 3.99705 1 

 

In Table 1, the ratios of the propagation delays (value in a column to a value in a 

row) across 1D scenarios are provided. The difference between same distance 

considerations across the bounded-unbounded is highlighted in yellow. Across 

intermediate distance considerations but the same category (e.g. bounded) 

differences are given by blue color. Those which compare the disparity of all the 

other distance considerations to the nearest distance consideration are highlighted in 

red. 
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Figure 21: Histograms of Propagation Delay for the 2D Bounded Case 

The histograms of propagation delay data collected from 2D bounded simulation 

runs are shown in Figure 21. 2D unbounded simulations are left as future work due 

to their time complexity. 

4.3 Fitting Delay Data to Distributions 

Although there are analytical formulas for the distribution of hitting times of 

particles in unbounded environments, there are no closed-form formulas for the delay 

distribution of freely diffusing particles in arbitrary, bounded environments. In this 

section, data from simulations of bounded settings will be considered and matched to 

well-known distributions. The distributions investigated are (1) Gamma, (2) Gamma 

(3P), (3) Inverse Gaussian, (4) Inverse Gaussian (3P), (5) Log-Gamma, (6) 

Lognormal, (7) Lognormal (3P), (8) Weibull, (9) Weibull (3P) (see Appendix A). 

These distributions are those commonly used for modeling “time to complete a task.” 

In order to have reliable results, each scenario is repeated 10 times and the averages 



 

41 
 

are reported. There are 10 rows in the each distribution fitting table. These 10 rows 

report the parameters fitted and the 95% Kolmogorov-Smirnov (KS) test results (see 

Appendix B). The last row gives the average values and the number of “accepts” 

obtained in 10 runs. 

4.3.1 One-Dimensional Scenarios 

4.3.1.1 One Micrometer, One-Dimensional 

Table 2: Fitting 1 µm Data to Distributions 1-3 
Gamma. Gamma(3P) Inv.Gaussian. 

α β KS test   α β γ KS test   λ µ KS test 

1,3048 409,43 Reject   1,3826 359,94 36,567 Reject   697,09 534,24 Accept 

1,3236 414,98 Reject   1,3958 370,2 32,554 Reject   727,04 549,28 Reject 

1,5211 330,66 Reject   1,4315 320,46 44,255 Accept   765,08 502,98 Reject 

1,4347 351,98 Reject   1,4151 326,78 42,547 Reject   724,5 504,98 Reject 

1,4197 380,08 Reject   1,4798 341,43 34,387 Accept   766,11 539,62 Accept 

1,3168 423,2 Reject   1,4826 351,45 36,206 Accept   733,76 557,25 Accept 

1,4679 358,79 Reject   1,4129 342,68 42,526 Reject   773,12 526,68 Reject 

1,3732 403,65 Reject   1,2954 388,77 50,682 Accept   761,12 554,28 Reject 

1,4476 350,93 Reject   1,4998 315,81 34,384 Reject   735,45 508,03 Accept 

1,6673 308,55 Reject   1,5894 299,72 38,063 Accept   857,72 514,44 Reject 

1,42767 373,225 0   1,43849 341,724 39,2171 5   754,099 529,178 4 

 
Table 3: Fitting 1 µm Data to Distributions 4-6 

Inv.Gaussian(3P) Log-Gamma. Lognormal. 

λ µ γ KS test   α β KS test   σ µ KS test 

672,96 545,83 -11,598 Accept   54,14 0,11008 Accept   0,80957 5,9598 Accept 

695,57 565,65 -16,373 Accept   52,724 0,11344 Accept   0,82333 5,9813 Accept 

731,78 516,06 -13,082 Accept   59,103 0,10037 Accept   0,77123 5,9321 Accept 

659,29 510,24 -5,2563 Accept   57,608 0,10287 Reject   0,78037 5,926 Accept 

793,98 562,48 -22,859 Accept   56,879 0,10526 Accept   0,79348 5,9873 Accept 

839 581,21 -23,966 Accept   58,911 0,10221 Accept   0,78414 6,0216 Accept 

695,98 535,57 -8,8945 Accept   57,282 0,10413 Accept   0,78773 5,9649 Accept 

692,82 563,67 -9,3917 Accept   55,533 0,1081 Accept   0,80514 6,0029 Accept 

752,44 526,56 -18,533 Accept   57,646 0,10295 Accept   0,78122 5,9344 Accept 

878,54 539,29 -24,851 Accept   62,5 0,09553 Accept   0,75484 5,9705 Accept 

741,236 544,656 -15,4805 10   57,2326 0,104494 9   0,789105 5,96808 10 
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Table 4: Fitting 1 µm Data to Distributions 7-9 
Lognormal(3P) Weibull. Weibull(3P) 

σ µ γ KS test α β KS test   α β γ KS test 

0,85207 5,9072 14,116 Accept 1,5207 564,17 Reject   1,1621 526,36 36,872 Reject 

0,85614 5,9414 10,902 Accept 1,4987 579,66 Reject   1,1718 547,79 32,858 Accept 

0,80588 5,8874 12,108 Accept 1,5991 538,81 Reject   1,1988 488,65 44,812 Accept 

0,83837 5,8519 19,379 Accept 1,5742 538,52 Reject   1,184 491,54 42,858 Reject 

0,80693 5,9704 4,8518 Accept 1,5608 574,32 Reject   1,2108 540,34 34,814 Accept 

0,79179 6,0119 2,9313 Accept 1,5816 591,32 Reject   1,1987 555,91 36,813 Reject 

0,83894 5,9001 17,617 Accept 1,5609 561,74 Reject   1,1877 514,94 42,845 Reject 

0,86267 5,932 19,65 Accept 1,5289 587,89 Reject   1,1348 528,26 50,894 Accept 

0,80145 5,9085 7,0541 Accept 1,5833 541,89 Reject   1,2185 507,41 34,816 Reject 

0,75865 5,9655 1,4788 Accept 1,6414 554,8 Reject   1,2723 514,96 38,728 Reject 

0,82129 5,9276 11,0088 10 1,56496 563,312 0   1,194 521,616 39,631 4 

 

These distributions ordered from the worst to the best are as follows: Gamma.(0), 

Weibull.(0), Weibull(3P)(4), Inv.Gaussian.(4), Gamma(3P)(5), Log-Gamma.(9), 

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10). 

4.3.1.2 Two Micrometer One-Dimensional 

Table 5: Fitting 2 µm Data to Distributions 1-3 
Gamma. Gamma(3P) Inv.Gaussian. 

α β KS test   α β γ KS test   λ µ KS test 

1,3316 1527,4 Reject   1,2992 1416,6 193,4 Reject   2708,3 2033,8 Accept 

1,5933 1247,8 Reject   1,5198 1221,1 132,36 Accept   3167,8 1988,2 Reject 

1,4046 1405,7 Reject   1,4417 1258,1 160,75 Reject   2773,3 1974,5 Accept 

1,4183 1465,5 Reject   1,4046 1372,2 151,1 Accept   2947,8 2078,5 Reject 

1,3869 1484 Reject   1,4373 1340,8 130,96 Accept   2854,3 2058,1 Reject 

1,3504 1499,4 Reject   1,3783 1362,2 147,21 Accept   2734,2 2024,7 Accept 

1,5277 1359 Reject   1,4123 1350,5 168,82 Accept   3171,7 2076,1 Reject 

1,5193 1428,3 Reject   1,4806 1352,1 168,18 Accept   3297 2170,1 Reject 

1,431 1409,1 Reject   1,3577 1361,8 167,64 Reject   2885,6 2016,5 Reject 

1,623 1273,1 Reject   1,5274 1255,1 149,12 Accept   3353,4 2066,2 Reject 

1,45861 1409,93 0   1,4259 1329,1 156,95 7   2989,3 2048,7 3 
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Table 6: Fitting 2 µm Data to Distributions 4-6 
Inv.Gaussian(3P) Log-Gamma Lognormal. 

λ µ γ KS test   α β KS test   σ µ KS test 

2580 2062 -28,167 Accept   84,721 0,08625 Accept   0,79352 7,3075 Accept 

3021,1 2070,8 -82,656 Accept   86,638 0,08429 Accept   0,78416 7,3026 Accept 

2781,5 2017 -42,497 Accept   89,203 0,08176 Accept   0,77178 7,2929 Accept 

2816,3 2141,3 -62,835 Accept   83,486 0,08779 Accept   0,80173 7,3292 Accept 

2969,8 2153,6 -95,528 Accept   82 0,08924 Accept   0,80769 7,3176 Accept 

2951,5 2123,6 -98,819 Accept   81,751 0,08928 Accept   0,80687 7,2991 Accept 

3010,7 2150,7 -74,556 Accept   86,267 0,08508 Accept   0,78987 7,34 Accept 

3132,1 2228 -57,893 Accept   90,74 0,08147 Accept   0,77567 7,3925 Accept 

2370,8 2022 -5,4974 Accept   82,642 0,08829 Accept   0,80225 7,2967 Accept 

3467,9 2180,3 -114,12 Accept   90,584 0,08114 Accept   0,77183 7,3497 Accept 

2910,2 2114,93 -66,2568 10   85,8032 0,085459 10   0,79054 7,32278 10 

 

Table 7: Fitting 2 µm Data to Distributions 7-9 
Lognormal(3P) Weibull. Weibull(3P) 

σ µ γ KS test   α β KS test   α β γ KS test 

0,85136 7,235 74,786 Accept   1,5521 2154,2 Reject   1,1304 1928,3 194,58 Reject 

0,79991 7,2826 21,511 Accept   1,5778 2131,8 Reject   1,2445 1996,6 134,12 Accept 

0,81046 7,2429 52,709 Accept   1,5957 2102,4 Reject   1,1885 1930,3 162,4 Reject 

0,83373 7,2893 42,691 Accept   1,5401 2208,3 Reject   1,183 2047,6 152,4 Reject 

0,8177 7,3052 13,301 Accept   1,5346 2185,7 Reject   1,1948 2053,3 132,36 Accept 

0,81234 7,2923 7,186 Accept   1,537 2144,4 Reject   1,1675 1987,2 148,47 Reject 

0,81496 7,3083 34,815 Accept   1,5648 2219,5 Reject   1,197 2031,2 170,3 Accept 

0,80883 7,3499 49,554 Accept   1,5908 2325,1 Reject   1,2196 2143,4 170,17 Accept 

0,88084 7,1994 96,642 Accept   1,5288 2143,7 Reject   1,1635 1954,9 168,52 Reject 

0,7677 7,355 -6,2038 Accept   1,6065 2220,3 Reject   1,248 2062,2 151,96 Reject 

0,81978 7,28599 38,69912 10   1,56282 2183,54 0   1,19368 2013,5 158,528 4 

 

These distributions ordered from the worst to the best are as follows: Gamma.(0), 

Weibull.(0), Inv.Gaussian.(3), Weibull(3P)(4), Gamma(3P)(7), Log-Gamma(10), 

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10). 
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4.3.1.3 Four Micrometer One-Dimensional 

Table 8: Fitting 4 µm Data to Distributions 1-3 
Gamma. Gamma(3P) Inv.Gaussian. 

α β KS test   α β γ KS test   λ µ KS test 

1,541 5227,5 Reject   1,4163 5223,9 656,87 Accept   12414 8055,6 Reject 

1,3732 6017,6 Reject   1,3678 5548 674,88 Accept   11348 8263,7 Accept 

1,5493 5267,7 Reject   1,4143 5275,4 699,85 Reject   12644 8161,1 Reject 

1,4384 5477,4 Reject   1,5 4900,8 527,73 Accept   11333 7878,9 Reject 

1,2361 6826 Reject   1,4284 5579 468,74 Reject   10430 8437,6 Accept 

1,4932 5288,4 Reject   1,5131 4879,5 513,67 Accept   11791 7896,6 Accept 

1,4718 5496 Reject   1,5378 4931,8 504,78 Reject   11906 8089,1 Accept 

1,5154 5374,4 Reject   1,4813 5084 613,46 Accept   12341 8144,2 Reject 

1,3761 6177,5 Reject   1,2497 6183 774,18 Accept   11698 8501 Reject 

1,5417 5270,5 Reject   1,4802 5069 622,38 Reject   12527 8125,6 Reject 

1,45362 5642,3 0   1,43889 5267,44 605,654 6   11843,2 8155,34 4 

 
Table 9: Fitting 4 µm Data to Distributions 4-6 

Inv.Gaussian(3P) Log-Gamma Lognormal. 

λ µ γ KS test   α β KS test   σ µ KS test 

11781 8350,4 -294,8 Accept   121,54 0,07156 Accept   0,78855 8,6978 Accept 

11620 8550,7 -286,95 Accept   119,87 0,07268 Accept   0,79538 8,7124 Accept 

11372 8353,3 -192,28 Accept   123,78 0,07038 Accept   0,78268 8,7123 Accept 

11966 8207,9 -329,05 Accept   123,17 0,07044 Accept   0,78133 8,6758 Accept 

10189 8579 -141,41 Accept   114,2 0,07631 Accept   0,81511 8,7151 Accept 

12887 8348,7 -452,06 Accept   122,67 0,07076 Accept   0,78337 8,6805 Accept 

12335 8416,1 -327,02 Accept   125 0,06964 Accept   0,77817 8,7047 Accept 

12786 8517,5 -373,34 Accept   125,3 0,06955 Accept   0,77812 8,7144 Accept 

10494 8710,2 -209,2 Accept   111,88 0,07798 Reject   0,82441 8,7243 Accept 

12859 8501,3 -375,67 Accept   125,86 0,06923 Accept   0,77631 8,7135 Accept 

11828,9 8453,51 -298,178 10   121,327 0,071853 9   0,790343 8,70508 10 
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Table 10: Fitting 4 µm Data to Distributions 7-9 
Lognormal(3P) Weibull. Weibull(3P) 

σ µ γ KS test   α β KS test   α β γ KS test 

0,81201 8,6681 127,09 Accept   1,568 8622 Reject   1,1994 7877,3 666,57 Accept 

0,8202 8,6813 134,65 Accept   1,5551 8774,3 Reject   1,1631 8017,8 683,15 Accept 

0,8248 8,6588 229,9 Accept   1,5738 8738,5 Reject   1,1973 7947,5 705,31 Reject 

0,79305 8,6608 63,932 Accept   1,5849 8401,2 Reject   1,2181 7873,5 535,09 Reject 

0,8602 8,6594 233,45 Accept   1,5118 8886,9 Reject   1,1748 8460,1 473,84 Reject 

0,77479 8,6915 -47,719 Accept   1,5866 8436,9 Reject   1,2309 7922,8 522,65 Reject 

0,7913 8,6878 74,121 Accept   1,5902 8636,8 Reject   1,2345 8151,8 512,74 Reject 

0,78655 8,7036 48,219 Accept   1,5926 8717 Reject   1,2204 8063,9 620,86 Accept 

0,87719 8,6609 263,57 Accept   1,4958 9010,6 Reject   1,1205 8068,3 776,58 Accept 

0,78445 8,703 46,679 Accept   1,5951 8705,3 Reject   1,2221 8034,9 630,7 Reject 

0,812454 8,67752 117,3892 10   1,56539 8692,95 0   1,19811 8041,79 612,749 4 

 

These distributions ordered from the worst to the best are as follows: Gamma.(0), 

Weibull.(0), Inv.Gaussian.(4), Weibull(3P)(4), Gamma(3P)(6), Log-Gamma(9), 

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10). 

4.3.1.3 Eight Micrometer One-Dimensional 

 
Table 11: Fitting 8 µm Data to Distributions 1-3 

Gamma. Gamma(3P) Inv.Gaussian. 

α β KS test   α β γ KS test   λ µ KS test 

1,6505 19508 Reject   1,6763 18027 1979,9 Accept   53145 32199 Accept 

1,5113 20514 Reject   1,5021 19287 2033,2 Accept   46853 31003 Reject 

1,4239 23023 Reject   1,3231 22408 3134 Accept   46681 32783 Reject 

1,4798 20937 Reject   1,4458 19781 2383,7 Accept   45848 30983 Reject 

1,4499 21720 Reject   1,507 19526 2066,4 Accept   45659 31492 Accept 

1,4641 22321 Reject   1,429 20917 2789 Accept   47847 32680 Reject 

1,5243 20649 Reject   1,4779 19467 2706,4 Accept   47980 31476 Accept 

1,4971 21700 Reject   1,4439 20864 2361,2 Reject   48638 32488 Accept 

1,6487 19573 Accept   1,4357 20736 2499,7 Accept   53201 32269 Reject 

1,4145 23045 Reject   1,4087 21523 2278,3 Accept   46107 32597 Reject 

1,50641 21299 1   1,46495 20253,6 2423,18 9   48196 31997 4 

 

 

Table 12: Fitting 8 µm Data to Distributions 4-6 
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Inv.Gaussian(3P) Log-Gamma Lognormal. 

λ µ γ KS test   α β KS test   σ µ KS test 

56689 33861 -1662,1 Accept   181,98 0,05555 Accept   0,74906 10,11 Accept 

53244 33215 -2212 Accept   161,62 0,06217 Accept   0,78996 10,048 Accept 

41251 33128 -345,5 Accept   161,86 0,06235 Accept   0,7929 10,093 Accept 

44757 31985 -1001,8 Accept   164,05 0,06123 Accept   0,78384 10,045 Accept 

50819 33207 -1715,8 Accept   165,54 0,06079 Accept   0,78173 10,063 Accept 

45631 33379 -699,34 Accept   169,05 0,05975 Accept   0,77652 10,101 Accept 

52933 33106 -1630,1 Accept   173,75 0,058 Accept   0,76409 10,077 Accept 

50246 34141 -1652,9 Accept   162,09 0,06224 Accept   0,79206 10,089 Accept 

57725 34900 -2630,1 Accept   161,04 0,06265 Accept   0,79468 10,09 Accept 

45436 33797 -1200,1 Accept   157,31 0,06409 Accept   0,80337 10,081 Accept 

49873 33471,9 -1474,97 10   165,83 0,060882 10   0,782821 10,0797 10 

 

Table 13: Fitting 8 µm Data to Distributions 7-9 
Lognormal(3P) Weibull. Weibull(3P) 

σ µ γ KS test   α β KS test   α β γ KS test 

0,74731 10,112 -43,559 Accept   1,6571 34701 Reject   1,2992 32836 2026,3 Reject 

0,76344 10,082 -583,1 Accept   1,578 33177 Reject   1,2328 31082 2067,5 Accept 

0,85933 10,01 1372,6 Accept   1,5526 34907 Reject   1,15 31227 3147,9 Accept 

0,81002 10,011 550,02 Accept   1,5749 33102 Reject   1,2028 30509 2412 Accept 

0,77599 10,07 -127,3 Accept   1,5885 33607 Reject   1,2224 31522 2109,5 Accept 

0,81978 10,046 957,13 Accept   1,5883 34915 Reject   1,193 31830 2811 Accept 

0,76394 10,077 -3,5643 Accept   1,6277 33768 Reject   1,2203 30791 2738,6 Accept 

0,7946 10,086 56,03 Accept   1,565 34688 Reject   1,2068 32156 2391 Accept 

0,75808 10,136 -841,88 Accept   1,5684 34685 Reject   1,2239 31828 2537,4 Accept 

0,82376 10,056 430,09 Accept   1,5379 34640 Reject   1,1847 32208 2308,3 Accept 

0,791625 10,0686 176,6467 10   1,58384 34219 0   1,21359 31598,9 2454,95 9 

 

These distributions ordered from the worst to the best are as follows: Weibull.(0), 

Gamma.(1), Inv.Gaussian.(4), Weibull(3P)(9), Gamma(3P)(9), Log-Gamma(10), 

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10). 

The popular 2 parameter distributions Gamma and Weibull seem not be a fit at all. 

Even the Inverse Gaussian which just 4 matches almost every time cannot be 

considered as a good fit. The Weibull (3p) distribution and Gamma(3p), while giving 
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an admirable accuracy in some cases of distance further along, their lack of 

consistence make them unadvisable for modeling delay. The log-gamma does 

admirably well by fluctuating only between 9 accepts and 10 accepts during the 

whole evaluation process. The fit should be considered only second to the Inverse 

Gaussian(3p), Lognormal and Lognormal (3p) which all through give a steady output 

of 10 accepts.  

4.3.2 Two-Dimensional Scenarios 

4.3.2.1 One Micrometer Two-Dimensional 

 
Table 14: Fitting 1 µm Data to Distributions1-3 

Gamma. Gamma(3P) Inv.Gaussian. 

α β KS test   α β γ KS test   λ µ KS test 

1,3041 796,38 Reject   1,2345 792,33 60,419 Accept   1354,3 1038,5 Reject 

1,3842 703,04 Reject   1,3541 679,39 53,167 Accept   1347 973,14 Reject 

1,361 711,88 Reject   1,3482 672,5 62,206 Accept   1318,7 968,9 Reject 

1,3102 752,24 Reject   1,2896 725,98 49,425 Accept   1291,4 985,62 Reject 

1,4135 688,65 Reject   1,3796 661,28 61,119 Accept   1376 973,43 Reject 

1,338 721,1 Reject   1,3368 678,88 57,305 Accept   1291 964,84 Reject 

1,3912 643,15 Reject   1,3408 623,08 59,326 Accept   1244,8 894,78 Reject 

1,2927 744,86 Reject   1,1844 751,62 72,7 Accept   1244,8 962,91 Reject 

1,0761 927,1 Reject   1,3772 694,5 41,22 Reject   1073,6 997,68 Accept 

1,4304 691,33 Accept   1,3138 706,87 60,189 Accept   1414,5 988,89 Reject 

1,33014 737,973 1   1,3159 698,643 57,7076 9   1295,61 974,869 1 
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Table 15: Fitting 1 µm Data to Distributions 4-6  
Inv.Gaussian(3P) Log-Gamma Lognormal. 

λ µ γ KS test   α β KS test   σ µ KS test 

1254,8 1093,2 -54,625 Accept   54,772 0,12016 Reject   0,88883 6,5814 Accept 

1493,1 1054 -80,878 Accept   58,351 0,11216 Reject   0,85632 6,5445 Accept 

1352,6 1021,7 -52,777 Accept   61,374 0,10667 Accept   0,83528 6,547 Accept 

1220,2 1040,3 -54,635 Accept   54,394 0,12009 Reject   0,88528 6,5324 Accept 

1380,1 1026,3 -52,834 Accept   62,296 0,10526 Accept   0,83039 6,5574 Accept 

1275,2 1013,6 -48,742 Accept   59,239 0,1103 Reject   0,8485 6,5339 Accept 

1219,4 939,14 -44,36 Accept   59,846 0,10807 Accept   0,83563 6,4677 Accept 

1160 1006,6 -43,705 Accept   55,54 0,11729 Reject   0,87367 6,5143 Accept 

1310,8 1051,5 -53,79 Accept   59,229 0,11066 Accept   0,85125 6,5546 Accept 

1443,8 1061,8 -72,935 Accept   58,298 0,11251 Reject   0,85859 6,5589 Accept 

1311 1030,814 -55,9281 10   58,3339 0,112317 4   0,856374 6,53921 10 

 

Table 16: Fitting 1 µm Data to Distributions 7-9  
Lognormal(3P) Weibull. Weibull(3P) 

σ µ γ KS test   α β KS test   α β γ KS test 

0,89627 6,573 4,0229 Accept   1,3953 1086,7 Reject   1,1149 1019,4 60,806 Accept 

0,81288 6,5956 -25,486 Accept   1,4576 1029,1 Reject   1,173 973,95 53,717 Accept 

0,83517 6,5472 -0,06774 Accept   1,4862 1023,9 Reject   1,162 957,81 62,748 Accept 

0,88692 6,5306 0,85599 Accept   1,4016 1032,9 Reject   1,139 982,82 49,793 Accept 

0,83058 6,5571 0,11172 Accept   1,4946 1032,3 Reject   1,1802 967,91 61,71 Accept 

0,85531 6,5259 3,816 Accept   1,4608 1017,5 Reject   1,1564 957,46 57,767 Accept 

0,84437 6,4573 4,6938 Accept   1,483 946,72 Reject   1,1617 882,4 59,772 Accept 

0,89705 6,4876 11,973 Accept   1,4171 1009,8 Reject   1,0908 920,92 72,884 Accept 

0,84254 6,5648 -5,0259 Accept   1,4625 1037,4 Reject   1,1435 1007,4 41,797 Reject 

0,8311 6,591 -15,996 Accept   1,4508 1045,9 Reject   1,1605 979,64 60,721 Accept 

0,853219 6,54301 -2,11022 10   1,45095 1026,222 0   1,1482 964,971 58,1715 9 

 

These distributions ordered from the worst to the best are as follows: Weibull.(0), 

Gamma.(1), Inv.Gaussian.(1), Log-Gamma(4), Weibull(3P)(9), Gamma(3P)(9), 

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10). 
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4.3.2.2 Two  Micrometer Two-Dimensional 

Table 17: Fitting 2 µm Data to Distributions 1-3 
Gamma. Gamma(3P) Inv.Gaussian. 

α β KS test   α β γ KS test λ µ KS test 

1,3515 2064,9 Reject   1,3674 1906 184,47 Accept 3771,8 2790,7 Reject 

1,4177 2016,4 Reject   1,3707 1938,9 201,12 Accept 4053 2858,8 Reject 

1,6315 1759,5 Accept   1,681 1644,8 105,76 Accept 4683,3 2870,6 Reject 

1,533 1912,9 Reject   1,4045 1942,4 204,36 Accept 4495,4 2932,5 Reject 

1,4523 1997,4 Reject   1,3008 2047,1 238,02 Accept 4213,2 2900,9 Reject 

1,3381 2184,1 Reject   1,2959 2056 258,23 Reject 3910,8 2922,6 Accept 

1,5549 1873,1 Reject   1,3943 1914,9 242,68 Accept 4528,8 2912,5 Reject 

1,539 1906,7 Reject   1,5569 1804,2 125,48 Accept 4516,2 2934,4 Reject 

1,4152 2087,1 Reject   1,4807 1911,6 123,19 Reject 4180,2 2953,8 Reject 

1,3151 2152,6 Reject   1,3451 1967,2 184,63 Accept 3722,8 2830,8 Reject 

1,45483 1995,47 1   1,41973 1913,31 186,794 8 4207,55 2890,76 1 

 

Table 18: Fitting 2 µm Data to Distributions 4-6 
Inv.Gaussian(3P) Log-Gamma Lognormal. 

λ µ γ KS test α β KS test   σ µ KS test 

3659,1 2890 -99,303 Accept 85,522 0,08898 Accept   0,82246 7,6097 Accept 

4103,2 3002,2 -143,44 Accept 87,325 0,0875 Accept   0,81728 7,6411 Accept 

5122,2 3090,4 -219,88 Accept 94,952 0,08081 Accept   0,78706 7,6732 Accept 

4694,7 3136,4 -203,95 Accept 88,699 0,08654 Reject   0,8146 7,6757 Accept 

4125,6 3050,3 -149,38 Accept 86,071 0,08893 Reject   0,82467 7,6547 Reject 

3783,8 2997,5 -74,962 Accept 89,917 0,08523 Accept   0,80775 7,6633 Accept 

4656,5 3084,9 -172,42 Accept 92,844 0,08272 Reject   0,79668 7,6803 Accept 

4856,4 3157,2 -222,76 Accept 88,932 0,08633 Accept   0,81374 7,6777 Accept 

4438,7 3146,8 -193,07 Accept 85,43 0,08975 Accept   0,82913 7,6674 Accept 

3923,3 2975,2 -144,36 Accept 84,202 0,09049 Accept   0,82994 7,6195 Accept 

4336,35 3053,09 -162,353 10 88,3894 0,086728 7   0,814331 7,65626 9 
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Table 19: Fitting 2 µm Data to Distributions 7-9 
Lognormal(3P) Weibull. Weibull(3P) 

σ µ γ KS test α β KS test α β γ KS test 

0,84643 7,5806 40,951 Accept 1,5021 2951,6 Reject 1,1652 2756,4 186,26 Accept 

0,82259 7,6346 9,6129 Accept 1,5169 3034,5 Reject 1,1738 2815,1 203,15 Reject 

0,75226 7,7175 -71,946 Accept 1,5827 3084,5 Reject 1,3103 3007,9 110,14 Accept 

0,79295 7,7024 -41,94 Accept 1,5273 3133,2 Reject 1,2023 2906 206,87 Accept 

0,83222 7,6455 13,594 Reject 1,5034 3086,2 Reject 1,1524 2803,6 239,29 Accept 

0,85096 7,6101 78,452 Accept 1,5268 3094,6 Reject 1,1329 2793,5 259,44 Accept 

0,79018 7,6885 -12,919 Accept 1,5599 3122,2 Reject 1,1985 2841,3 244,93 Accept 

0,7812 7,7179 -63,95 Accept 1,5308 3136,9 Reject 1,2608 3030,8 128,54 Accept 

0,80655 7,6945 -41,931 Accept 1,4999 3128,4 Reject 1,217 3028,8 126,72 Reject 

0,8319 7,6172 3,3951 Accept 1,4956 2985 Reject 1,1546 2790,9 186,31 Accept 

0,810724 7,66088 -8,6681 9 1,52454 3075,71 0 1,19678 2877,43 189,165 8 

 

These distributions ordered  from the worst to the best are as follows: Weibull.(0), 

Gamma.(1), Inv.Gaussian.(1), Log-Gamma(7), Weibull(3P)(8), Gamma(3P)(8), 

Lognormal.(9), Lognormal(3P)(9) and Inv.Gaussian(3P)(10). 

4.3.2.3 Four  Micrometer Two Dimensional 

Table 20: Fitting 4 µm Data to Distribution 1-3  
Gamma. Gamma(3P) Inv.Gaussian. 

α β KS test α β γ KS test λ µ KS test 

1,4856 6427,8 Reject   1,451 6073,6 736,34 Accept   14186 9549 Accept 

1,4891 6858 Reject   1,3249 7063,9 853,37 Accept   15208 10212 Reject 

1,3063 7506,4 Reject   1,2721 7011,6 886,27 Accept   12809 9805,5 Reject 

1,4929 6519,9 Reject   1,2954 6809,7 912,51 Accept   14532 9733,7 Reject 

1,567 6595,5 Reject   1,4797 6524,6 680,4 Accept   16195 10335 Reject 

1,4056 6811,6 Reject   1,3285 6611,2 791,08 Reject   13458 9574,3 Reject 

1,4457 7093,1 Reject   1,4481 6684,7 574,53 Accept   14825 10255 Reject 

1,5227 6522 Reject   1,3953 6592,1 733,26 Accept   15122 9931 Reject 

1,5566 6432,3 Reject   1,6259 5880,7 450,94 Reject   15585 10012 Reject 

1,6146 6328,9 Accept   1,4598 6518,2 703,64 Accept   16500 10219 Reject 

1,48861 6709,55 1   1,40807 6577,03 732,234 8   14842 9962,65 1 
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Table 21: Fitting 4 µm Data to Distribution 4-6 
Inv.Gaussian(3P) Log-Gamma Lognormal. 

λ µ γ KS test α β KS test σ µ KS test 

14691 9976,5 -427,52 Accept   128,21 0,06918 Accept   0,78294 8,8697 Accept 

14668 10703 -490,16 Accept   119,67 0,07453 Reject   0,81495 8,9197 Accept 

12187 10005 -199,13 Accept   119,22 0,0744 Accept   0,81198 8,8705 Accept 

13775 10115 -381,55 Accept   121,67 0,07296 Reject   0,80439 8,8773 Accept 

17255 11060 -724,43 Reject   124,96 0,07159 Reject   0,79985 8,9456 Reject 

12387 9809,4 -235,13 Accept   119,99 0,07377 Accept   0,80762 8,851 Accept 

14427 10738 -483,34 Accept   118,14 0,07549 Reject   0,8201 8,9182 Accept 

14313 10379 -447,63 Accept   120,87 0,07359 Accept   0,80866 8,895 Accept 

16914 10658 -645,61 Accept   129,01 0,06914 Accept   0,78492 8,9198 Accept 

17031 10931 -712,04 Accept   124,48 0,07177 Reject   0,80036 8,9342 Accept 

14764,8 10437,49 -474,654 9   122,622 0,072642 5   0,803577 8,9001 9 

 

Table 22: Fitting 4 µm Data to Distribution 7-9 
Lognormal(3P) Weibull. Weibull(3P) 

σ µ γ KS test α β KS test α β γ KS test 

0,79347 8,8563 69,493 Accept   1,5829 10203 Reject   1,2061 9405,1 746,33 Accept 

0,82753 8,9043 81,38 Accept   1,52 10889 Reject   1,164 9881,9 859,1 Accept 

0,86418 8,8066 310,98 Accept   1,5174 10373 Reject   1,1209 9319 890,29 Accept 

0,82839 8,8476 150,22 Accept   1,5385 10389 Reject   1,1496 9273,2 921,2 Accept 

0,77663 8,9747 -165,56 Reject   1,5553 11081 Reject   1,233 10354 690,41 Accept 

0,85 8,7986 253,7 Accept   1,5247 10155 Reject   1,1517 9255,1 795,79 Accept 

0,83015 8,906 64,488 Accept   1,5106 10899 Reject   1,2076 10339 581,46 Accept 

0,82238 8,8781 87,765 Accept   1,5308 10597 Reject   1,1936 9785,2 739,69 Accept 

0,76484 8,9454 -142,9 Accept   1,5836 10727 Reject   1,2798 10356 464,53 Accept 

0,77891 8,961 -150,63 Accept   1,5541 10959 Reject   1,2292 10190 715,96 Accept 

0,813648 8,88786 55,8936 9   1,54179 10627,2 0   1,19355 9815,85 740,476 10 

 

These distributions ordered  from the worst to the best are as follows: Weibull.(0), 

Gamma.(1), Inv.Gaussian.(1), Log-Gamma(5), Gamma(3P)(8), Lognormal.(9), 

Lognormal(3P)(9), Inv.Gaussian(3P)(9) and Weibull(3P)(10). 
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4.3.2.4 Eight  Micrometer Two-Dimensional 

 
Table 23: Fitting 8 µm Data to Distributions 1-3 

Gamma. Gamma(3P) Inv.Gaussian. 

α β KS test   α β γ KS test   λ µ KS test 

1,5215 22576 Reject   1,4194 22237 2786,4 Accept   52261 34349 Reject 

1,5728 23351 Reject   1,5929 21840 1937,2 Accept   57765 36727 Reject 

1,5067 24268 Reject   1,4159 23940 2668 Accept   55088 36563 Reject 

1,493 22916 Reject   1,5685 20371 2262,6 Reject   51083 34215 Accept 

1,5872 22093 Reject   1,6209 20349 2081,3 Accept   55654 35065 Reject 

1,6103 22439 Reject   1,4794 22586 2719,3 Accept   58183 36132 Reject 

1,4288 24378 Reject   1,4586 22135 2546,4 Reject   49769 34832 Accept 

1,5356 22785 Reject   1,4584 22309 2451,5 Accept   53726 34987 Reject 

1,6157 22745 Reject   1,4168 23728 3133 Accept   59378 36750 Reject 

1,4945 23648 Reject   1,3963 23045 3163,9 Accept   52821 35343 Accept 

1,53661 23119,9 0   1,48271 22254 2574,96 8   54572,8 35496,3 3 

 

Table 24: Fitting 8 µm Data to Distributions 4-6 
Inv.Gaussian(3P) Log-Gamma Lognormal. 

λ µ γ KS test   α β KS test   σ µ KS test 

51777 35791 -1441,7 Accept   166,44 0,06098 Accept   0,78625 10,148 Accept 

63471 39304 -2577,4 Accept   168,64 0,06061 Reject   0,78667 10,221 Accept 

56237 38511 -1948 Accept   163,08 0,06256 Accept   0,79857 10,203 Accept 

53281 35441 -1225,9 Accept   176,82 0,05743 Accept   0,76336 10,156 Accept 

57722 36744 -1678,7 Accept   176,61 0,05766 Accept   0,76594 10,184 Accept 

59872 38243 -2111,2 Accept   170,2 0,05996 Accept   0,78188 10,206 Accept 

46268 35374 -541,47 Accept   168,32 0,06035 Accept   0,78252 10,157 Accept 

49607 36151 -1164,1 Accept   163,87 0,06201 Accept   0,79342 10,162 Accept 

55297 38261 -1510,8 Accept   168,31 0,06072 Accept   0,7873 10,219 Accept 

52013 36502 -1159,8 Accept   171 0,05953 Accept   0,77806 10,18 Accept 

54554,5 37032,2 -1535,91 10   169,329 0,060181 9   0,782397 10,1836 10 
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Table 25: Fitting 8 µm Data to Distributions 7-9  
Lognormal(3P) Weibull. Weibull(3P) 

σ µ γ KS test   α β KS test   α β γ KS test 

0,80077 10,13 340,69 Accept   1,5735 36738 Reject   1,1985 33614 2819,4 Accept 

0,76245 10,252 -635,59 Accept   1,5833 39398 Reject   1,272 37615 1980,8 Accept 

0,79789 10,204 -16,754 Accept   1,5517 39004 Reject   1,197 36073 2713 Reject 

0,78009 10,134 414,73 Accept   1,6196 36621 Reject   1,2442 34401 2307,6 Reject 

0,76925 10,18 84,794 Accept   1,6182 37687 Reject   1,2767 35712 2123,9 Accept 

0,7753 10,214 -168,59 Accept   1,5873 38776 Reject   1,2315 35826 2756,9 Accept 

0,83242 10,094 1153,8 Accept   1,5706 37087 Reject   1,1988 34451 2570,2 Reject 

0,8195 10,129 604,76 Accept   1,5552 37394 Reject   1,2155 34798 2480,6 Reject 

0,80798 10,193 514,32 Accept   1,5708 39455 Reject   1,2083 35870 3157,6 Accept 

0,80556 10,145 667,24 Accept   1,5876 37782 Reject   1,1831 34144 3206,1 Accept 

0,795121 10,1675 295,94 10   1,58178 37994,2 0   1,22256 35250,4 2611,61 6 

 

These distributions ordered from the worst to the best are as follows: Weibull.(0), 

Gamma.(0), Inv.Gaussian.(3), Weibull(3P)(6), Gamma(3P)(8), Log-Gamma(9), 

Lognormal.(10), Lognormal(3P)(10) and Inv.Gaussian(3P)(10). 

The popular Weibull, Gamma and Inverse Gaussian distributions still give very poor 

fits.  The Log-Gamma, which in the 1D case gave stable values, in this scenario has 

given widely varying fittings proving unsuitable in the considerations for the 2D 

realm. The 3P version of the Gamma and Weibull, which did very poorly in the 1D 

case, were shown to be outstanding in this case as lowest match record in both cases 

was 8 and the highest for the Gamma(3P) was 9, while for the Weibull(3p), it was 

10. General distributions that would both accommodate the 1D as the 2D cases are 

the Lognormal, Lognormal(3p) and the Inverse Gaussian. 
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Chapter 5 

CONCLUSION 

5.1 Summary 

Thus far what has been accomplished is the recreation of the one- and two- 

dimensional molecular channel with and without boundaries. The propagation delays 

of diffusing particles in both scenarios were analyzed. The considered 

communication ranges were short range.  

In a bid to set the foundations for the development of workload models for the 

bounded case, an effort was made to fit exhaustively several popular distributions to 

the delay data generated from simulations. The effort resulted in at least 3 very viable 

distributions which cut across both the 1D and the 2D cases. These distributions are 

the Inverse Gaussian (3p), the lognormal, and the Lognormal (3p).  

5.2 Future Work 

Due to the close relations of the particular behavior in both 1D and 2D, I speculate 

that the 3D case will follow same pattern although checking for hits to boundaries 

will be slightly more complex. I also expect that the time complexity to be higher 

due to three degrees of freedom in which particles can move. The stage that the 

nanotechnology has been developed thus far makes it deployable in point to point 

communication networks. Due to this fact, I hope in the nearest future, this will be 

made a reality especially in the field of drug delivery where medicine can be 
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delivered within a range of time comfortable enough for these nanomachines to 

communicate effectively within. In addition, studies should be encouraged in making 

multi-transmitter and multi-receiver type a reality (i.e. nanonetworks) so as to make 

the application much more widespread.  
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Appendix A: Distributions

The text below is reproduced

easy reference. 

Copyright © 2004-2013 MathWave Technologies

Gamma Distribution
 
 
Parameters 
 

 - continuous shape parameter (

 - continuous scale parameter (

 - continuous location parameter (
 
 
Domain 
 
 
 
 
 
Three-Parameter 
 
 
Probability Density Function
 
 
 
 
 
 
 
Cumulative Distribution Function
 
 
 
 
 
 
 
Two-Parameter Gamma
 
 
Probability Density Function
 
 
 
 
 
 
 
Cumulative Distribution Function
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Appendix A: Distributions  

The text below is reproduced directly from the Help File of EasyFit Software 

2013 MathWave Technologies (http://www.mathwave.com

Distribution 

continuous shape parameter ( ) 
continuous scale parameter ( ) 
continuous location parameter ( yields the two-parameter Gamma

Parameter Gamma Distribution 

Probability Density Function 

Distribution Function 

Gamma Distribution 

Probability Density Function 

Cumulative Distribution Function 

from the Help File of EasyFit Software for 

http://www.mathwave.com) 

Gamma distribution) 



 

 

 
 
 
 
 
 
where  is the Gamma

Weibull Distribution
 
 
Parameters 
 

 - continuous shape parameter (

 - continuous scale parameter (

 - continuous location parameter (
 
 
Domain 
 
 
 
 
 
Three-Parameter Weibull Distribution
 
 
Probability Density Function
 
 
 
 
 
 
 
Cumulative Distribution Function
 
 
 
 
 
 
 
Two-Parameter Weibull Distribution
 
 
Probability Density Function
 
 
 
 
 
 
 
Cumulative Distribution Function
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Gamma Function, and  is the Incomplete Gamma

Weibull Distribution 

continuous shape parameter ( ) 
continuous scale parameter ( ) 
continuous location parameter ( yields the two-parameter Weibull distribution)

Parameter Weibull Distribution 

Probability Density Function 

Cumulative Distribution Function 

Parameter Weibull Distribution 

Probability Density Function 

Cumulative Distribution Function 

Gamma Function. 

parameter Weibull distribution) 
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Lognormal Distribution 
 
 
Parameters 
 

 - continuous parameter ( ) 
 - continuous parameter 
 - continuous location parameter (  yields the two-parameter Lognormal 

distribution) 
 
 
Domain 
 
 
 
 
 
Three-Parameter Lognormal Distribution 
 
 
Probability Density Function 
 
 
 
 
 
 
 

 
Cumulative Distribution Function 
 
 
 
 
 
 
 
Two-Parameter Lognormal Distribution 
 
 
Probability Density Function 
 
 
 
 
 
 
 
 
Cumulative Distribution Function 
 
 
 
 
 
 
 
where  is the Laplace Integral. 
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Inverse Gaussian Distribution 
 
 
Parameters 
 

 - continuous parameter ( ) 
 - continuous parameter ( ) 
 - continuous location parameter (  yields the two-parameter Inverse Gaussian 

distribution) 
 
 
Domain 
 
 
 
 
 
Three-Parameter Inverse Gaussian Distribution 
 
 
Probability Density Function 
 
 
 
 
 
 
 
Cumulative Distribution Function 
 
 
 
 
 
 
 
 
 
 
 
 
Two-Parameter Inverse Gaussian Distribution 
 
 
Probability Density Function 
 
 
 
 
 
 
 
Cumulative Distribution Function 
 
 
 
 
 
 
 
where  is the Laplace Integral. 
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Log-Gamma Distribution 
 
 
Parameters 
 

 - continuous 

parameter ( ) 

 - continuous 

parameter ( ) 
 
 
Domain 
 
 
 

 
Probability Density Function 
 
 
 
 
 
 
 
Cumulative Distribution Function 
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Appendix B: KS (Kolmogorov-Smirnov) Test 

The text below is mainly based on the Help File of EasyFit Software. 

Copyright © 2004-2013 MathWave Technologies (http://www.mathwave.com) 

Kolmogorov-Smirnov Test 

 

The KS test is used to determine if a sample comes from a hypothesized 

continuous distribution. Assume that a random sample X1, ... , Xn from some 

distribution with CDF F(X) is given. The empirical CDF is denoted by 

 

 

 

 

Definition 

 

The Kolmogorov-Smirnov statistic (D) is based on “the largest vertical 

difference between the theoretical and the empirical cumulative 

distribution function”: 
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Hypothesis Testing 

 

The null and the alternative hypotheses are: 

 

H0: the data follow the specified distribution;  

 

HA: the data do not follow the specified distribution.  

 

The null hypothesis is rejected at the given significance level ( ) if the test 

statistic, D, is greater than the critical value obtained from a table. The fixed 

values of  that are generally used to evaluate the null hypothesis (H0) at 

various significance levels are 0.01, 0.05 etc. For most applications, a typical 

value used is 0.05. 
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Appendix C: Programs 

Abouts Files 
// nice 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
// The purpose of this function is to o                                                                 
char  * aboutFiles( char  *genericName ) 
{ 
 FILE* fp; // file pointer used to point to the filename 
generated 
 char  end[]= ".txt" ; // this as the name implies is to be at the 
tail of whatever name is generated, this gives the .txt extension to 
the file 
 int  endSize = sizeof (end); // this gives the character count of 
the file's extension, this is used inturn to give t he totalsize of 
the characters of the filename when combined with t he part that came 
before it 
 int  gnS = strlen(genericName); // this gets the file size of 
the original file name that was passed into the pro gram. This 
constitues the first part of the filename, and this  integer combined 
with endsize would give the size of the generic fil e, but where 
another other than the generic file is to be create d the middle part 
which consist of numbers in form of ordinary letter s will be added 
to the mix. 
 int  n = gnS+endSize; // this gives total size of the generic 
file name, which is to be created 
 char  *fileName = ( char *) malloc(n* sizeof ( char )); // this 
creates the generic file name holder character 
 strcpy(fileName,genericName); // this copies the generic 
filename in to the foremost position 
 strcat(fileName, end); // this copies in the extension to the 
tail most point of the newly created container 
 int  i = 1, // numeral for te file to be generate 
  j= 1, // this is the number to indicate the number of 
spaces the generate integer will need in the newly named file 
  divide = i , // divide is the helps j determine the 
number of spaces it will need by disintegrated by t he dividing 10 
till it reaches 0 and at each loop j is increased b y 1 
  fStatus=1 ; // flag that determines whether the following 
loop would go on repeating itself, in this repeatio n newer tests and 
names are made possible, this will only change to z ero when an 
unused name is found, and hence signifying the end of the search. 
 do 
 { 
  fp = NULL; // the file pointer is initial made to point 
to no object, as a point of precaution, so if it ha d being used 
before it was now free 
  fp = fopen(fileName, "r" ); // this function attempts to 
open a file given by the string pointed to by the f ileName pointer, 
if exists it will return an object, not a null, hen ce indicating 
that the file already exists, hence the program nee ds to generate a 
new name. If it does not exist however the pointer returned points 
to null, hence the pointer is safe to return to the  calling function 
the pointer to that string of characters discovered  by it  
  if (fp != NULL) // tests whether the file name exists or 
not, if it exists, its body is executed 
    { 



 

72 
 

   fclose(fp); // this releases the pointer from the 
previous file it was pointing to 
   free(fileName); // this frees the character pointer 
object from the string it was previously pointing t o 
   do{j++;} while (divide /= 10); 
   j++; // numbers converted to characters will take 
up as much characters as the digit positions the oc cupy, so the 1-9 
will occupy just one space, 10-99 will occupy 2 and  100-999 3 etc. 
as 'divide' is an integer and 10 is an integer, the ir division 
leaves no decimal part. So if 10 is divide by a num ber in the 1-9 
range it gives 0, in the 10-99 zone: 1, 100-999: 3 etc. Since we 
employ a do while loop here it gives us one extra i n each instance. 
So for d above stated category we have 1, 2, 3 etc.  the initial 
value of j in each instance is 1 so the each digit has and extra 
character added to its string. The reason for this is that in the 
copying functions, they require an extra space to p ut in the '\0' at 
the end, if they don't have that space to put it th ey either 
truncate the character by that one space and put th e null character 
in that place or the null character might be neglec ted completely. 
So the hence the starting value of j on each run as  1 rather than 
zero 
   char  *a; // name holder/ potential pointer to the 
string of integer character soon to b created for t he corresponding 
generated number i 
   a = ( char *) malloc(j* sizeof ( char )); // this 
creates to location of space the string is going to  point to 
   sprintf(a, "_%d" , i); // this coverts the integer i 
into its corresponding character letter, this will be pointed to by 
a 
   n = gnS +endSize+ j; // getting the size of the 
completely new string 
   fileName = ( char *) malloc(n* sizeof ( char )); // 
making a pointer to this new string/name 
   strcpy(fileName,genericName); // copying the 
generic part of this newfile name  
   strcat(fileName, a); // adjoining the number that 
makes the file unique to the generic part 
   strcat(fileName, end); // attaching the extention 
part to this file name 
   i++; // this increase the file name number just in 
case this last created file might not be found to b e unique 
   j= 1; //resetting the spaces needed for the number 
portion of the file name to be one 
   divide = i; // this gives the number of the 
generated file number to the variable that will hel p the program 
determine the number of spaces the number part next  file name 
generated will need 
   free(a); // this frees the pointer pointing to the 
character holding the number part of the file name 
    } 
  else // this is executed when the string generated is 
found not to exist in the specified directory, maki ng it alright to 
return the string in question to the calling functi on. This makes 
the condition "fStatus to fail" 
  { 
   fStatus = 0; // loop control is now set to exit 
  } 
 } while (fStatus); // controls the string generation process 
 return  fileName; // the valid file name is returned at this 
point 
} 
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About files General File 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
char  * aboutFilesGeneralVD( char  *genericName, int * T1, int * T2, int * 
T3, int * T4) 
{ 
 FILE* fp; 
 //char genericName[]= "freedom"; 
 //int genericNameSize = sizeof(genericName); 
 //char *fileName; 
 char  end[]= "Overall.txt" ; 
 int  endSize = sizeof (end); 
 int  gnS = strlen(genericName); 
 int  n = gnS+endSize; 
 char  Tee1[]= "FileName" , 
  Tee2[]= "Time" , 
  Tee3[]= "TotalParticles" , 
  Tee4[]= "Timestep" ; 
  
 *T1= strlen(Tee1)+6; 
 *T2= strlen(Tee2)+3; 
 *T3= strlen(Tee3); 
 *T4= strlen(Tee4); 
 //free(fileName); 
 char  *fileName = ( char *) malloc(n* sizeof ( char )); 
 strcpy(fileName,genericName); 
 strcat(fileName, end); 
 // generating file names 
 fp = NULL; 
 fp = fopen(fileName, "r" ); 
 if (fp != NULL) 
   { 
  fclose(fp); 
   } 
 else 
 { 
  fp = fopen(fileName, "w+" ); 
  fprintf(fp, "%*s, %*s, %s, %s, %s, %s\n\n" ,  *T1, Tee1, 
*T2, Tee2, Tee3,  Tee4); 
  fclose(fp); 
 } 
 return  fileName; 
} 
 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
char  * aboutFilesGeneral1D( char  *genericName, int * T1, int * T2, int * 
T3, int * T4, int * T5, int * T6, int * T7, int * T8, int * T9) 
{ 
 FILE* fp; 
 //char genericName[]= "freedom"; 
 //int genericNameSize = sizeof(genericName); 
 //char *fileName; 
 char  end[]= "Overall.txt" ; // this is the text of the end part 
to the string 
 int  endSize = sizeof (end); // this is the integer counts to the 
words fo the string pointed to by end 
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 int  gnS = strlen(genericName); // this is the length of the 
sting pointed to by genericName 
 int  n = gnS+endSize; // this the total size of the of the 
string of the overall file name 
 // the next following lines are arrays containing t he names 
that will be used for formanting the overal file 
 char  Tee1[]= "FileName" , // isolated run name file 
  Tee2[]= "Distance_µm" , // the constant distance set for 
the this file 
  Tee3[]= "Time_µs" , // time to live 
  Tee4[]= "TotalParticles" , // Total number of particles 
considered 
  Tee5[]= "Timestep_µs" , //Time per each step of particle 
  Tee6[]= "Particles_Lost" , // Particle number that made it 
to the destination 
  Tee7[]= "Arrival_Fraction" , // fraction of particles that 
made the destination 
  Tee8[]= "Tot_Particle_Transit_Time" , // Total transmission 
time 
  Tee9[]= "Average_Arrival_Time" ; // Average arrival time 
 // retriving by interger the sizes of the area for the 
preceeding headers 
 *T1= strlen(Tee1)+6; 
 *T2= strlen(Tee2); 
 *T3= strlen(Tee3)+3; 
 *T4= strlen(Tee4); 
 *T5= strlen(Tee5); 
 *T6= strlen(Tee6); 
 *T7= strlen(Tee7); 
 *T8= strlen(Tee8); 
 *T9= strlen(Tee9)+ 4; 
 //free(fileName); 
 char  *fileName = ( char *) malloc(n* sizeof ( char )); // creating 
the pointer for the file name 
 strcpy(fileName,genericName); // copying in the initial part of 
the file name 
 strcat(fileName, end); // attaching the end part 
 // testing for its existence 
 fp = NULL; // points no where initially 
 fp = fopen(fileName, "r" ); // points somewhere if it exists, 
points no where if it doesnt 
 if (fp != NULL) 
   { 
  fclose(fp); // close the file if it exists 
   } 
 else 
 { 
  // if it doesnt exist create it, set up the heading  
formatting and then close the file 
  fp = fopen(fileName, "w+" ); // open for writing 
  fprintf(fp, "%*s, %s, %*s, %s, %s, %s, %s, %s, %*s\n\n" ,  
*T1, Tee1,  Tee2,  *T3, Tee3,  Tee4,  Tee5,  Tee6, Tee7,  
   Tee8, *T9, Tee9); //  Formating and putting the 
names. The star gives room for the integer to creat e the 
correspoding number of space and the strings fill i n from right to 
left 
  fclose(fp); // file closed 
 } 
 return  fileName; // generated string name is returned 
} 
#include <stdio.h> 
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#include <string.h> 
#include <stdlib.h> 
 
char  * aboutFilesGeneral2D( char  *genericName, int * T1, int * T2, int * 
T3, int * T4, int * T5, int * T6, int * T7, int * T8, int * T9) 
{ 
 FILE* fp; 
 char  end[]= "Overall.txt" ; 
 int  endSize = sizeof (end); 
 int  gnS = strlen(genericName); 
 int  n = gnS+endSize; 
 char  Tee1[]= "FileName" , 
  Tee2[]= "Xcod" , 
  Tee3[]= "Ycod" , 
  Tee4[]= "Radius" , 
  Tee5[]= "TTL" , 
  Tee6[]= "Average_Arrival_Time" , 
  Tee7[]= "DelT" , 
  Tee8[]= "SucParts" , 
  Tee9[]= "AverageSucParts" ; 
  
 *T1= strlen(Tee1)+6; 
 *T2= strlen(Tee2); 
 *T3= strlen(Tee3); 
 *T4= strlen(Tee4); 
 *T5= strlen(Tee5)+3; 
 *T6= strlen(Tee6); 
 *T7= strlen(Tee7); 
 *T8= strlen(Tee8); 
 *T9= strlen(Tee9)+ 4; 
 char  *fileName = ( char *) malloc(n* sizeof ( char )); 
 strcpy(fileName,genericName); 
 strcat(fileName, end); 
 fp = NULL; 
 fp = fopen(fileName, "r" ); 
 if (fp != NULL) 
   { 
  fclose(fp); 
   } 
 else 
 { 
  fp = fopen(fileName, "w+" ); 
  fprintf(fp, "%*s, %s, %s, %s, %*s, %s, %s, %s, %*s\n\n" ,  
*T1, Tee1,  Tee2, Tee3,  Tee4,  *T5,  Tee5,  Tee6, Tee7,  
   Tee8, *T9, Tee9); 
  fclose(fp); 
 } 
 return  fileName; 
} 
 
#include <stdio.h> 
 
void  ArrivalReport( int  PN, FILE *fp, int  AT, 
     int  formatL, int  formatR) 
{ 
 /*fprintf(fp, "%-*d||%*d\n", formatL, 
  PN,  formatR, AT);*/ 
 fprintf(fp, "%d\n" , AT); 
} 
 
#include <stdio.h> 
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void  ArrivalReportDouble( int  PN, FILE *fp, double  AT, int  formatL, 
int  formatR) 
{ 
 fprintf(fp, "%-*d||%*.5f\n" , formatL, 
  PN,  formatR, AT); 
} 
#include <stdio.h> 
#include <io.h> 
#include <stdlib.h> 
#include <time.h> 
#include <direct.h> 
#include <string.h> 
#include "threein1.h" 
 
void  constTimeVaryingDist() 
{ 
 int  partTransitTime , // ttl 
  totalParticles , 
  deltaTime; // time steps 
 char  textFileName[] = "constTimeVaryingDist.txt" ; 
 // check if file exist 
 if ((_access(textFileName ,0))) 
 { 
  printf( "no job for the function %s\n" , textFileName); 
  return ; 
 } //if 
 time_t rawtime; 
   struct  tm * timeinfo; 
   char  buffer [40]; 
   time (&rawtime); 
   timeinfo = localtime (&rawtime); 
   strftime (buffer,40, "ODC\\%a_%Y-%m-%d_%I_%M",timeinfo); 
   char  prefix[]= "md " ; 
   int  i = strlen(prefix)+ strlen(buffer); 
   char  * combo = ( char  *) malloc (i * sizeof  ( char )); 
   strcpy(combo,prefix); 
 strcat(combo, buffer); 
 system(combo); 
 char  prefix2[]= "move constTimeVaryingDist.txt " ; 
 int  i2 = strlen(prefix2)+ strlen(buffer); 
 char  * combo2 = ( char  *) malloc (i2 * sizeof  ( char )); 
 strcpy(combo2,prefix2); 
 strcat(combo2, buffer); 
 system(combo2); 
 if  (chdir (buffer) == -1)  
 {   
        printf ( "chdir failed - %s\n" , strerror (errno)); 
  return ; 
    } 
 FILE *fp = fopen(textFileName, "r" ); 
 // getting rid of labels 
 char  getRid = 'q' ; 
 while (getRid != '\n' ) 
  fscanf(fp, "%c" , &getRid); 
 int  times = 0; 
 
 while (fscanf(fp, "%d%d%d", &partTransitTime, &totalParticles, 
&deltaTime) != EOF) 
 { 
  times++; 
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  particleTrajectory(partTransitTime, totalParticle s, 
deltaTime); // particle journey 
 } 
 fclose(fp); 
 if (!times) 
  printf( "nothing in the file\n" ); 
 //system("rename constTimeVaryingDist.txt 
constTimeVaryingDistOld.txt"); 
  
} 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
int  fracNumCount( double  dobNum) 
{ 
 int  negPow = 8; 
 int  dobNumInt = dobNum * 100000000; 
 while (dobNumInt%10==0&& negPow!=0) 
 { 
  negPow--; 
  dobNumInt/=10; 
 } 
 return  negPow; 
} 
 
 
/*int main() 
{ 
 double testDob = 0.000431; 
 printf("%d\n",fracNumCount(testDob)); 
 system("pause"); 
}*/ 
#include <stdlib.h> 
#include <stdio.h> 
 
void  destDistAndBoundSettings( double  *dD, double  *lB, double  *rB, 
int  *tTLL, int  *tTL, int  *tPN, int  *dT) 
{ 
 double  DestDistance = *dD; // distance of destination from 
source 
 int  ttlLoss = *tTLL, 
  ttl = *tTL, 
  totParNum = *tPN, 
  delTime = *dT;  
 double  leftBound = *lB, 
  rightBound = *rB; 
 do{ 
  printf( "\n\n\n" ); 
  printf( "Current Values are as follows\n" ); 
  printf( "Destination Distance: %f\n" , *dD); 
  printf( "total particle number: %d\n" , *tPN); 
  printf( "time per step: %d\n" , *dT); 
  if (*tTLL) 
  { 
   printf( "Loss determined by time steps, with ttl 
%d\n" , *tTL); 
  } //if 
  else 
  { 
   printf( "Loss determined by dimensions\n" ); 
   printf( "Left Bound: %f\n" , *lB); 
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   printf( "Right Bound: %f\n" , *rB); 
  } 
  system( "pause" ); 
  int  select = 0, below = 0, above = 4; 
 
  do 
  { 
   printf( "\n\n" ); 
   printf( "type \n" ); 
   printf( "{0} to proceed with the program\n" ); 
   printf( "{1} to change the Destination 
Distance\n" ); 
   printf( "{2} to change the Total Particle Size\n" ); 
   printf( "{3} to change the time per step\n" ); 
   printf( "{4} to make changes regarding Loss 
determination\n" ); 
   printf( "value: " ); 
   scanf( "%d" , &select); 
   if (select > above || select < below) 
    printf( "\nOut of range please try again\n" ); 
   else  if (select == 0) 
    return ; 
   else  if (select == 1) 
   { 
    printf( "\n\n" ); 
    printf( "Put in the new Destination Distance: 
" ); 
    scanf( "%lf" , dD); 
    printf( "The new distance of %.0f is now 
set\n" , *dD); 
   } 
   else  if (select == 2) 
   { 
    printf( "\n\n" ); 
    printf( "Put in the new Total Particle Size: 
" ); 
    scanf( "%d" , tPN); 
    printf( "The new distance of %d is now 
set\n" , *tPN); 
   } 
   else  if (select == 3) 
   { 
    printf( "\n\n" ); 
    printf( "Put in the new time per step: " ); 
    scanf( "%d" , dT); 
    printf( "The new distance of %d is now 
set\n" , *dT); 
   } 
   else  if (select == 4) 
   { 
    printf( "\n\n" ); 
    printf( "type \n" ); 
    printf( "{0} to to change the loss 
determination type(time or dimension).\n" ); 
    printf( "{1} to change the loss parameter 
value(s)\n" ); 
    printf( "Value: " ); 
    int  select4; 
    scanf( "%d" , &select4); 
    if (select4 == 0) 
    { 
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     if (*tTLL) 
     { 
      *tTLL = 0; 
      printf( "\n\n" ); 
      printf( "Loss will now determined 
by dimensions\n" ); 
      printf( "Left Bound: %.0f\n" , 
*lB); 
      printf( "Right Bound: %.0f\n" , 
*rB); 
      printf( "to change this type 1, to 
allow it type 0\n" ); 
      printf( "Value: " ); 
      scanf( "%d" , &select4); 
     } 
     else  if (!(*tTLL)) 
     { 
      printf( "\n\n" ); 
      *tTLL = 1; 
      printf( "Loss will now determined 
by time\n" ); 
      printf( "TTL: %d\n" , *tTL); 
      printf( "to change this type 1, to 
allow it type 0\n" ); 
      printf( "Value: " ); 
      scanf( "%d" , &select4); 
     } 
      
    } 
    if ((*tTLL)&&select4 == 1) 
    { 
     printf( "\n\n" ); 
     printf( "Put in the new TTL value: " ); 
     scanf( "%d" , tTL); 
     printf( "The new TTL value of %d is now 
set:\n" ,*tTL); 
    } 
    if (!(*tTLL)&&select4 == 1) 
    { 
     printf( "\n\n" ); 
     printf( "Put in the new Left Bound 
value:\n" ); 
     scanf( "%lf" , lB); 
     printf( "The new Left Bound value of 
%.0f is now set:\n" ,*lB); 
     printf( "Put in the new Right Bound 
value:\n" ); 
     scanf( "%lf" , rB); 
     printf( "The new Right Bound value of 
%.0f is now set:\n" ,*rB); 
    } 
   } 
  } while (select > above || select < below); 
 } while (1);  
} //function end 
#include <stdio.h> 
#include <stdlib.h> 
void  getPreferedSettings( double  *distanceCompare, int  
*partTransitTime, int  *totalParticles, int  *deltaTime) 
{ 
 do{ 
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  printf( "\n\n\n" ); 
  printf( "Current Values are as follows\n" ); 
  printf( "Comparison Distance: %f\n" , *distanceCompare); 
  printf( "total particle number: %d\n" , *totalParticles); 
  printf( "time per step: %d\n" , *deltaTime); 
  printf( "Particle transit time: %d\n" , *partTransitTime); 
  system( "pause" ); 
   
  int  select = 0, below = 0, above = 4; 
 
  do 
  { 
   printf( "\n\n" ); 
   printf( "type \n" ); 
   printf( "{0} to proceed with the program\n" ); 
   printf( "{1} to change the Comparison Distance\n" ); 
   printf( "{2} to change the Total Particle Size\n" ); 
   printf( "{3} to change the time per step\n" ); 
   printf( "{4} to change the Particle Transmit 
Time\n" ); 
   printf( "value: " ); 
   scanf( "%d" , &select); 
   if (select > above || select < below) 
    printf( "\nOut of range please try again\n" ); 
   else  if (select == 0) 
    return ; 
   else  if (select == 1) 
   { 
    printf( "\n" ); 
    printf( "Put in the new Comparison Distance: 
" ); 
    scanf( "%lf" , distanceCompare); 
    printf( "The new distance of %.0f is now 
set\n" , 
     *distanceCompare); 
   } 
   else  if (select == 2) 
   { 
    printf( "Put in the new Total Particle Size: 
" ); 
    scanf( "%d" , totalParticles); 
    printf( "The new Total Particle Size of %d is 
now set\n" ,  
     *totalParticles); 
   } 
   else  if (select == 3) 
   { 
    printf( "\n" ); 
    printf( "Put in the new time per step: " ); 
    scanf( "%d" , deltaTime); 
    printf( "The new time per step of %d is now 
set\n" ,  
     *deltaTime); 
   } 
   else  if (select == 4) 
   { 
    printf( "\n" ); 
    printf( "Put in the Particle Transmit Time: 
" ); 
    scanf( "%d" , partTransitTime); 
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    printf( "The new Particle Transmit Time of %d 
is now set\n" ,  
     *partTransitTime); 
   } 
  } while (select > above || select < below); 
 } while (1); 
} //getPreferedSettings 
#include <stdio.h> 
#include <string.h> 
 
void  HeadingAndFormating(FILE *fp, int * Left, int  *Right, char * 
LeftString, char * RightString) 
{ 
 int  bound = 6; // this gives more space in the file passed in 
for writing 
 *Left = bound + strlen(LeftString); // this gives the formating 
integer for the left column 
 *Right = bound + strlen(RightString); // this gives the 
formating integer for the right column 
 /*fprintf(fp, "%-*s||%*s\n", *Left, LeftString, 
  *Right, RightString);*/ 
 fprintf(fp, "%s\n" ,RightString); // this puts on the column 
titles, it can be notice that the left side is left  aligned and the 
right is right aligned 
 
} 
#include <stdio.h> 
#include <string.h> 
 
void  headingFormating3(FILE *fp, int * Left, int  *Center, int  *Right, 
char * LeftString, char * CenterString, char * RightString) 
{ 
 int  bound = 6; 
 *Left = bound + strlen(LeftString); 
 *Right = bound + strlen(RightString); 
 *Center = bound + strlen(CenterString); 
 fprintf(fp, "%-*s||%*s||%-*s\n" , *Left, LeftString, 
  *Right, RightString, *Center, CenterString); 
 
} 
#include <stdio.h> 
#include <stdlib.h> 
 
void  LostReport( int  PN, FILE *fp, int  formatL, int  formatR) 
{ 
 fprintf(fp, "%-*d||%*s\n" , formatL, PN,  
  formatR, "LOST" ); // reports formating, number particle 
left and "LOST" to the right 
} 
#include <stdio.h> 
#include <stdlib.h> 
 
int  lostStatusDimensions( double  leftBound, double  rightBound, double  
distance) 
{ 
 if (distance >= leftBound && distance <= rightBound) 
  return  0; 
 else 
  return  1; 
} 
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int  lostStatusTime( int  tTL, int  time) 
{ 
 if (time <= tTL) 
  return  0; 
 else 
  return  1; 
} 
 
int  destinationBreached( double  destinationDistance, double  distance) 
{ 
 if (destinationDistance >= 0) 
  if (distance >= destinationDistance) 
   return  0; 
  else 
   return  1; 
 else   
  if (distance <= destinationDistance) 
   return  0; 
  else 
   return  1; 
} 
#include  <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define  PI 3.141592654 
 
/*This function generates the random walk of the pa rticle under the 
influence of diffusion 
math lib need by the sqrt, and the RAND_MAX constan t. the values Z 
is within the range -2.9 to 2.9 
phase makes it possible for the values of U and V t o be reused 
again, at least once*/ 
 
double  gaussrand() 
{ 
  
 int  negOr = (rand() / (RAND_MAX + 1.0) * (2 - 0) + 0);  
 if (!negOr) 
  negOr=-1; 
 return  sqrt(2 * .001)*negOr; 
} 
void  gaussrand2d( double  *deltaX, double  *deltaY) 
{ 
 double  consT = sqrt(4 * .001); 
 double  pisConst = (rand() / (RAND_MAX + 1.0) * (2.000001 - 0) 
+ 0); 
 double  thetha = pisConst * PI; 
 double  cosThetha = cos ( thetha); 
 double  sinThetha = sin ( thetha); 
 *deltaX = consT * cosThetha;; 
 *deltaY = consT  * sinThetha; 
} 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <io.h> 
#include <time.h> 
#include <direct.h> 
#include "threein1.h" 
//I am confused about the purpose of this experimen t, is it suppose 
to account of the time it takes to get to a particu lar destination, 
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or the time to get to a particular distance from th e source either 
way. That means when we say 50nm as the distance fr om the source in 
a one dimensional plane do we mean a just at 50nm o r we mean -50nm 
and 50nm. If a specific distance is the case then t he calculation of 
negative destinations will be taken into considerat ion. Because this 
program so far has considered only positive destina tions such that 
the destination is gotten to if the particle is >= destination 
distance. But if the destination be negative then t he distance can 
only be reached if the particle is <= destination d istance. So the 
destinations polarity must be determined ever befor e the testing 
beginnings to makes sure of what testing parameters  should be used. 
But if the destination just means a specific distan ce away from the 
source regardless of the polarity, then just the in put distance is 
going to always be positive, so the distance in mea suring for the 
negative symetric half is to make sure that the dis tance is less 
than -ve of the distance, for it to have arrived at  that distance. 
But on consideration of the specific distance inves tigation, it is 
much more proper that  specific distances and not s ymettric 
distances be considered, so this program at relevan t points will be 
modified to reflect this change in reasoning, so tw o if statements 
is solicited for, one for when the distance is posi tive, and another 
when negative 
 
void  OneDimProper() 
{ 
 double  DestDistance; // distance of under investigation 
 int  ttl, iterations; // time to live 
 int  TotalParticleNumber; // total number of particles to be 
investigated 
 
 int  deltaTime; // time step 
 char  textFileName[] = "OneDimProper.txt" ; // this is the name 
of the file from which all the data for the program  is to be gotten, 
it must exist if not this part of the experiment wi ll not run. And 
the data for each run must be on each row, and the number of 
simulation scenario depends on how many rows there are. If the file 
exists and no dat is in it, the experiment still do esnt run... 
 // check if file exist 
 if ((_access(textFileName ,0))) //this checks whether the file 
exists if it exist it give 0, otherwise 1 
 { 
  printf( "no job for the function %s\n" , textFileName); // 
prints the fact d file exists not 
  return ; // returns to the calling function without doing 
anywork 
 } //if 
 time_t rawtime; 
   struct  tm * timeinfo; 
   char  buffer [40]; 
   time (&rawtime); 
   timeinfo = localtime (&rawtime); 
   strftime (buffer,40, "OD\\%a_%Y-%m-%d\\%I_%M_%p",timeinfo); 
   char  prefix[]= "md " ; 
   int  bufferNum = strlen(buffer), prefixNum = strlen(pre fix),i 
=bufferNum + prefixNum; 
   char  * combo = ( char  *) malloc (i * sizeof  ( char )); 
   strcpy(combo,prefix); 
 strcat(combo, buffer); 
 system(combo); 
 char  prefix2[]= "move " ; 
 char  moveEnd[]= " " ; 
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 int  textFileNameNum =strlen(textFileName); 
 int  moveEndNum = strlen(moveEnd); 
 int  prefix2Num = strlen(prefix2); 
 int  combo2Num = prefix2Num + textFileNameNum + moveEnd Num + 
bufferNum; 
 char  * combo2 = ( char  *) malloc (combo2Num * sizeof  ( char )); 
 strcpy(combo2,prefix2); 
 strcat(combo2, textFileName); 
 strcat(combo2, moveEnd); 
 strcat(combo2, buffer); 
 system(combo2); 
 if  (chdir (buffer) == -1)  
 {   
        printf ( "chdir failed - %s\n" , strerror (errno)); 
  return ; 
    } 
 //system("pause"); 
 FILE *fp = fopen(textFileName, "r" ); // this opens the file in 
question for reading 
 // getting rid of labels 
 char  getRid = 'q' ; // this part helps get rid of the labels in 
the text file. the character will read each charact er and do nothing 
with it till it reads the new character then it sto ps 
 while (getRid != '\n' ) // runs until getRid has a value of '\n' 
  fscanf(fp, "%c" , &getRid); // reads just one character 
 int  times = 0;  
 while (fscanf(fp, "%lf%d%d%d%d", &DestDistance, &ttl, 
&TotalParticleNumber, &deltaTime,&iterations) != EO F) 
 { 
  times++; 
  int  counter = 1; 
  while (counter++ <= iterations) 
  oneSimulation(DestDistance, ttl, TotalParticleNum ber, 
deltaTime, iterations); //uses the data to facilitate the simulation 
 } 
 printf( "containing folder is %s\n" , buffer); 
 fclose(fp); // file close when finished 
 if (!times) // execute when no data in file 
  printf( "nothing in the file\n" ); 
 //system("rename OneDimProper.txt OneDimProperOld.t xt");// 
rename to avoid reuse of same old files on another run. 
  
} // one dim proper 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <time.h> 
#include <direct.h> 
#include "threein1.h" 
#include <io.h> 
 
void  oneSimulation( double  DestDistance, int  ttl, int  
TotalParticleNumber, int  deltaTime, int  iterations) 
{ 
 int  Fstcount=0,Sndcount=0,Trdcount=0; 
 int  g = ( int )DestDistance; 
    do{Fstcount++;} while (g/=10); 
    Fstcount++; 
    g = ttl; 
    do{Sndcount++;} while (g/=10); 
    Sndcount++; 
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    g = TotalParticleNumber; 
    do{Trdcount++;} while (g/=10); 
    Trdcount++; 
    char  *CategoryName = ( char *) malloc 
((Fstcount+Sndcount+Trdcount)* sizeof ( char )); 
 sprintf(CategoryName, "%d_%d_%d",( int )DestDistance,ttl,TotalPar
ticleNumber); 
 char  dirStarting[]= "OD" ; 
 char  dirSlash[]= "/" ; 
 int  dirStartingNum = strlen(dirStarting), 
dirSlashNum=strlen(dirSlash),  
  dirEndNum= strlen(CategoryName),  
  dirComWithOutNum = dirStartingNum + dirEndNum,  
  dirComWithNum = dirStartingNum + dirEndNum + 
dirSlashNum; 
 if (iterations == 1) 
 { 
  dirComWithOutNum = dirStartingNum; 
  dirComWithNum = dirStartingNum + dirSlashNum; 
 } 
 char  *dirComWithOut = ( char *) malloc 
((dirComWithOutNum)* sizeof ( char )); 
 strcpy(dirComWithOut,dirStarting); 
 if (iterations > 1) 
 { 
  strcat(dirComWithOut,CategoryName); 
 } 
 char  *dirComWith = ( char *) malloc 
((dirComWithNum)* sizeof ( char )); 
 strcpy(dirComWith,dirStarting); 
 if (iterations > 1) 
 { 
  strcat(dirComWith,CategoryName); 
 } 
 //strcat(dirComWith,CategoryName); 
 strcat(dirComWith,dirSlash); 
 
 /*destDistAndBoundSettings(&DestDistance, &leftBoun d, 
&rightBound 
  ,&ttlLoss, &ttl, &TotalParticleNumber, &deltaTime );*/ 
 char  genericName[]= "Dim1v" ; // here the name of the directory, 
and generic name of all the files produced 
 int  track = 0; // for number of characters of directory 
 /*while(genericName[++track]!= '/');// counting cha racters 
before directory indicator 
 // create directory array 
 char *direct = (char*) malloc (track * sizeof(char ));// 
creating name holder for directory 
 // store directory name 
 strcpy(direct, genericName);//copying in the direc tory name 
and the slash following 
 direct[track] = '\0';// putting the null character  in place of 
the '/' 
 // check whether the directory exists not 0 if it exists, 1 if 
not 
 if(_access(direct,0)) 
 {// creating directory if it doesn't already exist  
  char prefix[] = "md ";// start point of the creat ion of 
directory folder 
  int total = track + strlen(prefix); // total size  of the 
characters of the create diretory command 
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  char *combo = (char*) malloc (total * 
sizeof(char));//creation of a create command charac ter holder 
  strcpy(combo, prefix);// copying in the prefix of  the 
comand 
  strcat(combo, direct);// attaching the end to the  
command characters 
  system(combo);// executing the create command fin ally 
 }//if*/ 
 char  *fileName, // filename holder the current simulation 
  *fileNameGen; // filename holder for the log textfile for 
one dimensional case, storing all the d summarys in  each simulation 
in one file, to help comparison 
 FILE* fp, //file pointer to specific sim log file 
  *fp1; // " " " general 
 int  T1, // this r ints will help in formating d outputs in d 
general file 
  T2,  
  T3,  
  T4,  
  T5,  
  T6,  
  T7,  
  T8,  
  T9; 
 /*char prefix[]="OD/"; 
 int prefixNum = strlen(prefix) - 1; 
 char * stripedDir = (char*) malloc ( prefixNum * 
sizeof(char)); 
 strcpy(stripedDir,prefix); 
 stripedDir[prefixNum]='\0';*/ 
 if (_access(dirComWithOut,0)) 
 { 
  char  prefixx[] = "md " ; 
  int  all = strlen(prefixx)+strlen(dirComWithOut); 
  char  * together = ( char *) malloc ( all * sizeof ( char )); 
  strcpy(together,prefixx); 
  strcat(together,dirComWithOut); 
  //together[all]='\0'; 
  system(together); 
 } 
  
 if  (chdir (dirComWithOut) == -1)  
 {   
        printf ( "chdir failed - %s\n" , strerror (errno)); 
  return ; 
    } 
 fileName = aboutFiles(CategoryName); //Located in 
aboutFiles.cpp, purpose to greate a unique file nam e for the 
simulation at hand taking into cognizance the fact that each 
simulation is given to 1 or more particle at a with  distance and ttl 
kept constant with each run. In this file each part icle has a log 
position in the this textfile, whether it be lost o f if it gets to 
its destination. This about file is only concerned with creating the 
name of the files, i.e is making sure that a file w ith that name 
existed not before. The purpose of this is to make sure there a 
excessive logs of ran and re-ran experiments for th e investigators 
purposes. This file name comprises of the generic n ame first and 
then a number attached to it to give it is uniquene ss. This files go 
from the following model: FileName, FileName1,....,  This function 
creates a name using the filename at first checks i f it exists, if 
it does exist, it attaches 1 to that file name chec k whether the 
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name exists again, if it does increments it by one and tries again, 
it continues in this fashion until it finds one tha t exists. This 
one it then returns to the the calling function as a string.  
 int  fileNum = strlen(fileName); 
 if  (chdir ( ".." ) == -1)  
 {   
        printf ( "chdir failed - %s\n" , strerror (errno)); 
  return ; 
    } 
 int  fileAndDirNum = fileNum + strlen(dirComWith); 
 char  *fileAndDirName = ( char *) malloc 
((fileAndDirNum)* sizeof ( char )); 
 strcpy(fileAndDirName, dirComWith); 
 strcat(fileAndDirName, fileName); 
 fp = fopen(fileAndDirName, "w" ); // this open a new file for 
writing with the returned file name 
 fileNameGen = aboutFilesGeneral1D(genericName, 
&T1,&T2,&T3,&T4,&T5,&T6,&T7,&T8,&T9); // this function is located in 
a file called "aboutFilesGeneral1D.cpp. The purpose  of this function 
is to be a log file for all files generated by the 1D case of the 
varying dimensions case. What it does is to either create the file, 
set up initial formating and return integer values that would help 
format results of each file for each simulation res ult in this 
general file. Each simulation in the special case w ill have its 
summary stored as an entry in this log file. The in itial part of the 
file will bear the Prepart of the names common with  all the files 
generated in this experiment. Its end will actual b ear the name 
"Overall". What will be logged in this file for eac h simulation will 
be: The file name, the distance considered, The ttl , Total Particle 
number, Unit of time per step, Number of particles that got to the 
distination, fraction of particles that got to the distination, 
Total time it took for the transmission and the Ave rage Arrival 
time. The integers passed in are to help in formati ng the table in 
the file. If the file already does exist only the r etrival of the 
integers and the setting the end cursor to a newlin e will be 
achieved by this function. 
 fp1 = fopen(fileNameGen, "a+" ); // The overall file name is 
opened in appending mode here 
 // the following integers are to help in formating the current 
simulation file, both in the set up of the headings  of each column 
and the arrangement of the input integer. The eleme nts of each 
colomn as with that of the general file will be rig ht justified, the 
Left will be for the unique number of particle inpu t and the right 
will be for the time it took to get there, in cases  where no such 
gotten that space will contain the word "LOST" inst ead 
 char  *freshCategoryName = ( char *) malloc ((fileNum - 
3)* sizeof ( char )); 
 strncpy(freshCategoryName, fileName, fileNum-4); 
 freshCategoryName[fileNum-4] = '\0' ; 
 int  Left,  
  Right; 
 HeadingAndFormating(fp, &Left, &Right, 
       "ParticleNumber" , 
freshCategoryName); // this function does the initial formating of 
the text file to be created for the executing simul ation and also 
returns the integer values of integers left and rig ht. This function 
is located in the HeadingAndFormating.cpp file 
 int  totSuccessfulParticlesTime = 0, // This gives the total 
time it took to transmit those particles that got t o the destination 
 totLostParticleCount = 0, // this takes into account only 
those particles that made it to the destination 
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 particleNumber = 1; // this keeps track of the particle being 
observed and so it is set to one initially for the first will be 
observed at the beginning 
 double  averageParticleArrivalTime = 0, // this will keep the 
record of the average arrival time of the particles  given by 
totSuccessfulParticlesTime/ totSuccessfulParticleCo unt 
 arrivalFraction = 0; // This is to give the fraction of 
particles that made it to the destination, and this  is given by 
totSuccessfulParticleCount/ TotalParticleNumber 
 // the Journey of the particles take place in the f ollowing do 
while loop, one particle at a time in the function particleJourny 
the  progress of one particle is observed in terms of it progress 
from the source in direction at each step time is i ncreased, but the 
step could be additive or subtractive to the total distance covered. 
This function is located in the ccp file particleJo urney. It takes 
as argument two reference variables of int type, a file pointer to a 
file unique to the simulation at hand for reporting , the particle 
number for reporting, the destination distance to k now when the 
limit is breached, the time step which shows the ti me each step 
takes, time to live integer variable to decide when  it is right to 
drop a particle, Left and Right integers to help in  the report file 
formating. The particles a dealt with one after the  other until all 
the particles have being transmitted 
 int  preLostValue = totLostParticleCount; 
 do{ 
  particleJourny(&totSuccessfulParticlesTime,  
      &totLostParticleCount, 
      fp, particleNumber, 
      DestDistance, deltaTime, 
      ttl, Left, Right); // to simulate 
the journey of a particle, recording it time after it reaches, 
recording it lost 
  if (preLostValue == totLostParticleCount) 
   particleNumber++; // heralds the next particle of 
the transmission 
  else 
   preLostValue = totLostParticleCount; 
 } while (particleNumber <= TotalParticleNumber); // this 
construct ensures that Number of particles proposed  is processed 
 int  allParticles = totLostParticleCount + TotalParticl eNumber; 
 
 if (TotalParticleNumber) // is makes sure that division by zero 
does not occur 
 averageParticleArrivalTime = 
( double )totSuccessfulParticlesTime/ ( double )TotalParticleNumber; // 
average time if not zero 
 else 
  averageParticleArrivalTime = 0; // if zero 
 if (allParticles) 
 arrivalFraction = ( double )TotalParticleNumber/ 
( double )allParticles; 
 else 
  arrivalFraction = 0; 
 /*printf("\n\n"); 
 printf("totSuccessfulParticlesTime = %d\n", 
totSuccessfulParticlesTime); 
 printf("totSuccessfulParticleCount = %d\n", 
totSuccessfulParticleCount); 
 printf("averageParticleArrivalTime = %f\n", 
averageParticleArrivalTime); 
 printf("arrivalFraction = %f\n", arrivalFraction);  
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 printf("\n\n");*/ 
 static  int  once = 0;  
 if (!(once++)) 
  printf( "\n\nLog file name is %s\n\n" , fileNameGen); // 
printing the overall file name 
 printf( "current file name is %s\n" , fileName); // printing the 
recently concluded simulations filename 
  
 // fprintf, prints to the general file particulars of the 
simulation file just concluded, this is done to ena ble comparisons 
with other runs 
 fprintf(fp1, "%*s, %*.0f, %*d, %*d, %*d, %*d, %*f, %*d, 
%*f\n" , T1, fileName,  
  T2, DestDistance,  
  T3, ttl,  
  T4, allParticles,  
  T5, deltaTime,  
  T6, totLostParticleCount, 
  T7, arrivalFraction, 
  T8, totSuccessfulParticlesTime, 
  T9, averageParticleArrivalTime); 
 fclose(fp1); // general file closed 
 fclose(fp); // specific simulation file closed 
} 
#include <stdlib.h> 
#include <stdio.h> 
#include "threein1.h" 
 
void  particleJourny( int  *totSuccessfulParticlesTime, int  
*totLostParticleCount, FILE *fp, int  particleNumber, 
     double  destinationDistance, int  
deltaTime, int  tTL, int  formatL, int  formatR) 
{ 
 int  time = 0; // each particle starts from time zero 
 double  deltaDistance = 0, // initial step at time zero is zero 
of course 
 distance = 0; // initial distance is 0  
 do// this is an infinitive do while which enables the  movement 
to the particle in a brownian fashion. This movemen t is helped by 
the brownian fashioned time steps enable by the gau ssian() step 
generator powered by the gaussian distribution whic h has bin found 
to mimick the brownian motion to a large degree 
 { 
  deltaDistance = gaussrand(); // this function returns at 
random steps ranging between (-3 to 3). In NormalRa ndGenerator.cpp 
  distance = distance + deltaDistance; 
  if  (distance<0) 
   distance= - distance; // update to the distance*/ 
  time += deltaTime; // added to the time this does 
  if (destinationBreached(destinationDistance, distance) ) // 
return 0 if reached but 1 otherwise , located in lo stStatus.cpp 
  { 
   if (lostStatusTime(tTL, time)) // if time to live 
exceeded returns 1 if not 0. located in lostStatus. cpp, if exceed 
report made and put infile if not next step is take n 
   { 
    //LostReport(particleNumber, fp, formatL, 
formatR);// reports missing located in LostReport.c pp 
    *totLostParticleCount += 1; // adding to the 
already amassed successful particle number 
    return ; // exit current particle journey 
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   } 
  } 
  else 
  { 
   ArrivalReport( particleNumber, fp, time, formatL , 
formatR); // reports successful located in ArrivalReport.cpp 
   *totSuccessfulParticlesTime += time; // adding to 
the already amass time 
    
   return ; // exit current particle journey 
  } 
 } 
 while (1); 
} 
#include <stdio.h> 
#include <stdlib.h> 
#include "threein1.h" 
 
void  ParticuleJourneyChronicles(FILE *fp, int  timeStep, int  
ParticleNumber, double  distance, double  width, 
     int  ttl, int  *totLostParticleCount, int  
*totalSuccessParticleTime, int  formatL, int  formatR) 
{ 
 double  mid_Way = width/2.0, x = 0, y = mid_Way, deltaX, 
deltaY, endBounds = y/10.0,  
  upperBounds = y + endBounds, lowerBounds = y - en dBounds 
; 
 int  t = 0; 
 do 
 { 
  gaussrand2d(&deltaX,&deltaY); 
  //deltaX = gaussrand(); 
  //deltaY = gaussrand(); 
  x = x + deltaX; 
  y = y + deltaY; 
  t = t + timeStep; 
  //printf("x= %f, y = %f, deltaX = %f, deltaY = %f t  = 
%d, ttl = %d\n", x, y, deltaX, deltaY, t, ttl); 
  //system("pause"); 
  /*int inbounds; 
  do{ 
   inbounds = 0; 
   if(x<0) 
   { 
    x = -x; 
    inbounds =1; 
   } 
   if(y<0) 
   { 
    y = -y; 
    inbounds =1; 
   } 
   if(y>width) 
   { 
    y = 2*width - y; 
    inbounds =1; 
   } 
   if(x> distance&&(y>upperBounds||y<lowerBounds)) 
   { 
    x = 2*distance - x; 
    inbounds =1; 
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   } 
  }while(inbounds);*/ 
  if (WithinReach(mid_Way, distance, y, x, endBounds)) 
  { 
   if (t== ttl) 
   { 
    /*LostReport(ParticleNumber, fp, 
     formatL, formatR);*/ 
   (*totLostParticleCount)++; 
   //printf("mark if"); 
   printf( "%d\n" , t); 
    return ; 
   } 
  } 
  else 
  { 
    
   if (y<upperBounds&&y>lowerBounds) 
   { 
    ArrivalReport( ParticleNumber, fp, t, 
      formatL, formatR); 
    (*totalSuccessParticleTime)+=t; 
    //printf("mark else"); 
    return ; 
   } 
  } 
 } 
 while (1); 
} 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "threein1.h" 
#include <io.h> 
 
void  particleTrajectory( int  partTransitTime, int  totalParticles, int  
deltaTime) 
{ 
 int  Fstcount=0,Sndcount=0,Trdcount=0; 
 int  g = partTransitTime; 
    do{Fstcount++;} while (g/=10); 
    Fstcount++; 
    g = totalParticles; 
    do{Sndcount++;} while (g/=10); 
    Sndcount++; 
    g = deltaTime; 
    do{Trdcount++;} while (g/=10); 
    Trdcount++; 
    char  *CategoryName = ( char *) malloc 
((Fstcount+Sndcount+Trdcount+3)* sizeof ( char )); 
 sprintf(CategoryName, "OD/%d_%d_%d",partTransitTime,totalPartic
les,deltaTime); 
  
 int  particleCount = 0, track = 0 // char numbers 
  ; 
 /*getPreferedSettings(&distanceCompare, &partTransi tTime,  
  &totalParticles, &deltaTime);*/ 
 char  genericName[]= "ODC/Dim1c" 
  ; 
 while (genericName[++track]!= '/' ); 
 // create directory array 
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 char  *direct = ( char *) malloc (track * sizeof ( char )); 
 // store directory name 
 strcpy(direct, genericName); 
 direct[track] = '\0' ; 
 // check whether it exists 
 if (_access(direct,0)) 
 { 
  char  prefix[] = "md " ; 
  int  total = track + strlen(prefix); 
  char  *combo = ( char *) malloc (total * sizeof ( char )); 
  strcpy(combo, prefix); 
  strcat(combo, direct); 
  system(combo); // stopped here 
 } //if 
 
 char  *fileName, *fileNameGen; 
 FILE* fp, *fp1; 
 int  T1, T2, T3, T4; 
 fileName = aboutFiles(genericName); 
 fileNameGen = 
aboutFilesGeneralVD(genericName,&T1,&T2,&T3,&T4); 
 fp = fopen(fileName, "w" ); 
 fp1 = fopen(fileNameGen, "a+" ); 
 int  Left, Right; 
 HeadingAndFormating(fp, &Left, &Right, 
  "ParticleNumber" , "Distance" ); 
 transmitAndObserveParticles(partTransitTime,  
  totalParticles, deltaTime, Left, Right, fp); 
 static  int  once = 0; 
 if (!(once++)) 
  printf( "\n\nLog file name is %s\n\n" , fileNameGen); 
 printf( "current file name is %s\n" , fileName); 
 fprintf(fp1, "%*s, %*d, %*d, %*d\n" , T1, fileName,  
  T2, partTransitTime,  
  T3, totalParticles,  
  T4, deltaTime); 
 fclose(fp); 
 fclose(fp1); 
} //particleTrajectory 
#include "threein1.h" 
#include <stdio.h> 
 
void  transmitAndObserveParticles( int  partTransitTime, int  
totalParticles, 
    int  deltaTime, int  Left, int  Right, FILE *fp) 
{ 
 int  particleNumber = 1, flag = 1; 
 do{ 
  int  Time = 0, stillJourneying = 1; 
  double  distance = 0, deltaDist; 
  do{ 
   deltaDist = gaussrand(); 
   distance += deltaDist; 
   Time += deltaTime; 
   if (Time >= partTransitTime) 
   { 
     ArrivalReportDouble(particleNumber, fp, 
distance, 
     Left, Right); 
     stillJourneying = 0; 
     if (particleNumber<=totalParticles) 
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     { 
      particleNumber++; 
     } //if 
     else 
      flag = 0; 
   } //if 
  } while (stillJourneying); 
 } while (flag); 
} //transmitAndObserveParticles 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <direct.h> 
#include  "threein1.h" 
#include <io.h> 
 
void  twodimdriver( double  distance, double  width, int  ttl, int  
totalParticles, int  deltaTime, int  iterations) 
{ 
 int  Fstcount=0,Sndcount=0,Trdcount=0,Fothcount=0,Fithc ount=0; 
 int  g = ( int )distance; 
    do{Fstcount++;} while (g/=10); 
    Fstcount++; 
    /*g = (int)destYCood; 
    do{Sndcount++;}while(g/=10); 
    Sndcount++;*/ 
    /*g = (int)radius; 
    do{Trdcount++;}while(g/=10); 
    Trdcount++;*/ 
 double  fl = width; 
 int  padding = 3; 
 int  dp=fracNumCount(fl); 
 int  dpAndPadding = dp + padding; 
    g = ttl; 
    do{Fothcount++;} while (g/=10); 
    Fothcount++; 
    g = totalParticles; 
    do{Fithcount++;} while (g/=10); 
    Fithcount++; 
    char  *CategoryName = ( char *) malloc 
((Fstcount+dpAndPadding+Fothcount+Fithcount)* sizeof ( char )); 
 sprintf(CategoryName, "%d_%.*f_%d_%d" , ( int )distance, dp, fl, 
ttl, totalParticles); 
 char  dirStarting[]= "TD" ; 
 char  dirSlash[]= "/" ; 
 int  dirStartingNum = strlen(dirStarting), 
dirSlashNum=strlen(dirSlash),  
  dirEndNum= strlen(CategoryName),  
  dirComWithOutNum = dirStartingNum + dirEndNum,  
  dirComWithNum = dirStartingNum + dirEndNum + 
dirSlashNum; 
 if (iterations == 1) 
 { 
  dirComWithOutNum = dirStartingNum; 
  dirComWithNum = dirStartingNum + dirSlashNum; 
 } 
 char  *dirComWithOut = ( char *) malloc 
((dirComWithOutNum)* sizeof ( char )); 
 strcpy(dirComWithOut,dirStarting); 
 if (iterations > 1) 
 { 
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  strcat(dirComWithOut,CategoryName); 
 } 
 char  *dirComWith = ( char *) malloc 
((dirComWithNum)* sizeof ( char )); 
 strcpy(dirComWith,dirStarting); 
 if (iterations > 1) 
 { 
  strcat(dirComWith,CategoryName); 
 } 
 //strcat(dirComWith,CategoryName); 
 strcat(dirComWith,dirSlash); 
  
 int  totLostParticleCount = 0, particleNumber = 1, 
totSuccessfulParticlesTime = 0; // left to right: successful particle 
count and soujourning particle number 
 /*getPreferedSettings1(&destXCood, &destYCood, &rad ius, &ttl,  
  &totalParticles, &deltaTime);*/ 
 char  genericName[]= "Dim2v" ; // generic name for simulations 
 /*int track = 0;  
 while(genericName[++track]!= '/');// isolating the  directory 
part of the generic name in terms of numbers 
 // create directory name array 
 char *direct = (char*) malloc (track * sizeof(char )); 
 // store directory name 
 strcpy(direct, genericName); 
 direct[track] = '\0'; 
 // check whether it exists 
 if(_access(direct,0)) 
 {// if it doesn't it is created here :-D 
  char prefix[] = "md "; 
  int total = track + strlen(prefix); 
  char *combo = (char*) malloc (total * sizeof(char )); 
  strcpy(combo, prefix); 
  strcat(combo, direct); 
  system(combo);// stopped here 
 }//if*/ 
 
 char  *fileName, *fileNameGen; // single simulation file and log 
file name holders 
 FILE* fp, *fp1; // file pointers 
 int  T1, T2, T3, T4, T5, T6, T7, T8, T9; // format aids 
 if (_access(dirComWithOut,0)) 
 { 
  char  prefixx[] = "md " ; 
  int  all = strlen(prefixx)+strlen(dirComWithOut); 
  char  * together = ( char *) malloc ( all * sizeof ( char )); 
  strcpy(together,prefixx); 
  strcat(together,dirComWithOut); 
  //together[all]='\0'; 
  system(together); 
 } 
  
 if  (chdir (dirComWithOut) == -1)  
 {   
        printf ( "chdir failed - %s\n" , strerror (errno)); 
  return ; 
    } 
 fileName = aboutFiles(CategoryName); //creates single 
simulation unique file name, aboutFiles.cpp 
 int  fileNum = strlen(fileName); 
 if  (chdir ( ".." ) == -1)  
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 {   
        printf ( "chdir failed - %s\n" , strerror (errno)); 
  return ; 
    } 
 int  fileAndDirNum = fileNum + strlen(dirComWith); 
 char  *fileAndDirName = ( char *) malloc 
((fileAndDirNum)* sizeof ( char )); 
 strcpy(fileAndDirName, dirComWith); 
 strcat(fileAndDirName, fileName); 
 fileNameGen = 
aboutFilesGeneral2D(genericName,&T1,&T2,&T3,&T4,&T5 ,&T6,&T7,&T8,&T9)
; 
 fp = fopen(fileAndDirName, "w" ); 
 fp1 = fopen(fileNameGen, "a+" ); 
 char  *freshCategoryName = ( char *) malloc ((fileNum - 
3)* sizeof ( char )); 
 strncpy(freshCategoryName, fileName, fileNum-4); 
 freshCategoryName[fileNum-4] = '\0' ; 
 int  L, R; 
 HeadingAndFormating( fp,&L, &R, "ParticleNumber" , 
freshCategoryName); 
 int  preLostValue = totLostParticleCount; 
 int  itNum = 1; 
 do 
 { 
  //printf("%d\n",particleNumber); 
  //system("pause"); 
  ParticuleJourneyChronicles(fp, 
          deltaTime, 
          particleNumber, 
          distance, 
          width, 
          ttl, 
          
&totLostParticleCount,&totSuccessfulParticlesTime, 
          L, 
          R); 
   
  if (preLostValue == totLostParticleCount) 
   particleNumber++; // heralds the next particle of 
the transmission 
  else 
   preLostValue = totLostParticleCount; 
  printf( "%d. Lost: %d, reached: %d\n" , itNum++, 
totLostParticleCount, particleNumber-1); 
  /*if(!(itNum%100)) 
   system("Pause");*/ 
 } 
 while (particleNumber <= totalParticles); 
 double  averageParticleArrivalTime; 
 int  allParticles = totLostParticleCount + totalParticl es; 
 double  arrivalFraction = 0; 
 
 if (totalParticles) 
  arrivalFraction = ( double )totalParticles/ 
( double )allParticles; 
 else 
  arrivalFraction = 0; 
 if (totalParticles) // is makes sure that division by zero does 
not occur 
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  averageParticleArrivalTime = 
( double )totSuccessfulParticlesTime/ ( double )totalParticles; // 
average time if not zero 
 else 
  averageParticleArrivalTime = 0; // if zero 
 /*printf("\n\n"); 
 printf("totSuccessfulParticleCount = %d\n", partic leCount); 
 printf("arrivalFraction = %f\n", arrivalFraction);  
 printf("\n\n"); 
 printf("current file name is %s\n", fileName); 
 printf("Log file name is %s\n", fileNameGen);*/ 
 static  int  once = 0; 
 if (!(once++)) 
  printf( "\n\nLog file name is %s\n\n" , fileNameGen); 
 printf( "current file name is %s\n" , fileName); 
 
 fprintf(fp1, "%*s, %*.0f, %*.0f, %*.0d, %*d, %*f, %*d, %*d, 
%*f\n" , T1, fileName,  
  T2, distance,  
  T3, width,  
  T4, allParticles,  
  T5, ttl,  
  T6, averageParticleArrivalTime, 
  T7, deltaTime, 
  T8, totLostParticleCount, 
  T9, arrivalFraction); 
 fclose(fp1); 
 
 fclose(fp); 
 return ; 
} //twodimdriver 
#include <stdio.h> 
#include <stdlib.h> 
#include <direct.h> 
#include <string.h> 
#include <time.h> 
#include <io.h> 
#include  "threein1.h" 
 
 
void  TwoDimensional() 
{ 
 double  dist, width; 
 int  ttl, totalParticles, iterations, 
  deltaTime; // particlars of unique to each simulation 
 char  textFileName[] = "TwoDimensional.txt" ; // file to read the 
simulation particlars from 
 // check if file exist 
 if ((_access(textFileName ,0))) 
 { 
  printf( "no job for the function %s\n" , textFileName); // 
info for no job 
  return ; // exiting function 
 } //if, checking for the file 
  
 time_t rawtime; 
   struct  tm * timeinfo; 
   char  buffer [40]; 
   time (&rawtime); 
   timeinfo = localtime (&rawtime); 
   strftime (buffer,40, "TD\\%a_%Y-%m-%d\\%I_%M_%p" ,timeinfo); 
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   char  prefix[]= "md " ; 
   int  bufferNum = strlen(buffer), prefixNum = strlen(pre fix),i 
=bufferNum + prefixNum; 
   char  * combo = ( char  *) malloc (i * sizeof  ( char )); 
   strcpy(combo,prefix); 
 strcat(combo, buffer); 
 system(combo); 
 char  prefix2[]= "move " ; 
 char  moveEnd[]= " " ; 
 int  textFileNameNum =strlen(textFileName); 
 int  moveEndNum = strlen(moveEnd); 
 int  prefix2Num = strlen(prefix2); 
 int  combo2Num = prefix2Num + textFileNameNum + moveEnd Num + 
bufferNum; 
 char  * combo2 = ( char  *) malloc (combo2Num * sizeof  ( char )); 
 strcpy(combo2,prefix2); 
 strcat(combo2, textFileName); 
 strcat(combo2, moveEnd); 
 strcat(combo2, buffer); 
 system(combo2); 
 if  (chdir (buffer) == -1)  
 {   
        printf ( "chdir failed - %s\n" , strerror (errno)); 
  return ; 
    } 
 FILE *fp = fopen(textFileName, "r" ); // file opening 
 // getting rid of labels 
 char  getRid = 'q' ; 
 while (getRid != '\n' ) 
  fscanf(fp, "%c" , &getRid); 
 int  times = 0; // flag to ascertain run 
 printf( "containing folder is %s\n" , buffer); 
 
 while (fscanf(fp, "%lf%lf%d%d%d%d" , &dist, &width, &ttl, 
&totalParticles, &deltaTime,&iterations) != EOF) //order in file of 
particulars 
 { 
  times++; 
  int  counter = 1; 
  while (counter++ <= iterations) 
   twodimdriver(dist, width, ttl, totalParticles, 
deltaTime, iterations); // particle journey, twodimdriver.cpp 
 } 
 fclose(fp); // closes file 
 if (!times) 
  printf( "nothing in the file\n" ); // if notin in file 
 //system("rename TwoDimensional.txt TwoDimensionalO ld.txt");// 
rename after 
} 
#include <stdio.h> 
#include <math.h> 
#include  "threein1.h" 
 
int  WithinReach( double  yOrigin, double  xOrigin, double  yCood, double  
xCood, double  radius) 
{ 
 double  first, second, third, sum; 
 first = yOrigin - yCood; 
 first*=first; 
 second = xOrigin - xCood; 
 second*=second; 
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 third = radius * radius; 
 sum = first + second; 
 if (sum <= third) 
  return  0; 
 else 
  return  1; 
} 
#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#include "threein1.h" 
/*This is documentation for my Thesis program. This  program is meant 
to simulate the motion of hypothetical particles fr om, a particle at 
a time, from a server to a destination under the in fluence of 
diffusion through a medium. This diffusion is gover ned by a law of 
normal distribution. So what this simulates is the times it, the 
particle takes to get from the source to the destin ation. To aid 
this simualation, automatic filing systems have bei ng worked into 
this program.  
To include the header file(threein1.h) in the proje ct you need to 
take note of where the file is located then in vs20 08 you do the 
following Project->Project(Name)properties->C/C++(L eft Pane) -> 
General -> Additional Include directory(Right Pane)  -> put in 
directory 
To put in source files: Open solution explorer, rig ht click on 
source folder, -> add new-> existing files-> browse  to where the 
files are*/ 
int  main () 
{ 
 // RANDOM GENERATOR INITIATION 
 srand(( unsigned ) time (NULL)); 
 /*this function is to help the psuedorand number ge nerator of 
the c enviroment to generate random numbers by seed ing it with the 
underlying oses time. C's internal random number ge nerator is inturn 
used in the gaussian random number generator functi on to generate 
random numbers which mimic the steps of the nano pa rticle. The time 
of this particles soujourn is tied to each step of this particle. 
And in the case of the one dimension, this particle  can either go 
forward or backwards, but the time step is always a dded with each 
generate step. Hence with this we can but in the ti me to live 
feature which accordiing to the research, can be pu t in place by a 
natural phenomenon. This initialization will be emp loyed by the 
gaussrand() located in the NormalRandGenerator.cpp file. Think for 
this function stdio or stdlib is needed*/ 
 
 //Preamble 
 printf( "Preamble\n\n" ); 
 printf( "This program contains 3 simulations:\n" 
  " 1)One Dimensional Dist\n" 
  " 2) One Dimensional Time\n" 
  " 3) Two Dimensional Dist\n" ); 
 system( "pause" ); 
 printf( "The data required for these simulations are contai ned 
in the following respective files:\n" 
  " 1) OneDimProper.txt, columns: DestinationDist, tt l, 
TotPartNum, timeStep\n" 
  " 2) constTimeVaringDist.txt, columns:PartTransTime , 
TotPartNum, timeStep\n" 
  " 3) TwoDimensional.txt, columns: Xcood, Ycood, Rad ius, 
ttl, TotPartNum, timeStep\n" ); 
 system( "pause" ); 
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 /*The above just helps the user understand a little  better how 
this program works, it uses the input provided for by textfiles. As 
observed above The Program does 3 major duties, 1. Takes note of 
times achieved at specific distances, and how many packets gets to 
destination at a given different distances, 2. The 2nd program takes 
note of the largest distance achieved by each parti cle giving a 
fixed time 3. This is the repeat of the first case scenario only 
that this is a 2 dimensional plane and the catchmen t area of the 
destination is circular in this case 
 How this work is if there is no file, or if there is no data 
given in the file that part does not run otherwise,  it runs. Each 
section has a prefered data format if not it won't work properly, so 
the data must be arranged in each file as given in the column 
description above. Now if a file does exist, the af ter the run, the 
file is renamed so as to prevent rerunning same dat a by mistake in 
the next run. Please note that this file must be in  the same 
directory as the that contain the main source file* / 
 
 OneDimProper(); // attempts executing the first, this function 
is located in OneDimProper.cpp 
 system( "pause" ); // pauses the program to let the user observer 
the result before moving on to the next, to move on , the enter 
button should be employed 
 constTimeVaryingDist(); //constTimeVaryingDist.cpp 
 system( "pause" ); 
 TwoDimensional(); //TwoDimensional.cpp 
 system( "pause" ); 
 /*int select = 0, below = 0, above = 3; 
 
 do 
 { 
  printf("\n\n\n"); 
  printf("type \n"); 
  printf("{0} to Exit the Program\n"); 
  printf("{1} To Run the Constant Destination One D imen 
Simulation\n"); 
  printf("{2} to Run the Constant Ttl One Dimen 
Simulation\n"); 
  printf("{3} to Run the Constant Destination Two D imen 
Simulation\n"); 
  printf("value: "); 
  scanf("%d", &select); 
  if(select > above || select < below) 
   printf("Out of range please try again\n"); 
  else if(select == 0) 
   return 0; 
  else if(select == 1) 
  { 
   OneDimProper(); 
  } 
  else if(select == 2) 
  { 
   constTimeVaryingDist(); 
  } 
  else if(select == 3) 
  { 
   TwoDimensional(); 
  } 
 }while(1); 
*/ 
 } 


