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ABSTRACT

We study shift-variance of linear periodically shift-variant (LPSV) systems and

non-stationarity of wide-sense cyclostationary (WSCS) random processes (with

continuous-time input and output). We determine how far an LPSV system is away

from the space of linear shift-invariant systems. We consider the average of

commutator’s norm as a shift-variance level, and the normalized version of it is then

defined to be a shift-variance measure (SVM). Extending these ideas to random

processes, we then consider non-stationarity of WSCS random processes based on the

SVM of the autocorrelation operator of the process. We also introduce the expected

shift-variance (which is a kind of SVM) for LPSV systems when the input is

wide-sense stationary (WSS) random process, allowing us to investigate properties of

output of an LPSV system when its input is a WSS random process. Finally, we

analyze shift-variance and non-stationarity of generalized sampling-reconstruction

processes, discrete wavelet transforms, double sideband amplitude modulated signals

and double sideband amplitude modulation systems.

Keywords: Linear periodically shift-variant system, Shift-variance, Generalized

sampling-reconstruction process, Non-stationarity
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ÖZ 

Bu çalışmada, doğrusal periyodik kayan-değişke sistemlerin (LPSV) kayma farkları ve 

geniş anlamda dönemli durağan (WSCS) rastgele süreçlerin (sürekli zaman giriş ve 

çıkış) durağan olmama durumu incelenmiştir. Bir LPSV sistemin doğrusal kayan-

değismez sistem uzayından uzaklığı belirlenmiştir. Komütatör normunum ortalaması, bir 

kayma farkı düzeyi olarak ele alınmış ve normalize değerleri kayma farkı ölçüsü (SVM) 

olarak tanımlanmıştır. Bu düşünceler, rastgele süreçlere uygulanarak, geniş anlamda 

dönemli durağan (WSCS) rastgele süreçlerin durağan olmama durumu, sürecin oto-

korelasyonunun kayma farkı ölçüsüne (SVM) uyarlanmıştır. Ayrıca, doğrusal periyodik 

kayan-değişke sistemlerin (LPSV) kayma farkı, giriş değişkeni geniş anlamda durağan 

(WSS) bir süreç iken açıklanmıştır. Bu durum, LPSV sistemin girişi geniş anlamda 

durağan iken, sistemin çıkışını incelememize olanak sağlar. Son olarak, genelleştirilmiş 

örnekleme yapılandırmasının, ayrık dalgacık dönüşümünün, çift yan bant genlik 

modülasyonlu işaretlerin ve çift yan bant genlik modülasyon sistemlerinin kayma farkı 

ve durağan olmaması incelenmiştir. 

 

 

 

 

Anahtar Kelimeler: Doğrusal Periyodik Kayan-Değişke Sistem, Kayma Farkı, 

Genelleştirilmiş  Örnekleme Yapılandırması Süreci, Durağan Olmama 
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Chapter 1

INTRODUCTION

Many physical systems are linear periodically shit-variant (LPSV). Example includes

sampling-reconstruction processes, multirate filter banks, gating operators with

periodic gate (amplitude modulation (AM) with sinusoidal carrier) and discrete

wavelet transforms (DWTs).

Many random processes are wide-sense cyclostationary (WSCS). In

telecommunications, signal processing, radar, sonar and telemetry applications,

cyclostationarity is due to reconstruction process, modulation, coding, multiplexing.

In mechanics it is coming from, for example, vibration of moving parts. In

econometrics, cyclostationarity results from seasonality; and in atmospheric science it

is caused by rotation and revolution of the earth [9].

Shift-variance and non-stationarity are two important issues in the study of linear shift-

variant systems and random processes. They have found applications in many fields,

including communications and signal processing, see [4] and [9].

Recently, Aach and Führ studied shift-variance properties of multirate filterbanks

with either deterministic or random inputs [4]. They analyzed shift-variance of the

filterbank and calculated the non-stationarity of its cyclostationary output. For

generalized sampling processes, Yu performed shift-variance analysis in the

deterministic setting [21]. In this thesis, we report our extension of the results to
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linear periodically shift-variant (LPSV) systems whose inputs and outputs are both of

continuous-time.

As in [4], we also consider the effect of LPSV systems on the deterministic and

random signals. We apply an inner product and consequently the induced norm in

Hilbert space of linear systems. We define the average of commutator’s norm as

shift-variance level (SVL). The normalized version of it is defined to be the

shift-variance measure (SVM). We show that the SVL is equivalent to the distance

between the LPSV system and the space of linear shift-invariant (LSI) systems. To

study non-stationarity of cyclostationary random processes, we follow the idea of [4]

and [22] to link the non-stationarity to the shift-variance of the associated

autocorrelation operator (or function). This is because a random process is

wide-sense stationary (WSS) if and only if (iff) the autocorrelation operator is

shift-invariant; and it is wide-sense cyclostationary (WSCS) iff the operator is LPSV.

We then obtain a kind of non-stationarity based on the SVM of the autocorrelation

operator. This non-stationarity also characterizes the normalized distance from the

autocorrelation of a random process to the autocorrelation of a nearest WSS process.

Following [4], we also consider a particular SVM for LPSV systems (expected

shift-variance) when the input is WSS random process.

Finally as particular applications, we treat generalized sampling-reconstruction

processes, discrete wavelet transforms (DWTs) and double sideband amplitude

modulated (DSB-AM) signal and double sideband amplitude modulation (DSB-AM)

systems. For the sake of minimum error reconstruction, we assume that the sampling

and reconstruction kernels form Riesz biorthogonal basis [18]. The SVM, the

expected shift-variance of sampling-reconstruction process (which is an LPSV

2



system), and the non-stationarity of the output signal are then determined. Illustrative

examples are provided.

The main results of this thesis has been reported in our paper [14].

1.1 Outline

The thesis consists of five chapters. In chapter 2 we talk about linear systems,

particulary about LSI and LPSV systems. We then define a norm of LPSV systems

and we use it to define SVL and SVM of LPSV systems. In chapter 3 after briefly

talking about WSS and WSCS random processes, we define non-stationarity of

WSCS random processes by bridging it to the SVM of LPSV systems. Also we define

expected shift-variance measure for LPSV systems with the input being WSS random

processes. Chapter 4 is about three applications: generalized sampling-reconstruction

processes, DWTs, DSB-AM signals and systems. In chapter 5 we conclude the thesis

and talk about future work.
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Chapter 2

SHIFT-VARIANCE ANALYSIS OF LPSV SYSTEMS

We start this chapter with some basic definitions. The main aim is to determine the

nearest shift-invariant system and the shift-variance measure for LPSV systems.

2.1 Introduction

Let L2 be the Hilbert space of square integrable continuous-time functions and H (L2 →

L2) : x(t) 7→ y(t) be a bounded linear system. Denote by B the space of all bounded

linear systems. For every H ∈ B , we can specify it completely by the time domain

input-output relation as

y(t) = [Hx](t) =
∫ ∞

−∞
k(t,s)x(s)ds =

∫ ∞

−∞
h(t,s)x(t − s)ds (2.1)

where k(t,s) and h(t,s) are called Green’s function and impulse response

respectively [5]. Note that k(t,s) is response of H to the shifted impulse function

δs(·) = δ(·− s), thus [Hδs](t) = k(t,s) = h(t, t − s) and h(t,s) = k(t, t − s).

Consider B0 the subspace of all bounded linear shift-invariant (LSI) systems which is

denoted by. If H ∈ B0, we have y(· − t0) = Hx(· − t0) for all t0 ∈ R , x ∈ L2.

Consequently from equation (2.1) we get

∫ ∞

−∞
h(t − t0,s)x(t − t0 − s)ds =

∫ ∞

−∞
h(t,s)x(t − t0 − s)ds for all t0 , t ∈ R , x ∈ L2

That means h(t − t0,s) = h(t,s) for all t0 ,s , t ∈ R. Clearly now h(t,s) independent of
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t. Thus without any ambiguity, we can write h(t,s) = h(s) or equivalently k(t,s) =

h(t − s). In this situation the time domain input-output relation becomes

y(t) =
∫ ∞

−∞
h(s)x(t − s)ds = [h∗ x](t) (2.2)

where ∗ is the convolution operator.

For each T > 0, denoted by BT the subspace of all bounded linear shift-variant systems

satisfying y(·+T ) = Hx(·+T ) for any x ∈ L2. Systems in BT are also referred to as

linear periodically shift-variant (LPSV) systems [4] (with period of T ). It can be shown

that the impulse response is T−periodic as a function of t, thus we have

h(t −T,s) = h(t,s) (2.3)

Throughout this thesis, we assume that H ∈ BT and note that B0 ⊂ BT . Since h(t,s) is

periodic in t with period T , we can express the impulse response as Fourier series:

h(t,s) = ∑
k∈Z

hk(s)e jkω0t (2.4)

where ω0 = 2π/T and Z is the set of integer numbers. The coefficients are

hk(s) =
1
T

∫ T/2

−T/2
h(t,s)e− jkω0t dt (2.5)

Let ĥ(t,ξ) be the Fourier transform of h(t,s) with respect to s (x̂ indicates the Fourier

transform of x). As a function of t, ĥ(t,ξ) is also periodic in t with period of T . Thus

we can represent ĥ(t,ξ) (as a function of t) as Fourier series:

ĥ(t,ξ) = ∑
k∈Z

ĥk(ξ)e jkω0t (2.6)
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where

ĥk(ξ) =
1
T

∫ T/2

−T/2
ĥ(t,ξ)e− jkω0t dt (2.7)

Note that ĥk(ξ) is actually the Fourier transform of hk(s). As we shall see in the next

section, the Fourier series decomposition gives more insights to analyze the LPSV

systems.

2.2 Norm of LPSV Systems

Let us define the inner product between systems H1 and H2 in the space of BT as

⟨H1,H2⟩ =
1
T

∫ T/2

−T/2
⟨H1δs(·),H2δs(·)⟩ds (2.8)

=
1
T

∫ T/2

−T/2

∫ ∞

−∞
h1(t, t − s)h2(t, t − s)dtds

where h1 and h2 are the corresponding impulse responses and over bar denotes complex

conjugation. By change of variable u = t − s, we get

⟨H1,H2⟩=
1
T

∫ T/2

−T/2

∫ ∞

−∞
h1(s+u,u)h2(s+u,u)duds

Since the integration of periodic functions is the same over each period, we have

⟨H1,H2⟩=
1
T

∫ T/2

−T/2

∫ ∞

−∞
h1(s,u)h2(s,u)duds (2.9)

Now, the induced norm (squared) of H by the inner product is

∥H∥2 = ⟨H,H⟩= 1
T

∫ T/2

−T/2

∫ ∞

−∞
|h(t,s)|2 dsdt (2.10)
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By using Parseval’s relations for Fourier series and Fourier transforms, we can express

the norm in the Fourier domain as

∥H∥2 = ∑
k∈Z

∫ ∞

−∞
|hk(s)|2 ds

=
1

2π ∑
k∈Z

∫ ∞

−∞
|ĥk(ξ)|2 dξ (2.11)

Let G ∈ B0 and g be its impulse response (i.e., g(s) = [Gδ](s)). The distance (squared)

between H and G can be defined as

d2(H,G) = ∥H −G∥2

=
1
T

∫ T/2

−T/2

∫ ∞

−∞
|h(t,s)−g(s)|2 dsdt (2.12)

And using Parseval’s relation for Fourier series, gives us

d2(H,G) =
∫ ∞

−∞
(|h0(s)−g(s)|2 + ∑

k ̸=0
|hk(s)|2)ds (2.13)

The above expression allows us to determine the closest LSI system (denoted by) Gc.

It is specified by the impulse response as

gc(s) = h0(s) =
1
T

∫ T/2

−T/2
h(t,s)dt (2.14)

Note that Gc is the orthogonal projection of H onto the subspace B0 and the impulse

response gc(s) is the DC component of h(t,s) as a function of t. We now have the

distance (squared) between H and B0 as

d2(H,B0) =
1
T

∫ T/2

−T/2

∫ ∞

−∞
|h(t,s)−gc(s)|2 ds (2.15)
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That is,

d2(H,B0) = ∑
k ̸=0

∫ ∞

−∞
|hk(s)|2ds (2.16)

And in the frequency domain it becomes

d2(H,B0) =
1

2π ∑
k ̸=0

∫ ∞

−∞
|ĥk(ξ)|2 dξ (2.17)

2.3 Shift-Variance Level and Shift-Variance Measure for LPSV
Systems

Let τt0 : x(t) 7→ x(t − t0) be the shift operator. If system H ∈ B0, the output Hτt0x is

equal to τt0Hx for all x ∈ L2 and t0 ∈ R. When system H is not LSI, the difference

signal d = Hτt0x− τt0Hx ̸ is not equal to zero for some input x and shift t0. Similar

to [2], for each t0, we introduce below an error system (commutator system) which

generates the difference signal:

Kt0 = Hτt0 − τt0H (2.18)

It can be shown that the impulse response of Kt0 is

κt0(t,s) = h(t,s− t0)−h(t − t0,s− t0) (2.19)

Note that the commutator system is a T -LPSV system. As a result, its norm ∥Kt0∥ is

T−periodic as a function of t0. Thus the shift variance level of H can then be defined
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as

SVL2(H) =
1
T

∫ T/2

−T/2
∥Kt0∥

2 dt0 (2.20)

which is the average value of the commutator’s norm along all shift t0 in one period.

Intuitively, the shift-variance level and the distance to the nearest LSI system should

be related. This is indeed the case as given in the following result.

Theorem 1 The shift-variance level of H and its distance to B0 is related as

SVL(H) =
√

2d(H,B0) (2.21)

The proof is given in Appendix A.

Since Gc is orthogonal projection of H onto B0, we obtain

∥H∥2 = ∥Gc∥2 +d2(H,B0) (2.22)

Therefore there is an upper-bound for SVL, that is

SVL(H) =
√

2d(H,B0)≤
√

2∥H∥ (2.23)

Following the idea in [20] and the above inequality motivates us to define a normalized

shift-variance measure by dividing to the upper-bound:

SVM(H) =
SVL(H)√

2∥H∥
=

d(H,B0)

∥H∥
(2.24)
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Figure 2.1: Geometrical Concept of SVM

Therefore

0 ≤ SVM(H)≤ 1 (2.25)

We can represent the SVM (squared) as

SVM2(H) = 1− ∥Gc∥2

∥H ∥2

= 1−
∫ ∞
−∞ |ĥ0(ξ)|2 dξ

∑k∈Z
∫ ∞
−∞ |ĥk(ξ)|2 dξ

(2.26)

Note that SVM(H) = 0 iff H ∈ B0 and SVM(H) = 1 (maximally shift-variant) iff its

h0 is equal to zero. The geometrical concept of SVM is illustrated in Figure 2.1.
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Chapter 3

NON-STATIONARITY AND SHIFT-VARIANCE
ANALYSIS OF LPSV SYSTEMS WITH RANDOM INPUT

In this chapter, we shall study the non-stationarity of random processes by the shift

variance of a linear system that is determined by the autocorrelation function. We

define a special shift-variance measure for LPSV systems when they are excited by

WSS random processes.

3.1 Introduction

Let z :R→C be a zero-mean continuous-time random process with E{|z(t)|2}<∞ for

all t ∈ R, where E denotes the expectation operator. The autocorrelation function of z

is defined as rz(t,s) = E{z(t)z(t − s)}. The random process z is called WSS if rz(t,s)

is independent of time, t; it is WSCS with period T (T -WSCS) if rz(t +T,s) = rz(t,s).

The concepts and notions for discrete-time random processes are similarly defined.

3.2 Non-stationarity of WSCS Random Processes

We consider the autocorrelation operator Rz as a deterministic linear system whose

impulse response is specified as Rz δs = rz(·, · − s). Note that z is WSS iff Rz is an

LSI system and z is T -WSCS iff Rz is a T -LPSV system. This suggests that we can

define non-stationarity (NSt) of T−WSCS random process z by shift-variance measure

of linear system Rz:

NSt(z) = SVM(Rz) (3.1)

11



and the impulse response of the closest LSI system Rc is found to be

rc(s) =
1
T

∫ T/2

−T/2
rz(t,s)dt (3.2)

We point out that the degree of cyclostationarity (DCS) of z defined in [22] is related

to NSt(z) as follows:

DCS(z) =
∥Rz∥NSt(z)

∥Rc∥
(3.3)

Passing a WSS random process through an T -LPSV system H, generally

introduces a T -WSCS random process. The autocorrelation function of output y

which is denoted by ry(t,s) is

ry(t,s) = ∑
k∈Z

rk(s)e jkω0t (3.4)

where the coefficients are

rk(s) = ∑
l∈Z

[h(k+l) ∗ rx ∗ h̃l](s)e jlω0s (3.5)

and h̃(·) = h(−·). In the Fourier domain, we have

Sk(ξ) = ∑
l∈Z

ĥ(k+l)(ξ− lω0)Sx(ξ− lω0)ĥl(ξ− lω0) (3.6)

where Sx(ξ) is the power spectral density of x (i.e., the Fourier transform of rx [13]).

The proof is given in Appendix B. The non-stationarity generated by WSS random

12



process x when it passes through H is

NSt2(y) = 1−
∫ ∞
−∞ |∑l∈Z[hl ∗ rx ∗ h̃l](s)e jlω0s|2 ds

∑k∈Z
∫ ∞
−∞ |∑l∈Z[hl+k ∗ rx ∗ h̃l](s)e jlω0s|2 ds

(3.7)

And in the Fourier domain it becomes

NSt2(y) = 1−
∫ ∞
−∞ |∑l∈Z |ĥl(ξ− lω0)|2Sx(ξ− lω0)|2 dξ

∑k∈Z
∫ ∞
−∞ |∑l∈Z ĥk+l(ξ− lω0)Sx(ξ− lω0)ĥl(ξ− lω0)|2 dξ

(3.8)

Note that y is WSS if NSt(y) = 0 and we see that for some particular LPSV systems

under WSS input, output y can be WSS. This is the case when there is no intersection

between the supports of ĥn and ĥm for n ̸= m. In this situation, the denominator of

fractional part in (3.8) is equal to the numerator of it, and therefore the NSt(y) becomes

zero.

3.3 Expected Shift-Variance of LPSV Systems

Now assume that the input is random (for example a WSS process), how can we

quantify the shift-variance of an LPSV system by considering the randomness of

input? This problem was considered by Aach and Führ for multirate discrete-time

systems [4]. They introduced the notation of expected shift-variance. Here we follow

their idea and define the normalized version of expected shift-variance in [4] as

expected shift-variance.

The output of commutator for WSS random process input x is

dt0 = Kt0x = (Hτt0 − τt0H)x (3.9)

If H is LSI, dt0 is equal to zero for all shift t0 and all input x. Now let H be a T -

LPSV system. Then dt0 is a T -WSCS random process and consequently E{|dt0(t)|2}=
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rdt0
(t,0) is T -periodic in both t and t0. To quantify the shift-variance of H under a WSS

input signal, we shall consider E{|dt0(t)|2} over one period T , for both t and t0. Similar

to Aach and Führ [4] the first suggestion for expected shift-variance is

√
1

T 2

∫ T/2

−T/2

∫ T/2

−T/2
E{|dt0(t)|2}dt0 dt (3.10)

However this measure is not normalized (it depends on the norm of H). In appendix C

we obtain

1
T 2

∫ T/2
−T/2

∫ T/2
−T/2 E{|dt0(t)|2}dt0 dt

2( 1
T
∫ T/2
−T/2 E{|y(t)|2}dt)

= 1−
∫ ∞
−∞ |ĥ0(ξ)|2 Sx(ξ)dξ

∑k∈Z
∫ ∞
−∞ |ĥk(ξ)|2 Sx(ξ)dξ

≤ 1 (3.11)

Thus an upper-bound for the suggested expected shift-variance is

√
2
T

∫ T/2

−T/2
E{|y(t)|2}dt (3.12)

Consequently a normalized expected shift-variance can be defined as

ESV2(H,x) =

1
T 2

∫ T/2
−T/2

∫ T/2
−T/2 E{|dt0(t)|2}dt0 dt

2( 1
T
∫ T/2
−T/2 E{|y(t)|2}dt)

= 1−
∫ ∞
−∞ |ĥ0(ξ)|2 Sx(ξ)dξ

∑k∈Z
∫ ∞
−∞ |ĥk(ξ)|2 Sx(ξ)dξ

(3.13)

or in the time domain:

ESV2(H,x) = 1−
∫ ∞
−∞

∫ ∞
−∞ h∗0(t)h0(t − s)rx(s)dsdt

∑k∈Z
∫ ∞
−∞

∫ ∞
−∞ h∗k(t)hk(t − s)rx(s)dsdt

(3.14)

From the above equation we can realize that ESV is equal to the SVM when the input

is white noise (since Sx(ξ) = 1). The ESV tells how different the expected value of the

output for a shifted input from that of the shifted output. The ESV is zero iff H is LSI.

14



The Fourier domain expression (3.13) provides some insight as when an LPSV system

would become LSI (see examples at Section 4.1).
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Chapter 4

APPLICATIONS IN SIGNAL PROCESSING AND
COMMUNICATIONS

4.1 Generalized Sampling-Reconstruction Processes

Sampling-reconstruction process plays an important role in signal processing and

communications. In particular, the generalized sampling-reconstruction theory of

Unser and Aldroubi [18] offers a versatile framework in studying many problems of

sampling beyond Shannon.

In this section we investigate the non-stationarity and shift-variance of generalized

sampling-reconstruction processes shown in Figure 4.1, where x is a zero-mean WSS

random process; and for minimum error between input signal and the output signal

(which is in the space of spanned by {φ(·− nT )}n), φ̃(t) and φ(t) are assumed to be

dual (biorthogonal) Riesz basis [18], i.e., ⟨φ(· − nT ), φ̃(· −mT )⟩ = δ[n−m]. In the

Fourier domain they are related as [11]

̂̃φ(ξ) = T φ̂(ξ)
∑n∈Z |φ̂(ξ+nω0)|2

(4.1)

We mention that sampling generally results in shift-variance whereas

reconstruction introduces non-stationarity.
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x(t) y(t)u[n]

T

Figure 4.1: A Generalized Sampling and Reconstruction Process

Consider the sampling first. The output of sampling u[n] is given by1

u[n] = ⟨x, φ̃(·−nT )⟩

=
∫ ∞

−∞
x(t) φ̃(t −nT )dt (4.2)

Here u is discrete-time and its Fourier transform is

û(e jξT ) =
1
T ∑

n∈Z

̂̃φ(ξ+nω0) x̂(ξ+nω0) (4.3)

The autocorrelation function of u is

ru[n,k] = E{u[n]u[n− k]}

= E{
∫ ∞

−∞
x(t1) φ̃(t1 −nT )dt1

∫ ∞

−∞
x(t2) φ̃(t2 − (n− k)T )dt2} (4.4)

By change of variable (t1 +nT )→ t1 and (t2 +nT )→ t2 and using the WSS property

of x we get

ru[n,k] =
∫ ∞

−∞

∫ ∞

−∞
φ̃(t1) φ̃(t2 + kT )rx(t1 − t2)dt1 dt2 (4.5)

Since ru above is independent of n, thus u is a WSS discrete-time random process. The

1Note that the integration for random signals is in the mean square sense [10].
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power spectral density of u is

Su(e jξT ) =
1
T ∑

n∈Z
|̂̃φ(ξ+nω0)|2 Sx(ξ+nω0) (4.6)

In the reconstruction part, the output is

y(t) = ∑
n∈Z

u[n]φ(t −nT ) (4.7)

Its Fourier transform is

ŷ(ξ) = û(e jξT ) φ̂(ξ) (4.8)

In view of the WSS property of u, the autocorrelation function of y becomes

ry(t,s) = E{y(t)y(t − s)} = E{ ∑
n1∈Z

u[n1]φ(t −n1T ) ∑
n2∈Z

u[n2]φ(t − s−n2T )}

= ∑
n1∈Z

∑
n2∈Z

φ(t −n1T )φ(t − s−n2T )ru[n1 −n2] (4.9)

Now consider ry(t + T,s). By change of variable (n1 + 1) → n1 and (n2 + 1) → n2

we obtain ry(t +T,s) = ry(t,s). Thus y is a T -WSCS random process. The relation

between the Fourier transform of ry and power spectral density of u is

(Sy)k(ξ) =
1
T

φ̂(ξ)φ̂(ξ+ kω0)Su(e jξT ) (4.10)

The proof is given in Appendix D.

Using (4.6) we obtain the relation between the Fourier transform of ry and that the
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power spectral density of x as

(Sy)k(ξ) =
1

T 2 φ̂(ξ)φ̂(ξ+ kω0) ∑
n∈Z

|̂̃φ(ξ+nω0)|2 Sx(ξ+nω0) (4.11)

where S(t,ξ) = ∑k∈Z(Sy)k(ξ)e jkω0t .

In order to analyze the shift-variance of system H in Figure 4.1, we need to determine

its input-output relation. By direct substitution and change of variable, we obtain that

y(t) = Hx =
∫ ∞

−∞
h(t,s)x(t − s)ds (4.12)

where

h(t,s) = ∑
n∈Z

φ̃(t − s−nT )φ(t −nT ) (4.13)

is the impulse response. By change of variable (n−1)→ n, we have h(t+T,s)= h(t,s)

(i.e., the generalized sampling-reconstruction process is an LPSV system). Following

the procedure similar to that given in Appendix D, we obtain

ĥk(ξ) =
1
T
̂̃φ(ξ) φ̂(ξ+ kω0) (4.14)

Note that since H in an LPSV system we could obtain equation (4.11) from (3.6)

directly.

Using (4.1), we can obtain the impulse response as a function of only φ̂ as

ĥk(ξ) =
φ̂(ξ)φ̂(ξ+ kω0)

∑n∈Z |φ̂(ξ+nω0)|2
(4.15)
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Now we are ready apply the results in the previous chapters. First we obtain the norm

of the sampling-reconstruction process as

∥H∥2 =
1

2π ∑
k∈Z

∫ ∞

−∞
|ĥk(ξ)|2 dξ =

1
2π

∫ ∞

−∞

|φ̂(ξ)|2

∑k∈Z |φ̂(ξ+ kω0)|2
dξ (4.16)

and the norm of the closest LSI system is

∥Gc∥2 =
1

2π

∫ ∞

−∞
|ĥ0(ξ)|2 dξ =

1
2π

∫ ∞

−∞

|φ̂(ξ)|4

(∑k∈Z |φ̂(ξ+ kω0)|2)2 dξ (4.17)

Consequently the SVM of sampling-reconstruction process is

SVM2(H) = 1−

∫ ∞
−∞

|φ̂(ξ)|4
(∑k∈Z |φ̂(ξ+kω0)|2)2 dξ∫ ∞

−∞
|φ̂(ξ)|2

∑k∈Z |φ̂(ξ+kω0)|2
dξ

(4.18)

and the non-stationarity of output y is:

NSt2(y) = 1−
∫ ∞
−∞ |φ̂(ξ)|4 S2

u(e
jξT )dξ∫ ∞

−∞ |φ̂(ξ)|2 ∑k∈Z |φ̂(ξ+ kω0)|2 S2
u(e jξT )dξ

(4.19)

Note that Su(e jξT ) can be obtained from equation (4.6). From equation (4.19), it

follows that if there is no intersection between the support of φ̂ and u, then y is WSS.

In this situation, the sampling-reconstruction process might not be LSI.

The expected shift-variance of sampling-reconstruction process under WSS input x is

ESV2(H,x) = 1−

∫ ∞
−∞

|φ̂(ξ)|4Sx(ξ)
(∑k∈Z |φ̂(ξ+kω0)|2)2 dξ∫ ∞

−∞
|φ̂(ξ)|2Sx(ξ)

∑k∈Z |φ̂(ξ+kω0)|2
dξ

(4.20)

If x is white noise then Sx(ξ) = 1, consequently SVM(H) = ESV(H,x). In this case,
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form (4.6) and (4.1) we have

Su(e jξT ) =
1
T ∑

k∈Z
|̂̃φ(ξ+ kω0)|2 =

T
∑k∈Z |φ̂(ξ+ kω0)|2

Substituting the above equality in equation (4.19) gives

SVM(H) = ESV(H,x) = NSt(Hx) (4.21)

In the following subsection, we consider two examples of sampling-reconstruction

processes: we evaluate six different discrete wavelet transforms (DWTs) in the frame

of sampling-reconstruction processes and we consider DSB-AM signals and systems.

For input x we consider two examples:

1-White noise (Sx(ξ) = 1). In this case we have proved that the SVM, ESV, NSt are all

the same. Thus we give only the value of SVM.

2-An autoregressive of order one (AR(1)) random process that is the response of the

following LSI system to the input w(t), :

d
dt

x(t)+αx(t) = w(t) (4.22)

where w(t) is white noise with Sw(ξ) = 1 and we take α = 0.9π. Recall that rx(s) =

1/(2α)e−α|s| and Sx(ξ) = 1/(ξ2 +α2) [10].

4.1.1 Shannon’s Sampling

In the traditional Shannon’s sampling, the kernel is φ(t) = 1
T sinc(t/T ). Thus we have

φ̂(ξ) = 1[−π
T , π

T ](ξ), (1[a ,b](ξ) = 1 if a ≤ ξ ≤ b and it is zero otherwise). The Shannon

sampling process consists of an ideal low-pass pre-filtering and ideal sampler which
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gives the discrete-time value u[n] = x(nT ) (if the support of x̂ is included in

[−π/T,π/T ]). In reconstruction part we have φ̃(t) = sinc(t/T ), thus the Fourier

transform is ̂̃φ(ξ) = T 1[−π
T , π

T ](ξ). In fact the reconstruction process performs

interpolation by sinc function.

From equations (4.9) and (4.13) it is not immediate that the output y is WSS for WSS

input and that the sampling-reconstruction system is LSI. On the other hand if we

examine equation (4.18), we can readily see that ∥H∥= ∥Gc∥, therefore SVM(H) = 0.

It means that the Shannon’s sampling-reconstruction process does not introduce shift-

variance (i.e., it is LSI). Consequently ESV(H,x) = NSt(Hx) = 0 for each x.

4.1.2 B-spline Sampling

Now we consider the case where φ is taken to be B-spline of various order n [17].

Recall that β0(t) = 1[−T
2 , T

2 ](t) (a box) and βn(t) = [β0 ∗βn−1](t). Note that B0 is the

simplest and shortest function that gives a Riesz basis [17]. B-splines of order 0− 3

with T = 1 are plotted in Figure 4.2.

It seems when n becomes larger the Bn(t) looks more like the Gaussian kernel.

To see that let {Zk}k∈N be independent identically distributed (iid) random variables

whose probability density function (pdf) is B0(z)/T . The mean of Zk’s is zero and

their variance is T 2/12. The pdf of random variable Z = ∑n
k=1 Zk is Bn(z)/T n. When n

becomes large enough, by central limit theorem [10], Z tends to the Gaussian random

variable with zero mean and variance of nT 2/12, thus we have

lim
n→∞

Bn(t)
T n =

√
12√

2πnT
exp(− 6t2

nT 2 ) (4.23)
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Figure 4.2: Bn(t) with orders n = 0,1,2,3 and T = 1

and consequently

lim
n→∞

B̂n(ξ) = T nexp(−n(T ξ)2

24
) (4.24)

For φ = β0, we have φ̂(ξ) = T sinc(ξ/ω0) and {φ(· − nT )}n∈Z are orthogonal since

they do not have overlap. By direct examination, the dual kernel is φ̃ = 1
T φ. Thus from

equation (4.1), we have ∑n∈Z |φ̂(ξ+nω0)|2 = T 2. Parseval’s relation gives

1
2π

∫ ∞

−∞
|φ̂(ξ)|2dξ =

∫ ∞

−∞

(
1[−T

2 , T
2 ](t)

)2
dt = T

and

1
2π

∫ ∞

−∞
|φ̂(ξ)|4 dξ =

∫ ∞

−∞

(
[1[−T

2 , T
2 ] ∗1[−T

2 , T
2 ]](t)

)2
dt =

2
3

T 3

Consequently SVM(H) = 1/
√

3 = 0.5774 > 0.5. This result indicates that H is quite

shift-variant and ESV(H,x) = NSt(Hx) = SVM(H) = 0.5774. It shows that the
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behavior of system when is excited by a white noise is quite shift-variant and the

output has considerable amount of non-stationarity. Since the kernel B0(t) is scaled

by T , it is not surprising that SVM(H) is not related to T . If we look at

equation (4.24), when n becomes larger the energy of B̂n(ξ) is mostly located in

[−π/T,π/T ]. Therefore it is expected that for each input x, NSt(Hx), ESV(H,x),

SVM(H) can become arbitrary small if n is large enough.

When n > 0 or x is AR(1) random process, direct calculation of SVM, ESV, NSt is

not easy. Thus we find them numerically. Since we have B̂n(ξ) = (T sinc(ξ/ω0))
n and

the sinc function has very poor decay rate, in our numerical calculation we consider

500 summands for |φ̂(ξ + kω0)|2 and also we consider the integration duration in

[−500 ,500]. The results for various order n are given in Table 4.12 .

We see that for n = 0, we have the worst shift-variance and non-stationarity. When

n = 1, there is a big improvement but the sampling-reconstruction process is still

considerably shift-variant and the output has considerable amount of non-stationarity.

Not much improves for n = 5, ...,10. When n ≥ 100, the SVM, ESV, NSt are all less

than 5%, we thus can say the sampling-reconstruction process is nearly shift-invariant

and the output is nearly WSS. To make more sense of these results, we consider a

particular example, x1(t) = 1[−1/2 ,1/2](t) as input and the responses to the shifted

versions of x1(t) in Figure 4.3 and Figure 4.4. The corresponding outputs are given in

blue (t0 = 0), green (t0 = 0.2), magnolia (t0 = 0.4), red (t0 = 0.5), yellow (t0 = 0.6),

black (t0 = 0.8) and in blue (t0 = 1) respectively (the left column is the view from top

for the right column). For n = 0,1, we see the worst shift-variance. For n = 2, it

seems that they look like each other but still there is big difference between them.

2The SVM is identical to ESV and NSt when the input x is white noise.
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Table 4.1: SVM, ESV, NSt for Sampling-Reconstruction Process B-Spline of Various

Order n with T = 1
SVM(H)(%) ESV(H,x) (%) NSt(Hx) (%)

Order n Sx(ξ) = 1 Sx(ξ) = 1
ξ2+(0.9π)2

0 57.74 43.84 43.57

1 35.47 27.59 24.02

2 28.64 22.26 18.38

3 24.85 19.25 15.51

4 22.27 17.22 13.67

5 20.35 15.72 12.36
...

...
...

...

10 15.06 11.61 8.93
...

...
...

...

100 4.97 3.83 2.88
...

...
...

...

∞ 0 0 0

When n = 5 or 10, the differences between shifted outputs become less, but we can

still see the differences. For n ≥ 100, we can hardly observe any difference between

the shifted outputs and we can say the sampling-reconstruction process is nearly

shift-invariant. The SVM and the results in this particular example are compatible.

4.2 Discrete Wavelet Transforms

Now consider the discrete wavelet analysis-synthesis as sampling-reconstruction

process. Let ψ(t) be a wavelet function and ψ̃(t) be its biorthogonal function. Similar

to [21], for two scalars a,b > 0 we can define

ψm,n = a−m/2ψ(a−mt −bn), m,n ∈ Z (4.25)
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Figure 4.3: The outputs of B-spline sampling-reconstruction process with orders

n = 0, 1, 2 and T = 1 for the shifted particular inputs

Therefore the DWT is defined as

x(t) 7→ {⟨x, ψ̃m,n⟩}m,n∈Z (4.26)

and the synthesis is

ym(t) = ∑
n∈Z

⟨x, ψ̃m,n⟩ψ(t)m,n (4.27)
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Figure 4.4: The outputs of B-spline sampling-reconstruction process with orders

n = 5, 10, 100 and T = 1 for the shifted particular inputs

For each m, the DWT is a sampling process and synthesis is reconstruction process

with φ = ψm,0 and T = amb. Thus we can apply the preceding results to the DWTs.

We obtain the SVM, ESV and NSt of six wavelets, three of them are real and the three

of them are complex. The wavelets and their Fourier transforms are listed in Table 4.2

and the magnitudes are plotted in Figure 4.5. For simplicity we assume m = 0, b = 1,

thus T = b = 1. Again we use numerical methods to obtain SVM, ESV and NSt. But

since the decay rate of these six wavelets is fast, we consider 10 terms in summand
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Table 4.2: Six Wavelets, First Three Real and Last Three Complex

Wavelet ψ̂(ξ)

Shannon

e− jξ/2, |ξ| ∈ [π,2π)

0 otherwise

Mexican hat −
√

8
3 π1/4 ξ2 e−ξ2/2

Meyer


(2π)−1/2e jξ/2 sin

(π
2 v( 3

2π |ξ|−1)
)
, |ξ| ∈ [2π/3,4π/3)

(2π)−1/2e jξ/2 cos
(π

2 v( 3
4π |ξ|−1)

)
, |ξ| ∈ [4π/3,8π/3)

0 otherwise

wherev(s) = s4(35−84s+70s2 −20s3), s ∈ [0,1)

Complex Shannon

e− jξ/2, |ξ| ∈ [π,3π)

0 otherwise

Complex Morlet π−1/4
(

e−(ξ−5)2 − e−(ξ+25)/2
)

Hermitian hat 2√
5

π−1/4 ξ(1+ξ)e−ξ2/2

and also for integration duration, the interval [−3π,3π] is adequate. The results are

given in Table 4.3. We can realize that generally complex wavelets have less SVM,

ESV, NSt. It seems Complex Morlet is near shift-invariant for deterministic input. For

complex Morlet, unlike the other wavelets, when the input is AR(1), the ESV of the

wavelet and the non-stationary of its output is more than its SVM. The reason is the

particular choice of α in AR(1).

To make more sense, we take a particular example where the input is assumed to be

x2(t) = 1[0 ,1/2 ](t)− 1[−1/2 ,0 ](t). The plot of x(t) is given in Figure 4.6. (Note that
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Figure 4.5: Plots of |ψ̂(ξ)| for Six Wavelets

Table 4.3: SVM, ESV, NSt for Six Wavelets with T = 1
SVM(H)(%) ESV(H,x) (%) NSt(Hx) (%)

Wavelet Sx(ξ) = 1 Sx(ξ) = 1
ξ2+(0.9π)2

Shannon 0 0 0

Mexican hat 17.86 13.37 10.72

Meyer 35.83 34.79 35.64

Complex Shannon 0 0 0

Complex Morlet 11.20 13.09 14.45

Hermitian hat 18.02 13.92 10.86
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Figure 4.6: The particular input signal for wavelets

wavelet transform-synthesis is relevant for input signals with high frequency

components, unlike the B-spline sampling-reconstruction processes we consider

different input for wavelets which work better for inputs with low frequency

components) We shift the input x2(t) and we show the corresponding outputs in blue

(t0 = 0), green (t0 = 0.2), magnolia (t0 = 0.4), red (t0 = 0.5), yellow (t0 = 0.6), black

(t0 = 0.8) and in blue (t0 = 1) respectively. The results are illustrated in Figure 4.7

where the left column is the view from top for the right column. As expected, the

complex wavelet transforms are less shift-variant. Complex Morlet seems to be nearly

shift-invariant. On the other hand the shift-variance for Meyer is high, whereas those

for complex Hermitian and Mexican hat are similar.

In another particular example, we obtain the autocorrelation functions of the outputs

of four wavelet sampling-reconstruction processes when the input is white noise. We

obtain the autocorrelation of outputs in various time that are specified by in blue (t = 0),

green (t = 0.2), magnolia (t = 0.4), red (t = 0.5), yellow (t = 0.6) and in black (t = 0.8)

respectively. The result are illustrated in Figure 4.8 where the left column is the view

from top for the right column. Again as expected, the output for complex Molrlet is

nearly WSS. The non-stationarity of the output for Mexican hat is approximately equal
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Figure 4.7: The outputs of four wavelets for the shifted particular inputs

to the non-stationarity of the output for complex Hermitian. the output of Meyer has

the worst non-stationarity.
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Figure 4.8: The autocorrelation of four wavelets with white noise input

4.3 Double Sideband Amplitude Modulation Systems and Signals

In this section we study the DSB-AM systems and signals. It is well-known that the

input-output relation of the DSB-AM system [9] is

H : x(t) 7→ y(t) = x(t)cos(ωct) (4.28)
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where the carrier frequency ωc is constant. The impulse response is

h(t,s) = δ(s)cos(ωct) (4.29)

Note that we have h(t +Tc,s) = h(t,s) where Tc = 2π/ωc. Thus, the DSB-AM system

is Tc−LPSV. The Fourier series representation of h(t,s) is

h(t,s) =
1
2

δ(s)
(
e− jωct + e jωct) (4.30)

Since there is delta function in h(t,s), the norm and SVL of H is infinity. At first

glance we can not compute the SVM, but we can overcome this difficulty by using the

non-ideal impulse response. For ε > 0 define the system Hε by its Greens’s function as

kε(t,s) =
1
2ε

[H
(

1[−ε ,ε ](·− s)
)
](t)

=
1
2ε

1[−ε ,ε ](t − s)cos(ωct) (4.31)

Obviously kε(t,s) and k(t,s) are related as

k(t,s) = lim
ε→0

kε(t,s) (4.32)

Consequently the impulse response of Hε is

hε(t,s) = kε(t, t − s)

=
1
4ε

1[−ε ,ε ](s)
(
e− jωct + e jωct) (4.33)

Therefore we have

h(t,s) = lim
ε→0

hε(t,s) (4.34)
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and lousily

H = lim
ε→0

Hε (4.35)

The norm of Hε is obtained as

∥Hε∥2 =
1
4ε

(4.36)

Since the DC part of hε(t,s) as a function of t is zero (i.e., Hε is orthogonal to the

subspace B0), therefore the distance to the nearest LSI system is

d(Hε,B0) = ∥Hε∥ (4.37)

and consequently we have

SVM(H) = lim
ε→0

d(Hε,B0)

∥Hε∥
= 1 (4.38)

This result indicates that the average of norm of Hετt0 − τt0Hε, which generates the

difference between shifted output and response to the shifted input (commutator),

reaches the upper-bound (
√

2∥Hε∥). Similarly we can show that

ESV(H,x) = 1 for each x (4.39)

This result indicates that the average of expected value of |(Hετt0 − τt0Hε)x|2 reaches

its upper-bound (the average of expected value of 2|Hεx|2).
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The autocorrelation function of DSB-AM signal y under WSS input x is

ry(t,s) =
1
4

E{x(t)
(
e− jωct + e jωct)x(t − s)

(
e− jωc(t−s)+ e jωc(t−s)

)
} (4.40)

=
1
4

rx(s)
(

e− jωc(2t−s)t +2cosωcs+ e jωc(2t−s)t
)

This shows that y is a Tc/2−WSCS random process. In the Fourier domain, we have

Ry(t,ξ) =
1
4
(
Rx(ξ−ωc)e− j2ωct +Rx(ξ−ωc)+Rx(ξ+ωc)+Rx(ξ+ωc)e j2ωct)

(4.41)

When the input x is a white noise, the energy of rx(s) = δ(s) is unbounded. Thus we

consider the autocorrelation function

rε(s) =
1
πε

sinc(
s

πε
) (4.42)

In this situation

Rε(ξ) = 1[− 1
ε ,

1
ε ]
(ξ) (4.43)

and

lim
ε→0

rε(s) = rx(s) (4.44)

Therefore

NSt2(y) = 1− lim
ε→0

|Rε(ξ−ωc)+Rε(ξ+ωc)|2

|Rε(ξ−ωc)|2 + |Rε(ξ−ωc)+Rε(ξ+ωc)|2 + |Rε(ξ+ωc)|2

=
1
3

(4.45)

It means NSt(y) = 57.74%, therefore the output is quite non-stationary in wide-sense.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

We reported in this thesis our latest study on shift-variance and non-stationarity

analysis of LPSV systems and WSCS random processes. We extended recent similar

results to systems with continuous-time input and output. The extension enables us to

define and compute the following:

- The SVL and SVM for LPSV systems and the ESV for LPSV systems when the

input is WSS random process.

- The non-stationarity of a WSCS random process.

We then studied generalized sampling-reconstruction processes, DWTs and DSB-AM

systems and signals. B-splines sampling-reconstruction with orders greater than 100

are near shit-invariant and generate nearly WSS random processes for WSS random

inputs. It seems complex analysis-synthesis wavelet (especially complex Morlet)

transforms generally have good shift-invariant property. The DSB-AM systems are

fully (100%) shift-variant under both deterministic and stochastic inputs. The

DSB-AM white noise has considerable amount of non-stationarity (57.74%).

As future work we hope to find the relation between the error of linear optimal filtering

(Wiener filter) under jointly WSCS random processes and the NSt or the ESV of the

linear system which is generating the WSCS signals.
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[4] T. Aach and H. Führ, “Shift Variance Measures for Multirate LPSV Filter Banks

with Random Input Signals,” IEEE Trans. Signal Process., vol. 60, pp. 5124–

5134, Oct. 2012.

[5] S. Akkarakaran and P. P. Vaidyanathan, “Bifrequency and Bispectrum Maps:

A New Look at Multirate Systems with Stochastic Inputs,” IEEE Trans. Signal

Process., vol. 48, no. 3, pp. 723–736, Mar. 2000.

[6] S. A. Benno and J. M. F. Moura, “Scaling Functions Robust to Translations,”

IEEE Trans. Signal Process., vol. 46, no. 12, pp. 3269–3281, Dec. 1998.

[7] T. Chen and L. Qiu, “Linear Periodically Time-Varying Discrete-Time Systems:

Aliasing and LTI Approximation,” Syst. and Control Lett., vol. 30, pp. 225–235,

1997.

[8] L. E. Franks, Signal Theory., Revised, Pearson Prentice Hall, Pearson Education,

1981.

37



[9] W. A. Gardner, A. Napolitano and L. Paura, “Cyclostationarity: Half A Century

of Research,” Signal Process., vol. 86, pp. 639–697, 2006.

[10] A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical

Engineering., Pearson Prentice Hall, Pearson Education, Inc, 2008.

[11] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way., Amsterdam:

Academic Press, 2009.

[12] A. V. Oppenheim, R. W. Schafer and with J. R. Buck, Discrete-Time Signal

Processing., New Jersey: Prentice-Hall, 1999.

[13] A. Papoulis, Probability, Random Variables, and Stochastic Processes., New

York: McGraw-Hill, 1965.

[14] B. Sadeghi and R. Yu, “Shift-Variance and Cyclostationarity of Linear

Periodically Shift-Variant Systems,” 10’th Int. Conf. On Sampling Process

Theory and App., Bremen, Germany, July 2013.

[15] V. P. Sathe and P. P. Vaidyanathan, “Effects of multirate systems on the statistical

properties of random signals,”IEEE Trans. Signal Processing., vol. 41, pp. 131-

146, Jan. 1993.

[16] G. Strang and T. Nguyen, Wavelets and Filterbanks., Wellesley, MA: Wellesley-

Cambridge Press, 1997.

[17] M. Unser, “Sampling — 50 Years After Shannon,” Proc. IEEE., vol. 88, pp. 569–

587, Apr. 2000.

38



[18] M. Unser and A. Aldroubi, “A General Sampling Theory for Nonideal

Acquisition Devices,” IEEE Trans. Signal Process., vol. 42, pp. 2915–2925, Nov.

1994.

[19] R. Yu, “A New Shift-Invariance of Discrete-Time Systems and its Application to

Discrete Wavelet Transform Analysis,” IEEE Trans. Signal Process., vol. 57, pp.

2527-2537, Jul. 2009.

[20] R. Yu, “Shift-Variance Measure of Multichannel Multirate Systems,” IEEE Trans.

Signal Process., vol. 59, pp. 6245–6250, Dec. 2011.

[21] R. Yu, “Shift-variance Analysis of Generalized Sampling Process ,” IEEE Trans.

Signal Process., vol. 60, pp. 2840–2850, Jun. 2012.

[22] G. D. Zivanovic and W. A. Gardner, “Degrees of Cyclostationarity and Their

Application to Signal Detection and Estimation,” Signal Process., vol. 22,

pp. 287–297, 1991.

39



APPENDICES

40



Appendix A: Proof of Theorem 1

From (2.19), κt0(t,s) = h(t,s− t0)−h(t − t0,s− t0), therefore

∥Kt0∥
2 =

1
T

∫ T/2

−T/2

∫ ∞

∞
|h(t,s− t0)−h(t − t0,s− t0)|2 dsdt

Invoking Parseval’s relation in Fourier series gives

∥Kt0∥
2 = ∑

k∈Z

∫ ∞

−∞
|hk(s− t0)−hk(s− t0)e− jkω0t0|2 ds (by change u = s− t0)

= ∑
k∈Z

∫ ∞

−∞
|hk(u)−hk(u)e− jkω0t0|2 du

The above equation shows that ∥Kt0∥ is T−periodic in t0. Again invoking Parseval’s

relation for Fourier series results

SVL2(H) =
1
T

∫ T/2

−T/2
∥Kt0∥

2 dt0

= 2 ∑
k ̸=0

∫ ∞

∞
|hk(s)|2 ds = 2d2(H,B0)

Appendix B: Derivation of Equations (3.5) and (3.6)

r(t,s) = E{y(t)y(t − s)}

= E
∫ ∞

−∞

∫ ∞

−∞
h(t,s1)x(t − s1)h(t − s,s2)x(t −s−s2)ds1 ds2

Since x is WSS, thus

r(t,s) =
∫ ∞

−∞

∫ ∞

−∞
h(t,s1)h(t − s,s2)rx(s+ s2 − s1)ds1 ds2
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This equation shows that r(t,s) is T−periodic in t (i.e., the output of H is T−WSCS).

Representing h(t,s) in the Fourier series, we get

r(t,s) =
∫ ∞

−∞

∫ ∞

−∞
A(s1)B(s2)rx(s+ s2 − s1)ds1 ds2

where

A(s1) = ∑
k∈Z

hk1(s1)e jkω0t and B(s2) = ∑
k∈Z

hk2(s2)e− jkω0(t−s)

After taking Fourier transform as a function of s, we get

S(t,ξ) =
∫ ∞

−∞

∫ ∞

−∞
A(s1)C(s1,s2)ds1 ds2

= ∑
k1∈Z

∑
k2∈Z

ĥk1(ξ− kω0)ĥk2(ξ− k2ω0)Sx(ξ− k2ω0)e j(k1−k2)ω0t

where

C(s1,s2) = ∑
k∈Z

hk2(s2)Sx(ξ− k2ω0)e− j(ξ−kω0)(s1−s2)

By change of variable k = k1 − k2 and l = k2, we have

S(t,ξ) = ∑
k∈

(
∑
l∈Z

ĥ(k+l)(ξ− lω0) ĥl(ξ− lω0)Sx(ξ− lω0)

)
e jkω0t

Thus the coefficients of S(t,ξ) are

Sk(ξ) = ∑
l∈Z

ĥ(k+l)(ξ− lω0) ĥl(ξ− lω0)Sx(ξ− lω0)
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Multiplication in the frequency domain corresponds to convolution in the time domain.

Then

rk(s) = ∑
l∈Z

[h(k+l) ∗ rx ∗ h̃l](s)e jlω0s

Appendix C: Derivation of Equations (3.13)

|Hx|2 =
∫ ∞

−∞

∫ ∞

−∞
h(t,s1)h(t,s2)x(t − s1)x(t − s2)ds1 ds2

Since x is WSS, therefore

E{|[Hx](t)|2}=
∫ ∞

−∞

∫ ∞

−∞
h(t,s1)h(t,s2)rx(s2 − s1)ds1 ds2

Using Parseval’s relation we get

E{|[Hx](t)|2} =
1

2π

∫ ∞

−∞

∫ ∞

−∞
h(t,s1) ĥ(t,ξ)Sx(ξ)e− js1ξ ds1 dξ

=
1

2π

∫ ∞

−∞
|ĥ(t,ξ)|2 Sx(ξ)dξ

Similarly

E{|dt0(t)|
2}= E{|[Kt0x](t)|2}= 1

2π

∫ ∞

∞
|κ̂t0(t,ξ)|

2Sx(ξ)dξ

Since κ̂t0(t,ξ) as a function of t is T−periodic, we can represent it in Fourier series.

From (2.19), the Fourier series coefficients of κ̂t0(t,ξ) are

ĥk(ξ)(1− e− jkω0t0)e− jξt0
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Using Parseval’s relation, we see that

1
T

∫ T/2

−T/2
E{|dt0(t)|

2}dt =
1

2π ∑
k∈Z

∫ ∞

∞
|ĥk(ξ)(1− e− jkω0t0)Sx(ξ)|2 dξ

The above statement is T−periodic in t0. Again invoking Parseval’s relation for Fourier

series gives

1
T 2

∫ T/2

−T/2

∫ T/2

−T/2
E{|dt0(t)}|

2 dtdt0 =
1
π ∑

k ̸=0

∫ ∞

−∞
|ĥk(ξ)|2 Sx(ξ)dξ

and

2
T

∫ T/2

−T/2
E{|[Hx](t)|2}dt =

1
π ∑

k∈Z

∫ ∞

−∞
|ĥk(ξ)|2 Sx(ξ)dξ

Appendix D: Derivation of Equation (4.10)

From (4.9) we have

ry(t,s) = ∑
n1∈Z

∑
n2∈Z

φ(t −n1T )φ(t − s−n2T )ru[n1 −n2]

Taking Fourier transform of ry(t,s) as a function of s yields

Sy(t,ξ) = φ̂(ξ)e− jξt ∑
n1∈Z

∑
n2∈Z

φ(t −n1T )ru(n1 −n2)e jξn2T

= φ̂(ξ)e− jξt Su(e jξT ) ∑
n1∈Z

φ(t −n1T )e jξn1T

The Fourier series coefficients of Sy(t,ξ) are

(Sy)k(ξ) =
1
T

φ̂(ξ)Su(e jξT ) ∑
n1∈Z

∫ T/2

−T/2
e jξn1T φ(t −n1T )e− jξt e− jkω0t dt
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By change of variable (t +n1T )→ t, we get

(Sy)k(ξ) =
1
T

φ̂(ξ)Su(e jξT ) ∑
n1∈Z

∫ T/2−n1T

−T/2−n1T
φ(t)e− jξt e− jkω0t dt

=
1
T

φ̂(ξ)Su(e jξT )
∫ ∞

−∞
φ(t)e− j(ξ+kω0)t dt

=
1
T

φ̂(ξ)Su(e jξT ) φ̂(ξ+ kω0)
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