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ABSTRACT 

In latest years, it has been argued theoretically            both by experiments and 

by numerical simulations that noise of ion channel in neurons                   

effect on the dynamical behavior of neuron when the size of membrane area is 

limited. Different models that extend the Hodgkin-Huxley equations into stochastic 

differential equations to capture the effects of ion channel noise analytically have 

been put forward: the Fox-Lu model, the Linaro-Storace-Giugliano model, and the 

Güler model. Moreover, very recently it has been argued by Güler that the rate 

functions for the opening and closing of gates are under the influence of noise in 

small size neurons. 

In this thesis, the neuronal dynamics with subject to noise in the rate functions will 

be investigated thoroughly. The investigation will employ the exact Markov 

simulations and the above analytical models. Results from these models will be 

presented comparatively. The study aims at presenting a more detailed account on 

the phenomenon already outlined by Güler recently. 

Keywords: Ion Channels, Channel Noise, Colored Noise, The Channel Crossing, 

Small-sized Dice, Stochastic Hodgkin-Huxley. 
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ÖZ 

Son yıllarda, nöronlardaki ion kanal gürültüsünün küçük boyutlu nöron dinamiği 

üzerinde hayati etki yapabildiği deneysel olarak ve sayısal benzetim yöntemleri 

kullanarak kanıtlanmıştır. Sözkonusu etkinin analitik olarak ifade edilmesine yönelik 

olarak farklı gruplar Hodgkin-Huxley denklemlerini stokastik diferansiyel denklem 

haline dönüştürmüştür: Fox-Lu (1994); Linaro, Storace ve Giugliano (2011); Güler 

(2013a). Daha yakın zamanda, Güler (2013b) tarafından geçit kapanım-açılım oran 

fonksiyonlarının gürültülü olabildiği öne sürülmüştür.  

Bu tezde, yukarıdaki stokastik Hodgkin-Huxley modelleri gürültülü oran 

fonksiyonları altında çalışılmıştır. Güler (2013a) modelinin diğer modellere göre 

mikroskopik benzeşim sonuçlarıyla çok daha uyumlu olduğu gözlenmiştir. 

Anahtar Kelimeler: İyon kanalı, Kanal gürültüsü, Renkli  gürültü, Kanal geçiti, 

Küçük boyutlu zar, Stokastik Hodgkin-Huxley. 
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1 Chapter 1 

INTRODUCTION 

The Effect of noise to the neurons produces an unusual pattern on the neuronal 

dynamics. The noise is in two types; internal or external (Faisal A. S., 2008). 

External noise is exactly the opposite of internal. External noise is produced from the 

synaptic signal transmission. The prime source of internal noise in a neuronal 

membrane spot is from the limited number of voltage-gated ion channels. Usually 

these channels have two stats; closed or open. When it is open, the channel's 

fluctuations number is apparently going randomly (Sakmann, 1995). If fluctuations 

are included in the membrane conduct, then fluctuation will be included in the 

voltage of transmembrane as well. When the number of ion channels is large means 

that the membrane size is huge, the voltage dynamics will represent as in the original 

Hodgkin and Huxley (Hodgkin, 1952) equation. However, when the patch of 

membrane is small, the conductance fluctuations affect the voltage activity of the 

cell. These effects are probably important and cannot be ignored. The single open 

channel stochasticity effect in a direct manner the spike behaviour which is 

suggested by experiment investigation ((Sigworth, 1980); (Lynch, 1989); (Johansson, 

1994)), and spontaneous fire will be the result of that noise in the ion channels 

((Koch, 1999);(White, 1998)). Patch-clamp experiments in vitro have demonstrated 

that the noise of channel in the dendrites also in the soma resulting voltage 

fluctuations that are large enough to affect asynchronies in the timing, initiation, and 
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propagation of action potentials ( (Diba, 2004); (Jacobson, 2005); (Dorval, 2005); 

(Kole, 2006)).  

The phenomenon called stochastic resonance has been observed to occur in a system 

of voltage-dependent ion channels formed by the peptide alamethicin ((Bezrukov, 

1995)).  

Spontaneous spiking is a phenomenon caused by the internal noise from thе ion 

channels. Proof through theoretical investigations and numerical simulations of 

channel dynamics (in the form of repetitive spiking or bursting), or in otherwise quiet 

membrane patches ( (DeFelice, 1992); (Strassberg, 1993); (Chow, 1996); (Rowat, 

2004); (Güler, 2007) ;(Güler, 2008);(Güler, 2011); (Güler, 2013a)); furthermore, 

these investigations also have revealed the occurrence of stochastic resonance and 

the coherence of the generated spike trains ( (Jung, 2001); (Schmid, 2001); (Özer, 

2006)). In addition, thе channel fluctuations might reach thе critical value near from 

thе action potential threshold even if thе numbers of existed ion channels are large. ( 

(Schneidman, 1998); (Rubinstеin, 1995)); Thе timing accuracy of an action potential 

is measured by a small number of opening ion channel at that threshold. 

Furthеrmore, ion channel noise controls thе spike propagation in axons ((Faisal A. 

A., 2007); (Ochab-Marcinek, 2009)), The DSM model accommodates some 

functional forms called the renormalization terms, in addition to some white noise 

terms of vanishing, in the equations of activity. The DSM model has been 

investigated in detail numerically for its dynamics for time-independent input 

currents (Güler 2008); it was found that the renormalization corrections augment the 

behavioural transitions from quiescence to spiking and from tonic firing to bursting. 

It was also found that the presence of renormalization corrections can lead to faster 

temporal synchronization of the respective discharges of electrically coupled two 
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neuronal units (Jibril and Güler 2009). More recently, a stochastic Hodgkin – Huxley 

model, having colored noise terms in thе conductances was proposed (Güler, 2013a), 

where thе colored terms capture those effects due to thе gate multiplicity. 

1.1 Scope and organization 

In this thesis, the neuronal dynamics with subject to noise in the rate functions will 

be thoroughly investigated. The investigation will employ the exact Markov 

simulations and the above analytical models. The results from these models will be 

presented comparatively. The study aims at presenting a more detailed account on 

the phenomenon already outlined by Güler. 

This thesis is divided into six chapters. Chapter 1 describes introduction about thesis. 

Chapter 2 describes Morphological and structural of neurons. Chapter 3 describes 

modeling the excitability of neurons. Chapter 4 describes the dynamics membrane. 

Chapter 5 describes the numerical experiments and chapter six is the conclusion 

about thesis. 
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Chapter 2 

MORPHOLOGY AND STRUCTURE OF NEURONS 

2.1 Introduction 

Neurons are the main types of cells in human brain; they're most significant concept 

in human brain that are exclusive in generating electrical signals reasoned to 

chemical and other inputs. Furthermore, the approximate number of neurons in 

human brain is 100 billion, each one with a unique group of thousands inputs. They 

can transfer signals to other neurons via synapses. There are three parts of normal 

neurons: somas, dendrites, axons. The electrical signals can be transferred via 

dendrites to other neurons that are around synapses and sent to the body defined as 

soma, and the axons for transferring the output of neural to other cells. The estimated 

connections of axons with synapses are 180 per μm. The structure of dendritic 

increases the superficies area of the cell to help neurons for receiving inputs from 

large number of neurons by synapses. Commonly, the dendrites receive two signals 

from other neural.  The soma of optimal skin of neurons moves in diagonal between 

10 to 25 μm. The neuron contains two parts: Spike and membrane potential, shows in 

figure (1). 
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Figure.1:.Two Interconnected Cortical Pyramidal Neurons (Izhikevich, 2007) 

Figure 1 shows in details the information flow and neuron structure. Crossing huge 

fractions of the brain by axon of a single neuron, dendrite collects the information of 

other neuron, then processes in the body of cell and passed on to the axon. Soma, or 

the body of the cell of neurons, ranges between 10 to 50 μm (Dayan Abbot, 2002). 
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2.1.1 Spike 

The communication between neurons is simple. Each neuron received a spike from 

10,000 neurons via synapse. The transmembrane current, that changes the potential of 

membrane, caused because of transferring electrical signals. The post synapse 

potentials (PSPS) are current signals received from synapse. Spike, or action 

potential, is generated because of voltage sensitive channel in a neuron (Izhikevich, 

2007). 

2.1.2 Membrane proteins  

Proteins in neuron cell membrane are classified into three groups to transport 

substances through other. To understand the functions of neurons one should be 

familiar with some information about these proteins. These three groups: channels, 

gates, pumps, help to convey the materials through the membrane. In this research, 

only the first two groups will be studied. 

2.1.2.1 Channels  

Some membranes proteins are designed to create channels or holes, to allow some 

substance pass through it. Various kinds of proteins with various size of holes pass in 

or out of the cell. Each channel can allow one of the potassium and sodium to pass 

through it, different range of voltage can control to pass one of them through a 

channel. Protein molecules work as channel, like potassium     , sodium       , 

chloride      , and calcium     +). 

2.1.2.2 Gates  

One of the significant features of protein molecules is the ability of changing its form 

called gates. The gates change its form when different chemicals are bound to them, 

it allows some specific chemicals to cross through it, and in these cases, it serves as a 

door lock. It will be active when the key matches with the embedded proteins by the 
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size and its form. Moreover, there are some different types of gates responsible for 

different motions such as temperature change or electrical charge to allow assured 

chemical to across through it. 

2.2 Neuron Electrical Activity and Membrane Potential 

Membrane potential's simple definition is the electrical potential or difference of 

potential between the interior and extracellular fluid of the neuron. In some situations 

like resting state, the electrical potential of the cell membrane inside .the 

                      relative to the a rounding path. Nevertheless, this action 

potential is traditionally supposed to be         for more convenience, and in this 

situation the cell state is said to be polarized. This potential is in a balance point at 

which the ions that flow outside matches with those that flow inside. The difference 

made by membrane potential is continued by ion pumps in maintaining concentration 

on gradient placed in the cell membrane. For example, concentration of sodium 

      is much more outside of a neuron.than inside, and the     concentrated 

inside of a neuron more than outside of it. As a result, ions flow into and out of a cell 

because of concentration gradients and voltage during the state transition of cell. 

Current, the flowing of ions form affected to state transition of neuron to flowing out 

of the cell, is caused by voltage and concentration gradients. Current is produced by 

positive charge. Through open channels this current flows out of the neuron making 

membrane potential more negatively increased. This phenomenon is called hyper 

polarization. The depolarization process occurs when the current streaming inside the 

cell changes to be negative of the membrane potential or even to be positive, when 

the neuron depolarization is large enough to increase the membrane potential more 

than the threshold level, an operation with positive feedback will start and makes the 
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neuron to generate an action potential and this action is nearly                    

in the voltage potential passing through the cell membrane that is just about one    . 

Once an action potential occurs and is used to equalize it between inside and outside 

the neuron, it's impossible to start with another spike directly after the former one is 

called absolute refractory period. Thе difference between thе action potential and 

subthreshold fluctuation could be summarized by propagation over long distance. In 

action, potential almost reaches 1 millimeter and thе propagation of thе signal 

without attenuation (Abbot, 2002).  
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Figure.2: Action potential phases (Whishaw, 2012) 

Figure 2 discusses the dynamic voltages during an action potential while the 

synchronization by conforming ion channels actions. As shown in figure.2 the resting 

potential in real            . 
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Chapter 3 

MODELLING THE EXCITABILITY OF NEURON 

3.1 Introduction  

Over the last 60 years ago, many models of neurons were developed by scientists for 

various purposes. Furthermore, these models range from structurally biophysical 

models, for example, one of the most significant models is Hodgkin-Huxley 

                      this thesis focuses on the neuronal dynamics under noise rate 

functions (set by Güler(2013b)). In various studies, different models may be needed 

depending on models’ biological features, their complexity and the implementation 

cost. Nevertheless, a technique of neural excitability modeling is linked from the 

monument work of HH model (1952). 

3.2 The Hodgkin-Huxley Model 

Based on a lot of                           conducted on giant squid 

                      clamp and space clamp, Hodgkin-Huxley (1952) model 

shows the current crossing through the            membrane had two main 

                  (potassium channel current) and     (sodium channel current). 

The membrane potential   is hugely controlled by these currents.  

They consequently developed a mathematical model of their observation to make a 

model which is still most significant one based on which many realistic neural models 

have been developed (Hodgkin-Huxley 1952). 
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In the Hodgkin-Huxley      , the                        had electrical 

characteristics that could be represented by an equivalent circuit in which current 

flow across the membrane has two major parts, the first one concerned with charging 

capacitance of membrane, and the other one concerned with movement of special 

type of ions across the membrane. In addition, the ionic is classified to three 

elements, a potassium current   , a sodium current    , a small leakage    that is 

primarily conveyed by chloride ions. 

                                                                            

  
   

  
                                            (1) 

                           

                       . 

                              

                          

The                   t inflow into the membrane and can be considered from the 

following equations: 

     ∑                                                        (2) 

                                                        (3) 

        denotes every ionic current component having related to                and 

reversal             . 
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                                          , potassium current   , sodium current 

   , and leakage   , that will give us these equations: 

                                                        (4) 

                                                     (5) 

                                                      (6) 

                                                       (7) 

The conductance of microscopic               grows from the merge influence of 

amount number of membrane microscopic ion channel. Ion's current can be 

considered as containing a few numbers of physical gates, that regulate the ions flow 

across the channel. While the channel opens all the gates in the permissive state, ions 

can flow through the channel. 

3.3 The ionic conductance 

The Hodgkin-Huxley model supposes the priori experience of the Markov kinetic 

process based on each gate. If an n-gate is open at time t it will be open till time 

     with probability given by            , and if an n-gate                     it 

will stay closed at time      with given probability by             . And the 

        are opening and closing gates. There are three m-gates and one h-gate for 

sodium channel and four n-gates for potassium channel (Güler, 2013a). 

Consequently, the detection of the experimental of a voltage current influx within the 

membrane, correlating with the movement of some charged particles called particles 

gating (Schneider & Chandler,    ; Armstrong &Bezanilla,    ; Keynes & 

Rojas,    ).There is a suspicion that the conducting state of a channel depends on 

the binding of a gating charge (or gating particles) to the external channel gate face 
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of the membrane. This gating charge can grow up from charged remains on the 

protein, for instance, in the S4 fourth trans-membrane segment, or from charged 

ligands binding to deep locations within the protein. Gating include sensitive 

temperature conformational changes of channel proteins. Molecular modeling and 

structure function learns indicate a sliding-helix mechanism for electromechanical 

conjunction in which the exterior movement of gating charges in the fourth trans-

membrane segments pulls the S4-S5 connector, curvatures the S6 segment, and 

opens the pore. (For an extensive overview of the subject, see Hille, 2001, and 

Catterall, 2010.) 

The Hodgkin-Huxley models combine some noise terms into the deterministic 

Hodgkin-Huxley equations as follows: 

 ̇                                                                                       (8) 

 ̇                                                                                 (9) 

 ̇                                                                                      (10) 

Here            are the mean zero noise terms; they vanish in of infinite limit of 

the membrane size. Here            and            are rate constants. 

Experiment on voltage clamp of the                    will start         at state 

                       stepped to a new voltage clamp        . The answer 

by exponential of the form is to the equation (9) as shown below: 

                                              
 

  
               (11) 

                                      
     

     
                                      (12) 
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                                     (13) 

                                                   
                         (14) 

Here   defined as a time depending variable of gate            , the value of 

voltage of gating variable has been determined at resting state, means the       0 

              the clamp voltage     to make the formula simple.    denotes the 

constant time course for approaching the steady state value  of 

        when the voltage is clamped to     . Hodgkin and Huxley considered stables 

      as functions of V in the following form: 

                                                                      (15) 

                                                                 (16) 

i denoted for            ion channel gate variables as mentioned before.  

These formulas state for the constants rate of        that are concluded 

experimentally: 

                              
          

   (
     

  
)  

                                      (17) 

                                            
 

  
                            (18) 

                            
         

   (
     

  
)  

                                       (19) 

                                  ( 
 

  
)                                    (20) 

                                      
 

  
                                  (21) 

                          
 

   (
     

  
)  

                                          (22) 
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3.4 Stochastic Models 

Neurons exhibit electrical action, and it's in nature known to be stochastic (Faisal, 

2008). The main source of stochasticity from the synapses is the external noise. The 

interior noise, which participates to the gating probabilistic nature of the ion channel, 

can have important effects on the neuron's dynamic performance as it is displayed in 

the experimental studies (Kole, 2006; Jacobson et al., 2005; Sakmann and Neher, 

1995), and by theoretical researches numerical simulations (Chowand White, 1996; 

Fox and Lu, 1994; Schmid et al., 2001; Schneidman et al., 1998). Neuronal dynamics 

under the effect of channel fluctuation is usually modeled with stochastic differential 

equations acquired by using some vanishing white-noise  conditions  in to  the  

fundamental deterministic equations (Fox and Lu, 1994). The dissipative stochastic 

mechanics (DSM neuron) based on the neuron model raised by Güler (2007, 2008), 

is a special case of it. The DSM model has some forms of functionality named the re-

normalization terms, as well as some vanishing white-noise conditions in the activity 

equations. The DSM model has been studied in numerical details for its time 

independent input current's dynamics (Güler, 2008); it was established that the 

corrections of re-normalization increase the changes in behavior from quiescence to 

spiking and from tonic firing to bursting. It was further stated, that the existence of 

re-normalization corrections can result in faster temporal synchronization of the 

electric coupled consecutive, and it charges of two neuronal units (Jibril and Güler, 

2009).  
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3.5 The DSM Neuron Model 

The DSM (Dissipative Stochastic Mechanics) based on neuron special formulation 

stems from a viewpoint that ion channel conformational changes are exposed to two 

distinct types of noise. These two types of noise were coined as topological noise and 

the intrinsic noise. The intrinsic noise gets up from gating particles voltage, and is 

stochastic between (outer, inner) of the membrane. Accordingly, gates close and 

open in a probabilistic style, it's the average and by this average the opening gates in 

the membrane is defined. The topological noise, on the other hand, are stems from 

the existence of a various number of gates in the channels, and it contributes to the 

changes in the topology of open gates, rather than the changes in the number of open 

gates. 

Indecencies, throughout the dynamics, avoid following a specific order in occupying 

the available closed gates like gating particles, thus, in resting the open gates at two 

distinct times the membrane may have the same number of open gates but two 

various conductance values. The topological noise is attributed to the uncertainty in 

the open channels numbers that takes place even if the number of open gates is 

precisely known in defining the voltage dynamics. 

DSM neuron formula was developed based on Hindmarsh-Rose model (Hindmarsh 

and Rose 1984) and benefit from the Nelson’s stochastic mechanics (Nelson 1966 

and 1967), in the dissipation existence, to model the ion channel noise impacts on the 

membrane voltage dynamics. The topological noise impact on the neuron dynamics 

gets to be more important in membranes that are small in size. Accordingly, the 
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DSM neuron functions like the Hindmarsh-Rose model when the membrane size is 

too large. 

The motion equations for both variables cumulate are resulted from the formalism of 

the DSM neuron. The second cumulates that depict the neuron's diffusive manners 

do not concern us in this thesis. The first cumulates develop in harmony with the 

dynamics below: 

  ̇        

 ̇   (
  

 
   

  

 
    )                  

                  

          (  
  

 

 
)       (  

  
 

 
)  

 ̇              

 ̇                  

                   (     )
 
  (     )

 
             

Here X indicates the membrane voltage value expected, and   matches to the 

expected value of a momentum-like operator. The additional variables y and z 

describe the fast and the slower ion dynamics, respectively. I stands for the exterior 

current inserted into the neuron, and m represents the capacitance of the membrane. 

The variables a, b, c, d, r, and h are constants. k is a mixing coefficient presented by 

k = 1/(1+r).    are constants as shown next: 
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Equation       specifies the value of at the initial time in terms of the initial values of 

the other dynamical variables X, y and z, and the current I. Xeq(I) obeys the equation 

    
          

   (      )        

Here    is a constant,    and    in equations ( ̇) and ( ̇) are Gaussian white noises 

with zero means and mean squares given by 

                         

and 
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Were obtained by means of the classical fluctuation-dissipation theorem. T here is a 

temperature-like parameter. The terms with the correction coefficients   
 

,   
 

,   
  

and   
  that take place in the above equations are the renormalization terms. Then the 

colored formulation for the conductances describes the autocorrelation time of 

        is not zero and the algebraic sign of it is durable (at a microscopic 

timescale),    read as 

           

Here    is a stochastic variable with zero expectation value at equilibrium and has 

some autocorrelation time greater than zero. Hence, the variable    can be treated as 

colored noise. For the analytical implementation of NCCP, it suffices to elaborate 

  . Then the colored formulation developed above for the potassium conductances 

can similarly be developed for the sodium conductances. But           also has a 

finite but nonzero autocorrelation time 
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Chapter 4 

 THЕ MEMBRANE DYNAMICS 

The sHH models incorporate some noise terms (white or colored) into the 

deterministic HH equations as follows: 

                                                ̇    

 ̇                 

 ̇                 

 ̇                 

4.1 The Fox and Lu model 

In Fox & Lu model (1994), the noise terms -  and    – are equal to zero: 

  
     

                                                               (23) 

While the letter F is used to denote the type of the model, and the terms 

            with the mean squares are Gaussian white noise. 

     〈           〉  
           

  
                             (24) 

     〈           〉  
           

   
                        (25) 

     〈          〉  
           

   
                             (26) 
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Here   and    denote the channel’s number of potassium and sodium in the 

membrane. 

4.2 The Linaro et al. Model 

In their model Linaro (2011) use the suitable variables powers of deterministic gating 

in determining the proportions of open channels. Nevertheless, some processes of 

Ornstein-Uhlenbeck, with the diffusions acquired from the co-variances of 

          escort the conductances. In consequence, the noise term escorting 

potassium conductance   
 , is as follow: 

                     
  ∑     

 
                                                    (27) 

 

Here      are stochastic variables conforming: 

                   ̇              √                             (30) 

Here the coefficients     and      are some functions of the closing and opening rates 

of n-gates (available in Linaro et al., 2011), and the     are independent unitary 

variances and Gaussian white noise with zero means. The noise term related with 

sodium channels  
 is as follow: 

                            
  ∑      

 
                                    (31) 

Here       are stochastic variables which obey: 

                  ̇                  √                    (32) 
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Here the coefficients      and      are some functions of the closing and opening 

rates of m-gates and h-gates (available in Linaro et al., 2011), and the       are 

independent unitary variances and Gaussian white noise with zero means. The noise 

terms for the gating variables in the differential equations are paced to be zero: 

                         
    

    
                                  (33) 

Thus, the degree in the gating variables of stochasticity is not predicted by the Linaro 

et al. (2011) formulation. 

4.3 The Güler Model 

None of the noise terms are placed to be zero in Güler’s model (2013b). The noise 

terms escorting the conductances    
 and   

 were inserted to capture NCCP. Both 

terms    
 and   

  are functions of the gating variables: the previous is dependent on 

         . The term  
 , which reflects NCCP attributed to the potassium channels, 

is given by: 

                          
  √

        

  
                                             (34) 

Here    variable obeys the differential equation of stochastic, 

                          ̇                                                               (35) 

              ̇          
                             (36) 

Here    with the mean square is mean zero Gaussian white noise term, 

           〈           〉                               (37) 
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In equations 35 and 36 the parameter   denotes the unit time. The constants are in 

dimensionless units with the following values: 

       

  
      

       

The term    
 , which reflects NCCP attributed to the potassium channels, is given 

by: 

                         
  √

        

   
                                              (38) 

Here     variable obeys the differential equation of stochastic, 

                         ̇                                                               (39) 

   ̇             
                                 (40) 

Here     with the mean square is mean zero Gaussian white noise term, 

      〈             〉                                 (41) 

The constants are in                     with the following values: 

          
              

The noise terms related with the variables gating are Gaussian and the mean squares 

satisfy: 

                   〈           〉  
           

   
                     (42) 
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                    〈           〉  
           

    
                (43) 

                   〈           〉  
           

  
                      (44) 

The     variance is the same as in the Fox and Lu model (1994), but the variances of 

  and    are one-fourth and one-third of the conforming Fox and Lu variances, 

respectively. 

These variances are from the non-equilibrium statistical mechanics, and the 

stochastic variables           crop the following variances, respectively, at 

equilibrium: 

〈  
 〉   

  

   
                                  (45) 

And 

〈   
 〉   

   

    
                              (461) 

Table 1: Constants of membrane 
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We note here that equations 45 and 46 were given above (Güler, 2013a) without 

dividing the coefficient 2. That was a simple typing error with no effect on result or 

any subsequent formulation in it.  

In this model it is important to check the numerical implementation after each step of 

time, whether the noise terms in equations 8 to 10 takes            outside of the 

range [0, 1].  Then the step should be repeated with new random numbers for 

          . 

4.4 The Functions of Noisy Rate 

A typical set of noisy rate functions used by the Hodgkin-Huxley equations is as 

follows: 

                                                       (47.a) 

                                                                        (47.b) 

                                                       (47.c) 

                                                                           (47.d) 

                                                                          (47.e) 

                                                                   (47.f) 

The constant membrane parameters values are usually used along with the rate 

functions mentioned in Table 1. 

Due to the objective of having noisy rate functions, we modified the above standard 

functions as follows: 

                                                       (48.a) 
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                                                       (48.b) 

                                                    (48.c) 

                                                     (48.d) 

                                                       (48.e) 

                                                        (48.f) 

Here             are Ornestein-Uhlenbeck processes identified by: 

                     ̇                                    (49.a) 

                    ̇                                  (49.b) 

                   ̇                                     (49.c) 

Here             are independent mean zero Gaussian white noise, with the mean 

square: 

    〈           〉  〈           〉  〈           〉           )  

In equations (49) and (50) the constants were set to be 50 and 100, respectively, for 

better convenience. The parameter   is constant, which specifies the strength of the 

noisy rate, thus it must satisfy: 

   | |    

The mean squared values of            from the properties of Ornestein-

Uhlenbeck processes, obey: 

〈     〉  〈     〉  〈     〉    

   in the long time limit. 
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The use of sinusoids in equation (48) sets a border on the effect of the introduced 

processes, which makes sure that the new rates never come to be negative. In 

equation (48),         were modified by using the identical noise term but with 

mutually opposite signs, as were                  because an effect that causes 

an increase in   should simultaneously cause a decrease in    , and vice versa. For 

example, in order to see the voltage changes effect, consider the functions 

       as given in equations (47.a) and (47.b). It can be found easily that, mutual 

derivation of   and     with respect to   are always opposite signs. The property 

also applies to the functions   and    , and  and   . In presenting noise into the 

rate functions, the motivation was to acquire a challenging channel dynamics for the 

mathematical examination of viability and generality of the stochastic Hodgkin-

Huxley models. Furthermore, it was argued that the noise existence in the rate 

functions is a sensible physiological reality for finite size of membranes.  

4.5 The NCCP Essence 

Considering that this study was directly motivated by NCCP, it is helpful to 

emphasize the essentials of this phenomenon before turning to the study focus. 

(Güler, 2011.) 

 

 

 

 

 

 

Figureii3: Two possible cases of the toy membrane. The small circles represent the 

gate (empty close, black open). (Güler, 2011). 
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Figure 3: Depiction of gate-to-channel uncertainty. Two possible conformational 

states of a toy membrane, comprising just two potassium channels, are shown at two 

different times t1 and t2. Filled black dots and small circles represent open and 

closed gates, respectively. The bigger circles represent channels. Despite the 

numbers of open gates at t1 and at t2 being the same (six), one channel (shadowed) is 

open at t2 while no channel is open at t1. Adopted from Güler (2011). 

          

Due to the presence of a multiple number of n-gates in individual potassium 

channels, knowing n does not suffice to specify    uniquely. In paper Güler, we 

coined the term gate-to-channel uncertainty to describe this lack of uniqueness (see 

Figure 3); and the term gate noise to denote the random fluctuations in n. It was 

stated that the construct         singles out the channel fluctuations that arise 

from gate-to-channel uncertainty. Here designates averaging over the possible 

configurations of the membrane having      open n-gates. Unless the membrane is 

extremely small, it holds that 

        

It was shown in paper Güler that a non-transient correlation takes place between the 

fluctuations of the construct         and the fluctuations of V within the phase of 

subthreshold activity. This is the phenomenon that NCCP refers to. A property, 

crucial for the occurrence of NCCP, is that the autocorrelation time of the construct 

        is finite but not zero. It can be deduced from sHH equation that if 

        > 0 throughout some period of time, then a negative variation, relative to 

the case of having         = 0, takes place in V along that period. Similarly, if 
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        < 0 throughout the period, then a positive variation in V takes place. 

Then, provided that the residence time of         in the same algebraic sign is 

long enough, NCCP materializes. A pictorial explanation is provided in Figure 4. 

The construct that reveals the gate-to-channel uncertainty associated with the sodium 

channels is          . The configuration average of the proportion of open 

sodium channels,      , obeys  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Explanation in the diversity of the voltage V (Güler, 2011). 

Figure 4: An illustration of the variation in the voltage, denoted by δV, in response to 

deviations of the construct         from zero. Adopted from Güler (2011). 
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Chapter 5 

NUMERICAL EXPERIMENTS 

5.1 Introduction 

In this part, we evaluate neuronal dynamics under the noisy rate functions articulated 

by equations (48) and (49) through numerical experiments. The valuation develops 

statistics and computations from the microscopic simulations and the Güler (2013a) 

colored model. As the simulation scheme of microscopic, here used the simple 

stochastic method (see, e.g., Zeng & Jung, 2004) by using the Markov scheme all the 

gates are simulate individually. 

It is useful before the investigation with the new rate functions to give a 

representative instance on the spike generation statistics using the standard noise-free 

rate functions. Figure 5 provides such an example where (A) with a membrane size is 

360 of potassium channels and  1200 sodium channels was used and (B) with 1800 

of potassium channels with      of sodium channels. The mean spiking frequencies 

shown in these figures, acquired from each Hodgkin-Huxley models and the 

microscopic scheme, as a functions of the stochastic input current. (For an overall 

account of the accuracy of the Linaro et al. and the Güler models, see Linaro et al., 

2011; Güler, 2013; for the extent of the failure of the Fox and Lu model, see Zeng & 

Jung, 2004; Mino et al., 2002; Sengupta et al., 2010; ;  Bruce, 2009; Güler, 2013b). 
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Güler versus Fox and Lu 

                                                              (A) 

  

 

 

 

 

 

 

 

 

                                                               (B) 

 

 

 

 

 

 

 

Figure 5: Result of Güler model versus Fox and Lu model 

Spiking frequencies against the input current with the noise-free rate functions. Plots 

correspond to the microscopic simulations, the Fox and Lu model, and the Güler 

model. (A) 360 potassium channels and 1200 sodium channels, (B) 1800 potassium 

channels and 6000 sodium channels. 

Figure 5 Shows the mean spiking frequency and other given information the Güler 

model is so closed to microscopic at the beginning of simulation but the Fox and Lu 

is far to the microscopic curve, the average computed over 30 sec with K=0.9. 
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Güler versus deterministic HH 

                                                         (A) 

 

 

 

 

 

 

 

(B) 

 

 

 

 

 

 

 

Figure 6: Result of Güler model versus deterministic Hodgkin-Huxely 

Figure 6 shows spiking frequencies against the input current with the noise-free rate 

functions. Plots correspond to the microscopic simulations, the deterministic HH 

model, and the Güler model. (A) 360 potassium channels and 1200 sodium channels, 

(B) 1800 potassium channels and 6000 sodium channels. shows the Güler model 

closed to the microscope curve at the beginning of the simulation, but the 

deterministic HH curve is so far to the microscope curve till plot 4 and increased to 

close to the microscope curve till the end of the simulation that's computed over 30 

sec with K=0.9.  
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Güler versus Linaro 

                                                          (A) 

 

 

 

 

 

 

 

(B) 

 

 

                                                            

 

 

 

 

Figure 7: Result of Güler model versus Linaro et al model 

Figure 7 shows spiking frequencies against the input current with the noise-free rate 

functions. Plots correspond to the microscopic simulations, the Linaro et al model, 

and the Güler model. (A) 360 potassium channels and 1200 sodium channels, (B) 

1800 potassium channels and 6000 sodium channels. And the Güler model closed to 

the microscope curve at the beginning of the simulation, but the Linaro curve is far to 

the microscope curve with increasing to close to the microscope curve till the end of 

the simulation that's computed over 30 sec. with K=0.9. 
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5.2 Response to a Stimulus Pulse  

After that, we studied the response of model to passing stimulus change. Using a 

stimulus pulse shown in Figure 8 and a sub-threshold current value,            , 

was used as the base current. For a      of duration, the current swerves from the 

foundation, arriving some value generated by intensity. We have computed latency, 

firing efficiency, and jitter for a set of intensities. Presenting the results are in Figures 

9 to 13. Each plot in the figures was included by reiterated trials of the corresponding 

stimulus pulse           . Here, efficiency of firing is the part of trials that raises a 

spike, latency is the spike incidence mean value with regard to the stimulation over 

the time, and jitter of the firing latency is the standard deviation. Our equations from 

the figures are clears that's induce replies in a very good convention with the 

properties of the replies induce by the simulations of microscopic, whereas differ 

considerably with the results from Fox and Lu equations. Such difference between 

the Fox and Lu equations and microscopic simulations was reported before by other 

researchers (Zeng & Jung, 2004; Mino et al.,    ; Linaro et al., 2011; Bruce, 2009 

;). 
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Figure 8: Form of wave of the stimulus pulse 

 This form in figure (8) used in section 5.5 there were used many different values of 

the pulse intensity in this experiments. The input current was set to           , 

in      duration.  

Güler versus Fox and Lu 

(A) 

 

                                                           

 

 

 

 

(B) 

 

 

 

                                                            

Figure 9: Result of Güler model versus Fox and Lu (          )  
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The mean spiking frequency and other given information in figure 9 (A) shows the 

solution till the plot 6 the Güler model is closed to microscopic at the beginning of 

simulation and the Fox and Lu curve far to the microscopic curve and after plot 6 the 

Fox and Lu curve start increasing to close to microscope curve and without changing 

after reaching plot 10.03 that's make Güler model closer and better than Fox and Lu 

model, but in figure 9 (B) the Güler model closed to microscope at the beginning of 

simulation, the average computed over 30 sec with K=0.9.  

Güler versus deterministic HH 

                                                            (A) 
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Figure 10: Result of Güler model versus deterministic Hodgkin-Huxley (  
        ) 
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Güler versus Linaro 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Result of Güler model versus Linaro et al  (          ) 

In figures (10) and (11) has the same result that’s the Güler model is closer one to 

microscopic simulation. And also in figures (12) and (13) has the same result with 

noise-strength [0.3,0.7]. 
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Güler versus Fox and Lu 

                                                                (A) 

 

 

 

Güler versus deterministic HH 

       (B) 

 

 

Güler versus Linaro 

     (C) 

 

 

Figure 12: Results with noise strength k=0.3  
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Güler versus Fox and Lu 

      (A) 

 

 

 

 

      (B) 

 

 

  

Güler versus Linaro 

(C) 

 

 

 

Figure 13: Results with noise strength k=0.7 
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Chapter 6 

CONCLUSION 

In this study, we have presented noise of the rate functions and are continuing 

experiments to examine the way in the form sHH model perform under that type of 

spiking statistical of noise has been studied under effects of different input signals. In 

an latest work (Güler, 2011), in the ion channel was found  a multiplicity of the gates 

and the key role which will arouse the NCCP is shortcut of (    

                correlation persistent) and previously found to be the primary reason 

for the increase of the rise in the excitability of cells and in the spontaneous firing in 

small size of membrane. Also the NCCP process in promoting they found a 

spontaneous firing even when the size of the membrane with all of big size the is 

inefficient to activate the cell to the noise. This study shows that the optimization of 

the coherence spike is caused by the presence of the NCCP. 

Our experiments show that the noise rate function is the deal with the phenomenon 

of the NCCP accuracy and can also be seen that the rate of spiking is caused by a 

model of very close to the Güler model with noise strength k=0.9, with any size of 

the membrane. When the width was changed model the spiking is not affected by 

different of sHH model, Linaro et al. and Fox and Lu model, which are far from the 

point of actual neuron numbers like in figures (5, 6,  and 7) in each case of 

performing models simulation. When used varying frequency the spikes caused by 

noise rate functions, is also the Güler model close to the microscope, but in the 
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Linaro et al. model the frequencies increased but also still Güler model closer to the 

microscope as figure 7 the situation has remained stable at this condition .  

Next, we studied the response of model to passing change in the stimulus using a 

stimulus pulse shown in figures (9, 10, and 11) with a sub-threshold current value,  

          , used as the base current. For a                  shown in figure 8. 

We have computed latency, jitter, firing efficiency for a set of intensities. Presenting 

the results are in Figures 9 to 11. Each plot in figures was included via reiterated 

trials of the corresponding pulse stimulus           . In this studying shown in 

figures (9, 10, and 11) the Güler model still closer one to the microscope with a low 

frequencies in case of performing Fox and Lu, and sHH models, and increasing 

frequency in case of performing Linaro et al. model with steady state of closer model 

(Güler model) to microscope simulation, even in different noise strength when we 

changed to K=0.3 and K=0.7 as shown in figures 12 and 13 which still Güler model 

the closer one to the microscopic curve. 

It should be noted here that the width changes with the variation of different 

frequency to see what noise rate function to handle the amount of noise that is 

another option. It is also possible to use the frequencies used in the experiment with 

different noise and see which simulation would reply. Last but not least, the use of 

different frequencies, which is identical to the frequency used in experiments or 

different sizes are also worth investigating. 
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