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ABSTRACT

Nanomachines are devices that are made up of r@Erosbmponents. By
themselves, nanomachines can perform only simplestd o achieve more complex
tasks, networks of manomachines or nanonetworks faremed. Molecular
communication is a biocompatible, bio-inspired ralédive to traditional
electromagnetic communication in nanonetworks. Iolecular communication,
molecules can be considered as information packete diffusion based molecular
communication requires no external energy and & riost basic information
transport mechanism being considered for nanon&syvorThis form of
communication however is slow due to the randomkvedl the particles and the
information packets can also be delivered out afeporto the destination. These
issues present challenges to design and implenmantait molecular communication
based nanonetworking protocols. While there araifsignt studies that address
physical layer aspects of molecular communicattbere is relatively less work in
the link layer. In particular, modeling of channéélays or sojourn times of
molecule-packets that arrive at a nanomachine gsimed for queueing theoretic
analyses. To this end, simulations are performeddasure the propagation times of
molecules between a given source and a destinatiboth bounded one- and two-
dimensional spaces and unbounded one-dimensioaaéspHere, one-dimensional
settings correspond to molecular communication tlade place in very thin
capillaries and two-dimensional settings corresptndommunication in junctions
with small widths, negligible heights or on memleanThere are no closed-form
formulas for the delay distribution of freely diffing particles in arbitrary, bounded

environments. The delay measurements in boundédgsetre fitted to well-known



distributions that are commonly used in modelimgetito complete a task. The fits
can be used to generate arrival times of molecatdgts at a node. This study is
expected to contribute to the analysis of link fageotocols and workload models

being considered for nano communication networks.

Keywords: Distribution Fitting, Free Diffusion, Molecular dhmunication,

Nanonetworks.



Oz

Nanomakineler nano ol¢ekte bigmlerden olgan cihazlardir. Nanomakineler kendi
baslarina sadece basitslemler vyapabilirler. Daha karmgk islemler icin
nanomakinelerden giar, yani nano @ar, olwturulabilir. Molekiler iletsim
biyolojiden ilham alinmy, biyo-uygun, geleneksel elektromagnetik Hietie
alternatif bir iletsim seklidir. Molekuler iletsimde paketler molekillerdir. Serbest
diftizyona dayali molekuler ilgimde, harici enerji gereksinimi yoktur ve nangaa
icin dilsindlen en temel veri gana mekanizmasidir. Ancak bu mekanizma,
parcaciklarin rasgele yurigiinden dolayi yawaur. Ayrica, parcaciklar génderilme
sirasindan farkh olarak hedefe gdailirler. Bunlar, molekuler ileim protokollerini
tasarlamayi zorkurmaktadir. Molekiler ilesimin fiziksel katmaniyla ilgili bircok
calsma olmasina gamen, balanti katmaniyla ilgili cakmalar cok azdir. Ozellikle,
iletisim kanalinda paketin yayllma zamani kuyruklamaise@cisindan onemlidir.
Bu baglamda, yayihim zamanlarini élgcmek icin bir ve iloyitlu, sinirsiz ve sinirli
ortamlarda difiizyon simulasyonlari yapiytm. Bir boyutlu simulasyonlar kilcal
damarlardaki iletime kasilik gelebilir. iki boyutlu simulasyonlar ise ksak ve zar
Uzerindeki iletsime kasiliktir. Sinirli ortamlarda, serbest difiizyonla éleet eden
parcaciklarin gecikme zaman gdamlarinin formulid bulunmamaktadir. Sinirh
ortamlardaki yayilim zamanlari, bilinen gilamlara elestirilmistir. Eslestirmeler,
molekil-paketlerin  bir nanomakineye varma zamaniarmodellemek icgin
kullanilabilecektir. Dolayisiyla, bu cama nano glarin balanti katmani

analizlerine katki koyacak niteliktedir.



Anahtar Kelimeler: Dagilimlara Elestirme, Serbest Diflizyon, Molekiildletisim,

Nano Aglar.
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Chapter 1

INTRODUCTION

The smaller the electronics are the less intrutiey are and generally the better
they are for all involved. The drive for smalledametter electronics brings about the
drive towards the nanomachine. A nanomachine rédeaswell-arranged single unit
mechanical device at nanoscale that is designed materials and components at
nanoscale to serve limited purposes [1] (in mosesgust a single purpose). To
appreciate the complexity of designing and achigven machine of such a
specification, it helps to take into cognizancd #raobject with a specification to the
tune of the micro-scale cannot be seen by the nakedan eye. An object with
specifications measuring at nanoscale is smallan that at the micro scale by a
factor of 1000. Naturally, the quest to achievihg tfeat has been met with a lot of
obstacles, but the benefit that is envisioned fitolbeen implemented is the incentive
that has made it possible for those challenges. SDok challenge is that of energy
consumption in communication among nanomachines. riibst tempting means of
communication in the nano arena is the use ofdrasion in which particles are let
loose and they migrate randomly walking to the idatibn by the natural
phenomenon called Brownian motion. Diffusion hagamdownsides: it has a very
low range and high delay associated with transpgrgarticles from one point to
another. The purpose of this thesis is to analyme éharacterize delay in a free
diffusion based molecular channel so that enginears plan and design nano

communication networks at a level above the physger. It should be noted that



there are only a few studies that consider the lajer [2] and above of a nano

communication network.

1.1 Nanomachines in General

The general definition of a nanomachine is whagiven above. Due to the size of a
nanomachine, what it is able to achieve is not schras to be felt useful in the real
sense, for mostly they carry out just a single taskl this task carried out is done at
a scale that would make little or no impact in ém@ironment. The only way to make
this impact felt is if a group of these machinesked together towards a given goal
either by each taking on the same task or by shatiffierent parts of the process to
reach that goal. In order that this should happera iway so as not to negate
themselves, they must communicate with each otlindistathey work. This is how

the concept of nano communication comes to be. Nanmomunication is any and

every infrastructure that enables nano machinestumunicate with each other.

Initially, when machines at the level of the nanere contemplated, the initial
direction was the application of the traditionalmoounication techniques at the
nanoscale. The approaches to these methods wee icategories bottom-up and
top-down [1]. The top-down dealt with scaling dowhe existing standalone units
and their communication capabilities, such as trangrs, down to the nanoscale.
This was found impossible with the current techgamal advances on ground as
talked about in [1]. Also, the bottom up approaslvery similar to the top down in
that the traditional communication apparatus werdé applied at the nanoscale,
only that in this case the parts making up thisonaaxchine would be manufactured
separately and then assembled automatically usihg@ssembly [3]. However, again

this is theoretical only for the technology needeanake these components are not
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yet in existence. Yet, there are other objectionsotmly common to both these
presented methods given other than their infedtgibilhe objections to them are due
to the principle limitations, power consumptiondaoio-incompatibility. Principle

limitations make communication between deviceshatrtano level different due to

quantum effects [4].

Power consumption is an important factor in thismeek setting because repowering
it would be hard after deployment. Due to the powensumption rate during
transmissions, no matter what power saving scheneenployed, the battery would
eventually run out. Also, due to the diverse enwinents that such small devices
could be deployed in and the limited options in ttalitional computing world of
recharging of spent power, the nanomachine woultdaso for so long. Also, at such
a dimension, only simple tasks should be assignedath nanomachine and the
addition of power saving schemes would greatly &oldits complexity. If, in
addition, there are acknowledgments attached th packet sent in the traditional
sense, this also depletes the energy of the nardoneadrastically as transmitting
and receiving are known to be the most power iiNengart of any activities of a

communicating device.

These traditional-styled nanomachines are made ftomponents not easily or
readily assimilated into the natural environmeriite Thief need of such a small scale
technology is deployment in places unreachablerbefid deployed in the human
body for example, it may cause some damage whexttitge life is over. Also, even
when not deployed in living organisms, they coultl sonstitute health problems as
they can easily be carried by the wind and depmsiteplaces not intended for.

Since they cannot be detected visually, they voll Ibe known to be there and may

3



prove hazardous to the environment if they caneaddsimilated into the ecosystem.
The hazardous nature of these devices will resujteater ecological problems over
time. For these reasons, greater strides have ipagle towards making biological
nanomachines a reality those of the traditionat. $orfact according to [5], when a
reference is made to nanomachines, more oftenrtbarwhat is meant is biological

nanomachines.

1.2 Biological Nanomachines

A third and by far the most promising approach t@kimg nanotechnology a reality
is the bio-hybrid approach. Biological nanomachiaksady exist in abundance in
nature. These are cells with facilities synonymiaua miniature computing body. Of
course in nature, these cells are designed tocséde survival, and the survival of
similar cells around. As a result, they are na& iform to be readily manipulated for
other purposes. However, with a little modificatidhey could do what you would
want them to do with regards logic, sensing andétwnating. Reference [6] speaks of
molecular motors existing in nature, and componémis could serve as building
blocks for the formation of nanomachines such ashH@mical molecules, complexes
and circuits that can pass for processing unitsT¢ construction of nanomachines
from its base components is not the only way toaterethese nanomachines.
Genetically engineered cells cited in [8] are map¢ for manipulation for diverse

purposes.



As in nature, these cells taken individually candotmuch, but taken as a whole,
they get a lot done: the way they accomplish thibyi working together. The way

they are to work together is by molecular commutinca

1.2.1 Molecular Communication

Molecular communication is used here over the teamo communication, because
this term really does accentuate the departurehef dommunication technique
encountered in the biological sphere of nano comaation from the traditional way
that network devices communicate. Earlier on, is thesis, it was highlighted that
due to quantum effects principles guiding well Bised ways of communicating,
such as electromagnetic waves, fail. Mimickingwregy cells communicate in nature,
carrier molecules (information molecules) are empptbas a way of transmitting
information [9]. In general, the sender encodesrmftion into these molecules
which can either be produced by the sender, olyfieaailable in the environment or
attracted to the sender (as in the case of cdraieerium [10]). Then, these are either
sent by passive means (e.g. diffusion) or activamede.g. directed molecular motor

movement by chemical consumption).

1.2.1.1 Traditional Communication Methods vs. Moleglar Communication

The method of communication by the molecular mesunadically different from the
way it is known in the traditional sense. As staaddve, molecules are used in the
latter as packets. What is truly unique is the e packets are transmitted. In the
traditional means, the power cost of the transmisss borne by the sender.
However, in the case of these biological nanomashithe propagation environment
bears the burden of the power cost [9]. The prap@gyanvironment is an aqueous

solution, but due to the noise inherent in thisiemment encountered by the



sojourning information molecule, whether in the gpas form (e.g. diffusion where
the erratic movement the particle makes redundaacynecessity in this
communication type) or in the active form (e.g. ewmllar motors consuming
chemical energy in order to overcome other molecaled counter energies in the
environment), the range of this transmission falithin the nano-micro scale [11].
Same obstacles render the speed of the packel® inni/s category. On the other
hand, the conventional mode of communication boastanges of communication
in meters to kilometers and speeds of signals rimgcthe speed of light 3 x {0
km/s. Also, due to the stochastic nature of thermftion molecules, the probability
of loss is very high, hence is unreliable relatitee the conventional ones.
Redundancy is encouraged in molecular communicationake sure that message is
delivered because in this model, acknowledgmemsiar used given the number of

information and energy considerations.

1.3 Field of Deployment

Nanonetworks are very attractive for deploymensanmany areas. Reference [12]
has a list of areas where this technology, evethanlight of its limitations, would
make a huge impact. These include the biomedicdystrial and consumer goods,
and the military amongst others. The most promisifigthese is the medical
profession, specifically the internal body medicin®hy this is so is that the
disadvantages of the nanonetworks such as tharngerand speed of information
particle is downplayed by the fact that the shortdsstance between the
nanomachines can be achieved in the human bodgssly as the dimensions of the
human body is not that vast. Two case scenaridsseive to drive home this point.
Also the size, self-sustaining attribute, self-regaing, and the biocompatibility of

these nanomachines make them much coveted as cahpathe closest competing

6



in-body silicon-based machines which need to reglaghen spoilt or not in need
anymore, or they have to be brought out for represg of batteries. With the
nanomachines proposed, all of these problems wilhithe past as no more needed
machines could simply be assimilated by the body] alder machines could
replicate themselves before self-destructing, amcesthe machines draw little power

they need from the environment (e.g. glucose), ttexer need a battery change.

1.3.1 In-Body Drug Delivery

This medical application cited in [13] is the ugdhl®ese nanomachines to administer
drugs at certain times when needed. This involvegyger cell (the drug repository,
sender) and the target cell (the receiver) [9]. Tigger cell normally has a timer
telling it when to send the needed drug. The doetsr a time frame when this drug
needs to be delivered, e.g. at noon period, sedime said cells are close together
and the time frame is long enough, the needed willglways be delivered in good
time. Therefore, this technology could enable s@ewho needs to constantly take
life saving drugs at constant intervals, such d&hetic, live a normal life by having

a repository of this drug in his body administeirethe right interval of time.

1.3.2 In-Body Health Monitoring

This is the application of nanomachines in the ltinge, day to day monitoring of

the health of patients. Just like in the case @& thvbody drug delivery, the

nanomachines are planted in strategic parts ofbthey. From these parts, they
monitor certain cells and organs taking the notthefpH level, cell intake, etc. They
are able to do this because they are able to &@nsiformation in DNA which has

been found in [14] to hold up to 9.2 Mbits of infeaition in just 2 micrometer square

of chromosomes. This information will then at reguintervals be sent to a central



nanomachine which will store them and on requedl, imternetwork using the
optical naturally occurring options of either flescent proteins or Molecular
Organic Light Emitting Diodes (MOLED’S) [12] to gé#te stored up information to
the outside world for analysis, possibly by a doctr a personal health

monitor/analysis device.

1.4 Outline of the Thesis

In Chapter 1, as already observed, the general/i@veiof nanomachines in the bio-
hybrid category is described. In Chapter 2, notabledes in this class of

nanomachines accomplished in research and implat@mtare looked into. In

Chapter 3, the methodology and approach of thisigheith regards to the study of
the propagation delay behavior of particles tratigai by the passive means of
diffusion in both one- and two- dimensional boundedl unbounded spaces are
presented. In Chapter 4, the results obtained frensimulation that are the products
of the methodology presented in Chapter 3 are steowinanalyzed. Finally, Chapter

5 concludes the thesis.



Chapter 2

NOTABLE DEVELOPMENTS IN NANO

COMMUNICATIONS

The setup of a nanonetwork is characterized by macbines, information
molecules, and the environment which engulfs théinTdne nanomachines are
further divided into two classes, namely the seratet the receiver. The sender is
same as the receiver except it lacks a discrimipatreptacle, but it has the added
ability to encode information onto biological maatie.g. DNA translation). Also in
some cases, it has the ability to synthesize imdion molecules from the
environment. The receptacle in the receiver is méarhelp it attract/capture an
information molecule when the latter reaches thenés. This setup is not exactly a
new thing, in fact as [15][16] puts it, this is falabundantly in nature. What is new
is this setup being harnessed as a network forirgepurposes not designated to
cells (naturally occurring nanomachines) by natli@.achieve certain aspects, an
engineered molecular communication has to be dpedlo modified or even
assembled from existing parts in its naturally eodog version. The generic
architecture as illustrated in [9] shows that molac communication contrived
consists of the following states: encoding, sendipgpagating, receiving and
decoding. The following section will treat the dipmental efforts under the

headings below:

« Nanomachines



* Propagation and engulfing environments.

2. 1 Nanomachines

Nanomachines are derived basically from cells iturgain a variety of ways, either
by tinkering with already existing cells by syntise§.e. by creating a new variation
of the existing cell with added functionality thgiugenetic engineering) [9] or by

putting together a cell-like entity with componeaigsting in nature.

The aspect of adding desirable communication ati#®to existing cells by genetic
engineering is illustrated in [17]. Not only that,step further was achieved when
certain sender nanomachines were designed to symeheaformation molecules
[18]. In the same vein, the receiver nanomachine®wesigned to not only receive
information molecules but to receive specific on&s.such, by the differentiating
amongst the different kinds of information molesyléhe sender could now make
sure that only the intended machines react toehemessages. To make addressing
more generic, however, work is being done on uBINA sequences to accomplish
the addressing issue [16]. In this way, the workarhing up with as many variations
of the information molecule types as there areivecge and also the prospect of
getting a single nanomachine to synthesize all ¥hdous types information
molecules can be avoided. Also, intermediary narotwinas could be employed to
act as repeaters. The basic functioning of eacbmanhine’s circuitry such as logic
functions (biochemical inverter [19], and AND or Ogates [20], etc.), toggle
switches [21], and oscillators [22] can be addedufh genetic engineering. Also,
producing a nanomachine from base elements, makegnished product look like
cells existing in nature is another product of aesk in this field [9]. The aim of this

method is simplification so that only what is neddeincluded and nothing else. A
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lipid bilayer is used to mimic the permeable membraf a cell [5] into which
functional natural components are added such apt@s (proteins). Even though
this is an artificial cell, it can achieve replicat using chemical components as
proposed in [23]. As noted in the previous sectiona 2 micrometer square of
chromosome of a bacteria, 9.2 Mbits of informateam be housed as compared to
the projected achievable storage capacity for Z0i4onventional storage devices
for the same area, 490 bits [9]. The possibilitege limitless with regards to
transmission except limited by the receivers’ cégaReference [24] found that the
amount of information a receiver nanomachine carode (or react to) must be
proportional to the number of its configurationsis@® work has been done
extensively as to how nanomachines operate in mksvevhere the information
molecules are bacteria. With regards to the attras the following questions were
investigated: how the sender attracts these engatteba using attractants [25], how
to encode the plasmids to be inserted into a baotewith information [26], how
these loaded bacteria are attracted to the recearesmachines by yet another set of
attractants, how they are then attached to recéiyex pilus [10], and how by DNA

synthesis the information containing plasmid iokeed by the receiver.

2.2 Propagation and Environments

Propagation is that period in the communicatiorcess involving nanomachines in
which the information molecule moves through the/iremment engulfing both
nanomachines from the sender to the receiver. R¥sehas unveiled two

propagation types:

. Passive

11



« Active

In the former, the basic form of communication i§udion, and in the latter, the
information molecules are attached to other mokwihich make marked effort
against the forces in the environment (energy andaommunication molecules) to
get to destination. The distinction itself is aseault of the independent work of

various researchers.

2.2.1 Passive Propagation

There are various forms of this class of propagaghucidated by research efforts.
The first kind is free diffusion based molecularngounication in which the
molecules are released by the sender by openiaggate [9] and the molecules are
scattered in all direction due to interaction wither molecules when released
(broadcast style) and due to its inherent phystealdency to get away from
molecules of its kind, it exhibits a hyper willinggs to mingle with other kinds of
molecules; that is to say, molecules move fromggoreof higher concentration to a
region of lower concentration. In this all, surrdimg nanomachines are engulfed in
the ensuing stream of information molecules. Howewanly recipients with
receptacles sensitive to the information moleculesct to them (decode them)
[27][28]. This mode of communication embodies pettie all the well known
attributes of nano communication (i.e. low rangghargically slow, and unreliable

but also energy efficient.)

Another class of this diffusion based communicati®rhe gap junction mediated
reaction. Here, cells are placed close to eachrahd the area from which the

diffusion is to take place is selected so as tditerted to the next cell. This selected

12



area of diffusion is called the gap junction charjék Since the cells are adjacent to
each other and the channels connect them, the gmtipa is simply instantaneous.
Imagine now a series of these cells arranged iawaaonnected by gap junction
channels where the intermediary cells react tormé&tion molecules diffused into it
by immediately diffusing some of its own to a cakxt to it. The information

molecule loss will be low, and due to the numbecelfs in question the distance
achievable increases dramatically and the speeshadss will be on the order of 100
m/s [9]. This feat shown in [29] is remarkable wieempared to the free diffusion,
and for cases were each cell has two or more aligenpaths, permeability and
selectivity properties of the gap junctions haverbased to put in place filtering and
switching mechanisms [30]. This mode adds a lotuottionality to the diffusion

based communication with one downside: this is nmole structured than the free

version.

2.2.2 Active Propagation

In this case, a random walk is not employed buteramolecules perform directed
movement. To accomplish this directed motion, seoré of external energy must be
applied in order to overcome the forces in thea@urding environment. Two major

approaches have been brought to light throughftoesof researchers.

2.2.2.1 Molecular Motor-Based

The first of these involves using helper molectiteaccomplish this directed motion.
These helper molecules according to [9] fall ifte tategory of molecular motors,
interface molecules, and guide molecules [31][3&%}e guide molecules that are
engineered are self-organizing molecules whichaadhe path on which molecules

harboring the information molecules thread to thstitation; i.e. they act as a path
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for the molecular motors to thread. The moleculatars, by using up chemical
energy, thread the guide molecules as a train’'selshevould ride on rails,
overcoming opposing energies and molecules witbremgy efficiency of up to 90%
[9]. Interface molecules are containers into whilkh sender nanomachines put in
information molecules so as to be mounted on thécecotar motor and also to
prevent the information molecule from reacting wilie encountered molecules in
the propagation environment before it gets to tlstidation [33][16]. This is
remarked to achieve distances to on the order aénneThe terrain here must be

structured.

2.2.2.2 Bacterial Motor-Based

In this molecular communication mode, there areseb up paths but there are
bacteria which act as information carriers. Baeatg@ropel themselves by using their
flagella (motor). They are attracted to both thadse and the receiver attractants

[10].

2.3 Intra Networking

Attempts have been made also to link nanonetwarkke other network types. One
such attempt is the light transduction where sianige molecular information is
converted to optical signals and vice versa [12le Thethod proposed is to utilize
fluorescent proteins [34] and Molecular OrganicHtigmitting Diode (MOLED’S)

to make this conversion possible [35].
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Chapter 3

METHODOLOGY

This section of the thesis is focused on the metlardl algorithms used to generate
data which will be analyzed to construct propagatelay models. Particles will be
assumed to freely diffuse in both bounded and unbed one- and two-dimensional
environments. Examples of cases for which one-daoeal (1D) analysis are valid
are scenarios where particles are transported pillarzgées with negligible width.
Transport on a membrane, a dish, or a junctionexaamples for which a two-
dimensional (2D) analysis is valid. Three-dimenailcamalysis is proposed as future
work. Note that the distances to be considered valll, 2, 4, and 8 micrometers.

This means this investigation here will be basesttstange communications.

3.1 General Analytic Considerations

The free diffusion talked about in Chapter 2 isyvelow in packet propagation. The
particle can wander in the environment for a venygl time. Hence, a time to live
(TTL) must be assigned to each particle so thaaterithms do not run forever by
eliminating long-wandering particles from considena after their TTL expire. Note

that such assumption is realistic because geneplyicles decompose in the
environment after a given time. Based on obsematia 10-second TTL is assigned
to particles. Diffusion coefficient will be takers B = 10° m%s which is the value

used for small molecules in water.
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In the one-dimensional bounded case, the sourpéaced at the beginning of the
capillary ensuring that no particles can diffuséibé the enclosed barrier against
which the source is located. Also for the two-disienal bounded case, where the
planar junction can have a small width (but zeriglmg, extra boundaries are set up
in that no particles can go much further than behivere source is located or
forward past where the receiver is located or brehe walled width of the junction.
When diffusing particles encounter these barridhgy experience a perfect
reflection; that is, there is no loss or gain imekic energy and its direction is
reversed by a reflection angle and hence its fiosition is a reflection of where it
would have been had there been no barrier in its. @dis is not always true in the
real world, as there are some losses in kineticggmebut this approach will be

adopted for its ease of analysis.

3.2 One-Dimensional Setup Analysis

There are two cases to simulate:

1. Unbounded

2. Bounded

A pictorial view of what the aforementioned moleuthannel is like is given in

Figure 1 and Figure 2, respectively.
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Figure 1. One-Dimensional Molecular Channel (UnlrchCase)

Legenc
o Emitted Particle

— Possible directior

@ Sourc

O Destinatic
<« —-» Propagation Medium

—>
i _@>™_. 22 0 209 0% 0 002 O,

Figure 2: One-Dimensional Molecular Channel (BouhGase)

It can be observed from the figure that in the wmded case, the molecules in 1D
are unrestricted in both directions. This increabespossibility that some particles
will never tend towards the intended destinatiohe Pparticle’s ste@d in the x-

direction is going to be dictated by the followieguation:

Ad = ¥2DAt * rand1Dim (1)
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whererand1Dim = +1 equally likely. HereAt is taken as is.

The bounded case is exactly the same as the unbdwmdly that in this case, there is
an impenetrable boundary at the source. The boymdadition is implemented by
a perfect reflection that negates the positionhef particle in question by the exact

amount by which it would have breached the boundary

3.2.1 Flow Charts of Subroutines Implementing the Bquired Scenarios (1D)
There are several flow charts that describe therilhgn that is implemented in this
thesis and they are linked together chiefly by subines. Here is the 1D

implementation in terms of flow charts.
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3.2.1.1 Onebimensional Driver

1 Begin '
Y
SettFNto
"OneDimProper. P-file
txt empty
ki
OF fp
M
getfrom
fp: dD,
ttltPN,
dT
W '
oneSimulat
P:Mo jor: dD,
lob ttLtPN, dT
Feady Legend:
f tFN:text File Name, OF:
tem OpenFile, fp:file
peointer, ts:times, P:
Print, dD =Raceiver
1 Distance, ttl =time to
live, tPM = total Particle
End ‘ -
Number, dT=time step

This phase of the subroutine is the same for dothbbunded and unbounded c:
The subroutineshown in Figure 3 chiefly deals withpreparing particles for
transmissionThere is a file which h. the parameters of each required simulatiol
complete set of data for a simiion is contained on a line.h& number of differer
simulations is equal to the lir. The values required far simulation is given by th
five parameters dD, ttl, tPN and which correspond to destinat (or receiver)
distance, time to live, total particle num, and time step.This algorithn takes

(mimics) the encoding process of thitransmitterin that it gets the emissic
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requirements from the file and passes it on tosthioutine “OneSimulation” which
in turn carries out much more complex work on thdiples meant for transmission.
The remaining parts in the flow chart are theraltow for interactivity with the user

and minimize error in the system. The program adléoy multiple simulations to be

carried out.
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3.2.1.2The Subroutine “OneSimulation”

Begin tSPT, tLPC: > phss
particleJour
\ = ny:
fp, pM. oD,
I SetgM to "Dimly' a7 #l
A e
fl:
aboutFile s
gN
h
fHG: printta
aboutFilesa S0:fNG
enerallD: g pLY = tLPC fN
| setfp to CF N setto
fpl:fN
\ db,
ttl =P, AT
I—setfpl to APFfNG HPE aF
B5PT,
Y\ aPAT
BPT =0 tLPC =10,
HPC= pLY
pH=1
afF =tPN /

I af = tPN + tLPC

Legends

tLPC = total lost Particle Count, phl = Particle
Humber, gl = generic Name, TH = file name,
fHG =File Name General, db = Destination

I aPAT = 15PT /tPN Distance, dT =time step, &t =timeato live, aP
= all Particles, tPN = total Particle Number,

aF = arrival Fraction, aPAT = average Particle
Arrival Time, 50 =5tandard Output, (F =
Createdfile, APF = Appended File
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Figure 4 showshe actions of the subroutine “OneSimulation”. That mostly is
concerned with setting up unie files to recordthe collected hit timeso the
receiver. he subroutine ilFigure 5 is called “AboutFilés“AboutFiles” looks for a
unused file name with the smallest integer v attachmentwhich is then se back

to the calling functior

Begin n=gN+“", nC=
> N+ttt i+

delete fp

W
n=gh,nC=n+

“ktt, f5=1, 0=
1

—> returnnC

End
Il fp gets OF nC

=

fs=0
Legends:
n=Name, nC = textfile Name

Complete, fS=File Status, OF
= open File, fp =file pointer,
EN = generic Name
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Another function of the “Oneimulation” subroutine is that it maintains a log of
all the unique files that ha ever been created in the transmission process tdkes
note of the certain attributes of that transmisssmech as the unique file na,
average time of arrivathe number of particles that reachiedthe destinatic, and
also the total number of picles that were tramitted in that transmissi. This
helps the process of comparison of dacrosssimulations during theanalysis.
Another routine “AoutFilesGener” shown in Figure 6doe: the creation or
appending anthen returs a complete file name to the calling function. Tite in
this case as in the case of creating the ui files is dependent on a genename
given This simulatio, at the end of e&cunique transmission, prs to the screen
the file name of both the log file and the uniqiie Wwhose run was just concluc.
This helps inform the user where and what to loakiianonitoring the progress

the simulation.

( Begin ) = fpgets CFfM I

W
‘ fll=pgh +

"Overall txt"

return fi II

A 4

| fp gets OF fM p 4
Legends:

End
CF = Create File, fM =file
Mame, OF = open File, fp
=file pointer, gN
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3.2.1.3The Subroutine “ParticleJourney”

Begin
f2: Return t5PT,

— |ostStatusTi B Return tLPC
W me: ttl, ¢
t=0,d=0,d5=0, Y
f=1
End
M
A
tLPC++
ds5:
StepGenlD:
p
t+=dT, d +=dS f=0
k4
fi: °
destinationB
reached: dD,
d H N
\rr
Y
g &)
ArrivalRepor
t-fp, t
P Legends:
t=time, d = distance, dS = distance
W Step, f=flag, f1 = flagl, f2 = flag2,
SPT 4=t dD = Destination Distance, dT = time

Step, ttl= time to live, fp= file

pointer, tLPC = total Lost Particle

Count, tSPT= total Successful
o Particle time

ie)
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Begin
f2: ) Return t5PT,
— lostStatusTi ReturntLPC
W me: tl, t
t=0,d=0,d5=0, 4
f=1
End
M
Y
fLPC++
ds:
StepGenlD:
h
t+=dT, d +=dSs

fi:
destinationB
reached: dD,

d
¥
M

ArrivalRepor

t:fp, t

Legends:

W t=1time, d = distance, d5 = distance Step,

t5PT 4=t =flag, f1 =flagl, f2 =flag2, dD =
Destination Distance, dT = time Step, ttl =
time to live, fp =file pointer, tLPC = total
Lost Particle Count, tSPT=total Successful
Particle time
A
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The subroutine responsible for theurney of the each particleParticleJourne”, is
the only point wkere the bounded and the lwund form of the 1 molecular
channels panvay as illustrated | Figure 7 and Figure 8. Theibrountine mak: use
of several of its own subroutines, for example “steplDGef given in Figure 9
generates each stgpnultaneousl as the time increases. ThaeStinationBreach(”
subroutine function is to indicatehetherthe destination habeen reached. The
“LostStatusTimeé indicates whetheat any pointin time a particleis dead or not.
The “ArrivalReport” puts in the unique file created inlwoutine“OneSimulation”,

the time the particle took to gets to its destoma

' Begin '

Y
| D=.001,vB=2%D

4
| vA - sqri: vB

A
riN: rand: 1, Legends:,
-1 D = Diffusion Co-

efficient, sgrt=square
root, vB = variable
before sqrt, vA =
variable aftersgrt, rIN

vA *=rIN, return

vA =random Integer
Number, rand=

. 4 random Mumber

End Generator
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return f

Legends:

) 4
dD= Receiver Distance, d = distance achieved,
End
f=flag

I
‘ Begin '
'
setto fp:
iT

Legend:
End tT: timeTaken
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3.3 Two-Dimensional Setup Analysis

Here only the bounded case will be simulated stheetime complexity of the 2D
unbounded is high. A pictorial view of what the r@imentioned molecule channel is

like is given in Figure 12 and Figure 13, respedtiv

o oo

o}
900 0 o0 ©

Legends @ Sourct ——» Possible directior® Destinatiol © Emitted Particle
Propagation Mediu

Figure 12: Two-Dimensional Molecular Channel (Unbded)

The assumption in Figure 12 is that both the soame the receiver have fixed

positions in the medium, not free flowing like tamitted particles. In the bounded
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case, the source and the destination resides aipihesite ends of a junction and
there is also the assumption that none of thed&learcan go beyond the opposite
ends. If in their traversal they encounter bouredgrihere is a perfect bounce back.
In addition, there is another assumption that thanoel has a width in which

restricts the journeying particles. Again, if thasean attempt at breaching these
walls, the particle in question will spring back hyfactor equal to the amount it

would have crossed that boundary.

Legends @ Source —» Possible directioro  Destinatiol © Emitted Particle
Propagation Mediu«—» 0.1un «—» 1pm, 2um, 4um, or

Figure 13: Two-Dimensional Molecular Channel (Boedg
It can be seen that released particles have twoegits to its step and an increased
degree of freedom. In Figure 12 the particles arerestricted in any way, hence
they can go as they like. In the second case, €ifjBr their movement is much more

restricted. The step formulas to account for steplse x- and y- directions are:

AX = ¥/4DAt cos (PI * rand2Dim) (2)
Ay = ¥4DAt sin (PI * rand2Dim) 3)
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rand2Dim is a randomly picked number in range [0-2]. Thegotmometric functions

are in radiansPl is 3.141592654. As beforat=1 us.

3.3.1 Flow Charts of Subroutines Implementing the Bquired Scenarios (2D)

The algorithm of the 2D case is closely relatedh® 1D one but differs in minor
details such as the data to be read from the amafign file, the generation of the
steps, and of course, the complexity of the boundanditions in the bounded case.
Most of the subroutines employed for the 1D caseeanployed in this case too. The
new configuration reading not present in the presicss w, which stands for the
width which gives us the upper and lower bounddrguws molecular channel. The
2D case also differs in the number of subroutifié® reason for the differences lies
in the physical difference as showed in their pieloworld view as depicted in
Figure 12 and Figure 13. In the figures, it carséen the receiver is an aperture that
has a width equal the 1/20 of the size of the wiftlhe channel. The check as to

whether the destination has been reached is asvill

(X_receiver — X_current_particfe) + (Y_receiver — Y_current_particfe) <
Aperture_Widti3 (4)
where

X_receiver is the x-component to the position &f teceiver,

Y _receiver is the y-component to the position @f teceiver,

X_ current_particle is the x-component of the cotrgosition of the emitted particle,
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Y_ current_particle is the y-component of the cotrgosition of the emitted particle,

Aperture_Width is the radius of the aperture thakes up the receiver.Figure 14 to

Figure 18 show the remaining subroutines.
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3.3.1.1The Subroutine “TwoDimensional”

Begin F: No lab
Available
y

SettFN to o
"OneDimProper.tx
tll
\f
| OF fp tFN

Y Jo )
t=0 ‘

getfrom
fp: dD,
we, t,
tPM, dT
4
twodimdrive Legend:
rodD, w.ttl, tFN: text File Name, OF:
PN, dT Open File, fp: file
W pointer, ts: times, P:
Print, dD = Receiver
Distance, ttl = time to

t++
live, tPN = total Particle
Mumber, dT=time step,
w = width
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' Begin '

4

> pLV=tLPC

SetgN to "Dim2v"

fN:
aboutFiles:
M

v

fMNG:
aboutFilesG
enerallD: g

v

| setfp to CFfN

4

h
| setfpl to APFTNG

4

aPAT= 0

aF=0

aP = tPMN + tLPC

printto

N 50: fNG,
‘ M
¥ k4
setto

v aPAT= tSPT / tPN fpl:fN,
dD, w,
t5PT =0, tLPC =0, aP, t,
tLPC= pLV aPAT, dT,
pM=1 tLPC, aF
End
tSPT, tLPC:
particlelour
neyChranicl
e aF =tPN | aP
fp, dT, pN,
dDy, w, ttl f
Legends
tLPC = total lost Particle Count, pM = Particle
v Number, g = generic Mame, fi =file name,
fNG = File Name General, dD = Destination
o4+ Distance, dT = time step, ttl =time to live, aP =

all Particles, tPM =total Particle Mumber, aF =
arrival Fraction, aPAT = average Particle Arrival
Time, 50 = Standard OQutput, CF = Created file,
APF= Appended File, w = width

1alDriver
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-ArrivalRepo
B H S
( =Ein ) - rt:, fp, t
/ v
=0, y=w/2, B t5PT +=t

=y 10, uB = y+ B,
y-eB,t =0, mW=
¥

dx, dy:
gaussrand2:

t+=dT, x+ =d¥X,
y+=dY¥

i

f:
WithinReach
mW,d, vy, X,
eB

=

(2
—0

I| tLPC++

I| ReturntLPC, t5PT

L
‘ End '

Legend:

= axis cummulative steps, y = y axis
curmnmulative steps, £ = time, dX =x step, dY
=y step, dT = time step, w =width, eB =end
bounds, |B = lower Bounds, uB = upper
Bounds, iB = in bounds, ttl =time to live,
tLPC = total Lost Particle Count, t5PT = total
Success Particle Time, d = distance, mW =
Mid_way, f = flag

Unbounde)
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N
‘ Begin ' — y=2*wy, iB=1 9.

A 4 ArrivalRepo
. > 1, fp, t g
x=0, y=w/ 2 eB re.m.
=y/10, uB = y+eB, ,b
y-eB, t=0
1SPT+=1
dX, dv:
gaussrand2:
4, x=2%d=x,iB=1
t+=dT, x+ =dX,
y+=dY

||
=

x=-x,iB=1
° HLPC++
N
Y

II y=-y,iB=1

ReturntLPC, tSPT
h
‘ End '

Legend:

x =x axis cummulative steps, y = y axis cummulative
steps, t = time, dX = x step, dY =y step, dT =time step,
w =width, eB =end bounds, IB =lower Bounds, uB =
upper Bounds, iB = in bounds, ttl = time to live, tLPC =
total Lost Particle Count, tSPT = total Success Particle
Time, d = distance

‘Bounded)
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Begin
- > f=0

v=yD—yP h=xD

—xP, v¥=vy, h*=h,

rs=r*r,hS=v+h

M
Y
Legend:

I| f=0 yO'= y component

destination distance, xD =x
component destination
distance, v=vertical, h =
o horizontal, yP = y component
of particle, xP = x component
of particle, r5 = radius

cquare, r = radius , hs =

End hypotenuse Square, f = flag

3.40ther Tools Employed

The algorithms piented above gener the dataThe algorithms are implement
in C/C++. To analyz and present the data, Micros@&kcel and EasFit software
from Mathwave (http://www.mathwave.conare used.In the next chapt, the

results and analysexe presente
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Chapter 4

RESULTS AND ANALYSIS

4.1 Histograms of Propagation Delay in One-Dimensial (1D) and
Two-Dimensional (2D) Molecular Communication Channé

Scenarios

The histograms of propagation delay data colleftexh representative 1D and 2D
unbounded and bounded simulation runs are shovgure 19 through Figure 21.
In each simulation, 1000 particles are transmittadeach case, there are 50 bins.
The size of each bin, average arrival times (prapag delay), and number of lost
particles are also reported. The scenarios aresémrce-destination separation

distances 1, 2, 4, andun.
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Figure 20: Histograms of Propagation Delay foribeBounded Case
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1D histograms reveal the fact that unbounded smenhave propagation times that

are very widely dispersed. The bounded ones oottier hand have less variance.

Table 1: 1D Average Propagation Timesus(U: Unbounded, B: Bounded)

CJ/R, C[1-8] UB: 1um | UB:2um | UB:4um | UB:8um | B: 1pm | B:2pm B: 4um | B: 8um
R[1-8] 54945.77 118122 | 222788.1 459616 | 534.24 | 2033.844 | 8055.63 32199
UB: 1um | 54945.77 1| 0.46516 | 0.246628 | 0.119547 | 102.85 | 27.01572 | 6.82079 1.706
UB: 2um | 118122.1 1| 0.530199 | 0.257002 221.1 | 58.07825 | 14.6633 3.669
UB: 4um | 222788.1 1| 0.484727 | 417.02 | 109.5404 | 27.6562 6.919
UB: 8um 459616 1| 860.32 | 225.9839 | 57.0553 14.27
B: 1um 534.236 | 0.009723 | 0.00452 | 0.002398 | 0.001162 1| 0.262673 | 0.06632 0.017
B: 2um 2033.844 | 0.037015 | 0.01722 | 0.009129 | 0.004425 1 | 0.25247 0.063
B: 4um 8055.626 0.14661 0.0682 | 0.036158 | 0.017527 1 0.25
B: 8um 32198.76 | 0.58601 | 0.27259 | 0.144526 | 0.070056

In Table 1, the ratios of the propagation delaydu@ in a column to a value in a

row) across 1D scenarios are provided. The differebetween same distance

considerations across the bounded-unbounded islightgd in yellow. Across

intermediate distance considerations but the samggory (e.g. bounded)

differences are given by blue color. Those whicmpare the disparity of all the

other distance considerations to the nearest distaonsideration are highlighted in

red.
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Figure 21: Histograms of Propagation Delay for2ZBeBounded Case

The histograms of propagation delay data colledtech 2D bounded simulation
runs are shown in Figure 21. 2D unbounded simulatere left as future work due

to their time complexity.

4.3 Fitting Delay Data to Distributions

Although there are analytical formulas for the wlsttion of hitting times of
particles in unbounded environments, there ardosed-form formulas for the delay
distribution of freely diffusing particles in arkary, bounded environments. In this
section, data from simulations of bounded settwdgjsoe considered and matched to
well-known distributions. The distributions invegted are (1) Gamma, (2) Gamma
(8P), (3) Inverse Gaussian, (4) Inverse Gaussidp), (35) Log-Gamma, (6)
Lognormal, (7) Lognormal (3P), (8) Weibull, (9) Wsell (3P) (see Appendix A).
These distributions are those commonly used foretag “time to complete a task.”

In order to have reliable results, each scenarrepgated 10 times and the averages
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are reported. There are 10 rows in the each distoib fitting table. These 10 rows
report the parameters fitted and the 95% Kolmog@mirnov (KS) test results (see
Appendix B). The last row gives the average valaed the number of “accepts”

obtained in 10 runs.

4.3.1 One-Dimensional Scenarios
4.3.1.1 One Micrometer, One-Dimensional

Table 2: Fitting 1 um Data to Distributions 1-3

Gamma. Gamma(3P) Inv.Gaussian.

a B KS test o B Y KS test A y KS test
1,3048 409,43 | Reject 1,3826 359,94 36,567 | Reject 697,09 534,24 | Accept
1,3236 | 414,98 | Reject 1,3958 370,2 | 32,554 | Reject 727,04 549,28 | Reject
1,5211 330,66 | Reject 1,4315 320,46 44,255 | Accept 765,08 502,98 | Reject
1,4347 | 351,98 | Reject 1,4151| 326,78 | 42,547 | Reject 724,5 504,98 | Reject
1,4197 380,08 | Reject 1,4798 341,43 34,387 | Accept 766,11 539,62 | Accept
1,3168 423,2 | Reject 1,4826 | 351,45| 36,206 | Accept 733,76 557,25 | Accept
1,4679 | 358,79 | Reject 1,4129 | 342,68| 42,526 | Reject 773,12 526,68 | Reject
1,3732 403,65 | Reject 1,2954 388,77 50,682 | Accept 761,12 554,28 | Reject
1,4476 | 350,93 | Reject 1,4998 | 315,81| 34,384 | Reject 735,45 508,03 | Accept
1,6673 308,55 | Reject 1,5894 299,72 38,063 | Accept 857,72 514,44 | Reject

1,42767 | 373,225 0 1,43849 | 341,724 | 39,2171 5 754,099 | 529,178 4

Table 3: Fitting 1 um Data to Distributions 4-6

Inv.Gaussian(3P) Log-Gamma. Lognormal.

A 1] \ KS test a B KS test o 1! KS test
672,96 | 545,83 | -11,598 | Accept 54,14 | 0,11008 | Accept 0,80957 | 5,9598 | Accept
695,57 565,65 -16,373 | Accept 52,724 0,11344 | Accept 0,82333 5,9813 | Accept
731,78 | 516,06 | -13,082 | Accept 59,103 | 0,10037 | Accept 0,77123 | 5,9321 | Accept
659,29 510,24 -5,2563 | Accept 57,608 0,10287 | Reject 0,78037 5,926 | Accept
793,98 562,48 -22,859 | Accept 56,879 0,10526 | Accept 0,79348 5,9873 | Accept

839 | 581,21 | -23,966 | Accept 58,911 | 0,10221 | Accept 0,78414 | 16,0216 | Accept
695,98 535,57 -8,8945 | Accept 57,282 0,10413 | Accept 0,78773 5,9649 | Accept
692,82 | 563,67 | -9,3917 | Accept 55,533 0,1081 | Accept 0,80514 | 16,0029 | Accept
752,44 526,56 -18,533 | Accept 57,646 0,10295 | Accept 0,78122 5,9344 | Accept
878,54 | 539,29 | -24,851 | Accept 62,5| 0,09553 | Accept 0,75484 | 5,9705 | Accept
741,236 | 544,656 | -15,4805 10 57,2326 | 0,104494 9 0,789105 | 5,96808 10
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Table 4: Fitting 1 um Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

a M Y KStest |a B KStest| |a B Y KS test

0,85207 | 5,9072 14,116 | Accept 1,5207 564,17 | Reject 1,1621 526,36 | 36,872 | Reject

0,85614 | 5,9414 10,902 | Accept 1,4987 579,66 | Reject 1,1718 | 547,79 | 32,858 | Accept

0,80588 | 5,8874 12,108 | Accept 1,5991 538,81 | Reject 1,1988 488,65 | 44,812 | Accept

0,83837 | 5,8519 19,379 | Accept 1,5742 538,52 | Reject 1,184 | 491,54 | 42,858 | Reject

0,80693 | 5,9704 | 4,8518 | Accept 1,5608 574,32 | Reject 1,2108 | 540,34 | 34,814 | Accept

0,79179 | 6,0119 2,9313 | Accept 1,5816 591,32 | Reject 1,1987 555,91 | 36,813 | Reject

0,83894 | 5,9001 17,617 | Accept 1,5609 561,74 | Reject 1,1877 | 514,94 | 42,845 | Reject

0,86267 5,932 19,65 | Accept 1,5289 587,89 | Reject 1,1348 528,26 | 50,894 | Accept

0,80145 | 5,9085 7,0541 | Accept 1,5833 541,89 | Reject 1,2185 507,41 | 34,816 | Reject

0,75865 | 5,9655 1,4788 | Accept 1,6414 554,8 | Reject 1,2723 514,96 | 38,728 | Reject

0,82129 | 5,9276 | 11,0088 10| 1,56496| 563,312 0 1,194 | 521,616 | 39,631 4

These distributions ordered from the worst to tketkare as follows: Gamma.(0),
Weibull.(0), Weibull(3P)(4), Inv.Gaussian.(4), Gama®P)(5), Log-Gamma.(9),

Inv.Gaussian(3P)(10), Lognormal.(10) and LognorB8rR)(10).

4.3.1.2 Two Micrometer One-Dimensional

Table 5: Fitting 2 um Data to Distributions 1-3

Gamma. Gamma(3P) Inv.Gaussian.

a B KS test a B y KS test A 1) KS test
1,3316 1527,4 | Reject 1,2992 1416,6 193,4 | Reject 2708,3 2033,8 | Accept
1,5933 1247,8 | Reject 1,5198 | 1221,1| 132,36 | Accept 3167,8 | 1988,2 | Reject
1,4046 1405,7 | Reject 1,4417 | 1258,1| 160,75 | Reject 2773,3| 1974,5 | Accept
1,4183 1465,5 | Reject 1,4046 1372,2 151,1 | Accept 2947,8 | 2078,5 | Reject
1,3869 1484 | Reject 1,4373 | 1340,8| 130,96 | Accept 2854,3 | 2058,1 | Reject
1,3504 1499,4 | Reject 1,3783 1362,2 147,21 | Accept 2734,2 2024,7 | Accept
1,5277 1359 | Reject 1,4123 | 1350,5| 168,82 | Accept 3171,7 | 2076,1 | Reject
1,5193 1428,3 | Reject 1,4806 1352,1 168,18 | Accept 3297 | 2170,1 | Reject
1,431 1409,1 | Reject 1,3577 | 1361,8| 167,64 |Reject 2885,6 | 2016,5 | Reject
1,623 1273,1 | Reject 1,5274 | 1255,1| 149,12 | Accept 3353,4| 2066,2 | Reject

1,45861 1409,93 0 1,4259 | 1329,1| 156,95 7 2989,3 | 2048,7 3
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Table 6: Fitting 2 um Data to Distributions 4-6

Inv.Gaussian(3P) Log-Gamma Lognormal.

A 1] Y KS test a B KS test o 3l KS test

2580 2062 -28,167 | Accept 84,721 0,08625 | Accept 0,79352 7,3075 | Accept
3021,1 2070,8 -82,656 | Accept 86,638 0,08429 | Accept 0,78416 7,3026 | Accept
2781,5 2017 -42,497 | Accept 89,203 0,08176 | Accept 0,77178 7,2929 | Accept
2816,3 2141,3 -62,835 | Accept 83,486 0,08779 | Accept 0,80173 7,3292 | Accept
2969,8 2153,6 -95,528 | Accept 82 0,08924 | Accept 0,80769 7,3176 | Accept
2951,5 2123,6 -98,819 | Accept 81,751 0,08928 | Accept 0,80687 7,2991 | Accept
3010,7 2150,7 -74,556 | Accept 86,267 0,08508 | Accept 0,78987 7,34 | Accept
3132,1 2228 -57,893 | Accept 90,74 0,08147 | Accept 0,77567 7,3925 | Accept
2370,8 2022 -5,4974 | Accept 82,642 0,08829 | Accept 0,80225 7,2967 | Accept
3467,9 2180,3 -114,12 | Accept 90,584 0,08114 | Accept 0,77183 7,3497 | Accept
2910,2 | 2114,93| -66,2568 10 85,8032 | 0,085459 10 0,79054 | 7,32278 10

Table 7: Fitting 2 um Data to Distributions 7-9

Lognormal(3P) Weibull. Weibull(3P)
a M y KS test a B KStest | |a B y KS test
0,85136 7,235 74,786 | Accept 1,5521 | 2154,2 | Reject 1,1304 | 1928,3 194,58 | Reject
0,79991 | 7,2826 21,511 | Accept 1,5778 | 2131,8 | Reject 1,2445| 1996,6 | 134,12 | Accept
0,81046 | 7,2429 52,709 | Accept 1,5957 | 2102,4 | Reject 1,1885 | 1930,3 162,4 | Reject
0,83373 | 7,2893 42,691 | Accept 1,5401 | 2208,3 | Reject 1,183 | 2047,6 152,4 | Reject
0,8177 | 7,3052 13,301 | Accept 1,5346 | 2185,7 | Reject 1,1948 | 2053,3 | 132,36 | Accept
0,81234 | 7,2923 7,186 | Accept 1,537 | 2144,4| Reject 1,1675| 1987,2 148,47 | Reject
0,81496 | 7,3083 34,815 | Accept 1,5648 | 2219,5 | Reject 1,197 | 2031,2 170,3 | Accept
0,80883 | 7,3499 49,554 | Accept 1,5908 | 2325,1 | Reject 1,2196 | 2143,4 170,17 | Accept
0,88084 | 7,1994 96,642 | Accept 1,5288 | 2143,7 | Reject 1,1635| 1954,9 168,52 | Reject
0,7677 7,355 | -6,2038 | Accept 1,6065 | 2220,3 | Reject 1,248 | 2062,2 | 151,96 | Reject
0,81978 | 7,28599 | 38,69912 10 1,56282 | 2183,54 0 1,19368 | 2013,5 | 158,528 4

These distributions ordered from the worst to testlare as follows: Gamma.(0),
Weibull.(0), Inv.Gaussian.(3), Weibull(3P)(4), Gam{®P)(7), Log-Gamma(10),

Inv.Gaussian(3P)(10), Lognormal.(10) and LognorBf)(10).
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4.3.1.3 Four Micrometer One-Dimensional

Table 8: Fitting 4 um Data to Distributions 1-3

Gamma. Gamma(3P) Inv.Gaussian.

a B KS test o B Y KS test A Il KS test
1,541 5227,5 | Reject 1,4163 5223,9 656,87 | Accept 12414 8055,6 | Reject
1,3732 | 6017,6 | Reject 1,3678 5548 674,88 | Accept 11348 8263,7 | Accept
1,5493 | 5267,7 | Reject 1,4143 5275,4 699,85 | Reject 12644 8161,1 | Reject
1,4384 | 5477,4 | Reject 1,5 4900,8 527,73 | Accept 11333 7878,9 | Reject
1,2361 6826 | Reject 1,4284 5579 468,74 | Reject 10430 8437,6 | Accept
1,4932 5288,4 | Reject 1,5131 4879,5 513,67 | Accept 11791 7896,6 | Accept
1,4718 5496 | Reject 1,5378 4931,8 504,78 | Reject 11906 8089,1 | Accept
1,5154 5374,4 | Reject 1,4813 5084 613,46 | Accept 12341 8144,2 | Reject
1,3761| 6177,5| Reject 1,2497 6183 774,18 | Accept 11698 8501 | Reject
1,5417 5270,5 | Reject 1,4802 5069 622,38 | Reject 12527 8125,6 | Reject

1,45362 | 5642,3 0 1,43889 | 5267,44| 605,654 6 11843,2 | 8155,34 4

Table 9: Fitting 4 um Data to Distributions 4-6
Inv.Gaussian(3P) Log-Gamma Lognormal.

A y y KS test o B KS test o 1! KS test
11781 | 8350,4 -294,8 | Accept 121,54 0,07156 | Accept 0,78855 8,6978 | Accept
11620 8550,7 -286,95 | Accept 119,87 0,07268 | Accept 0,79538 8,7124 | Accept
11372 8353,3 -192,28 | Accept 123,78 0,07038 | Accept 0,78268 8,7123 | Accept
11966 | 8207,9| -329,05 | Accept 123,17 0,07044 | Accept 0,78133 8,6758 | Accept
10189 8579 -141,41 | Accept 114,2 0,07631 | Accept 0,81511 8,7151 | Accept
12887 | 8348,7| -452,06 | Accept 122,67 0,07076 | Accept 0,78337 8,6805 | Accept
12335 8416,1 -327,02 | Accept 125 0,06964 | Accept 0,77817 8,7047 | Accept
12786 | 8517,5| -373,34 | Accept 125,3 0,06955 | Accept 0,77812 8,7144 | Accept
10494 | 8710,2 -209,2 | Accept 111,88 0,07798 | Reject 0,82441 8,7243 | Accept
12859 8501,3 -375,67 | Accept 125,86 0,06923 | Accept 0,77631 8,7135 | Accept

11828,9 | 8453,51 | -298,178 10 121,327 | 0,071853 9 0,790343 | 8,70508 10
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Table 10: Fitting 4 um Data to Distributions 7-9

Lognormal(3P) Weibull. Weibull(3P)
a I y KStest| |a B KStest| |a B Y KS test
0,81201 | 8,6681 127,09 | Accept 1,568 8622 | Reject 1,1994 | 7877,3| 666,57 | Accept
0,8202 | 8,6813 134,65 | Accept 1,5551 | 8774,3 | Reject 1,1631| 8017,8| 683,15 | Accept
0,8248 | 8,6588 229,9 | Accept 1,5738 | 8738,5 | Reject 1,1973| 7947,5| 705,31 | Reject
0,79305 | 8,6608 63,932 | Accept 1,5849 | 8401,2 | Reject 1,2181 | 7873,5| 535,09 | Reject
0,8602 | 8,6594 233,45 | Accept 1,5118 | 8886,9 | Reject 1,1748 | 8460,1| 473,84 | Reject
0,77479 | 8,6915| -47,719 | Accept 1,5866 | 8436,9 | Reject 1,2309 | 7922,8| 522,65 | Reject
0,7913 | 8,6878 74,121 | Accept 1,5902 | 8636,8 | Reject 1,2345| 8151,8 | 512,74 | Reject
0,78655 | 8,7036 48,219 | Accept 1,5926 8717 | Reject 1,2204 | 8063,9| 620,86 | Accept
0,87719 | 8,6609 263,57 | Accept 1,4958 | 9010,6 | Reject 1,1205| 8068,3 | 776,58 | Accept
0,78445 8,703 46,679 | Accept 1,5951 | 8705,3 | Reject 1,2221| 8034,9 630,7 | Reject
0,812454 | 8,67752 | 117,3892 10 1,56539 | 8692,95 0 1,19811 | 8041,79 | 612,749 4

These distributions ordered from the worst to tketkare as follows: Gamma.(0),
Weibull.(0), Inv.Gaussian.(4), Weibull(3P)(4), Gam{®P)(6), Log-Gamma(9),

Inv.Gaussian(3P)(10), Lognormal.(10) and LognorB8rR)(10).

4.3.1.3 Eight Micrometer One-Dimensional

Table 11: Fitting 8 um Data to Distributions 1-3

Gamma. Gamma(3P) Inv.Gaussian.

a B KS test o B y KS test A 1 KS test
1,6505 | 19508 | Reject 1,6763 18027 1979,9 | Accept 53145 | 32199 | Accept
1,5113 20514 | Reject 1,5021 19287 2033,2 | Accept 46853 | 31003 | Reject
1,4239 | 23023 | Reject 1,3231 22408 3134 | Accept 46681 | 32783 | Reject
1,4798 | 20937 | Reject 1,4458 19781 2383,7 | Accept 45848 | 30983 | Reject
1,4499 21720 | Reject 1,507 19526 2066,4 | Accept 45659 | 31492 | Accept
1,4641 | 22321 | Reject 1,429 20917 2789 | Accept 47847 | 32680 | Reject
1,5243 20649 | Reject 1,4779 19467 2706,4 | Accept 47980 | 31476 | Accept
1,4971 | 21700 | Reject 1,4439 20864 2361,2 | Reject 48638 | 32488 | Accept
1,6487 19573 | Accept 1,4357 20736 2499,7 | Accept 53201 | 32269 | Reject
1,4145 23045 | Reject 1,4087 21523 2278,3 | Accept 46107 | 32597 | Reject

1,50641 | 21299 1 1,46495 | 20253,6| 2423,18 9 48196 | 31997 4

Table 12: Fitting 8 um Data to Distributions 4-6
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Inv.Gaussian(3P) Log-Gamma Lognormal.

A 1] y KS test a B KS test o g KS test
56689 33861 -1662,1 | Accept 181,98 0,05555 | Accept 0,74906 10,11 | Accept
53244 33215 -2212 | Accept 161,62 0,06217 | Accept 0,78996 10,048 | Accept
41251 33128 -345,5 | Accept 161,86 0,06235 | Accept 0,7929 10,093 | Accept
44757 31985 -1001,8 | Accept 164,05 0,06123 | Accept 0,78384 10,045 | Accept
50819 33207 -1715,8 | Accept 165,54 0,06079 | Accept 0,78173 10,063 | Accept
45631 33379 -699,34 | Accept 169,05 0,05975 | Accept 0,77652 10,101 | Accept
52933 33106 -1630,1 | Accept 173,75 0,058 | Accept 0,76409 10,077 | Accept
50246 34141 -1652,9 | Accept 162,09 0,06224 | Accept 0,79206 10,089 | Accept
57725 34900 -2630,1 | Accept 161,04 0,06265 | Accept 0,79468 10,09 | Accept
45436 33797 -1200,1 | Accept 157,31 0,06409 | Accept 0,80337 10,081 | Accept
49873 | 33471,9| -1474,97 10 165,83 | 0,060882 10 0,782821 | 10,0797 10

Table 13: Fitting 8 um Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

a Il y KStest| |a B KStest| |a B y KS test
0,74731| 10,112 | -43,559 | Accept 1,6571 | 34701 | Reject 1,2992 | 32836 | 2026,3 | Reject
0,76344 | 10,082 -583,1 | Accept 1,578 33177 | Reject 1,2328 | 31082 | 2067,5 | Accept
0,85933 10,01 1372,6 | Accept 1,5526 34907 | Reject 1,15 31227 | 3147,9 | Accept
0,81002 | 10,011 550,02 | Accept 1,5749 | 33102 | Reject 1,2028 | 30509 2412 | Accept
0,77599 10,07 -127,3 | Accept 1,5885 33607 | Reject 1,2224 | 31522 | 2109,5 | Accept
0,81978 | 10,046 957,13 | Accept 1,5883 | 34915 | Reject 1,193 | 31830 2811 | Accept
0,76394 | 10,077 | -3,5643 | Accept 1,6277 33768 | Reject 1,2203 30791 | 2738,6 | Accept
0,7946 | 10,086 56,03 | Accept 1,565 | 34688 | Reject 1,2068 | 32156 2391 | Accept
0,75808 | 10,136| -841,88 | Accept 1,5684 | 34685 | Reject 1,2239 | 31828 | 2537,4 | Accept
0,82376 | 10,056 430,09 | Accept 1,5379 | 34640 | Reject 1,1847 | 32208 | 2308,3 | Accept

0,791625 | 10,0686 | 176,6467 10 1,58384 | 34219 0 1,21359 | 31598,9 | 2454,95 9

These distributions ordered from the worst to tlestlare as follows: Weibull.(0),

Gamma.(1), Inv.Gaussian.(4), Weibull(3P)(9), Gan8Ra(9), Log-Gamma(10),

Inv.Gaussian(3P)(10), Lognormal.(10) and LognorB8fR)(10).

The popular 2 parameter distributions Gamma andoW eseem not be a fit at all.

Even the Inverse Gaussian which just 4 matches stlravery time cannot be

considered as a good fit. The Weibull (3p) disttidvu and Gamma(3p), while giving
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an admirable accuracy in some cases of distanabefurlong, their lack of

consistence make them unadvisable for modelingydelde log-gamma does
admirably well by fluctuating only between 9 aceepind 10 accepts during the
whole evaluation process. The fit should be comsui®nly second to the Inverse
Gaussian(3p), Lognormal and Lognormal (3p) whi¢hhaebugh give a steady output

of 10 accepts.

4.3.2 Two-Dimensional Scenarios

4.3.2.1 One Micrometer Two-Dimensional

Table 14: Fitting 1 um Data to Distributions1-3

Gamma. Gamma(3P) Inv.Gaussian.

a B KStest | |a B Y KS test A Il KS test
1,3041 796,38 | Reject 1,2345| 792,33 | 60,419 | Accept 1354,3 | 1038,5 | Reject
1,3842 | 703,04 | Reject 1,3541| 679,39 | 53,167 | Accept 1347 | 973,14 | Reject
1,361 711,88 | Reject 1,3482 672,5| 62,206 | Accept 1318,7 968,9 | Reject
1,3102 | 752,24 | Reject 1,2896 | 725,98 | 49,425 | Accept 1291,4 | 985,62 | Reject
1,4135 688,65 | Reject 1,3796 | 661,28 | 61,119 | Accept 1376 | 973,43 | Reject
1,338 721,1 | Reject 1,3368 | 678,88 | 57,305 | Accept 1291 | 964,84 | Reject
1,3912 | 643,15 | Reject 1,3408 | 623,08 | 59,326 | Accept 1244,8 | 894,78 | Reject
1,2927 744,86 | Reject 1,1844 | 751,62 72,7 | Accept 1244,8 | 962,91 | Reject
1,0761 927,1 | Reject 1,3772 694,5 41,22 | Reject 1073,6 | 997,68 | Accept
1,4304 | 691,33 | Accept 1,3138 | 706,87 | 60,189 | Accept 1414,5| 988,89 | Reject

1,33014 | 737,973 1 1,3159 | 698,643 | 57,7076 9 1295,61 | 974,869 1
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Table 15: Fitting 1 um Data to Distributions 4-6

Inv.Gaussian(3P) Log-Gamma Lognormal.

A y Y KS test a B KS test o vl KS test
1254,8 1093,2 -54,625 | Accept 54,772 0,12016 | Reject 0,88883 6,5814 | Accept
1493,1 1054 | -80,878 | Accept 58,351 | 0,11216 | Reject 0,85632 6,5445 | Accept
1352,6 1021,7 | -52,777 | Accept 61,374 0,10667 | Accept 0,83528 6,547 | Accept
1220,2 1040,3 | -54,635 | Accept 54,394 | 0,12009 | Reject 0,88528 6,5324 | Accept
1380,1 1026,3 | -52,834 | Accept 62,296 | 0,10526 | Accept 0,83039 6,5574 | Accept
1275,2 1013,6 | -48,742 | Accept 59,239 0,1103 | Reject 0,8485 6,5339 | Accept
1219,4 939,14 -44,36 | Accept 59,846 | 0,10807 | Accept 0,83563 6,4677 | Accept

1160 1006,6 | -43,705 | Accept 55,54 0,11729 | Reject 0,87367 6,5143 | Accept
1310,8 1051,5 -53,79 | Accept 59,229 | 0,11066 | Accept 0,85125 6,5546 | Accept
1443,8 1061,8 | -72,935 | Accept 58,298 0,11251 | Reject 0,85859 6,5589 | Accept

1311 | 1030,814 | -55,9281 10 58,3339 | 0,112317 4 0,856374 | 6,53921 10

Table 16: Fitting 1 um Data to Distributions 7-9

Lognormal(3P) Weibull. Weibull(3P)
a U y KStest | |a B KS test a B y KS test
0,89627 6,573 4,0229 | Accept 1,3953 1086,7 | Reject 1,1149| 1019,4| 60,806 | Accept
0,81288 | 6,5956 | -25,486 | Accept 1,4576 1029,1 | Reject 1,173 | 973,95| 53,717 | Accept
0,83517 | 6,5472|-0,06774 | Accept 1,4862 1023,9 | Reject 1,162 | 957,81 | 62,748 | Accept
0,88692 | 6,5306 | 0,85599 | Accept 1,4016 1032,9 | Reject 1,139 | 982,82 | 49,793 | Accept

0,83058 | 6,5571| 0,11172 | Accept 1,4946 1032,3 | Reject 1,1802 | 967,91 61,71 | Accept

0,85531 | 6,5259 3,816 | Accept 1,4608 1017,5 | Reject 1,1564 | 957,46 | 57,767 | Accept

0,84437| 6,4573 | 4,6938 | Accept 1,483 946,72 | Reject 1,1617 882,4 | 59,772 | Accept

0,89705 | 6,4876 11,973 | Accept 1,4171 1009,8 | Reject 1,0908 | 920,92 | 72,884 | Accept

0,84254 | 6,5648 | -5,0259 | Accept 1,4625 1037,4 | Reject 1,1435| 1007,4| 41,797 | Reject

0,8311 6,591 | -15,996 | Accept 1,4508 1045,9 | Reject 1,1605| 979,64 | 60,721 | Accept

0,853219 | 6,54301 | -2,11022 10 1,45095 | 1026,222 0 1,1482 | 964,971 | 58,1715 9

These distributions ordered from the worst to tkeetkare as follows: Weibull.(0),
Gamma.(1), Inv.Gaussian.(1), Log-Gamma(4), WeiB&)(9), Gamma(3P)(9),

Inv.Gaussian(3P)(10), Lognormal.(10) and LognorBf)(10).
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4.3.2.2 Two Micrometer Two-Dimensional

Table 17: Fitting 2 um Data to Distributions 1-3

Gamma. Gamma(3P Inv.Gaussian.

a B KS test o B y KStest | A 1! KS test
1,3515 2064,9 | Reject 1,3674 1906 184,47 | Accept 3771,8 2790,7 | Reject
1,4177 2016,4 | Reject 1,3707 1938,9 201,12 | Accept 4053 2858,8 | Reject
1,6315 1759,5 | Accept 1,681 1644,8 105,76 | Accept 4683,3 2870,6 | Reject
1,533 1912,9 | Reject 1,4045 1942,4 204,36 | Accept 4495,4 2932,5 | Reject
1,4523 1997,4 | Reject 1,3008 2047,1 238,02 | Accept 4213,2 2900,9 | Reject
1,3381 2184,1 | Reject 1,2959 2056 258,23 | Reject 3910,8 2922,6 | Accept
1,5549 1873,1 | Reject 1,3943 1914,9 242,68 | Accept 4528,8 2912,5 | Reject
1,539 1906,7 | Reject 1,5569 1804,2 125,48 | Accept 4516,2 2934,4 | Reject
1,4152 2087,1 | Reject 1,4807 1911,6 123,19 | Reject 4180,2 2953,8 | Reject
1,3151 2152,6 | Reject 1,3451 1967,2 184,63 | Accept 3722,8 2830,8 | Reject

1,45483 | 1995,47 1 1,41973 1913,31 186,794 8| 4207,55| 2890,76 1

Table 18: Fitting 2 um Data to Distributions 4-6
Inv.Gaussian(3P) Log-Gamma Lognormal.

A 1] Y KStest |a B KS test o vl KS test
3659,1 2890 -99,303 | Accept 85,522 0,08898 | Accept 0,82246 7,6097 | Accept
4103,2 3002,2 -143,44 | Accept 87,325 0,0875 | Accept 0,81728 7,6411 | Accept
5122,2 3090,4 -219,88 | Accept 94,952 0,08081 | Accept 0,78706 7,6732 | Accept
4694,7 3136,4 -203,95 | Accept 88,699 0,08654 | Reject 0,8146 7,6757 | Accept
4125,6 3050,3 -149,38 | Accept 86,071 0,08893 | Reject 0,82467 7,6547 | Reject
3783,8 2997,5 -74,962 | Accept 89,917 0,08523 | Accept 0,80775 7,6633 | Accept
4656,5 3084,9 -172,42 | Accept 92,844 0,08272 | Reject 0,79668 7,6803 | Accept
4856,4 3157,2 -222,76 | Accept 88,932 0,08633 | Accept 0,81374 7,6777 | Accept
4438,7 3146,8 -193,07 | Accept 85,43 0,08975 | Accept 0,82913 7,6674 | Accept
3923,3 2975,2 -144,36 | Accept 84,202 0,09049 | Accept 0,82994 7,6195 | Accept

4336,35| 3053,09| -162,353 10| 88,3894 | 0,086728 7 0,814331| 7,65626 9
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Table 19: Fitting 2 um Data to Distributions 7-9
Lognormal(3P) Weibull. Weibull(3P)

a M y KStest | a B KS test | a B Y KS test

0,84643 7,5806 | 40,951 | Accept 1,5021 2951,6 | Reject 1,1652 2756,4 186,26 | Accept

0,82259 7,6346 | 9,6129 | Accept 1,5169 3034,5 | Reject 1,1738 | 2815,1| 203,15 | Reject

0,75226 7,7175 | -71,946 | Accept 1,5827 3084,5 | Reject 1,3103 3007,9 110,14 | Accept

0,79295 7,7024 | -41,94 | Accept 1,5273 3133,2 | Reject 1,2023 2906 | 206,87 | Accept

0,83222 7,6455 | 13,594 | Reject 1,5034 3086,2 | Reject 1,1524 | 2803,6 | 239,29 | Accept

0,85096 7,6101 | 78,452 | Accept 1,5268 3094,6 | Reject 1,1329 2793,5 259,44 | Accept

0,79018 | 7,6885| -12,919 | Accept 1,5599 3122,2 | Reject 1,1985| 2841,3| 244,93 | Accept

0,7812 7,7179 -63,95 | Accept 1,5308 3136,9 | Reject 1,2608 | 3030,8 128,54 | Accept

0,80655 7,6945 | -41,931 | Accept 1,4999 3128,4 | Reject 1,217 | 3028,8| 126,72 | Reject

0,8319 7,6172 | 3,3951 | Accept 1,4956 2985 | Reject 1,1546 | 2790,9 186,31 | Accept

0,810724 | 7,66088 | -8,6681 9] 1,52454| 3075,71 0]1,19678 | 2877,43 | 189,165 8

These distributions ordered from the worst to ltkeset are as follows: Weibull.(0),
Gamma.(1), Inv.Gaussian.(1), Log-Gamma(7), WeiB&)(8), Gamma(3P)(8),

Lognormal.(9), Lognormal(3P)(9) and Inv.Gaussian(B@).

4.3.2.3 Four Micrometer Two Dimensional

Table 20: Fitting 4 um Data to Distribution 1-3

Gamma. Gamma(3P) Inv.Gaussian.

a B KS test o B y KS test A 1! KS test
1,4856 6427,8 | Reject 1,451 6073,6 736,34 | Accept 14186 9549 | Accept
1,4891 6858 | Reject 1,3249 7063,9 853,37 | Accept 15208 10212 | Reject
1,3063 7506,4 | Reject 1,2721 7011,6 886,27 | Accept 12809 9805,5 | Reject
1,4929 6519,9 | Reject 1,2954 6809,7 912,51 | Accept 14532 9733,7 | Reject
1,567 6595,5 | Reject 1,4797 6524,6 680,4 | Accept 16195 10335 | Reject
1,4056 6811,6 | Reject 1,3285 6611,2 791,08 | Reject 13458 9574,3 | Reject
1,4457 7093,1 | Reject 1,4481 6684,7 574,53 | Accept 14825 10255 | Reject
1,5227 6522 | Reject 1,3953 6592,1 733,26 | Accept 15122 9931 | Reject
1,5566 6432,3 | Reject 1,6259 5880,7 450,94 | Reject 15585 10012 | Reject
1,6146 6328,9 | Accept 1,4598 6518,2 703,64 | Accept 16500 10219 | Reject

1,48861 | 6709,55 1 1,40807 | 6577,03 | 732,234 8 14842 | 9962,65 1
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Table 21: Fitting 4 um Data to Distribution 4-6

Inv.Gaussian(3P) Log-Gamma Lognormal.

A 1] y KS test a B KS test o 1 KS test
14691 9976,5 -427,52 | Accept 128,21 0,06918 | Accept 0,78294 | 8,8697 | Accept
14668 10703 | -490,16 | Accept 119,67 | 0,07453 | Reject 0,81495| 8,9197 | Accept
12187 10005 -199,13 | Accept 119,22 0,0744 | Accept 0,81198 | 8,8705 | Accept
13775 10115 | -381,55 | Accept 121,67 | 0,07296 | Reject 0,80439 | 8,8773 | Accept
17255 11060 -724,43 | Reject 124,96 0,07159 | Reject 0,79985 | 8,9456 | Reject
12387 9809,4 -235,13 | Accept 119,99 0,07377 | Accept 0,80762 8,851 | Accept
14427 10738 | -483,34 | Accept 118,14 | 0,07549 | Reject 0,8201 | 8,9182 | Accept
14313 10379 -447,63 | Accept 120,87 0,07359 | Accept 0,80866 8,895 | Accept
16914 10658 | -645,61 | Accept 129,01 | 0,06914 | Accept 0,78492 | 8,9198 | Accept
17031 10931 -712,04 | Accept 124,48 0,07177 | Reject 0,80036 | 8,9342 | Accept

14764,8 | 10437,49 | -474,654 9 122,622 | 0,072642 5 0,803577 | 8,9001 9

Table 22: Fitting 4 um Data to Distribution 7-9

Lognormal(3P) Weibull. Weibull(3P)

a y Y KS test o B KStest «a B y KS test
0,79347 | 8,8563| 69,493 | Accept 1,5829 | 10203 | Reject 1,2061 | 9405,1| 746,33 | Accept
0,82753 | 8,9043 81,38 | Accept 1,52 | 10889 | Reject 1,164 | 9881,9 859,1 | Accept
0,86418 | 8,8066| 310,98 | Accept 1,5174 | 10373 | Reject 1,1209 9319 | 890,29 | Accept
0,82839 | 8,8476| 150,22 | Accept 1,5385| 10389 | Reject 1,1496 | 9273,2 921,2 | Accept
0,77663 | 8,9747 | -165,56 | Reject 1,5553 11081 | Reject 1,233 10354 | 690,41 | Accept

0,85| 8,7986 253,7 | Accept 1,5247 | 10155 | Reject 1,1517 | 9255,1| 795,79 | Accept

0,83015 8,906 | 64,488 | Accept 1,5106 10899 | Reject 1,2076 10339 | 581,46 | Accept

0,82238 | 8,8781| 87,765 | Accept 1,5308 10597 | Reject 1,1936 | 9785,2 | 739,69 | Accept

0,76484 | 8,9454 -142,9 | Accept 1,5836 10727 | Reject 1,2798 | 10356 | 464,53 | Accept
0,77891 8,961 | -150,63 | Accept 1,5541 10959 | Reject 1,2292 10190 | 715,96 | Accept
0,813648 | 8,88786 | 55,8936 9 1,54179 | 10627,2 0 1,19355 | 9815,85 | 740,476 10

These distributions ordered from the worst to ltkeet are as follows: Weibull.(0),
Gamma.(1), Inv.Gaussian.(1), Log-Gamma(5), Gamm)@&3P Lognormal.(9),

Lognormal(3P)(9), Inv.Gaussian(3P)(9) and Weib&#)3.0).
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4.3.2.4 Eight Micrometer Two-Dimensional

Table 23: Fitting 8 um Data to Distributions 1-3

Gamma. Gamma(3P) Inv.Gaussian.

a B KS test a B y KS test A 1! KS test
1,5215 22576 | Reject 1,4194 | 22237 2786,4 | Accept 52261 34349 | Reject
1,5728 23351 | Reject 1,5929 | 21840 1937,2 | Accept 57765 36727 | Reject
1,5067 24268 | Reject 1,4159 | 23940 2668 | Accept 55088 36563 | Reject
1,493 22916 | Reject 1,5685 | 20371 2262,6 | Reject 51083 34215 | Accept
1,5872 22093 | Reject 1,6209 | 20349 2081,3 | Accept 55654 35065 | Reject
1,6103 22439 | Reject 1,4794 | 22586 2719,3 | Accept 58183 36132 | Reject
1,4288 24378 | Reject 1,4586 | 22135 2546,4 | Reject 49769 34832 | Accept
1,5356 22785 | Reject 1,4584 | 22309 2451,5 | Accept 53726 34987 | Reject
1,6157 22745 | Reject 1,4168 | 23728 3133 | Accept 59378 36750 | Reject
1,4945 23648 | Reject 1,3963 | 23045 3163,9 | Accept 52821 35343 | Accept

1,53661| 23119,9 0 1,48271 | 22254 | 2574,96 8 54572,8 | 35496,3 3

Table 24: Fitting 8 um Data to Distributions 4-6
Inv.Gaussian(3P) Log-Gamma Lognormal.

A M Y KStest| |a B KStest| | o Il KS test
51777 | 35791 | -1441,7 | Accept 166,44 | 0,06098 | Accept 0,78625| 10,148 | Accept
63471 | 39304 | -2577,4| Accept 168,64 | 0,06061 | Reject 0,78667| 10,221 | Accept
56237 | 38511 -1948 | Accept 163,08 | 0,06256 | Accept 0,79857 | 10,203 | Accept
53281 | 35441 | -1225,9 | Accept 176,82 | 0,05743 | Accept 0,76336| 10,156 | Accept
57722 | 36744 | -1678,7 | Accept 176,61 | 0,05766 | Accept 0,76594 | 10,184 | Accept
59872 | 38243 | -2111,2 | Accept 170,2 | 0,05996 | Accept 0,78188 | 10,206 | Accept
46268 | 35374 | -541,47 | Accept 168,32 | 0,06035 | Accept 0,78252| 10,157 | Accept
49607 | 36151 | -1164,1 | Accept 163,87 | 0,06201 | Accept 0,79342| 10,162 | Accept
55297 | 38261| -1510,8 | Accept 168,31 | 0,06072 | Accept 0,7873 | 10,219 | Accept
52013 | 36502 | -1159,8 | Accept 171 | 0,05953 | Accept 0,77806 10,18 | Accept

54554,5|37032,2 | -1535,91 10 169,329 | 0,060181 9| |0,782397 | 10,1836 10
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Table 25: Fitting 8 um Data to Distributions 7-9

Lognormal(3P) Weibull. Weibull(3P)

a M y KS test a B KStest | |a B y KS test
0,80077 10,13 | 340,69 | Accept 1,5735 36738 | Reject 1,1985 33614 | 2819,4 | Accept
0,76245 | 10,252 | -635,59 | Accept 1,5833 39398 | Reject 1,272 | 37615| 1980,8 | Accept
0,79789 | 10,204 | -16,754 | Accept 1,5517 39004 | Reject 1,197 36073 2713 | Reject
0,78009 | 10,134 | 414,73 | Accept 1,6196 36621 | Reject 1,2442 | 34401 | 2307,6 | Reject
0,76925 10,18 | 84,794 | Accept 1,6182 37687 | Reject 1,2767 | 35712 | 2123,9 | Accept
0,7753 | 10,214 |-168,59 | Accept 1,5873 38776 | Reject 1,2315 35826 | 2756,9 | Accept
0,83242 | 10,094 | 1153,8 | Accept 1,5706 37087 | Reject 1,1988 | 34451 | 2570,2 | Reject
0,8195| 10,129 | 604,76 | Accept 1,5552 37394 | Reject 1,2155 34798 | 2480,6 | Reject
0,80798 | 10,193 | 514,32 | Accept 1,5708 39455 | Reject 1,2083 | 35870 | 3157,6 | Accept
0,80556 | 10,145 | 667,24 | Accept 1,5876 37782 | Reject 1,1831 34144 | 3206,1 | Accept

0,795121 | 10,1675 | 295,94 10 1,58178 | 37994,2 0 1,22256 | 35250,4 | 2611,61 6

These distributions ordered from the worst to tlestlare as follows: Weibull.(0),
Gamma.(0), Inv.Gaussian.(3), Weibull(3P)(6), Gan8Ra(8), Log-Gamma(9),

Lognormal.(10), Lognormal(3P)(10) and Inv.Gauss3&)(10).

The popular Weibull, Gamma and Inverse Gaussianlaisions still give very poor
fits. The Log-Gamma, which in the 1D case gavblstaalues, in this scenario has
given widely varying fittings proving unsuitable the considerations for the 2D
realm. The 3P version of the Gamma and Weibullctvhiid very poorly in the 1D
case, were shown to be outstanding in this casenaest match record in both cases
was 8 and the highest for the Gamma(3P) was 9ewbil the Weibull(3p), it was
10. General distributions that would both accomnedhe 1D as the 2D cases are

the Lognormal, Lognormal(3p) and the Inverse Gaussi
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Chapter 5

CONCLUSION

5.1 Summary

Thus far what has been accomplished is the reoreaif the one- and two-
dimensional molecular channel with and without stamres. The propagation delays
of diffusing particles in both scenarios were amatlf The considered

communication ranges were short range.

In a bid to set the foundations for the developmantvorkload models for the
bounded case, an effort was made to fit exhaugtse@leral popular distributions to
the delay data generated from simulations. Thatefésulted in at least 3 very viable
distributions which cut across both the 1D andZbecases. These distributions are

the Inverse Gaussian (3p), the lognormal, and tdgnarmal (3p).

5.2 Future Work

Due to the close relations of the particular betwain both 1D and 2D, | speculate
that the 3D case will follow same pattern althowtjecking for hits to boundaries
will be slightly more complex. | also expect thhettime complexity to be higher
due to three degrees of freedom in which particies move. The stage that the
nanotechnology has been developed thus far maldesployable in point to point

communication networks. Due to this fact, | hopeha nearest future, this will be

made a reality especially in the field of drug dety where medicine can be
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delivered within a range of time comfortable enoudgh these nanomachines to
communicate effectively within. In addition, stuslighould be encouraged in making
multi-transmitter and multi-receiver type a realftye. nanonetworks) so as to make

the application much more widespread.
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Appendix A: Distributions

The text below is reproduc directly from the Help File of EasyFit Softwarfor

easy reference.
Copyright © 20042013 MathWave Technologi (http://www.mathwave.co)

Gamma Distribution

Parameters

@ _ continuous shape parameter (':I = O)

- continuous scale parameter (3 >0)
¥ - continuous location parameter ()= () yields the two-parameter Gamma distribution)

Domain

FEX <+

Three-Parameter Gamma Distribution

Probability Density Function

@)= e (= 7YV B)

Cumulative Distribution Function

o
F(x) == r.::;(m

Two-Parameter Gamma Distribution

Probability Density Function

S e

(.ﬂ=—-rs:x (e ]
J(x) @ p(—x/f)

Cumulative Distribution Function

rx/ﬁ' {QJ 64

E = ra



where i is the Gamma Function, and Jtrqf is the Incomplete Gamma Function.

Weibull Distribution

Parameters

& _ continuous shape parameter (& > ()

£ - continuous scale parameter (7 = 0)
¥ - continuous location parameter = () yields the two-parameter Weibull distribution)

Domain

FEX=4

Three-Parameter Weibull Distribution

Probability Density Function

ro=5(5) e (-(5))

Cumulative Distribution Function

F(x)=1 ( (x_;’)a)
x)=1—exp| —
i

Two-Parameter Weibull Distribution

Probability Density Function

r-53) " -6))

Cumulative Distribution Function

roei-an(-(3)
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Lognormal Distribution

Parameters

@ _ continuous parameter ( o> Ej)

Ll - continuous parameter

/" - continuous location parameter (¥ =0 vyields the two-parameter Lognormal
distribution)

Domain

X =400

Three-Parameter Lognormal Distribution

Probability Density Function

I flnix—p)—u 2
: exp (— 3 (—g ) ]
L (x—¥)ev27

Cumulative Distribution Function

hw—ﬁﬂ—#)

&

Fm:@(

Two-Parameter Lognormal Distribution

Probability Density Function

_1fmx—p)?
o2

Xo~N2Tm

Cumulative Distribution Function

_ Inx— u
Fx)=¢ (—
o

where @ is the Laplace Integral.
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Inverse Gaussian Distribution

Parameters
A _ continuous parameter ( 4> 0
L - continuous parameter ( & =10))
/" - continuous location parameter (¥ =0 vyields the two-parameter Inverse Gaussian

distribution)

Domain
yEx <40

Three-Parameter Inverse Gaussian Distribution

Probability Density Function
&—?—ﬂf)

[ (a
f eXp | — -
2\ 2 G )

(x)=
A (e

Cumulative Distribution Function

g

A

Fixy=& ( \4. =

| (I_

?+1))awazam

Two-Parameter Inverse Gaussian Distribution

Probability Density Function
[ 4 Ax— )’

re9=\ rmew (-5 )
2mx 2 usx

Fm=¢(vr

Cumulative Distribution Function
Sl==1)+@|—/=(=+1 24/ u)
G-1))re(-v: (1)) eworn

where @ is the Laplace Integral.
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Log-Gamma Distribution

Parameters

24 - continuous

parameter (& = 0)
- continuous

parameter (£ = 0)

Domain

0=x= +00

Probability Density Function

NN CYC)
fOO) =~ et e e(-In()/B)

Cumulative Distribution Function

Ry (@)

FO) ="



Appendix B: KS (Kolmogorov-Smirnov) Test

The text below is mainly based on the Help Fil&a$yFit Software.

Copyright © 2004-2013 MathWave Technologies (httpaiw.mathwave.com)

Kolmogorov-Smirnov Test

The KS test is used to determine if a sample cofrea a hypothesized
continuous distribution. Assume that a random sarXpl ... , X, from some

distribution with CDH~(X) is given. The empirical CDF is denoted by

- | Number of observations < x

=

F}‘EE::{J ==

Definition

The Kolmogorov-Smirnov statistic (D) is based ohe'‘tlargest vertical
difference between the theoretical and the empiricamulative
distribution function™:

1 3

D = max (F(Ii} — L_Tﬁ — F(xi))

1=i=n
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Hypothesis Testing

The null and the alternative hypotheses are:

Ho: the data follow the specified distribution;

Ha: the data do not follow the specified distribution

The null hypothesis is rejected at the given sigaifce level & ) if the test

statistic, D, is greater than the critical value obtained frantable. The fixed

values of » that are generally used to evaluatenthle hypothesis (k) at

various significance levels are 0.01, 0.05 etc. maist applications, a typical

value used is 0.05.
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Appendix C: Programs

Abouts Files

Il nice

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

/I The purpose of this function is to o

char * aboutFiles( char *genericName )

FILE* fp; /I file pointer used to point to the filename

generated
char end[]= ".txt" ;//this asthe name implies is to be at the
tail of whatever name is generated, this gives the .Ixt extension to
the file
int endSize = sizeof (end); //this gives the character count of
the file's extension, this is used inturn to give t he totalsize of
the characters of the filename when combined with t he part that came
before it
int gnS = strlen(genericName); /I this gets the file size of
the original file name that was passed into the pro gram. This
constitues the first part of the flename, and this integer combined
with endsize would give the size of the generic fil e, but where
another other than the generic file is to be create d the middle part
which consist of numbers in form of ordinary letter s will be added
to the mix.
int n=gnS+endSize; /I this gives total size of the generic
file name, which is to be created
char *fileName = ( char *) malloc(n* sizeof (char)); //this
creates the generic file name holder character
strcpy(fileName,genericName); /I this copies the generic
filename in to the foremost position
strcat(fileName, end); /I this copies in the extension to the
tail most point of the newly created container
int i=1, /I numeral for te file to be generate
=1, /I this is the number to indicate the number of
spaces the generate integer will need in the newly named file
divide =i, /I divide is the helps j determine the
number of spaces it will need by disintegrated by t he dividing 10
till it reaches 0 and at each loop j is increased b yl
fStatus=1; /I flag that determines whether the following
loop would go on repeating itself, in this repeatio n newer tests and
names are made possible, this will only change to z ero when an
unused name is found, and hence signifying the end of the search.
do
{
fp = NULL; /I the file pointer is initial made to point
to no object, as a point of precaution, so if it ha d being used
before it was now free
fp = fopen(fileName, "r" ); [/ this function attempts to
open a file given by the string pointed to by the f ileName pointer,
if exists it will return an object, not a null, hen ce indicating
that the file already exists, hence the program nee ds to generate a
new name. If it does not exist however the pointer returned points
to null, hence the pointer is safe to return to the calling function
the pointer to that string of characters discovered by it

if (fop!=NULL) // tests whether the file name exists or
not, if it exists, its body is executed

{
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fclose(fp); /I this releases the pointer from the
previous file it was pointing to
free(fileName); /I this frees the character pointer
object from the string it was previously pointing t 0
do{j++;} while (divide /= 10);
j++; /I numbers converted to characters will take

up as much characters as the digit positions the oc cupy, so the 1-9
will occupy just one space, 10-99 will occupy 2 and 100-999 3 etc.
as 'divide' is an integer and 10 is an integer, the ir division
leaves no decimal part. So if 10 is divide by a num ber in the 1-9
range it gives 0, in the 10-99 zone: 1, 100-999: 3 etc. Since we
employ a do while loop here it gives us one extra i n each instance.
So for d above stated category we have 1, 2, 3 etc. the initial

value of j in each instance is 1 so the each digit has and extra
character added to its string. The reason for this is that in the
copying functions, they require an extra space to p ut in the \0" at
the end, if they don't have that space to put it th ey either
truncate the character by that one space and put th e null character
in that place or the null character might be neglec ted completely.
So the hence the starting value of j on each run as 1 rather than
zero

char *a; // name holder/ potential pointer to the
string of integer character soon to b created for t he corresponding
generated number i

a=( char *) malloc(j* sizeof (char)); //this
creates to location of space the string is going to point to

sprintf(a, "_%d",i); /lthis coverts the integer i
into its corresponding character letter, this will be pointed to by
a

n = gnS +endSize+ j; /I getting the size of the
completely new string

fileName = ( char *) malloc(n* sizeof (char)); //
making a pointer to this new string/name

strcpy(fileName,genericName); /I copying the
generic part of this newfile name

strcat(fileName, a); /I adjoining the number that
makes the file unique to the generic part

strcat(fileName, end); /I attaching the extention

part to this file name

i++;  // this increase the file name number just in
case this last created file might not be found to b e unique

=1, /Iresetting the spaces needed for the number
portion of the file name to be one

divide = i; /I this gives the number of the
generated file number to the variable that will hel p the program
determine the number of spaces the number part next file name
generated will need

free(a); /I this frees the pointer pointing to the
character holding the number part of the file name

else // this is executed when the string generated is

found not to exist in the specified directory, maki ng it alright to
return the string in question to the calling functi on. This makes
the condition "fStatus to fail"
{
fStatus = 0; /l'loop control is now set to exit

} while (fStatus); /I controls the string generation process
return fileName; // the valid file name is returned at this
point

}

72



About files General File
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char * aboutFilesGeneralVD( char *genericName, int *T1, int *T2,
T3, int *T4)
FILE* fp;

/Ichar genericName[]= "freedom";

/lint genericNameSize = sizeof(genericName);

/[char *fileName;

char end[]= "Overall.txt" ;

int endSize = sizeof (end);

int gnS = strlen(genericName);

int n=gnS+endSize;

char Teel[]= "FileName"
Tee2[]= "Time" ,
Tee3[]= "TotalParticles" ,
Teed[]= "Timestep"

*T1= strlen(Teel)+6;

*T2= strlen(Tee2)+3;

*T3= strlen(Tee3);

*T4= strlen(Tee4);

[lfree(fileName);

char *fileName = ( char *) malloc(n* sizeof (char));
strcpy(fileName,genericName);

strcat(fileName, end);

/I generating file names

fp = NULL;
fp = fopen(fileName, o);
if (fp != NULL)
fclose(fp);
else
{
fp = fopen(fileName, W );
fprintf(fp, 9%, %S, %, %S, %S, %s\n\n’ . *T1, Teel,

*T2, Tee2, Tee3, Teed);
fclose(fp);

return fileName;

}

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char * aboutFilesGenerallD( char *genericName, int *T1, int *T2,
T3, int *T4, int *T5, int *T6, int *T7, int *T8, int *T9)

FILE* fp;

/[char genericName[]= "freedom";

/lint genericNameSize = sizeof(genericName);
/lchar *fileName;

char end[]= "Overall.txt" ; /] this is the text of the end part
to the string
int endSize = sizeof (end); //thisis the integer counts to the

words fo the string pointed to by end
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int gnS = strlen(genericName); /I this is the length of the
sting pointed to by genericName

int n=gnS+endSize; /I this the total size of the of the
string of the overall file name

/I the next following lines are arrays containing t he names
that will be used for formanting the overal file

char Teel[]= "FileName" |, //isolated run name file

Tee2[]= "Distance_um" , // the constant distance set for
the this file

Tee3[]= "Time_us" , // time to live

Teed[]= "TotalParticles" , Il Total number of particles
considered

Tee5[]= "Timestep_us" , //Time per each step of particle

Tee6[]= "Particles_Lost" , I Particle number that made it
to the destination

Tee7[]= "Arrival_Fraction" , Il fraction of particles that
made the destination

Tee8[]= "Tot Particle_Transit_Time" , Il Total transmission
time

Tee9[]= "Average_ Arrival_Time" ; Il Average arrival time

/I retriving by interger the sizes of the area for the

preceeding headers

*T1= strlen(Teel)+6;
*T2= strlen(Tee2);
*T3= strlen(Tee3)+3;
*T4= strlen(Teed);
*T5= strlen(Teeb);
*T6= strlen(Teeb);
*T7= strlen(Tee7);
*T8= strlen(Tee8);
*T9= strlen(Tee9)+ 4;
[lfree(fileName);

char *fileName = ( char *) malloc(n* sizeof (char)); // creating
the pointer for the file name

strcpy(fileName,genericName); /I copying in the initial part of
the file name

strcat(fileName, end); /I attaching the end part

/I testing for its existence
fp = NULL; // points no where initially

fp = fopen(fileName, "r" ); /I points somewhere if it exists,
points no where if it doesnt
if (fp != NULL)
fclose(fp); /I close the file if it exists
else

/1 if it doesnt exist create it, set up the heading
formatting and then close the file

fp = fopen(fileName, "w+"); // open for writing
fprintf(fp, "%*s, %s, %*s, %s, %s, %s, %S, %s, %*s\n\n"
*T1, Teel, Tee2, *T3, Tee3, Tee4d, Tee5, Teeb, Tee7,

Tee8, *T9, Tee9); /I Formating and putting the
names. The star gives room for the integer to creat e the
correspoding number of space and the strings fill i n from right to
left

fclose(fp); /I file closed
return fileName; // generated string name is returned
}

#include <stdio.h>
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#include <string.h>
#include <stdlib.h>

char * aboutFilesGeneral2D( char *genericName, int *T1, int
T3, int *T4, int *T5, int *T6, int *T7, int *T8, int *T9)

FILE* fp;
char end[]= "Overall.txt" ;
int endSize = sizeof (end);

int gnS = strlen(genericName);
int n=gnS+endSize;
char Teel[]= "FileName"
Tee2[]= "Xcod" ,
Tee3[]= "Ycod" ,
Teed4[]= "Radius"
Tee5[]=  "TTL",
Tee6[]= "Average Arrival_Time" ,
Tee7[]= "DelT" ,
Tee8[]= "SucParts" ,
Tee9[]= "AverageSucParts" ;

*T1= strlen(Teel)+6;

*T2= strlen(Tee2);

*T3= strlen(Tee3);

*T4= strlen(Tee4);

*T5= strlen(Tee5)+3;

*T6= strlen(Teeb);

*T7= strlen(Tee7);

*T8= strlen(Tee8);

*T9= strlen(Tee9)+ 4;

char *fileName = ( char *) malloc(n* sizeof (char));
strepy(fileName,genericName);
strcat(fileName, end);

fp = NULL;
fp = fopen(fileName, ro);
if (fp != NULL)
{
fclose(fp);
else
{ _
fp = fopen(fileName, "w+");
fprintf(fp, "%*s, %s, %S, %S, %*s, %s, %S, %s, %*s\n\n"
*T1, Teel, Tee2, Tee3, Teed, *T5, Teeb, Teeb, Tee7,
Tee8, *T9, Tee9);
fclose(fp);
return fileName;
}
#include <stdio.h>
void ArrivalReport( int PN, FILE *fp, int AT,
int formatL, int formatR)
{

[*fprintf(fp, "%-*d||%*d\n", formatL,
PN, formatR, AT);*/
fprintf(fp, "%d\n" , AT);

#include <stdio.h>
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void ArrivalReportDouble( int PN, FILE *fp, double AT, int
int formatR)

fprintf(fp, "%-*d||%*.5A\n" , formatL,
PN, formatR, AT);
}
#include <stdio.h>
#include <io.h>
#include <stdlib.h>
#include <time.h>
#include <direct.h>
#include <string.h>
#include "threeinl.h"

void constTimeVaryingDist()
{
int partTransitTime , /1 ttl
totalParticles ,
deltaTime; /I time steps
char textFileName[] = "constTimeVaryingDist.txt" ;
/I check if file exist
if ((_access(textFileName ,0)))

formatL,

printf( "no job for the function %s\n" , textFileName);

return ;
} 1lif
time_t rawtime;
struct  tm * timeinfo;
char buffer [40];
time (&rawtime);
timeinfo = localtime (&rawtime);

strftime (buffer,40, "ODC\%a_%Y-%m-%d_%I_%Mtimeinfo);

char prefix[]= md" ;
int i = strlen(prefix)+ strlen(buffer);
char *combo=( char *) malloc (i * sizeof ( char));
strcpy(combo,prefix);
strcat(combo, buffer);
system(combo);
char prefix2[]= "move constTimeVaryingDist.txt " ;
int i2 = strlen(prefix2)+ strlen(buffer);
char *combo2 =(  char *) malloc (i2 * sizeof ( char));
strcpy(combo2,prefix2);
strcat(combo2, buffer);
system(combo?2);
if (chdir (buffer) == -1)

printf ( "chdir failed - %s\n" , Strerror (errno));
return ;

FILE *fp = fopen(textFileName, ro);
/I getting rid of labels
char getRid = g ;
while (getRid != \n'
fscanf(fp, "%c" , &getRid);
int times =0;

while (fscanf(fp, "%d%d%d", &partTransitTime, &totalParticles,
&deltaTime) |= EOF)

{

times++;
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deltaTime);

particleTrajectory(partTransitTime, totalParticle
/I particle journey

}
fclose(fp);
if ('times)

printf( "nothing in the file\n" );

/Isystem("rename constTimeVaryingDist.txt
constTimeVaryingDistOld.txt");

}

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
int fracNumCount( double dobNum)

int negPow = 8§;
int dobNumint = dobNum * 100000000;

(dobNumInt%10==0&& negPow!=0)

negPow--;
dobNumint/=10;

negPow;

double testDob = 0.000431;
printf("%d\n",fracNumCount(testDob));
system("pause");

{
while
{
}
return
}
[*int main()
¥l

#include <stdlib.h>
#include <stdio.h>

void destDistAndBoundSettings( double *dD, double *IB,

int  *tTLL,

double DestDistance = *dD;

source

int *TL, int *PN, int *dT)

int ttlLoss = *tTLL,

ttl = *tTL,
totParNum = *tPN,
delTime = *dT;

double leftBound = *IB,

do{

%d\n" , *TL);

rightBound = *rB;

printf( “\n\n\n" );

printf( "Current Values are as follows\n"
printf( "Destination Distance: %f\n" , *dD);
printf( "total particle number: %d\n" , *tPN);
printf( "time per step: %d\n" , *dT);
if (*TLL)
printf( "Loss determined by time steps, with ttl
Yo Iif
else
{
printf( "Loss determined by dimensions\n"
printf( "Left Bound: %f\n" , *IB);
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printf(
}

"Right Bound: %f\n" , *rB);

system( "pause" );
int select =0, below =0, above = 4;

do
{
printf( “\n\n" );
printf( "type \n" );
printf( "{0} to proceed with the program\n" );
printf( "{1} to change the Destination
Distance\n" );
printf( "{2} to change the Total Particle Size\n"
printf( "{3} to change the time per step\n” );
printf( "{4} to make changes regarding Loss
determination\n” );
printf( "value: " );
scanf( "%d" , &select);
if (select > above || select < below)
printf( "\nOut of range please try again\n"
else if (select==0)
return
else if (select==1)
{
printf( "“\n\n" );
printf( "Put in the new Destination Distance:
")
scanf( "%If"* , dD);
printf( "The new distance of %.0f is now
set\n" , *dD);
}
else if (select==2)
{
printf( "“\n\n" );
printf( "Put in the new Total Particle Size:
")
scanf( "%d" , tPN);
printf( "The new distance of %d is now
set\n” , *tPN);
}
else if (select==3)
{
printf( "“\n\n" );
printf( "Put in the new time per step: "
scanf( "%d" , dT);
printf( "The new distance of %d is now
set\n" , *dT);
}
else if (select==14)
{
printf( “\n\n" );
printf( "type \n" );
printf( "{0} to to change the loss
determination type(time or dimension).\n" :
printf( "{1} to change the loss parameter
value(s)\n" );
printf( "Value:" );
int select4;

scanf( "%d" , &selectd);
if (select4 ==0)
{
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if (MTLL)

{
*TLL = 0;
printf( "“\n\n" );
printf( "Loss will now determined
by dimensions\n" );
printf( "Left Bound: %.0f\n"
*IB);
printf( "Right Bound: %.0f\n" ,
“rB);
printf( "to change this type 1, to
allow it type O\n" );
printf( "Value: " );
scanf( "%d" , &select4);
else if (1(*tTLL))
{
printf( "“\n\n" );
*TLL = 1;
printf( "Loss will now determined
by time\n" );
printf( "TTL: %d\n" | *TL);
printf( "to change this type 1, to
allow it type O\n" )i
printf( "Value: " );
scanf( "%d" , &select4);
}
if ((*tTLL)&&select4 == 1)
{
printf( “\n\n" );
printf( "Put in the new TTL value: " );
scanf( "%d" , tTL);
printf( "The new TTL value of %d is now
set\n"  *tTL);
if ((*TLL)&&select4 == 1)
{
printf( “\n\n" );
printf( "Put in the new Left Bound
value:\n" );
scanf( "%If" , IB);
printf( "The new Left Bound value of
%.0f is now set:\n" *IB);
printf( "Put in the new Right Bound
value:\n" );
scanf( "%If" , rB);
printf( "The new Right Bound value of
%.0f is now set:\n" *rB);
}
} while (select > above || select < below);
} while (1);
} /lfunction end
#include <stdio.h>
#include <stdlib.h>
void getPreferedSettings( double *distanceCompare, int
*partTransitTime, int *totalParticles, int *deltaTime)

{
do{
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Time\n" );

set\n"

")

now set\n"

set\n"

printf( “\n\n\n" );
printf( "Current Values are as follows\n" );
printf( "Comparison Distance: %f\n" , *distanceCompare);
printf( "total particle number: %d\n" , *totalParticles);
printf( "time per step: %d\n" , *deltaTime);
printf( "Particle transit time: %d\n" , *partTransitTime);
system(  “"pause" );

int select =0, below = 0, above = 4;

do
{

printf(
printf(
printf(
printf(
printf(
printf(
printf(

printf(
scanf(

“\n\n" );
‘type \n”);
"{0} to proceed with the program\n" );

"{1} to change the Comparison Distance\n"

"{2} to change the Total Particle Size\n"

"{3} to change the time per step\n” );
"{4} to change the Particle Transmit

"value: " );
"%d" , &select);

if (select > above || select < below)

else

else

{

else

else

else

printf( "\nOut of range please try again\n"

if (select==0)

return ;

if (select==1)
printf( "“\n" );
printf( "Put in the new Comparison Distance:
scanf( "%If* , distanceCompare);
printf( "The new distance of %.0f is now

*distanceCompare);

if (select==2)
printf( "Put in the new Total Particle Size:
scanf( "%d" , totalParticles);
printf( "The new Total Particle Size of %d is

*totalParticles);

if (select == 3)
printf( "“\n" );
printf( "Put in the new time per step: "
scanf( "%d" , deltaTime);
printf( "The new time per step of %d is now
*deltaTime);
if (select==4)
printf( "“\n" );
printf( "Put in the Particle Transmit Time:
scanf( "%d" , partTransitTime);
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printf( "The new Particle Transmit Time of %d
is now set\n" ,
*partTransitTime);

} while (select > above || select < below);
} while (2);
} /lgetPreferedSettings
#include <stdio.h>
#include <string.h>

void HeadingAndFormating(FILE *fp, int * Left, int *Right, char *
LeftString, char * RightString)
{

int bound =6; //this gives more space in the file passed in
for writing

*Left = bound + strlen(LeftString); /I this gives the formating
integer for the left column

*Right = bound + strlen(RightString); /I this gives the

formating integer for the right column
[*fprintf(fp, "%-*s||%*s\n", *Left, LeftString,
*Right, RightString);*/

fprintf(fp, "%s\n" ,RightString); /I this puts on the column
titles, it can be notice that the left side is left aligned and the
right is right aligned

}

#include <stdio.h>
#include <string.h>

void headingFormating3(FILE *fp, int * Left, int *Center, int *Right,
char * LeftString, char * CenterString, char * RightString)
{

int bound = 6;

*Left = bound + strlen(LeftString);

*Right = bound + strlen(RightString);

*Center = bound + strlen(CenterString);

fprintf(fp, "%-*s||%*s||%-*s\n" , *Left, LeftString,
*Right, RightString, *Center, CenterString);

}

#include <stdio.h>
#include <stdlib.h>

void LostReport( int PN, FILE *fp, int formatL, int formatR)
fprintf(fp, "%-*d||%*s\n" , formatL, PN,
formatR, "LOST"); // reports formating, number particle
left and "LOST" to the right
}

#include <stdio.h>
#include <stdlib.h>

int lostStatusDimensions( double leftBound, double rightBound, double

distance)

if (distance >= leftBound && distance <= rightBound)
return O;

else
return 1,
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int lostStatusTime( int tTL, int time)

{
if (time <=1TL)
return  0;
else
return 1;
}
int destinationBreached( double destinationDistance,
{

if (destinationDistance >= 0)
if (distance >= destinationDistance)

return 0O;

else
return 1;

else

if (distance <= destinationDistance)
return 0O;

else
return 1;

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define Pl 3.141592654

[*This function generates the random walk of the pa
influence of diffusion

math lib need by the sqrt, and the RAND_MAX constan
is within the range -2.9 to 2.9

phase makes it possible for the values of U and V' t
again, at least once*/

double gaussrand()

{
int negOr = (rand() / (RAND_MAX + 1.0) * (2 - 0) + 0);
if ('negOr)
negOr=-1;
return sqrt(2 * .001)*negOr;
}

void gaussrand2d( double *deltaX, double *deltaY)
{
double consT = sqrt(4 *.001);
double pisConst = (rand() / (RAND_MAX + 1.0) * (2.000001

+0);
double thetha = pisConst * PI;
double cosThetha = cos ( thetha);
double sinThetha = sin ( thetha);
*deltaX = consT * cosThetha;;
*delta¥Y = consT * sinThetha;

}

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <io.h>

#include <time.h>

#include <direct.h>

#include "threeinl.h"

[/l am confused about the purpose of this experimen
to account of the time it takes to get to a particu
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or the time to get to a particular distance from th
way. That means when we say 50nm as the distance fr
a one dimensional plane do we mean a just at 50nm o
and 50nm. If a specific distance is the case then t
negative destinations will be taken into considerat
program so far has considered only positive destina
the destination is gotten to if the particle is >=
distance. But if the destination be negative then t
only be reached if the particle is <= destination d
destinations polarity must be determined ever befor
beginnings to makes sure of what testing parameters
But if the destination just means a specific distan
source regardless of the polarity, then just the in
going to always be positive, so the distance in mea
negative symetric half is to make sure that the dis
than -ve of the distance, for it to have arrived at

But on consideration of the specific distance inves
much more proper that specific distances and not s
distances be considered, so this program at relevan
modified to reflect this change in reasoning, so tw

is solicited for, one for when the distance is posi
when negative

void OneDimProper()

double DestDistance; /I distance of under investigation

int ttl, iterations; /I time to live
int TotalParticleNumber;
investigated

int deltaTime;  // time step
char textFileName[] =
of the file from which all the data for the program
it must exist if not this part of the experiment wi
the data for each run must be on each row, and the
simulation scenario depends on how many rows there
exists and no dat is in it, the experiment still do
/I check if file exist
if ((_access(textFileName ,0)))
exists if it exist it give 0, otherwise 1

{
printf( "no job for the function %s\n"
prints the fact d file exists not

"OneDimProper.txt"

e source either
om the source in
r we mean -50nm
he calculation of
ion. Because this
tions such that
destination

he distance can
istance. So the

e the testing
should be used.
ce away from the
put distance is
suring for the
tance is less

that distance.
tigation, it is
ymettric

t points will be

o if statements
tive, and another

/I total number of particles to be

; /] this is the name

is to be gotten,
Il not run. And
number of

are. If the file
esnt run...

/lthis checks whether the file

, textFileName); I

return ; // returns to the calling function without doing

anywork
} 1lif
time_t rawtime;
struct  tm * timeinfo;
char buffer [40];
time (&rawtime);
timeinfo = localtime (&rawtime);
strftime (buffer,40,
char prefix[]=

md" ;

int bufferNum = strlen(buffer), prefixNum = strlen(pre

=bufferNum + prefixNum;
char * combo = ( char *) malloc (i *
strcpy(combo,prefix);
strcat(combo, buffer);
system(combo);
char prefix2[]= "move " ;

char moveEnd[]= ;
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int textFileNameNum =strlen(textFileName);
int  moveEndNum = strlen(moveEnd);
int prefix2Num = strlen(prefix2);

int combo2Num = prefix2Num + textFileNameNum + moveEnd Num +
bufferNum;
char *combo2 =(  char *) malloc (combo2Num * sizeof ( char));

strcpy(combo2,prefix2);
strcat(combo?2, textFileName);
strcat(combo2, moveEnd);
strcat(combo2, buffer);
system(combo?2);

if (chdir (buffer) ==-1)

printf ( "chdir failed - %s\n" , Strerror (errno));
return

/Isystem("pause");

FILE *fp = fopen(textFileName, "r" ); /I this opens the file in
guestion for reading

/I getting rid of labels

char getRid = 'gq" ; // this part helps get rid of the labels in
the text file. the character will read each charact er and do nothing
with it till it reads the new character then it sto ps
while (getRid != \n" ) // runs until getRid has a value of \n'
fscanf(fp, "%c" , &getRid); /I reads just one character
int times =0;
while (fscanf(fp, "%If%d%d%d%d", &DestDistance, &ttl,
&TotalParticleNumber, &deltaTime,&iterations) != EO F)
{
times++;

int counter =1,
while (counter++ <= iterations)

oneSimulation(DestDistance, ttl, TotalParticleNum ber,
deltaTime, iterations); /lluses the data to facilitate the simulation
}
printf( “"containing folder is %s\n" , buffer);
fclose(fp); /I file close when finished
if ('times) // execute when no data in file
printf( "nothing in the file\n" );
/Isystem("rename OneDimProper.txt OneDimProperOld.t xt");/l
rename to avoid reuse of same old files on another run.

} /I one dim proper
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <direct.h>
#include "threeinl.h"
#include <io.h>

void oneSimulation( double DestDistance, int ttl, int
TotalParticleNumber, int deltaTime, int iterations)
{

int Fstcount=0,Sndcount=0,Trdcount=0;
int g=( int )DestDistance;
do{Fstcount++;}  while (g/=10);
Fstcount++;
g =ttl;
do{Sndcount++;}  while (g/=10);
Sndcount++;
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g = TotalParticleNumber;
do{Trdcount++;}  while (g/=10);
Trdcount++;
char *CategoryName = ( char *) malloc
((Fstcount+Sndcount+Trdcount)* sizeof (char));
sprintf(CategoryName, "%d_%d_%d",( int )DestDistance,ttl,TotalPar
ticleNumber);
char dirStarting[]= "OD";
char dirSlash[]= "
int dirStartingNum = strlen(dirStarting),
dirSlashNums=strlen(dirSlash),
dirEndNum= strlen(CategoryName),
dirComWithOutNum = dirStartingNum + dirEndNum,
dirComWithNum = dirStartingNum + dirEndNum +

dirSlashNum;
if (iterations ==1)
{
dirComWithOutNum = dirStartingNum;
dirComWithNum = dirStartingNum + dirSlashNum;
}

char *dirComWithOut = ( char *) malloc
((dirComWithOutNum)*  sizeof (char ));
strcpy(dirComWithOut,dirStarting);
if (iterations > 1)
{
strcat(dirComWithOut,CategoryName);

char *dirComWith = ( char *) malloc
((dirComWithNum)*  sizeof (char ));

strcpy(dirComWith,dirStarting);

if (iterations > 1)

strcat(dirComWith,CategoryName);

[Istrcat(dirComWith,CategoryName);
strcat(dirComWith,dirSlash);

/*destDistAndBoundSettings(&DestDistance, &leftBoun d,
&rightBound
,&ttlLoss, &ttl, &TotalParticleNumber, &deltaTime );*/
char genericName[]= "Dim1v" ; // here the name of the directory,
and generic name of all the files produced
int track = 0; /I for number of characters of directory
[*while(genericName[++track]!="/");// counting cha racters

before directory indicator

Il create directory array

char *direct = (char*) malloc (track * sizeof(char Nl
creating name holder for directory

/I store directory name

strcpy(direct, genericName);//copying in the direc tory name
and the slash following

direct[track] = "\0';// putting the null character in place of
the '/’

Il check whether the directory exists not 0 if it exists, 1 if
not

if(_access(direct,0))
{/l creating directory if it doesn't already exist
char prefix[] = "md ";// start point of the creat
directory folder
int total = track + strlen(prefix); // total size
characters of the create diretory command
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char *combo = (char*) malloc (total *
sizeof(char));//creation of a create command charac

strcpy(combo, prefix);// copying in the prefix of

comand

strcat(combo, direct);// attaching the end to the

command characters

system(combo);// executing the create command fin

Ylif!

ter holder
the

ally

char *fileName, /I filename holder the current simulation
*fileNameGen; /I filename holder for the log textfile for

one dimensional case, storing all the d summarys in
in one file, to help comparison

FILE* fp, /ffile pointer to specific sim log file

*fpl; /""" general

int T1, //thisrints will help in formating d outputs in

general file
T2,
T3,
T4,
T5,
T6,
T7,
T8,
T9;
[*char prefix[]="OD/";
int prefixNum = strlen(prefix) - 1;

char * stripedDir = (char*) malloc ( prefixNum *

sizeof(char));
strcpy(stripedDir,prefix);
stripedDir[prefixNum]="0";*/
if (_access(dirComWithOut,0))

{
char prefixx[] = "md" ;
int all = strlen(prefixx)+strlen(dirComWithOut);
char *together = ( char *) malloc (all *
strcpy(together,prefixx);
strcat(together,dirComWithOut);
/ltogether[all]="0";
system(together);
}
if (chdir (dirComWithOut) == -1)
printf ( "chdir failed - %s\n" , Strerror (errno));
return ;

}

fileName = aboutFiles(CategoryName);
aboutFiles.cpp, purpose to greate a unique file nam
simulation at hand taking into cognizance the fact
simulation is given to 1 or more particle at a with
kept constant with each run. In this file each part
position in the this textfile, whether it be lost o
its destination. This about file is only concerned
name of the files, i.e is making sure that a file w
existed not before. The purpose of this is to make
excessive logs of ran and re-ran experiments for th
purposes. This file name comprises of the generic n
then a number attached to it to give it is uniquene
from the following model: FileName, FileNamel,....,
creates a name using the filename at first checks i
it does exist, it attaches 1 to that file name chec
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name exists again, if it does increments it by one and tries again,

it continues in this fashion until it finds one tha t exists. This
one it then returns to the the calling function as a string.
int fileNum = strlen(fileName);
if (chdir ( ") ==-1)
printf ( "chdir failed - %s\n" , Strerror (errno));
return ;

int fileAndDirNum = fileNum + strlen(dirComWith);

char *fileAndDirName = ( char *) malloc
((fileAndDirNum)* sizeof (char ));

strcpy(fileAndDirName, dirComWith);

strcat(fileAndDirName, fileName);

fp = fopen(fileAndDirName, "w" ); /I this open a new file for
writing with the returned file name

fileNameGen = aboutFilesGenerallD(genericName,

&T1,&T2,&T3,&T4,&T5,&T6,&T7,&T8,&T9); // this function is located in
a file called "aboutFilesGenerallD.cpp. The purpose of this function
is to be a log file for all files generated by the 1D case of the
varying dimensions case. What it does is to either create the file,
set up initial formating and return integer values that would help
format results of each file for each simulation res ult in this
general file. Each simulation in the special case w ill have its
summary stored as an entry in this log file. The in itial part of the
file will bear the Prepart of the names common with all the files
generated in this experiment. Its end will actual b ear the name
"Overall". What will be logged in this file for eac h simulation will
be: The file name, the distance considered, The ttl , Total Particle
number, Unit of time per step, Number of particles that got to the
distination, fraction of particles that got to the distination,
Total time it took for the transmission and the Ave rage Arrival
time. The integers passed in are to help in formati ng the table in
the file. If the file already does exist only the r etrival of the
integers and the setting the end cursor to a newlin e will be
achieved by this function.

fpl = fopen(fileNameGen, "at+" ); I/l The overall file name is
opened in appending mode here

/I the following integers are to help in formating the current
simulation file, both in the set up of the headings of each column
and the arrangement of the input integer. The eleme nts of each
colomn as with that of the general file will be rig ht justified, the
Left will be for the unique number of particle inpu t and the right
will be for the time it took to get there, in cases where no such
gotten that space will contain the word "LOST" inst ead

char *freshCategoryName = ( char *) malloc ((fileNum -

3)* sizeof (char));

strncpy(freshCategoryName, fileName, fileNum-4);

freshCategoryName[fileNum-4] = o'

int Left,

Right;
HeadingAndFormating(fp, &Left, &Right,
"ParticleNumber" ,

freshCategoryName); /I this function does the initial formating of

the text file to be created for the executing simul ation and also
returns the integer values of integers left and rig ht. This function
is located in the HeadingAndFormating.cpp file
int totSuccessfulParticlesTime = 0, /I This gives the total
time it took to transmit those particles that got t o the destination
totLostParticleCount = 0, /I this takes into account only

those particles that made it to the destination
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particleNumber = 1; /I this keeps track of the particle being

observed and so it is set to one initially for the first will be
observed at the beginning

double averageParticleArrivalTime = 0, /I this will keep the
record of the average arrival time of the particles given by
totSuccessfulParticlesTime/ totSuccessfulParticleCo unt

arrivalFraction = 0; /I This is to give the fraction of
particles that made it to the destination, and this is given by
totSuccessfulParticleCount/ TotalParticleNumber

/I the Journey of the particles take place in the f ollowing do
while loop, one particle at a time in the function particleJourny
the progress of one particle is observed in terms of it progress
from the source in direction at each step time is i ncreased, but the
step could be additive or subtractive to the total distance covered.
This function is located in the ccp file particleJo urney. It takes
as argument two reference variables of int type, a file pointer to a
file unique to the simulation at hand for reporting , the particle
number for reporting, the destination distance to k now when the
limit is breached, the time step which shows the ti me each step
takes, time to live integer variable to decide when it is right to
drop a particle, Left and Right integers to help in the report file
formating. The particles a dealt with one after the other until all

the particles have being transmitted
int preLostValue = totLostParticleCount;
do{
particleJourny(&totSuccessfulParticlesTime,
&totLostParticleCount,
fp, particleNumber,
DestDistance, deltaTime,
ttl, Left, Right); I to simulate
the journey of a particle, recording it time after it reaches,
recording it lost
if (preLostValue == totLostParticleCount)

particleNumber++; /I heralds the next particle of
the transmission
else
preLostValue = totLostParticleCount;
} while (particleNumber <= TotalParticleNumber); /I this
construct ensures that Number of particles proposed is processed
int allParticles = totLostParticleCount + TotalParticl eNumber;
if (TotalParticleNumber) /l'is makes sure that division by zero

does not occur
averageParticleArrivalTime =
( double )totSuccessfulParticlesTime/ ( double )TotalParticleNumber; Il
average time if not zero
else
averageParticleArrivalTime = 0; Il if zero
if (allParticles)
arrivalFraction = ( double )TotalParticleNumber/
(double )allParticles;
else
arrivalFraction = 0;
[*printf("\n\n");
printf("totSuccessfulParticlesTime = %d\n",
totSuccessfulParticlesTime);
printf("totSuccessfulParticleCount = %d\n",
totSuccessfulParticleCount);
printf("averageParticleArrivalTime = %f\n",
averageParticleArrivalTime);
printf("arrivalFraction = %f\n", arrivalFraction);
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printf("\n\n");*/
static int once =0;
if (!(once++))

printf( "\n\nLog file name is %s\n\n" , fleNameGen); Il
printing the overall file name
printf( “current file name is %s\n" , fileName); /I printing the

recently concluded simulations filename

/I fprintf, prints to the general file particulars of the
simulation file just concluded, this is done to ena ble comparisons
with other runs

fprintf(fpl, "%*s, %*.0f, %*d, %*d, %*d, %*d, %*f, %*d,

%*\n" , T1, fileName,

T2, DestDistance,

T3, ttl,

T4, allParticles,

T5, deltaTime,

T6, totLostParticleCount,

T7, arrivalFraction,

T8, totSuccessfulParticlesTime,

T9, averageParticleArrivalTime);
fclose(fpl); /I general file closed
fclose(fp); /I specific simulation file closed

#include <stdlib.h>
#include <stdio.h>
#include "threeinl.h"

void particleJourny( int *totSuccessfulParticlesTime, int
*totLostParticleCount, FILE *fp, int particleNumber,
double destinationDistance, int

deltaTime, int tTL, int formatL, int formatR)
{

int time =0; /I each particle starts from time zero

double deltaDistance =0, /I initial step at time zero is zero
of course

distance = 0; /l'initial distance is O

do// this is an infinitive do while which enables the movement
to the particle in a brownian fashion. This movemen tis helped by
the brownian fashioned time steps enable by the gau ssian() step
generator powered by the gaussian distribution whic h has bin found

to mimick the brownian motion to a large degree

deltaDistance = gaussrand(); /I this function returns at
random steps ranging between (-3 to 3). In NormalRa ndGenerator.cpp
distance = distance + deltaDistance;
if (distance<0)

distance= - distance; /I update to the distance*/
time += deltaTime; /I added to the time this does
if (destinationBreached(destinationDistance, distance) )11
return O if reached but 1 otherwise , located in lo stStatus.cpp
if (lostStatusTime(tTL, time)) /I if time to live

exceeded returns 1 if not 0. located in lostStatus. cpp, if exceed
report made and put infile if not next step is take n

{

//LostReport(particleNumber, fp, formatL,
formatR);// reports missing located in LostReport.c pp
*totLostParticleCount += 1; /l adding to the
already amassed successful particle number
return ; // exit current particle journey

89



}

else

{
ArrivalReport( particleNumber, fp, time, formatL
formatR); // reports successful located in ArrivalReport.cpp
*totSuccessfulParticlesTime += time;
the already amass time

return ; // exit current particle journey

}
}
while (1);
#include <stdio.h>

#include <stdlib.h>
#include "threeinl.h"

void ParticuleJourneyChronicles(FILE *fp, int timeStep,
ParticleNumber, double distance, double width,

int ttl, int *totLostParticleCount, int
*totalSuccessParticleTime, int formatL, int formatR)

double mid_Way = width/2.0, x = 0, y = mid_Way, deltaX,
deltaY, endBounds = y/10.0,
upperBounds =y + endBounds, lowerBounds =y - en

int t=0;
do
{
gaussrand2d(&deltaX,&deltaY);
/ldeltaX = gaussrand();
/ldeltaY = gaussrand();
X =X + deltaX;
y =y + deltay;
t =t + timeStep;
lprintf("x= %f, y = %f, deltaX = %f, delta¥ = %f t
%d, ttl = %d\n", x, y, deltaX, deltaY, t, ttl);
lIsystem("pause");
/*int inbounds;
dof
inbounds = 0;
if(x<0)

X = -X;
inbounds =1;

}
if(y<0)
{

y=-y,
inbounds =1;

}
if(y>width)

y = 2*width - y;
inbounds =1;

if(x> distance&&(y>upperBounds||y<lowerBounds))

x = 2*distance - x;
inbounds =1;
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twhile(inbounds);*/
if (WithinReach(mid_Way, distance, y, x, endBounds))
{
if (t==ttl)
{
[*LostReport(ParticleNumber, fp,
formatL, formatR);*/
(*totLostParticleCount)++;
[lprintf("mark if");

printf( "%d\n" , t);
return ;
}
}
else
{
if (y<upperBounds&&y>lowerBounds)
ArrivalReport( ParticleNumber, fp, t,
formatL, formatR);
(*totalSuccessParticleTime)+=t;
Ilprintf("mark else");
return ;
}
}
}
while (1);
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include “threeinl.h"
#include <io.h>
void particleTrajectory( int partTransitTime, int totalParticles,
deltaTime)
{
int Fstcount=0,Sndcount=0,Trdcount=0;
int g = partTransitTime;

do{Fstcount++;}  while (g/=10);
Fstcount++;
g = totalParticles;

do{Sndcount++;}  while (g/=10);

Sndcount++;
g = deltaTime;
do{Trdcount++;}  while (g/=10);
Trdcount++;
char *CategoryName = ( char *) malloc
((Fstcount+Sndcount+Trdcount+3)* sizeof (char));
sprintf(CategoryName, "OD/%d_%d_%d",partTransitTime,totalPartic

les,deltaTime);

int particleCount = 0, track = 0 /I char numbers

/*getPreferedSettings(&distanceCompare, &partTransi

&totalParticles, &deltaTime);*/

char genericName[]= "ODC/Dimi1c"

while ’(genericName[++track]!= T,
/I create directory array
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char *direct = ( char *) malloc (track * sizeof (char));
/I store directory name

strcpy(direct, genericName);

direct[track] = o'

/I check whether it exists

if (_access(direct,0))

char prefix[] = "md" ;
int total = track + strlen(prefix);
char *combo = ( char *) malloc (total * sizeof (char));

strcpy(combo, prefix);

strcat(combo, direct);

system(combo); Il stopped here
} /it

char *fileName, *fileNameGen,;

FILE* fp, *fp1;

int T1, T2, T3, T4;

fileName = aboutFiles(genericName);

fileNameGen =
aboutFilesGeneralVD(genericName,&T1,&T2,&T3,&T4);

fp = fopen(fileName, "w");

fpl = fopen(fileNameGen, "at" );

int Left, Right;

HeadingAndFormating(fp, &Left, &Right,
"ParticleNumber" , "Distance" );

transmitAndObserveParticles(partTransitTime,
totalParticles, deltaTime, Left, Right, fp);

static int once =0;

if (!(once++))

printf( "\n\nLog file name is %s\n\n" , fileNameGen);
printf( “current file name is %s\n" , fileName);
fprintf(fpl, "%*s, %*d, %*d, %*d\n" , T1, fileName,

T2, partTransitTime,
T3, totalParticles,
T4, deltaTime);
fclose(fp);
fclose(fpl);
} llparticleTrajectory
#include "threeinl.h"
#include <stdio.h>

void transmitAndObserveParticles( int partTransitTime, int
totalParticles,

int deltaTime, int Left, int Right, FILE *fp)
{

int particleNumber =1, flag = 1;
do{
int Time =0, stillJourneying = 1;
double distance = 0, deltaDist;
do{
deltaDist = gaussrand();
distance += deltaDist;
Time += deltaTime;
if (Time >= partTransitTime)
{
ArrivalReportDouble(particleNumber, fp,
distance,
Left, Right);
stillJourneying = 0;
if (particleNumber<=totalParticles)
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{

particleNumber++;

Y it
else
flag = 0;
ot
} while (stillJourneying);

} while (flag);
} ItransmitAndObserveParticles
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <direct.h>
#include  "threeinl.h"
#include <io.h>

void twodimdriver( double distance, double width, int ttl, int
totalParticles, int deltaTime, int iterations)
{

int Fstcount=0,Sndcount=0, Trdcount=0,Fothcount=0,Fithc ount=0;

int g=( int )distance;
do{Fstcount++;}  while (g/=10);
Fstcount++;

[*g = (int)destYCood;
do{Sndcount++;}while(g/=10);
Sndcount++;*/

[*g = (int)radius;
do{Trdcount++;}while(g/=10);
Trdcount++;*/

double fl = width;

int padding = 3;

int dp=fracNumCount(fl);

int dpAndPadding = dp + padding;
g =ttl;

do{Fothcount++;}  while (g/=10);
Fothcount++;

g = totalParticles;
do{Fithcount++;} while (g/=10);

Fithcount++;
char *CategoryName = ( char *) malloc
((Fstcount+dpAndPadding+Fothcount+Fithcount)* sizeof (char));
sprintf(CategoryName, "%d_%.*f %d_%d" , ( int )distance, dp, fl,
ttl, totalParticles);
char dirStarting[]= "TD" ;
char dirSlash[]= "

int dirStartingNum = strlen(dirStarting),
dirSlashNums=strlen(dirSlash),
dirEndNum= strlen(CategoryName),
dirComWithOutNum = dirStartingNum + dirEndNum,
dirComWithNum = dirStartingNum + dirEndNum +
dirSlashNum;
if (iterations ==1)
{
dirComWithOutNum = dirStartingNum;
dirComWithNum = dirStartingNum + dirSlashNum;
}
char *dirComWithOut = ( char *) malloc
((dirComWithOutNum)*  sizeof (char ));
strcpy(dirComWithOut,dirStarting);
if (iterations > 1)

{

93



strcat(dirComWithOut,CategoryName);

char *dirComWith = ( char *) malloc
((dirComWithNum)*  sizeof (char));
strcpy(dirComWith,dirStarting);
if (iterations > 1)
{
strcat(dirComWith,CategoryName);

[Istrcat(dirComWith,CategoryName);
strcat(dirComWith,dirSlash);

int totLostParticleCount = 0, particleNumber = 1,

totSuccessfulParticlesTime = 0; /1 left to right: successful particle
count and soujourning particle number
/*getPreferedSettings1(&destXCood, &destYCood, &rad ius, &ttl,
&totalParticles, &deltaTime);*/
char genericName[]= "Dim2v" ; // generic name for simulations
[*int track = 0;
while(genericName[++track]!="/");// isolating the directory

part of the generic name in terms of numbers
Il create directory name array
char *direct = (char*) malloc (track * sizeof(char ));
/I store directory name
strcpy(direct, genericName);
direct[track] = "\0";
Il check whether it exists
if(_access(direct,0))
{Il'if it doesn't it is created here :-D
char prefix[] ="md ";
int total = track + strlen(prefix);
char *combo = (char*) malloc (total * sizeof(char );
strcpy(combo, prefix);
strcat(combo, direct);
system(combo);// stopped here

Mt/
char *fileName, *fileNameGen; /I single simulation file and log
file name holders
FILE* fp, *fp1; /I file pointers
int T1,T2,T3,T4,T5,T6,T7, T8, T9; /I format aids
if (_access(dirComWithOut,0))
{
char prefixx[] = "md" ;
int all = strlen(prefixx)+strlen(dirComWithOut);
char *together = ( char *) malloc (all * sizeof (char));
strcpy(together,prefixx);
strcat(together,dirComWithOut);
[ltogether[all]="\0";
system(together);
}
if (chdir (dirComWithOut) == -1)
printf ( "chdir failed - %s\n" , Strerror (errno));
return ;
}
fileName = aboutFiles(CategoryName); /[creates single

simulation unique file name, aboutFiles.cpp
int fileNum = strlen(fileName);
if (chdir ( " )==-1)
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{

printf ( "chdir failed - %s\n" , Strerror (errno));
return ;

int fileAndDirNum = fileNum + strlen(dirComWith);

char *fileAndDirName = ( char *) malloc
((fileAndDirNum)* sizeof (char));

strcpy(fileAndDirName, dirComWith);

strcat(fileAndDirName, fileName);

fileNameGen =

aboutFilesGeneral2D(genericName,&T1,&T2,&T3,&T4,&T5 ,&T6,&T7,&T8,&T9)
fp = fopen(fileAndDirName, "w");
fpl = fopen(fileNameGen, "at" );
char *freshCategoryName = ( char *) malloc ((fileNum -

3)* sizeof (char));
strncpy(freshCategoryName, fileName, fileNum-4);
freshCategoryName[fileNum-4] = o'
int L, R;
HeadingAndFormating( fp,&L, &R, "ParticleNumber" ,
freshCategoryName);
int preLostValue = totLostParticleCount;
int itNum =1,
do
{
[lprintf("%d\n",particleNumber);
/Isystem("pause");
ParticuleJourneyChronicles(fp,
deltaTime,
particleNumber,
distance,
width,
ttl,

&totLostParticleCount,&totSuccessfulParticlesTime,
L,
R);

if (preLostValue == totLostParticleCount)
particleNumber++; /I heralds the next particle of
the transmission
else
preLostValue = totLostParticleCount;
printf( "%d. Lost: %d, reached: %d\n" , itNum++,
totLostParticleCount, particleNumber-1);
[*if(1(itNum%100))
system("Pause");*/
}
while (particleNumber <= totalParticles);
double averageParticleArrivalTime;
int allParticles = totLostParticleCount + totalParticl es;
double arrivalFraction = 0;

if (totalParticles)

arrivalFraction = ( double )totalParticles/
( double )allParticles;
else
arrivalFraction = 0;
if (totalParticles) /l'is makes sure that division by zero does
not occur
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averageParticleArrivalTime =

( double )totSuccessfulParticlesTime/ ( double )totalParticles; 1
average time if not zero
else
averageParticleArrivalTime = 0; Il if zero
[*printf("\n\n");
printf("totSuccessfulParticleCount = %d\n", partic leCount);

printf("arrivalFraction = %f\n", arrivalFraction);
printf("\n\n");
printf("current file name is %s\n", fleName);
printf("Log file name is %s\n", fleNameGen);*/
static int once = 0;
if (!(once++))
printf( "\n\nLog file name is %s\n\n" , fleNameGen);
printf( "current file name is %s\n" , fileName);

fprintf(fpl, "%*s, %*.0f, %*.0f, %*.0d, %*d, %*f, %*d, %*d,
%*f\n" , T1, fileName,
T2, distance,
T3, width,
T4, allParticles,
T5, ttl,
T6, averageParticleArrivalTime,
T7, deltaTime,
T8, totLostParticleCount,
T9, arrivalFraction);
fclose(fpl);

fclose(fp);
return ;

} /twodimdriver
#include <stdio.h>
#include <stdlib.h>
#include <direct.h>
#include <string.h>
#include <time.h>
#include <io.h>
#include "threeinl.h"

void TwoDimensional()

double dist, width;
int ttl, totalParticles, iterations,
deltaTime; /I particlars of unique to each simulation
char textFileName[] = "TwoDimensional.txt" ; I file to read the
simulation particlars from
/I check if file exist
if ((_access(textFileName ,0)))

printf( "no job for the function %s\n" , textFileName);
info for no job
return ; // exiting function
} 1lif, checking for the file

time_t rawtime;
struct  tm * timeinfo;
char buffer [40];
time (&rawtime);
timeinfo = localtime (&rawtime);
strftime (buffer,40, "TD\W\%a_%Y-%m-%d\\%I_%M_%p" ,timeinfo);
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char prefix[]= "'md" ;

int bufferNum = strlen(buffer), prefixNum = strlen(pre fix),i
=bufferNum + prefixNum;
char *combo=( char *) malloc (i * sizeof ( char));

strcpy(combo, prefix);

strcat(combo, buffer);

system(combo);

char prefix2[]= "move " ;

char moveEnd[]= "" ;

int textFileNameNum =strlen(textFileName);
int  moveEndNum = strlen(moveEnd);

int prefix2Num = strlen(prefix2);

int combo2Num = prefix2Num + textFileNameNum + moveEnd Num +
bufferNum;
char *combo2 =(  char *) malloc (combo2Num * sizeof ( char));

strcpy(combo2,prefix2);
strcat(combo?2, textFileName);
strcat(combo2, moveEnd);
strcat(combo2, buffer);
system(combo?2);

if (chdir (buffer) ==-1)

printf ( "chdir failed - %s\n" , Strerror (errno));
return ;
}
FILE *fp = fopen(textFileName, “r" ); Il file opening
/I getting rid of labels
char getRid = 'q'
while (getRid != \n'" )
fscanf(fp, "%c" , &getRid);
int times =0; /I flag to ascertain run
printf( “"containing folder is %s\n" , buffer);
while (fscanf(fp, "%If%If%d%d%d%d" , &dist, &width, &ttl,
&totalParticles, &deltaTime,&iterations) != EOF) /lorder in file of
particulars
{
times++;
int counter = 1;
while (counter++ <= iterations)
twodimdriver(dist, width, ttl, totalParticles,
deltaTime, iterations); /I particle journey, twodimdriver.cpp
fclose(fp); /I closes file
if ('times)
printf( "nothing in the file\n" ); /Il if notin in file
/Isystem("rename TwoDimensional.txt TwoDimensionalO Id.txt");//
rename after

}

#include <stdio.h>
#include <math.h>
#include "threeinl.h"

int WithinReach( double yOrigin, double xOrigin, double yCood, double
xCood, double radius)

double first, second, third, sum;
first = yOrigin - yCood;

first*=first;

second = xOrigin - xCood;
second*=second;
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third = radius * radius;

sum = first + second,;

if (sum <= third)

return  0;
else
return 1,

}
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "threeinl.h"
[*This is documentation for my Thesis program. This
to simulate the motion of hypothetical particles fr
a time, from a server to a destination under the in
diffusion through a medium. This diffusion is gover
normal distribution. So what this simulates is the
particle takes to get from the source to the destin
this simualation, automatic filing systems have bei
this program.
To include the header file(threeinl.h) in the proje
take note of where the file is located then in vs20
following Project->Project(Name)properties->C/C++(L
General -> Additional Include directory(Right Pane)
directory
To put in source files: Open solution explorer, rig
source folder, -> add new-> existing files-> browse
files are*/
int main ()

/l RANDOM GENERATOR INITIATION

srand(( unsigned ) time (NULL));

/*this function is to help the psuedorand number ge
the ¢ enviroment to generate random numbers by seed
underlying oses time. C's internal random number ge
used in the gaussian random number generator functi
random numbers which mimic the steps of the nano pa
of this particles soujourn is tied to each step of
And in the case of the one dimension, this particle
forward or backwards, but the time step is always a
generate step. Hence with this we can but in the ti
feature which accordiing to the research, can be pu
natural phenomenon. This initialization will be emp
gaussrand() located in the NormalRandGenerator.cpp
this function stdio or stdlib is needed*/

/IPreamble
printf( "Preamble\n\n" );
printf( "This program contains 3 simulations:\n"

" 1)One Dimensional Dist\n"

" 2) One Dimensional Time\n"

" 3) Two Dimensional Dist\n" );
system( "pause" );

program is meant
om, a particle at
fluence of

ned by a law of
times it, the

ation. To aid
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ct you need to
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eft Pane) ->
-> put in

ht click on
to where the

nerator of
ing it with the
nerator is inturn
on to generate
rticle. The time
this particle.
can either go
dded with each
me to live
tin place by a
loyed by the
file. Think for

printf( "The data required for these simulations are contai ned
in the following respective files:\n"
" 1) OneDimProper.txt, columns: DestinationDist, tt l,
TotPartNum, timeStep\n"
" 2) constTimeVaringDist.txt, columns:PartTransTime ,
TotPartNum, timeStep\n"
" 3) TwoDimensional.txt, columns: Xcood, Ycood, Rad ius,

ttl, TotPartNum, timeStep\n" );
system( "pause" );
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[*The above just helps the user understand a little
this program works, it uses the input provided for
observed above The Program does 3 major duties, 1.
times achieved at specific distances, and how many
destination at a given different distances, 2. The
note of the largest distance achieved by each parti
fixed time 3. This is the repeat of the first case
that this is a 2 dimensional plane and the catchmen
destination is circular in this case

How this work is if there is no file, or if there
given in the file that part does not run otherwise,
section has a prefered data format if not it won't
the data must be arranged in each file as given in
description above. Now if a file does exist, the af
file is renamed so as to prevent rerunning same dat
the next run. Please note that this file must be in
directory as the that contain the main source file*

better how
by textfiles. As
Takes note of
packets gets to
2nd program takes
cle giving a
scenario only
t area of the

is no data
it runs. Each
work properly, so
the column
ter the run, the
a by mistake in
the same
/

OneDimProper();  // attempts executing the first, this function

is located in OneDimProper.cpp

system( "pause" ); // pauses the program to let the user observer

the result before moving on to the next, to move on
button should be employed

constTimeVaryingDist(); /lconstTimeVaryingDist.cpp

system( "pause" );

TwoDimensional(); /[TwoDimensional.cpp
system( "pause" );

/*int select = 0, below = 0, above = 3;

do
{
printf("\n\n\n");
printf("type \n");
printf("{0} to Exit the Program\n");

printf("{1} To Run the Constant Destination One D

Simulation\n");

printf("{2} to Run the Constant Ttl One Dimen

Simulation\n");

printf("{3} to Run the Constant Destination Two D

Simulation\n");
printf("value: ");
scanf("%d", &select);
if(select > above || select < below)

printf("Out of range please try again\n");

else if(select == 0)

return O;

else if(select == 1)

{ OneDimProper();

else if(select == 2)

{ constTimeVaryingDist();

else if(select == 3)

{ TwoDimensional();
}while(l});

}
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