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ABSTRACT

Some new exact solutions in a model of f (R) gravity are obtained. Three kinds of

matter fields have been used to obtain exact analytic solutions. In the first solution,

the Yang-Mills fields are incorporated as a matter field at constant curvature condition.

In the second and third solutions, the linear and nonlinear electromagnetic fields are

used as matter fields. Thermodynamic properties are explored for those solutions that

admit black holes. The occurrence of naked singularities in the solutions sourced by

linear electromagnetic fields is investigated within the context of quantum mechanics.

The waves obeying the massless Klein-Gordon, Maxwell and Dirac fields are used

to probe the singularity. It is shown that the classical curvature singularity remains

singular even if it is probed with quantum waves rather than classical particles.

Keywords: Black hole solution, f(R) Gravity, Yang-Mills, Linear and Nonlinear Elec-

tromagnetism, Quantum singularities
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ÖZ

f (R) gravitasyon teorisinde bazı kesin çözümler elde edilmiştir. Bu çözümler üç farklı

alan kullanılarak bulumuştur. Birinci çözümde, Yang-Mills alanları sabit eǧrilik koşulu

ile birlikte kullanılmıştır. İkinci ve üçüncü çözümlerde ise, doǧrusal ve doǧrusal ol-

mayan elektromanyetik alanlar kullanılmıştır. Kara delik oluşturan çözümlerin ter-

modinamik özellikleri incelenmiştir. Doǧrusal elektromanyetik alanların kullanıldıǧı

çözümlerde oluşan çıplak tekillikler, kuvantum mekaniksel olarak incelenmiştir. Oluşan

çıplak tekillik; Klein-Gordon, Maxwell ve Dirac denklemlerini saǧlayan kuvantum

dalgalarıyla incelenmiştir. Klasik olarak oluşan tekilliǧin kuvantum dalgalara karşı da

tekil kaldıǧı gösterilmiştir.

Anahtar Kelimeler: Kara delik çözümleri, f(R) kütleçekim modeli, Yang-Mills alan-

ları, Doǧrusal ve doǧrusal olmayan elektromanyetik alanlar, Kuvantum tekillikler
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Chapter 1

INTRODUCTION

By the twentieth century scientists realized that Newton’s theory which describes the

motion of objects with speed much less than the speed of light was insufficient to

describe the motion of the objects when their speed becomes close to the speed of

light. As a result of this important observation, Einstein’s special theory of relativity

was developed and the equations governing the motion of particles close to the speed of

light and that of Maxwell’s equations describing electromagnetic fields were modified.

The main contribution of Einstein’s special theory of relativity was the concept of

space and time. This concept became more important when the gravitational effects

were taken into consideration, what is known today as Einstein’s theory of General

Relativity. More precisely, the main theme of the two theories was highlighted with

the following assumptions.

1) Absolute space

2) Weak Equivalence principle which describes the equivalence of inertial and gravita-

tional masses.

However, Einstein’s theory states the following which changed our understanding of

space and time forever. Einstein’s theory is based on the following assumptions,
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1) Principle of relativity, which means that the geometry of spacetime is not fixed and

is a dynamical quantity.

2) Principle of equivalence, the inertial and gravitational masses are equal or it is im-

possible to distinguish between the effect of a gravitational field from those experi-

enced in uniformly accelerated frames.

3) Principle of general relativity covariance (diffeomorphisim invariance, this principle

implies that one is free to choose any set of coordinates to map spacetime and express

the equations.)

4) Principle of causality, that each point of space-time should admit a universally valid

notion of past, present and future. The minus sign in the metric implies causality,

which means that only events in the past effect what is going on now.

Of course like any new theory, General Relativity needs experimental evidences to

prove its validity. In literature, there are well known experimental tests to General

Relativity such as Redshift of light (doppler effect), bending of light ray by sun (grav-

itational lensing), Perihelion precession of Mercury (time like trajectory) and Time

delay.

Four dimensional classical Einstein’s theory of relativity is described by the following

action, which is known as Einstein-Hilbert action

S =
1

2κ

∫
d4x
√
−gR+SM, (1.1)

2



where
√
−g is the determinant of the metric, κ = 8πGc−4, R is the Ricci scalar and SM

represents the action for the matter fields. From variation of the action, one can find

The Einstein’s equations.

The Einstein-Hilbert Lagrangian is rather singular from Hamiltonian point of view

[1]. Astrophysical and cosmological observations indicate that the standard Einstein’s

theory does not fit exactly the observational data. Galactic, extra-galactic and cosmic

scales show accelerated expansion of the Universe (low energy Universe). If General

Relativity is correct, it seems that around 96% of the Universe should be in the form

of dark energy and dark matter. Even if we assume that dark matter includes some

particles we do not know the rest, 70% known as the dark energy. The simplest expla-

nation for dark energy is based on a cosmological constant, which has two problems.

First, there is a large discrepancy between observations and theoretical predictions on

its value. Second problem concerns the coincidence problem (coincidence between the

observed vacuum energy density and the current matter density)[2]. And also, search-

ing for a unified theory that works for strong field in small scales and low energy for

large scales amounts to construct a Quantum Theory of Gravity. GR is not renormaliz-

able, therefore, it can not be conventionally quantized, so researchers go to Extended

Theories of Gravity (ETG). Unfortunately a consistent (unitary and renormalizable)

theory of gravity does not exist yet. We briefly review some of these Extended Theo-

ries.
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1.1 Quantum Gravity

General Relativity deals with the classical geometry of spacetime, whereas quantum

theory of gravity will in addition be a quantum theory of spacetime. In fact, Physicists

have to look for systems under extreme conditions in which gravitational and quantum

effects are on the same footing, the cases such as Black Holes and the Big Bang. The

scale at which quantum gravity is necessary to describe space and time is called the

Planck scale. Both string theory and loop quantum gravity are theories where space

and time are effective on this tiny scale. ETGs may constitute serious approaches to a

successful theory of quantum gravity.

The first attempt to quantize gravity is to use the canonical and covariant approach.

Canonical formalism would be drived from Hamiltonian of GR and the canonical quan-

tization procedure. This formalism does not need to introduce perturbative methods

and hence preserves the geometric feature of GR. Covariant formalism uses quantum

field theory concepts. In this approach, the metric would be separated into two parts;

the flat part ηµν and a dynamical part hµν, as in using the standard techniques of per-

turbative quantum field theory. These formalisms lead to unstable states. Hence, their

Hamiltonian does not have a ground state of energy. In particular, unitarity is violated

and probability is not conserved. These two approaches do not lead to a well defined

theory of quantum gravity [1].

1.2 String Theory

Late time cosmology might be predicted by some basic theory such as string theory. In

this theory the concept of particle is replaced by an extended object, the fundamental
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string. The usual physical particle, including the spin two graviton, corresponds to

excitation of the string, reproduce GR in the low energy limit. The theory has only one

free parameter. This theory needs an additional fundamental field like the dilaton field,

which can be interpreted as the building block of the theory.

1.3 Supergravity

The basic idea of Supergravity is the unification of the Electromagnetic and the weak

interactions. This theory makes it possible to construct a consistent theory when gravi-

ton is coupled to some kind of matter fields. This theory works only at the graviton-

graviton interactions (two loop level) and for matter-gravity (one-loop diagram) cou-

pling. But, including higher order loops, destroying the renormalizablity of the theory.

1.4 f(R) Gravity

f (R) gravity is a modified version of standard Einstein’s gravity which incorporates

an arbitrary function of the Ricci scalar R instead of the linear one.

S =
1

2κ

∫
d4x
√
−g f (R)+SM, (1.2)

Depending only on the Ricci scalar may sound simpler at the beginning but the per-

tinent nonlinearity makes nothing simpler than the Einstein’s gravity with sources.

There are both advantages and disadvantages in adopting such a model. Curvature

source constitutes its own source known as in the absence of an external matter source,

SM . Due to the nature of nonlinear structure, the identification of physical sources is

not an easy task at all. The resulting complexity in the related field equations, some-

times may not admit exact analytic solutions for the function f (R).
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In GR curvature is related through Einstein’s equation to the matter/energy density. In

other words, GR says that

Gravity = Geometry

and

Geometry = Matter-Energy

The question is, could the missing energy required by acceleration be an incomplete

description of how matter determines geometry? Modified gravity is an alternative

theory to answer this question. Modified gravity is formally equivalent to dark energy.

The corresponding field equations are;

F
(
gµν

)
+Gµν = κT M

µν ,

−F
(
gµν

)
= κT DE

µν → Gµν = κ
(
T M

µν +T DE
µν

)
, (1.3)

in which T M
µν and T DE

µν represents energy momentum tensor for matter and dark energy

respectively. The Bianchi identity guarantees

∇
µT DE

µν = 0. (1.4)

Let us mention also that there are several models of f (R) gravity and not all models are

successful. RN (N=an arbitrary number) model fails to produce a late time acceleration

in the Universe or a matter domination era [3, 4].

6



1.5 Scalar - Tensor theory

If one is willing to consider some form of dark energy other than the cosmological

constant by modifying gravity involves introducing new long range forces. The sim-

plest option is a scalar field, playing the role of dark energy. It is very natural to think

the scalar field might be coupled to matter, be aware that scalar does not couple to

photon; photons bend in a gravitational field but not in a scalar field. Quintessence

(scalar field) is dynamic whose equation of state is given by ωq =
pq
ρq

(in which pq is

a pressure and ρq is a density of matter), while cosmological constant is static with a

fixed energy density given by ωq = −1. The theory that generalizes Einstein’s theory

with this new field is the Scalar - Tensor theory. If one wants to write a Lagrangian in

the Scalar- Tensor theory, it can be written as,

S = SGR +
∫

d4x
(
−1

2
∂ϕ

2 +Lint (ϕ)

)
+

∫
d4x
[
hµνT µν

m +ϕTm
]
, (1.5)

where the first term is gravitational action and second integral is a scalar action in-

cluding self interaction. The last integral, includes two terms, the first one is graviton-

matter coupling and the second is scalar -matter coupling. Suppose the transformation

between the two frames is always well defined, the results obtained should have the

same physical description in both. We shall see that with a conformal transformation

from f (R) gravity in Jordan frame (the frame in which the form of the gravitational

part of the action may be modified.) to Einstein frame (the frame in which the grav-

itation part of the action is the same as in standard GR), the scalar field is the first
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derivative of f (R), i.e.

ϕ =
d f (R)

dR
, (1.6)

Actually, modifications of gravity will introduce new propagation degrees of freedom

named as scalaron [5].

The prototypical scalar-tensor alternative to GR is the Brans-Dicke theory, which con-

tains a scalar field. It has been shown by Hawking in 1972 that black holes which are

the end point of collapse can be a solution of Brans-Dicke theory if and only if they

are also solutions of GR [6].

Our main motivation in this thesis is to obtain new analytic solutions in the Extended

Theory of Gravity (ETG). One of the important branches of the ETG is the f (R) grav-

ity in which the Ricci scalar R in the Einstein - Hilbert action is replaced by an arbitrary

function of R. As was explained earlier, the main idea of developing this new model

of gravity was to explain the accelerated expansion of our universe.

In this thesis, we consider this model of gravity in the presence of two kinds of matter

fields. First, we consider minimally coupled Yang - Mills fields, and present some

exact solutions at the constant curvature condition (i. e. R=constant). Another solution

is also obtained in the presence of linear and nonlinear electromagnetic fields. Each

solution has its own characteristic properties such that depending on the parameters

the obtained solutions may admit black holes or solutions with no horizon. holes.
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The physical properties of the black hole solutions are investigated by calculating ther-

modynamic quantities and it was shown to satisfy the first law of thermodynamics.

The solution that results with naked singularities are studied in the frame of quantum

mechanics.

Organization of the thesis is as follows. We start with chapter 2, that is about f (R)

gravity and different approaches in this theory. In chapter 3, the new exact analytic

solutions to f (R) gravity which is minimally coupled with Yang-Mills field at the

constant curvature conditions (i. e. R =constant) is presented. The energy conditions

are also discussed. In chapter 4, another interesting exact solution in f (R) gravity is

obtained in the presence of linear / nonlinear electromagnetic fields. Thermodynamic

properties of the solutions admitting black holes is also considered. Chapter 5, deals

with the analysis of the singularity structure of the solutions that results with naked

singularity. The classical curvature singularity is investigated within the framework of

quantum mechanics. The thesis is finalized with a conclusion in chapter 6.

9



Chapter 2

f (R) GRAVITY

The Universal gravitational interaction depends on the curvature of spacetime. Geo-

metric theory of gravitational interactions in GR is a Riemannian manifold in which

metric is a fundamental geometric entity. But as we shall see in the following, in some

approaches it is possible to put metric and connections as independent geometric en-

tities. In this theory, there are three different formalisms. In this chapter, we aim to

explain these formalisms.

2.1 Metric Formalism

The action for this formalism is given by

S =
1

2κ

∫
d4x
√
−g f (R)+SM, (2.1)

where SM denotes the matter field and κ = 8πGc−4. In this formalism variation of the

action with respect to metric gµν gives

f
′
(R)Rµν−

1
2

f (R)gµν−
(
∇µ∇υ−gµν�

)
f
′
(R) = κTµν, (2.2)

10



in which prime denote derivative with respect R, �= ∇µ∇µ = 1√
−g∂µ (

√
−g∂µ) and the

energy momentum tensor may be written as,

Tµν =
−2√
−g

∂SM

∂gµν
. (2.3)

Hence, the Einstein’s equations can be written as

Gµν ≡ Rµν−
1
2

gµνR

= Ge f f

(
Tµν +T e f f

µν

)
, Ge f f ≡

G
f ′ (R)

(2.4)

where

T e f f
µν =

1
κ

[
f (R)−R f

′
(R)

2
gµν +

(
∇µ∇υ−gµν�

)
f
′
(R)

]
(2.5)

f
′
(R)R−2 f (R)+3� f

′
(R) = κT. (2.6)

Here T = gµνTµν links R with T as differential relations, unlike algebraic one in GR,

where R = κT . The field equations in f (R) gravity allow much wider set of solu-

tions compared to GR. To illustrate such a statement we remark the Jebsen-Birkhoff’s

theorem, stating that Schwarzschild solution represents the unique spherically sym-

metric vacuum solution (even if the field source involves radial motions, the field be-

yond the region occupied by matter remains constant and is always described by the

Schwarzschild solution), does not hold in the f (R) theory. We note that T = 0 does

not require that R =constant [7].

11



2.2 Palatini Formalism

The manifold that is chosen in GR, is Riemannian manifold with its own properties

(like parallel transport and connections). In other words, in this manifold, metric is

symmetric, non-singular, tensor and connections also are symmetric. However, for a

Palatini formalism (metric-affine theory of gravity) this is not necessarily true. Since

the metric and the connection are independent, the metric can be symmetric without

the connection being symmetric as well. We start with the following action

S =
1

2κ

∫
d4x
√
−g f (R)+SM

(
gµν,ψ

)
, (2.7)

SM, is assumed to depend only on the metric and the matter fields and not on the

independent connection. So after variation the action with respect to metric gives

f
′
(R)Rµν−

1
2

f (R)gµν = κTµν, (2.8)

and variation with respect to the connection gives

∇σ

(√
−g f

′
(R)gσ(µ

)
δ

υ)
λ
−∇λ

(√
−g f

′
(R)gµν

)
= 0. (2.9)

By taking the trace of above equation, we get

∇λ

(√
−g f

′
(R)gµν

)
= 0. (2.10)

12



One can see that it is possible to introduce a new metric such as hµν = f
′
(R)gµν. And

Γλ
µν becomes the Levi-Civita connection of hµν, i.e.,

Γ
λ
µν =

hλρ

2
(
∂µhρν +∂νhρµ−∂ρhµν

)
. (2.11)

Let us discuss about this formalism more in the simplest case, when we have a vacuum

or Maxwell fields. In these cases trace of energy momentum is zero, i.e. T = 0 . So

2.8 becomes

f
′
(R)R−2 f (R) = 0, (2.12)

this equation can have three solutions. The first one is the equation that has no real

solution. For the second one, we consider special choice of f (R). If

f (R) = αR2, (2.13)

the homogeneous and isotropic cosmology in RN gravity seems to show a complete

disagreement with what is required to explain to show the current feature of the uni-

verse. In a paper by L. G. Jaime et al. they showed with numerical evidence that

RN gravity produces a late time acceleration in the universe or a matter dominant era

but not both[3, 4]. Beside that this model seems to have a solution when the trace of

energy momentum is zero (T = 0). The third possibility is that it admits a solution

13



R =constant, so f
′
(R) is also a constant. We can use 2.10, to have

∇λ

(√
−ggµν

)
= 0, (2.14)

This is the metricity condition for the affine connections, Γλ
µν in this new frame. So

the affine connections now become the Levi-civita connections of metric. With Γλ
µν ={

λ
µν

}
. Then 2.8 reads

Rµν−
1
4

Cigµν = 0, (2.15)

which is exactly Einstein field equation with a cosmological constant ( maximally

symmetric solution corresponds to the space of deSitter or anti-deSitter). This is not

the case if one uses the metric variational principle.

2.3 Metric-Affine Formalism

In Palatini formalism we assumed that matter depended only on the metric and the

matter fields. Here in this approach we suppose the matter in addition depends on

connections as well. As usual we start with the action

S =
1

2κ

∫
d4x
√
−g f (R)+SM

(
gµν,ψ,Γ

)
. (2.16)

We apply variation with respect to metric and connection for matter, respectively. We

obtain

Tµν =−
2√
−g

∂SM

∂gµν
, and ∆

µν

λ
=− 2√

−g
∂SM

∂Γλ
µν

, (2.17)
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for some matters like scalar field and electromagnetic field ∆
µν

λ
= 0. One example for

non-zero torsion is massive vector field or Dirac field [8, 9]. Generally, if we make

variation with respect to metric and connection, respectively, for our action, it gives us

f
′
(R)Rµν−

1
2

f (R)gµν = κTµν, (2.18)

1√
−g

[
∇σ

(√
−g f

′
(R)gσ(µ

)
δ

υ)
λ
−∇λ

(√
−g f

′
(R)gµν

)]
+2 f

′
(R)gµσSν

σλ
= κ

(
∆

µν

λ
− 2

3
∆

σ[ν
σ δ

µ]
λ

)
, (2.19)

Sσ
µσ = 0, (2.20)

in which

Sλ
µν ≡ Γ

λ

[µν] Cartan torsion tensor,

Qµνλ ≡ −∇µgνλ Non-metricity tensor,

Qµ ≡
1
4

Qν
µν Weyl tensor.

[8, 9].

2.4 Stability Issues

For the sake of the stability analysis we prefer to consider modified gravity from Ein-

stein gravity as

f (R) = R+∆(R) , (2.21)
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so the trace of 2.6 from metric formalism can be written as

�∆R =
1
3
[R+2∆−∆RR]+

κ

3
T ≡

∂Ve f f

∂∆R
, (2.22)

which is a kinetic term and an effective potential Ve f f (∆R). We must have |∆� R| and

|∆R| � 1 at high curvatures to be consistent with our knowledge of the high redshift

universe or in other words

lim
R→∞

∆R = 0 and lim
R→∞

∆

R
= 0. (2.23)

In this limit, the extremum of the effective potential lies at the GR value R = κT [10].

Whether this extremum is a minimum or a maximum is determined by the second

derivative of Ve f f at the extremum, which is also the squared mass of the scalaron:

m2
∆R
≡

∂2Ve f f

∂∆2
R

=
1
3

[
1+∆R

∆RR
−R
]
. (2.24)

At high curvature, when |R∆RR| � 1 and ∆R→ 0 it approximates to

m2
∆R
≈ 1+∆R

3∆RR
≈ 1

3∆RR
. (2.25)

It then follows that in order for the scalaron not to be tachyonic one must require

∆RR > 0. Classically, ∆RR > 0 is required to keep the evolution in the high-curvature

regime stable against small perturbations.

At the end, the requirement that the graviton is not a ghost, massive of negative norm

16



that cause apparent lack of unitarity, imposes that

1+∆R > 0, (2.26)

The most direct interpretation of this condition is that the effective Newton constant,

Ge f f =
G

1+∆R
, is not allowed to change sign.

For Palatini f (R) gravity the trace equation of 2.8 is

f
′
(R)R−2 f (R) = κT, (2.27)

In contrast to the metric case, 2.27 is not an evolution equation for R; it is not even

a differential equation but rather an algebraic equation in R once the function f (R)

is specified. This is also the case in GR, in which the Einstein field equations are of

second order and taking their trace yields R = κT . In analogy with Brans-Dicke theory

the scalar field ϕ of the equivalent ω0 = −3/2 (for Palatini approach ω0 = −3/2 and

metric formalism ω0 = 0) is not dynamical; which reduces to GR in vacuum. Therefore

the instability cannot occur in Palatini f(R) gravity[5, 8, 11, 12, 13].
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Chapter 3

CONSTANT CURVATURE f (R) GRAVITY MINIMALLY

COUPLED WITH YANG-MILLS FIELD

In this chapter, we consider a particular class within minimally coupled YM field in

f (R) gravity with the conditions that the scalar curvature R = R0 = constant and the

trace of the YM energy-momentum tensor is zero. Contrary to our expectations this

turns out to be a non-trivial class with far-reaching consequences. Our spacetime is

chosen spherically symmetric to be in accord with the spherically symmetric Wu-Yang

ansatz for the YM field. The field equations admit exact solutions in all dimensions

d ≥ 4 with the physical parameters; mass (m) of the black hole, YM charge (Q) and

the scalar curvature (R0) of the space time. In this picture we note that cosmological

constant arises automatically as proportional to R0.

3.1 The Formalism and Solution for R =Constant

We choose the action as (Our unit convention is chosen such that c = G = 1 so that

κ = 8π)

S =
∫

ddx
√
−g
[

f (R)
2κ

+L (F)

]
, (3.1)

where f (R) is a real function of Ricci scalar R and L(F) is the nonlinear YM La-

grangian with F = 1
4tr
(

F(a)
µν F(a)µν

)
. Obviously the particular choice L (F) = − 1

4π
F

18



will reduce to the case of standard YM theory. The YM field 2−form components are

given by

F(a) =
1
2

F(a)
µν dxµ∧dxν (3.2)

with the internal index (a) running over the degrees of freedom of the nonabelian YM

gauge field. Variation of the action with respect to the metric gµν gives the EYM field

equations as

fRRν
µ +

(
� fR−

1
2

f
)

δ
ν
µ−∇

ν
∇µ fR = κT ν

µ (3.3)

in which

T ν
µ = L (F)δ

ν
µ− tr

(
F(a)

µα F(a)να

)
LF (F) , (3.4)

LF (F) =
dL (F)

dF
.

Our notation here is as follows: fR = d f (R)
dR , � fR = ∇µ∇µ fR = 1√

−g∂µ (
√
−g∂µ) fR , Rν

µ

is the Ricci tensor and

∇
ν
∇µ fR = gαν ( fR),µ;α = gαν

[
( fR),µ,α−Γ

m
µα ( fR),m

]
. (3.5)

The trace of the EYM equation 3.3 yields

fRR+(d−1)� fR−
d
2

f = κT (3.6)
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in which T = T µ
µ . The SO(d−1) gauge group YM potentials are given by

A(a) =
Q
r2C(a)

(i)( j) xidx j, Q = YM magnetic charge, r2 =
d−1

∑
i=1

x2
i , (3.7)

2≤ j+1≤ i≤ d−1, and 1≤ a≤ (d−2)(d−1)/2,

x1 = r cosθd−3 sinθd−4...sinθ1, x2 = r sinθd−3 sinθd−4...sinθ1,

x3 = r cosθd−4 sinθd−5...sinθ1, x4 = r sinθd−4 sinθd−5...sinθ1,

...

xd−2 = r cosθ1,

in which C(a)
(b)(c) are the non-zero structure constants of (d−1)(d−2)

2 −parameter Lie

group G [14, 15, 16]. The metric ansatz is spherically symmetric which reads

ds2 =−A(r)dt2 +
dr2

A(r)
+ r2dΩ

2
d−2, (3.8)

with the only unknown function A(r) and the solid angle element

dΩ
2
d−2 = dθ

2
1 +

d−2

∑
i=2

i−1
j=1

sin2
θ j dθ

2
i , (3.9)

with

0≤ θd−2 ≤ 2π,0≤ θi ≤ π, 1≤ i≤ d−3.

Variation of the action with respect to A(a) implies the YM equations

d
[
?F(a)LF (F)

]
+

1
σ

C(a)
(b)(c)LF (F)A(b)∧? F(c) = 0, (3.10)
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in which σ is a coupling constant and ? means duality. One may show that the YM

invariant satisfies

F =
1
4

tr
(

F(a)
µν F(a)µν

)
=

(d−2)(d−3)Q2

4r4 (3.11)

and

tr
(

F(a)
tα F(a)tα

)
= tr

(
F(a)

rα F(a)rα

)
= 0, (3.12)

while

tr
(

F(a)
θiα

F(a)θiα
)
=

(d−3)Q2

r4 , (3.13)

which leads us to the exact form of the energy momentum tensor

T ν
µ = diag

[
L ,L ,L− (d−3)Q2

r4 LF ,L−
(d−3)Q2

r4 LF , ...,L−
(d−3)Q2

r4 LF

]
.

(3.14)

Here the trace of T ν
µ becomes

T = T µ
µ = dL−4FLF , (3.15)

and therefore with 3.3 we find

f =
2
d
[ fRR+(d−1)� fR−κ(dL−4FLF)] . (3.16)
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To proceed further we set the trace of energy momentum tensor to be zero i.e.,

dL−4FLF = 0 (3.17)

which leads to a power Maxwell Lagrangian [17, 18, 19, 20, 21]

L =− 1
4π

F
d
4 . (3.18)

Here for our convenience the integration constant is set to be − 1
4π
. On the other hand,

the constant curvature R = R0, and the zero trace condition together imply

f ′ (R0)R0−
d
2

f (R0) = 0. (3.19)

This equation admits

f (R0) = R
d
2
0 , (3.20)

where the integration constant is set to be one. One can easily write the Einstein

equations as (analogy with equations 2.4 and 2.5)

Gν
µ = κ T̃ ν

µ (3.21)

where

T̃ ν
µ =

2R0

f (R0)d
T ν

µ −
Λe f f

κ
δ

ν
µ, (3.22)

Λe f f =
(d−2)R0

2d
, (3.23)
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and in which T ν
µ is given by 3.4. The constancy of the Ricci scalar amounts to

−r2A′′+2(d−2)rA′+(d−2)(d−3)(A−1)
r2 = R0 (3.24)

which yields

A = 1− R0

d (d−1)
r2− m

rd−3 +
σ

rd−2 , (3.25)

where σ and m are two integration constants. From the Einstein equations one identi-

fies the constant σ as

σ =
8

d (d−2)R
d−2

2
0

(
(d−3)(d−2)Q2

4

) d
4

. (3.26)

In the next section we study solutions in 4−dimensions.

3.2 4−dimensions

In 4−dimensions, we know that the nonabelian SO(3) gauge field coincides with the

abelian U(1) Maxwell field [22]. Due to its importance we shall study the 4−dimensional

case separately and give the results explicitly. First of all, in 4−dimensions the metric

function becomes

A = 1− R0

12
r2− m

r
+

Q2

2R0r2 , 0 < |R0|< ∞ (3.27)

and the form of action reads as

S =
∫

d4x
√
−g
[

f (R)
2κ

+L (F)

]
(3.28)
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in which

f (R) = R2, (3.29)

with R = R0 and

L (F) =− 1
4π

F. (3.30)

By assumption, R0 gets positive / negative values and the resulting spacetime becomes

de-Sitter / anti de-Sitter, type in f (R) = R2 theory respectively, with effective cos-

mological constant Λe f f =
R0
4 . Let us add that in order to preserve the sign of the

charge term in 3.27 we must abide by the choice R0 > 0. However, simultaneous limits

Q2→ 0 and R0→ 0, so that Q2

R0
= λ0 =constant, leads also to an acceptable solution

within f (R) gravity [23]. It is not difficult to see here that m is the ADM mass of the

resulting black hole. Viability of the pure f (R) = R2 model which has recently been

considered critically [4] is known to avoid the Dolgov-Kawasaki instability [12]. Fur-

ther, in the late time behaviour of the expanding universe (i.e. for r→∞) it asymptotes

to the de Sitter / anti de Sitter form. With reference to [4] we admit that sourceless

f (R) = R2 model doesn’t possess a good record as far as the Solar System tests are

concerned. Herein we have sources and wish to address the universe at large. In the

next section we investigate energy conditions for these solutions in 4−dimensions.

3.3 Energy Conditions

When a matter field couples to any system, energy conditions must be satisfied for

physically acceptable solutions. The local energy density as measured by an observer
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with velocity u is nonnegative and the local energy flow vector q is non-spacelike.

This condition must be satisfied if we replace u by a null vector k. We study energy

conditions by calculating Weak, Strong and Dominant energy condition [24, 25, 26].

The Weak Energy Conditions (WEC) states that

ρ ≥ 0, (3.31)

ρ+ pi ≥ 0.

in which ρ is the energy density of matter as measured by an observer. And pi are the

principal pressure components. The Strong Energy Conditions (SEC) imply

ρ+
d−1

∑
i=1

pi ≥ 0, (3.32)

ρ+ pi ≥ 0.

In The Dominant Energy Condition (DEC), the effective pressure must not be negative,

i. e.,

Pe f f =
1

d−1

d−1

∑
i=1

T i
i ≥ 0, (3.33)

In addition to the energy conditions one can impose the Causality Condition (CC)

0≤
Pe f f

ρ
< 1. (3.34)

Finally we introduce ω =
Pe f f

ρ
, which is bounded as

−1≤ ω <
1

d−1
. (3.35)
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3.3.1 Energy Conditions for d -dimensions

We analyze the energy conditions thoroughly covering all dimensions for two cases,

when R0 > 0 and R0 < 0.

3.3.1.1 R0 > 0. The energy density and the pressure components given by

ρ = −T̃ 0
0 =

R0

2πd

F
d
4

R
d
2
0

+
(d−2)

8

 ,

pi = T̃ i
i =

R0

2πd

 2
(d−2)

F
d
4

R
d
2
0

− (d−2)
8

 , i = 2, · · · ,(d−1),

p1 = T̃ 1
1 =− R0

2πd

F
d
4

R
d
2
0

+
(d−2)

8

 . (3.36)

As we can see WEC 3.31, is held. For SEC, 3.32, it is shown that the second condition

is satisfied but first condition implies that

ρ+
d−1

∑
i=1

pi =
R0

2πd

2
F

d
4

R
d
2
0

− (d−2)2

8

≥ 0 (3.37)

or consequently

(
2
(

F
R2

0

) d
4

− (d−2)2

8

)
≥ 0. (3.38)

By a substitution from 3.11 for F one finds that for r < rc the condition is satisfied in

which

rc = d

√
16

(d−2)2
4

√
(d−2)(d−3)Q2

4R2
0

. (3.39)
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To have a positive effective pressure, DEC 3.33, amounts to

Pe f f =
1

d−1

d−1

∑
i=1

T i
i =

1
(d−1)

R0

2πd

F
d
4

R
d
2
0

− (d−2)(d−1)
8

≥ 0, (3.40)

which for r < r̃c it is fulfilled in which

r̃c =
d

√
8

(d−2)(d−1)
4

√
(d−2)(d−3)Q2

4R2
0

. (3.41)

One can find the causality condition, 3.34, such as

0≤
Pe f f

ρ
=

(
F

d
4 R
−d
2

0 −
(d−2)(d−1)

8

)
(d−1)

(
F

d
4 R
−d
2

0 + (d−2)
8

) < 1. (3.42)

This is equivalent to

F
d
4 R
−d
2

0 −
(d−2)(d−1)

8
> 0 (3.43)

which for r < r̃c is satisfied. The state function for this case becomes

ω =

((
F
R2

0

) d
4 − (d−2)(d−1)

8

)
(d−1)

((
F
R2

0

) d
4
+ (d−2)

8

) , (3.44)

which is bounded as

−1≤ ω <
1

d−1
. (3.45)
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It is observed that 
0≤ ω < 1

d−1 if r < r̃c

−1≤ ω < 0 if r̃c < r
. (3.46)

3.3.1.2 R0 < 0. One may see, that presence of R
d
2
0 in the definition of ρ and pi im-

poses that d 6= 2n+1 for n = 2,3,4, .... For d = 4n, we get

ρ = −T̃ 0
0 =
−|R0|
8πn

(
Fn

R2n
0

+
2n−1

4

)
,

pi = T̃ i
i =
−|R0|
8πn

(
1

2n−1
Fn

R2n
0
− 2n−1

4

)
,

p1 = T̃ 1
1 =
|R0|
8πn

(
Fn

R2n
0

+
2n−1

4

)
, (3.47)

These expressions reveal that the condition ρ ≥ 0 and ρ+ pi ≥ 0 (WEC)are not sat-

isfied. Similarly the SEC is also violated and since the source is exotic we shall not

consider it any further here. A case of interest for R0 < 0 is the choice d = 4n+2 for

n = 1,2,3, ... in which

ρ = −T̃ 0
0 =

|R0|
4π(2n+1)

(
F

2n+1
2

|R0|2n+1 −
n
2

)
,

pi = T̃ i
i =

|R0|
4π(2n+1)

(
1

2n
F

2n+1
2

|R0|2n+1 +
n
2

)
, i = 2, · · · ,(d−1),

p1 = T̃ 1
1 =− |R0|

4π(2n+1)

(
F

2n+1
2

|R0|2n+1 −
n
2

)
. (3.48)

WEC: ρ≥ 0 yields

F
2n+1

2

|R0|2n+1 −
n
2
≥ 0 (3.49)
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or

r < r̄c (3.50)

where

r̄c =
4n+2

√
2
n

4

√
n(4n−1)Q2

|R0|2
. (3.51)

SEC: The conditions are simply satisfied.

DEC: This amounts to

Pe f f =
1

4n+1
|R0|

4π(2n+1)

(
F

2n+1
2

|R0|2n+1 +
n
2
+2n2

)
≥ 0, (3.52)

which is also satisfied.

CC: The causality condition implies

0≤
Pe f f

ρ
=

(
F

2n+1
2

|R0|2n+1 +
n
2 +2n2

)
(4n+1)

(
F

2n+1
2

|R0|2n+1 − n
2

) < 1, (3.53)

or equivalently

|R0|2n+1 1+4n
4

< F
2n+1

2 (3.54)

which is satisfied for

r < r̆c (3.55)

where
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r̆c =
4n+2

√
4

1+4n
4

√
n(4n−1)Q2

|R0|2
. (3.56)

Here the state function ω =
Pe f f

ρ
becomes

ω =

(
F

2n+1
2

|R0|2n+1 +
n
2 +2n2

)
(4n+1)

(
F

2n+1
2

|R0|2n+1 − n
2

) , (3.57)

which is bounded as

−1≤ ω <
1

4n+1
. (3.58)

One can show that 
0≤ ω < 1

4n+1 if r < r̄c

−1≤ ω < 0 if r̄c < r
. (3.59)

3.3.2 Energy Condition for 4-dimensions

The energy density and the principal pressure are given as

ρ = −T̃ 0
0 =

1
8πR0

(
F +

1
4

R2
0

)
,

p1 = T̃ 1
1 =− 1

8πR0

(
F +

1
4

R2
0

)
,

pi = T̃ i
i =

1
8πR0

(
F− 1

4
R2

0

)
, i = 2,3. (3.60)
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These conditions imply that for R0 ≥ 0, both the WEC and SEC are satisfied. DEC

implies, on the other hand, from 3.40 that

Pe f f =
1
3

3

∑
i=1

T̃ i
i =

1
24πR0

(
F− 3

4
R2

0

)
≥ 0, (3.61)

which yields

R0 ≥ 0 and F ≥ 3
4

R2
0→ r ≤ 4

√
2Q2

3R2
0
. (3.62)

In addition to the energy conditions one can impose the causality condition (CC) from

3.42

0≤
Pe f f

ρ
=

(
F− 3

4R2
0
)

3
(
F + 1

4R2
0
) < 1, (3.63)

which is satisfied if F ≥ 3
4R2

0 or r ≤ 4

√
2Q2

3R2
0
.

By ω =
Pe f f

ρ
, one observes that in the range for 0 < r < ∞ we have

−1≤ ω <
1
3
. (3.64)

In terms of the physical parameters, if

4

√
2Q2

3R2
0
≤ r (3.65)
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then −1≤ ω≤ 0, and if

4

√
2Q2

3R2
0
> r (3.66)

we have 0 < ω < 1
3 . It is clearly seen that the foregoing bounds serve to define possible

critical distances where the sign of the effective pressure changes sign. This may be

interpreted as changing phase for example, from contraction to expansion or vice versa

in a universe centered by a black hole [27].
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Chapter 4

SOLUTIONS FOR f (R) GRAVITY COUPLED WITH THE

ELECTROMAGNETIC FIELD

Starting from a known function of f (R) a priori is an alternative approach which hosts

its own shortcoming from the outset. Keeping a set of free parameters to be fixed by

observational data can be employed in favour of f (R) gravity to explain a number of

cosmological phenomena. First of all, to be on the safe side along with the successes

of general relativity most researchers prefer an ansatz of the form f (R) = R+αg(R)

, so that with α→ 0 one recovers the Einstein limit. The struggle now is for the new

function g(R) whose equations are not easier than those satisfied by f (R) itself.

We assume f (R) = ξ(R+R1)+2α
√

R+R0, in which ξ, α, R0 and R1 are constants, a

priori to secure the Einstein limit by setting the constants R0 = R1 = α = 0 and ξ = 1.

This extends a previous study without sources [28, 29, 30] to the case with sources.

Why the square root term in the Lagrangian?. It will be shown that for R0 = R1 = 0

and without external sources such a choice of square root Lagrangian gives the cur-

vature energy-momentum tensor components as T t
t = T r

r , T θ

θ
= T ϕ

ϕ = 0, which sig-

nify a global monopole [25, 31, 32, 33, 34]. A global monopole which arises from

spontaneous breaking of gauge symmetry is the minimal structure that yields non-zero

curvature even with zero mass. We test the analogous concept in f (R) gravity to ob-

33



tain similar structures. Unlike the case of [35] our concern here will be restricted to

the 4−dimensional spacetime. As source, we take electromagnetic fields, both from

the linear (Maxwell) and the nonlinear theories. For the linear Maxwell source we

obtain a black hole solution with electric charge (Q) and magnetic charge (P) remi-

niscent of the Reissner-Nordstrom (RN) solution with different asymptotic behaviors.

That is, our spacetime is non-asymptotically flat with a deficit angle. For the nonlin-

ear, pure electric source we choose the standard Maxwell invariant superposed with

the square root invariant, i.e. the Lagrangian is given by L (F)∼ F +2β
√
−F , where

F = 1
4FµνFµν is the Maxwell invariant and β is a coupling constant. This particular

choice has the feature that it breaks the scale invariance [36, 37] , gives a linear elec-

tric potential which plays role in quark confinement [38]. We find out that the scale

breaking parameter β modifies the mass of the black hole. For this reason Lagrangians

supplemented by a square-root Maxwell Lagrangian may find rooms of applications in

black hole physics.

4.1 f (R) Gravity Coupled with Maxwell Field

The action for f (R) gravity coupled with Maxwell field in 4-dimensions is given by

S =
∫

d4x
√
−g
[

f (R)
2κ
− 1

4π
F
]

(4.1)

in which f (R) is a real function of Ricci scalar R and F = 1
4FµνFµν is the Maxwell

invariant. (We choose κ = 8π and G = 1). The Maxwell two-form is chosen to be

F =
Q
r2 dt ∧dr+Psinθdθ∧dφ (4.2)
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where Q and P are the electric and magnetic charges, respectively. Our static spheri-

cally symmetric metric ansatz is

ds2 =−A(r)dt2 +
dr2

A(r)
+ r2 (dθ

2 + sin2
θdφ

2) (4.3)

where A(r) stands for the only metric function to be found. The Maxwell equations

(i.e. dF = 0 = d∗F) are satisfied and the field equations are given by

fRRν
µ +

(
� fR−

1
2

f
)

δ
ν
µ−∇

ν
∇µ fR = κT ν

µ

our notation here is the same as in chapter 3, 3.3-3.5. The energy momentum tensor is

4πT ν
µ =−Fδ

ν
µ +FµλFνλ. (4.4)

The non-zero energy momentum tensor components are

T ν
µ =

P2 +Q2

8πr4 diag [−1,−1,1,1] (4.5)

with zero trace and consequently from 3.6 when d=4

f =
1
2

fRR+3� fR. (4.6)

One finds

R = −r2A′′+4rA′+2(A−1)
r2 , (4.7)

Rt
t = Rr

r =−
1
2

rA′′+2A′

r
, (4.8)

Rθ

θ
= Rφ

φ
=−rA′+A−1

r2 . (4.9)
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in which a prime denotes derivative with respect to r. Overall, the field equations read

now

fR

(
−1

2
rA′′+2A′

r

)
+

(
� fR−

1
2

f
)
−∇

t
∇t fR = κT 0

0 , (4.10)

fR

(
−1

2
rA′′+2A′

r

)
+

(
� fR−

1
2

f
)
−∇

r
∇r fR = κT 1

1 , (4.11)

fR

(
−rA′+(A−1)

r2

)
+

(
� fR−

1
2

f
)
−∇

θ
∇θ fR = κT 2

2 . (4.12)

Herein

� fR = A′ f ′R +A f ′′R +
2
r

A f ′R, ∇
t
∇t fR =

1
2

A′ f ′R, ∇
r
∇r fR = A f ′′R +

1
2

A′ f ′R,

∇
φ
∇φ fR = ∇

θ
∇θ fR =

A
r

f ′R (4.13)

and for the details we refer to [2]. The tt and rr components of the field equations

imply

∇
r
∇r fR = ∇

t
∇t fR (4.14)

or equivalently

f ′′R = 0. (4.15)

This leads to the solution

fR = ξ+ηr (4.16)
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where ξ and η are two positive constants [8]. The other field equations become

fR

(
−1

2
rA′′+2A′

r

)
+

1
2

ηA′+
2
r

Aη− 1
2

f = κT 0
0 , (4.17)

fR

(
−rA′+(A−1)

r2

)
+A′η+

1
r

Aη− 1
2

f = κT 2
2 . (4.18)

Now, we make the choice

f (R) = ξ

(
R+

1
2

R0

)
+2α

√
R+R0 (4.19)

which leads to

R =
α2

η2r2 −R0 (4.20)

where α, R0 and ξ from 4.16 are constants. As a result one obtains for f (r)

f =
ξα2

η2r2 +
2α2

ηr
− 1

2
ξR0 (4.21)

and from 4.7 we have

−r2A′′+4rA′+2(A−1)
r2 =

α2

η2r2 −R0. (4.22)

This equation admits a solution for the metric function given by

A(r) = 1− α2

2η2 +
C1

r
+

C2

r2 +
1

12
R0r2. (4.23)
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Herein the two integration constants C1 and C2 are identified through the other field

equations 4.17 and 4.18 as

C1 =
ξ

3η
and C2 =

(
Q2 +P2)

ξ
, (4.24)

while for the free parameters we have α = η > 0. Finally the metric function becomes

A(r) =
1
2
− m

r
+

q2

r2 −
Λe f f

3
r2 (4.25)

where m =− ξ

3η
< 0, Λe f f =

−R0
4 and q2 =

(Q2+P2)
ξ

. The choice of the free parameters

in terms of each other prevents us from obtaining the general relativity limit, namely

the Reissner-Nordström (RN)-de Sitter (dS) solution. It is observed that the parameter

ξ acts as a scale factor for mass and charge and for the case ξ = 1 and Q = P = 0 the

solution reduces to the known solution given by [28, 29, 30, 39, 40]. The properties

of this solution can be summarized as follow: The mass term has the opposite sign to

that of Schwarzschild and the solution is not asymptotically flat, giving rise to a deficit

angle. The latter property is reminiscent of a global monopole term with a fixed charge.

To see the case of a global monopole we set R0 = 0 = q2 (i.e. zero external charges

and zero cosmological constant) and find the energy-momentum components. This

reveals that the non-zero components are T t
t = T r

r = − 1
2r2 , which identifies a global

monopole [32, 33, 34]. The solution 4.25 can therefore be interpreted as an Einstein-

Maxwell plus a global monopole solution in f (R) gravity. The area of a sphere of

radius r (for q2 = R0 = 0) is not 4πr2 but 2πr2. Further, it can be shown easily that the

surface θ = π

2 has the geometry of a cone with a deficit angle ∆ = π

2 . It can also be
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anticipated that a global monopole modifies perihelion of circular orbits, light bending

and other physical properties. Although in the linear Maxwell theory the sign of mass

is opposite, in the next section we shall show that this can be overcome by going to

the nonlinear electrodynamics with a square root Lagrangian. Another aspect of the

solution is that since fR > 0 we have no ghost states.

4.2 f (R) Gravity Coupled with Nonlinear Electromagnetism

4.2.1 Solution within Nonlinear Electrodynamics

In this section we use an extended model for the Maxwell Lagrangian given in the

action

S =
∫

d4x
√
−g
[

f (R)
2κ

+L (F)

]
(4.26)

where f (R) = ξ(R+R1)+2α
√

R+R0, in which R1 and R0 are constants to be found

while

L (F) =− 1
4π

(
F +2β

√
−F
)
. (4.27)

Here β is a free parameter such that limβ→0 L (F)=− 1
4π

F , which is the linear Maxwell

Lagrangian. The main reason for adding this term is to break the scale invariance and

create a mass term. The normal Maxwell action is known to be invariant under the

scale transformation, x→ λx, Aµ→ 1
λ

Aµ, (λ =const.), while
√
−F violates this rule.

We shall show how a similar term modifies the mass term in f (R) gravity. Our choice
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of the Maxwell 2-form is written as

F = E (r)dt ∧dr (4.28)

and the spherical line element as 4.3. The nonlinear Maxwell equation reads

d
(
?F

∂L
∂F

)
= 0 (4.29)

which yields the solution

E (r) =
√

2β+
Q
r2 (4.30)

with a confining electric potential as V (r) =−
√

2βr+ Q
r . This is known as the ”Cor-

nell potential” for quark confinement in quantum chromodynamics (QCD). The Ein-

stein equations implies the same equations as 3.3-3.6 and the energy momentum tensor

T ν
µ = L (F)δ

ν
µ−FµλFνλ ∂L

∂F
= (4.31)

F
4π

diag
[

1,1,
2β√
−F
−1,

2β√
−F
−1
]
,

with the additional condition that the trace T µ
µ = T 6= 0, here. Upon substitution into

the field equations one gets

R1 =
4β2

ξ
+

1
2

R0. (4.32)

α = η (4.33)
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and a black hole solution results with the metric function

A(r) =
1
2
− 4
√

2βQ−ξ

3ηr
+

Q2

ξr2 +
R0

12
r2. (4.34)

This is equivalent to the solution given in 4.25 with the same Λe f f but with the new m=

4
√

2βQ−ξ

3η
and q = Q2

ξ
. This is how the scale breaking term in the Lagrangian modifies

the mass.

For the sake of completeness we comment here that, choosing a magnetic ansatz for

the field two-form as

F = Psinθdθ∧dϕ (4.35)

together with a nonlinear Maxwell Lagrangian

L (F) =− 1
4π

(
F +2β

√
F
)

(4.36)

and

R1 =
1
2

R0 (4.37)

admits the magnetic version of the solution as

A(r) =
1
2
− 4
√

2βP−ξ

3ηr
+

P2

ξr2 +
R0

12
r2. (4.38)

The magnetic solution, however, is not as interesting as the electric one.
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4.2.2 Thermodynamical Aspects

The solution we found in the previous section is feasible as far as a physical solution

is concerned. Here we set our parameters, including the condition ξ and η positive, to

get 4
√

2βQ− ξ > 0 such that the solution admits a black hole solution with positive

mass as

A(r) =
1
2
− m

r
+

q2

r2 +
R0

12
r2. (4.39)

Now we wish to discuss some of the thermodynamical properties by using the Misner-

Sharp [41, 42, 43, 44, 45, 46] energy to show that the first law of thermodynamics is

satisfied. To do so first we set R0 = 0 and introduce the possible event horizon as r = rh

such that A(rh) = 0. This yields

r± = m±
√

m2−2q2 (4.40)

(rh = r+)

in which

A(r) =
(r− r−)(r− r+)

2r2 (4.41)

and the constraint m ≥ mcri is imposed with mcrit =
√

2q . If one sets Q > 0, this

condition is satisfied if Q > ξ

√
2
(

4β+ 3√
ξη

) (providing 4β+ 3√
ξη
6= 0). The choice m =
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mcrit leads to the extremal black hole. The Hawking temperature is defined as

TH =
A′ (r+)

4π
=

r2
+−2q2

8πr3
+

(4.42)

and the entropy [47]

S =
A+

4G
fR|r=r+ (4.43)

with A+ = 4πr2
+, the surface area of the black hole at the horizon. The heat capacity

of the black hole also is given by

Cq = T
(

dS
dT

)
q
=−2

3
r2
+π
(
2q2− r2

+

)(
12q4 +4q2r2

++ r4
+

)(
2q2 + r2

+

)2 (6q2− r2
+

) . (4.44)

which takes both (+) and (−) values. Both the vanishing / diverging Cq values indicate

special points at which the system attains thermodynamical phase changes. The first

law of thermodynamics can be written as

T dS−dE = PdV (4.45)

in which

dE =
1

2κ

[
2
r2

h
fR +( f −R fR)

]
A+dr+ (4.46)

with E the Misner-Sharp energy and T = A′
4π

the Hawking temperature. Further, S =

A+
4 fR stands for the black hole entropy, p = T r

r = T 0
0 is the radial pressure of matter

fields at the horizon and finally the change of volume of the black hole at the horizon
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is given by dV = A+dr+. One can easily show that the first law of thermodynamics in

the form introduced above is satisfied [48].
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Chapter 5

QUANTUM SINGULARITIES IN A MODEL OF f (R) GRAVITY

In the previous chapter, it was shown that the solution with linear electromagnetic field

does not admit a black hole while the solution with nonlinear electromagnetic source

admits a black hole solution. The solution sourced by linear electromagnetic field

resulted with a naked curvature singularity at r = 0 which is a typical central singu-

larity peculiar to spherically symmetric systems. As was mentioned the solution given

in chapter 4, is a kind of extension of a global monopole solution which represents

spherically symmetric solution of the Einstein’s equations with matter that extends to

infinity. It can also be interpreted as a cloud of cosmic string with spherical symme-

try [49]. And, hence, the spacetime is conical. However, with the inclusion of linear

or nonlinear electromagnetic field, the spacetime is no more conical in the context of

f (R) gravity.

Within the framework of ETG gravity, black hole solutions have been widely studied

in the literature (see [1, 50] and references therein for a complete review). However,

the solutions that result with naked singularities have not been studied in detail. In

physics, naked singularities are considered to be a threat to a cosmic censorship hy-

pothesis. Furthermore, as in the classical general relativity, compared to the black hole

solutions, naked singularities are not well-understood in the context of f (R) gravity.

45



This still remains a fundamental problem in general relativity as well as in ETG to be

solved. Another important diffuculty in resolving this problem is the scale where the

curvature singularity occurs. In these small scales, it is believed that the classical meth-

ods should be replaced with quantum techniques in resolving the singularity problems

that necessitate the use of quantum gravity. Since the quantum theory of gravity is

still ”under construction”, an alternative method is proposed by Wald [51] which was

further developed by Horowitz and Marolf (HM) [52] in determining the character of

classically singular spacetime and to see if quantum effects have any chance to heal or

regularise the dynamics and restore the predictability if the singularity is probed with

quantum particles/fields.

In this chapter, we investigate the occurence of naked singularities in the context of

f (R) gravity in the view of quantum mechanics. We believe that this will be the unique

example that the formation of classically naked curvature singularities in f (R) grav-

ity will be probed with quantum fields/particles that obey the Klein-Gordon, Dirac

and Maxwell equations. The criterion proposed by HM will be used in this study to

investigate the occurence of naked singularities.

This criterion has been used succesfully for other spacetimes to check whether the clas-

sically singular spacetimes are quantum mechanically regular or not. As an example;

negative mass Schwarzshild spacetime, charged dilatonic black hole spacetime and

fundamental string spacetimes are considered in [52]. An alternative function space

namely the Sobolev space instead of the Hilbert space has been introduced in [53], for

analysing the singularities within the framework of quantum mechanics. Helliwell and
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Konkowski have studied quasiregular [54], Gal’tsov - Letelier - Tod spacetime [55],

Levi-Civita spacetimes [56, 57], and recently, they also consider conformally static

spacetimes [58]. Pitelli and Letelier have studied spherical and cylindrical topological

defects [59], Banados-Teitelboim-Zanelli (BTZ) spacetimes [60], the global monopole

spacetime [61] and cosmological spacetimes [62]. Quantum singularities in matter

coupled 2+ 1 dimensional black hole spacetimes are considered in [63]. Quantum

singularities are also considered in Lovelock theory [26]. Recently, the occurence of

naked singularities in 2+ 1 dimensional magnetically charged solution in Einstein-

Power-Maxwell theory have also been considered [64].

The main theme in these studies is to understand whether these clasically singular

spacetimes turn out to be quantum mechanically regular if it is probed with quantum

fields rather than classical particles.

The solution to be investigated in this chapter is a kind of f (R) gravity extension of the

analysis presented in [50] for the global monopole spacetime. The inclusion of the lin-

ear Maxwell field within the context of f (R) gravity affects the topology significantly

and removes the conical nature at infinity. Furthermore, the true timelike naked curva-

ture singularity is created at r = 0 which is peculiar to spherically symmetric systems.

We investigate this singularity within the context of quantum mechanics by employing

three different quantum fields/particles obeying the Klein-Gordon, Dirac and Maxwell

fields with different spin structures.
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5.1 Quantum Singularities

The metric function 4.25 is the solution in the presence of linear Maxwell field that

results with naked singularity. In this chapter, this solution will be denoted as;

B(r) =
1
2
− m

r
+

q2

r2 −
Λe f f

3
r2. (5.1)

This solution can also be considered as a spherically symmetric cloud of cosmic string

which gives rise to a deficit angle [49]. Therefore, the solution given in equation 4.25,

is a kind of Einstein-Maxwell extension of the global monopole solution in the f (R)

gravity. One of the striking effects of the additional fields is the removal of the conical

geometry of the global monopole spacetime. The Kretschmann scalar which indicates

the formation of curvature singularity is given by

K =
1
3

8Λ2
e f f r8 +4Λe f f r6 +3r4 +12mr3 +12r2 (3m2−q2)−144mq2r++168q4

r8 .

It is obvious that r = 0 is a typical central curvature singularity. This is a timelike naked

singularity because the behavior of the new radial coordinate defined by r∗ =
∫ dr

B(r) is

finite when r→ 0. Hence, the new solution obtained in chapter 4 and given in 5.1 is

classically a singular spacetime.

Our aim in this chapter is to investigate this classically singular spacetime with regards

to quantum mechanical point of view.

One of the important predictions of the Einstein’s theory of general relativity is the

formation of spacetime singularities. In classical general relativity, singularities are
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defined as the point in which the evolution of timelike or null geodesics is not defined

after a proper time. According to the classification of the classical singularities devised

by Ellis and Schmidt, scalar curvature singularities are the strongest ones in the sense

that the spacetime can not be extended and all physical quantities such as the gravi-

tational field, energy density and tidal forces diverge at the singular point. In black

hole spacetimes, the location of the curvature singularity is at r = 0 and is covered

by horizon(s). The singularities hidden by horizon(s) do not constitute a threat to the

Penrose’s cosmic censorship hypothesis. However, there are some cases that the sin-

gularity is not hidden and hence, it is naked. In the case of naked singularities, further

care is required because they violate the cosmic censorship hypothesis. The resolution

of the naked singularities stand as one of the most drastic problems in general relativity

to be solved.

Naked singularities that occur at r = 0, are very small scales where classical general

relativity is expected to be replaced by quantum theory of gravity. Herein, the oc-

curence of naked singularities in f (R) gravity will be analysed through a quantum me-

chanical point of view. In probing the singularity, quantum test particles/fields obeying

the Klein-Gordon, Dirac and Maxwell equations are used. In other words, the singu-

larity will be probed with spin 0, spin 1/2 and spin 1 fields. The reason for using three

different types of fields is to clarify whether or not the classical singularity is sensitive

to the spin of the fields.

Our analysis will be based on the work of Wald, which was further developed by

HM to probe the classical singularities with quantum test particles obeying the Klein-
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Gordon equation in static spacetimes having timelike singularities. According to HM,

the singular character of the spacetime is defined as the ambiguity in the evolution

of the wave functions. That is to say, the singular character is determined in terms

of the ambiguity when attempting to find self-adjoint extension of the operator to the

entire Hilbert space. If the extension is unique, it is said that the space is quantum

mechanically regular. The brief review is as follows:

Consider a static spacetime
(
M,gµν

)
with a timelike Killing vector field ξµ. Let t

denote the Killing parameter and Σ denote a static slice. The Klein-Gordon equation

in this space is (
∇

µ
∇µ−M2)

ψ = 0. (5.2)

This equation can be written in the form

∂2ψ

∂t2 =
√

f Di
(√

f Diψ
)
− f M2

ψ =−Aψ, (5.3)

in which f =−ξµξµ and Di is the spatial covariant derivative on Σ. The Hilbert space

H ,
(
L2 (Σ)

)
is the space of square integrable functions on Σ. The domain of an operator

A, D(A) is taken in such a way that it does not enclose the spacetime singularities.

An appropriate set is C∞
0 (Σ), the set of smooth functions with compact support on Σ.

Operator A is real, positive and symmetric therefore its self-adjoint extensions always

exist. If it has a unique extension AE , then A is called essentially self-adjoint [65, 66].

Accordingly, the Klein-Gordon equation for a free particle satisfies

i
dψ

dt
=
√

AEψ, (5.4)
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with the solution

ψ(t) = exp
[
−it
√

AE

]
ψ(0) . (5.5)

If A is not essentially self-adjoint, the future time evolution of the wave function 5.5 is

ambiguous. Then, HM criterion defines the spacetime quantum mechanically singular.

However, if there is only a single self-adjoint extension, the operator A is said to be

essentially self-adjoint and the quantum evolution described by 5.5 is uniquely deter-

mined by the initial conditions. According to the HM criterion, this spacetime is said

to be quantum mechanically non-singular. In order to determine the number of self-

adjoint extensions, the concept of deficiency indices is used. The deficiency subspaces

N± are defined by ( see Ref. [53] for a detailed mathematical background),

N+ = {ψ ∈ D(A∗), A∗ψ = Z+ψ, ImZ+ > 0} with dimension n+ (5.6)

N− = {ψ ∈ D(A∗), A∗ψ = Z−ψ, ImZ− < 0} with dimension n−

The dimensions ( n+,n−) are the deficiency indices of the operator A. The indices

n+(n−) are completely independent of the choice of Z+(Z−) depending only on whether

or not Z lies in the upper (lower) half complex plane. Generally one takes Z+ = iλ and

Z− = −iλ , where λ is an arbitrary positive constant necessary for dimensional rea-

sons. The determination of deficiency indices are then reduced to counting the number

of solutions of A∗ψ = Zψ ; (for λ = 1),

A∗ψ± iψ = 0 (5.7)
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that belong to the Hilbert space H . The Theorem given below was presented by Von

Newmann in 1929 which is very important for present application. Theorem:

For an operator A with deficiency indices (n+,n−) there are three possible cases.

(a) If n+ = n− = 0, then A is essentially self-adjoint.

(b) If n+ = n− = n ≥ 1, then A is many self-adjoint extensions, parametrized by a

unitary n×n matrix.

(c) If n+ 6= n−, then A has no self-adjoint extension.

If there is no square integrable solutions ( i.e. n+ = n− = 0), the operator A possesses a

unique self-adjoint extension and it is essentially self-adjoint. As a result, a neccessary

condition for the operator A to be essentially self-adjoint is to examine the solutions

satisfying 5.7 that do not belong to the Hilbert space.

5.2 Klein - Gordon Fields

A scalar field describing by the Klein-Gordon equation for a scalar particle with mass

M is given by,

�ψ = g−1/2
∂µ

[
g1/2gµν

∂ν

]
ψ = M2

ψ. (5.8)

For the metric 5.1, the Klein-Gordon equation becomes,

∂2ψ

∂t2 = −B(r)
{

B(r)
∂2ψ

∂r2 +
1
r2

∂2ψ

∂θ2 +
1

r2 sin2
θ

∂2ψ

∂ϕ2 +
cotθ

r2
∂ψ

∂θ

+

(
2B(r)

r
+B

′
(r)
)

∂ψ

∂r

}
+B(r)M2

ψ. (5.9)
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In analogy with the equation 5.3, the spatial operator A for the massless case is

A = B(r)
{

B(r)
∂2

∂r2 +
1
r2

∂2

∂θ2 +
1

r2 sin2
θ

∂2

∂ϕ2 +
cotθ

r2
∂

∂θ

+

(
2B(r)

r
+B

′
(r)
)

∂

∂r

}
, (5.10)

and the equation to be solved is (A∗± i)ψ = 0.Using separation of variables, ψ =

R(r)Y m
l (θ,ϕ), we get the radial portion of equation 5.7 as,

d2R(r)
dr2 +

(
r2B(r)

)′
r2B(r)

dR(r)
dr

+

(
−l (l +1)

r2B(r)
± i

B2 (r)

)
R(r) = 0. (5.11)

where a prime denotes the derivative with respect to r.

5.2.1 The case of r→ ∞

The case r→∞ is topologically different compared to the analysis reported in [61]. In

the present problem the geometry is not conical. The approximate metric when r→ ∞

is

ds2 '−(R0r2

12
)dt2 +

(
12

R0r2

)
dr2 + r2 (dθ

2 + sin2
θdϕ

2) . (5.12)

For the above metric, the radial equation 5.11 becomes,

d2R(r)
dr2 +

4
r

dR(r)
dr

= 0, (5.13)

whose solution is

R(r) =C1 +
C2

r3 ,
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where C1 and C2 are arbitrary integration constants. It is clear to observe that the above

solution is square integrable as r→ ∞ if and only if C1 = 0. Hence, the asymptotic

behaviour of R(r) is given by R(r)' C2
r3 .

5.2.2 The case of r→ 0

Near the origin there is a true timelike curvature singularity resulting from the existence

of charge. Therefore, the approximate metric near the origin is given by

ds2 '−(q2

r2 )dt2 +

(
r2

q2

)
dr2 + r2 (dθ

2 + sin2
θdϕ

2) . (5.14)

The radial equation 5.11 for the above metric reduces to

d2R(r)
dr2 − l (l +1)

q2 R(r) = 0, (5.15)

whose solution is

R(r) = C3eαr +C4e−αr (5.16)

α =

√
l (l +1)

q

where C3 and C4 are arbitrary integration constants. The square integrability of the

above solution is checked by calculating the squared norm of the above solution in

which the function space on each t = constant hypersurface Σ is defined as H ={R |‖

R ‖< ∞}. The squared norm for the metric 5.14 is given by,

‖ R ‖2=
∫ constant

0

|R(r)|2 r4

q2 dr. (5.17)
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Our calculation has revealed that the solution above is always square integrable near

r = 0 even if l = 0 which corresponds to the S-wave solutions.

Consequently, the spatial operator A has deficiency indices n+ = n− = 1, and is not

essentially self-adjoint. Hence, the classical singularity at r = 0 remains quantum

mechanically singular when probed with fields obeying the Klein-Gordon equation.

5.3 Maxwell fields

The Newman-Penrose formalism will be used to find the source free Maxwell fields

propagating in the space of f (R)−gravity. Let us note that the signature of the metric

5.1 is changed to −2 in order to use the source free Maxwell equations in Newman-

Penrose formalism. Thus, the metric is rewritten as,

ds2 = B(r)dt2− dr2

B(r)
− r2 (dθ

2 + sin2
θdϕ

2) . (5.18)

The four coupled source-free Maxwell’s equation for electromagnetic field in Newman-

Penrose formalism is given by

Dφ1− δ̄φ0 = (π−2α)φ0 +2ρφ1−κφ2, (5.19)

δφ2−∆φ1 = −νφ0 +2µφ1 +(τ−2β)φ2,

δφ1−∆φ0 = (µ−2γ)φ0 +2τφ1−σφ2,

Dφ2− δ̄φ1 = −λφ0 +2πφ1 +(ρ−2ε)φ2,

where B(r) is the metric function given in 5.1, φ0, φ1 and φ2 are the Maxwell spinors,

ε,ρ,π,α,µ,γ,β and τ are the spin coefficients to be found and the ”bar” denotes the
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complex conjugation. The null tetrad vectors for the metric 5.18 are defined by

la =

(
1

B(r)
,1,0,0

)
, (5.20)

na =

(
1
2
,−B(r)

2
,0,0

)
,

ma =
1√
2

(
0,0,

1
r
,

i
r sinθ

)
.

The directional derivatives in the Maxwell’s equations are defined by D = la∂a,∆ =

na∂a and δ = ma∂a. We define operators in the following way

D0 = D,

D†
0 = − 2

B(r)
∆, (5.21)

L†
0 =

√
2r δ and L†

1 = L†
0 +

cotθ

2
,

L0 =
√

2r δ̄ and L1 = L0 +
cotθ

2
.

The nonzero spin coefficients are,

µ =−1
r

B(r)
2

, ρ =−1
r
, γ =

1
4

B
′
(r), β =−α =

1
2
√

2
cotθ

r
. (5.22)

Maxwell spinors are defined by [67],

φ0 = F13 = Fµνlµmν (5.23)

φ1 =
1
2
(F12 +F43) =

1
2

Fµν (lµnν +mµmν) ,

φ2 = F42 = Fµνmµnν,
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where Fi j (i, j = 1,2,3,4) and Fµν (µ,ν = 0,1,2,3) are the components of the Maxwell

tensor in the tetrad and tensor bases respectively. Substituting 5.21 into the Maxwell’s

equations together with nonzero spin coefficients, the Maxwell’s equations become

(
D0 +

2
r

)
φ1−

1
r
√

2
L1φ0 = 0, (5.24)(

D0 +
1
r

)
φ2−

1
r
√

2
L0φ1 = 0, (5.25)

B(r)
2

(
D†

0 +
B
′
(r)

B(r)
+

1
r

)
φ0 +

1
r
√

2
L†

0φ1 = 0, (5.26)

B(r)
2

(
D†

0 +
2
r

)
φ1 +

1
r
√

2
L†

1φ2 = 0. (5.27)

The equations above will become more tractable if the variables are changed to

Φ0 = φ0eiωt+imϕ, Φ1 =
√

2rφ1eiωt+imϕ, Φ2 = 2r2
φ2eiωt+imϕ.

So we have,

(
D0 +

1
r

)
Φ1−L1Φ0 = 0, (5.28)(

D0−
1
r

)
Φ2−L0Φ1 = 0, (5.29)

r2B(r)

(
D†

0 +
B
′
(r)

B(r)
+

1
r

)
Φ0 +L†

0Φ1 = 0, (5.30)

r2B(r)
(

D†
0 +

1
r

)
Φ1 +L†

1Φ2 = 0. (5.31)

The commutativity of the operators L and D enables us to eliminate each Φi from
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above equations and hence, we have

[
L†

0L1 + r2B(r)

(
D0 +

B
′
(r)

B(r)
+

3
r

)(
D†

0 +
B
′
(r)

B(r)
+

1
r

)]
Φ0 (r,θ) = 0, (5.32)[

L0L†
1 + r2B(r)

(
D†

0 +
1
r

)(
D0−

1
r

)]
Φ2 (r,θ) = 0, (5.33)[

L1L†
0 + r2B(r)

(
D†

0 +
B
′
(r)

B(r)
+

1
r

)(
D0 +

1
r

)]
Φ1 (r,θ) = 0. (5.34)

The variables r and θ can be separated by assuming a separable solution in the form

of,

Φ0 (r,θ) = R0 (r)Θ0 (θ) , Φ1 (r,θ) = R1 (r)Θ1 (θ) , Φ2 (r,θ) = R2 (r)Θ2 (θ) .

The separation constants for 5.32 and 5.33 are the same, because Ln =−L†
n (π−θ) or

in other words the operator L†
0L1 acting on Θ0 (θ) is the same as the operator L0L†

1

acting on Θ2 (θ) if we replace θ by π− θ. However, for Eq. (47) we will assume

another separation constant. Furthermore, by defining R0 (r) =
f0(r)
rB(r) , R1(r) =

f1(r)
r and

R2(r) =
f2(r)

r , the radial equations can be written as,

f
′′
0 (r)+

2
r

f
′
0(r)+ (5.35)[

−iω

(
2

rB(r)
− B

′
(r)

B2 (r)

)
+

ω2

B2 (r)
− ε2

r2B(r)

]
f0(r) = 0,

f
′′
2 (r)−

2
r

f
′
2(r)+ (5.36)[

iω

(
2

rB(r)
− B

′
(r)

B2 (r)

)
+

ω2

B2 (r)
− ε2

r2B(r)

]
f2(r) = 0,
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f
′′
1 (r)+

B
′
(r)

B(r)
f
′
1(r)+

[
ω2

B2 (r)
− η2

r2B(r)

]
f1(r) = 0,

where ε and η are the separability constants.

5.3.1 The case of r→ ∞

For the case r→ ∞, the corresponding metric is given in 5.12. Hence, the radial part

of the Maxwell’s equations 5.35, 5.36 and 5.37 becomes

f
′′
j (r)+

2
r

f
′
j(r) = 0, j = 0,1 (5.37)

f
′′
2 (r)−

2
r

f
′
2(r) = 0 (5.38)

Thus, the solutions in the asymptotic case are

f j(r) = C1 +
C2

r
, j = 0,1 (5.39)

f2(r) = C3 +C4r3, (5.40)

in which Ci are integration constants. The solution above is square integrable, if C1 =

C4 = 0.

5.3.2 The case r→ 0

The metric near r→ 0 is given in 5.14. Hence, the radial part of the Maxwell equations

5.35, 5.36 and 5.37 for this case are given by

f
′′
j (r)−

2
r

f
′
j(r)−

α2

q2 f j(r) = 0 , j = 1,2, (5.41)

f
′′
0 (r)+

2
r

f
′
0(r)−

η2

q2 f0(r) = 0 (5.42)
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whose solutions are obtained as,

f j(r) = C3e
α

q r (αr−1)+C4e−
α

q r (αr+1) , j = 1,2, (5.43)

f0(r) =
C5

r
sinh

(
η

q
r
)
+

C6

r
cosh

(
η

q
r
)

(5.44)

where Ci are constants. The above solution is checked for square integrability. Calcu-

lations have revealed that,

‖ fi ‖2=
∫ constant

0

| fi (r)|2 r4

q2 dr < ∞,

which indicates that the obtained solutions are square integrable. The definition of

quantum singularity for Maxwell fields will be the same as for the Klein-Gordon fields.

Here since we have three equations governing the dynamics of the photon waves, the

unique self-adjoint extension condition on the spatial part of the Maxwell operator

should be examined for each of the three equations. As a result, the occurrence of the

naked singularity in f (R) gravity is quantum mechanically singular if it is probed with

photon waves.

5.4 Dirac Fields

The Newman-Penrose formalism will also be used here to find the massless Dirac fields

(fermions) propagating in the space of f (R)−gravity. The Chandrasekhar-Dirac (CD)
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equations in Newman-Penrose formalism are given by

(D+ ε−ρ)F1 +
(
δ̄+π−α

)
F2 = 0, (5.45)

(∆+µ− γ)F2 +(δ+β− τ)F1 = 0,

(D+ ε̄− ρ̄)G2− (δ+ π̄− ᾱ)G1 = 0,

(∆+ µ̄− γ̄)G1−
(
δ̄+ β̄− τ̄

)
G2 = 0,

where F1,F2,G1 and G2 are the components of the wave function, ε,ρ,π,α,µ,γ,β and

τ are the spin coefficients to be found. The nonzero spin coefficients are given in

5.22. The directional derivatives in the CD equations are the same as in the Maxwell’s

equations. Substituting nonzero spin coefficients and the definitions of the operators

given in 5.21 into the CD equations leads to

(
D0 +

1
r

)
F1 +

1
r
√

2
L1F2 = 0,

−B(r)
2

(
D†

0 +
B
′
(r)

2B(r)
+

1
r

)
F2 +

1
r
√

2
L†

1F1 = 0,(
D0 +

1
r

)
G2−

1
r
√

2
L†

1G1 = 0,

B(r)
2

(
D†

0 +
B
′
(r)

2B(r)
+

1
r

)
G1 +

1
r
√

2
L1G2 = 0. (5.46)
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For the solution of the CD equations, we assume separable solution in the form of

F1 = f1(r)Y1(θ)ei(kt+mϕ),

F2 = f2(r)Y2(θ)ei(kt+mϕ),

G1 = g1(r)Y3(θ)ei(kt+mϕ),

G2 = g2(r)Y4(θ)ei(kt+mϕ), (5.47)

where m is the azimuthal quantum number and k is the frequency of the Dirac fields

which is assumed to be positive and real .Since { f1, f2,g1,g2} and {Y1,Y2,Y3,Y4} are

functions of r and θ respectively, by substituting 5.48 into 5.47 and applying the as-

sumptions given below,

f1(r) = g2(r) and f2(r) = g1(r) , (5.48)

Y1(θ) = Y3(θ) and Y2(θ) = Y4(θ). (5.49)

Dirac equations transform into 5.51. In order to solve the radial equations , the sep-

aration constant λ should be defined. This is achieved from the angular equations.

In fact, it is already known from the literature that the separation constant can be ex-

pressed in terms of the spin-weighted spheroidal harmonics. The radial parts of the

Dirac equations become

(
D0 +

1
r

)
f1 (r) =

λ

r
√

2
f2 (r) ,

B(r)
2

(
D†

0 +
B
′
(r)

2B(r)
+

1
r

)
f2 (r) =

λ

r
√

2
f1 (r) . (5.50)
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We further assume that

f1 (r) =
Ψ1 (r)

r
,

f2 (r) =
Ψ2 (r)

r
,

then 5.51 transforms into,

D0Ψ1 =
λ

r
√

2
Ψ2, (5.51)

B(r)
2

(
D†

0 +
B
′
(r)

2B(r)

)
Ψ2 =

λ

r
√

2
Ψ1.

Note that
√

B(r)
2 D†

0

√
B(r)

2 = D†
0 +

B
′
(r)

2B(r) +
1
r , using this together with the new functions

as below

R1 (r) = Ψ1 (r) ,

R2 (r) =

√
B(r)

2
Ψ2 (r) ,

and defining the tortoise coordinate r∗ as,

d
dr∗

= B
d
dr

, (5.52)

the 5.52 become,

(
d

dr∗
+ ik

)
R1 =

√
Bλ

r
R2,(

d
dr∗
− ik

)
R2 =

√
Bλ

r
R1, (5.53)
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In order to write the 5.54 in more compact form, we combine the solutions in the

following way,

Z+ = R1 +R2,

Z− = R2−R1.

After doing some calculations we end up with a pair of one - dimensional Schrödinger-

like wave equations with effective potentials,

(
d2

dr2
∗
+ k2

)
Z± =V±Z±, (5.54)

V± =

[
Bλ2

r2 ±λ
d

dr∗

(√
B

r

)]
. (5.55)

In analogy with the equation 5.3, the radial operator A for the Dirac equations can be

written as,

A =− d2

dr2
∗
+V±,

If we write above operator in terms of usual coordinates r by using 5.53, we have

A =− d2

dr2 −
B
′

B
d
dr

+
1

B2

[
Bλ2

r2 ±λB
d
dr

(√
B

r

)]
, (5.56)

Our aim now is to show whether this radial part of the Dirac operator is essentially

self-adjoint or not. This will be achieved by considering 5.7 and counting the number
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of solutions that do not belong to Hilbert space. Hence, 5.7 becomes,

(
d2

dr2 +
B
′

B
d
dr
− 1

B2

[
Bλ2

r2 ±λB
d
dr

(√
B

r

)]
∓ i

)
ψ(r) = 0. (5.57)

5.4.1 The case of r→ ∞

For the asymptotic case r→ ∞ , the above equation transforms to

d2ψ

dr2 +
2
r

dψ

dr
= 0, (5.58)

whose solution is

ψ(r) =C1 +
C2

r
. (5.59)

Clearly the solution is square integrable if C1 = 0. Hence, the solution is asmptotically

well behaved.

5.4.2 The case r→ 0

Near r→ 0 , 5.58 becomes

d2ψ

dr2 −
2
r

dψ

dr
+

σ

r3 ψ = 0, (5.60)

σ =∓2λq

whose solution is given by

ψ(r) =
(

4σ

x2

) 3
2

{C3J3 (x)+C4N3 (x)} . (5.61)

65



where J3 (x) and N3 (x) are the first and second kind Bessel functions and x = 2
√

σ

r .

As r→ 0, x→∞. The behavior of the Bessel functions for real ν≥ 0 as x→∞ is given

by

Jν (x) '
√

2
πx

cos
(

x− νπ

2
− π

4

)
, (5.62)

Nν (x) '
√

2
πx

sin
(

x− νπ

2
− π

4

)
,

thus the Bessel functions asymptotically behave as J3 (x)∼
√

2
πx cos

(
x− 7π

4

)
and N3 (x)∼√

2
πx sin

(
x− 7π

4

)
. Checking for the square integrability has revealed that both solu-

tions are square integrable. Hence, the radial operator of the Dirac field fails to satisfy

a unique self-adjoint extension condition. As a result, the occurence of the timelike

naked singularity in the context of f (R) gravity remains singular from the quantum

mechanical point of view if it is probed with fermions[68].
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Chapter 6

CONCLUSION

In this thesis, we aimed to obtain some new exact analytic solutions together with their

physical properties in a model of f (R) gravity which constitutes one of the important

branches of ETG. The first solution presented in the thesis is obtained by imposing a

constant scalar curvature R0 (both R0 > 0 and R0 < 0). Furthemore, vanishing trace

of energy - momentum tensor is another condition that is imposed for the sake of ana-

lytic exact solution. The general spherically symmetric spacetime minimally coupled

with nonlinear Yang-Mills (YM) field is presented in all dimensions (d ≥ 4). The YM

field can even be considered in the power-law form in which the YM Lagrangian is

expressed by L(F) ∼ (Fa.Fa)
d
4 . Since exact solutions in f (R) gravity with external

matter sources, are rare, such solutions must be interesting. The equation of state for

effective matter is considered in the form Pe f f = ωρ, which is analyzed in Energy

conditions. The general forms of ω(r) given in 3.54 determine ω within the ranges

of −1 < ω < 1
d−1 and 0 < ω < 1

d−1 respectively. The fact that ω < −1 doesn’t oc-

cur eliminates the possibility of ghost matter, leaving us with the YM source and the

scalar curvature R0. In case that the YM field vanishes (Q→ 0) the only source to

remain is the effective cosmological constant Λe f f =
(d−2)R0

2d , which arises naturally

in f (R0) gravity. Another interesting result to be drawn from this study is that the
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effective pressure Pe f f changes sign before / after a critical distance. Thus, it is not

possible to introduce a simple ω =constant, so that the pressure preserves its sign in

the presence of a physical field (here YM) in the entire spacetime. From cosmological

considerations the interesting case is when the critical distance lies outside the event

horizon. Finally it should be added that although f (R) = Rd/2 gravities face viability

problems in experimental tests the occurrence of sources may render them acceptable

in this regard [27].

In the second solution, we considered external electromagnetic fields (both linear and

nonlinear) in f (R) gravity with the ansatz f (R) = ξ(R+R1)+2α
√

R+R0 in chapter

4. In this choice R0 is a constant related to the cosmological constant, the constant R1

is related to R0 while α is the coupling constant for the correction term. This covers

both the cases of linear Maxwell and a special case of power-law nonlinear electro-

magnetism. The non-asymptotically flat black hole solution obtained for the Maxwell

source is naturally different and has no limit of the RN black hole solution. In the

limit of Q = P = Λe f f = 0 we obtain the metric for a global monopole in f (R) grav-

ity. Our solution can appropriately be interpreted as a global monopole solution in the

presence of the electromagnetic fields. The thermodynamical properties of our black

hole solution is analyzed by making use of the Misner-Sharp formalism and shown to

obey the first law. As the nonlinear electromagnetic Lagrangian we choose the normal

Maxwell, supplemented with the square root Maxwell invariant which amounts to a

linear electric field. This latter form is known to break the scale invariance yielding a

linear potential which is believed to play role in quark confinement problem. Within
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f (R) gravity the presence of scale breaking term modifies the mass of the resulting

black hole. The advantage of employing square-root Maxwell Lagrangian as a non-

linear correction can be stated as follows: Beside confinement in the linear Maxwell

case we have in f (R) gravity an opposite mass term while with the coupling of the

square-root Maxwell Lagrangian we can rectify the sign of this term.

Finally, the formation of the naked singularity in the context of a model of the f (R)

gravity is investigated within the framework of quantum mechanics, by probing the

singularity with the quantum fields obeying the Klein-Gordon, Maxwell and Dirac

equations. We have investigated the essential self-adjointness of the spatial part of the

wave operator A in the natural Hilbert space of quantum mechanics which is the lin-

ear function space with square integrability. Our analysis has shown that the timelike

naked curvature singularity remains quantum mechanically singular against the propa-

gation of the aforementioned quantum fields. Another notable outcome of our analysis

is that the spin of the fields is not effective in healing of the naked singularity for the

considered model of the f (R) gravity spacetime.

Another alternative function space for analysing the singularity in this context is to

use the Sobolev space instead of the natural Hilbert space [53]. The Analysis in the

Sobolev space involves both the wave function and its derivative to be square inte-

grable. Although the details are not given in this study, the analysis by using the

Sobolev space has revealed that irrespective of the spin structure of the fields used

to probe the singularity, the considered model of the f (R) gravity spacetime remains

quantum mechanically singular.
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Hence, the generic conclusion that has emerged from our analysis is that in the consid-

ered model of the f (R) gravity, the formation of timelike naked singularity is quantum

mechanically singular.
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