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ABSTRACT

The electromagnetic wave propagation in inhomogeneous media is studied. The wave

equation in such a medium is obtained. By considering the permittivity as a position-

dependent function (i.e, z-dependent) and the permeability as a constant (i.e, µ = kmµ0)

the wave equation is determined. The wave function is reported exactly in a medium

with smooth step dielectric constant, in terms of hypergeometric function. The asymp-

totic behaviors of the wave function are examined and the reflection and transmission

coefficients are found in perfect agreement with the previous results. Moreover, a

smooth double layer case is studied and the corresponding wave function is presented

and plotted exactly in terms of Heun function. Besides, the asymptotic behavior of the

wave function is appointed. It is noticeable that the result of this thesis published in an

international journal.
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ÖZ

Ayni cinsten (homojen) olmayan bir ortamda elektromagnetik dalga yayılması ince-

lenmi ştir. Böyle bir ortamda dalga denklemi inşa edilmiştir. Magnetik geçirgenlik kat-

sayısı (/mu) sabit, elektrik geçirgenlik katsayısı (/epsilon ) ise z- yönüne bağlı olduğu

durumda denklem çözülmüştür. Sürekli tek adım geçişli elektrik parameter durumunda

çözüm hipergeometrik fonksiyonlar cinsinden ifade edilmiştir. Kırılma ve geçirme

katsayıları önceki homojen durumlardakine indirgenecek şekilde tanımlanmıştır. Çift

adım geçişli ortam probleminde ise elektromagnetik dalga Heun fonksiyonları cinsin-

den kesin olarak bulunmuştur. Asimtotik değerler sayısal incelenip dalga davranışı

grafiksel çizilmiştir.
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Chapter 1

INTRODUCTION

Faraday’s experiments are assumed as the initial point of the new age of electro-

magnetism. In 19th century, he proved that not only electricity and magnetism are

not two distinct segregated phenomena but also they are closely related when they are

time-varying quantities [3] .

Electromagnetic theory is a triumph of classical physics that was completed in a set of

differential equations by Maxwell between 1855 and 1865. Maxwell’s equations for

electric field ~E and magnetic field ~B at any frequency are [10]

~∇ ·~E =
ρ

ε0
~∇×~E =−∂~B

∂t
(1.1)

~∇ ·~B = 0 ~∇×~B = µ0

(
~J+ ε0

∂~E
∂t

)

Note that Maxwell’s equations refer to a classical point that is conceived as an in-

finitesimal volume of a macroscopic field, but containing a large number of atoms. In

equations (1.1), ρ is the total electric charge density, ~J is the total electric current den-

sity and ε0 and µ0 are permittivity and permeability of vacuum.

Permittivity, expresses dielectric properties which effect reflection of electromagnetic

waves at interfaces and its attenuation within materials [22] . In other words, it gives
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the response of the medium to the application of an electric field. Similarly the perme-

ability can be defined as the amount of magnetization when we apply a magnetic field

to a medium. In the recent years, the problem of electromagnetic waves propagation

through dispersive and nondispersive media has drawn a special attention motivated

by numerous experiments taking place inside materials [8,9,12,15,16,18,23] .

As an example, we can point out the time-dependent linear medium where the electric

permittivity and permeability vary with time. Here, it is important to note that a time-

dependent dielectric permittivity system can lead to produce quanta of the electromag-

netic field (photons) even from vacuum states [1] . This phenomenon is similar to pure

quantum effects such as dynamical Casimir effect (attractive interaction between two

perfectly conducting plates separated by a short distance in vacuum). Similarly the

classical effects of time-dependent permittivity have been investigated recently, and

lead to addition of some extra term in Ampere-Maxwell equation. Literally in other

studies, the effect of temperature and frequency on the dielectric permittivity has been

explored [22] . Moreover some methods have been developed for accurate implemen-

tation of frequency-dependent materials. Recently much attention has been devoted

to the development of FDTD (Finite-Difference Time-Domain) methods for solving

Maxwell’s equations in dispersive media [24] .

The main concern of this study is to deal with the concepts of permittivity and perme-

ability as some functions of position from a classical point of view. Having the electric

permitivitty and permeability to be a continuous (isotropic) spatial function has many

applications in physics, biology, electronics, meteorology and chemistry [2] .

As an example in chemistry, a novel method has been developed based on the dielectric-
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continuum solvation model with a position-dependent permittivity that leads to a new

algorithm showing the exact solution for the Poisson electrostatic equation [17] . The

inhomogeneous medium consists of a solute immersed in a non-uniform continuum

medium. This technique frequently has been used to calculate the total electrostatic

and the solvation free energy.

Although, in biology the continuum electrostatic model can describe successfuly elec-

trostatic mediated phenomena on atomic scale, there is explicit disagreement about

how to determine the permittivity in inhomogeneous media. It is common that in these

systems we sharply divide the medium into solvent and solute region and choose two

different permittivities for each one. The region between these two parts strongly af-

fects the results of continuum calculations. An example of such a system is a lipid

bilayer surrounded by water that the dielectric constant varies continuously from a

large value in water to a lower value in the bilayer [19] .

Also, in heavy doped regions the dielectric constant changes with the density of im-

purity and so with the position. Such a region can be found in bipolar transistors, p-n

junctions and solar cells [2] .

In the previous examples the behavior of an inhomogeneous medium in the presence

of an external static electric field has been investigated by using Poisson-Boltzmann

equation that can be written as

~∇ ·
[
ε(r)~∇Ψ(r)

]
=−ρ f (r)−∑

r
c∞

i ziqλ(r)exp[
−ziqΨ(r)

κBT
] (1.2)
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Here ε(r) is the permittivity as a function of position, Ψ(r) is the electrostatic potential

and ρ f (r)shows the position-dependent charge density of the medium. Also, zi and ci

show the charge and the concentration of ions, respectively T is the temperature, κB

is the Boltzmann constant and λ(r) is a factor that depends on the accessibility of a

position to ions in the medium.

In the present work we shall study the wave behavior in an inhomogeneous medium

with electric permittivity ε(r) and magnetic permeability µ(r) which are isotropic

functions of position. In the absence of external sources (J f ree = 0,ρ f ree = 0) us-

ing Maxwell’s equations which lead us to

∇
2~E−µε

∂2~E
∂t2 =−

(
~E ·~∇

)
~∇ε̄−

(
~∇ε̄ ·~∇

)
~E−~∇(ε̄+ µ̄)×

(
~∇×~E

)
(1.3)

Where ε̄ = lnε and µ̄ = lnµ. This equation is discussed in chapter 2.

Next, we shall take Ermakov equation into account (which is also derived from the

Maxwell’s equations for inhomogeneous transparent media in one dimension) [11] .

Different cases have been considered due to the variation of the permittivity (if it takes

place on larger scale than the wavelength we shall use Eikonal equation, and if it hap-

pens on the smaller scale standard wave equation can be used), but in the recent article

the intermediate case [11] where the permittivity variation takes place on the wave-

length scale has been considered. The wave propagation has been considered only in

one dimension with a permittivity gradient orthogonal to polarization. As a result, a

nonlinear equation is derived from the field amplitude (recognized as the Ermakov-

Pinney’s equation) in the following form

4



∂2A
∂z2 +

Q2

A3 =−εκ
2
0A (1.4)

Where κ0 = ω

c and Q = A2 ∂q
∂z is an exact invariant even for an arbitrary permittivity

space dependence. The amplitude A and phase q are real quantities appear from the

proposed solution for E as

E = Aeiq (1.5)

Several solutions have been proposed to satisfy equation (1.4) and clarify the wave

behavior in inhomogeneous media. We report that the Ermakov equation’s outcomes

are in good agreement with ours in the current study.
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Chapter 2

THE WAVE EQUATION

In this chapter, we recollect some basic concepts and definitions that are irrevocable

to discern the motif. Then, we proceed to derive the wave equation in a medium with

both constant and position-dependent permittivity and permeability.

2.1 Basic Concepts And Principles

The first well-known experiment in the history of electromagnetism was done by

Petruus Peregrinus (Pierre der Maricourt) in the thirteenth century (which was an

attempt to calculate the force, that was generated by a spherical magnet) . But the

concept of energy transport was uncovered until 1887 (by Heinrich Hertz) and the dis-

covery led to the unification of electrodynamics and optics [3] . Hertz defined the wave

as a disturbance of a continuous, non-dispersive and non-absorptive medium that prop-

agates with a fixed shape at constant velocity. Chronologically Maxwell’s equations

had been introduced formerly by James Clerk Maxwell in 1862.

In the most general form Maxwell’s equations can be written as [10]

~∇ ·~B = 0 ~∇ ·~D = ρ f (2.1)

~∇×~E =−∂~B
∂t

~∇× ~H =
∂~D
∂t

+ ~J f
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This set of equations in a sourceless, infinite medium (ρ f = 0, ~J f = 0), reads

~∇ ·~B = 0 ~∇ ·~D = 0 (2.2)

~∇×~E =−∂~B
∂t

~∇× ~H =
∂~D
∂t

Herein ~D = ε~E is the displacement vector, where ~E is the electric field. ~H is the auxil-

iary magnetic field which can be represented as ~H =
~B
µ , where B is the magnetic field.

Two crucial parameters ε and µ play the main role in this study.

Using the third equation in (2.1) and applying curl operator on the both sides we derive

~∇(~∇ ·~E)−∇
2~E =− ∂

∂t
~∇×~B (2.3)

Which leads to

~∇

[
~∇

1
ε
·~D+

1
ε

~∇ ·~D
]
−∇

2~E =− ∂

∂t

[
~∇µ× ~H +µ~∇× ~H

]
(2.4)

Considering ε and µ to be constants and taking the time-dependent part of electric field

to be eiωt one gets Helmholtz wave equation

(∇2 +µεω
2)~E = 0 (∇2 +µεω

2)~B = 0 (2.5)
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Now if we assume that the wave is travelling in z direction, by applying separation of

variables in a nondispersive medium, one easily gets the plane wave equation as

E(z, t) = E0eiκz−iωt (2.6)

B(z, t) = B0eiκz−iωt

Here κ is the wave number and the magnitude is
√

µεω, consequently ν (the phase

velocity) can be described as

ν =
ω

κ
=

c
n

(2.7)

Note that c is the speed of light in vacuum and n is the index of refraction which

equals
√

µε

µ0ε0
that is almost everywhere a position-dependent or a frequency-dependent

function.

2.2 Wave Equation In Non-Homogeneous Media

We have reviewed the Maxwell’s equations and the plane wave equation in a medium

with constant permittivity and permeability. Now we treat the permittivity ε and per-

meability µ as position-dependent functions (i.e. z-dependent µ(z) and ε(z)) . The

Maxwell’s equations in such a medium obey the same form as before. Applying the

same method, the third equation of (2.2) becomes

~∇(~∇ ·~E)−∇
2~E =− ∂

∂t
~∇× (µ(z)~H) (2.8)
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Since

~∇ ·~E =
1

ε(z)
~∇ ·~D+~∇

1
ε(z)
·D =−~∇ε̄ ·~E (2.9)

here (~∇ · ~E) can be substituted with (−~∇ε̄ · ~E) if we assume ε̄ = lnε(z) , so that we

express (2.8) as

~∇
[
~∇ε̄ ·~E

]
+∇

2~E =
∂

∂t
~∇×

[
µ(z)~H

]
(2.10)

With some manipulations, we get

~∇
[
~∇ε̄ ·~E

]
+∇

2~E = ~∇µ(z)× ∂~H
∂t

+µ(z)ε(z)
∂2~E
∂t2 (2.11)

Taking into account µ̄ = lnµ(z), we have

∇
2~E−µ(z)ε(z)

∂2~E
∂t2 =−~∇

[
~∇ε̄ ·~E

]
+~∇µ̄× ∂~B

∂t
(2.12)

using the following identity [4]

~∇
[
~A ·~B

]
=
(
~B ·~∇

)
~A+

(
~A ·~∇

)
~B+~B×

(
~∇×~A

)
+~A×

(
~∇×~B

)
(2.13)

(2.11) can be expressed as

∇
2~E−µ(z)ε(z)

∂2~E
∂t2 =−

(
~E ·~∇

)
~∇ε̄−

(
~∇ε̄ ·~∇

)
~E−~∇(ε̄+ µ̄)×

(
~∇×~E

)
(2.14)
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Knowing that the permittivity and permeability are only z-dependent the gradient op-

erator acts like a simple derivative in k̂ direction so that the latter equation reduces to

∂2~E
∂z2 −µ(z)ε(z)

∂2~E
∂t2 =−

(
ε̄
′ ∂

∂z

)
~E−

(
~E ·~∇

)
ε̄
′k̂−

(
ε̄
′+ µ̄′

)
k̂×
(
~∇×~E

)
(2.15)

Where ε′ and µ′ are derivatives of ε and µ with respect to z (from now on we write ε and

µ instead of ε(z) and µ(z)) . It’s obvious that our electromagnetic wave (no matter what

direction it goes to) , is a function of (x,y,z, t). For further predigestion we presume

it to be a z-dependent variable. Although this assumption seems to obscure at the

first glance, due to the symmetry of the medium it’s plausible.Therefore (2.14) can be

written as

(
∂2

∂z2 −µε
∂2

∂t2

)
Ex = µ̄′

∂Ex

∂z
(2.16)

(
∂2

∂z2 −µε
∂2

∂t2

)
Ey = µ̄′

∂Ey

∂z
(2.17)

(
∂2

∂z2 −µε
∂2

∂t2

)
Ez =−ε̄

′E ′z− ε̄
′′Ez (2.18)

We can separate time-dependent and position-dependent parts of the wave function and

write it as

~E (z, t) = ~̄E(z)eiωt (2.19)

10



Where ω is the frequency of the wave. As we know, electromagnetic waves are trans-

verse waves which means that if we consider the propagation in z-direction the electric

and magnetic components will be in x and y directions. Knowing about the symme-

try of the medium we can rotate the system of coordinates and change the direction

of electric and the magnetic components of the wave. Considering the propagation in

z-direction, automatically (2.17) will be satisfied, while (2.15) and (2.16) yield

(
d2

dz2 +µεω
2
)

Ēi(z) =
µ′

µ
dĒi(z)

dz
(2.20)

Having i = x,y the latter equation can be represented in one direction as

(
d2

dz2 +µεω
2
)

Ēx(z) =
µ′

µ
dĒx(z)

dz
(2.21)

We assumed the electric component of the electromagnetic wave to be in x direction

and the other two components considered to be zero. It’s crystal clear that if we take

the permittivity ε = ε0 and µ = µ0 the latter equation can be simplified as

(
d2

dz2 +
ω2

c2

)
Ēx(z) = 0 (2.22)

In the above equation ε0 and µ0 are vacuum permittivity and permeability, and the

solution of the equation admits a plane wave propagating in z direction

Ēx = Ex0 e∓iκz (2.23)

11



Where κ is the wave number (κ = ω

c ).

To recall the subject at hand, our main concern now is to solve equation (2.20) . For

any further scrutiny we need to know the exact form of ε and µ. In the following two

chapters we examine two different forms of ε and µ and try to solve equation (2.20)

according to our hypothesis.

12



Chapter 3

SMOOTH STEP DIELECTRIC CONSTANT

In the previous chapter we found the wave equation in a medium with position-

dependent properties and also explained that we need to determine the form of permit-

tivity and permeability for further simplifications and manipulations. In this chapter

we suppose to examine the smooth step dielectric constant, While we consider a per-

mittivity function that is changing moderately through a medium.

3.1 The Wave Equation

In the previous chapter we got the following wave equation in the most general form

for a medium with position-dependent properties

(
d2

dz2 +µεω
2
)

Ēx(z) =
µ′

µ
dĒx(z)

dz
(3.1)

where ω is the wave frequency, ε and µ are permittivity and permeability and µ′ is the

permittivity rate of change, as we the wave propagates in z direction. Firstly, we define

the permeability and permittivity to be

13



µ = kmµ0 (3.2)

ε = ke(z)ε0 (3.3)

Herein ke(z) can be defined in the following form

ke(z) = k2−
∆K
4
(
1− tanh(az))2 (3.4)

Here dimension of a is the inverse unit length (1m),and ∆k = k2− k1 , where k1 and k2

are

k1 = lim
z→−∞

ke(z)

k2 = lim
z→+∞

ke(z) (3.5)

If we consider a = 0.6 ( 1
m ) the behaviour of ke(z) can be seen in figure 1, which is

changing smoothly as we move through the medium

14



Figure 1. Shows the behavior of the permittivity function when z changes from −10

to +10, The plots are sketched when k1 = 1 and k2 = 3 with line, when k1 = 1 and

k2 = 1.9 with dotted line and when k1 = 1 and k2 = 1.5 with dashed line.
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Therefore, equation (3.1) can be expressed as

(
d2

dz2 +
ω2

c2 kmke(z)
)

Ēx(z) = 0 (3.6)

For further convenience, we make the following change of variables

κ
2 =

ω2

c2 kmk1 (3.7)

ν
2 =

ω2

c2 kmk2 (3.8)

and define the dimensionless parameter

ξ =−e−2az (3.9)

Due to our new variables we redefine the wave function in the form

Ēx(z) =
(
−ξ)−iνF(ξ) (3.10)

And upon substitution into (3.6) it turns to (derivatives are with respect to z)

ξF ′′+(1−2iν)F ′+
1

4a2

[
(1−4a2)ν2

ξ
+

ν2−κ2

1−ξ
− ν2−κ2

(1−ξ)2

]
F = 0 (3.11)
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It’s clear that we have two singularities at ξ = 0 and ξ = 1. To solve this problem we

substitute

F(ξ) = ξ
σ(ξ−1)ρG(ξ) (3.12)

where

σ =
iν(2a−1)

2a
(3.13)

and

ρ =
1
2
(1− 1

a

√
a2 +ν2−κ2) (3.14)

After some manipulations (3.11) can be simplified in the form of hypergeometric dif-

ferential equation

ξ(ξ−1)G′′+

[
iν−a

a
− (

iν−2a
a

+
1
a

√
a2 +ν2−κ2)ξ

]
G′

− iν−a
2a2

[
a−
√

a2 +ν2−κ2
]
G = 0 (3.15)

Therefore equation (3.15) is the wave equation in a medium with a smooth step dielec-

tric constant, and the wave function can explain wave behaviour in such a medium.
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3.2 Solution of the Wave Equation

In the previous section we found that the wave equation (3.15) is a hypergeometric

differential equation. In this section we solve this equation and explain the wave be-

haviour.

A priori, we recollect that an ordinary second-order linear differential equation in the

form of hypergeometric differential equation can be written as [5,7]

ξ(ξ−1)G′′+
[
(α+β+1)ξ− γ

]
G′+αβG = 0 (3.16)

Or in the self-adjoint form

(
e−ξ

ξ
γG′
)′
−
(

αe−ξ
ξ

γ−1
)

G = 0 (3.17)

With solutions, in the most general form, as

G =C1F(α,β;γ;ξ)+C2ξ
1−γF(α− γ+1,β− γ+1;2− γ;ξ) (3.18)

or

G =C1(−ξ)−αF(α,α− γ+1;α−β+1;ξ
−1)

+C2(−ξ)−βF(β− γ+1,β;β− γ;ξ
−1) (3.19)

18



Equation (3.18) can be used when γ is not an integer and (3.19) can be used when γ is

an integer (here we use (3.18)). Comparing equation (3.16) with (3.15) one easily gets:

α =
1

2a

[
a−
√

a2 +ν2−κ2− i(ν+κ)
]

(3.20)

β =
1

2a

[
a−
√

a2 +ν2−κ2− i(ν−κ)
]

(3.21)

and

γ =
a− iν

a
(3.22)

Using equation (3.16), G(ξ) admits

G(ξ) =C1F

(
1

2a

[
a−
√

a2 +ν2−κ2− i(ν+κ)
]
,

1
2a

[
a−
√

a2 +ν2−κ2− i(ν−κ)
]
;
a− iν

a
;ξ

)
+C2

ξ
1−γF

(
1

2a

[
a−
√

a2 +ν2−κ2− i(ν+κ)
]
− a− iν

a
+1,

1
2a

[
a−
√

a2 +ν2−κ2− i(ν−κ)
]
− a− iν

a
+1;2− a− iν

a
;ξ

)
(3.23)

To find Ēx(z) we should go backward, so the general solution for electric field in such

a medium is
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Ēx(z) =C1(−1)σ+ρ(−ξ)−iν 1
2a (1−ξ)ρF(α,β;γ;ξ)+

C2(−1)σ+ρ+1−γ(−ξ)−iν 1
2a (1−ξ)ρF(α− γ+1,β− γ+1;2− γ;ξ) (3.24)

If we take C̄1 =C1(−1)σ+ρ and C̄2 =C2(−1)σ+ρ+1−γ our latter equation reduces to

Ēx(z) = C̄1(−ξ)−iν 1
2a (1−ξ)ρF(α,β;γ;ξ)+

C̄2(−ξ)−iν 1
2a (1−ξ)ρF(α− γ+1,β− γ+1;2− γ;ξ) (3.25)

The next step is to consider the boundary conditions which are essential to determine

two integration constants C1 and C2 . First, we assume that the electromagnetic wave is

moving from z =−∞ toward z =+∞. It is evident that when z→+∞, ξ =−e−2az→ 0

and

F(α,β;γ,0) = 1 (3.26)

Thus the previous equation reduces to

lim
z→+∞

Ēx(z) = C̄1eiνz +C̄2e−iνz (3.27)

Since in this limit the electromagnetic wave propagates only in positive z direction, the
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second term vanishes. Therefore, we can set C̄2 = 0. In conclusion (3.25) becomes

Ēx(z) = C̄1(−ξ)−iν 1
2a (1−ξ)ρF(α,β;γ;ξ) (3.28)

and

lim
z→+∞

Ēx(z) = C̄1eiνz = E02eiνz (3.29)

Where E02 is the amplitude of the transmitted wave. Obviously this result is completely

in agreement with what we expected, due to our previous knowledge about wave trans-

mission, from a medium. We have already checked the limit, when z→+∞. Now we

continue the discussion in the other direction when z→−∞. Since ξ = −e−2az it ad-

mits that ξ→−∞ and we must find

lim
z→−∞

Ēx(z) (3.30)

One can easily conclude that in this limit we should have two different terms in two

different directions. The first is our transmitted wave in the possitive z direction and

the second is the reflected one in the negative z direction. In this step, the first task that

we should deal with is to find the limits of hypergeometric function when z→−∞. To

examine this condition we should use the following property
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F(α,β;γ;ξ) =
Γ(γ)Γ(β−α)

Γ(β)Γ(γ−α)
(−1)α

ξ
−αF(α,α+1− γ;α+1−β;

1
ξ
)

+
Γ(γ)Γ(α−β)

Γ(α)Γ(γ−α)
(−1)β

ξ
−βF(β,β+1− γ;β+1−α;

1
ξ
) (3.31)

This property helps us to eliminate hypergeometric functions since

lim
ξ→−∞

F(α,α+1− γ;α+1−β;
1
ξ
) = 1 (3.32)

and

lim
ξ→−∞

F(β,β+1− γ;β+1−α;
1
ξ
) = 1 (3.33)

Consequently (3.31) yields

lim
z,ξ→−∞

F(α,β;γ;ξ) = lim
z,ξ→−∞

Γ(γ)Γ(β−α)

Γ(β)Γ(γ−α)
(−1)α

ξ
−α

+
Γ(γ)Γ(α−β)

Γ(α)Γ(γ−α)
(−1)β

ξ
−β (3.34)

Using the following formula

Ēx(z) = E02(−ξ)
−iν
2a (1−ξ)ρF(α,β;γ;ξ) (3.35)
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With substitution one gets

lim
z,ξ→−∞

Ēx(z) = E02(
Γ(γ)Γ(β−α)

Γ(β)Γ(γ−α)
(−ξ)−α− iν

2a +ρ+

Γ(γ)Γ(α−β)

Γ(α)Γ(γ−α)
(−ξ)−β− iν

2a +ρ) (3.36)

In the next step according to the equations (3.20), (3.21), (3.14), (3.8) we have α, β , ρ

and ν therefore

−α− iν
2a

+ρ =+i
κ

2a
(3.37)

and

−β− iν
2a

+ρ =−i
κ

2a
(3.38)

As a result, (3.36) can be written as below

lim
z,ξ→−∞

Ēx(z) = E02

{
Γ(γ)Γ(β−α)

Γ(β)Γ(γ−α)
e−iκz +

Γ(γ)Γ(α−β)

Γ(α)Γ(γ−α)
eiκz
}

(3.39)

As we illustrated before we expect to have two different waves, transmitted wave and

reflected wave in positive and negative direction. Respectively (3.39) must be equal to
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lim
z,ξ→−∞

Ēx(z) = E ′01e−iκz +E01eiκz (3.40)

By analogy one concludes that the amplitude of transmitted wave is

E01 =
Γ(γ)Γ(α−β)

Γ(α)Γ(γ−α)
E02 (3.41)

and the amplitude of reflected wave is

E ′01 =
Γ(γ)Γ(β−α)

Γ(β)Γ(γ−α)
E02 (3.42)

Now we find two new quantities, reflection and transmission coefficients. The reflec-

tion coefficient R can be described as the fraction of the reflected wave to the incident

wave, and the transmission coefficient T is the fraction of the transmitted wave to the

incident wave.Therefore

R =
E ′01

E01
=

Γ(α)Γ(β−α)

Γ(β)Γ(α−β)
(3.43)

and

T =
E02

E01
=

Γ(α)Γ(γ−α)

Γ(γ)Γ(α−β)
(3.44)
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3.3 An Investigation of a Sharp Step Dielectric

In the previous section we defined and derived the reflection and the transmission

coefficients in a medium that the permittivity is position-dependent conforming the

function that was described in (3.4) . In the following section we examine the correct-

ness of our results at the interface of two dielectrics with different permittivities. As

remembered, in this condition we describe the reflection and transmission coefficient

[6]

R =
Er

Ei
(3.45)

and

T =
Et

Ei
(3.46)

The boundary condition for the normal magnetic field yields

n1

C
sin(θi)(Ei +Er) =

n2

C
sin(θt)Et (3.47)
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Herein, n is the optical index of the space. Similarly for the tangential magnetic field

n1

µ1C
cos(θi)(E0−Er) =

n2

µ2C
cos(θt)Et (3.48)

From these two equations we can define

R =

n1
µ1

cos(θi)− n2
µ2

cos(θt)
n1
µ1

cos(θi)+
n2
µ2

cos(θt)
(3.49)

Now if we consider a condition where µ1 = µ2 (our case) , the latter equation yields

R =
n1cos(θi)−n2cos(θt)

n1cos(θi)+n2cos(θt)
(3.50)

In the case of normal incidence, transmission and reflection, where θt = θi = θr = 0 it

can be simplified as

R =
n1−n2

n1 +n2
(3.51)

Also we may calculate the transmission coefficient by the same steps

T =
2n1

µ1
cos(θi)

n1
µ1

cos(θi)+
n2
µ2

cos(θt)
(3.52)
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Then we assume µ1 = µ2 we have

T =
2n1cos(θi)

n1cos(θi)+n2cos(θt)
(3.53)

Finally for the normal incidence, transmission and reflection, one gets

T =
2n1

n1 +n2
(3.54)

Now we go back to our main argument. We should show that if we are at the in-

terface of two dielectric, equations (3.43) and (3.44) can be written exactly in the

form of (3.51) and (3.54). To do so we need to take the limits of equations (3.43)

and (3.44) when a→ +∞ (as a→ +∞ in equation (3.4) tanh(az)→ 1). Therefore,

ke(z) = k2 = const and it means that we have two media (say two dielectrics) with

different permittivities, thus

lim
a→+∞

R = lim
a→+∞

Γ(α)Γ(β−α)

Γ(β)Γ(α−β)
=

κ−ν

κ+ν
(3.55)

Which after substitution of (3.7) and (3.8) it reads

lim
a→+∞

R =

√
kmk1−

√
kmk2√

kmk1 +
√

kmk2
=

n1−n2

n1 +n2
(3.56)
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The expression we obtained is completely in agreement with (3.51) for the reflection

coefficient.

To get the transmission coefficient we should follow the same way. Using (3.41) and

taking the limit when a→+∞ we get

2κ

κ+ν
=

2
√

kmk1√
kmk1 +

√
kmk2

(3.57)

That leads to

T =
2n1

n1 +n2
(3.58)

Where n is called the optical index or index of refraction and it is a dimensionless

quantity. The latter equation is exactly what we had in standard electromagnetics or

optics as the transmission coefficient and the reflection coefficient (equation (3.54)). If

we take z = 0 to be fixed at the boundary of the two surfaces for z > 0 , optical index

is
√

k2km and for z < 0 is
√

k1km . To see how the amplitude of the electric field is

changing we plot it with respect to z.

28



Figure 2. Shows the smooth change in dielectric constant and amplitude of the wave
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3.4 Behavior of the Magnetic Field

To complete this chapter we write the complete form of electric field as

~E(z, t) = x̂E02(−ξ)−
iν
2a (1−ξ)ρF(α,β;γ;ξ)eiωt (3.59)

In this equation we just added the time-dependent part of the wave function to equation

(3.28).

Using Maxwell’s equations (~∇×~E = −∂~B
∂t ) one can easily get the magnetic field of a

plane wave moving in ẑ direction. As we expected the magnetic field is in ŷ direction.

~B(z, t) = ŷ
iE02

2ωa
(−ξ)

−iν
2a (1−ξ)ρ{

2aαβ

γ
F(β+1,α+1;γ+1;ξ)+(

iν
ξ
− 2aρ

1−ξ
)F(α,β;γ;ξ)

}
eiωt (3.60)
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Chapter 4

SMOOTH DOUBLE LAYER

In the previous chapter we considered the smooth step dielectric constant problem

and we found the solutions for the general equation that we had obtained in chapter 2,

namely (2.20). After that we calculated the solutions asymptotic behavior to examine

their validity.

In this chapter we’ll debate another permittivity that is also position-dependent and

discuss a smooth double-layer problem.

4.1 The Wave Equation

We start with the equation that we have obtained in the second chapter in the most gen-

eral form for a medium with position-dependent permittivity and permeability (both

are z dependent)

(
d2

dz2 +µεω
2
)

Ēx(z) =
µ′

µ
dĒx(z)

dz
(4.1)

Now we assume that the electromagnetic wave is passing through a double-layer thick

shell. To satisfy the condition we choose the permeability µ of the medium to be con-

stant (km = const ) and the permittivity of the medium ε(z) = ε0ke(z) with
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ke(z) = k1 +
∆k
2

{
tanh(az)− tanh

(
a(z−L)

)}
(4.2)

Where, a is a positive constant. ∆k is defined as ∆k = k2− k1 and L is the thickness of

a flat double layer dielectric of dielectric constant k2 located inside another medium of

dielectric constant k1.
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Figure 3. Shows the behavior of the permittivity function when z changes from −4 to

+20, The plots are sketched when k1 = 1 and k2 = 3 with line, when k1 = 1 and

k2 = 1.9 with dotted line and when k1 = 1 and k2 = 1.5 with dashed line

(a = 0.6,L = 15).
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Thus after substitution of ke(z), equation (4.1) leads to

(
∂2

∂z2 +

{
κ

2 +
ν2−κ2

2

[
tanh(az)− tanh

(
a(z−L)

)]})
Ēx(z) = 0 (4.3)

where

κ
2 =

ω2

c2 kmk1 (4.4)

and

ν
2 =

ω2

c2 kmk2 (4.5)

Also we define

λ = e2aL (4.6)

So that in (4.3) after some manipulations we get

tanh(az)− tanh(az−aL) =
2λ−2

(1−ξ)(1−λξ)
(4.7)
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with

ξ =−e−2az (4.8)

Finally (4.3) yields

d2Ēx(z)
dz2 +

[
κ

2 +
(ν2−κ2)(λ−1)
λ(ξ−1)(ξ− 1

λ
)

]
Ēx(z) = 0 (4.9)

Next we substitute

Ēx(z) = (−ξ)−iνF(ξ) (4.10)

in equation (4.10) to get

−4a2
ξ

2F ′′(ξ)+(8iνa2
ξ−4a2

ξ)F ′(ξ)+[
4a2

ν
2−κ

2− (ν2−κ2)(λ−1)
λ(ξ−1)(ξ− 1

λ
)

]
F(ξ) = 0 (4.11)
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Which can be simplified to read

F ′′(ξ)+
1−2iν

ξ
F ′(ξ)+

1
4a2λξ

[
λ(ξ−1)(ξ− 1

λ
)(κ2−4a2ν2)+(ν2−κ2)(λ−1)

ξ(ξ−1)(ξ− 1
λ
)

]
F(ξ) = 0 (4.12)

For further calculations, we may use the well-behaved function

F(ξ) = ξ
σH(ξ) (4.13)

in (4.12) to imply

ξ
σH ′′+2σξ

σ−1H ′+σ(σ−1)ξσ−2H +
1−2iν

ξ
(σξ

σ−1H +ξ
σH ′)+

1
4a2λξ

[
λ(ξ−1)(ξ− 1

λ
)(κ2−4a2ν2)+(ν2−κ2)(λ−1)

ξ(ξ−1)(ξ− 1
λ
)

]
ξ

σH = 0 (4.14)

Note that σ is given by

σ =− iκ
2a

+ iν (4.15)
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So that (4.14) can be written in the form

ξ
σH ′′+(1− iκ

a
)ξσ−1H ′+

1
4a2

[
(ν2−κ2)(λ−1)
λ(ξ−1)(ξ− 1

λ
)

]
ξ

σ−2H = 0 (4.16)

Finally the wave equation for the smooth double-layer problem becomes

H ′′+
1− iκ

a
ξ

H ′+

[
(ν2−κ2)(λ−1)

4a2λξ2(ξ−1)(ξ− 1
λ
)

]
H = 0 (4.17)

It’s obvious that we have singularities at ξ = 1
λ

, ξ = 0 and ξ = 1. Solving this homoge-

neous, second order differential equation needs further discussions and manipulations.

We do it in the following section.

4.2 Solution of the Wave Equation

In the previous section we derived the wave equation (4.17). This equation satisfies

the general condition of Heun function. The general form of the Heun function can be

written as [13,20,21]

W ′′(z)+
(

γ

z
+

δ

z−1
+

ε

z− p

)
W ′(z)+

αβz−q
z(z−1)(z− p)

W (z) = 0 (4.18)

With the condition

γ+δ+ ε = β+α+1 (4.19)
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We now define the solution of equation (4.17) in terms of Heun function

W (z) =C1HeunG(p,q,α,β,γ,δ,z)+

C2z1−γHeunG(p,q− (pδ+ ε)(γ−1),β− γ+1,α− γ+1,2− γ,δ,z) (4.20)

Where C1 and C2 are integration constants.If we compare (4.17) with (4.18) we get

p =
1
λ

(4.21)

q =
(κ2−ν2)(λ−1)

4a2λ
(4.22)

α = δ = 0 (4.23)

β =
−iκ

a
(4.24)

γ = 1− iκ
a

(4.25)

and

z = ξ (4.26)
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Also from (4.19) it’s obvious that

ε = 0 (4.27)

Therefore, pursuant to (4.20), the electric field

E(z) =C1(−ξ)
−iκ
2a HeunG(

1
λ
,
(κ2−ν2)(λ−1)

4a2λ
,0,
−iκ

a
,
a− iκ

a
,0,ξ)+

C2(−ξ)
iκ
2a HeunG(

1
λ
,
(κ2−ν2)(λ−1)

4a2λ
,0,

iκ
a
,
a+ iκ

a
,0,ξ) (4.28)

This equation is the most general solution that can be written as the wave function in

this medium.

We now determine C1 and C2. We use the asymptotic behavior of the Heun function

to assign the integration constants. We know that HeunG(p,q,α,β,γ,δ,0) = 1 . Now

if we assume that the wave is moving from −∞ to +∞ when z→ ∞, ξ→ 0 and κ→ ν

thus (4.28) can be simplified as

lim
z→+∞

E(z) =C1eiνz +C2e−iνz (4.29)

One can easily presume that C2 must be 0 and C1 = E03. As a result we have

E(z) = E03(−ξ)
−iκ
2a HeunG(

1
λ
,
(κ2−ν2)(λ−1)

4a2λ
,0,
−iκ

a
,
a− iκ

a
,0,ξ) (4.30)
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Herein E03 in the amplitude of the wave when it propagates in ẑ (z→+∞) direction.

To specify the magnitude of E03 we should find behavior of the wave function when

the electromagnetic wave propagates in z→−∞ direction. From now on we want to

find a way to describe

lim
z→−∞

Heun
(

1
λ
,
(κ2−ν2)(λ−1)

4a2λ
,0,
−iκ

a
,1− iκ

a
,0,ξ

)
(4.31)

The behaviour of this function is illustrated in figure 3. The incoming electromagnetic

wave from z smaller than 0 encounters with the first layer at z = 0. Re(Ex(z)) has

similar structure after crossing the second layer at z = 4. It is clear that the oscillation

is changing between these two layers.
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Figure 4. The incoming electromagnetic wave from z smaller than 0 encounters with

the first layer at z = 0. Re(Ex(z)) has similar structure after crossing the second layer

at z = 4. When z is between 0 and 4, the oscillatory behaviour evidently changes.
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4.3 Reflection and Transmission from a Double Layer

In the previous section we derived the wave equation in the form (4.30). Now we shall

inquire its asymptotic behavior where ξ→−∞.

Since the Heun function can be expressed in terms of any arbitrary function according

to the relations between parameters, it would be adequate if we simply leave E(ξ) in

the form (4.30). But for more investigation on the reflection and transmission coeffi-

cient it will be fruitful to take a quick survey over this problem as a classical optics

issue.

Therefore, we will examine the reflection and transmission features of a time harmonic

electromagnetic wave normally incident at a layered dielectric and find the total reflec-

tion and transmission coefficients. Figure 4 clarifies the phenomenon, schematically.
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Figure 5.Smooth double layer(reflection and transmission waves)
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We assume the thickness of the layer to be d and permittivities to be

ε2 = εrε0

ε1 = ε3 = ε0 (4.32)

Where εr is the relative permittivity. The amplitudes of the total transmitted and re-

flected fields can be written as

Et(z) = ∑
n

En(z)+3

Er(z) = ∑
n

En(z)−1 (4.33)

Here, n (number of region) varies from 1 to ∞ which is a wave index and the signs of

indices show the direction of the wave propagation.

When the wave incident to the boundary between the first and the second medium some

parts can be reflected and some can be transmitted, the same phenomenon takes place

at the interface of medium 2 and 3. Note that the phase for each individual term differs

from the others by a factor Kd for each crossing slab. Next we consider the reflection

coefficient at the first joint to be R1 in +z direction and since we know medium 1 is

similar to medium 3 we have

R2 =−R1 R1 =−R2 (4.34)
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Similarly it is clear that the transmission in +z direction coefficient would be

T+
1 = 1+R1 (4.35)

And in −z direction is

T−1 = 1−R1 (4.36)

In this form we can write the total reflected electric field as (here j =
√
−1)

Er(z) = Ei[R1 +T+
1 R2T−1 ed j2k +T+

1 R2T−1 ed j4k(−R2R1)+

T+
1 R2T−1 ed j6k(−R2R1)

2 + ...] (4.37)

After some manipulations we can write it as

Er(z) = Ei

{
R1− (1−R2

1)R1ed j2k
{

1+(R2
1ed j2k)+(R2

1ed j2k)2 + ...
}}

(4.38)

Therefore, the total reflection coefficient is

R =
Er(z)

Ei
= R1

{
1−

(1−R2
1)e

d j2k)

1−R2
1ed j2k

}
(4.39)
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Which yields

R =
R1(1− ed j2k)

1−R2
1ed j2k

(4.40)

By using the same method the total transmitted electric field can be derived

Et(z) = Ei[T+
1 T−1 e jkd + T+

1 T−1 e j3kd(−R1R2)+ T+
1 T−1 e j5kd(−R1R2)

2 + ...] (4.41)

That is equal to

Et(z) = Ei

{
(1−R2

1)e
jkd
{

1+(R2
1e2 jkd)+(R2

1e2 jkd)2 + ...
}}

(4.42)

Which is

T =
Et(z)

Ei
=

(1−R2
1)e

jkd

1−R2
1e jkd

(4.43)

The reflection and transmission phenomenon in a double layer have been a charming

and practical issue specially in classical optics for many years.

Further investigations on the Huen function in future, can help us to expand equation

(4.30) in a way that leads us to derive equations (4.40) and (4.43).
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Chapter 5

CONCLUSION

In this thesis the electromagnetic wave propagation in non homogeneous media has

been studied. We derived the most general form of the wave equation in chapter 2 with

constant permeability and position-dependent permittivity (it can be a function of x, y

or z). It is remarkable that this wave equation can be simplified in the form of plane

wave equation for a constant ε. We wrote the wave function in terms of the hypergeo-

metric functions and derived T and R (the transmission and the reflection coefficients).

They are in good agreement with known transmission and the reflection coefficients

of a plane wave that enters a new medium (dielectric) with a different permittivity

constant. The results are analytically exact and schematically presented. Moreover, a

smooth step dielectric constant was examined and the solution was presented in terms

of the Heun functions.

This work can be extended to cover a wide rang of problems ranging from biology and

chemistry to meteorology. For example, it would be valuable to use this method in

spherical and cylindrical coordinates to obtain the wave function in non homogenous

media.
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