
Propagation Delay Models in Bio-Inspired
Nanonetworks

Chukwudi James Ojukwu

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University

June 2013
Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yilmaz
 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammed Salamah
 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

 Assoc. Prof. Dr. Doğu Arifler
 Supervisor

Examining Committee

1. Assoc. Prof. Dr. Doğu Arifler

2. Assoc. Prof. Dr. Muhammed Salamah

3. Asst. Prof. Dr. Gürcü Öz

iii

ABSTRACT

Nanomachines are devices that are made up of nanoscale components. By

themselves, nanomachines can perform only simple tasks. To achieve more complex

tasks, networks of manomachines or nanonetworks are formed. Molecular

communication is a biocompatible, bio-inspired alternative to traditional

electromagnetic communication in nanonetworks. In molecular communication,

molecules can be considered as information packets. Free diffusion based molecular

communication requires no external energy and is the most basic information

transport mechanism being considered for nanonetworks. This form of

communication however is slow due to the random walk of the particles and the

information packets can also be delivered out of order to the destination. These

issues present challenges to design and implementation of molecular communication

based nanonetworking protocols. While there are significant studies that address

physical layer aspects of molecular communication, there is relatively less work in

the link layer. In particular, modeling of channel delays or sojourn times of

molecule-packets that arrive at a nanomachine is required for queueing theoretic

analyses. To this end, simulations are performed to measure the propagation times of

molecules between a given source and a destination in both bounded one- and two-

dimensional spaces and unbounded one-dimensional spaces. Here, one-dimensional

settings correspond to molecular communication that take place in very thin

capillaries and two-dimensional settings correspond to communication in junctions

with small widths, negligible heights or on membranes. There are no closed-form

formulas for the delay distribution of freely diffusing particles in arbitrary, bounded

environments. The delay measurements in bounded settings are fitted to well-known

iv

distributions that are commonly used in modeling time to complete a task. The fits

can be used to generate arrival times of molecule-packets at a node. This study is

expected to contribute to the analysis of link layer protocols and workload models

being considered for nano communication networks.

Keywords: Distribution Fitting, Free Diffusion, Molecular Communication,

Nanonetworks.

v

ÖZ

Nanomakineler nano ölçekte bileşenlerden oluşan cihazlardır. Nanomakineler kendi

başlarına sadece basit işlemler yapabilirler. Daha karmaşık işlemler için

nanomakinelerden ağlar, yani nano ağlar, oluşturulabilir. Moleküler iletişim

biyolojiden ilham alınmış, biyo-uygun, geleneksel elektromagnetik iletişime

alternatif bir iletişim şeklidir. Moleküler iletişimde paketler moleküllerdir. Serbest

difüzyona dayalı moleküler iletişimde, harici enerji gereksinimi yoktur ve nano ağlar

için düşünülen en temel veri taşıma mekanizmasıdır. Ancak bu mekanizma,

parçacıkların rasgele yürüyüşünden dolayı yavaştır. Ayrıca, parçacıklar gönderilme

sırasından farklı olarak hedefe ulaşabilirler. Bunlar, moleküler iletişim protokollerini

tasarlamayı zorlaştırmaktadır. Moleküler iletişimin fiziksel katmanıyla ilgili birçok

çalışma olmasına rağmen, bağlantı katmanıyla ilgili çalışmalar çok azdır. Özellikle,

iletişim kanalında paketin yayılma zamanı kuyruklama teorisi açısından önemlidir.

Bu bağlamda, yayılım zamanlarını ölçmek için bir ve iki boyutlu, sınırsız ve sınırlı

ortamlarda difüzyon simulasyonları yapılmıştır. Bir boyutlu simulasyonlar kılcal

damarlardaki iletişime karşılık gelebilir. İki boyutlu simulasyonlar ise kavşak ve zar

üzerindeki iletişime karşılıktır. Sınırlı ortamlarda, serbest difüzyonla hareket eden

parçacıkların gecikme zaman dağılımlarının formülü bulunmamaktadır. Sınırlı

ortamlardaki yayılım zamanları, bilinen dağılımlara eşleştirilmi ştir. Eşleştirmeler,

molekül-paketlerin bir nanomakineye varma zamanlarını modellemek için

kullanılabilecektir. Dolayısıyla, bu çalışma nano ağların bağlantı katmanı

analizlerine katkı koyacak niteliktedir.

vi

Anahtar Kelimeler: Dağılımlara Eşleştirme, Serbest Difüzyon, Moleküler İletişim,

Nano Ağlar.

vii

To the Holy Trinity One God; to my Blessed Mother Mary; to all the angels and

saints; to my Family; to my Fiancee, to Safuriyau Ahmed, to Mehran Hosseinzadeh,

to Assoc. Prof. Dr. Doğu Arifler.

viii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION………………………………………………………………………vii

LIST OF TABLES .. xi

LIST OF FIGURES .. xiii

1 INTRODUCTION ... 1

1.1 Nanomachines in General .. 2

1.2 Biological Nanomachines .. 4

1.2.1 Molecular Communication.. 5

1.2.1.1 Traditional Communication Methods vs. Molecular Communication 5

1.3 Field of Deployment .. 6

1.3.1 In-Body Drug Delivery ... 7

1.3.2 In-Body Health Monitoring .. 7

1.4 Outline of the Thesis .. 8

2 NOTABLE DEVELOPMENTS IN NANO COMMUNICATIONS 9

2. 1 Nanomachines ... 10

2.2 Propagation and Environments .. 11

2.2.1 Passive Propagation .. 12

2.2.2 Active Propagation .. 13

2.2.2.1 Molecular Motor-Based ... 13

ix

2.2.2.2 Bacterial Motor-Based ... 14

2.3 Intra Networking .. 14

3 METHODOLOGY ... 15

3.1 General Analytic Considerations ... 15

3.2 One-Dimensional Setup Analysis .. 16

3.2.1 Flow Charts of Subroutines Implementing the Required Scenarios (1D) 18

3.2.1.1 One-Dimensional Driver .. 19

3.2.1.2 The Subroutine “OneSimulation” .. 21

3.2.1.3 The Subroutine “ParticleJourney”.. 24

3.3 Two-Dimensional Setup Analysis ... 28

3.3.1 Flow Charts of Subroutines Implementing the Required Scenarios (2D) 30

3.3.1.1 The Subroutine “TwoDimensional” ... 32

3.4 Other Tools Employed ... 36

4 RESULTS AND ANALYSIS .. 37

4.1 Histograms of Propagation Delay in One-Dimensional (1D) and Two-

Dimensional (2D) Molecular Communication Channel Scenarios 37

4.3 Fitting Delay Data to Distributions .. 40

4.3.1 One-Dimensional Scenarios .. 41

4.3.1.1 One Micrometer, One-Dimensional ... 41

4.3.1.2 Two Micrometer One-Dimensional ... 42

4.3.1.3 Four Micrometer One-Dimensional ... 44

4.3.1.3 Eight Micrometer One-Dimensional .. 45

x

4.3.2 Two-Dimensional Scenarios ... 47

4.3.2.1 One Micrometer Two-Dimensional ... 47

4.3.2.2 Two Micrometer Two-Dimensional ... 49

4.3.2.3 Four Micrometer Two Dimensional.. 50

4.3.2.4 Eight Micrometer Two-Dimensional .. 52

5 CONCLUSION .. 54

5.1 Summary .. 54

5.2 Future Work ... 54

REFERENCES ... 56

APPENDICES ... 63

Appendix A: Distributions ... 64

Appendix B: KS (Kolmogorov-Smirnov) Test .. 69

Appendix C: Programs ... 71

xi

LIST OF TABLES

Table 1: 1D Average Propagation Times in µs (U: Unbounded, B: Bounded) 39

Table 2: Fitting 1 µm Data to Distributions 1-3... 41

Table 3: Fitting 1 µm Data to Distributions 4-6... 41

Table 4: Fitting 1 µm Data to Distributions 7-9... 42

Table 5: Fitting 2 µm Data to Distributions 1-3... 42

Table 6: Fitting 2 µm Data to Distributions 4-6... 43

Table 7: Fitting 2 µm Data to Distributions 7-9... 43

Table 8: Fitting 4 µm Data to Distributions 1-3... 44

Table 9: Fitting 4 µm Data to Distributions 4-6... 44

Table 10: Fitting 4 µm Data to Distributions 7-9... 45

Table 11: Fitting 8 µm Data to Distributions 1-3... 45

Table 12: Fitting 8 µm Data to Distributions 4-6... 45

Table 13: Fitting 8 µm Data to Distributions 7-9... 46

Table 14: Fitting 1 µm Data to Distributions1-3.. 47

Table 15: Fitting 1 µm Data to Distributions 4-6... 48

Table 16: Fitting 1 µm Data to Distributions 7-9... 48

Table 17: Fitting 2 µm Data to Distributions 1-3... 49

Table 18: Fitting 2 µm Data to Distributions 4-6... 49

Table 19: Fitting 2 µm Data to Distributions 7-9... 50

Table 20: Fitting 4 µm Data to Distribution 1-3 .. 50

Table 21: Fitting 4 µm Data to Distribution 4-6 .. 51

Table 22: Fitting 4 µm Data to Distribution 7-9 .. 51

Table 23: Fitting 8 µm Data to Distributions 1-3... 52

xii

Table 24: Fitting 8 µm Data to Distributions 4-6... 52

Table 25: Fitting 8 µm Data to Distributions 7-9... 53

xiii

LIST OF FIGURES

Figure 1: One-Dimensional Molecular Channel (Unbounded Case) 17

Figure 2: One-Dimensional Molecular Channel (Bounded Case) 17

Figure 3: One-dimensional simulation driver ... 19

Figure 4: The Subroutine “OneSimulation” ... 21

Figure 5: The Subroutine “AboutFiles” ... 22

Figure 6: The Subroutine “AboutFilesGeneral” .. 23

Figure 7: The Subroutine “ParticleJourney” (Unbounded) .. 24

Figure 8: The Subroutine “ParticleJourney” (Bounded) .. 25

Figure 9: The Subroutine “Step1Dgen” ... 26

Figure 10: The Subroutine “DestinationBreached” ... 27

Figure 11: The Subroutine “ArrivalReport” .. 27

Figure 12: Two-Dimensional Molecular Channel (Unbounded) 28

Figure 13: Two-Dimensional Molecular Channel (Bounded) 29

Figure 14: The Subroutine “TwoDimensional” ... 32

Figure 15: The Subroutine “TwoDimensionalDriver” ... 33

Figure 16: The Subroutine “ParticleJourneyChronicles” (Unbounded) 34

Figure 17: The Subroutine “ParticleJourneyChronicles” (Bounded) 35

Figure 18: The Subroutine “WithinReach” .. 36

Figure 19: Histograms of Propagation Delay for the 1D Unbounded Case 38

Figure 20: Histograms of Propagation Delay for the 1D Bounded Case 38

Figure 21: Histograms of Propagation Delay for the 2D Bounded Case 40

1

Chapter 1

INTRODUCTION

The smaller the electronics are the less intrusive they are and generally the better

they are for all involved. The drive for smaller and better electronics brings about the

drive towards the nanomachine. A nanomachine refers to a well-arranged single unit

mechanical device at nanoscale that is designed from materials and components at

nanoscale to serve limited purposes [1] (in most cases just a single purpose). To

appreciate the complexity of designing and achieving a machine of such a

specification, it helps to take into cognizance that an object with a specification to the

tune of the micro-scale cannot be seen by the naked human eye. An object with

specifications measuring at nanoscale is smaller than that at the micro scale by a

factor of 1000. Naturally, the quest to achieving this feat has been met with a lot of

obstacles, but the benefit that is envisioned from it been implemented is the incentive

that has made it possible for those challenges. One such challenge is that of energy

consumption in communication among nanomachines. The most tempting means of

communication in the nano arena is the use of free diffusion in which particles are let

loose and they migrate randomly walking to the destination by the natural

phenomenon called Brownian motion. Diffusion has major downsides: it has a very

low range and high delay associated with transporting particles from one point to

another. The purpose of this thesis is to analyze and characterize delay in a free

diffusion based molecular channel so that engineers can plan and design nano

communication networks at a level above the physical layer. It should be noted that

2

there are only a few studies that consider the link layer [2] and above of a nano

communication network.

1.1 Nanomachines in General

The general definition of a nanomachine is what is given above. Due to the size of a

nanomachine, what it is able to achieve is not so much as to be felt useful in the real

sense, for mostly they carry out just a single task, and this task carried out is done at

a scale that would make little or no impact in the environment. The only way to make

this impact felt is if a group of these machines worked together towards a given goal

either by each taking on the same task or by sharing different parts of the process to

reach that goal. In order that this should happen in a way so as not to negate

themselves, they must communicate with each other whilst they work. This is how

the concept of nano communication comes to be. Nano communication is any and

every infrastructure that enables nano machines to communicate with each other.

Initially, when machines at the level of the nano were contemplated, the initial

direction was the application of the traditional communication techniques at the

nanoscale. The approaches to these methods were in the categories bottom-up and

top-down [1]. The top-down dealt with scaling down the existing standalone units

and their communication capabilities, such as transceivers, down to the nanoscale.

This was found impossible with the current technological advances on ground as

talked about in [1]. Also, the bottom up approach is very similar to the top down in

that the traditional communication apparatus were to be applied at the nanoscale,

only that in this case the parts making up this nanomachine would be manufactured

separately and then assembled automatically using self assembly [3]. However, again

this is theoretical only for the technology needed to make these components are not

3

yet in existence. Yet, there are other objections uniformly common to both these

presented methods given other than their infeasibility. The objections to them are due

to the principle limitations, power consumption, and bio-incompatibility. Principle

limitations make communication between devices at the nano level different due to

quantum effects [4].

Power consumption is an important factor in this network setting because repowering

it would be hard after deployment. Due to the power consumption rate during

transmissions, no matter what power saving scheme is employed, the battery would

eventually run out. Also, due to the diverse environments that such small devices

could be deployed in and the limited options in the traditional computing world of

recharging of spent power, the nanomachine would not last for so long. Also, at such

a dimension, only simple tasks should be assigned to each nanomachine and the

addition of power saving schemes would greatly add to its complexity. If, in

addition, there are acknowledgments attached to each packet sent in the traditional

sense, this also depletes the energy of the nanomachine drastically as transmitting

and receiving are known to be the most power intensive part of any activities of a

communicating device.

These traditional-styled nanomachines are made from components not easily or

readily assimilated into the natural environment. The chief need of such a small scale

technology is deployment in places unreachable before. If deployed in the human

body for example, it may cause some damage when its active life is over. Also, even

when not deployed in living organisms, they could still constitute health problems as

they can easily be carried by the wind and deposited in places not intended for.

Since they cannot be detected visually, they will not be known to be there and may

4

prove hazardous to the environment if they cannot be assimilated into the ecosystem.

The hazardous nature of these devices will result in greater ecological problems over

time. For these reasons, greater strides have been made towards making biological

nanomachines a reality those of the traditional sort. In fact according to [5], when a

reference is made to nanomachines, more often than not, what is meant is biological

nanomachines.

1.2 Biological Nanomachines

A third and by far the most promising approach to making nanotechnology a reality

is the bio-hybrid approach. Biological nanomachines already exist in abundance in

nature. These are cells with facilities synonymous to a miniature computing body. Of

course in nature, these cells are designed to see to its survival, and the survival of

similar cells around. As a result, they are not in a form to be readily manipulated for

other purposes. However, with a little modification, they could do what you would

want them to do with regards logic, sensing and/or actuating. Reference [6] speaks of

molecular motors existing in nature, and components that could serve as building

blocks for the formation of nanomachines such as biochemical molecules, complexes

and circuits that can pass for processing units [7]. The construction of nanomachines

from its base components is not the only way to create these nanomachines.

Genetically engineered cells cited in [8] are more apt for manipulation for diverse

purposes.

5

As in nature, these cells taken individually cannot do much, but taken as a whole,

they get a lot done: the way they accomplish this is by working together. The way

they are to work together is by molecular communication.

1.2.1 Molecular Communication

Molecular communication is used here over the term nano communication, because

this term really does accentuate the departure of the communication technique

encountered in the biological sphere of nano communication from the traditional way

that network devices communicate. Earlier on, in this thesis, it was highlighted that

due to quantum effects principles guiding well established ways of communicating,

such as electromagnetic waves, fail. Mimicking the way cells communicate in nature,

carrier molecules (information molecules) are employed as a way of transmitting

information [9]. In general, the sender encodes information into these molecules

which can either be produced by the sender, or freely available in the environment or

attracted to the sender (as in the case of carrier bacterium [10]). Then, these are either

sent by passive means (e.g. diffusion) or active means (e.g. directed molecular motor

movement by chemical consumption).

1.2.1.1 Traditional Communication Methods vs. Molecular Communication

The method of communication by the molecular means is radically different from the

way it is known in the traditional sense. As stated above, molecules are used in the

latter as packets. What is truly unique is the way the packets are transmitted. In the

traditional means, the power cost of the transmission is borne by the sender.

However, in the case of these biological nanomachines, the propagation environment

bears the burden of the power cost [9]. The propagation environment is an aqueous

solution, but due to the noise inherent in this environment encountered by the

6

sojourning information molecule, whether in the passive form (e.g. diffusion where

the erratic movement the particle makes redundancy a necessity in this

communication type) or in the active form (e.g. molecular motors consuming

chemical energy in order to overcome other molecules and counter energies in the

environment), the range of this transmission falls within the nano-micro scale [11].

Same obstacles render the speed of the packets in the nm/s category. On the other

hand, the conventional mode of communication boasts of ranges of communication

in meters to kilometers and speeds of signals matching the speed of light 3 x 108

km/s. Also, due to the stochastic nature of the information molecules, the probability

of loss is very high, hence is unreliable relative to the conventional ones.

Redundancy is encouraged in molecular communication to make sure that message is

delivered because in this model, acknowledgments are not used given the number of

information and energy considerations.

1.3 Field of Deployment

Nanonetworks are very attractive for deployment in so many areas. Reference [12]

has a list of areas where this technology, even in the light of its limitations, would

make a huge impact. These include the biomedical, industrial and consumer goods,

and the military amongst others. The most promising of these is the medical

profession, specifically the internal body medicine. Why this is so is that the

disadvantages of the nanonetworks such as the its range and speed of information

particle is downplayed by the fact that the shortest distance between the

nanomachines can be achieved in the human body so easily as the dimensions of the

human body is not that vast. Two case scenarios will serve to drive home this point.

Also the size, self-sustaining attribute, self-replicating, and the biocompatibility of

these nanomachines make them much coveted as compared to the closest competing

7

in-body silicon-based machines which need to replaced when spoilt or not in need

anymore, or they have to be brought out for replacement of batteries. With the

nanomachines proposed, all of these problems will be in the past as no more needed

machines could simply be assimilated by the body, and older machines could

replicate themselves before self-destructing, and since the machines draw little power

they need from the environment (e.g. glucose), they never need a battery change.

1.3.1 In-Body Drug Delivery

This medical application cited in [13] is the use of these nanomachines to administer

drugs at certain times when needed. This involves a trigger cell (the drug repository,

sender) and the target cell (the receiver) [9]. The trigger cell normally has a timer

telling it when to send the needed drug. The doctor has a time frame when this drug

needs to be delivered, e.g. at noon period, so since the said cells are close together

and the time frame is long enough, the needed drug will always be delivered in good

time. Therefore, this technology could enable a person who needs to constantly take

life saving drugs at constant intervals, such as a diabetic, live a normal life by having

a repository of this drug in his body administered in the right interval of time.

1.3.2 In-Body Health Monitoring

This is the application of nanomachines in the long time, day to day monitoring of

the health of patients. Just like in the case of the in-body drug delivery, the

nanomachines are planted in strategic parts of the body. From these parts, they

monitor certain cells and organs taking the note of the pH level, cell intake, etc. They

are able to do this because they are able to translate information in DNA which has

been found in [14] to hold up to 9.2 Mbits of information in just 2 micrometer square

of chromosomes. This information will then at regular intervals be sent to a central

8

nanomachine which will store them and on request, will internetwork using the

optical naturally occurring options of either fluorescent proteins or Molecular

Organic Light Emitting Diodes (MOLED’S) [12] to get the stored up information to

the outside world for analysis, possibly by a doctor or a personal health

monitor/analysis device.

1.4 Outline of the Thesis

In Chapter 1, as already observed, the general overview of nanomachines in the bio-

hybrid category is described. In Chapter 2, notable strides in this class of

nanomachines accomplished in research and implementation are looked into. In

Chapter 3, the methodology and approach of this thesis with regards to the study of

the propagation delay behavior of particles transmitted by the passive means of

diffusion in both one- and two- dimensional bounded and unbounded spaces are

presented. In Chapter 4, the results obtained from the simulation that are the products

of the methodology presented in Chapter 3 are shown and analyzed. Finally, Chapter

5 concludes the thesis.

9

Chapter 2

NOTABLE DEVELOPMENTS IN NANO

COMMUNICATIONS

The setup of a nanonetwork is characterized by nanomachines, information

molecules, and the environment which engulfs them all. The nanomachines are

further divided into two classes, namely the sender and the receiver. The sender is

same as the receiver except it lacks a discriminatory receptacle, but it has the added

ability to encode information onto biological material (e.g. DNA translation). Also in

some cases, it has the ability to synthesize information molecules from the

environment. The receptacle in the receiver is meant to help it attract/capture an

information molecule when the latter reaches the former. This setup is not exactly a

new thing, in fact as [15][16] puts it, this is found abundantly in nature. What is new

is this setup being harnessed as a network for serving purposes not designated to

cells (naturally occurring nanomachines) by nature. To achieve certain aspects, an

engineered molecular communication has to be developed, modified or even

assembled from existing parts in its naturally occurring version. The generic

architecture as illustrated in [9] shows that molecular communication contrived

consists of the following states: encoding, sending, propagating, receiving and

decoding. The following section will treat the developmental efforts under the

headings below:

• Nanomachines

10

• Propagation and engulfing environments.

2. 1 Nanomachines

Nanomachines are derived basically from cells in nature in a variety of ways, either

by tinkering with already existing cells by synthesis (i.e. by creating a new variation

of the existing cell with added functionality through genetic engineering) [9] or by

putting together a cell-like entity with components existing in nature.

The aspect of adding desirable communication attributes to existing cells by genetic

engineering is illustrated in [17]. Not only that, a step further was achieved when

certain sender nanomachines were designed to synthesize information molecules

[18]. In the same vein, the receiver nanomachines were designed to not only receive

information molecules but to receive specific ones. As such, by the differentiating

amongst the different kinds of information molecules, the sender could now make

sure that only the intended machines react to the sent messages. To make addressing

more generic, however, work is being done on using DNA sequences to accomplish

the addressing issue [16]. In this way, the work of coming up with as many variations

of the information molecule types as there are receivers and also the prospect of

getting a single nanomachine to synthesize all the various types information

molecules can be avoided. Also, intermediary nanomachines could be employed to

act as repeaters. The basic functioning of each nanomachine’s circuitry such as logic

functions (biochemical inverter [19], and AND or OR gates [20], etc.), toggle

switches [21], and oscillators [22] can be added through genetic engineering. Also,

producing a nanomachine from base elements, making the finished product look like

cells existing in nature is another product of research in this field [9]. The aim of this

method is simplification so that only what is needed is included and nothing else. A

11

lipid bilayer is used to mimic the permeable membrane of a cell [5] into which

functional natural components are added such as receptors (proteins). Even though

this is an artificial cell, it can achieve replication using chemical components as

proposed in [23]. As noted in the previous section, in a 2 micrometer square of

chromosome of a bacteria, 9.2 Mbits of information can be housed as compared to

the projected achievable storage capacity for 2014 for conventional storage devices

for the same area, 490 bits [9]. The possibilities are limitless with regards to

transmission except limited by the receivers’ capacity. Reference [24] found that the

amount of information a receiver nanomachine can decode (or react to) must be

proportional to the number of its configurations. Also, work has been done

extensively as to how nanomachines operate in networks where the information

molecules are bacteria. With regards to the attractants the following questions were

investigated: how the sender attracts these empty bacteria using attractants [25], how

to encode the plasmids to be inserted into a bacterium with information [26], how

these loaded bacteria are attracted to the receiver nanomachines by yet another set of

attractants, how they are then attached to receiver by a pilus [10], and how by DNA

synthesis the information containing plasmid is recovered by the receiver.

2.2 Propagation and Environments

Propagation is that period in the communication process involving nanomachines in

which the information molecule moves through the environment engulfing both

nanomachines from the sender to the receiver. Research has unveiled two

propagation types:

• Passive

12

• Active

In the former, the basic form of communication is diffusion, and in the latter, the

information molecules are attached to other molecules which make marked effort

against the forces in the environment (energy and non-communication molecules) to

get to destination. The distinction itself is as a result of the independent work of

various researchers.

2.2.1 Passive Propagation

There are various forms of this class of propagation elucidated by research efforts.

The first kind is free diffusion based molecular communication in which the

molecules are released by the sender by opening of a gate [9] and the molecules are

scattered in all direction due to interaction with other molecules when released

(broadcast style) and due to its inherent physical tendency to get away from

molecules of its kind, it exhibits a hyper willingness to mingle with other kinds of

molecules; that is to say, molecules move from a region of higher concentration to a

region of lower concentration. In this all, surrounding nanomachines are engulfed in

the ensuing stream of information molecules. However, only recipients with

receptacles sensitive to the information molecules react to them (decode them)

[27][28]. This mode of communication embodies perfectly all the well known

attributes of nano communication (i.e. low range, lethargically slow, and unreliable

but also energy efficient.)

Another class of this diffusion based communication is the gap junction mediated

reaction. Here, cells are placed close to each other and the area from which the

diffusion is to take place is selected so as to be directed to the next cell. This selected

13

area of diffusion is called the gap junction channel [6]. Since the cells are adjacent to

each other and the channels connect them, the propagation is simply instantaneous.

Imagine now a series of these cells arranged in a row connected by gap junction

channels where the intermediary cells react to information molecules diffused into it

by immediately diffusing some of its own to a cell next to it. The information

molecule loss will be low, and due to the number of cells in question the distance

achievable increases dramatically and the speed observed will be on the order of 100

m/s [9]. This feat shown in [29] is remarkable when compared to the free diffusion,

and for cases were each cell has two or more alternative paths, permeability and

selectivity properties of the gap junctions have been used to put in place filtering and

switching mechanisms [30]. This mode adds a lot of functionality to the diffusion

based communication with one downside: this is much more structured than the free

version.

2.2.2 Active Propagation

In this case, a random walk is not employed but rather molecules perform directed

movement. To accomplish this directed motion, some sort of external energy must be

applied in order to overcome the forces in the surrounding environment. Two major

approaches have been brought to light through the efforts of researchers.

2.2.2.1 Molecular Motor-Based

The first of these involves using helper molecules to accomplish this directed motion.

These helper molecules according to [9] fall into the category of molecular motors,

interface molecules, and guide molecules [31][32]. The guide molecules that are

engineered are self-organizing molecules which act as the path on which molecules

harboring the information molecules thread to the destination; i.e. they act as a path

14

for the molecular motors to thread. The molecular motors, by using up chemical

energy, thread the guide molecules as a train’s wheels would ride on rails,

overcoming opposing energies and molecules with an energy efficiency of up to 90%

[9]. Interface molecules are containers into which the sender nanomachines put in

information molecules so as to be mounted on the molecular motor and also to

prevent the information molecule from reacting with the encountered molecules in

the propagation environment before it gets to the destination [33][16]. This is

remarked to achieve distances to on the order of meters. The terrain here must be

structured.

2.2.2.2 Bacterial Motor-Based

In this molecular communication mode, there are no set up paths but there are

bacteria which act as information carriers. Bacteria propel themselves by using their

flagella (motor). They are attracted to both the sender and the receiver attractants

[10].

2.3 Intra Networking

Attempts have been made also to link nanonetworks to the other network types. One

such attempt is the light transduction where short range molecular information is

converted to optical signals and vice versa [12]. The method proposed is to utilize

fluorescent proteins [34] and Molecular Organic Light Emitting Diode (MOLED’S)

to make this conversion possible [35].

15

Chapter 3

METHODOLOGY

This section of the thesis is focused on the methods and algorithms used to generate

data which will be analyzed to construct propagation delay models. Particles will be

assumed to freely diffuse in both bounded and unbounded one- and two-dimensional

environments. Examples of cases for which one-dimensional (1D) analysis are valid

are scenarios where particles are transported in capillaries with negligible width.

Transport on a membrane, a dish, or a junction are examples for which a two-

dimensional (2D) analysis is valid. Three-dimensional analysis is proposed as future

work. Note that the distances to be considered will be 1, 2, 4, and 8 micrometers.

This means this investigation here will be based short-range communications.

3.1 General Analytic Considerations

The free diffusion talked about in Chapter 2 is very slow in packet propagation. The

particle can wander in the environment for a very long time. Hence, a time to live

(TTL) must be assigned to each particle so that the algorithms do not run forever by

eliminating long-wandering particles from consideration after their TTL expire. Note

that such assumption is realistic because generally particles decompose in the

environment after a given time. Based on observations, a 10-second TTL is assigned

to particles. Diffusion coefficient will be taken as D = 10-9 m2/s which is the value

used for small molecules in water.

16

In the one-dimensional bounded case, the source is placed at the beginning of the

capillary ensuring that no particles can diffuse behind the enclosed barrier against

which the source is located. Also for the two-dimensional bounded case, where the

planar junction can have a small width (but zero height), extra boundaries are set up

in that no particles can go much further than behind were source is located or

forward past where the receiver is located or breach the walled width of the junction.

When diffusing particles encounter these barriers, they experience a perfect

reflection; that is, there is no loss or gain in kinetic energy and its direction is

reversed by a reflection angle and hence its final position is a reflection of where it

would have been had there been no barrier in its path. This is not always true in the

real world, as there are some losses in kinetic energy, but this approach will be

adopted for its ease of analysis.

3.2 One-Dimensional Setup Analysis

There are two cases to simulate:

1. Unbounded

2. Bounded

A pictorial view of what the aforementioned molecular channel is like is given in

Figure 1 and Figure 2, respectively.

17

It can be observed from the figure that in the unbounded case, the molecules in 1D

are unrestricted in both directions. This increases the possibility that some particles

will never tend towards the intended destination. The particle’s step ∆d in the x-

direction is going to be dictated by the following equation:

∆d � √2�Δt	
 ��
�1��� (1)

s

Source

Possible directions

Legend

s
Destinatio

Emitted Particles

Propagation Medium

s

Source

Possible directions

Legend

s
Destinatio

Emitted Particles

Propagation Medium

Figure 1: One-Dimensional Molecular Channel (Unbounded Case)

Figure 2: One-Dimensional Molecular Channel (Bounded Case)

18

where rand1Dim = �1 equally likely. Here, Δt is taken as 1 µs.

The bounded case is exactly the same as the unbounded only that in this case, there is

an impenetrable boundary at the source. The boundary condition is implemented by

a perfect reflection that negates the position of the particle in question by the exact

amount by which it would have breached the boundary.

3.2.1 Flow Charts of Subroutines Implementing the Required Scenarios (1D)

There are several flow charts that describe the algorithm that is implemented in this

thesis and they are linked together chiefly by subroutines. Here is the 1D

implementation in terms of flow charts.

3.2.1.1 One-Dimensional Driver

This phase of the subroutine is the same for both the bounded and unbounded case.

The subroutine shown in

transmission. There is a file which has

complete set of data for a simulat

simulations is equal to the lines

five parameters dD, ttl, tPN and dT

distance, time to live, total particle number

(mimics) the encoding process of the

Figure

19

Dimensional Driver

This phase of the subroutine is the same for both the bounded and unbounded case.

shown in Figure 3 chiefly deals with preparing

. There is a file which has the parameters of each required simulation. A

complete set of data for a simulation is contained on a line. The number of different

simulations is equal to the lines. The values required for a simulation is given by the

five parameters dD, ttl, tPN and dT which correspond to destination

distance, time to live, total particle number, and time step. This algorithm

the encoding process of the transmitter in that it gets the emission

Figure 3: One-Dimensional Simulation Driver

This phase of the subroutine is the same for both the bounded and unbounded case.

preparing particles for

the parameters of each required simulation. A

he number of different

a simulation is given by the

which correspond to destination (or receiver)

This algorithm takes

in that it gets the emission

20

requirements from the file and passes it on to the subroutine “OneSimulation” which

in turn carries out much more complex work on the particles meant for transmission.

The remaining parts in the flow chart are there to allow for interactivity with the user

and minimize error in the system. The program allows for multiple simulations to be

carried out.

3.2.1.2 The Subroutine “

21

The Subroutine “OneSimulation”

Figure 4: The Subroutine “OneSimulation”

Figure 4 shows the actions of the subroutine “OneSimulation”. This part mostly is

concerned with setting up uniqu

receiver. The subroutine in

unused file name with the smallest integer value

to the calling function.

22

the actions of the subroutine “OneSimulation”. This part mostly is

concerned with setting up unique files to record the collected hit times

he subroutine in Figure 5 is called “AboutFiles”. “About

unused file name with the smallest integer value attachment, which is then sent

to the calling function.

Figure 5: The Subroutine “AboutFiles”

the actions of the subroutine “OneSimulation”. This part mostly is

the collected hit times to the

”. “AboutFiles” looks for a

, which is then sent back

Another function of the “OneS

all the unique files that have

note of the certain attributes of that transmission such as the unique file name

average time of arrival,

also the total number of part

helps the process of comparison of data

Another routine “AboutFilesGeneral

appending and then return

this case as in the case of creating the unique

given. This simulation

the file name of both the log file and the unique file whose run was just concluded

This helps inform the user where and what to look for in monitoring the progress of

the simulation.

Figure

23

Another function of the “OneSimulation” subroutine is that it maintains a log file

all the unique files that have ever been created in the transmission process. This takes

note of the certain attributes of that transmission such as the unique file name

average time of arrival, the number of particles that reached to the destination

also the total number of particles that were transmitted in that transmission

helps the process of comparison of data across simulations during the

boutFilesGeneral” shown in Figure 6 does

then returns a complete file name to the calling function. The file in

this case as in the case of creating the unique files is dependent on a general

. This simulation, at the end of each unique transmission, print

the file name of both the log file and the unique file whose run was just concluded

his helps inform the user where and what to look for in monitoring the progress of

Figure 6: The Subroutine “AboutFilesGeneral”

subroutine is that it maintains a log file of

ever been created in the transmission process. This takes

note of the certain attributes of that transmission such as the unique file name,

to the destination, and

smitted in that transmission. This

simulations during the analysis.

does the creation or

a complete file name to the calling function. The file in

is dependent on a general name

h unique transmission, prints to the screen

the file name of both the log file and the unique file whose run was just concluded.

his helps inform the user where and what to look for in monitoring the progress of

3.2.1.3 The Subroutine “Particle

Figure 7:

24

The Subroutine “ParticleJourney”

 The Subroutine “ParticleJourney” (Unbounded

nbounded)

Figure 8: The

25

The Subroutine “ParticleJourney” (Bounded)

The subroutine responsible for the jo

the only point where

channels part way as illustrated in

of several of its own subroutines, for example the

generates each step simultaneously

subroutine function is to indicate w

“LostStatusTime” indicates whether

The “ArrivalReport”

the time the particle took to gets to its destination.

Figure

26

ubroutine responsible for the journey of the each particle, “ParticleJourney

ere the bounded and the unbound form of the 1D

way as illustrated in Figure 7 and Figure 8. The subrountine makes

of several of its own subroutines, for example the “step1DGen”

simultaneously as the time increases. The “destinationBreached

subroutine function is to indicate whether the destination has

” indicates whether at any point in time a particle

 puts in the unique file created in subroutine

the time the particle took to gets to its destination.

Figure 9: The Subroutine “Step1Dgen”

ParticleJourney”, is

bound form of the 1D molecular

subrountine makes use

” given in Figure 9

destinationBreached”

the destination has been reached. The

in time a particle is dead or not.

ubroutine “OneSimulation”,

Figure

Figure

27

Figure 11: The Subroutine “ArrivalReport”

Figure 10: The Subroutine “DestinationBreached

Breached”

28

3.3 Two-Dimensional Setup Analysis

Here only the bounded case will be simulated since the time complexity of the 2D

unbounded is high. A pictorial view of what the aforementioned molecule channel is

like is given in Figure 12 and Figure 13, respectively.

The assumption in Figure 12 is that both the source and the receiver have fixed

positions in the medium, not free flowing like the emitted particles. In the bounded

s

sSource Legends: Possible directions Destination Emitted Particles
Propagation Medium

Figure 12: Two-Dimensional Molecular Channel (Unbounded)

29

case, the source and the destination resides at the opposite ends of a junction and

there is also the assumption that none of these particles can go beyond the opposite

ends. If in their traversal they encounter boundaries, there is a perfect bounce back.

In addition, there is another assumption that the channel has a width in which

restricts the journeying particles. Again, if there is an attempt at breaching these

walls, the particle in question will spring back by a factor equal to the amount it

would have crossed that boundary.

It can be seen that released particles have two elements to its step and an increased

degree of freedom. In Figure 12 the particles are not restricted in any way, hence

they can go as they like. In the second case, Figure 13, their movement is much more

restricted. The step formulas to account for steps in the x- and y- directions are:

∆x = √4�Δt	 cos ���
 ��
�2���� (2)

∆y = √4�Δt	 sin ���
 ��
�2���� (3)

s

sSource Legends: Possible directions Destination Emitted Particles
Propagation Medium 0.1µm 1µm, 2µm, 4µm, or 8

Figure 13: Two-Dimensional Molecular Channel (Bounded)

30

rand2Dim is a randomly picked number in range [0-2]. The trigonometric functions

are in radians. PI is 3.141592654. As before, Δt=1 µs.

3.3.1 Flow Charts of Subroutines Implementing the Required Scenarios (2D)

The algorithm of the 2D case is closely related to the 1D one but differs in minor

details such as the data to be read from the configuration file, the generation of the

steps, and of course, the complexity of the boundary conditions in the bounded case.

Most of the subroutines employed for the 1D case are employed in this case too. The

new configuration reading not present in the previous is w, which stands for the

width which gives us the upper and lower boundary of our molecular channel. The

2D case also differs in the number of subroutines. The reason for the differences lies

in the physical difference as showed in their pictorial world view as depicted in

Figure 12 and Figure 13. In the figures, it can be seen the receiver is an aperture that

has a width equal the 1/20 of the size of the width of the channel. The check as to

whether the destination has been reached is as follows:

(X_receiver – X_current_particle)2 + (Y_receiver – Y_current_particle)2 ≤

Aperture_Width2 (4)

where

X_receiver is the x-component to the position of the receiver,

Y_receiver is the y-component to the position of the receiver,

X_ current_particle is the x-component of the current position of the emitted particle,

31

Y_ current_particle is the y-component of the current position of the emitted particle,

Aperture_Width is the radius of the aperture that makes up the receiver.Figure 14 to

Figure 18 show the remaining subroutines.

3.3.1.1 The Subroutine “

Figure

32

The Subroutine “TwoDimensional”

Figure 14: The Subroutine “TwoDimensional” ”

33

Figure 15: The Subroutine “TwoDimensionalDriver” “TwoDimensionalDriver”

Figure 16: The

34

: The Subroutine “ParticleJourneyChronicles” (Unbounded Unbounded)

Figure 17: The

35

The Subroutine “ParticleJourneyChronicles” (” (Bounded)

3.4 Other Tools Emp

The algorithms presented above generate

in C/C++. To analyze

from Mathwave (http://www.mathwave.com)

results and analysis are presented.

36

Other Tools Employed

sented above generate the data. The algorithms are implemented

in C/C++. To analyze and present the data, Microsoft Excel and Easy

from Mathwave (http://www.mathwave.com) are used. In the next chapter

are presented.

Figure 18: The Subroutine “WithinReach”

The algorithms are implemented

Excel and EasyFit software

In the next chapter, the

37

Chapter 4

RESULTS AND ANALYSIS

4.1 Histograms of Propagation Delay in One-Dimensional (1D) and

Two-Dimensional (2D) Molecular Communication Channel

Scenarios

The histograms of propagation delay data collected from representative 1D and 2D

unbounded and bounded simulation runs are shown in Figure 19 through Figure 21.

In each simulation, 1000 particles are transmitted. In each case, there are 50 bins.

The size of each bin, average arrival times (propagation delay), and number of lost

particles are also reported. The scenarios are for source-destination separation

distances 1, 2, 4, and 8 µm.

38

Figure 19: Histograms of Propagation Delay for the 1D Unbounded Case

Figure 20: Histograms of Propagation Delay for the 1D Bounded Case

39

1D histograms reveal the fact that unbounded scenarios have propagation times that

are very widely dispersed. The bounded ones on the other hand have less variance.

Table 1: 1D Average Propagation Times in µs (U: Unbounded, B: Bounded)

Cx/Ry C[1-8] UB: 1µm UB: 2µm UB: 4µm UB: 8µm B: 1µm B: 2µm B: 4µm B: 8µm

R[1-8] 54945.77 118122 222788.1 459616 534.24 2033.844 8055.63 32199

UB: 1µm 54945.77 1 0.46516 0.246628 0.119547 102.85 27.01572 6.82079 1.706

UB: 2µm 118122.1 2.149794 1 0.530199 0.257002 221.1 58.07825 14.6633 3.669

UB: 4µm 222788.1 4.054691 1.88608 1 0.484727 417.02 109.5404 27.6562 6.919

UB: 8µm 459616 8.364903 3.89102 2.063019 1 860.32 225.9839 57.0553 14.27

B: 1µm 534.236 0.009723 0.00452 0.002398 0.001162 1 0.262673 0.06632 0.017

B: 2µm 2033.844 0.037015 0.01722 0.009129 0.004425 3.807 1 0.25247 0.063

B: 4µm 8055.626 0.14661 0.0682 0.036158 0.017527 15.079 3.960789 1 0.25

B: 8µm 32198.76 0.58601 0.27259 0.144526 0.070056 60.271 15.83148 3.99705 1

In Table 1, the ratios of the propagation delays (value in a column to a value in a

row) across 1D scenarios are provided. The difference between same distance

considerations across the bounded-unbounded is highlighted in yellow. Across

intermediate distance considerations but the same category (e.g. bounded)

differences are given by blue color. Those which compare the disparity of all the

other distance considerations to the nearest distance consideration are highlighted in

red.

40

Figure 21: Histograms of Propagation Delay for the 2D Bounded Case

The histograms of propagation delay data collected from 2D bounded simulation

runs are shown in Figure 21. 2D unbounded simulations are left as future work due

to their time complexity.

4.3 Fitting Delay Data to Distributions

Although there are analytical formulas for the distribution of hitting times of

particles in unbounded environments, there are no closed-form formulas for the delay

distribution of freely diffusing particles in arbitrary, bounded environments. In this

section, data from simulations of bounded settings will be considered and matched to

well-known distributions. The distributions investigated are (1) Gamma, (2) Gamma

(3P), (3) Inverse Gaussian, (4) Inverse Gaussian (3P), (5) Log-Gamma, (6)

Lognormal, (7) Lognormal (3P), (8) Weibull, (9) Weibull (3P) (see Appendix A).

These distributions are those commonly used for modeling “time to complete a task.”

In order to have reliable results, each scenario is repeated 10 times and the averages

41

are reported. There are 10 rows in the each distribution fitting table. These 10 rows

report the parameters fitted and the 95% Kolmogorov-Smirnov (KS) test results (see

Appendix B). The last row gives the average values and the number of “accepts”

obtained in 10 runs.

4.3.1 One-Dimensional Scenarios

4.3.1.1 One Micrometer, One-Dimensional

Table 2: Fitting 1 µm Data to Distributions 1-3
Gamma. Gamma(3P) Inv.Gaussian.

α β KS test α β γ KS test λ µ KS test

1,3048 409,43 Reject 1,3826 359,94 36,567 Reject 697,09 534,24 Accept

1,3236 414,98 Reject 1,3958 370,2 32,554 Reject 727,04 549,28 Reject

1,5211 330,66 Reject 1,4315 320,46 44,255 Accept 765,08 502,98 Reject

1,4347 351,98 Reject 1,4151 326,78 42,547 Reject 724,5 504,98 Reject

1,4197 380,08 Reject 1,4798 341,43 34,387 Accept 766,11 539,62 Accept

1,3168 423,2 Reject 1,4826 351,45 36,206 Accept 733,76 557,25 Accept

1,4679 358,79 Reject 1,4129 342,68 42,526 Reject 773,12 526,68 Reject

1,3732 403,65 Reject 1,2954 388,77 50,682 Accept 761,12 554,28 Reject

1,4476 350,93 Reject 1,4998 315,81 34,384 Reject 735,45 508,03 Accept

1,6673 308,55 Reject 1,5894 299,72 38,063 Accept 857,72 514,44 Reject

1,42767 373,225 0 1,43849 341,724 39,2171 5 754,099 529,178 4

Table 3: Fitting 1 µm Data to Distributions 4-6

Inv.Gaussian(3P) Log-Gamma. Lognormal.

λ µ γ KS test α β KS test σ µ KS test

672,96 545,83 -11,598 Accept 54,14 0,11008 Accept 0,80957 5,9598 Accept

695,57 565,65 -16,373 Accept 52,724 0,11344 Accept 0,82333 5,9813 Accept

731,78 516,06 -13,082 Accept 59,103 0,10037 Accept 0,77123 5,9321 Accept

659,29 510,24 -5,2563 Accept 57,608 0,10287 Reject 0,78037 5,926 Accept

793,98 562,48 -22,859 Accept 56,879 0,10526 Accept 0,79348 5,9873 Accept

839 581,21 -23,966 Accept 58,911 0,10221 Accept 0,78414 6,0216 Accept

695,98 535,57 -8,8945 Accept 57,282 0,10413 Accept 0,78773 5,9649 Accept

692,82 563,67 -9,3917 Accept 55,533 0,1081 Accept 0,80514 6,0029 Accept

752,44 526,56 -18,533 Accept 57,646 0,10295 Accept 0,78122 5,9344 Accept

878,54 539,29 -24,851 Accept 62,5 0,09553 Accept 0,75484 5,9705 Accept

741,236 544,656 -15,4805 10 57,2326 0,104494 9 0,789105 5,96808 10

42

Table 4: Fitting 1 µm Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

σ µ γ KS test α β KS test α β γ KS test

0,85207 5,9072 14,116 Accept 1,5207 564,17 Reject 1,1621 526,36 36,872 Reject

0,85614 5,9414 10,902 Accept 1,4987 579,66 Reject 1,1718 547,79 32,858 Accept

0,80588 5,8874 12,108 Accept 1,5991 538,81 Reject 1,1988 488,65 44,812 Accept

0,83837 5,8519 19,379 Accept 1,5742 538,52 Reject 1,184 491,54 42,858 Reject

0,80693 5,9704 4,8518 Accept 1,5608 574,32 Reject 1,2108 540,34 34,814 Accept

0,79179 6,0119 2,9313 Accept 1,5816 591,32 Reject 1,1987 555,91 36,813 Reject

0,83894 5,9001 17,617 Accept 1,5609 561,74 Reject 1,1877 514,94 42,845 Reject

0,86267 5,932 19,65 Accept 1,5289 587,89 Reject 1,1348 528,26 50,894 Accept

0,80145 5,9085 7,0541 Accept 1,5833 541,89 Reject 1,2185 507,41 34,816 Reject

0,75865 5,9655 1,4788 Accept 1,6414 554,8 Reject 1,2723 514,96 38,728 Reject

0,82129 5,9276 11,0088 10 1,56496 563,312 0 1,194 521,616 39,631 4

These distributions ordered from the worst to the best are as follows: Gamma.(0),

Weibull.(0), Weibull(3P)(4), Inv.Gaussian.(4), Gamma(3P)(5), Log-Gamma.(9),

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10).

4.3.1.2 Two Micrometer One-Dimensional

Table 5: Fitting 2 µm Data to Distributions 1-3
Gamma. Gamma(3P) Inv.Gaussian.

α β KS test α β γ KS test λ µ KS test

1,3316 1527,4 Reject 1,2992 1416,6 193,4 Reject 2708,3 2033,8 Accept

1,5933 1247,8 Reject 1,5198 1221,1 132,36 Accept 3167,8 1988,2 Reject

1,4046 1405,7 Reject 1,4417 1258,1 160,75 Reject 2773,3 1974,5 Accept

1,4183 1465,5 Reject 1,4046 1372,2 151,1 Accept 2947,8 2078,5 Reject

1,3869 1484 Reject 1,4373 1340,8 130,96 Accept 2854,3 2058,1 Reject

1,3504 1499,4 Reject 1,3783 1362,2 147,21 Accept 2734,2 2024,7 Accept

1,5277 1359 Reject 1,4123 1350,5 168,82 Accept 3171,7 2076,1 Reject

1,5193 1428,3 Reject 1,4806 1352,1 168,18 Accept 3297 2170,1 Reject

1,431 1409,1 Reject 1,3577 1361,8 167,64 Reject 2885,6 2016,5 Reject

1,623 1273,1 Reject 1,5274 1255,1 149,12 Accept 3353,4 2066,2 Reject

1,45861 1409,93 0 1,4259 1329,1 156,95 7 2989,3 2048,7 3

43

Table 6: Fitting 2 µm Data to Distributions 4-6
Inv.Gaussian(3P) Log-Gamma Lognormal.

λ µ γ KS test α β KS test σ µ KS test

2580 2062 -28,167 Accept 84,721 0,08625 Accept 0,79352 7,3075 Accept

3021,1 2070,8 -82,656 Accept 86,638 0,08429 Accept 0,78416 7,3026 Accept

2781,5 2017 -42,497 Accept 89,203 0,08176 Accept 0,77178 7,2929 Accept

2816,3 2141,3 -62,835 Accept 83,486 0,08779 Accept 0,80173 7,3292 Accept

2969,8 2153,6 -95,528 Accept 82 0,08924 Accept 0,80769 7,3176 Accept

2951,5 2123,6 -98,819 Accept 81,751 0,08928 Accept 0,80687 7,2991 Accept

3010,7 2150,7 -74,556 Accept 86,267 0,08508 Accept 0,78987 7,34 Accept

3132,1 2228 -57,893 Accept 90,74 0,08147 Accept 0,77567 7,3925 Accept

2370,8 2022 -5,4974 Accept 82,642 0,08829 Accept 0,80225 7,2967 Accept

3467,9 2180,3 -114,12 Accept 90,584 0,08114 Accept 0,77183 7,3497 Accept

2910,2 2114,93 -66,2568 10 85,8032 0,085459 10 0,79054 7,32278 10

Table 7: Fitting 2 µm Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

σ µ γ KS test α β KS test α β γ KS test

0,85136 7,235 74,786 Accept 1,5521 2154,2 Reject 1,1304 1928,3 194,58 Reject

0,79991 7,2826 21,511 Accept 1,5778 2131,8 Reject 1,2445 1996,6 134,12 Accept

0,81046 7,2429 52,709 Accept 1,5957 2102,4 Reject 1,1885 1930,3 162,4 Reject

0,83373 7,2893 42,691 Accept 1,5401 2208,3 Reject 1,183 2047,6 152,4 Reject

0,8177 7,3052 13,301 Accept 1,5346 2185,7 Reject 1,1948 2053,3 132,36 Accept

0,81234 7,2923 7,186 Accept 1,537 2144,4 Reject 1,1675 1987,2 148,47 Reject

0,81496 7,3083 34,815 Accept 1,5648 2219,5 Reject 1,197 2031,2 170,3 Accept

0,80883 7,3499 49,554 Accept 1,5908 2325,1 Reject 1,2196 2143,4 170,17 Accept

0,88084 7,1994 96,642 Accept 1,5288 2143,7 Reject 1,1635 1954,9 168,52 Reject

0,7677 7,355 -6,2038 Accept 1,6065 2220,3 Reject 1,248 2062,2 151,96 Reject

0,81978 7,28599 38,69912 10 1,56282 2183,54 0 1,19368 2013,5 158,528 4

These distributions ordered from the worst to the best are as follows: Gamma.(0),

Weibull.(0), Inv.Gaussian.(3), Weibull(3P)(4), Gamma(3P)(7), Log-Gamma(10),

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10).

44

4.3.1.3 Four Micrometer One-Dimensional

Table 8: Fitting 4 µm Data to Distributions 1-3
Gamma. Gamma(3P) Inv.Gaussian.

α β KS test α β γ KS test λ µ KS test

1,541 5227,5 Reject 1,4163 5223,9 656,87 Accept 12414 8055,6 Reject

1,3732 6017,6 Reject 1,3678 5548 674,88 Accept 11348 8263,7 Accept

1,5493 5267,7 Reject 1,4143 5275,4 699,85 Reject 12644 8161,1 Reject

1,4384 5477,4 Reject 1,5 4900,8 527,73 Accept 11333 7878,9 Reject

1,2361 6826 Reject 1,4284 5579 468,74 Reject 10430 8437,6 Accept

1,4932 5288,4 Reject 1,5131 4879,5 513,67 Accept 11791 7896,6 Accept

1,4718 5496 Reject 1,5378 4931,8 504,78 Reject 11906 8089,1 Accept

1,5154 5374,4 Reject 1,4813 5084 613,46 Accept 12341 8144,2 Reject

1,3761 6177,5 Reject 1,2497 6183 774,18 Accept 11698 8501 Reject

1,5417 5270,5 Reject 1,4802 5069 622,38 Reject 12527 8125,6 Reject

1,45362 5642,3 0 1,43889 5267,44 605,654 6 11843,2 8155,34 4

Table 9: Fitting 4 µm Data to Distributions 4-6

Inv.Gaussian(3P) Log-Gamma Lognormal.

λ µ γ KS test α β KS test σ µ KS test

11781 8350,4 -294,8 Accept 121,54 0,07156 Accept 0,78855 8,6978 Accept

11620 8550,7 -286,95 Accept 119,87 0,07268 Accept 0,79538 8,7124 Accept

11372 8353,3 -192,28 Accept 123,78 0,07038 Accept 0,78268 8,7123 Accept

11966 8207,9 -329,05 Accept 123,17 0,07044 Accept 0,78133 8,6758 Accept

10189 8579 -141,41 Accept 114,2 0,07631 Accept 0,81511 8,7151 Accept

12887 8348,7 -452,06 Accept 122,67 0,07076 Accept 0,78337 8,6805 Accept

12335 8416,1 -327,02 Accept 125 0,06964 Accept 0,77817 8,7047 Accept

12786 8517,5 -373,34 Accept 125,3 0,06955 Accept 0,77812 8,7144 Accept

10494 8710,2 -209,2 Accept 111,88 0,07798 Reject 0,82441 8,7243 Accept

12859 8501,3 -375,67 Accept 125,86 0,06923 Accept 0,77631 8,7135 Accept

11828,9 8453,51 -298,178 10 121,327 0,071853 9 0,790343 8,70508 10

45

Table 10: Fitting 4 µm Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

σ µ γ KS test α β KS test α β γ KS test

0,81201 8,6681 127,09 Accept 1,568 8622 Reject 1,1994 7877,3 666,57 Accept

0,8202 8,6813 134,65 Accept 1,5551 8774,3 Reject 1,1631 8017,8 683,15 Accept

0,8248 8,6588 229,9 Accept 1,5738 8738,5 Reject 1,1973 7947,5 705,31 Reject

0,79305 8,6608 63,932 Accept 1,5849 8401,2 Reject 1,2181 7873,5 535,09 Reject

0,8602 8,6594 233,45 Accept 1,5118 8886,9 Reject 1,1748 8460,1 473,84 Reject

0,77479 8,6915 -47,719 Accept 1,5866 8436,9 Reject 1,2309 7922,8 522,65 Reject

0,7913 8,6878 74,121 Accept 1,5902 8636,8 Reject 1,2345 8151,8 512,74 Reject

0,78655 8,7036 48,219 Accept 1,5926 8717 Reject 1,2204 8063,9 620,86 Accept

0,87719 8,6609 263,57 Accept 1,4958 9010,6 Reject 1,1205 8068,3 776,58 Accept

0,78445 8,703 46,679 Accept 1,5951 8705,3 Reject 1,2221 8034,9 630,7 Reject

0,812454 8,67752 117,3892 10 1,56539 8692,95 0 1,19811 8041,79 612,749 4

These distributions ordered from the worst to the best are as follows: Gamma.(0),

Weibull.(0), Inv.Gaussian.(4), Weibull(3P)(4), Gamma(3P)(6), Log-Gamma(9),

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10).

4.3.1.3 Eight Micrometer One-Dimensional

Table 11: Fitting 8 µm Data to Distributions 1-3

Gamma. Gamma(3P) Inv.Gaussian.

α β KS test α β γ KS test λ µ KS test

1,6505 19508 Reject 1,6763 18027 1979,9 Accept 53145 32199 Accept

1,5113 20514 Reject 1,5021 19287 2033,2 Accept 46853 31003 Reject

1,4239 23023 Reject 1,3231 22408 3134 Accept 46681 32783 Reject

1,4798 20937 Reject 1,4458 19781 2383,7 Accept 45848 30983 Reject

1,4499 21720 Reject 1,507 19526 2066,4 Accept 45659 31492 Accept

1,4641 22321 Reject 1,429 20917 2789 Accept 47847 32680 Reject

1,5243 20649 Reject 1,4779 19467 2706,4 Accept 47980 31476 Accept

1,4971 21700 Reject 1,4439 20864 2361,2 Reject 48638 32488 Accept

1,6487 19573 Accept 1,4357 20736 2499,7 Accept 53201 32269 Reject

1,4145 23045 Reject 1,4087 21523 2278,3 Accept 46107 32597 Reject

1,50641 21299 1 1,46495 20253,6 2423,18 9 48196 31997 4

Table 12: Fitting 8 µm Data to Distributions 4-6

46

Inv.Gaussian(3P) Log-Gamma Lognormal.

λ µ γ KS test α β KS test σ µ KS test

56689 33861 -1662,1 Accept 181,98 0,05555 Accept 0,74906 10,11 Accept

53244 33215 -2212 Accept 161,62 0,06217 Accept 0,78996 10,048 Accept

41251 33128 -345,5 Accept 161,86 0,06235 Accept 0,7929 10,093 Accept

44757 31985 -1001,8 Accept 164,05 0,06123 Accept 0,78384 10,045 Accept

50819 33207 -1715,8 Accept 165,54 0,06079 Accept 0,78173 10,063 Accept

45631 33379 -699,34 Accept 169,05 0,05975 Accept 0,77652 10,101 Accept

52933 33106 -1630,1 Accept 173,75 0,058 Accept 0,76409 10,077 Accept

50246 34141 -1652,9 Accept 162,09 0,06224 Accept 0,79206 10,089 Accept

57725 34900 -2630,1 Accept 161,04 0,06265 Accept 0,79468 10,09 Accept

45436 33797 -1200,1 Accept 157,31 0,06409 Accept 0,80337 10,081 Accept

49873 33471,9 -1474,97 10 165,83 0,060882 10 0,782821 10,0797 10

Table 13: Fitting 8 µm Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

σ µ γ KS test α β KS test α β γ KS test

0,74731 10,112 -43,559 Accept 1,6571 34701 Reject 1,2992 32836 2026,3 Reject

0,76344 10,082 -583,1 Accept 1,578 33177 Reject 1,2328 31082 2067,5 Accept

0,85933 10,01 1372,6 Accept 1,5526 34907 Reject 1,15 31227 3147,9 Accept

0,81002 10,011 550,02 Accept 1,5749 33102 Reject 1,2028 30509 2412 Accept

0,77599 10,07 -127,3 Accept 1,5885 33607 Reject 1,2224 31522 2109,5 Accept

0,81978 10,046 957,13 Accept 1,5883 34915 Reject 1,193 31830 2811 Accept

0,76394 10,077 -3,5643 Accept 1,6277 33768 Reject 1,2203 30791 2738,6 Accept

0,7946 10,086 56,03 Accept 1,565 34688 Reject 1,2068 32156 2391 Accept

0,75808 10,136 -841,88 Accept 1,5684 34685 Reject 1,2239 31828 2537,4 Accept

0,82376 10,056 430,09 Accept 1,5379 34640 Reject 1,1847 32208 2308,3 Accept

0,791625 10,0686 176,6467 10 1,58384 34219 0 1,21359 31598,9 2454,95 9

These distributions ordered from the worst to the best are as follows: Weibull.(0),

Gamma.(1), Inv.Gaussian.(4), Weibull(3P)(9), Gamma(3P)(9), Log-Gamma(10),

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10).

The popular 2 parameter distributions Gamma and Weibull seem not be a fit at all.

Even the Inverse Gaussian which just 4 matches almost every time cannot be

considered as a good fit. The Weibull (3p) distribution and Gamma(3p), while giving

47

an admirable accuracy in some cases of distance further along, their lack of

consistence make them unadvisable for modeling delay. The log-gamma does

admirably well by fluctuating only between 9 accepts and 10 accepts during the

whole evaluation process. The fit should be considered only second to the Inverse

Gaussian(3p), Lognormal and Lognormal (3p) which all through give a steady output

of 10 accepts.

4.3.2 Two-Dimensional Scenarios

4.3.2.1 One Micrometer Two-Dimensional

Table 14: Fitting 1 µm Data to Distributions1-3

Gamma. Gamma(3P) Inv.Gaussian.

α β KS test α β γ KS test λ µ KS test

1,3041 796,38 Reject 1,2345 792,33 60,419 Accept 1354,3 1038,5 Reject

1,3842 703,04 Reject 1,3541 679,39 53,167 Accept 1347 973,14 Reject

1,361 711,88 Reject 1,3482 672,5 62,206 Accept 1318,7 968,9 Reject

1,3102 752,24 Reject 1,2896 725,98 49,425 Accept 1291,4 985,62 Reject

1,4135 688,65 Reject 1,3796 661,28 61,119 Accept 1376 973,43 Reject

1,338 721,1 Reject 1,3368 678,88 57,305 Accept 1291 964,84 Reject

1,3912 643,15 Reject 1,3408 623,08 59,326 Accept 1244,8 894,78 Reject

1,2927 744,86 Reject 1,1844 751,62 72,7 Accept 1244,8 962,91 Reject

1,0761 927,1 Reject 1,3772 694,5 41,22 Reject 1073,6 997,68 Accept

1,4304 691,33 Accept 1,3138 706,87 60,189 Accept 1414,5 988,89 Reject

1,33014 737,973 1 1,3159 698,643 57,7076 9 1295,61 974,869 1

48

Table 15: Fitting 1 µm Data to Distributions 4-6
Inv.Gaussian(3P) Log-Gamma Lognormal.

λ µ γ KS test α β KS test σ µ KS test

1254,8 1093,2 -54,625 Accept 54,772 0,12016 Reject 0,88883 6,5814 Accept

1493,1 1054 -80,878 Accept 58,351 0,11216 Reject 0,85632 6,5445 Accept

1352,6 1021,7 -52,777 Accept 61,374 0,10667 Accept 0,83528 6,547 Accept

1220,2 1040,3 -54,635 Accept 54,394 0,12009 Reject 0,88528 6,5324 Accept

1380,1 1026,3 -52,834 Accept 62,296 0,10526 Accept 0,83039 6,5574 Accept

1275,2 1013,6 -48,742 Accept 59,239 0,1103 Reject 0,8485 6,5339 Accept

1219,4 939,14 -44,36 Accept 59,846 0,10807 Accept 0,83563 6,4677 Accept

1160 1006,6 -43,705 Accept 55,54 0,11729 Reject 0,87367 6,5143 Accept

1310,8 1051,5 -53,79 Accept 59,229 0,11066 Accept 0,85125 6,5546 Accept

1443,8 1061,8 -72,935 Accept 58,298 0,11251 Reject 0,85859 6,5589 Accept

1311 1030,814 -55,9281 10 58,3339 0,112317 4 0,856374 6,53921 10

Table 16: Fitting 1 µm Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

σ µ γ KS test α β KS test α β γ KS test

0,89627 6,573 4,0229 Accept 1,3953 1086,7 Reject 1,1149 1019,4 60,806 Accept

0,81288 6,5956 -25,486 Accept 1,4576 1029,1 Reject 1,173 973,95 53,717 Accept

0,83517 6,5472 -0,06774 Accept 1,4862 1023,9 Reject 1,162 957,81 62,748 Accept

0,88692 6,5306 0,85599 Accept 1,4016 1032,9 Reject 1,139 982,82 49,793 Accept

0,83058 6,5571 0,11172 Accept 1,4946 1032,3 Reject 1,1802 967,91 61,71 Accept

0,85531 6,5259 3,816 Accept 1,4608 1017,5 Reject 1,1564 957,46 57,767 Accept

0,84437 6,4573 4,6938 Accept 1,483 946,72 Reject 1,1617 882,4 59,772 Accept

0,89705 6,4876 11,973 Accept 1,4171 1009,8 Reject 1,0908 920,92 72,884 Accept

0,84254 6,5648 -5,0259 Accept 1,4625 1037,4 Reject 1,1435 1007,4 41,797 Reject

0,8311 6,591 -15,996 Accept 1,4508 1045,9 Reject 1,1605 979,64 60,721 Accept

0,853219 6,54301 -2,11022 10 1,45095 1026,222 0 1,1482 964,971 58,1715 9

These distributions ordered from the worst to the best are as follows: Weibull.(0),

Gamma.(1), Inv.Gaussian.(1), Log-Gamma(4), Weibull(3P)(9), Gamma(3P)(9),

Inv.Gaussian(3P)(10), Lognormal.(10) and Lognormal(3P)(10).

49

4.3.2.2 Two Micrometer Two-Dimensional

Table 17: Fitting 2 µm Data to Distributions 1-3
Gamma. Gamma(3P) Inv.Gaussian.

α β KS test α β γ KS test λ µ KS test

1,3515 2064,9 Reject 1,3674 1906 184,47 Accept 3771,8 2790,7 Reject

1,4177 2016,4 Reject 1,3707 1938,9 201,12 Accept 4053 2858,8 Reject

1,6315 1759,5 Accept 1,681 1644,8 105,76 Accept 4683,3 2870,6 Reject

1,533 1912,9 Reject 1,4045 1942,4 204,36 Accept 4495,4 2932,5 Reject

1,4523 1997,4 Reject 1,3008 2047,1 238,02 Accept 4213,2 2900,9 Reject

1,3381 2184,1 Reject 1,2959 2056 258,23 Reject 3910,8 2922,6 Accept

1,5549 1873,1 Reject 1,3943 1914,9 242,68 Accept 4528,8 2912,5 Reject

1,539 1906,7 Reject 1,5569 1804,2 125,48 Accept 4516,2 2934,4 Reject

1,4152 2087,1 Reject 1,4807 1911,6 123,19 Reject 4180,2 2953,8 Reject

1,3151 2152,6 Reject 1,3451 1967,2 184,63 Accept 3722,8 2830,8 Reject

1,45483 1995,47 1 1,41973 1913,31 186,794 8 4207,55 2890,76 1

Table 18: Fitting 2 µm Data to Distributions 4-6
Inv.Gaussian(3P) Log-Gamma Lognormal.

λ µ γ KS test α β KS test σ µ KS test

3659,1 2890 -99,303 Accept 85,522 0,08898 Accept 0,82246 7,6097 Accept

4103,2 3002,2 -143,44 Accept 87,325 0,0875 Accept 0,81728 7,6411 Accept

5122,2 3090,4 -219,88 Accept 94,952 0,08081 Accept 0,78706 7,6732 Accept

4694,7 3136,4 -203,95 Accept 88,699 0,08654 Reject 0,8146 7,6757 Accept

4125,6 3050,3 -149,38 Accept 86,071 0,08893 Reject 0,82467 7,6547 Reject

3783,8 2997,5 -74,962 Accept 89,917 0,08523 Accept 0,80775 7,6633 Accept

4656,5 3084,9 -172,42 Accept 92,844 0,08272 Reject 0,79668 7,6803 Accept

4856,4 3157,2 -222,76 Accept 88,932 0,08633 Accept 0,81374 7,6777 Accept

4438,7 3146,8 -193,07 Accept 85,43 0,08975 Accept 0,82913 7,6674 Accept

3923,3 2975,2 -144,36 Accept 84,202 0,09049 Accept 0,82994 7,6195 Accept

4336,35 3053,09 -162,353 10 88,3894 0,086728 7 0,814331 7,65626 9

50

Table 19: Fitting 2 µm Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

σ µ γ KS test α β KS test α β γ KS test

0,84643 7,5806 40,951 Accept 1,5021 2951,6 Reject 1,1652 2756,4 186,26 Accept

0,82259 7,6346 9,6129 Accept 1,5169 3034,5 Reject 1,1738 2815,1 203,15 Reject

0,75226 7,7175 -71,946 Accept 1,5827 3084,5 Reject 1,3103 3007,9 110,14 Accept

0,79295 7,7024 -41,94 Accept 1,5273 3133,2 Reject 1,2023 2906 206,87 Accept

0,83222 7,6455 13,594 Reject 1,5034 3086,2 Reject 1,1524 2803,6 239,29 Accept

0,85096 7,6101 78,452 Accept 1,5268 3094,6 Reject 1,1329 2793,5 259,44 Accept

0,79018 7,6885 -12,919 Accept 1,5599 3122,2 Reject 1,1985 2841,3 244,93 Accept

0,7812 7,7179 -63,95 Accept 1,5308 3136,9 Reject 1,2608 3030,8 128,54 Accept

0,80655 7,6945 -41,931 Accept 1,4999 3128,4 Reject 1,217 3028,8 126,72 Reject

0,8319 7,6172 3,3951 Accept 1,4956 2985 Reject 1,1546 2790,9 186,31 Accept

0,810724 7,66088 -8,6681 9 1,52454 3075,71 0 1,19678 2877,43 189,165 8

These distributions ordered from the worst to the best are as follows: Weibull.(0),

Gamma.(1), Inv.Gaussian.(1), Log-Gamma(7), Weibull(3P)(8), Gamma(3P)(8),

Lognormal.(9), Lognormal(3P)(9) and Inv.Gaussian(3P)(10).

4.3.2.3 Four Micrometer Two Dimensional

Table 20: Fitting 4 µm Data to Distribution 1-3
Gamma. Gamma(3P) Inv.Gaussian.

α β KS test α β γ KS test λ µ KS test

1,4856 6427,8 Reject 1,451 6073,6 736,34 Accept 14186 9549 Accept

1,4891 6858 Reject 1,3249 7063,9 853,37 Accept 15208 10212 Reject

1,3063 7506,4 Reject 1,2721 7011,6 886,27 Accept 12809 9805,5 Reject

1,4929 6519,9 Reject 1,2954 6809,7 912,51 Accept 14532 9733,7 Reject

1,567 6595,5 Reject 1,4797 6524,6 680,4 Accept 16195 10335 Reject

1,4056 6811,6 Reject 1,3285 6611,2 791,08 Reject 13458 9574,3 Reject

1,4457 7093,1 Reject 1,4481 6684,7 574,53 Accept 14825 10255 Reject

1,5227 6522 Reject 1,3953 6592,1 733,26 Accept 15122 9931 Reject

1,5566 6432,3 Reject 1,6259 5880,7 450,94 Reject 15585 10012 Reject

1,6146 6328,9 Accept 1,4598 6518,2 703,64 Accept 16500 10219 Reject

1,48861 6709,55 1 1,40807 6577,03 732,234 8 14842 9962,65 1

51

Table 21: Fitting 4 µm Data to Distribution 4-6
Inv.Gaussian(3P) Log-Gamma Lognormal.

λ µ γ KS test α β KS test σ µ KS test

14691 9976,5 -427,52 Accept 128,21 0,06918 Accept 0,78294 8,8697 Accept

14668 10703 -490,16 Accept 119,67 0,07453 Reject 0,81495 8,9197 Accept

12187 10005 -199,13 Accept 119,22 0,0744 Accept 0,81198 8,8705 Accept

13775 10115 -381,55 Accept 121,67 0,07296 Reject 0,80439 8,8773 Accept

17255 11060 -724,43 Reject 124,96 0,07159 Reject 0,79985 8,9456 Reject

12387 9809,4 -235,13 Accept 119,99 0,07377 Accept 0,80762 8,851 Accept

14427 10738 -483,34 Accept 118,14 0,07549 Reject 0,8201 8,9182 Accept

14313 10379 -447,63 Accept 120,87 0,07359 Accept 0,80866 8,895 Accept

16914 10658 -645,61 Accept 129,01 0,06914 Accept 0,78492 8,9198 Accept

17031 10931 -712,04 Accept 124,48 0,07177 Reject 0,80036 8,9342 Accept

14764,8 10437,49 -474,654 9 122,622 0,072642 5 0,803577 8,9001 9

Table 22: Fitting 4 µm Data to Distribution 7-9
Lognormal(3P) Weibull. Weibull(3P)

σ µ γ KS test α β KS test α β γ KS test

0,79347 8,8563 69,493 Accept 1,5829 10203 Reject 1,2061 9405,1 746,33 Accept

0,82753 8,9043 81,38 Accept 1,52 10889 Reject 1,164 9881,9 859,1 Accept

0,86418 8,8066 310,98 Accept 1,5174 10373 Reject 1,1209 9319 890,29 Accept

0,82839 8,8476 150,22 Accept 1,5385 10389 Reject 1,1496 9273,2 921,2 Accept

0,77663 8,9747 -165,56 Reject 1,5553 11081 Reject 1,233 10354 690,41 Accept

0,85 8,7986 253,7 Accept 1,5247 10155 Reject 1,1517 9255,1 795,79 Accept

0,83015 8,906 64,488 Accept 1,5106 10899 Reject 1,2076 10339 581,46 Accept

0,82238 8,8781 87,765 Accept 1,5308 10597 Reject 1,1936 9785,2 739,69 Accept

0,76484 8,9454 -142,9 Accept 1,5836 10727 Reject 1,2798 10356 464,53 Accept

0,77891 8,961 -150,63 Accept 1,5541 10959 Reject 1,2292 10190 715,96 Accept

0,813648 8,88786 55,8936 9 1,54179 10627,2 0 1,19355 9815,85 740,476 10

These distributions ordered from the worst to the best are as follows: Weibull.(0),

Gamma.(1), Inv.Gaussian.(1), Log-Gamma(5), Gamma(3P)(8), Lognormal.(9),

Lognormal(3P)(9), Inv.Gaussian(3P)(9) and Weibull(3P)(10).

52

4.3.2.4 Eight Micrometer Two-Dimensional

Table 23: Fitting 8 µm Data to Distributions 1-3

Gamma. Gamma(3P) Inv.Gaussian.

α β KS test α β γ KS test λ µ KS test

1,5215 22576 Reject 1,4194 22237 2786,4 Accept 52261 34349 Reject

1,5728 23351 Reject 1,5929 21840 1937,2 Accept 57765 36727 Reject

1,5067 24268 Reject 1,4159 23940 2668 Accept 55088 36563 Reject

1,493 22916 Reject 1,5685 20371 2262,6 Reject 51083 34215 Accept

1,5872 22093 Reject 1,6209 20349 2081,3 Accept 55654 35065 Reject

1,6103 22439 Reject 1,4794 22586 2719,3 Accept 58183 36132 Reject

1,4288 24378 Reject 1,4586 22135 2546,4 Reject 49769 34832 Accept

1,5356 22785 Reject 1,4584 22309 2451,5 Accept 53726 34987 Reject

1,6157 22745 Reject 1,4168 23728 3133 Accept 59378 36750 Reject

1,4945 23648 Reject 1,3963 23045 3163,9 Accept 52821 35343 Accept

1,53661 23119,9 0 1,48271 22254 2574,96 8 54572,8 35496,3 3

Table 24: Fitting 8 µm Data to Distributions 4-6
Inv.Gaussian(3P) Log-Gamma Lognormal.

λ µ γ KS test α β KS test σ µ KS test

51777 35791 -1441,7 Accept 166,44 0,06098 Accept 0,78625 10,148 Accept

63471 39304 -2577,4 Accept 168,64 0,06061 Reject 0,78667 10,221 Accept

56237 38511 -1948 Accept 163,08 0,06256 Accept 0,79857 10,203 Accept

53281 35441 -1225,9 Accept 176,82 0,05743 Accept 0,76336 10,156 Accept

57722 36744 -1678,7 Accept 176,61 0,05766 Accept 0,76594 10,184 Accept

59872 38243 -2111,2 Accept 170,2 0,05996 Accept 0,78188 10,206 Accept

46268 35374 -541,47 Accept 168,32 0,06035 Accept 0,78252 10,157 Accept

49607 36151 -1164,1 Accept 163,87 0,06201 Accept 0,79342 10,162 Accept

55297 38261 -1510,8 Accept 168,31 0,06072 Accept 0,7873 10,219 Accept

52013 36502 -1159,8 Accept 171 0,05953 Accept 0,77806 10,18 Accept

54554,5 37032,2 -1535,91 10 169,329 0,060181 9 0,782397 10,1836 10

53

Table 25: Fitting 8 µm Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

σ µ γ KS test α β KS test α β γ KS test

0,80077 10,13 340,69 Accept 1,5735 36738 Reject 1,1985 33614 2819,4 Accept

0,76245 10,252 -635,59 Accept 1,5833 39398 Reject 1,272 37615 1980,8 Accept

0,79789 10,204 -16,754 Accept 1,5517 39004 Reject 1,197 36073 2713 Reject

0,78009 10,134 414,73 Accept 1,6196 36621 Reject 1,2442 34401 2307,6 Reject

0,76925 10,18 84,794 Accept 1,6182 37687 Reject 1,2767 35712 2123,9 Accept

0,7753 10,214 -168,59 Accept 1,5873 38776 Reject 1,2315 35826 2756,9 Accept

0,83242 10,094 1153,8 Accept 1,5706 37087 Reject 1,1988 34451 2570,2 Reject

0,8195 10,129 604,76 Accept 1,5552 37394 Reject 1,2155 34798 2480,6 Reject

0,80798 10,193 514,32 Accept 1,5708 39455 Reject 1,2083 35870 3157,6 Accept

0,80556 10,145 667,24 Accept 1,5876 37782 Reject 1,1831 34144 3206,1 Accept

0,795121 10,1675 295,94 10 1,58178 37994,2 0 1,22256 35250,4 2611,61 6

These distributions ordered from the worst to the best are as follows: Weibull.(0),

Gamma.(0), Inv.Gaussian.(3), Weibull(3P)(6), Gamma(3P)(8), Log-Gamma(9),

Lognormal.(10), Lognormal(3P)(10) and Inv.Gaussian(3P)(10).

The popular Weibull, Gamma and Inverse Gaussian distributions still give very poor

fits. The Log-Gamma, which in the 1D case gave stable values, in this scenario has

given widely varying fittings proving unsuitable in the considerations for the 2D

realm. The 3P version of the Gamma and Weibull, which did very poorly in the 1D

case, were shown to be outstanding in this case as lowest match record in both cases

was 8 and the highest for the Gamma(3P) was 9, while for the Weibull(3p), it was

10. General distributions that would both accommodate the 1D as the 2D cases are

the Lognormal, Lognormal(3p) and the Inverse Gaussian.

54

Chapter 5

CONCLUSION

5.1 Summary

Thus far what has been accomplished is the recreation of the one- and two-

dimensional molecular channel with and without boundaries. The propagation delays

of diffusing particles in both scenarios were analyzed. The considered

communication ranges were short range.

In a bid to set the foundations for the development of workload models for the

bounded case, an effort was made to fit exhaustively several popular distributions to

the delay data generated from simulations. The effort resulted in at least 3 very viable

distributions which cut across both the 1D and the 2D cases. These distributions are

the Inverse Gaussian (3p), the lognormal, and the Lognormal (3p).

5.2 Future Work

Due to the close relations of the particular behavior in both 1D and 2D, I speculate

that the 3D case will follow same pattern although checking for hits to boundaries

will be slightly more complex. I also expect that the time complexity to be higher

due to three degrees of freedom in which particles can move. The stage that the

nanotechnology has been developed thus far makes it deployable in point to point

communication networks. Due to this fact, I hope in the nearest future, this will be

made a reality especially in the field of drug delivery where medicine can be

55

delivered within a range of time comfortable enough for these nanomachines to

communicate effectively within. In addition, studies should be encouraged in making

multi-transmitter and multi-receiver type a reality (i.e. nanonetworks) so as to make

the application much more widespread.

56

REFERENCES

[1] I. Akyildiz, F. Brunetti and C. Blázquez, "Nanonetworks: A new

communication paradigm," Computer Networks, vol. 52, pp. 2260-2279, 2008.

[2] D. Arifler, "Link Layer Modeling of Bio-inspired Communication in

Nanonetworks," Nano Communication Networks, vol. 2, no. 4, pp. 223-229,

2011.

[3] V. Balzani, A. Credi, S. Silvi and M. Venturi, "Artificial nanomachines based on

interlocked molecular species: recent advances," Chemical Society Reviews, vol.

35, p. 1135–1149, 2006.

[4] G. Hanson, "Fundamental transmitting properties of carbon nanotube antennas,"

IEEE Transactions, Antennas and Propagation, vol. 53, no. 11, pp. 3426 - 3435,

2005.

[5] J. Kikuchi, A. Ikeda and M. Hashizume, "Biomimetic Materials," in

Encyclopedia of Biomaterials and Biomedical Engineering, New York, Marcel

Dekker, 2004.

[6] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular

biology of the cell, New York: Garland Science, 2002.

57

[7] C. Montemagno, "Nanomachines: a roadmap for realizing the vision," Biomed J

Nanopart Res, vol. 3(1), p. 1–3, 2001.

[8] C. Mavroidis, A. Dubey and M. Yarmush, "Molecular machines," Annu. Rev.

Biomed. Eng, vol. 6, p. 363–395, 2004.

[9] T. Nakano, M. Moore, A. Enomoto and T. Suda, "Molecular Communication

Technology as a Biological ICT," in Biological Functions for Information and

Communication Technologies, Studies in Computational Intelligence, vol. 320,

H. Sawai, Ed., Springer-Verlag Berlin Heidelberg, 2011, pp. 49-86.

[10] M. Gregori, I. Llatser, A. Cabellos-Aparicio and E. Alarcón, "Physical channel

characterization for medium-range nanonetworks using flagellated bacteria,"

Computer Networks, vol. 55, p. 779–791, 2011.

[11] S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore and T.

Nakano, "Molecular Communication," in Proceedings of the 2005 NSTI

Nanotechnology Conference, poster presentation, USA, May 2005.

[12] L. P. Giné and I. Akyildiz, "Molecular communication options for long range

nanonetworks," Computer Networks: The International Journal of Computer

and Telecommunications Networking, vol. 53, no. 16, p. 2753–2766, 2009.

[13] Y. Moritani, S. Hiyama and T. Suda, "Molecular communication for health care

applications.," in Proceedings of the Fourth Annual IEEE International

58

Conference on Pervasive Computing and Communications Workshops,

Washington, DC,, 2006.

[14] A. Adamatzky, B. Costello and T. Asai, Reaction-diffusion computers, Elsevier,

2005.

[15] A. Enomoto, M. Moore, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H.

Kojima, H. Sakakibara and K. Oiwa, "A molecular communication system using

a network of cytoskeletal filaments," in Technical Proceedings of the 2006 NSTI

Nanotechnology Conference and Trade, 2006.

[16] S. Hiyama, Y. Isogawa, T. Suda, Y. Moritani and K. Suto, "A design of an

autonomous molecule loading/transporting/unloading system using DNA

hybridization and biomolecular linear motors in molecular communication,"

European Nano Systems, Grenoble, France, 2005.

[17] T. Dennis, J. Lee, T. Ozdere, T. Lee and L. You, "Engineering gene circuits:

foundations and applications," in Nanotechnology in Biology and Medicine

Methods, Devices and Applications, e. b. T. Vo-Dinh, Ed., USA, CRC Press,

2007.

[18] S. Basu, Y. Gerchman, C. Collins, F. Arnold and R. Weiss, "A synthetic

multicellular system for programmed pattern formation," Nature, vol. 434, p.

1130–1134, April 21 2005.

59

[19] R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja and I.

Netravali, "Genetic circuit building blocks for cellular computation,

communications, and signal processing," Natural Computing, vol. 2, no. 1, p.

47–84, 2003.

[20] J. Dueber, E. Mirsky and W. Lim, "Engineering synthetic signaling proteins

with ultrasensitive input/output control," Nat. Biotechnol., vol. 25, p. 660–662,

2007.

[21] T. Gardner, C. Cantor and J. Collins, "Construction of a genetic toggle switch in

Escherichia coli," Nature, vol. 403(6767), p. 339–342, 20 Jan 2000.

[22] M. Elowitz and S. Leibler, "A synthetic oscillatory network of transcriptional

regulators," Nature, vol. 403(6767), p. 335–338, 20 Jan 2000.

[23] A. Forster and G. Church, "Towards synthesis of a minimal cell," Mol. Syst.

Biol., 2006.

[24] T. Schneider, "Theory of molecular machines I. Channel capacity of molecular

machines," J. Theor. Biol., vol. 148, p. 83–123, 1991.

[25] G. Hazelbauer, R. Miesibov and J. Adler, "Escherichia coli mutants defective in

chemotaxis toward specific chemicals," in Proceedings of the National Academy

of Sciences of the United States of America(PNAS), December 1969.

60

[26] D. Nelson and M. Cox, Lehninger Principles of Biochemistry, fourth ed., W.H.

Freeman and Company, 2005.

[27] Y. Gerchman and R. Weiss, "Teaching bacteria a new language," in

Proceedings of the National Academy of Sciences101(8), 2004.

[28] R. Weiss and T. Knight, "Engineered communications for microbial robotics.

DNA computing.," in 6th International Meeting on DNA Based Computers,

DNA, New York, 2000.

[29] T. Nakano, Y. Hsu, W. Tang, T. Suda, D. Lin, T. Koujin, T. Haraguchi and Y.

Hiraoka, "Microplatform for intercellular communication," in Proceedings of

the Third Annual IEEE International Conference on Nano/Micro Engineered

and Molecular Systems, 2008.

[30] T. Nakano, T. Suda, T. Koujin, T. Haraguchi and Y. Hiraoka, "Molecular

communication through gap junction channels: system design, experiments and

modeling," in Proceedings of the 2nd International Conference on Bio-Inspired

Models of Network, Information, and Computing Systems, Dec. 2007.

[31] M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H.

Kojima, H. Sakakibara and K. Oiwa, "A design of a molecular communication

system for nanomachines using molecular motors," in Proceedings of the Fourth

Annual IEEE Conference on Pervasive Computing and Communications

61

Workshops., Washington, DC, 2006.

[32] T. Suda, M. Moore, T. Nakano, R. Egashira and A. Enomoto, "Exploratory

research on molecular communication between nanomachines.," in 2005

Genetic and Evolutionary Computation Conference, Late-breaking Papers, New

York, 2005.

[33] H. Hess, C. Matzke, R. Doot, J. Clemmens, G. Bachand, B. Bunker and V.

Vogel, "Molecular shuttles operating undercover: a new photolithographic

approach for the fabrication of structured surfaces supporting directed motility,"

Nano Lett, vol. 3(12), p. 1651–1655, 2003.

[34] G. Patterson, R. Day and D. Piston, "Fluorescent protein spectra," Journal of

Cell Science, 2001.

[35] J. Yu, J. Wang, S. Lou, T. Wang and Y. Jiang, "Small molecular and polymer

organic light-emitting diodes based on novel iridium complex phosphor,"

Displays, vol. 29, no. 5, p. 493–496, 2008.

[36] L. Parcerisa and I. F. Akyildiz, "Molecular communication options for long

range nanonetworks," Computer Networks, vol. 53, no. 16, p. 2753–2766, 2009.

[37] I. Llatser, E. Alarcon and M. Pierobony, "Diffusion-based channel

characterization in molecular nanonetworks," in IEEE Conference on Computer

62

Communications Workshops, 2011.

[38] W. H. Bossert and E. O. Wilson, "The analysis of olfactory communication

among animals.," Journal of theoretical biology, vol. 5, no. 3, p. 443–69, 1963.

63

APPENDICES

Appendix A: Distributions

The text below is reproduced

easy reference.

Copyright © 2004-2013 MathWave Technologies

Gamma Distribution

Parameters

 - continuous shape parameter (

 - continuous scale parameter (

 - continuous location parameter (

Domain

Three-Parameter

Probability Density Function

Cumulative Distribution Function

Two-Parameter Gamma

Probability Density Function

Cumulative Distribution Function

64

Appendix A: Distributions

The text below is reproduced directly from the Help File of EasyFit Software

2013 MathWave Technologies (http://www.mathwave.com

Distribution

continuous shape parameter ()
continuous scale parameter ()
continuous location parameter (yields the two-parameter Gamma

Parameter Gamma Distribution

Probability Density Function

Distribution Function

Gamma Distribution

Probability Density Function

Cumulative Distribution Function

from the Help File of EasyFit Software for

http://www.mathwave.com)

Gamma distribution)

where is the Gamma

Weibull Distribution

Parameters

 - continuous shape parameter (

 - continuous scale parameter (

 - continuous location parameter (

Domain

Three-Parameter Weibull Distribution

Probability Density Function

Cumulative Distribution Function

Two-Parameter Weibull Distribution

Probability Density Function

Cumulative Distribution Function

65

Gamma Function, and is the Incomplete Gamma

Weibull Distribution

continuous shape parameter ()
continuous scale parameter ()
continuous location parameter (yields the two-parameter Weibull distribution)

Parameter Weibull Distribution

Probability Density Function

Cumulative Distribution Function

Parameter Weibull Distribution

Probability Density Function

Cumulative Distribution Function

Gamma Function.

parameter Weibull distribution)

66

Lognormal Distribution

Parameters

 - continuous parameter ()
 - continuous parameter
 - continuous location parameter (yields the two-parameter Lognormal

distribution)

Domain

Three-Parameter Lognormal Distribution

Probability Density Function

Cumulative Distribution Function

Two-Parameter Lognormal Distribution

Probability Density Function

Cumulative Distribution Function

where is the Laplace Integral.

67

Inverse Gaussian Distribution

Parameters

 - continuous parameter ()
 - continuous parameter ()
 - continuous location parameter (yields the two-parameter Inverse Gaussian

distribution)

Domain

Three-Parameter Inverse Gaussian Distribution

Probability Density Function

Cumulative Distribution Function

Two-Parameter Inverse Gaussian Distribution

Probability Density Function

Cumulative Distribution Function

where is the Laplace Integral.

68

Log-Gamma Distribution

Parameters

 - continuous

parameter ()

 - continuous

parameter ()

Domain

Probability Density Function

Cumulative Distribution Function

69

Appendix B: KS (Kolmogorov-Smirnov) Test

The text below is mainly based on the Help File of EasyFit Software.

Copyright © 2004-2013 MathWave Technologies (http://www.mathwave.com)

Kolmogorov-Smirnov Test

The KS test is used to determine if a sample comes from a hypothesized

continuous distribution. Assume that a random sample X1, ... , Xn from some

distribution with CDF F(X) is given. The empirical CDF is denoted by

Definition

The Kolmogorov-Smirnov statistic (D) is based on “the largest vertical

difference between the theoretical and the empirical cumulative

distribution function”:

70

Hypothesis Testing

The null and the alternative hypotheses are:

H0: the data follow the specified distribution;

HA: the data do not follow the specified distribution.

The null hypothesis is rejected at the given significance level () if the test

statistic, D, is greater than the critical value obtained from a table. The fixed

values of that are generally used to evaluate the null hypothesis (H0) at

various significance levels are 0.01, 0.05 etc. For most applications, a typical

value used is 0.05.

71

Appendix C: Programs

Abouts Files
// nice
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
// The purpose of this function is to o
char * aboutFiles(char *genericName)
{
 FILE* fp; // file pointer used to point to the filename
generated
 char end[]= ".txt" ; // this as the name implies is to be at the
tail of whatever name is generated, this gives the .txt extension to
the file
 int endSize = sizeof (end); // this gives the character count of
the file's extension, this is used inturn to give t he totalsize of
the characters of the filename when combined with t he part that came
before it
 int gnS = strlen(genericName); // this gets the file size of
the original file name that was passed into the pro gram. This
constitues the first part of the filename, and this integer combined
with endsize would give the size of the generic fil e, but where
another other than the generic file is to be create d the middle part
which consist of numbers in form of ordinary letter s will be added
to the mix.
 int n = gnS+endSize; // this gives total size of the generic
file name, which is to be created
 char *fileName = (char *) malloc(n* sizeof (char)); // this
creates the generic file name holder character
 strcpy(fileName,genericName); // this copies the generic
filename in to the foremost position
 strcat(fileName, end); // this copies in the extension to the
tail most point of the newly created container
 int i = 1, // numeral for te file to be generate
 j= 1, // this is the number to indicate the number of
spaces the generate integer will need in the newly named file
 divide = i , // divide is the helps j determine the
number of spaces it will need by disintegrated by t he dividing 10
till it reaches 0 and at each loop j is increased b y 1
 fStatus=1 ; // flag that determines whether the following
loop would go on repeating itself, in this repeatio n newer tests and
names are made possible, this will only change to z ero when an
unused name is found, and hence signifying the end of the search.
 do
 {
 fp = NULL; // the file pointer is initial made to point
to no object, as a point of precaution, so if it ha d being used
before it was now free
 fp = fopen(fileName, "r"); // this function attempts to
open a file given by the string pointed to by the f ileName pointer,
if exists it will return an object, not a null, hen ce indicating
that the file already exists, hence the program nee ds to generate a
new name. If it does not exist however the pointer returned points
to null, hence the pointer is safe to return to the calling function
the pointer to that string of characters discovered by it
 if (fp != NULL) // tests whether the file name exists or
not, if it exists, its body is executed
 {

72

 fclose(fp); // this releases the pointer from the
previous file it was pointing to
 free(fileName); // this frees the character pointer
object from the string it was previously pointing t o
 do{j++;} while (divide /= 10);
 j++; // numbers converted to characters will take
up as much characters as the digit positions the oc cupy, so the 1-9
will occupy just one space, 10-99 will occupy 2 and 100-999 3 etc.
as 'divide' is an integer and 10 is an integer, the ir division
leaves no decimal part. So if 10 is divide by a num ber in the 1-9
range it gives 0, in the 10-99 zone: 1, 100-999: 3 etc. Since we
employ a do while loop here it gives us one extra i n each instance.
So for d above stated category we have 1, 2, 3 etc. the initial
value of j in each instance is 1 so the each digit has and extra
character added to its string. The reason for this is that in the
copying functions, they require an extra space to p ut in the '\0' at
the end, if they don't have that space to put it th ey either
truncate the character by that one space and put th e null character
in that place or the null character might be neglec ted completely.
So the hence the starting value of j on each run as 1 rather than
zero
 char *a; // name holder/ potential pointer to the
string of integer character soon to b created for t he corresponding
generated number i
 a = (char *) malloc(j* sizeof (char)); // this
creates to location of space the string is going to point to
 sprintf(a, "_%d" , i); // this coverts the integer i
into its corresponding character letter, this will be pointed to by
a
 n = gnS +endSize+ j; // getting the size of the
completely new string
 fileName = (char *) malloc(n* sizeof (char)); //
making a pointer to this new string/name
 strcpy(fileName,genericName); // copying the
generic part of this newfile name
 strcat(fileName, a); // adjoining the number that
makes the file unique to the generic part
 strcat(fileName, end); // attaching the extention
part to this file name
 i++; // this increase the file name number just in
case this last created file might not be found to b e unique
 j= 1; //resetting the spaces needed for the number
portion of the file name to be one
 divide = i; // this gives the number of the
generated file number to the variable that will hel p the program
determine the number of spaces the number part next file name
generated will need
 free(a); // this frees the pointer pointing to the
character holding the number part of the file name
 }
 else // this is executed when the string generated is
found not to exist in the specified directory, maki ng it alright to
return the string in question to the calling functi on. This makes
the condition "fStatus to fail"
 {
 fStatus = 0; // loop control is now set to exit
 }
 } while (fStatus); // controls the string generation process
 return fileName; // the valid file name is returned at this
point
}

73

About files General File
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char * aboutFilesGeneralVD(char *genericName, int * T1, int * T2, int *
T3, int * T4)
{
 FILE* fp;
 //char genericName[]= "freedom";
 //int genericNameSize = sizeof(genericName);
 //char *fileName;
 char end[]= "Overall.txt" ;
 int endSize = sizeof (end);
 int gnS = strlen(genericName);
 int n = gnS+endSize;
 char Tee1[]= "FileName" ,
 Tee2[]= "Time" ,
 Tee3[]= "TotalParticles" ,
 Tee4[]= "Timestep" ;

 *T1= strlen(Tee1)+6;
 *T2= strlen(Tee2)+3;
 *T3= strlen(Tee3);
 *T4= strlen(Tee4);
 //free(fileName);
 char *fileName = (char *) malloc(n* sizeof (char));
 strcpy(fileName,genericName);
 strcat(fileName, end);
 // generating file names
 fp = NULL;
 fp = fopen(fileName, "r");
 if (fp != NULL)
 {
 fclose(fp);
 }
 else
 {
 fp = fopen(fileName, "w+");
 fprintf(fp, "%*s, %*s, %s, %s, %s, %s\n\n" , *T1, Tee1,
*T2, Tee2, Tee3, Tee4);
 fclose(fp);
 }
 return fileName;
}

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char * aboutFilesGeneral1D(char *genericName, int * T1, int * T2, int *
T3, int * T4, int * T5, int * T6, int * T7, int * T8, int * T9)
{
 FILE* fp;
 //char genericName[]= "freedom";
 //int genericNameSize = sizeof(genericName);
 //char *fileName;
 char end[]= "Overall.txt" ; // this is the text of the end part
to the string
 int endSize = sizeof (end); // this is the integer counts to the
words fo the string pointed to by end

74

 int gnS = strlen(genericName); // this is the length of the
sting pointed to by genericName
 int n = gnS+endSize; // this the total size of the of the
string of the overall file name
 // the next following lines are arrays containing t he names
that will be used for formanting the overal file
 char Tee1[]= "FileName" , // isolated run name file
 Tee2[]= "Distance_µm" , // the constant distance set for
the this file
 Tee3[]= "Time_µs" , // time to live
 Tee4[]= "TotalParticles" , // Total number of particles
considered
 Tee5[]= "Timestep_µs" , //Time per each step of particle
 Tee6[]= "Particles_Lost" , // Particle number that made it
to the destination
 Tee7[]= "Arrival_Fraction" , // fraction of particles that
made the destination
 Tee8[]= "Tot_Particle_Transit_Time" , // Total transmission
time
 Tee9[]= "Average_Arrival_Time" ; // Average arrival time
 // retriving by interger the sizes of the area for the
preceeding headers
 *T1= strlen(Tee1)+6;
 *T2= strlen(Tee2);
 *T3= strlen(Tee3)+3;
 *T4= strlen(Tee4);
 *T5= strlen(Tee5);
 *T6= strlen(Tee6);
 *T7= strlen(Tee7);
 *T8= strlen(Tee8);
 *T9= strlen(Tee9)+ 4;
 //free(fileName);
 char *fileName = (char *) malloc(n* sizeof (char)); // creating
the pointer for the file name
 strcpy(fileName,genericName); // copying in the initial part of
the file name
 strcat(fileName, end); // attaching the end part
 // testing for its existence
 fp = NULL; // points no where initially
 fp = fopen(fileName, "r"); // points somewhere if it exists,
points no where if it doesnt
 if (fp != NULL)
 {
 fclose(fp); // close the file if it exists
 }
 else
 {
 // if it doesnt exist create it, set up the heading
formatting and then close the file
 fp = fopen(fileName, "w+"); // open for writing
 fprintf(fp, "%*s, %s, %*s, %s, %s, %s, %s, %s, %*s\n\n" ,
*T1, Tee1, Tee2, *T3, Tee3, Tee4, Tee5, Tee6, Tee7,
 Tee8, *T9, Tee9); // Formating and putting the
names. The star gives room for the integer to creat e the
correspoding number of space and the strings fill i n from right to
left
 fclose(fp); // file closed
 }
 return fileName; // generated string name is returned
}
#include <stdio.h>

75

#include <string.h>
#include <stdlib.h>

char * aboutFilesGeneral2D(char *genericName, int * T1, int * T2, int *
T3, int * T4, int * T5, int * T6, int * T7, int * T8, int * T9)
{
 FILE* fp;
 char end[]= "Overall.txt" ;
 int endSize = sizeof (end);
 int gnS = strlen(genericName);
 int n = gnS+endSize;
 char Tee1[]= "FileName" ,
 Tee2[]= "Xcod" ,
 Tee3[]= "Ycod" ,
 Tee4[]= "Radius" ,
 Tee5[]= "TTL" ,
 Tee6[]= "Average_Arrival_Time" ,
 Tee7[]= "DelT" ,
 Tee8[]= "SucParts" ,
 Tee9[]= "AverageSucParts" ;

 *T1= strlen(Tee1)+6;
 *T2= strlen(Tee2);
 *T3= strlen(Tee3);
 *T4= strlen(Tee4);
 *T5= strlen(Tee5)+3;
 *T6= strlen(Tee6);
 *T7= strlen(Tee7);
 *T8= strlen(Tee8);
 *T9= strlen(Tee9)+ 4;
 char *fileName = (char *) malloc(n* sizeof (char));
 strcpy(fileName,genericName);
 strcat(fileName, end);
 fp = NULL;
 fp = fopen(fileName, "r");
 if (fp != NULL)
 {
 fclose(fp);
 }
 else
 {
 fp = fopen(fileName, "w+");
 fprintf(fp, "%*s, %s, %s, %s, %*s, %s, %s, %s, %*s\n\n" ,
*T1, Tee1, Tee2, Tee3, Tee4, *T5, Tee5, Tee6, Tee7,
 Tee8, *T9, Tee9);
 fclose(fp);
 }
 return fileName;
}

#include <stdio.h>

void ArrivalReport(int PN, FILE *fp, int AT,
 int formatL, int formatR)
{
 /*fprintf(fp, "%-*d||%*d\n", formatL,
 PN, formatR, AT);*/
 fprintf(fp, "%d\n" , AT);
}

#include <stdio.h>

76

void ArrivalReportDouble(int PN, FILE *fp, double AT, int formatL,
int formatR)
{
 fprintf(fp, "%-*d||%*.5f\n" , formatL,
 PN, formatR, AT);
}
#include <stdio.h>
#include <io.h>
#include <stdlib.h>
#include <time.h>
#include <direct.h>
#include <string.h>
#include "threein1.h"

void constTimeVaryingDist()
{
 int partTransitTime , // ttl
 totalParticles ,
 deltaTime; // time steps
 char textFileName[] = "constTimeVaryingDist.txt" ;
 // check if file exist
 if ((_access(textFileName ,0)))
 {
 printf("no job for the function %s\n" , textFileName);
 return ;
 } //if
 time_t rawtime;
 struct tm * timeinfo;
 char buffer [40];
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 strftime (buffer,40, "ODC\\%a_%Y-%m-%d_%I_%M",timeinfo);
 char prefix[]= "md " ;
 int i = strlen(prefix)+ strlen(buffer);
 char * combo = (char *) malloc (i * sizeof (char));
 strcpy(combo,prefix);
 strcat(combo, buffer);
 system(combo);
 char prefix2[]= "move constTimeVaryingDist.txt " ;
 int i2 = strlen(prefix2)+ strlen(buffer);
 char * combo2 = (char *) malloc (i2 * sizeof (char));
 strcpy(combo2,prefix2);
 strcat(combo2, buffer);
 system(combo2);
 if (chdir (buffer) == -1)
 {
 printf ("chdir failed - %s\n" , strerror (errno));
 return ;
 }
 FILE *fp = fopen(textFileName, "r");
 // getting rid of labels
 char getRid = 'q' ;
 while (getRid != '\n')
 fscanf(fp, "%c" , &getRid);
 int times = 0;

 while (fscanf(fp, "%d%d%d", &partTransitTime, &totalParticles,
&deltaTime) != EOF)
 {
 times++;

77

 particleTrajectory(partTransitTime, totalParticle s,
deltaTime); // particle journey
 }
 fclose(fp);
 if (!times)
 printf("nothing in the file\n");
 //system("rename constTimeVaryingDist.txt
constTimeVaryingDistOld.txt");

}
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
int fracNumCount(double dobNum)
{
 int negPow = 8;
 int dobNumInt = dobNum * 100000000;
 while (dobNumInt%10==0&& negPow!=0)
 {
 negPow--;
 dobNumInt/=10;
 }
 return negPow;
}

/*int main()
{
 double testDob = 0.000431;
 printf("%d\n",fracNumCount(testDob));
 system("pause");
}*/
#include <stdlib.h>
#include <stdio.h>

void destDistAndBoundSettings(double *dD, double *lB, double *rB,
int *tTLL, int *tTL, int *tPN, int *dT)
{
 double DestDistance = *dD; // distance of destination from
source
 int ttlLoss = *tTLL,
 ttl = *tTL,
 totParNum = *tPN,
 delTime = *dT;
 double leftBound = *lB,
 rightBound = *rB;
 do{
 printf("\n\n\n");
 printf("Current Values are as follows\n");
 printf("Destination Distance: %f\n" , *dD);
 printf("total particle number: %d\n" , *tPN);
 printf("time per step: %d\n" , *dT);
 if (*tTLL)
 {
 printf("Loss determined by time steps, with ttl
%d\n" , *tTL);
 } //if
 else
 {
 printf("Loss determined by dimensions\n");
 printf("Left Bound: %f\n" , *lB);

78

 printf("Right Bound: %f\n" , *rB);
 }
 system("pause");
 int select = 0, below = 0, above = 4;

 do
 {
 printf("\n\n");
 printf("type \n");
 printf("{0} to proceed with the program\n");
 printf("{1} to change the Destination
Distance\n");
 printf("{2} to change the Total Particle Size\n");
 printf("{3} to change the time per step\n");
 printf("{4} to make changes regarding Loss
determination\n");
 printf("value: ");
 scanf("%d" , &select);
 if (select > above || select < below)
 printf("\nOut of range please try again\n");
 else if (select == 0)
 return ;
 else if (select == 1)
 {
 printf("\n\n");
 printf("Put in the new Destination Distance:
");
 scanf("%lf" , dD);
 printf("The new distance of %.0f is now
set\n" , *dD);
 }
 else if (select == 2)
 {
 printf("\n\n");
 printf("Put in the new Total Particle Size:
");
 scanf("%d" , tPN);
 printf("The new distance of %d is now
set\n" , *tPN);
 }
 else if (select == 3)
 {
 printf("\n\n");
 printf("Put in the new time per step: ");
 scanf("%d" , dT);
 printf("The new distance of %d is now
set\n" , *dT);
 }
 else if (select == 4)
 {
 printf("\n\n");
 printf("type \n");
 printf("{0} to to change the loss
determination type(time or dimension).\n");
 printf("{1} to change the loss parameter
value(s)\n");
 printf("Value: ");
 int select4;
 scanf("%d" , &select4);
 if (select4 == 0)
 {

79

 if (*tTLL)
 {
 *tTLL = 0;
 printf("\n\n");
 printf("Loss will now determined
by dimensions\n");
 printf("Left Bound: %.0f\n" ,
*lB);
 printf("Right Bound: %.0f\n" ,
*rB);
 printf("to change this type 1, to
allow it type 0\n");
 printf("Value: ");
 scanf("%d" , &select4);
 }
 else if (!(*tTLL))
 {
 printf("\n\n");
 *tTLL = 1;
 printf("Loss will now determined
by time\n");
 printf("TTL: %d\n" , *tTL);
 printf("to change this type 1, to
allow it type 0\n");
 printf("Value: ");
 scanf("%d" , &select4);
 }

 }
 if ((*tTLL)&&select4 == 1)
 {
 printf("\n\n");
 printf("Put in the new TTL value: ");
 scanf("%d" , tTL);
 printf("The new TTL value of %d is now
set:\n" ,*tTL);
 }
 if (!(*tTLL)&&select4 == 1)
 {
 printf("\n\n");
 printf("Put in the new Left Bound
value:\n");
 scanf("%lf" , lB);
 printf("The new Left Bound value of
%.0f is now set:\n" ,*lB);
 printf("Put in the new Right Bound
value:\n");
 scanf("%lf" , rB);
 printf("The new Right Bound value of
%.0f is now set:\n" ,*rB);
 }
 }
 } while (select > above || select < below);
 } while (1);
} //function end
#include <stdio.h>
#include <stdlib.h>
void getPreferedSettings(double *distanceCompare, int
*partTransitTime, int *totalParticles, int *deltaTime)
{
 do{

80

 printf("\n\n\n");
 printf("Current Values are as follows\n");
 printf("Comparison Distance: %f\n" , *distanceCompare);
 printf("total particle number: %d\n" , *totalParticles);
 printf("time per step: %d\n" , *deltaTime);
 printf("Particle transit time: %d\n" , *partTransitTime);
 system("pause");

 int select = 0, below = 0, above = 4;

 do
 {
 printf("\n\n");
 printf("type \n");
 printf("{0} to proceed with the program\n");
 printf("{1} to change the Comparison Distance\n");
 printf("{2} to change the Total Particle Size\n");
 printf("{3} to change the time per step\n");
 printf("{4} to change the Particle Transmit
Time\n");
 printf("value: ");
 scanf("%d" , &select);
 if (select > above || select < below)
 printf("\nOut of range please try again\n");
 else if (select == 0)
 return ;
 else if (select == 1)
 {
 printf("\n");
 printf("Put in the new Comparison Distance:
");
 scanf("%lf" , distanceCompare);
 printf("The new distance of %.0f is now
set\n" ,
 *distanceCompare);
 }
 else if (select == 2)
 {
 printf("Put in the new Total Particle Size:
");
 scanf("%d" , totalParticles);
 printf("The new Total Particle Size of %d is
now set\n" ,
 *totalParticles);
 }
 else if (select == 3)
 {
 printf("\n");
 printf("Put in the new time per step: ");
 scanf("%d" , deltaTime);
 printf("The new time per step of %d is now
set\n" ,
 *deltaTime);
 }
 else if (select == 4)
 {
 printf("\n");
 printf("Put in the Particle Transmit Time:
");
 scanf("%d" , partTransitTime);

81

 printf("The new Particle Transmit Time of %d
is now set\n" ,
 *partTransitTime);
 }
 } while (select > above || select < below);
 } while (1);
} //getPreferedSettings
#include <stdio.h>
#include <string.h>

void HeadingAndFormating(FILE *fp, int * Left, int *Right, char *
LeftString, char * RightString)
{
 int bound = 6; // this gives more space in the file passed in
for writing
 *Left = bound + strlen(LeftString); // this gives the formating
integer for the left column
 *Right = bound + strlen(RightString); // this gives the
formating integer for the right column
 /*fprintf(fp, "%-*s||%*s\n", *Left, LeftString,
 Right, RightString);/
 fprintf(fp, "%s\n" ,RightString); // this puts on the column
titles, it can be notice that the left side is left aligned and the
right is right aligned

}
#include <stdio.h>
#include <string.h>

void headingFormating3(FILE *fp, int * Left, int *Center, int *Right,
char * LeftString, char * CenterString, char * RightString)
{
 int bound = 6;
 *Left = bound + strlen(LeftString);
 *Right = bound + strlen(RightString);
 *Center = bound + strlen(CenterString);
 fprintf(fp, "%-*s||%*s||%-*s\n" , *Left, LeftString,
 *Right, RightString, *Center, CenterString);

}
#include <stdio.h>
#include <stdlib.h>

void LostReport(int PN, FILE *fp, int formatL, int formatR)
{
 fprintf(fp, "%-*d||%*s\n" , formatL, PN,
 formatR, "LOST"); // reports formating, number particle
left and "LOST" to the right
}
#include <stdio.h>
#include <stdlib.h>

int lostStatusDimensions(double leftBound, double rightBound, double
distance)
{
 if (distance >= leftBound && distance <= rightBound)
 return 0;
 else
 return 1;
}

82

int lostStatusTime(int tTL, int time)
{
 if (time <= tTL)
 return 0;
 else
 return 1;
}

int destinationBreached(double destinationDistance, double distance)
{
 if (destinationDistance >= 0)
 if (distance >= destinationDistance)
 return 0;
 else
 return 1;
 else
 if (distance <= destinationDistance)
 return 0;
 else
 return 1;
}
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define PI 3.141592654

/*This function generates the random walk of the pa rticle under the
influence of diffusion
math lib need by the sqrt, and the RAND_MAX constan t. the values Z
is within the range -2.9 to 2.9
phase makes it possible for the values of U and V t o be reused
again, at least once*/

double gaussrand()
{

 int negOr = (rand() / (RAND_MAX + 1.0) * (2 - 0) + 0);
 if (!negOr)
 negOr=-1;
 return sqrt(2 * .001)*negOr;
}
void gaussrand2d(double *deltaX, double *deltaY)
{
 double consT = sqrt(4 * .001);
 double pisConst = (rand() / (RAND_MAX + 1.0) * (2.000001 - 0)
+ 0);
 double thetha = pisConst * PI;
 double cosThetha = cos (thetha);
 double sinThetha = sin (thetha);
 *deltaX = consT * cosThetha;;
 *deltaY = consT * sinThetha;
}
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <io.h>
#include <time.h>
#include <direct.h>
#include "threein1.h"
//I am confused about the purpose of this experimen t, is it suppose
to account of the time it takes to get to a particu lar destination,

83

or the time to get to a particular distance from th e source either
way. That means when we say 50nm as the distance fr om the source in
a one dimensional plane do we mean a just at 50nm o r we mean -50nm
and 50nm. If a specific distance is the case then t he calculation of
negative destinations will be taken into considerat ion. Because this
program so far has considered only positive destina tions such that
the destination is gotten to if the particle is >= destination
distance. But if the destination be negative then t he distance can
only be reached if the particle is <= destination d istance. So the
destinations polarity must be determined ever befor e the testing
beginnings to makes sure of what testing parameters should be used.
But if the destination just means a specific distan ce away from the
source regardless of the polarity, then just the in put distance is
going to always be positive, so the distance in mea suring for the
negative symetric half is to make sure that the dis tance is less
than -ve of the distance, for it to have arrived at that distance.
But on consideration of the specific distance inves tigation, it is
much more proper that specific distances and not s ymettric
distances be considered, so this program at relevan t points will be
modified to reflect this change in reasoning, so tw o if statements
is solicited for, one for when the distance is posi tive, and another
when negative

void OneDimProper()
{
 double DestDistance; // distance of under investigation
 int ttl, iterations; // time to live
 int TotalParticleNumber; // total number of particles to be
investigated

 int deltaTime; // time step
 char textFileName[] = "OneDimProper.txt" ; // this is the name
of the file from which all the data for the program is to be gotten,
it must exist if not this part of the experiment wi ll not run. And
the data for each run must be on each row, and the number of
simulation scenario depends on how many rows there are. If the file
exists and no dat is in it, the experiment still do esnt run...
 // check if file exist
 if ((_access(textFileName ,0))) //this checks whether the file
exists if it exist it give 0, otherwise 1
 {
 printf("no job for the function %s\n" , textFileName); //
prints the fact d file exists not
 return ; // returns to the calling function without doing
anywork
 } //if
 time_t rawtime;
 struct tm * timeinfo;
 char buffer [40];
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 strftime (buffer,40, "OD\\%a_%Y-%m-%d\\%I_%M_%p",timeinfo);
 char prefix[]= "md " ;
 int bufferNum = strlen(buffer), prefixNum = strlen(pre fix),i
=bufferNum + prefixNum;
 char * combo = (char *) malloc (i * sizeof (char));
 strcpy(combo,prefix);
 strcat(combo, buffer);
 system(combo);
 char prefix2[]= "move " ;
 char moveEnd[]= " " ;

84

 int textFileNameNum =strlen(textFileName);
 int moveEndNum = strlen(moveEnd);
 int prefix2Num = strlen(prefix2);
 int combo2Num = prefix2Num + textFileNameNum + moveEnd Num +
bufferNum;
 char * combo2 = (char *) malloc (combo2Num * sizeof (char));
 strcpy(combo2,prefix2);
 strcat(combo2, textFileName);
 strcat(combo2, moveEnd);
 strcat(combo2, buffer);
 system(combo2);
 if (chdir (buffer) == -1)
 {
 printf ("chdir failed - %s\n" , strerror (errno));
 return ;
 }
 //system("pause");
 FILE *fp = fopen(textFileName, "r"); // this opens the file in
question for reading
 // getting rid of labels
 char getRid = 'q' ; // this part helps get rid of the labels in
the text file. the character will read each charact er and do nothing
with it till it reads the new character then it sto ps
 while (getRid != '\n') // runs until getRid has a value of '\n'
 fscanf(fp, "%c" , &getRid); // reads just one character
 int times = 0;
 while (fscanf(fp, "%lf%d%d%d%d", &DestDistance, &ttl,
&TotalParticleNumber, &deltaTime,&iterations) != EO F)
 {
 times++;
 int counter = 1;
 while (counter++ <= iterations)
 oneSimulation(DestDistance, ttl, TotalParticleNum ber,
deltaTime, iterations); //uses the data to facilitate the simulation
 }
 printf("containing folder is %s\n" , buffer);
 fclose(fp); // file close when finished
 if (!times) // execute when no data in file
 printf("nothing in the file\n");
 //system("rename OneDimProper.txt OneDimProperOld.t xt");//
rename to avoid reuse of same old files on another run.

} // one dim proper
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <direct.h>
#include "threein1.h"
#include <io.h>

void oneSimulation(double DestDistance, int ttl, int
TotalParticleNumber, int deltaTime, int iterations)
{
 int Fstcount=0,Sndcount=0,Trdcount=0;
 int g = (int)DestDistance;
 do{Fstcount++;} while (g/=10);
 Fstcount++;
 g = ttl;
 do{Sndcount++;} while (g/=10);
 Sndcount++;

85

 g = TotalParticleNumber;
 do{Trdcount++;} while (g/=10);
 Trdcount++;
 char *CategoryName = (char *) malloc
((Fstcount+Sndcount+Trdcount)* sizeof (char));
 sprintf(CategoryName, "%d_%d_%d",(int)DestDistance,ttl,TotalPar
ticleNumber);
 char dirStarting[]= "OD" ;
 char dirSlash[]= "/" ;
 int dirStartingNum = strlen(dirStarting),
dirSlashNum=strlen(dirSlash),
 dirEndNum= strlen(CategoryName),
 dirComWithOutNum = dirStartingNum + dirEndNum,
 dirComWithNum = dirStartingNum + dirEndNum +
dirSlashNum;
 if (iterations == 1)
 {
 dirComWithOutNum = dirStartingNum;
 dirComWithNum = dirStartingNum + dirSlashNum;
 }
 char *dirComWithOut = (char *) malloc
((dirComWithOutNum)* sizeof (char));
 strcpy(dirComWithOut,dirStarting);
 if (iterations > 1)
 {
 strcat(dirComWithOut,CategoryName);
 }
 char *dirComWith = (char *) malloc
((dirComWithNum)* sizeof (char));
 strcpy(dirComWith,dirStarting);
 if (iterations > 1)
 {
 strcat(dirComWith,CategoryName);
 }
 //strcat(dirComWith,CategoryName);
 strcat(dirComWith,dirSlash);

 /*destDistAndBoundSettings(&DestDistance, &leftBoun d,
&rightBound
 ,&ttlLoss, &ttl, &TotalParticleNumber, &deltaTime);*/
 char genericName[]= "Dim1v" ; // here the name of the directory,
and generic name of all the files produced
 int track = 0; // for number of characters of directory
 /*while(genericName[++track]!= '/');// counting cha racters
before directory indicator
 // create directory array
 char *direct = (char*) malloc (track * sizeof(char));//
creating name holder for directory
 // store directory name
 strcpy(direct, genericName);//copying in the direc tory name
and the slash following
 direct[track] = '\0';// putting the null character in place of
the '/'
 // check whether the directory exists not 0 if it exists, 1 if
not
 if(_access(direct,0))
 {// creating directory if it doesn't already exist
 char prefix[] = "md ";// start point of the creat ion of
directory folder
 int total = track + strlen(prefix); // total size of the
characters of the create diretory command

86

 char *combo = (char*) malloc (total *
sizeof(char));//creation of a create command charac ter holder
 strcpy(combo, prefix);// copying in the prefix of the
comand
 strcat(combo, direct);// attaching the end to the
command characters
 system(combo);// executing the create command fin ally
 }//if*/
 char *fileName, // filename holder the current simulation
 *fileNameGen; // filename holder for the log textfile for
one dimensional case, storing all the d summarys in each simulation
in one file, to help comparison
 FILE* fp, //file pointer to specific sim log file
 *fp1; // " " " general
 int T1, // this r ints will help in formating d outputs in d
general file
 T2,
 T3,
 T4,
 T5,
 T6,
 T7,
 T8,
 T9;
 /*char prefix[]="OD/";
 int prefixNum = strlen(prefix) - 1;
 char * stripedDir = (char*) malloc (prefixNum *
sizeof(char));
 strcpy(stripedDir,prefix);
 stripedDir[prefixNum]='\0';*/
 if (_access(dirComWithOut,0))
 {
 char prefixx[] = "md " ;
 int all = strlen(prefixx)+strlen(dirComWithOut);
 char * together = (char *) malloc (all * sizeof (char));
 strcpy(together,prefixx);
 strcat(together,dirComWithOut);
 //together[all]='\0';
 system(together);
 }

 if (chdir (dirComWithOut) == -1)
 {
 printf ("chdir failed - %s\n" , strerror (errno));
 return ;
 }
 fileName = aboutFiles(CategoryName); //Located in
aboutFiles.cpp, purpose to greate a unique file nam e for the
simulation at hand taking into cognizance the fact that each
simulation is given to 1 or more particle at a with distance and ttl
kept constant with each run. In this file each part icle has a log
position in the this textfile, whether it be lost o f if it gets to
its destination. This about file is only concerned with creating the
name of the files, i.e is making sure that a file w ith that name
existed not before. The purpose of this is to make sure there a
excessive logs of ran and re-ran experiments for th e investigators
purposes. This file name comprises of the generic n ame first and
then a number attached to it to give it is uniquene ss. This files go
from the following model: FileName, FileName1,...., This function
creates a name using the filename at first checks i f it exists, if
it does exist, it attaches 1 to that file name chec k whether the

87

name exists again, if it does increments it by one and tries again,
it continues in this fashion until it finds one tha t exists. This
one it then returns to the the calling function as a string.
 int fileNum = strlen(fileName);
 if (chdir ("..") == -1)
 {
 printf ("chdir failed - %s\n" , strerror (errno));
 return ;
 }
 int fileAndDirNum = fileNum + strlen(dirComWith);
 char *fileAndDirName = (char *) malloc
((fileAndDirNum)* sizeof (char));
 strcpy(fileAndDirName, dirComWith);
 strcat(fileAndDirName, fileName);
 fp = fopen(fileAndDirName, "w"); // this open a new file for
writing with the returned file name
 fileNameGen = aboutFilesGeneral1D(genericName,
&T1,&T2,&T3,&T4,&T5,&T6,&T7,&T8,&T9); // this function is located in
a file called "aboutFilesGeneral1D.cpp. The purpose of this function
is to be a log file for all files generated by the 1D case of the
varying dimensions case. What it does is to either create the file,
set up initial formating and return integer values that would help
format results of each file for each simulation res ult in this
general file. Each simulation in the special case w ill have its
summary stored as an entry in this log file. The in itial part of the
file will bear the Prepart of the names common with all the files
generated in this experiment. Its end will actual b ear the name
"Overall". What will be logged in this file for eac h simulation will
be: The file name, the distance considered, The ttl , Total Particle
number, Unit of time per step, Number of particles that got to the
distination, fraction of particles that got to the distination,
Total time it took for the transmission and the Ave rage Arrival
time. The integers passed in are to help in formati ng the table in
the file. If the file already does exist only the r etrival of the
integers and the setting the end cursor to a newlin e will be
achieved by this function.
 fp1 = fopen(fileNameGen, "a+"); // The overall file name is
opened in appending mode here
 // the following integers are to help in formating the current
simulation file, both in the set up of the headings of each column
and the arrangement of the input integer. The eleme nts of each
colomn as with that of the general file will be rig ht justified, the
Left will be for the unique number of particle inpu t and the right
will be for the time it took to get there, in cases where no such
gotten that space will contain the word "LOST" inst ead
 char *freshCategoryName = (char *) malloc ((fileNum -
3)* sizeof (char));
 strncpy(freshCategoryName, fileName, fileNum-4);
 freshCategoryName[fileNum-4] = '\0' ;
 int Left,
 Right;
 HeadingAndFormating(fp, &Left, &Right,
 "ParticleNumber" ,
freshCategoryName); // this function does the initial formating of
the text file to be created for the executing simul ation and also
returns the integer values of integers left and rig ht. This function
is located in the HeadingAndFormating.cpp file
 int totSuccessfulParticlesTime = 0, // This gives the total
time it took to transmit those particles that got t o the destination
 totLostParticleCount = 0, // this takes into account only
those particles that made it to the destination

88

 particleNumber = 1; // this keeps track of the particle being
observed and so it is set to one initially for the first will be
observed at the beginning
 double averageParticleArrivalTime = 0, // this will keep the
record of the average arrival time of the particles given by
totSuccessfulParticlesTime/ totSuccessfulParticleCo unt
 arrivalFraction = 0; // This is to give the fraction of
particles that made it to the destination, and this is given by
totSuccessfulParticleCount/ TotalParticleNumber
 // the Journey of the particles take place in the f ollowing do
while loop, one particle at a time in the function particleJourny
the progress of one particle is observed in terms of it progress
from the source in direction at each step time is i ncreased, but the
step could be additive or subtractive to the total distance covered.
This function is located in the ccp file particleJo urney. It takes
as argument two reference variables of int type, a file pointer to a
file unique to the simulation at hand for reporting , the particle
number for reporting, the destination distance to k now when the
limit is breached, the time step which shows the ti me each step
takes, time to live integer variable to decide when it is right to
drop a particle, Left and Right integers to help in the report file
formating. The particles a dealt with one after the other until all
the particles have being transmitted
 int preLostValue = totLostParticleCount;
 do{
 particleJourny(&totSuccessfulParticlesTime,
 &totLostParticleCount,
 fp, particleNumber,
 DestDistance, deltaTime,
 ttl, Left, Right); // to simulate
the journey of a particle, recording it time after it reaches,
recording it lost
 if (preLostValue == totLostParticleCount)
 particleNumber++; // heralds the next particle of
the transmission
 else
 preLostValue = totLostParticleCount;
 } while (particleNumber <= TotalParticleNumber); // this
construct ensures that Number of particles proposed is processed
 int allParticles = totLostParticleCount + TotalParticl eNumber;

 if (TotalParticleNumber) // is makes sure that division by zero
does not occur
 averageParticleArrivalTime =
(double)totSuccessfulParticlesTime/ (double)TotalParticleNumber; //
average time if not zero
 else
 averageParticleArrivalTime = 0; // if zero
 if (allParticles)
 arrivalFraction = (double)TotalParticleNumber/
(double)allParticles;
 else
 arrivalFraction = 0;
 /*printf("\n\n");
 printf("totSuccessfulParticlesTime = %d\n",
totSuccessfulParticlesTime);
 printf("totSuccessfulParticleCount = %d\n",
totSuccessfulParticleCount);
 printf("averageParticleArrivalTime = %f\n",
averageParticleArrivalTime);
 printf("arrivalFraction = %f\n", arrivalFraction);

89

 printf("\n\n");*/
 static int once = 0;
 if (!(once++))
 printf("\n\nLog file name is %s\n\n" , fileNameGen); //
printing the overall file name
 printf("current file name is %s\n" , fileName); // printing the
recently concluded simulations filename

 // fprintf, prints to the general file particulars of the
simulation file just concluded, this is done to ena ble comparisons
with other runs
 fprintf(fp1, "%*s, %*.0f, %*d, %*d, %*d, %*d, %*f, %*d,
%*f\n" , T1, fileName,
 T2, DestDistance,
 T3, ttl,
 T4, allParticles,
 T5, deltaTime,
 T6, totLostParticleCount,
 T7, arrivalFraction,
 T8, totSuccessfulParticlesTime,
 T9, averageParticleArrivalTime);
 fclose(fp1); // general file closed
 fclose(fp); // specific simulation file closed
}
#include <stdlib.h>
#include <stdio.h>
#include "threein1.h"

void particleJourny(int *totSuccessfulParticlesTime, int
*totLostParticleCount, FILE *fp, int particleNumber,
 double destinationDistance, int
deltaTime, int tTL, int formatL, int formatR)
{
 int time = 0; // each particle starts from time zero
 double deltaDistance = 0, // initial step at time zero is zero
of course
 distance = 0; // initial distance is 0
 do// this is an infinitive do while which enables the movement
to the particle in a brownian fashion. This movemen t is helped by
the brownian fashioned time steps enable by the gau ssian() step
generator powered by the gaussian distribution whic h has bin found
to mimick the brownian motion to a large degree
 {
 deltaDistance = gaussrand(); // this function returns at
random steps ranging between (-3 to 3). In NormalRa ndGenerator.cpp
 distance = distance + deltaDistance;
 if (distance<0)
 distance= - distance; // update to the distance*/
 time += deltaTime; // added to the time this does
 if (destinationBreached(destinationDistance, distance)) //
return 0 if reached but 1 otherwise , located in lo stStatus.cpp
 {
 if (lostStatusTime(tTL, time)) // if time to live
exceeded returns 1 if not 0. located in lostStatus. cpp, if exceed
report made and put infile if not next step is take n
 {
 //LostReport(particleNumber, fp, formatL,
formatR);// reports missing located in LostReport.c pp
 *totLostParticleCount += 1; // adding to the
already amassed successful particle number
 return ; // exit current particle journey

90

 }
 }
 else
 {
 ArrivalReport(particleNumber, fp, time, formatL ,
formatR); // reports successful located in ArrivalReport.cpp
 *totSuccessfulParticlesTime += time; // adding to
the already amass time

 return ; // exit current particle journey
 }
 }
 while (1);
}
#include <stdio.h>
#include <stdlib.h>
#include "threein1.h"

void ParticuleJourneyChronicles(FILE *fp, int timeStep, int
ParticleNumber, double distance, double width,
 int ttl, int *totLostParticleCount, int
*totalSuccessParticleTime, int formatL, int formatR)
{
 double mid_Way = width/2.0, x = 0, y = mid_Way, deltaX,
deltaY, endBounds = y/10.0,
 upperBounds = y + endBounds, lowerBounds = y - en dBounds
;
 int t = 0;
 do
 {
 gaussrand2d(&deltaX,&deltaY);
 //deltaX = gaussrand();
 //deltaY = gaussrand();
 x = x + deltaX;
 y = y + deltaY;
 t = t + timeStep;
 //printf("x= %f, y = %f, deltaX = %f, deltaY = %f t =
%d, ttl = %d\n", x, y, deltaX, deltaY, t, ttl);
 //system("pause");
 /*int inbounds;
 do{
 inbounds = 0;
 if(x<0)
 {
 x = -x;
 inbounds =1;
 }
 if(y<0)
 {
 y = -y;
 inbounds =1;
 }
 if(y>width)
 {
 y = 2*width - y;
 inbounds =1;
 }
 if(x> distance&&(y>upperBounds||y<lowerBounds))
 {
 x = 2*distance - x;
 inbounds =1;

91

 }
 }while(inbounds);*/
 if (WithinReach(mid_Way, distance, y, x, endBounds))
 {
 if (t== ttl)
 {
 /*LostReport(ParticleNumber, fp,
 formatL, formatR);*/
 (*totLostParticleCount)++;
 //printf("mark if");
 printf("%d\n" , t);
 return ;
 }
 }
 else
 {

 if (y<upperBounds&&y>lowerBounds)
 {
 ArrivalReport(ParticleNumber, fp, t,
 formatL, formatR);
 (*totalSuccessParticleTime)+=t;
 //printf("mark else");
 return ;
 }
 }
 }
 while (1);
}
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "threein1.h"
#include <io.h>

void particleTrajectory(int partTransitTime, int totalParticles, int
deltaTime)
{
 int Fstcount=0,Sndcount=0,Trdcount=0;
 int g = partTransitTime;
 do{Fstcount++;} while (g/=10);
 Fstcount++;
 g = totalParticles;
 do{Sndcount++;} while (g/=10);
 Sndcount++;
 g = deltaTime;
 do{Trdcount++;} while (g/=10);
 Trdcount++;
 char *CategoryName = (char *) malloc
((Fstcount+Sndcount+Trdcount+3)* sizeof (char));
 sprintf(CategoryName, "OD/%d_%d_%d",partTransitTime,totalPartic
les,deltaTime);

 int particleCount = 0, track = 0 // char numbers
 ;
 /*getPreferedSettings(&distanceCompare, &partTransi tTime,
 &totalParticles, &deltaTime);*/
 char genericName[]= "ODC/Dim1c"
 ;
 while (genericName[++track]!= '/');
 // create directory array

92

 char *direct = (char *) malloc (track * sizeof (char));
 // store directory name
 strcpy(direct, genericName);
 direct[track] = '\0' ;
 // check whether it exists
 if (_access(direct,0))
 {
 char prefix[] = "md " ;
 int total = track + strlen(prefix);
 char *combo = (char *) malloc (total * sizeof (char));
 strcpy(combo, prefix);
 strcat(combo, direct);
 system(combo); // stopped here
 } //if

 char *fileName, *fileNameGen;
 FILE* fp, *fp1;
 int T1, T2, T3, T4;
 fileName = aboutFiles(genericName);
 fileNameGen =
aboutFilesGeneralVD(genericName,&T1,&T2,&T3,&T4);
 fp = fopen(fileName, "w");
 fp1 = fopen(fileNameGen, "a+");
 int Left, Right;
 HeadingAndFormating(fp, &Left, &Right,
 "ParticleNumber" , "Distance");
 transmitAndObserveParticles(partTransitTime,
 totalParticles, deltaTime, Left, Right, fp);
 static int once = 0;
 if (!(once++))
 printf("\n\nLog file name is %s\n\n" , fileNameGen);
 printf("current file name is %s\n" , fileName);
 fprintf(fp1, "%*s, %*d, %*d, %*d\n" , T1, fileName,
 T2, partTransitTime,
 T3, totalParticles,
 T4, deltaTime);
 fclose(fp);
 fclose(fp1);
} //particleTrajectory
#include "threein1.h"
#include <stdio.h>

void transmitAndObserveParticles(int partTransitTime, int
totalParticles,
 int deltaTime, int Left, int Right, FILE *fp)
{
 int particleNumber = 1, flag = 1;
 do{
 int Time = 0, stillJourneying = 1;
 double distance = 0, deltaDist;
 do{
 deltaDist = gaussrand();
 distance += deltaDist;
 Time += deltaTime;
 if (Time >= partTransitTime)
 {
 ArrivalReportDouble(particleNumber, fp,
distance,
 Left, Right);
 stillJourneying = 0;
 if (particleNumber<=totalParticles)

93

 {
 particleNumber++;
 } //if
 else
 flag = 0;
 } //if
 } while (stillJourneying);
 } while (flag);
} //transmitAndObserveParticles
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <direct.h>
#include "threein1.h"
#include <io.h>

void twodimdriver(double distance, double width, int ttl, int
totalParticles, int deltaTime, int iterations)
{
 int Fstcount=0,Sndcount=0,Trdcount=0,Fothcount=0,Fithc ount=0;
 int g = (int)distance;
 do{Fstcount++;} while (g/=10);
 Fstcount++;
 /*g = (int)destYCood;
 do{Sndcount++;}while(g/=10);
 Sndcount++;*/
 /*g = (int)radius;
 do{Trdcount++;}while(g/=10);
 Trdcount++;*/
 double fl = width;
 int padding = 3;
 int dp=fracNumCount(fl);
 int dpAndPadding = dp + padding;
 g = ttl;
 do{Fothcount++;} while (g/=10);
 Fothcount++;
 g = totalParticles;
 do{Fithcount++;} while (g/=10);
 Fithcount++;
 char *CategoryName = (char *) malloc
((Fstcount+dpAndPadding+Fothcount+Fithcount)* sizeof (char));
 sprintf(CategoryName, "%d_%.*f_%d_%d" , (int)distance, dp, fl,
ttl, totalParticles);
 char dirStarting[]= "TD" ;
 char dirSlash[]= "/" ;
 int dirStartingNum = strlen(dirStarting),
dirSlashNum=strlen(dirSlash),
 dirEndNum= strlen(CategoryName),
 dirComWithOutNum = dirStartingNum + dirEndNum,
 dirComWithNum = dirStartingNum + dirEndNum +
dirSlashNum;
 if (iterations == 1)
 {
 dirComWithOutNum = dirStartingNum;
 dirComWithNum = dirStartingNum + dirSlashNum;
 }
 char *dirComWithOut = (char *) malloc
((dirComWithOutNum)* sizeof (char));
 strcpy(dirComWithOut,dirStarting);
 if (iterations > 1)
 {

94

 strcat(dirComWithOut,CategoryName);
 }
 char *dirComWith = (char *) malloc
((dirComWithNum)* sizeof (char));
 strcpy(dirComWith,dirStarting);
 if (iterations > 1)
 {
 strcat(dirComWith,CategoryName);
 }
 //strcat(dirComWith,CategoryName);
 strcat(dirComWith,dirSlash);

 int totLostParticleCount = 0, particleNumber = 1,
totSuccessfulParticlesTime = 0; // left to right: successful particle
count and soujourning particle number
 /*getPreferedSettings1(&destXCood, &destYCood, &rad ius, &ttl,
 &totalParticles, &deltaTime);*/
 char genericName[]= "Dim2v" ; // generic name for simulations
 /*int track = 0;
 while(genericName[++track]!= '/');// isolating the directory
part of the generic name in terms of numbers
 // create directory name array
 char *direct = (char*) malloc (track * sizeof(char));
 // store directory name
 strcpy(direct, genericName);
 direct[track] = '\0';
 // check whether it exists
 if(_access(direct,0))
 {// if it doesn't it is created here :-D
 char prefix[] = "md ";
 int total = track + strlen(prefix);
 char *combo = (char*) malloc (total * sizeof(char));
 strcpy(combo, prefix);
 strcat(combo, direct);
 system(combo);// stopped here
 }//if*/

 char *fileName, *fileNameGen; // single simulation file and log
file name holders
 FILE* fp, *fp1; // file pointers
 int T1, T2, T3, T4, T5, T6, T7, T8, T9; // format aids
 if (_access(dirComWithOut,0))
 {
 char prefixx[] = "md " ;
 int all = strlen(prefixx)+strlen(dirComWithOut);
 char * together = (char *) malloc (all * sizeof (char));
 strcpy(together,prefixx);
 strcat(together,dirComWithOut);
 //together[all]='\0';
 system(together);
 }

 if (chdir (dirComWithOut) == -1)
 {
 printf ("chdir failed - %s\n" , strerror (errno));
 return ;
 }
 fileName = aboutFiles(CategoryName); //creates single
simulation unique file name, aboutFiles.cpp
 int fileNum = strlen(fileName);
 if (chdir ("..") == -1)

95

 {
 printf ("chdir failed - %s\n" , strerror (errno));
 return ;
 }
 int fileAndDirNum = fileNum + strlen(dirComWith);
 char *fileAndDirName = (char *) malloc
((fileAndDirNum)* sizeof (char));
 strcpy(fileAndDirName, dirComWith);
 strcat(fileAndDirName, fileName);
 fileNameGen =
aboutFilesGeneral2D(genericName,&T1,&T2,&T3,&T4,&T5 ,&T6,&T7,&T8,&T9)
;
 fp = fopen(fileAndDirName, "w");
 fp1 = fopen(fileNameGen, "a+");
 char *freshCategoryName = (char *) malloc ((fileNum -
3)* sizeof (char));
 strncpy(freshCategoryName, fileName, fileNum-4);
 freshCategoryName[fileNum-4] = '\0' ;
 int L, R;
 HeadingAndFormating(fp,&L, &R, "ParticleNumber" ,
freshCategoryName);
 int preLostValue = totLostParticleCount;
 int itNum = 1;
 do
 {
 //printf("%d\n",particleNumber);
 //system("pause");
 ParticuleJourneyChronicles(fp,
 deltaTime,
 particleNumber,
 distance,
 width,
 ttl,

&totLostParticleCount,&totSuccessfulParticlesTime,
 L,
 R);

 if (preLostValue == totLostParticleCount)
 particleNumber++; // heralds the next particle of
the transmission
 else
 preLostValue = totLostParticleCount;
 printf("%d. Lost: %d, reached: %d\n" , itNum++,
totLostParticleCount, particleNumber-1);
 /*if(!(itNum%100))
 system("Pause");*/
 }
 while (particleNumber <= totalParticles);
 double averageParticleArrivalTime;
 int allParticles = totLostParticleCount + totalParticl es;
 double arrivalFraction = 0;

 if (totalParticles)
 arrivalFraction = (double)totalParticles/
(double)allParticles;
 else
 arrivalFraction = 0;
 if (totalParticles) // is makes sure that division by zero does
not occur

96

 averageParticleArrivalTime =
(double)totSuccessfulParticlesTime/ (double)totalParticles; //
average time if not zero
 else
 averageParticleArrivalTime = 0; // if zero
 /*printf("\n\n");
 printf("totSuccessfulParticleCount = %d\n", partic leCount);
 printf("arrivalFraction = %f\n", arrivalFraction);
 printf("\n\n");
 printf("current file name is %s\n", fileName);
 printf("Log file name is %s\n", fileNameGen);*/
 static int once = 0;
 if (!(once++))
 printf("\n\nLog file name is %s\n\n" , fileNameGen);
 printf("current file name is %s\n" , fileName);

 fprintf(fp1, "%*s, %*.0f, %*.0f, %*.0d, %*d, %*f, %*d, %*d,
%*f\n" , T1, fileName,
 T2, distance,
 T3, width,
 T4, allParticles,
 T5, ttl,
 T6, averageParticleArrivalTime,
 T7, deltaTime,
 T8, totLostParticleCount,
 T9, arrivalFraction);
 fclose(fp1);

 fclose(fp);
 return ;
} //twodimdriver
#include <stdio.h>
#include <stdlib.h>
#include <direct.h>
#include <string.h>
#include <time.h>
#include <io.h>
#include "threein1.h"

void TwoDimensional()
{
 double dist, width;
 int ttl, totalParticles, iterations,
 deltaTime; // particlars of unique to each simulation
 char textFileName[] = "TwoDimensional.txt" ; // file to read the
simulation particlars from
 // check if file exist
 if ((_access(textFileName ,0)))
 {
 printf("no job for the function %s\n" , textFileName); //
info for no job
 return ; // exiting function
 } //if, checking for the file

 time_t rawtime;
 struct tm * timeinfo;
 char buffer [40];
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 strftime (buffer,40, "TD\\%a_%Y-%m-%d\\%I_%M_%p" ,timeinfo);

97

 char prefix[]= "md " ;
 int bufferNum = strlen(buffer), prefixNum = strlen(pre fix),i
=bufferNum + prefixNum;
 char * combo = (char *) malloc (i * sizeof (char));
 strcpy(combo,prefix);
 strcat(combo, buffer);
 system(combo);
 char prefix2[]= "move " ;
 char moveEnd[]= " " ;
 int textFileNameNum =strlen(textFileName);
 int moveEndNum = strlen(moveEnd);
 int prefix2Num = strlen(prefix2);
 int combo2Num = prefix2Num + textFileNameNum + moveEnd Num +
bufferNum;
 char * combo2 = (char *) malloc (combo2Num * sizeof (char));
 strcpy(combo2,prefix2);
 strcat(combo2, textFileName);
 strcat(combo2, moveEnd);
 strcat(combo2, buffer);
 system(combo2);
 if (chdir (buffer) == -1)
 {
 printf ("chdir failed - %s\n" , strerror (errno));
 return ;
 }
 FILE *fp = fopen(textFileName, "r"); // file opening
 // getting rid of labels
 char getRid = 'q' ;
 while (getRid != '\n')
 fscanf(fp, "%c" , &getRid);
 int times = 0; // flag to ascertain run
 printf("containing folder is %s\n" , buffer);

 while (fscanf(fp, "%lf%lf%d%d%d%d" , &dist, &width, &ttl,
&totalParticles, &deltaTime,&iterations) != EOF) //order in file of
particulars
 {
 times++;
 int counter = 1;
 while (counter++ <= iterations)
 twodimdriver(dist, width, ttl, totalParticles,
deltaTime, iterations); // particle journey, twodimdriver.cpp
 }
 fclose(fp); // closes file
 if (!times)
 printf("nothing in the file\n"); // if notin in file
 //system("rename TwoDimensional.txt TwoDimensionalO ld.txt");//
rename after
}
#include <stdio.h>
#include <math.h>
#include "threein1.h"

int WithinReach(double yOrigin, double xOrigin, double yCood, double
xCood, double radius)
{
 double first, second, third, sum;
 first = yOrigin - yCood;
 first*=first;
 second = xOrigin - xCood;
 second*=second;

98

 third = radius * radius;
 sum = first + second;
 if (sum <= third)
 return 0;
 else
 return 1;
}
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "threein1.h"
/*This is documentation for my Thesis program. This program is meant
to simulate the motion of hypothetical particles fr om, a particle at
a time, from a server to a destination under the in fluence of
diffusion through a medium. This diffusion is gover ned by a law of
normal distribution. So what this simulates is the times it, the
particle takes to get from the source to the destin ation. To aid
this simualation, automatic filing systems have bei ng worked into
this program.
To include the header file(threein1.h) in the proje ct you need to
take note of where the file is located then in vs20 08 you do the
following Project->Project(Name)properties->C/C++(L eft Pane) ->
General -> Additional Include directory(Right Pane) -> put in
directory
To put in source files: Open solution explorer, rig ht click on
source folder, -> add new-> existing files-> browse to where the
files are*/
int main ()
{
 // RANDOM GENERATOR INITIATION
 srand((unsigned) time (NULL));
 /*this function is to help the psuedorand number ge nerator of
the c enviroment to generate random numbers by seed ing it with the
underlying oses time. C's internal random number ge nerator is inturn
used in the gaussian random number generator functi on to generate
random numbers which mimic the steps of the nano pa rticle. The time
of this particles soujourn is tied to each step of this particle.
And in the case of the one dimension, this particle can either go
forward or backwards, but the time step is always a dded with each
generate step. Hence with this we can but in the ti me to live
feature which accordiing to the research, can be pu t in place by a
natural phenomenon. This initialization will be emp loyed by the
gaussrand() located in the NormalRandGenerator.cpp file. Think for
this function stdio or stdlib is needed*/

 //Preamble
 printf("Preamble\n\n");
 printf("This program contains 3 simulations:\n"
 " 1)One Dimensional Dist\n"
 " 2) One Dimensional Time\n"
 " 3) Two Dimensional Dist\n");
 system("pause");
 printf("The data required for these simulations are contai ned
in the following respective files:\n"
 " 1) OneDimProper.txt, columns: DestinationDist, tt l,
TotPartNum, timeStep\n"
 " 2) constTimeVaringDist.txt, columns:PartTransTime ,
TotPartNum, timeStep\n"
 " 3) TwoDimensional.txt, columns: Xcood, Ycood, Rad ius,
ttl, TotPartNum, timeStep\n");
 system("pause");

99

 /*The above just helps the user understand a little better how
this program works, it uses the input provided for by textfiles. As
observed above The Program does 3 major duties, 1. Takes note of
times achieved at specific distances, and how many packets gets to
destination at a given different distances, 2. The 2nd program takes
note of the largest distance achieved by each parti cle giving a
fixed time 3. This is the repeat of the first case scenario only
that this is a 2 dimensional plane and the catchmen t area of the
destination is circular in this case
 How this work is if there is no file, or if there is no data
given in the file that part does not run otherwise, it runs. Each
section has a prefered data format if not it won't work properly, so
the data must be arranged in each file as given in the column
description above. Now if a file does exist, the af ter the run, the
file is renamed so as to prevent rerunning same dat a by mistake in
the next run. Please note that this file must be in the same
directory as the that contain the main source file* /

 OneDimProper(); // attempts executing the first, this function
is located in OneDimProper.cpp
 system("pause"); // pauses the program to let the user observer
the result before moving on to the next, to move on , the enter
button should be employed
 constTimeVaryingDist(); //constTimeVaryingDist.cpp
 system("pause");
 TwoDimensional(); //TwoDimensional.cpp
 system("pause");
 /*int select = 0, below = 0, above = 3;

 do
 {
 printf("\n\n\n");
 printf("type \n");
 printf("{0} to Exit the Program\n");
 printf("{1} To Run the Constant Destination One D imen
Simulation\n");
 printf("{2} to Run the Constant Ttl One Dimen
Simulation\n");
 printf("{3} to Run the Constant Destination Two D imen
Simulation\n");
 printf("value: ");
 scanf("%d", &select);
 if(select > above || select < below)
 printf("Out of range please try again\n");
 else if(select == 0)
 return 0;
 else if(select == 1)
 {
 OneDimProper();
 }
 else if(select == 2)
 {
 constTimeVaryingDist();
 }
 else if(select == 3)
 {
 TwoDimensional();
 }
 }while(1);
*/
 }

