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ABSTRACT 

Although optical communication systems promise to meet demands of 

communication networks and multiprocessors in fast communication, they suffer 

from challenges such as path dependent loss and switch crosstalk. An innovative 

approach proposed in the present thesis is centered upon modelling OMINs with 

Petri nets and using P-invariants method for determination of the minimum number 

of stages      that is sufficient for realization of demanded communication patterns 

in an OMIN with variable number of stages. Being composed of      stages an 

OMIN of the minimal structure provides the least values for the path dependent loss 

and switch crosstalk. 

Based on complexity results, we make sure about feasibility of our approach. Firstly, 

we prove that the P/T-nets created in the present research are in polynomial 

dependence on the problem size, which alleviates memory consumption significantly 

and reassures the fact that the task according to our approach can be completed in 

feasible time. Secondly, we compare P/T-nets obtained in the present reasearch with 

the complete unfoldings created in our previous reasearch and show that P/T-nets in 

the latter work are  more compact in the size than the ones considered in the former 

research. This is improvement of the complexity results obtained in our previous 

work.  
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Finally, we verify validation of our approach through performing series of computer 

tests and showing that the results of the computer experiments agree with known 

analytical results.  
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ÖZ 

Optik interkoneksiyon ağları, bilgisayar iletişim ağlarının ve çok işlemcili sistemlerin 

hızlı iletişime olan ihtiyaçlarını karşılamanın yanı sıra yola bağımlı kayıplar ve 

anahtarlamada hatların karışması gibi zorluklardan etkilenirler.  Bu tezde önerilen 

yenilikçi yaklaşımın temelinde optik interkoneksiyon ağlarının Petri ağları ile 

modellenmesi ve P-invariantlar metodunu uygulayarak çok basamaklı optik 

interkoneksiyon ağlarında verilen permütasyona göre en küçük basamak sayısının 

bulunması yatar. En küçük basamak sayılı optik interkoneksiyon ağında yola bağımlı 

kayıplar ve anahtarlamada hatların karışması en küçük düzeyde seyredilir.  

Önerilen metodun uygulanabilirliğinden emin olmak için bir karmaşıklık analizi 

yapılmıştır. Öncelikle tasarlanan P/T-ağların büyüklüğünün artış hızının polinomyal 

olduğu ispat edilmiştir. Bu olgu, P/T-ağ oluşumunda hafıza tüketiminin önemli 

ölçüde azaltarak, sıkça rastlanan “durum patlaması”ndan uzakta tutulabileceğini 

göstermektedir. Sonra takdim edilen çalışmada elde edilen P/T-ağlarını, bir önceki 

çalışmamızda tasarlanan tamamen açılmış Petri ağlarıyla kıyasladık. Sonuç olarak 

elde ettiğimiz Petri ağlarının daha küçük olduğu ispat edilmiştir.  

Alınan analitik ve kuramsal sonuçların geçerliliği yapılan bilgisayar testleri ile 

kanıtlanmıştır.  
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Chapter 1  

                                INTRODUCTION 

1.1 Motivation 

Tremendous progress in designing HPCs has been achieved over the past decades. 

Many problems arising in scientific, engineering and industrial domains, however, 

are still demanding new solutions towards further improvement of the performance. 

The communication and interconnection but not memory or logic is the major factor 

that limits the performance of HPCs. While the computational capability of modern 

computing systems reaches PFLOPS limit and the memory capacity pushes Tbyte 

border, the communication is limited by speed of electronic circuits. There is 

nowadays a great demand for fast data communication which cannot be handled by 

electrical communication networks.  

Optical interconnection networks have become an appealing candidate to meet ever 

increasing demands for fast communication in high-performance computing. Low 

latency, high throughput and high bandwidth are among other advantages of optical 

interconnection networks. Optical communication technologies suffer from 

numerous challenges despite a wide spectrum of advantages provided by these 

technologies. For instance, optical signals lose strength and become weak after 

passing through a long optical link. This unwanted effect, which is known as pass 

dependent loss or attenuation, causes signal distortion [18, 23, 31]. Pass dependent 

loss consists of several components. An essential part of path dependent loss 
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increases with increase of number of components in optical interconnection network 

[13, 21]. Path dependent loss leads to increase of power consumption in the system 

and errors in transmission of optical signals.  

Switch crosstalk is another challenging problem of optical communication. Switch 

crosstalk is defined as the crosstalk from one optical channel to the other [15, 30]. 

Switch crosstalk affects clarity of the optical signals, limits the size of optical 

interconnection network and leads to error rate degradation.  

Path dependent loss and switch crosstalk are in focus of the researchers. Reducing 

path dependent loss and switch crosstalk is of theoretical and practical interest in 

optical communication.  

1.2 Related Work 

In the past decade, much research has been conducted in order to develop directional 

couplers with reduced path dependent loss [30]. Most of this research is based on 

implementation of up-to-date achievements in optical technology to reduce the path 

dependent loss. In [8] the authors suggest a method for reducing path dependent loss 

through minimizing the number of stages in an OMIN. The main result obtained in 

[8] is a necessary and sufficient condition for admissibility of special BPC 

permutations to an m stage 
nn 22   OMIN employing the shuffle-exchange 

interstage communication pattern for 12  nmn . When 121  nm , the 

minimum number of stages required to pass a permutation through shuffle-exchange 

OMIN can be determined in )2( nO n
 time. For a BPC permutation this can be found 

in )2( nO  time. The minimum number of stages needed to perform a permutation can 

be determined in )log2( nnO n
 time. An )2( nO n

 algorithm that determines whether a 
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permutation is admissible to  
nn 22   MCTNs was introduced in [28]. In [27] this 

result was extended to k extra stage MCTN with 1k . In the same paper it was 

shown that a permutation is admissible to a k extra stage MCTN if, and only if, the 

conflict graph is k2 colorable. NP-completeness of the k2 coloring problem in 

graphs, for 1k , does not allow us to develop a general method for analysis of the 

permutation admissibility with polynomial dependence on the number of extra 

stages. Although there exist efficient algorithms for checking the permutation 

admissibility for 0k  and 1k , no such algorithm is known for 1k  [8]. The 

admissibility of frequently used permutations that belong to BP, BPC, LIN and LC 

classes was investigated in [24, 27, 29].  

We distinguish between three approaches for reducing switch crosstalk in optical 

interconnection networks, namely SDM, TDM and WDM approaches. Considerable 

effort has been devoted to all three approaches in the literature. All three approaches 

unfortunately suffer from numerous drawbacks  [7, 23, 30, 33]. For example, SDM 

approach requires doubling the original OMIN hardware to achieve the same 

permutation capability. SDM approach is far to be resource saving approach. In 

TDM approach, a permutation is generated in  n  passes instead of single pass. TDM 

approach is not time effective approach. Finally, the role of WDM in switching, with 

or without wavelength conversion, is not very clear and requires more careful study. 

In [2] permutation capability of MINs has been analyzed through reducing this 

problem to marking reachability in CP-nets and performing model checking in CP-

nets. It was also shown that [5] CP-nets can be used to check the permutation 

admissibility through creating a CP-net model, then unfolding related CP-net into 

equivalent optimized P/T-net and finally using T-invariants to decide on permutation 

admissibility. 
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1.3  Contributions 

The research conducted in the scope of this thesis differs from existing ones in two 

respects. Firstly, the existing approaches are based on use of achievements in 

photonic industry to deal with path dependent loss and switch crosstalk. Traditional 

approaches reduce path dependent loss and the number of switch crosstalks by 

implementing technologically more mature directional couplers. In this thesis this is 

done through proposing an optimal OMIN architecture employing minimum number 

of directional couplers. The main idea behind the present research is to reduce path 

dependent loss and the number of switch crosstalks by keeping the number of 

directional couplers as small as possible. 

Secondly, Petri nets have never been used in the context of photonic switching. The 

present research utilizes Petri nets in the context of photoinic swtiching to the benefit 

of both fields. It is done by checking a permutation for admissibility to 1- through 

m stage ( 121  nm ) OMIN and consequently finding the minimal number of 

stages that is needed for establishing a desired communication pattern. The essential 

phases of our approach includes creating a P/T-net model directly from OMIN 

specifications and performing reachability analysis with P-invariants. It should also 

be noticed that avoidance of CP-net modelling, unfolding and optimization phases in 

the present research leads to the refinement of memory and run time constraints 

compared to those obtained in [5]. 

This work copes not only with path dependent loss but also with switch crosstalk in 

OMINs. The total switch crosstalk in any OMIN is the sum of switch crosstalks in all 

directional couplers. In order to minimize the total path dependent loss and/or the 

total number of switch crosstalks in an OMIN, we determine the minimal number of 
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stages minm , and consequently the minimal number of directional couplers that is 

sufficient to generate a requested communication pattern. Once minm  is known, a 

requested communication pattern can be established in the given OMIN with 

minimal path dependent loss and a minimal number of switch crosstalks. In the 

present research this is achieved by representing each communication pattern as a 

permutation of OMIN's inputs into its outputs, and checking 1- through  )12( N

stage OMINs employing the same network topology for permutation admissability. 

 

 

 

 

  



6 

Chapter 2 

OPTICAL INTERCONNECTION NETWORKS 

Almost 35 years passed since Kao and Hockham in their pioneering work [14] 

proposed the idea of using light in place of electrons in data communication. Almost 

half that time ago, Standard Telecommunications Laboratories and British Post 

Office Laboratories implemented first fibre system in telephone traffic [19]. Since 

then exceptional breakthrough has been achieved in optical communication. 

Particularly, OMINs have become an integral part of HPCs. In what follows, we give 

background in switching theory, and detail the main achievements in optical 

communication as much as it is required to explain further material. 

2.1 Background in Switching Theory 

Modern HPCs employ many independently functioning PEs. Although PEs operate 

independently they need to communicate through interconnection network to get 

ready for next computational step. Concerning HPC architecture it is essential to be 

capable to establish simultaneous communication links between N  inputs and M  

outputs. Usually these inputs and outputs belong either to PEs or the memory 

modules. An MN   crossbar network is ideal interconnect for establishing 

simultaneous links between N  inputs and M  outputs in small-scale HPCs. In 

crossbar network a new link between idle input/output pair can always be established 

at any time. 
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An  MN   crossbar network can be easily implemented as an MN   switching 

matrix. An MN   swithing matrix consists of horizontal and vertical “wires” with 

MN   switch points placed at intersections of horizontal and vertical “wires”. 

Schematical description of 108  switching matrix is ilustrated in Figure 1. 

Switching pole or open/close switch is a kind of light switch or reed relay that is 

dedicated to change the direction of connection. In a switching matrix input i  is  

granted access to output j  if the related switch pole is closed. A switching point can 

be set to one of the following states: (a) left input is granted bottom output (or left-to-

bottom connection is allowed) and upper input requesting the same output is blocked 

(or top-to-bottom connection is forbidden); (b)  left input is granted right output and 

upper input is granted lower output; (c) upper input is granted bottom output and left 

input requesting right output is blocked; (d) left input is granted right output and 

upper input is requesting bottom output is blocked. All four configuration for a 

switch point are shown in Figure 2.2. 

Figure 2.2: Four possibilities for input/output connections. 

(a) (b) (c) (d) 

Figure 2.1: An example of 8x10 switching matrix. 
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Crossbar network is an ideal interconnect in sense that it allows to establish 

simultaneous links between input/output pairs in a single communication step. 

Unfortunately, crossbar networks suffer from hardware constraints such as number of 

pins and number of wires dramatically increase with increase of number of its inputs 

and outputs. Apart from this, crossbar network is prohibitively expensive. Crossbar 

networks are practically implemented to connect 
42  or 

52  input/output pairs in 

small-size HPCs. 

Over 6-7 decades ago the network designers had moved to conceptually new network 

architecture which was later practically implemented in many HPC projects. In order 

to avoid challenges caused by size of crossbar network, the experts had suggested to 

organize independent small-sized crossbar switches into a cascade of stages. Such an 

MIN should be capable to simulate the actions performed by large crossbar switch. 

Under what circumstances multiple stages of small-sized independent crossbar 

switches can fully simulate the functionality of a large crossbar switch was posed as 

a question and remained so for long time. Reasonable answer to the question is 

sufficient conditions on rearrangeability of MINs. First results on rearrangeability of 

MINs were obtained and published at the end of 50s and in the beginning of 60s [6]. 

Many researchers have tried to contribute to the solution of this problem. It is 

nowadays known that nn mm    )12( n  stage interconnection network made of 

independent mm  crossbar switches and employing regular interstage 

communication pattern is capable to perform any one-to-one mapping of MIN’s 

inputs into its outputs [1], meaning that a MIN with regular interstage wiring 

between neighboring sages is functionally equivalent to nn mm   crossbar switch.  
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Let Xyx ,  where }1,,0{  NX  , nN 2 , 11 xxxx nn   and 11 yyyx nn   

in binary with }1,0{, ii yx  for ni 1 . A permutation   is a bijection from X  to 

X . Although expressed in a different form, the following definitions are equivalent 

to the ones given in many papers. 

Definition 1. Permutation )(kC  is said to be bit complement permutation if 

11:)( xxxxxxkC knkn    for nk 1 . All bit complement permutations 

form a class denoted as BC.  

Definition 2. Permutation ),( trP  is said to be bit permute permutation if 

11:),( xxxxxxxxtrP rtntrn    for nk 1 . The class of all bit 

permute permutations is denoted by BP.  

Definition 3. Permutation ),( trPC  is said to be bit permute complement 

permutation if 11:),( xxxxxxxxtrP rtntrn    for nk 1 . The class 

of all bit permute complement permutations is denoted by BPC. 

Definition 4. Permutation 11)( yyxxL nn    is said to be linear permutation if 





n

j

jiji xy
1

  for ni 1  and nonsingular (or invertible) binary matrix  
ij  where 

the addition and multiplication operations are of those modulo 2 arithmetic. The class 

of all linear permutations is denoted by LIN.  
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Definition 5. Permutation 11)( yyxxLC nn    is said to be linear complement 

permutation if 1
1




n

j

jiji xy   for ni 1 , where for   is modulo 2 bitwise 

addition operation. The class of all linear complement permutations is denoted by 

LC.  

Definition 6. Shuffle permutation   is a left circular shift permutation such that 

nnn xxxxx 111)(   . 

Definition 7. Unshuffle permutation 1  is a right circular shift permutation such 

that 211

1 )( xxxxx nn   . 

Definition 8. The i th k -ary butterfly permutation k

i , nk 1 , is defined as 

inin

k

i xxxxxx  11)(  . 

Definition 9. The i th k -ary baseline permutation k

i , nk 1 , defined as 

2111111 )( xxxxxxxxxxx iiiniiin

k

i     shifts the 1i  least significant digits 

in the index to the right for one position. 

Definition 10. The k th cube permutation is defined as )(kCEk   for nk 1 . 

Definition 11. A MIN is unique path network if it employs a single path between 

each input/output pair.  

Definition 12. A MIN is full access network if it employs a path between each 

input/output pair.  
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Definition 13. A MIN is Banyan network if it is full access and unique path network.  

 

 

 

 

 

 

 

 

 

Let us turn attention to 
nn 22   n -stage banyan networks with regular interstage 

pattern between neighbouring stages. These MINs have been on focus of researches 

for many years. In baseline network, interstage pattern between i th and )1( i st 

stages is defined by baseline permutation i

kn  for ni 1 . Meantime, interstage 

pattern betweeen the first two stages is shuffle permutation  . Butterfly network 

employs butterfly permutation k

i  between stages i  and 1i  where ni 1 . In 

indirect cube network, a wiring between stages i  and 1i  is determined by butterfly 

permutation k

in , ni 1 . Finally, omega network uses shuffle permutation   to 

link the neighbouring stages. All these 
nn 22   n -stage banyan networks are 

commonly called Delta networks or MCTNs [10].  

Banyan network is a resource saving network. This is why banyan networks are 

important compared to non-banyan full-access networks. Typical banyan network is 

composed of nn 12   22  switches and )1(2 nn
 interstage wires. A banyan network 

Figure 2.3:  , 1  and bit reversal arranged from left to right for 8N . 
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is capable to perform 
nn 122



 distinct one-to-one mappings of the network’s inputs into 

its outputs. 

Omega, baseline, butterfly, indirect cube and related inverse networks are banyan 

networks that are oftenly referred in the lierature. Omega is an banyan network with 

permutation   as an connection pattern between neighboring stages (see Figure 

2.3). In butterfly network, connection pattern between stages 1i  and i  is defined by 

permutation k

i  for ni 1  (see Figure 2.4). Baseline network employs  

permutation k

i  between stages 1i  and i , for ni 1  (see Figure 2.5). In indirect 

cube network, wiring between stages 1i  and i  is selected to be permutation k

in  

for ni 1  (see Figure 2.6). Inverse of a MIN is a mirror reflection of the given 

MIN.  

 

 

 

 

 

 

 

 

 

It was shown that omega, baseline, butterfly and indirect cube networks are 

topologically equivalent. This particlarly means that all of above MINs have the 

same functional capability. In the literature, these MINs are referred to as MCTNs.  

The number of ways in which network’s inputs can be connected into its outputs is 

known as network’s permutation capability or combintorial power. Any banyan 

0 (000) 

Figure 2.4: 2
nd

, 1
st
 and 0

th
 butterfly arranged from left to right for 8N . 

1 (001) 

2 (010) 

3 (011) 

4 (100) 

5 (101) 

6 (110) 

7 (111) 

0 (000) 

1 (001) 

2 (010) 

3 (011) 

4 (100) 

5 (101) 

6 (110) 

7 (111) 

0 (000) 

1 (001) 

2 (010) 

3 (011) 

4 (100) 

5 (101) 

6 (110) 

7 (111) 

0 (000) 

1 (001) 

2 (010) 

3 (011) 

4 (100) 

5 (101) 

6 (110) 

7 (111) 



13 

network is capable to connect N  input/output pairs in 
nn 122



 ways, though there exist 

!N  distinct ways for permuting N  inputs into N  outputs. Modern HPCs demand 

MINs with even higher combinatorial power. 

 

 

 

 

 

 

 

 

 

 

According to permutation capability MINs are classified into three classes: blocking, 

nonblocking and rearrangeable MINs. A MIN is said to be blocking if there exists at 

least one permutation not realized by the network. Banyan network is a classic 

example to blocking network. For example, identity permutation cannot be realized 

in banyan network. Being capable to realize only limited subset of the set of all 

permutations, blocking networks have restricted permutation capacity. A blocking 

network however has some attractive characteristics. A blocking network is usually 

composed of minimal number of switches and channels. Because of compact 

structure a blocking network is also a low cost network. Blocking networks are 

integral part of architecture of special purpose computers. Network topology for 

blocking network designed for special purpose computer depends on the class of 

dedicated algorithms that the computer performs. For instance, omega network with 

shuffle interstage pattern between the neighboring stages suits best to the architecture 

of a DFT special purpose computer.  
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A MIN is said to be nonblocking if it provides simultaneous links between all input/ 

output pairs in the network without affecting already established links. Nonblocking 

MINs usually employ multiple paths between input/output pairs. Close network is a 

classic example to nonblocking networks. The design principle of a Close network is 

explained using the following example. In a 3-stage Close network first, second and 

third stages are respectively made of n  copies of mn  switches, m  copies of nn  

crossbar switches, and n  copies of nm  switches. Close network is capable to 

perform all 22 nn   mappings of network’s inputs into its outputs. An example of 3-

stage Close network with 3n  and 4m  is illustrated in Figure 2.7. 

 

 

 

 

 

 

 

 

 

Figure 2.6: 2
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Figure 2.7: An example of Close network with 3n  and 4m . 
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In computing the cost, we observe that crossbar switch requires 2N  ( 2nN  ) 

switches while a banyan network requires mn2  switches in each of the first, second 

and third stages. Thus, total cost of a banyan network is mn2 , which is essentially 

less compared to that of crossbar switch. Although nonblocking networks are 

cheaper in the cost than crossbar switch they are not cost-effective compared to 

rearrangeable MINs. In rearrangeable MIN N  simultaneous paths between distinct 

input/output pairs can be established though it may require rearranging the existing 

paths. A rearrangeable MIN also employs multiple paths between input/output pairs 

but it is cheaper in the cost than nonblocking MINs. The best known rearrangeable 

network is Benes network, which is obtained by merging baseline network with its 

inverse such that the last stage of baseline overlapping with the first stage of inverse 

baseline. Figure 2.8 shows 88  Benes network.  

2.2 Optical Interconnection Networks 

The debates between researchers about relative merits of optics and electronics in 

data transsmission and data processing have lead to reasonably clear consensus that 

electronics is the best choice for data processing meanwhile optics provides solutions 

Figure 2.8: Benes network for 8N . 
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towards fast communication. Over the past several decades spectacular progress has 

been made in design of optical communication devices. At the time when optical 

technologies are becoming the driving force behind the fast communication it is the 

question of interest whether optical communication technologies can fully substitute 

their electronic counterparts. It is also necessary to understand new challenges that 

the optical communcaiton technologies bring to the concern of the practioners.  

At the present time purely optical devices create numerous problems such as they are 

either too power-consuming, too slow compared to the electronic counterparts, or 

both. These are particuarly the reasons why it is hard if not impossible to conduct 

optical communication using purely optical devices. The situation with, so called, 

all-optical communication will remain seemingly same in the foreseeable future. The 

best solution can most probably be achieved by hybrid optical communication, where 

optical and electronic components are reasonably comprimised within the same 

optical communication pattern. In hybrid optical communication the signals are 

optical but the control over the optical signals is carried out electronically. 

DCs are broadly used in design of the OMINs. A single DC consists of a pair of 

waveguides. A large OMIN is made of many DCs arranged into stages where the 

stages are interconnected through interstage patterns. Each pattern is a collection of 

waveguides linking input-output pairs of neighbouring stages.  

Due to physical properties of optics, the problems encountered in design of OMINs 

differ from those known for MINs. Some factors directly affect optical signal-

transfer performance. Optical crosstalk and pass dependent loss are prime factors that 

affect optical signal-transfer performance. An OMIN comprises multiplicity of 

optical channels that oftenly cross each other causing optical crosstalk. Optical 
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crosstalk in an OMIN arises in the form of channel crossover or switch crosstalk. 

Although it is required that the light guiding channels remain seperate and distinct, 

an OMIN experiences channel crossover when two light guiding channels existing in 

a common single crystal platelet cross each other to obtain a particular network 

topology. This unwanted effect is known as channel crossover. The number of 

channel crossovers essentially depends on the network topology. It is known that the 

number of channel crossovers in an OMIN can be reduced through selecting suitable 

planar network topology [17]. It is also known that the channel crossover depends on 

the intersection angle between the crossing optical channels. Is is possible to reduce 

channel crossover by changing the intersection angle between the optical channels 

[22]. 

It is however hard to overcome switch crosstalk [30, 15]. Switch crosstalk arises 

when two paths sharing same DC experience unwanted coupling from one path to 

another. The four possible configurations for switch crosstalk are depicted in Fig. 

2.9. 

  

 

(a) switch crosstalk  (b) switch crosstalk (c) switch crosstalk (d)switch crosstalk 

caused in straight state  caused in straight state caused in cross state caused in cross state

  

Figure 2.9: Four possibilities for switch crosstalk. 

 

In this figure, a path that switch crosstalk propogates through is indicated with dash 

line. One can easily seen that switch crosstalk in the straight state is directed either 

from the lower input to the upper output or from the upper input to the lower output. 

Likewise, there are two possibilities for  a switch crosstalk in a cross state. It is either 
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between the lower input and the lower output or the upper input and the upper 

output. 

Many researchers investigated switch crosstalk and the ways to reduce switch 

crosstalk [7, 11, 12, 22, 23, 28, 31, 32, 34]. All these works are based on 

implementation of novel network architectures such as dilated Benes or Banyan 

networks or multi-plane Banyan architecture to reduce switch crosstalk. The main 

idea behind of approaches is to use the three multiplexing principles: WDM, TDM 

and SDM. It must be noticed WDM, TDM and SDM multiplexing techniques have 

been widely investigated. Despite advantages all three multiplexing techniques have 

some disadvantages. For instance, it is broadly known that SDM is not cost-effective 

in sense that it requires doubling of the DCs and waveguides just to achieve the same 

permutation capability. In TDM approach a permutation is realized in n  passes 

through the network, although OMIN generates a permutation in one pass. This is a 

drawback that affects time-effectiveness of TDM approach. Finally, the role of 

WDM (with switching or without switching) in switching is still unclear and is a 

matter of extensive investigations. 

In order to keep switch crosstalk as small as possible the OMINs are usually 

designed using DCs with 2 inputs and 2 outputs. Reducing the switch capacity leads 

to increase of the number of stages as well as number of DCs in a stage. Increase in 

the number of DCs consequently leads to increase of path dependent loss, which is 

another challenging problem that the OMIN designers try to cope with. 

Optical signals usually become weak when passing through long optical path causing 

signal distortion or attenuation. This phenomenon is known as path dependent loss. 
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Signal attenuation is a drawback that results in error in transmission of optical 

signals. It is customary to increase the power consumption in order to avoid the 

signal attenuation. 

Because of variety of loss contributions, total loss in a switch fabric can be 

accurately evaluated only based on experimental results. Main contributions to the 

total loss in any optical link come from several sources: pass dependent loss that 

arises in the form of propagation loss through the waveguide in a DC; signal loss in 

the medium; signal loss at waveguide bends; signal loss at waveguide crossovers; 

fiber-to-substrate and substrate-to-fiber coupling loss. Being more severe pass 

dependent loss essentially contributes to the total loss. In an OMIN, path dependent 

loss naturally increases with increase of the path length and consequently the number 

of DCs on that path. Pass dependent loss is proportional to the length of the path and 

consequently to the number of the DCs that the optical signal passes through. Thus, 

pass dependent loss essentially depends on the path that the optical signal passes 

through: different routing might result in different pass dependent loss. Insertion loss 

  is the worst-case loss evaluated on the longest path between input output pairs.  

The insertion loss difference Δ is another parameter used to evaluate the total loss in 

an optical switch. The differential loss is determined as the differential attenuation 

between the most and least loss paths in an optical switch [25].    
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Chapter 3 

PETRI NETS 

Petri nets are useful graphical and mathematical modeling tool. Petri nets are 

frequently used for modeling and simulation of dynamic systems which are 

concurrent, asynchronous, distributed, parallel, nondeterministic, and/or stochastic. 

Petri nets are attractive because there exist dedicated software tools Petri net 

visualization tools models are visually represented software tool that is could be used 

as visual-communication and visual-communication assist the same with block 

diagrams, flow charts and networks. Moreover, to simulate the dynamic and 

simultaneous activities of systems tokens are used. On the other hand, as a 

mathematical tool, it is practicable to construct mathematical models, algebraic 

equations or static equations for arranging the attitude of systems. Both practitioners 

and theoreticians are used Petri nets. Consequently, Petri nets supply strong 

communication between practitioners to make their model more methodical. At the 

same time, practitioners can teach theoreticians to make their models more realistic.  

Starting by 1960 plenty of papers have been published. The oldest dissertation 

submitted by Carl Adam Petri in 1962. Design and analysis of Petri Nets is based on 

precise and accurate mathematical theory. Because of the enhanced software tools 

Petri Nets are used modeling and an analysis of particular applications with strong 

mechanism.  
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The theory of Petri Nets satisfies a precise the theoretical mechanism for modeling of 

the discrete event systems and analysis of their characteristics. In order to solve, the 

problems which are arising in scientific, engineering and industrial domains for 

learning behaviors, Petri Nets could use successfully. Usage of Petri Nets 

scientifically increased in recent years. Discrete and dynamic systems could be 

implement successfully in different areas such as computers and their components, 

concurrent processes, serial and parallel processing, computer networks, computer 

programs, operating systems and discrete industrial systems such as factory 

pipelines. In order to examining the behavior of discrete systems, several 

mathematical models and methods have been used also Petri Nets represent such a 

system. It is important to implement Petri Nets because it can be surely understood 

whether or not these systems efficiently work.  

In this section, some application areas considered in the literature will be given. Petri 

nets have been proposed for a several type of application. It is because of the 

generality and allowance inherent in Petri nets.   Petri nets can be applied any area or 

system which are described graphically such as flow charts and that needs some 

means of representing parallel or concurrent activities informally. Despite the fact 

that explain, tradeoff between modeling generality and analysis capability have to 

consider. It means more general model with less responsible to analysis. Complexity 

problem is a lack of Petri nets. Petri nets based model transformed into a large form 

of analysis, even if for medium size systems. In order to apply Petri nets, it is 

important to add appropriate restrictions. The application of Petri nets can be 

classified into three parts. Firstly performance evaluation and communication 

protocols are two areas which are applied successfully. Modeling and analysis of 

distributed software systems, distributed database systems, concurrent and parallel 
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program, flexible manufacturing/industrial control system, discrete-event system, 

multiprocessor memory systems, dataflow computing systems, fault-tolerant 

systems, programmable logic and VLSI arrays, asynchronous circuits and structures, 

compiler and operating systems, office information systems, formal languages, and 

logic programs are the examples for predicted applications areas. Finally there are 

some interesting areas applicable in the literature such as local-area networks, legal 

systems, human factors, neural networks, digital filters, and decision models.  

3.1 Formal Definition 

The rule for firing enabling and transaction can be seen very easy but it is 

implementation in Petri Net theory is very hard and complex. Directed graph can 

given as a part of Petri Nets. It is initial state called the initial marking and denoted 

by 0M . The underlying graph of Petri Net N and it is a directed, bipartite and 

weighted. It has places and transitions nodes which their arcs transition from one to 

another. In graphical formulation circles refer to places and bars (or boxes) refer to 

transitions. In addition to these arcs are labeled with positive integers as their weight 

and k -weighted arc can be interpreted as the set of k parallel arcs. Labels for unity 

weight are usually omitted. 0M  which is referring to marking state assign as 

nonnegative integer to each place. If 0M  is assigned as nonnegative integer k, at 

place p, then p is marked with k tokens. Graphically, k black tokens in place p. As it 

mentioned before marking is referred to M, an m -vector, where m is the total number 

of places. In addition to that the p
th

 component of M, is shown as      is the number 

of tokens in place p . In the modeling places stand for conditions and transitions 

stand for events. In order to interpret the preconditions and post conditions of an 

event, there are exact numbers of input and output places that transition has. There 

are several examples for explaining the transitions and places such as, if the input 
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place is given as preconditions and transitions is an event then output places will be 

post conditions. 

 

Definition 14. A Petri net is a 5-tuple 0, , , ,PN P T A W M where: 

1 2{ , ,..., }mP p p p is a finite set of places, 

1 2{ , ,..., }nT t t t  is a finite set of transitions, 

( ) ( )A P T T P      is the set of arcs (flow relation), 

: {1,2,3,...}W A  is a weight function, 

0 : {1,2,3,...}M P  is the initial marking, 

      and      . 

A Petri net structure N=<P,T,A,W> without any specific initial marking is denoted by 

N . A Petri net with the initial marking is denoted by PN =< P,T,A,W,M > . The 

comportment of many systems can be visualized inwards system states and their 

changes. A state in Petri Nets is changed based on the transition rule, for simulating 

the dynamic behavior of a system. 

A transition t is said to be enabled if each input place p of t is marked with at least 

w(p,t) tokens, where w(p,t) is the weight of the arc from p to t. An enabled transition 

may or may not fire (depending on whether or not the event actually takes place).  

 Source transition is a transition without any input place. Besides transaction without 

any output place is called sink transition.  
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Definition 15. Self-loop consist of a place p and transition t if and only if p is input 

and output place of t at the same time. Pure Petri net has no self loops. Moreover, 

ordinary Petri net means, all arc weighted as 1.  

 

Example 1. An illustration of transition firing rule: 

 

 

Figure 3.1: Transition firing rule for marking before firing the enabled transition t. 

 

 

Figure 3.2: Transition firing rule for marking after firing t, where t is disabled. 

3.2 Properties  

There are two types of properties that are going to be discussed if Petri Net depended 

to 0M  then it is stated as behavioral properties. However, if it is independent 0M  

and dependent only the structure of Petri Net it is called structural properties. 
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3.2.1 Behavioral Properties of Petri Nets 

The reachability, boundedness, safety, limitation, liveness, deadlock, reversibility, 

home state, coverability, persistence and fairness are oftenly referred behavioral 

properties. 

3.2.1.1 Reachability 

In reachability problem it is important that to notice if given marking 1M  can be 

reached from the initial marking 0M . In an other word if an undesirable marking 

2M  can be avoided.    

 

Definition 16.  A finite occurrence sequence σ is a sequence of markings and steps: 

 0 1 1 2 1[ [ [r r rM S M S M S M   

such that    , where   is the set of natural numbers. 

   is reachable from    in   steps. Analogously, an infinite occurrence sequence is 

a sequence of markings and steps 

              . 

 

Definition 17. The marking rM   is said to be reachable from 0M  if there exists a 

firing sequence σ of transitions that will yield rM , i.e. 0 rM M


 , denoted 

0[ rM M  . 

The set of all possible markings reachable from 0M  is denoted by 0( )R M . 
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3.2.1.2 Boundedness and Safety  

It is necessary to know whether Petri net model is bounded. In order to define the 

size of the bounded property is useful. 

Definition 18. A Petri net is k -bounded with respect to an initial marking 0M  if the 

number of tokens in any of its places never exceeds k for any marking in the 

reachability set , 0( )R M  i.e. ( )M p k , p P   and 0( )M R M  , where  is the 

number of tokens in place p in marking M. 

Definition 19. A Petri net is said to be bounded (or limited) if it is k-bounded for  

    . 

Definition 20. A Petri net is safe if it is k-bounded and k = 1. 

Safety is a important part of  boundedness. 1-boundedness are safe. The notion of 

safe and bounded nets is independent of the transaction sequences. Boundedness 

indicates the finiteness of reachability space. Places are often used to represent 

buffers and registers for storing intermediate data. By confirming the net is bounded 

or safe then it is guaranteed that there will be no overflows in the buffers and there 

will be no problem whether firing sequence is taken. 

3.2.1.3 Liveness 

The concept of liveness is closely related to the complete absence of deadlocks in 

operating systems. A Petri net 0( , )N M  is said to be live (or equivalently 0M  is said 

to be a live marking for N) if, no matter what marking has been reached from 0M  , it 

is possible to ultimately fire any transition of the net by progressing through some 
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further firing sequence. This means that a live Petri net guarantees deadlock-free 

operation, no matter what firing sequence is chosen. 

Definition 21. A Petri net is said to be live if for all transitions there is a way to fire 

transition in any marking M' reachable from the initial marking 0M  it means; 

'

0( )M R M   and 
', ( )t T M R M     such that t is enabled in M . 

Definition 22. A marking M' reachable from the initial marking 0M  is a deadlock if 

none of the transitions of the Petri net is enable in M' . 

Note that according to the definition of liveness, if a transition is not deadlocked then 

it must be live, which means that there exists a firing sequence such that the 

transition will be enabled. It turns out that liveness quarantees the absence of 

deadlocks. In other words, every transition of the net can fire an infinite number of 

times. Specifically, we say a transition t is live at  

 

 

• level 0 if, it can never fire, meaning that t is a dead transition; 

• level 1 if, it can fire at least once, which means that there exists a marking 

0( )M R M   such that transition t is enable; 

• level 2 if, given any positive integer n , there exists a firing sequence that contains t 

at least n times; 

• level 3 if, there exists an infinite-length firing sequence in which t can potentially 

occur infinitely many times but it can be blocked; 

• level 4 if, it can fire infinitely many times and there is no way to block it.  
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The definitions explained in previous section causes following conclusions; 

i.  A Petri net is live at level i if every transition is live at level i. 

ii.  A Petri net is live if all the transitions are live. 

The liveness that is often of interest is the one at level 4 - the strongest one. It should 

be noticed that liveness at level i implies one at level i −1. 

3.2.1.4 Reversibility and Home State 

It is very useful property used in different many application   

Definition 23. A Petri net 0( , )N M is said to be reversible if for each marking 

0 0( ),M R M M   is reachable from M . 

Thus, in reversible net one can always get back to the initial marking or state. In 

many applications, it is not necessary to get back to the initial state as long as one 

can get to some (home) state. Therefore, we relax the reversibility condition and 

define a home state. 

Definition 24. A marking M' is said to be a home state if, for each marking 

'

0 0( ),M R M M  is reachable from M . 

The above three properties (boundedness, liveness and reversibility) are independent 

of each other. For example, a reversible net can be live or not live and bounded or 

not bounded.  
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3.2.2 Structural Properties of Petri Nets 

Structural properties of a Petri net depend only on its structure, and not on the initial 

marking and the firing policy. These properties are thus of great importance when 

designing manufacturing systems, since they depend only on the layout, and not on 

the way the system will be managed, which is not known at the design level. Most of 

the structural properties can be easily assert by means of algebraic techniques. The 

structural properties of a Petri net include liveness, boundedness, conservativeness, 

repetitivity, consistency and controllability properties. 

Definition 25. If there exists an initial marking 0M  then Petri Net is structurally live.  

Accordingly, if Petri net is live then it is also structurally live, but it is not reversible. 

It is important to notice that, except for some particular types of Petri nets, it is 

impossible to verify structural liveness. 

Definition 26. A Petri net is said to be structurally bounded if it is bounded for any 

initial marking 0M  . 

Definition 27. A Petri net is conservative, if all transitions fire token-preservingly, it 

means that all transitions add exactly as many tokens to their postplaces (output 

places) as they subtract from their preplaces (input places). 

Definition 28. A Petri net is said to be repetitive if there exists an initial marking 

0M  and a firable sequence σ in which each transition appears an unlimited number 

of times. 



30 

According to this definition, a Petri net which is structurally live is repetitive. 

However, the reciprocal is not true. The repetitivity is a necessary condition for 

structural liveness and consequently a necessary condition for liveness. 

3.3 Analysis Method 

Coverability tree and reachability graph, matrix equation approach and reduction (or 

decomposition) techniques are the tree methods used for analyzing Petri Nets. 

Coverability and reachability method used for medium size nets because of the 

complexity of state space explosion it is limited. On the other hand, other two 

methods are powerful but, they are used only for special cases. 

3.3.1 Coverbility and Reachability Methods 

From the initial marking   , it can be obtained as many new marking as the number 

of enabled transition. By this way, more markings obtained from each marking. Each 

node represents marking generated from    and its successors. And each arc 

represents a transition firing, which transforms one marking to another. The 

reachability tree of Petri nets is shown in following figure. 
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For a bounded Petri Net, the coverability tree is called the reachability tree since it 

contains the all possible reachable markings. It is an exhaustive method and it is the 

only disadvantages of that.  

The coverability graph of a Petri net      ) is a labeled directed graph         

where its node set   is the set of distinct labeled nodes in the coverability tree, and 

the arc set   is the set of arcs labeled with single transition    representing all 

possible single transition firings such as       Mi[tk >Mj where Mi, Mj ∈V.  

Because the reachabity tree is an exhaustive method, it can causes loss of 

information. Therefore, the reachability and liveness problems can not be solved by 

the coverbility tree method alone.  
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Figure 3.3: Live Petri Net 

 

 

 

Figure 3.4: Non Live Petri Net 

 

3.3.2 Place Invariant 

If the set of place’s token numbers count same for all possible marking then it is 

called place invariant. A single invariant is shown by an n-column vector x, where n 

is the number of places of the Petri net, whose nonzero entries stand for the places 

that concern the particular invariant and zeros everywhere else. A place invariant is 

defined as every integer vector x that gratifies 

x
T
µ=x

T
µ0 
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where p is the net’s initial marking, and p represents any subsequent marking. The 

equation shows that the weighted sum of the tokens in the places of the invariant 

remains constant at all markings and this sum is determined by the initial marking of 

the Petri net. The place invariants of a net can be computed by finding the integer 

solutions to 

x
T
D = 0 

where D is the n X m incidence matrix of the Petri net, with n being the number of 

places and m the number of transitions of the net. It is easily shown that every linear 

combination of place invariants is also a place invariant for the net.  

3.3.3 Transition Invariant 

An n- vector x of integer is called invariant if A
T
x=0. Furthermore, an n- vector 

  0 is a T- invariant if and only if there exists a marking M0 and firing sequence   

from M0 back to M0 with its firing count vector      equal to x.  
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Chapter 4 

MODELING AND SIMULATION 

4.1 Modeling Optical Interconnection Networks with Petri Nets 

In this section we present a P/T-net model of a DC and        -stage OMIN and 

explain the relationship between the components of modeled net and objects used in 

modeling tool.   

Definition 29. A P/T-net of a DC is a 5-tuple                      , such 

that  

            , where               is the set of input places,      

          ,         is the set of output places;  

                    is the set of transitions; 

   

 
 

 
                            
                                   

                            
                            

                                     
                                         

      -           
                       

 

  

                    

     
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Table 4.1: Relationship between P/T-net objects and DC’s components 

P/T-net object DC’s equivalent component  

in0, in1 inputs (input 0, input 1) 

in0out0, in1out0 upper output (output 0) 

in0out1, in1out1 lower output (output 1) 

 

A P/T-net model of a DC is shown in Fig. 4.1. Relationship between P/T-net objects 

and DC’s components are described in Table 4.1. In Fig. 4.1 (a) the P/T-net is in the 

initial state. Occurrence of straight transition changes the initial state to on state (Fig. 

4.1(b)). Likewise, when transition cross fires the initial state gets changed to off state 

(Fig. 4.1(c)).          fully describes DC’s functionality.   

 

 

 

 

 

Figure 4.1: P/N-net model of     DC in (a) the initial state, (b) straight state, (c) cross state. 

Definition 30. A P/T-net of        -stage optical network is 5-tuple 

                        , such that  

              where       
       

     

   
  if 1      and    

   
       

     

   
  if            

cross 

in1out0 in1out1 in0out1 in0out0 in1out0 in1out1 in0out1 in0out0 in1out0 in1out1 in0out1 

straight 

in0out0 

cross straight cross straight 

in1 in0 in1 in0 in1 in0 

(a) (b) (c) 
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               where       
       

     

   
  if 1      and    

   
       

     

   
  if            

                      
 
     

                    ; 

     
                                                   
                                     

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: P/T-net model of     shuffle-exchange OMIN. 

 

Undermost level 

Topmost level 
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            has multilevel structure with the places and the transitions located at 

distinct levels. The places at the undermost and the topmost levels respectively 

represent the input and output terminals of OMIN. According to the definition the 

arcs are between the net components belonging to the neighboring levels and 

directed from bottom to top. Occurrence of the maximal set of transitions in  th level 

sets all DCs in  th stage, thus allowing transitions in level     to occur. This 

continues in the same way until transitions at the second topmost level get turn to 

fire. Then P/T-net becomes dead. Each dead marking specifies a permutation of the 

OMIN inputs into its outputs. Thus, one pass through a P/T-net realizes a particular 

permutation. 

A complete occurrence sequence is a sequence of length  . By changing the order in 

which the transitions occur we can obtain a new complete occurrence sequence. 

There usually exist multiple complete occurrence sequences for each setting of the 

DCs in OMIN. All complete occurrence sequences are in fact equivalent in sense that 

they result in the same dead marking   . Hence, the complete occurrence sequence 

can be represented in the following way: 

 

                                        (1) 

 

where       for       and    is a dead marking. 

            with       is illustrated in Fig. 4.2.  
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4.2 Modeling OMIN Topology 

Arc determination in Definition 2 is rather cumbersome procedure. Indeed, we 

defined an arc to be element of                   
 
    and left question 

unanswered how to determine the two end points. The following two definitions are 

important.  

 

Definition 31. A pattern arc             is incident from   to   and highly 

depends on OMIN topology. 

Table 4.2: Construction of pattern arcs for shuffle exchange type OMIN. 

___________________________________________________________ 

Input:         -stage OMIN 

Output: related P/T-net 

           {constructs pattern arcs for the places in the left half-set} 

for     to   do 

for     to       do 

  for             to     do 

          
    

   

  end_for 

 end_for 

end_for 

           {constructs pattern arcs for the places in the right half-set} 

for     to   do 

 for           to       do begin  

               ; 

  for     to       do 

   for             to     do 

           
    

   

   end_for 

  end_for 
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end_begin_for 

end_for 

Pattern Arc 

if     then begin           ;            end 

 else begin 

              ;           ;             ;            

 end_begin; 

end_if 

 

Definition 32. A switch arc             is incident from   to   no matter which 

communication pattern is chosen to link the neighboring stages.    

Pattern arcs inherit the characteristics of the interstage communication pattern. They 

are created according to the permutation induced by the interstage communication 

pattern.  

An example of algorithm that creates pattern arcs for shuffle-exchange type OMIN is 

shown in Table 4.2. The algorithm creates pattern arcs in breadth-first manner. In 

this algorithm, module            is used to create pattern arcs in the left half-set. 

Similarly, module             is use to design pattern arcs in the right half-set. 

Pattern arcs are equivalent to the shuffle interstage channels in OMIN (see figure 

4.2).  

A P/T-net obtained in such a way fully adequate to the logic of OMIN and can be 

used for further analysis of OMIN characteristics. We can now draw an incident 

matrix for P/T-net. Related incident matrix is a sparse block-diagonal matrix. 

Number of zeros depends on the matrix size but not the type of interstage pattern. 



40 

Interstage pattern however affects the distribution of zeros in the incidence matrix. 

For example, distribution of non-zero and zero elements in incident matrices of      

1- and 2-stage shuffle-exchange OMIN are illustrated in In this figure large incidence 

matrix fully covers the small one. It can be easily seen that small matrix completely 

coincides with the related elements of the big one.  

4.3 Analysis of Complexity and Acyclicity 

Consider            . Let     and     be respectively the number of transitions 

and number of places. The following proposition measures the rate of increase of the 

P/T-net. 

 



41 

 

Figure 4.3: Incidence matrices corresponding to 1- and 2-stage     shuffle-

exchange OMIN. 

 

Proposition 1. The following holds: 

 

     
                                              
 

 
                        

  

 

and 

 

     

 

 
                                        

 

 
     

 

 
    

 

 
              

  

 

Proof. We calculate     seperately for the intervals       and        

 . When        ,     is represented calculated as the sum of the elemants of 

geometric series: 
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For          the number of places is calculated as follows:  

      

   

   

            

   

     

       

 

   

      

   

   

        
 

 
          

 

 
             

 

Combining the above two formulas in one we obtain the claim regarding                                                      

Proof of the claim regarding     also dissipates into intervals       and 

        .  

 

            

 

   

                 
    

   
 
 

 
        

 

   

 

 

           

   

   

      

 

   

  
 

  
   

 

 
  

 

   

         
 

  
   

 

 
  

 

   

 

 
 

 
          

 

 
     

 

 
    

 

 
   

 

The claim regarding     is reassured by bringing together the above two formulae. 

■ 

Memory allocation is a problem of primary interest. Memory capacity needed to 

store a Petri net dramatically increases with increase of the number of places and 

transitions. It is often the case when a Petri net model that is exponential in the size 

of the original problem is created even for the problems of the modest size [16]. Such 



43 

Petri net models lead to inefficient use of the memory frequently causing memory 

overflow. Given        OMIN, Proposition 1 expresses     and     as functions of 

 . An important conclusion is that both     and     are in polynomial dependence on 

the number on the OMIN size. This assures that memory capacity of the modern 

computers are indeed sufficient to run our task. 

A Petri net based analysis of permutaton admissibility problem is considered in [5]. 

According to the method proposed in [5] we firstly create a CP-net model of the 

system then convert the resulting CP-net into complete unfolding. The size of the 

complete unfoldings obtained in [Bashirov et al] are represented by polynomial 

functions        
       

 
 

  

 
 and        

   

 
. In the present research we 

compare the functions        and        with     and      and thus assess the relative 

merits of the Petri nets created in the present work and those proposed in [5] 

regarding their complexity. This is done in the following proposition.  

Proposition 2 The following is valid: 

 

           and           . 

 

Proof. We prove the claim through evaluating the ratios:            and           . 

For       we obtain 

 

  
   

      
   

          

          
 

       

        
 

    

        
         (2)   
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and 

 

  
   

      
   

        

    
 

      

    
 

      

  
       (3) 

 

Likewise for           we obtain 

 

  
   

      
   

            

          
 

         

       
         (4)   

 

and 

 

  
   

      
   

              

    
 

            

  
       (5) 

 

This ascertains that            and           , as claimed.    

■ 

P/T-nets considered in the present work are created from scratch based on the OMIN 

specifications. When creating a P/T-net we remove unnecessary components such as 

0-bound places, false-guarded transitions, etc. consequently keeping OMIN 

components as minimal as possible. For each OMIN, resulting P/N-net is indeed an 

optimized complete unfolding. This is why each optimized complete unfolding is 

inevitably more compact than related complete unfolding.     
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Proposition 3             is an acyclic net. 

Proof. The proof is straightforward from the Definition 15 and the way the complete 

occurrence sequence (1) is created. 

■ 

Table 4.3: Results of computer tests for     OMIN. 

 

Permutations      Time/sec 

 

          

 

1 

 

0.01 

          2 0.01 

 

 

 

Table 4.4: Results of computer tests for     OMIN. 

Permutations      Time/sec 

 

              
4 0.06 

              1 0.01 

              2 0.02 

              3 0.03 

              2 0.03 

 

 

Table 4.5: Results of computer tests for       OMIN.   

Permutations      Time/sec 

 

                                           

 

4 

 

0.11 

                                           2 0.04 

                                            6 0.34 

                                            3 0.08 

                                            3 0.10 
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Given a marking  , solution of the system of algebraic equations, that is discussed 

in the previous chapter, is a neccessary but not sufficent condition for reachability of 

the marking   from the initial marking   . The method of P-invariants may in 

general lead to spurious solutions [20]. This means that even though system of linear 

algebraic equations has a solution, the given marking   is not necessarily reachable 

from the itital marking   . For acyclic P/T-nets the above condition is also 

sufficient. This is the reason why claim of the Proposition 3 is crucial. Proposition 3 

allows us to implement the mehod of P-invarinats for the optimized complete 

unfoldings considered in the prosent work.  

4.4 Results of Computer Experiments 

Correctness of the approach was tested through series of computer experiments. 

Minimum number of stages      was calculated for randomly selected permutations 

   through    , that are presented in Table 4.3 – 4.5. The tests were conducted for 

   ,    , and       shuffle-exchange OMINs. We used Matlab on Windows 

XP platform with 3 GHz CPU and 4 GB RAM to solve linear algebraic equations.     

The main idea behind of the computer tests is as follows. It is known that       

     shuffle-exchange OMIN is rearrangeable. This particuarly means that 

(    )-stage shuffle-exchange OMIN can perform arbitrary   -permutation. We 

test 1- through        -stage shuffle-exchange OMINs. Test for realizability of the 

given permutation terminates as soon as the minimum number of the stages      

that is sufficient to perform the permutation is found. The resuts of computer tests are 

illustrated in Table 4.3 – 4.5.  

In fact, the incidence matrices and firing vectors that have been used in the present 

research are sparse in nature. A typical example of the OMIN incidence matrix is 
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illustrated in Figure 4.3. We are aware, that there exist dozens of efficient methods 

for solving the system of equations with sparse matrix of coefficients. We did not 

attempt, however, to use any of known methods for sparse systems since standart 

Matlab involved solution of linear equations for the most time consuming case of     

was completed in 0.34 sec. It must be noticed a result of “no solution” was obtained 

at no time. We used a simple interface to convert data into suitable for Matlab format 

– a retangular table of elements. This is also important that time span indicated in the 

Tables 4.3-4.6 is the cummulative time spent required to check the task for the stages 

1- through     . For instance, considering still same example of    . 

Comparison of the time spans spent to perform the computer tests in the present 

research and in [5] clearly illustrates the time improvement achieved in the current 

approach.       
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Chapter 5 

CONCLUSIONS  

In this thesis we have applied Petri net based methods and techniques to minimize 

path dependent loss and number of switch crosstalks in multistage optical 

interconnection networks. The main conclusion is that both path dependent loss and 

number of switch crosstalks can be reduced essentially through realizing a 

permutation on an optical network employing mmin the minimal number of stages.  

Other results and observations include: 

 Petri nets are adapted to the structure of both problems;  

 it is rather easy to create Petri net model;  

 Petri nets that we deal with throughout the research are in polynomial 

dependence on the problem size, which alleviates the memory consumption; 

 Petri nets that we create in this thesis are acyclic, which enables us to use P-

invariants method;  

 complexity results obtained in the previous research [1] have improved;  

 the time-effectiveness has been proved through performing a series of 

computer experiments.  
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