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ABSTRACT

Estimation of the parameters of a complex sinusoid in noise usually consists of two
steps; a coarse frequency estimation found by applying the N-point DFT of an N

length input. Then a search method is applied around the peak frequency.

Different search methods can be applied around the peak frequency. In this thesis,
we try to compare the method proposed by Candan with the Jacobsen, Macleod and
Quinn’s estimators. The performance measure of these algorithms will be compared

in terms of the Cramer-Rao lower bound.

Different experiments have been implemented with different number of
observations. Simulations show that as the number of observations becomes larger,
these methods converge to the Cramer-Rao lower bound expressed as RMS error.
However, Candan’s method has shown the best performance among all other

algorithms.

Keywords:Frequency Estimation, DFT, Jacobsen Estimator, Quinn Estimator,

Macleod Estimator, Cramer-Rao Lower Bound.
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Bir giiriiltiilii karmagik iistelin parametre kestirimi genellikle iki adimdan olusur:
Uzunlugu N olan bir veriye N-noktali bir DFT uygulanmak suretiyle yaklasik siklik

kestirimi, daha sonra ise bu siklik etrafinda bir arama yonteminin uygulanmasi.

Yaklasik kestirilmis siklik etrafindaki arama icin farkli yontemler uygulanabilir. Bu
tezde, Candan tarafindan Onerilmis yontemin, Jacobsen, Macleod ve Quinn’in
kestirim yontemleri ile karsilagtirllmasina c¢alisilmistir. Bu  algoritmalarin

karsilastirilmasi i¢in Cramer-Rao alt sinir1 basarim 6l¢iitii olarak alinmustir.

Farkli sayida gozlemler ile bircok deney yapilmistir. Benzetim caligmalari, bu
yontemlerin, gozlem sayis1 arttikga MSE’nin karekokii cinsinden ifade edilen
Cramer-Rao alt smirmma yakimsadigini gostermistir. Candan’in yontemi, diger

algoritmalara gore en iyi bagsarimi gostermistir.

Anahtar kelimeler: Siklik kestirimi, DFT, Jacobsen kestirimi, Quinn Kestirimi,

Macleod kestirimi, Cramer-Rao alt siniri.
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Chapter 1

INTRODUCTION

1.1 Introduction

Estimation of the parameters of a complex sinusoid corrupted by white noise is an
important problem in signal processing, and has applications in many areas such as
power spectrum estimation, array and radar signal processing. The requirements
regarding computational load of the estimator are particularly crucial in radar signal
processing where a very large number of hypothesis tests on received complex

signals are carried out per second, [1].

There are many fields that require high accuracy of frequency estimation, especially
in engineering and scientific applications. Many research subjects and theories
concentrate on this estimation. The frequency estimation problem is presented in the
literature in two categories. One of them is the frequency-domain method (non-
parametric methods). This category includes the Fourier-Transform based methods
such as the periodogram and correlogram methods which depend on the Fourier
Transform. Time-domain methods (parametric methods), on the other hand, have
high performance in accuracy of estimation when the model order is well-known [2],
[3]. Usually a DFT of data having length N, with a frequency resolution of 2z/N in

the estimate may be required in many applications to increase the frequency



estimate's resolution at the expense of increasing the computational load. A two-step
search is described in [4] aimed at improving the accuracy of the frequency estimate.
In the first step, approximate search is performed by computing the N-point DFT.
Then, a refined search in the neighborhood of this coarse estimate is performed in
order to improve the estimate. The resolution of this two-step search is limited to
the size of the grid used in the fine search. In [7], [8], [10], [11], an alternative
strategy for the second step is proposed. Instead of searching on a fine grid, the high
resolution estimate is obtained from a function in terms of the DFT samples
computed in the first step. The methods proposed in [7], [8], [10] employ three DFT
coefficients, while the method of Provencher uses only two DFT samples, [11].
These methods require much less computation than the fine grid search. Moreover,
they yield a high resolution estimate instead of the limited resolution of the grid
used. Jacobsen has proposed a simple expression for fine frequency estimation in
the DFT domain. This expression is presented without any proof and is based on
empirical observations. In this thesis, we review the derivation of Jacobsen's formula
and justify Candan's proposal for bias correction. It is found that the correction is
particularly effective when SNR is high. Nevertheless, it requires minimal increase

in computational cost, hence can be used at all SNR values.

In this thesis, performance comparisons between the most well-known parametric
methods will be done in terms of bias, variance and root-mean-square-error

(RMSE).



Chapter 2

FREQUENCY ESTIMATION

2.1 Problem Description

Estimation of the frequency of a single tone sinusoid in a noisy environment is
becoming a necessity in many applications. Usually this is done by estimating the
Fourier transform of the collected samples. However, the use of Fourier transform
methods is an obstacle because of the high computational cost of these methods.
Different methods that avoid using Fourier transform and, at the same time, provide
a good estimation of the frequency of the signal of interest have been proposed.

Some of the well-known techniques will be discussed in the following chapter.

A single complex sinusoid signal embedded in AWGN (additive white Gaussian

noise), is written as

r[n] = Ae/®™ + w[n] (2.1)

In (2.1), A is the complex-valued amplitude and @ is the discrete-time frequency in

radians/sample.

The magnitude spectrum of r[n] for the noise-free case is shown in Fig 2.1. The

frequency of the complex exponential given as@=2n(k+3)/N is also shown there.

3



Estimation of ¢, where | 6 | < 1/2, using three samples including the DFT coefficient
with maximum magnitude of the DFT spectrum becomes our goal in this thesis. In

the first stage, the DFT of the data vector r[n] of length N is computed as follows,

N-1

R[k] =Y r[n]e '27/N™

n=

Here R[k]is the DFT coefficient which is complex in general. The expectation of the

maximum value in the DFT magnitudes (k in Fig. 2.1) is in the vicinity of the true

2
A
2
w

frequency @ , if the input SNR= is sufficiently large. Estimation of the

complex signal's frequency for sufficiently high signal-to-noise ratios (SNR’s) is our
interest in this thesis. This is important in radar signal processing applications. The
DFT bin can be defined where the peak resides. The DFT coefficients to the left and

right of this peak are:

—DTFT

O DFT
IRIK, |
(

JIRDc+1]

IRTk -1]]

k-1 k k +1
P pkp+8 4

Fig 2.1: Magnitude spectrum of the complex exponential waveform with frequency
w=27(k+5)/N radians per sample, [6].
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Here w[k] is the DFT of w[n] which is also white and jointly Gaussian distributed.

The function f(.) in equations (2.2), (2.3) and (2.4) is given as:

N-1 .27

um:}%wm (2.5)

n=0
where « is an arbitrary argument for f ().

Estimation of ¢ by utilizing three DFT coefficients in the vicinity of the peak is our
goal. When the estimate § is determined, the resulting frequency estimate is
obtained as & = 2z (k +5)/N , where k is the bin index of the DFT peak evaluated

in the approximate search step and § is the estimate produced by R[k-1], R[k] and

R[k+1].



Chapter 3

FREQUENCY ESTIMATORS

3.1 Introduction

In this chapter, the frequency estimators which are considered to be among the most
important ones in the literature are presented and discussed. These methods are
Quinn’s, MacLeod’s and Candan’s estimators. A common feature of these methods
is that they are all based on estimating frequency using three DFT samples, which
are the one with maximum magnitude and those on the two sides of this maximum.
The mathematical expressions employed in the estimators are given and the basic

procedures in their algorithms are outlined.
3.2 Quinn Estimator

In this method, three DFT samples around the output peak are used for the
estimation of the frequency of a complex exponential. This method does not use the
method of periodogram to estimate the frequency, but instead it uses the complex
DFT coefficients of data. This operation needs extra cost for computations in

comparison with other methods. Quinn’s method [10] can be summarized as:



a, = real ( RIk _1]J

R[K]
a, =real RIk +1]
RIK]
§,=-5 and 5,=_—22 (3.1)
l1-o, 1-a,
if5,>0 and 6,>0, §=¢,

else & =0,
In Quinn’s method, the noise is not assumed to be i.i.d Gaussian, but the data is
assumed to be strictly stationary and ergodic, which are very weak assumptions.
3.3 MacLeod Estimator

This method provides more accurate computation of the frequency estimation in
terms of bias and variance of estimation. It is applicable to single or multi-sinusoid

complex signals.The basic mathematical model of this method [7] is given by:

B real (R[k —1]R"[k] - R[k +1]R"[k])
" real (2|R[k]|2 +R[k ~1JR'[k]+ R[K +1]R*[k])

2
éQ: 1+8d- -1
4d

3.4 Jacobsen Estimator

(3.2)

This method achieves fast and accurate estimation by the Discrete Fourier
Transform (DFT). The idea of the estimation in this method is based on three
samples of DFT and the peak of the frequency that will be estimated [5]. It basically

uses the complex DFT values rather than the magnitudes.

S5 =real ( Rk —1] =Rk +1] ] (3.3)
2R[K]— R[K —1] - R[k +1]

Equation (3.3) provides potential for reduction in computations by avoiding the

nontrivial magnitude calculations in (3.2).
;



3.4 Candan Estimator

This method is a recently introduced novel way of frequency estimation. The
novelty is that it combines Jacobsen’s formula and bias correction. In this way, we
can get high performance for bias correction for large SNR with little extra cost of

computation. Thus, at any SNR level it can be used [6].

In order to be able to express Jacobsen's estimator in terms of o, f (6) in (2.5) is
expanded in a Taylor series around 6=0. For small ¢, the terms involving powers of

o higher then two can be neglected to enable solution. For the derivation of the

N-1
estimation equation consider the expansion of g(z)=ZeZn as a Taylor series
n=0
around z=0:
o N (zn)k
9() =Y e =Y >
n=0 n=0 k=0 -
o 5k N-1
=S EZN (3.4)
k=0 k!n:O
0 Zk
=>» —S,(N-1)
; k™

The integer power summations (k™) between 0 and N-1 can be denoted by Sg(N-1) =

0%+ 1%+ (N-1)¥. The sequence S, (N) for k =0, 1, 2 can be written as follows:

S,(N)=N +1
sl(N)zw (35)

5,v) =N (N +1)(2N +1)

Higher orders for Sg(N) can been written in terms of Bernoulli numbers [12].
Separating the summation in (3.4) for even and odd values of k, the f (o) sequence

becomes



f(a)= :ZO(—l)k SZK((ZIT()_!L)SE”) 2

Sy (N=1)(27)*" 39
i3 (_q) Sz N THER 2k+1
A (2k+nNEr
Defining c as:
s, (N-1)(27)"
i k(<k)'N)E | 59)
the Taylor series expansion of (3.5) can be written as follows:
f(a)=2 ¢ (ja)"
k=0
=(c,—c,a’ +cat —+) (3.7)

= j(cla—C3a3+C5a5—---)

An estimator for ¢ can be constructed by evaluating f(«) at o =6 +p where p=—1,0

,+1 and forming the following second-order differences:
f(o+)-f(6-1)=

2{(-2c, +4c,—6C, +---) 5+ j(¢,—C; +¢;—-) + HOT.

f(5+1)-2F(5)+f(5-1)=
2{(=¢, +¢, = C;+---)+ j(-3c, +5c, —7¢; +---)} + HOT.

The abbreviation H.O.T. means the higher order terms of §, and in the right-hand

side of equation (3.8) we evaluate the infinite sum by odd and even indexed cy terms

as follows



N-1 .27

Sej =tm=e " =0
k=0

n=0
(3.9)
) N-1 27
D ke j<=f'(1)= jz—ﬁz:ne N
k=1 N n=0
T .
:ﬂCOt(Wj_ .
Rewriting (3.9);
(Co—C,+C,—Cg+Cy—+++)
+j(c,—Cy+Cg—++)=0
(3.10)

(—2c, +4c, —6Cg +---)

+j(c,—3c, +5c; —---)=ncot(%)— i

Using (3.6) for k =0, it can be shown that co=N and c;= (N-1). By substituting co

and c; into the equations given in (3.10), equation (3.8) can be simplified as:

f(o+D)—f(5-1) = Z{ﬂcot(%j5}+ H.OT.

(3.11)
f(5+D)—-2f(8)+ f(6-1)=2{-N—-jzNS} +HOT.

In this procedure, by neglecting the higher order terms, the ratio of the differences is

obtained as
f(6+1)-f(5-1)  mcot(z/N)s
f(0+)-2f(0)+f(6-1) —N-jzN&s
—7Z'NCOt(7Z'/N) _ﬂzNCOt(ﬂ'/N) )
= o+ o 3.12
N? + 72N?5? JN2+7z2N252 (312)

Because 62 is small compared to &, (3.12) can be simplified as follows:

10



f(5+1)—f(5-1) _ —zcot(z/N)
real{f(5+1)—2f(5)+ f(5—1)}_ N 0 (3.13)

When the signal-to-noise ratio (SNR) is large; that is when |JA[>>>¢2 , DFT samples
around the peak value, that is R[k-1], R[k] and R[k+1], in (2.2), (2.3) and (2.4), can
be approximated by Af (6 +1), Af (6) and Af (6-1), respectively. Then an estimate
for 6 can be produced via the substitutionsf (6)—R[kp], f (6 -1) »R[ky+1], and f (0

+1) -R[kp-1] into (3.13):

5o tan(z/N) eal R[k —1]-R[k +1] (3.14)
(z/N) 2R[K]— R[K —1]- R[k +1]

Candan’s estimator is based on equation (3.14) and it can be shown that asN — o«

this estimator converges to the Jacobsen estimator.

11



Chapter 4

EXPERIMENTAL RESULTS

4.1. Introduction

In this chapter, the performance of the frequency estimation algorithm proposed by
Candan, discussed in detail in chapter 3, is investigated and compared with some
well-known estimators presented in the literature.

MATLAB Software Package is used for implementing the various frequency
estimators for simulations. The performances of the estimators of Candan, Quinn,
Macleod, Jacobsen and the Cramer-Rao bound for frequency estimation variance
(given by (4.1)) are compared and discussed in detail. A summary of the estimators
is shown in Table 4.1. Given the data length N and signal-to-noise-ratio SNR, the

Cramer-Rao lower bound for a complex sinusoid is given by [13]

CRB, = > J
N(N“—-1)x SNR
where (4.1)
A’
SNR =—-
O

w

12



Table4.1: DFT-based Fine Resolution Frequency Estimators.

R[K]
— real R[Kk +1]
R[K]
uinn 5= and 5 -—2
° Y lea 2 1-q,
if5,>0 and 5,>0, 6=5,
else &= 0,
real (R[k —1JR"[k] - R[k +1]R"[k])
MacLeod real (2[RIK]" + R[k ~1JR"[K]+ R[k + 1R "[K])
2
é': _ 1+8d° -1
4d
Jacobsen S _ real R[k —1]— R[k +1]
2R[K]- R[k —1] - R[K +1]
Candan

5_tan(z/N) real( Rk -1]-R[k +1] j
(z/N) 2R[k]-R[k —1]-R[k +1]

The main Matlab functions of the methods listed in Table 4.1 are given in Appendix

Al

In the first part of the simulations, the frequency of the signal described by the

complex exponential waveform

x(n) = Ae’" +v(n) (4.2)

is being estimated, where v(n) is a complex white Gaussian noise with zero mean

and variance o2 = 0.5. Here we estimate s and we denote the estimated value by to

distinguish it from the actual value. So the estimated frequency is given by:

13




277(k + ) 4.3)

o=
N

The signal data length is selected to be 64 (N =64) and the simulations were done
for 1000 independent trials ( M =1000 ) with signal-to-noise ratio (SNR=

10log,, [%J=15.6 dB)-

n

% 10° Estimator Bias vs Bin Number
1.5¢ r r r r r r r
=@+ Jacobsen
Quin
gt Macleod
1
Candan
X

m x5
2 0.5 :'()‘\‘ 5 .Q) ....... ke _‘:,
g Fae S Q.
= :
= ‘ : .
m “‘ .:
0 I R S
Q O ﬁ_.,-':: . “;.. .. 4\?_ e
[ad] ! -“‘ y_ :: ~ ALTT, ().. X,

‘:4 . ; T R ¢

¢ s \ o..

i %, &
-0.5 :
-1 C

9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9
Bin Number

Fig. 4.1: Estimators Bias.

Fig. 4.1 shows that the method proposed by Candan [6] (a modified version of
Jacobsen’s method) provides almost the best estimation of § with lower bias (in

average vs. bin number) than the other methods (Quinn, Jacobsen and Macleod).

A 2 M A
The bias of the estimators is calculated using @, = (M—EJZ(é—ﬁ)

i=1

14



Another performance measure is the variance of the estimator, calculated using

Variance Estimates

Estimator Variance vs Bin Number

0.02¢ E :
=@+ Jacobsen
Quin
0018 TTTL TLLL Macleod (=t
P Candan
0.016 - : 5
@ X
'(;i..
0.014 AN
Q.
¢ '
e Y
0.012 O |
G k|
[ T T 1 R YT k&
o e
001~ i ‘ A
% .... PYTTITIRLLL L R, -
0.008 " ; ' r ‘r ' ' ' - -
9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9

Bin Number

Fig. 4.2: Estimator Variance.

Fig. 4.2 shows that even though Candan’s and Jacobsen’s methods have higher

variances than the others for bin numbers in the range 9.2.-9.8 their variances

decrease when the bin number starts increasing.

15



Bias of & estimate for N=8

10 & L L r L L r L L r E
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B =4+ Jacobsen
B —©— Candan 1
10'7 C r r r r r r r r r
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S

Fig. 4.3: Frequency bias of estimators with white Gauusian noise.

In Fig. 4.3, a comparison is made among the algorithms, given in Table 4.1, in terms
of the bias estimate when N=8 and the given signal is without noise. Frequency
estimation is a process which is nonlinear; hence it should be expected that all
frequency estimators are inherently biased. The bias decreases as N — oo or as the
SNR increases. Fig. 4.3 shows that Candan's estimator has the lowest bias among the

others.

16



Bias of 6 estimate for N=8

101 E T L T T L T
- Parabolic Fit |7
’ —— Quinn
o --EF- MacLeod
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107} 1
g o
[aa) N
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10 g O © © © e ;)
10'4 C r r r r r L
0 5 10 15 20 25 30

Input SNR (dB)

Fig. 4.4: Bias variation as SNR changes foro =0.25,N =8.

Fig.4.5 shows the effect of noise on the bias. For this computation, the parameter is
fixed to the specific value, which is 6 =0.25, and SNR is varied between 0 to 80
dB (in Fig. 4.4 we show 0-30 dB for zooming purpose). As can be observed from

this figure, Candan’s estimator provides the lowest bias value among the others.

17



RMSE of § estimate for N=8 and 6=0.25

L L L L L L L
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S 10°:
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o ==EF- MacLeod
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N CR Bound
10'5 T T r r r r r C
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Input SNR (dB)

Fig. 4.5: RMSE variation as SNR changes for 6 =0.25and N =8.

Fig. 4.5 shows the root-mean-square-error (RMSE) of the estimators and the
Cramer—Rao lower bound which is given by (4.1). Here, it should be noted that the
Cramer-Rao bound is not normally applicable for estimation algorithms which are
biased. However, it is still a useful indicator of performance if the bias of the
estimator is much smaller then the variance of the error. Indeed, it is clearly
noticeable in this figure that, the estimator bias is dominant in the RMSEs produced
by all the estimators, including Candan's estimator, when the SNR is sufficiently

high.

18



Bias of 6 estimate for N=32
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Fig. 4.6: Bias variation as SNR changes for 6 =0.25and N =32.

In Figures 4.6 and 4.7, N is taken as N=32. Fig. 4.6 shows how bias is affected by
noise present in the signal. In this figure, the frequency parameter delta is fixed to a
predetermined value 6 =0.25, and SNR is again varied between 0 to 80 dB. In this
figure it can be observed that the variances of the estimators tend to the bias values
produced in the absence of noise, as SNR increases, given in Fig. 4.3. However,

Candan’s estimator has the lowest bias among all estimators.
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RMSE of § estimate for N=32 and 6=0.25

10 E L N L N L N L
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Fig. 4.7: RMSE variation as SNR changes for 6 =0.25and N =32.

Fig. 4.7 depicts the comparison of RMSEs of the methods for N=32. It should be

pointed out that, as the number of observations gets larger, the estimators’

performance (especially Candan’s one) gets closer to the Cramer-Rao lower bound.
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Bias of 6 estimate for N=128
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Fig. 4.8: Bias variation as SNR changes for 6 =0.25and N =128.

In Figures 4.8 and 4.9, N is further increased to N=128. Fig. 4.8, again, shows the
bias when the exponential is burried in noise. In this figure, the frequency parameter
o is fixed to the predetermined value, which is 6 =0.25, and SNR is again varied
between 0 to 80 dB. As the figure shows, the estimators can become close to the bias
values in the absence of noise, as depicted in Fig. 4.3. Also, as before, Candan’s

estimator still has the lowest bias among all estimators.
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RMSE of § estimate for N=128 and 6=0.25

L L L L L L L

10

LB ELL

10" £

10°

L]

(]
S 10°;
a4 -
107 Parabolic Fit
~| =—€&— Quinn
-| ==EF= MacLeod
10° z| = Jacobsen
-] —©— Candan
- CR Bound {
10'6 C r r r r r r r
0 10 20 30 40 50 60 70 80

Input SNR (dB)

Fig. 4.9: RMSE variation as SNR changes for 6 =0.25and N =128.

Fig. 4.9 displays the RMSE when the data length is increased to N=128. It should be
stressed that, as the number of observations gets larger, the estimators’ performance
(especially Candan’s one) gets closer to the Cramer-Rao lower bound. This, in turn,

shows the convergence to the Cramer-Rao lower bound.
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Bias of & estimate for N=256
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Fig. 4.10: Bias variation as SNR changes for 6 =0.25and N =256 .

In Figures 4.10 and 4.11, the number of observations is given as N=256. Fig. 4.10
shows how bias is affected by noise present in the signal. In this figure, the
frequency parameter ¢ is fixed to the predetermined, which is 6 =0.25, and SNR is
again varied between 0 to 80 dB. As can be seen in this figure, the estimator RMSEs
tend to the bias values for the noise free case (see Fig. 4.3.), as SNR increases.

However, Candan’s estimator again has the lowest bias among all estimators.
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RMSE of § estimate for N=256 and 6=0.25
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Fig. 4.11: RMSE variation as SNR changes for ¢ =0.25and N =256.

Fig. 4.11 shows the RMSE for N=256. In this figure, Candan’s estimator approaches

to the Cramer-Rao lower bound (only 1 dB difference).
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In Figs 4.1-4.11, additive white Gaussian noise case is investigated. In order to
show the effect of the noise type on the performance of the mentioned techniques,
additive colored Gaussian noise (ACGN) case will be investigated. The colored
Gaussian noise is created by filtering the white Gaussian noise using a 2-coefficient

low-pass filter with impulse response h=[0.707 0.707] and magnitude response

shown in Fig. 4.12.
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Fig. 4.12: The Magnitude response of the filter used in creating colored noise
(h=[0.707 0.707]).
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Bias of & estimate for N=8 (Colored Noise)
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Fig. 4.13: Frequency bias of estimators with colored Gaussian noise.

In Fig. 4.13, we compare the performance of the algorithms under ACGN. The other
parameters are the same as those in Fig. 4.3. From Fig. 4.13 we see that the
performance of Candan’s estimator is less than that of the AWGN case by 0.5 dB
while it is less by 1 dB for the other estimators. This shows the advantage of

Candan’s over the others even in ACGN case.
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Bias of 6 estimate for N=8 (Colored Noise)
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Fig. 4.14: Bias variation as SNR changes for 6 =0.25and N =8in colored Gaussian
noise.

Figure 4.14 shows that none of the estimators bias is affected by the ACGN at high
SNR, i.e., noise type does not affect the bias estimate. However, Candan

estimator’s performance becomes constant at SNR=15 dB while it became constant

at SNR=5 dB in the case of AWGN.
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RMSE of ¢ estimate for N=8 and 6=0.25 (Colored Noise)
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Fig. 4.15: RMSE variation as SNR changes for 6 =0.25and N =8 in colored
Gaussian noise.

Figure 4.15 shows that the estimators’ RMSE performances are again not affected

by the noise type when the signal length is short (i.e. N=8)
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Bias of 6 estimate for N=256 (Colored Noise)
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Fig. 4.16: Bias variation as SNR changes for 6 =0.25and N =256 in colored
Gaussian noise.

Figure 4.16 shows that the estimators’ biases are the same as those of the AWGN
case when the SNR is very high (i.e. SNR>40 dB). However, their biases are high

by 4-5 dB at very low SNR’s in the case of ACGN than that of the AWGN.
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Fig. 4.17: RMSE variation as SNR changes for 6 =0.25and N =256 in colored

Gaussian noise.

From Fig. 4.17, we see that Candan’s estimator is worse by 0.5 dB in ACGN case

than that of the AWGN. However, in AWGN case Quinn and Macleod estimators

were exactly reaching CR-lower bound when SNR<60 dB but in the ACGN case

they perform worse by 1 dB.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

Conclusions

In this thesis, the performance of the frequency estimator proposed by Candan is

compared with the estimators of Jacobsen, Macleod and Quinn.

The Candan estimator requires a small number of calculations for each estimate, and
produces results with variances very close to the CR lower bound when the SNR is
sufficiently high. These features render this estimator particularly suited to radar
signal processing applications, where it is required to compute Doppler frequencies
of unknown targets accurately and efficiently. The work presented in this thesis has

confirmed the viability of this estimator.

Different experiments have been implemented with different numbers of
observations. Simulations show that Candan’s estimator performs much better than
the other algorithms in terms of bias, variance and root-mean-square error (RMSE).
Also, it has been shown that as the number of observations becomes large, these
methods converge to the Cramer-Rao lower bound in terms of RMSE. However,

Candan’s method has shown the best performance among all the other algorithms.
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Future Work

A possible future work could be the derivation of similar high resolution estimators
by using alternative windows such as those of Hamming and Hanning.

Also, trying to improve the performance of the Candan estimator in order to reach
the Cramer-Rao lower bound for short length data without increasing the number of

computations would be a distinct potential future work.
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APPENDIX

A.1l. MATLAB Codes (Performance Measure vs. Bin Number)

clear all; clc;

tstlen=64; 9% Effective length of test vector.

NZ=1; % Switch to enable (1) or disable (0) noise.
NOISE=0.25; % Set noise level.

N=1000; % Number of trials in test.

Amp=4; % Exponential amplitude

quinerr=zeros(size(1:N)); % Allocate vector for results.
quaderr=zeros(size(1:N)); % Allocate vector for results.
maclderr=zeros(size(1:N)); % Allocate vector for results.
candanerr=zeros(size(1:N)); % Allocate vector for results.

quinest=zeros(size(1:N)); % Allocate vector for results.
quadest=zeros(size(1:N)); % Allocate vector for results.
macldest=zeros(size(1:N)); % Allocate vector for results.
candanest=zeros(size(1:N)); % Allocate vector for results.

SNR=zeros(size(1:N)); % Allocate vector for results.

K=10; % Number of bins to test.
quinr=zeros(size(1:K)); % Allocate vector for results.
quadr=zeros(size(1:K)); % Allocate vector for results.
macldr=zeros(size(1:K)); % Allocate vector for results.
candanr=zeros(size(1:K)); % Allocate vector for results.

quinvar=zeros(size(1:K)); % Allocate vector for results.
quadvar=zeros(size(1:K)); % Allocate vector for results.
macldvar=zeros(size(1:K)); % Allocate vector for results.
candanvar=zeros(size(1:K)); % Allocate vector for results.

quinbias=zeros(size(1:K)); % Allocate vector for results.
quadbias=zeros(size(1:K)); % Allocate vector for results.
macldbias=zeros(size(1:K)); % Allocate vector for results.
candanbias=zeros(size(1:K));% Allocate vector for results.

targ=zeros(size(1:K)); % Allocate vector for results.

M=0; % Current test number.
binstrt = 9.0; % Starting bin number.
binstep = 0.1; % Bin delta step size.
binend =9.9; % Ending bin number.

for bin = binstrt: binstep: binend,

M=M+1; % Current test number.
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target=hin; % Calculate desired target result
targ(M)=bin;

fprintf('Peak is at %f.\n',bin);
for I = 1:N, % Run trials.

phz=2*pi*rand(1);

% Generate signal.
cw=Amp*exp(j*((2*pi*(1:tstlen)*bin./(tstlen))+phz));
% Calculate signal power.

sigp=sum(abs(cw(1:tstlen).”2));
CWN=Cw;

if(NZ==1)
% Generate noise.

% Set signal level and add noise (noise variance=1 on I and on Q)
nzi=sqrt(NOISE)*randn(1,tstlen);
nzg=sqrt(NOISE)*randn(1,tstlen);
nzv=nzi+j*nzq;

nzp=sum(abs(nzv(1:tstlen).~2));

if(nzp>0)
SNR(1)=10*log10(sigp/nzp); % Calculate SNR.
else

% Use this for no noise.

SNR(1)=100.0; end
cwn=cw+nzv,

end
% End noise.

dftshrt(1:tstlen)=fft(cwn(1:tstlen)); % DFT.
magshrt(1:tstlen)=abs(dftshrt); % DFT magnitude.
% Find raw peak magnitude and location.
[rawmag,rawind]=max(magshrt);

% lsolated 3 samples around peak.
pk3vect(1:3)=dftshrt(rawind-1:rawind+1);
quinest(l)=rawind-1+quin(pk3vect); % Do Quinn's first estimation.
quinerr(l)=target-quinest(l); % Calculate and save error.

% Do modified quadratic estimation.
quadest(l)=rawind-1+quadterp(pk3vect);
quaderr(l)=target-quadest(l); % Calculate and save error.

macldest(l)=rawind-1+macleod(pk3vect);% Do Macleod's estimation.
maclderr(l)=target-macldest(l); % Calculate and save error.
candanest(l)=rawind-1+candan(tstlen,pk3vect);% Do Candan's
candanerr(l)=target-candanest(l); % Calculate and save error.

end % End inner for loop.
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quinvar(M)=sqrt(mean(quinerr.”2)); % Calculate result rms error.
quadvar(M)=sqrt(mean(quaderr.~2)); % Calculate result rms error.
macldvar(M)=sgrt(mean(maclderr.”2)); % Calculate result rms error.
candanvar(M)=sgrt(mean(candanerr.*2)); % Calculate result rms error.

SNRmn=mean(SNR); % Calculate result mean.
quinbias(M)=mean(quinerr); % Calculate bias.
quadbias(M)=mean(quaderr); % Calculate bias.
macldbias(M)=mean(maclderr); % Calculate bias.
candanbias(M)=mean(candanerr); % Calculate bias.
quinr(M)=mean(quinest); % Calculate average result.
quadr(M)=mean(quadest); % Calculate average result.
macldr(M)=mean(macldest); % Calculate average result.
macldr(M)=mean(macldest); % Calculate average result.
candanr(M)=mean(candanest); % Calculate average result.
end; % End bin loop.

xs(1:M)=binstrt+(((1:M)-1)*binstep);% Generate scale for plot

figure(1);

plot(xs(1:M),targ(1:M),'r-',xs(1:M),quadr(1:M),'mo’',xs(1:M),quinr(1:M),...
'gs', xs(1:M),macldr(1:M),'bx’',xs(1:M),...

candanr(1:M),'c*";

title('Average Peak Location Estimates (bin) vs Bin Number"); grid on

legend('Real Value','Jacobsen’,'Quin’,'Macleod','Candan’);

xlabel('Bin Number")

ylabel('Average Peak Location Estimates')

figure(2);

plot(xs(1:M),quadvar(1:M),'mo:',xs(1:M),quinvar(1:M),'gs:",...
Xs(1:M),macldvar(1:M),'bx:",xs(1:M),...

candanvar(1:M),'c*:");

title('Estimator Variance vs Bin Number'); grid on

legend('Jacobsen’,'Quin’,'Macleod’,'Candan’);

xlabel('Bin Number")

ylabel('Variance Estimates’)

figure(3);

plot(xs(1:M),quadbias(1:M),'mo:',xs(1:M),quinbias(1:M),'gs:",...
,Xs(1:M),macldbias(1:M),'bx:",xs(1:M),...

candanbias(1:M),'c*:");

title('Estimator Bias vs Bin Number"); grid on

legend('Jacobsen’,'Quin’,'Macleod’,'Candan’);

xlabel('Bin Number")

ylabel('Bias Estimates')

function x=candan(tstlen,y)

% Candan

% Performs a quadratic-fit peak location interpolation on a three- % element input vector y.
% Returns -0.5< x < 0.5, which is the fraction of the sample % spacing about the center
% element where the peak is estimated to be.

NN=tstlen;

x=(tan(pi/NN)/(pi/NN)).*real ((y(1)-y(3))/((2*y(2))-y(1)-¥(3)));
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function [x] = macleod(Y)

% Y is a three-element complex vector with the

% DFT output magnitude maximizer as the center element.

%

% Returns -0.5< x < 0.5, which is the fraction of the sample
% spacing (i.e., bin width) about the center element where the
% peak is estimated to be.

ref = Y(2); % lsolate phase reference.

R = real(Y.*conj(ref));% Generate phase corrected coefficients
gamma = (R(1)-R(3))/((2*R(2))+*R(1)*R(3)); = % Calculate offset.
delta = (sqrt(1 + 8*gamma*gamma)-1)/(4*gamma); % Final estimate.
X = delta;

function x=quadterp(y)

% Jacobsen

% Performs a quadratic-fit peak location interpolation on a three- %element input vector y.
% Returns -0.5< x < 0.5, which is the fraction of the sample% spacing about the center

% element where the peak is estimated to be.

x=real((y(1)-y(3))/((2*y(2))-y(1)-y(3)));

function [X] = quin(pk3vect)

% pk3vect is a three-element complex vector with the

% DFT output magnitude maximizer as the center element.

% Returns -0.5< x < 0.5, which is the fraction of the sample
% spacing (i.e., bin width) about the center element where the
% peak is estimated to be.

alphal=real(pk3vect(1)/pk3vect(2));
alpha2=real(pk3vect(3)/pk3vect(2));

deltal= alphal/(1-alphal);
delta2=-alpha2/(1-alpha2);

if ((deltal>0) & (delta2>0))
x=delta2;
else
x=deltal;
end
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A.2. MATLAB Codes (Performance Measure vs. SNR)

%FIGURE BIAS (MC_deneme_f_bias_plot)

clear all,

N=8§;

SNR_dB=100;

noise_type=2; % select 1 for colored noise, otherwise white noise

MC_run=1000;

whin_vec=setdiff(2.02:0.02:2.48,2);

hh=[0.707 0.707];

indexwhin=0;

error=zeros(length(wbin_vec),5);

SNR=10"(SNR_dB/10);

for wbin=wbin_vec,
indexwbin=indexwbin+1;

delta=wbin-round(wbin);

%Generate noise
if noise_type==1
s=repmat(sgqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +...
sgrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run)));
else
s=repmat(sgrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +...
sgrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run));
end

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);
error=[w_dftmag’ wquinn' wmcl' wjacobsen' wcandan']-delta-round(whbin);
bias(indexwbin,:) = mean(error);
MSE(indexwhbin,:) = var(error)+mean(error).”2;
varer(indexwhbin,:) = var(error);
dum = CR_calc(SNR_dB,N,whbin);
CR(indexwhbin) = dum(3,3);
end;
figure,
semilogy(wbin_vec-round(wbin_vec),abs(bias(:,1)), linewidth',2); hold all;
semilogy(wbin_vec-round(wbin_vec),abs(bias(:,2)),'d-", linewidth',2);
semilogy(wbin_vec-round(wbin_vec),abs(bias(:,3)),'s--','linewidth',2);
semilogy(wbin_vec-round(wbin_vec),abs(bias(:,4)),+:",'linewidth',2);
semilogy(wbin_vec-round(wbin_vec),abs(bias(:,5)),'o-", linewidth’,2);
legend('Parabolic Fit','Quinn’,'MacLeod','Jacobsen’,'Candan’);
h=xlabel('\delta); set(h, fontsize',11) % increase the title size
h=ylabel('Bias'); set(h,'fontsize’,11) % increase the title size
h=title(['Bias of \delta estimate for N="num2str(N)]);
set(h,'fontsize',11);

% RMSE=sqrt(MSE);

% figure(2),semilogy(wbin_vec-round(wbin_vec),RMSE,SNR_dB_vec,sqrt(CR));
legend('new','quinn’,'jacobsen’,'MacLeod','DFT Mag','CR")

% xlabel("\delta"); ylabel(RMSE"); title(['N="num2str(N)]);

%plot(error),

hold off;

disp('press space for next figure”);

pause;

%%%%%%%%%%

%FIGURE RMSE

clear all,
noise_type=2; % select 1 for colored noise, otherwise white noise
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hh=[0.707 0.707];

N=8§;
SNR_dB_vec=[0:5:80];
MC_run=20e3;
%wbin=2.1;
%delta=wbin-round(wbin);

indexSNR=0;
error=zeros(MC_run,5);
for SNR_dB=SNR_dB_vec,
SNR=10"(SNR_dB/10);
indexSNR=indexSNR+1;
whin=2.25;
delta=wbin-round(wbin);

%Generate noise
if noise_type==1
s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +...
sgrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run)));
else
s=repmat(sgrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +...
sgrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run));
end

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);
error=[w_dftmag’ wquinn' wmcl' wjacobsen' wcandan']-delta-round(whbin);
bias(indexSNR,:) = mean(error);
MSE(indexSNR,:) = var(error)+mean(error).”2;
varer(indexSNR,:) = var(error);
dum = CR_calc(SNR_dB,N,whin);
CR(indexSNR) = dum(3,3);
end;
%figure(1),semilogy(SNR_dB_vec,abs(bias)); legend(‘'new','quinn','jacobsen’,'MacLeod','DFT Mag’);
%xlabel('Sample SNR"); ylabel('Bias’); title(['N="num2str(N)]);
figure,
semilogy(SNR_dB_vec,abs(bias(:,1)), linewidth',2); hold all;
semilogy(SNR_dB_vec,abs(bias(:,2)),'d-",'linewidth’,2);
semilogy(SNR_dB_vec,abs(bias(:,3)),'s--", linewidth',2);
semilogy(SNR_dB_vec,abs(bias(:,4)),'+:",'linewidth’,2);
semilogy(SNR_dB_vec,abs(bias(:,5)),'0-', linewidth’,2);
legend('Parabolic Fit','Quinn’,'MacLeod',"Jacobsen’,'Candan’);
h=xlabel('Input SNR (dB)"); set(h, fontsize',11) % increase the title size
h=ylabel('Bias"); set(h,'fontsize',11) % increase the title size
h=title(['Bias of \delta estimate for N="num2str(N)]);
set(h,'fontsize',11);
hold off;

RMSE=sqrt(MSE);

% figure(2),semilogy(SNR_dB_vec,RMSE,SNR_dB_vec,sqrt(CR));
legend('new','quinn’,'jacobsen’,'MacLeod','DFT Mag','CR")

% xlabel('Sample SNR"); ylabel(RMSE"); title(['N="num2str(N)]);
%plot(error),

hold off;

figure,
semilogy(SNR_dB_vec,abs(RMSE(:,1)),'linewidth',2); hold all;
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semilogy(SNR_dB_vec,abs(RMSE(:,2)),'d-','linewidth’,2);
semilogy(SNR_dB_vec,abs(RMSE(:,3)),'s--",'linewidth',2);
semilogy(SNR_dB_vec,abs(RMSE(;,4)),+:', linewidth’,2);
semilogy(SNR_dB_vec,abs(RMSE(;,5)),'0-",'linewidth',2);
semilogy(SNR_dB_vec,sqrt(CR), linewidth',2)

legend('Parabolic Fit','Quinn’,'MacLeod',"Jacobsen’,'Candan’,'CR Bound");
h=xlabel('Input SNR (dB)"); set(h,fontsize',11) % increase the title size
h=ylabel'(RMSE"); set(h,'fontsize',11) % increase the title size

h=title('RMSE of \delta estimate for N="num2str(N) ' and \delta=' num2str(delta) ]);
set(h,'fontsize',11);

disp(‘press space for next figure");
pause;

clear all,

noise_type=2; % select 1 for colored noise, otherwise white noise
hh=[0.707 0.707];

N=32;

SNR_dB_vec=[0:5:80];

MC_run=20e3;

%wbin=2.1;

%delta=wbin-round(whin);

indexSNR=0;
error=zeros(MC_run,5);
for SNR_dB=SNR_dB_vec,
SNR=10"(SNR_dB/10);
indexSNR=indexSNR+1;
whin=2.25;
delta=wbin-round(wbin);

%Generate noise
if noise_type==1
s=repmat(sgrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +...
sgrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run)));
else
s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)"+j*rand(1)*2*pi),[1 MC_run]) +...
sgrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run));
end

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);
error=[w_dftmag' wquinn' wmcl' wjacobsen' wcandan']-delta-round(wbin);

bias(indexSNR,:) = mean(error);

MSE(indexSNR,:) = var(error)+mean(error).*2;

varer(indexSNR,:) = var(error);

dum = CR_calc(SNR_dB,N,wbin);

CR(indexSNR) = dum(3,3);
end;
%figure(1),semilogy(SNR_dB_vec,abs(bias)); legend(‘'new','quinn’,'jacobsen’,'MacLeod','DFT Mag";
%xlabel('Sample SNR"); ylabel('Bias"); title(['N="num2str(N)]);
figure,
semilogy(SNR_dB_vec,abs(bias(:,1)), linewidth',2); hold all;
semilogy(SNR_dB_vec,abs(bias(:,2)),'d-",' linewidth',2);
semilogy(SNR_dB_vec,abs(bias(;,3)),'s--', linewidth',2);
semilogy(SNR_dB_vec,abs(bias(:,4)),'+:",'linewidth',2);
semilogy(SNR_dB_vec,abs(bias(;,5)),'0-", linewidth’,2);
legend('Parabolic Fit','Quinn','MacLeod’,'Jacobsen’,'Candan’);
h=xlabel('Input SNR (dB)"); set(h,'fontsize',11) % increase the title size
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h=ylabel('Bias"); set(h,'fontsize',11) % increase the title size
h=title(['Bias of \delta estimate for N="num2str(N)]);
set(h,'fontsize',11);

hold off;

RMSE=sqrt(MSE);

% figure(2),semilogy(SNR_dB_vec,RMSE,SNR_dB_vec,sqrt(CR));
legend('new','quinn’,'jacobsen’,'MacLeod','DFT Mag','CR")

% xlabel('Sample SNR"); ylabel(RMSE); title(['N="num2str(N)]);
%plot(error),

hold off;

figure,

semilogy(SNR_dB_vec,abs(RMSE(:,1)), linewidth',2); hold all;
semilogy(SNR_dB_vec,abs(RMSE(:,2)),'d-",'linewidth’,2);
semilogy(SNR_dB_vec,abs(RMSE(:,3)),'s--,' linewidth’,2);
semilogy(SNR_dB_vec,abs(RMSE(:,4)),+:'", linewidth’,2);
semilogy(SNR_dB_vec,abs(RMSE(:,5)),'0-", linewidth’,2);
semilogy(SNR_dB_vec,sqrt(CR),'linewidth',2)

legend('Parabolic Fit','Quinn','MacLeod',"Jacobsen’,'Candan’,'CR Bound");
h=xlabel('Input SNR (dB)"); set(h,'fontsize',11) % increase the title size
h=ylabel'(RMSE'); set(h,fontsize',11) % increase the title size
h=title('RMSE of \delta estimate for N="num2str(N) 'and \delta=' num2str(delta) ]);
set(h,'fontsize',11);

disp(‘press space for next figure");
pause;

clear all,

noise_type=2; % select 1 for colored noise, otherwise white noise
hh=[0.707 0.707];

N=128;

SNR_dB_vec=[0:5:80];

MC_run=20e3;

%wbin=2.1;

%(delta=wbin-round(wbin);

indexSNR=0;error=zeros(MC_run,5);
for SNR_dB=SNR_dB_vec,
SNR=10"(SNR_dB/10);
indexSNR=indexSNR+1;
whbin=2.25;
delta=wbin-round(wbin);

%Generate noise
if noise_type==1
s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)"+j*rand(1)*2*pi),[1 MC_run]) +...
sqrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run)));
else
s=repmat(sqrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)"+j*rand(1)*2*pi),[1 MC_run]) +...
sgrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run));
end

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);
error=[w_dftmag' wquinn' wmcl' wjacobsen' wcandan']-delta-round(wbin);
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bias(indexSNR,:) = mean(error);

MSE(indexSNR,:) = var(error)+mean(error).*2;

varer(indexSNR,:) = var(error);

dum = CR_calc(SNR_dB,N,whbin);

CR(indexSNR) = dum(3,3);
end;
%figure(1),semilogy(SNR_dB_vec,abs(bias)); legend('new’,'quinn’,' jacobsen’,'MacLeod','DFT Mag’);
%xlabel('Sample SNR'); ylabel('Bias"); title('N="num2str(N)]);
figure,
semilogy(SNR_dB_vec,abs(bias(:,1)), linewidth',2); hold all;
semilogy(SNR_dB_vec,abs(bias(:,2)),'d-','linewidth’,2);
semilogy(SNR_dB_vec,abs(bias(:,3)),'s--", linewidth',2);
semilogy(SNR_dB_vec,abs(bias(:,4)),'+:",'linewidth’,2);
semilogy(SNR_dB_vec,abs(bias(:,5)),'0-', linewidth’,2);
legend('Parabolic Fit','Quinn’,'MacLeod',"Jacobsen’,'Candan’);
xlabel(Input SNR (dB)"); ylabel('Bias"); title(['Bias of \delta estimate for N="numz2str(N)]);
hold off;

RMSE=sqrt(MSE);

% figure(2),semilogy(SNR_dB_vec,RMSE,SNR_dB_vec,sqrt(CR));
legend('new','quinn’,'jacobsen’,'MacLeod','DFT Mag','CR")

% xlabel('Sample SNR"); ylabel(RMSE); title(['N="num2str(N)]);
%plot(error),

hold off;

figure,

semilogy(SNR_dB_vec,abs(RMSE(:,1)), linewidth',2); hold all;
semilogy(SNR_dB_vec,abs(RMSE(:,2)),'d-",'linewidth’,2);
semilogy(SNR_dB_vec,abs(RMSE(:,3)),'s--','linewidth’,2);
semilogy(SNR_dB_vec,abs(RMSE(:,4)),'+:'", linewidth’,2);
semilogy(SNR_dB_vec,abs(RMSE(:,5)),'0-",'linewidth',2);
semilogy(SNR_dB_vec,sqrt(CR),'linewidth',2)

legend('Parabolic Fit','Quinn’,'MacLeod',"Jacobsen’,'Candan’,'CR Bound");
h=xlabel('Input SNR (dB)"); set(h,'fontsize',11) % increase the title size
h=ylabel'RMSE"); set(h,'fontsize',11) % increase the title size
h=title('RMSE of \delta estimate for N="num2str(N) ' and \delta=' num2str(delta) ]);
set(h,'fontsize',11);

hold off;

clear all,

noise_type=2; % select 1 for colored noise, otherwise white noise
hh=[0.707 0.707];

N=256;

SNR_dB_vec=[0:5:80];

MC_run=20e3;

%wbin=2.1;

%delta=wbin-round(wbin);

indexSNR=0;
error=zeros(MC_run,5);
for SNR_dB=SNR_dB_vec,
SNR=10"(SNR_dB/10);
indexSNR=indexSNR+1;
whbin=2.25;
delta=wbin-round(wbin);

%Generate noise
if noise_type==1
s=repmat(sqrt(SNR)*exp(j*whin*2*pi/N*(0:N-1)"+j*rand(1)*2*pi),[1 MC_run]) +...
sqrt(1/2)*(filter(hh,1,randn(N,MC_run))+j*filter(hh,1,randn(N,MC_run)));
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else
s=repmat(sgrt(SNR)*exp(j*wbin*2*pi/N*(0:N-1)'+j*rand(1)*2*pi),[1 MC_run]) +...
sqrt(1/2)*(randn(N,MC_run)+j*randn(N,MC_run));
end

[wcandan,wquinn,wjacobsen,wmcl,w_dftmag]=find_Dop_peak_around_abin_f(s,round(wbin)+1);
error=[w_dftmag' wquinn' wmcl' wjacobsen' wcandan']-delta-round(wbin);
bias(indexSNR,:) = mean(error);
MSE(indexSNR,:) = var(error)+mean(error).*2;
varer(indexSNR,:) = var(error);
dum = CR_calc(SNR_dB,N,wbin);
CR(indexSNR) = dum(3,3);
end;
%figure(1),semilogy(SNR_dB_vec,abs(bias)); legend('new','quinn’,'jacobsen’,'MacLeod', DFT Mag');
%xlabel('Sample SNR"); ylabel('Bias"); title('N="num2str(N)]);
figure,
semilogy(SNR_dB_vec,abs(bias(:,1)),'linewidth',2); hold all;
semilogy(SNR_dB_vec,abs(bias(:,2)),'d-",' linewidth’,2);
semilogy(SNR_dB_vec,abs(bias(:,3)),'s--', linewidth',2);
semilogy(SNR_dB_vec,abs(bias(:,4)),'+:",'linewidth’,2);
semilogy(SNR_dB_vec,abs(bias(:,5)),'0-", linewidth’,2);
legend('Parabolic Fit','Quinn’,'MacLeod','Jacobsen’,'Candan’);
h=xlabel('Input SNR (dB)"; set(h,'fontsize',11) % increase the title size
h=ylabel('Bias'); set(h,'fontsize’,11) % increase the title size
h=title(['Bias of \delta estimate for N="num2str(N)]);
set(h,'fontsize',11);
hold off;

RMSE=sqrt(MSE);

% figure(2),semilogy(SNR_dB_vec,RMSE,SNR_dB_vec,sqrt(CR));
legend('new','quinn’,'jacobsen’,'MacLeod','DFT Mag','CR")

% xlabel('Sample SNR"); ylabel(RMSE); title(['N="num2str(N)]);
%plot(error),

hold off;

figure,

semilogy(SNR_dB_vec,abs(RMSE(:,1)), linewidth',2); hold all;
semilogy(SNR_dB_vec,abs(RMSE(:,2)),'d-",'linewidth',2);
semilogy(SNR_dB_vec,abs(RMSE(:,3)),'s--,'linewidth',2);
semilogy(SNR_dB_vec,abs(RMSE(:,4)),'+:', linewidth',2);
semilogy(SNR_dB_vec,abs(RMSE(:,5)),'0-", linewidth',2);
semilogy(SNR_dB_vec,sqrt(CR),'linewidth',2)

legend('Parabolic Fit','Quinn’,'MacLeod',"Jacobsen’,'Candan’,'CR Bound");
h=xlabel('Input SNR (dB)"); set(h,'fontsize’,11) % increase the title size
h=ylabel'(RMSE"); set(h,'fontsize',11) % increase the title size
h=title('RMSE of \delta estimate for N="num2str(N) 'and \delta=' num2str(delta) ]);
set(h,'fontsize',11);

disp(‘press space for next figure");
pause;
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