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ABSTRACT 

Over the last decade, advances achieved in genomic technologies have led to uncover 

vast amount of protein-protein interaction data. Nevertheless, the existing protein-

protein interaction databases cover the interactions related only to a part of the 

proteome and protein isoform interaction databases are sparsely populated. Such 

isoforms are generated through transcript diversity mechanisms (e.g. alternative 

splicing) and could exhibit functional differences. Protein-protein interaction data on 

isoforms is necessary for analysing their functional similarities and understanding the 

effects of transcript diversity on protein-protein interaction networks. Biomedical 

literature is an invaluable complementary resource to experimental data. Automated 

tools are required to gather, view and analyse the isoform interactions from the 

biomedical literature. 

This study presents a comprehensive automated text mining based analysis, which 

extracts protein interactions from the biomedical literature for human protein 

isoforms linked to the transcripts clustered in HumanSDB3 (an alternative splicing 

database of the human transcriptome). Extracted protein-protein interaction data is 

delivered to public through a new database called TBIID which stands for Transcript 

Based Isoform Interactions Database. 

TBIID contains a total number of 31,819 interactions between 7,161 unique proteins. 

The interaction data is automatically gathered from a subset of 205,207 interaction 

abstracts, which are selected from about 4 million Medline abstracts belonging to the 
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isoforms in HumanSDB3. The automatic extraction methods achieve state-of-the-art 

performance (53.22% precision, 68.94% recall, 60.07% F1-score).  

TBIID is utilised to quantify the variability in the isoform interactions based on their 

shared and unique interactions. Results reveal that almost all clusters analysed (99%) 

contain isoforms interacting with unique protein partners, with an average unique to 

shared interaction rate of ~5. Similar results are obtained by analysing the data from 

public protein-protein interaction databases. These findings are significant in that 

they demonstrate that isoforms tend to interact with unique partners, indicating that 

they could be involved in different interaction networks potentially for performing 

different functions. Hence, it can be concluded that transcript diversity has a 

potential to generate a significantly diverse interactome. 

The literature analysis presented here gives access to protein interactions that are not 

yet contained in public resources and in particular, that are linked to transcript 

isoforms generated by alternative splicing and stored in HumanSDB3. TBIID is 

accessible at http://tbiid.emu.edu.tr serving as an up to date and comprehensive 

resource for future experiments on isoform interactions. 

 

 

 

Keywords: alternative splicing, protein isoforms, biomedical text mining, abstract 

retrieval, interaction abstract selection, protein-protein interaction extraction, 

machine learning, interaction variability analysis. 

http://tbiid.emu.edu.tr/
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ÖZ 

Son on yılda, genomik teknolojilerde elde edilen gelişmeler, büyük miktarda protein-

protein etkileşimi verisinin ortaya çıkarmasına yol açmıştır. Yine de, mevcut protein-

protein etkileşimi veritabanları proteomun sadece bir kısmı ile ilgili etkileşim 

bilgisini kapsamakta ve protein izoformu etkileşimleri bilgisini de seyrek olarak 

içermektedirler. Bu izoformlar, transkript çeşitliliği mekanizmaları (örneğin alternatif 

sıplays) tarafından üretilirler ve işlevsel farklılıklar gösterebilirler. İzoformların 

protein-protein etkileşim verileri, fonksiyonel benzerliklerini analiz etmek ve 

transkript çeşitliliğinin, protein-protein etkileşim ağlarına etkilerini anlamak için 

gereklidir. Biyomedikal literatür, izoform etkileşim bilgisini, bilgisayara dayalı 

yöntemler ile toplamak, görüntülemek ve analiz etmek için deneysel yöntemlere paha 

biçilmez bir tamamlayıcı kaynak oluşturur. 

Bu çalışmada, HumanSDB3‟de (insan transkriptomu alternatif sıplays veritabanı) 

kümelenmiş transkriptler ile bağlantılı insan proteini izoformlarına ait protein 

etkileşimlerini biyomedikal literatürden çıkaran, kapsamlı bir otomatik metin 

madenciliği tabanlı analiz sunulmaktadır. Çıkarılan protein-protein etkileşimi 

verileri, transkript tabanlı izoform etkileşimleri veritabanı (ingilizce kısaltması 

TBIID) adı verilen yeni bir veritabanı üzerinden erişime ve kullanıma sunulmuştur. 

TBIID 7,161 değişik proteine ait, toplam 31,819 etkileşim bilgisi içerir. Etkileşim 

verileri, otomatik olarak, HumanSDB3‟deki izoformlara ait yaklaşık 4 milyon 

Medline kayıtından seçilen 205,207 etkileşim özetinden toplanmıştır. Kullanılan, 

otomatik ekstraksiyon yöntemleri, bu alanda ulaşılan en son gelişmeleri yansıtan 
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yüksek bir performans sergilemektedir (53.22% Duyarlık, 68.94% Geri Çağırım, 

60.07% F1-skor). 

TBIID, izoformların ortak ve özgün etkileşim ortaklarına dayalı olarak, izoform 

etkileşimleri değişkenliğini ölçmek için kullanılmıştır. Sonuçlar, hemen hemen tüm 

transkript kümelerinin (%99), özgün etkileşimin ortak etkileşime oranı ~5 olan 

izoformlar içerdiğini ortaya koymaktadır. Kamuya açık protein-protein etkileşimi 

veritabanlarının içeriği analiz edilerek benzer sonuçlar elde edilmiştir. Bu bulgular, 

izoformların, potansiyel farklı işlevleri yerine getirmek için, farklı etkileşim 

ağlarında görev alıp, farklı ortaklar ile etkileşim eğiliminde olabileceklerini 

gösterdiğinden önem taşımaktadır. Bu nedenle transcript çeşitliliğinin, önemli ölçüde 

çeşitlilik gösteren bir interaktom oluşturmak için potansiyele sahip olduğu 

söylenebilir. 

Burada sunulan literatür analizi, var olan protein-protein etkileşimi veritabanlarında 

henüz bulunmayan ve özellikle HumanSDB3‟de bulunan ve alternatif sıplays 

mekanizması ile ortaya çıkmış insan transkript izoformlarına ait proteinlerin 

etkileşimlerine erişim sağlamaktadır. TBIID, http://tbiid.emu.edu.tr adresinden 

erişilebilen, gelecekte yapılabilecek deneyler için güncel ve kapsamlı bir kaynak 

olarak hizmet vermektedir. 

 

 

Anahtar Kelimeler: Alternatif Sıplays, protein izoformları, biyomedikal metin 

madenciliği, öz erişimi, etkileşim bilgisi içeren özlerin seçimi, proteinler arasındaki 

etkileşimlerin çıkarımı , otomatik öğrenme, etkileşim değişkenligi analizi.  
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     Chapter 1 

1. INTRODUCTION 

1.1 Motivation 

1.1.1 Biomedical Information Overload and the Need for Biomedical Text 

Mining 

The biomedical science community has witnessed the completion of human genome 

sequence in this decade which still remains as one of the most important scientific 

events (International Human Genome Sequencing Consortium, 2004). Efforts in 

human genome sequencing have lead to significant developments in experimental 

techniques, which have tremendously accelerated high-throughput genome wide 

studies. Such studies reveal large amounts of experimental data which calls for 

automated methods from the field of bioinformatics. This field merges biology with 

computer science and enables scientists to discover new biological insights. Today, 

bioinformatics methods are being used to analyse experimental data and to deliver 

the results in a structured format through databases and ontologies. Such repositories 

often contain new observations such as protein interactions (e.g. Database of 

Interacting Proteins (DIP), http://dip.doe-mbi.ucla.edu/dip/Main.cgi), functions (e.g. 

Gene Ontology (GO), http://www.geneontology.org/), diseases and disorders (e.g. 

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/omim), 

mutations (e.g. MUTation DataBase (MUTDB), http://mutdb.org/) and alternative 

splicing events (e.g. Alternative Splicing and Transcript Diversity (ASTD), 

http://www.ebi.ac.uk/astd/main.html). They serve as useful resources for assisting 

http://dip.doe-mbi.ucla.edu/dip/Main.cgi
http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/omim
http://mutdb.org/
http://www.ebi.ac.uk/astd/main.html
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research in biomedical science. However, some of them such as GO and protein 

interaction databases are often sparsely populated (Cusick et al., 2009). Furthermore, 

it is important to keep such repositories up to date. These problems call for 

complementary resources and require new methods for processing such resources. 

 Recent advances achieved in experimental techniques enable scientists to rapidly 

deliver new discoveries to the biomedical science community through publications. 

These new discoveries often cover invaluable findings about proteins, genes, 

pharmaceuticals and other compounds, protein interactions, and cellular as well as 

pathological processes. The amount of existing biomedical literature, which contains 

such knowledge, has already moved beyond the possibility of manual curation. 

Moreover, its volume expands at an increasing rate. For example, the National 

Center for Biotechnology Information‟s (NCBI) PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed) which is the most comprehensive and widely 

used biomedical literature repository expands at a double exponential pace as shown 

in Figure 1.1. Its annual growth rate is estimated as ~4% (Lu, 2011) and as of 

December, 2011 PubMed includes over 21 million citations from Medline and other 

life sciences journals. Hence, the scientific literature remains an invaluable resource 

for complementing the existing Protein-Protein Interaction (PPI) repositories and 

keeping them up to date. However, this information rich resource is available only 

for those who can interpret the data represented in natural language form. This calls 

for techniques from text mining, a field in Natural Language Processing (NLP) 

aiming to discover new information from textual data, which is unstructured, highly 

variable and ambiguous. In particular, methods from the field of biomedical text 

mining are being used to process the scientific textual data. The aim is to find 

relevant pieces of information, which are represented in an unstructured form within 

http://www.ncbi.nlm.nih.gov/pubmed
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scientific texts through computational methods. These methods are usually adopted 

from general artificial intelligence, statistics and data mining. They are applied in 

order to retrieve relevant documents, to classify them, to identify the biomedical 

entities and to extract relations between them by using various NLP methods such as 

part-of-speech (POS) taggers, stemmers, syntactic and semantic parsers as well as 

lexicons. 

Biomedical text mining has increasingly attracted interest within the last decade and 

many applications have been developed. The field deals with the information 

overload problem by automatically “understanding” relevant pieces of data based on 

human-like comprehension of language from the scientific literature. However, this 

field is quite new and still remains challenging. The primary barrier lies in the nature 

of language ambiguity, i.e. multiple interpretations of the same string. Ambiguity 

complicates almost every single level of linguistic analysis. For example, 

protein/gene name recognition is a hard task given that protein/gene symbols are 

known to be ambiguous within and across different organisms and with other 

biomedical entities like chemicals. Hence, it is likely that many of the biomedical 

text mining tasks will remain unresolved in the near future.  
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Figure 1.1: Growth of the PubMed Database between 1986 and 2010  

(Source: (Lu, 2011)) 

1.1.2 Importance of Protein Isoform Interactions 

Recent studies in the field of biomedicine have focused on PPIs to understand 

functions of organisms at the molecular level. Understanding PPIs is very important 

for understanding the signalling pathways involved in cellular activities and 

biochemical as well as disease processes. Some examples of cellular activities 

include Deoxyribonucleic Acid (DNA) replication, transcription and cell cycle 

control (Ono et al, 2001). 

Scientific interest in PPIs led to generation of many PPI databases which deliver 

information in structured formats to the public through the internet. The PPI data 

archived in such databases can be gathered through experimental as well as literature 

mining methods (Zhou et al., 2008). The experimental methods utilise either low-

throughput (e.g. X-ray crystallography, fluorescence resonance energy transfer) or 

high-throughput (e.g. yeast two-hybrid, affinity purification) techniques to collect 

PPI data (Shoemaker and Panchenko, 2007). Low-throughput techniques provide 
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accurate information on PPIs while high-throughput techniques provide less accurate 

information but allow performing proteome-wide experiments (Browne et al., 2010).  

On the other hand, literature mining methods rely on biomedical text mining 

approaches to gather PPI data from the scientific literature. Although there are many 

PPI databases such as DIP (Xenarios et al., 2000), the Molecular INTeraction 

Database (MINT) (Zanzoni et al., 2002) and IntAct (Hermjakob et al., 2004), they 

cover only a portion of the interactome and the overlap between them is small mainly 

due to different techniques and publications utilised to generate their contents 

(Mathivanan et al., 2006; Prieto and Rivas, 2006). Moreover, they contain a limited 

number of PPIs involving protein isoforms. For example, the Protein Interaction 

Network Analysis Platform (PINA) (Wu et al., 2009) which is a comprehensive PPI 

database contains only 772 interaction pairs (1.3% of all interactions in PINA) where 

at least one of them is identified to be an alternative splicing variant from the Uniprot 

Knowledge Base (http://www.uniprot.org/). Such variants are introduced by 

alternative splicing, an important cellular phenomenon, which significantly 

contributes to transcriptome diversity.  

1.1.2.1 Alternative Splicing – The Main Source of Transcriptome Diversity 

Alternative splicing is a cellular process which regulates gene expression and leads 

to production of multiple protein isoforms from a single gene by generating 

structurally different messenger ribonucleic acids (mRNAs) from the same precursor 

mRNA (pre-mRNA) sequence (Nilsen and Graveley, 2010; Taneri et al., 2011). A 

pre-mRNA molecule consists of protein coding regions (exons) and non-coding 

regions (introns) (House and Lynch, 2008). During the process of alternative 

splicing, different mRNAs are produced by making use of different splice sites of 

exon-intron junctions (Taneri, 2005). The splicing process is controlled by a 

http://www.uniprot.org/
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mechanism called the spliceosome which is able to recognise specific sequences and 

signals marking the beginning and end of each intron within the pre-mRNA (House 

and Lynch, 2008). 

Alternative splicing and other kinds of transcript diversity mechanisms, like gene 

duplication and allelism are the sources of transcript diversity leading to a diverse 

proteome in eukaryotic genomes (Chothia et al., 2003; Graveley 2001). Gene 

duplication is the process by which a chromosome or a DNA portion is replicated 

resulting in two identical genes (Moleirinho et al., 2011). Alleles are different forms 

of a given gene that occupy the same locus on a chromosome and control the same 

trait (Campbell and Heyer, 2004). Hence, in the case of gene duplication or allelism, 

protein isoforms are generated from related genes rather than a single gene which is 

the case in alternative splicing. Protein isoforms generated through these mechanisms 

are expected to exhibit differences such as gain, loss or divergence in their functions 

given that they have different structures (Modrek and Lee, 2002; Moleirinho et al., 

2011). 

Analysing the sequence data across reference databases such as ASTD (Koscielny et 

al., 2009), ProSAS (Birzele et al., 2008) and ASAP II (Kim et al., 2007), which 

gather transcript diversity and alternative splicing events have revealed that 

alternative splicing is widespread in various genomes. For example, in homo sapiens 

(human) up to 94% (Wang et al., 2008), and in mus musculus  (mouse) 79% (Taneri 

et al., 2005) of the genes have been reported to exhibit alternative splicing. The 

proportion of the alternative splicing detected in a given genome depends on the 

number of transcript data available for that genome (Taneri, 2005). As the analysis 

techniques are improved and as a consequence the amount as well as quality of 

http://ukpmc.ac.uk/abstract/MED/12805536
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sequence data increase, the transcript diversity detected relevant to alternative 

splicing will also increase. Alternative splicing is known to be the major source of 

transcript diversity in eukaryotic genomes (Black, 2000) given that it is a widespread 

process leading to generation of multiple different mRNA transcripts from a given 

single pre-mRNA. 

1.1.2.2 Effects of Alternative Splicing on Isoform Functions and Interactions 

Protein isoforms produced from the same gene may share the same function, show 

minimal functional differences, or have entirely opposite functions (Stamm et al., 

2005). Isoforms having functional differences would be expected to show differences 

in selecting their interaction partners. For example, the human Slit receptor Robo3 

has two isoforms, which are Robo3.1 and Robo3.2 differing in their carboxy terminal 

groups. Both isoforms interact with Slit ligands during neurogenesis regulation. 

However, they exhibit opposite functions due to their structural differences. Robo3.1 

silences Slit repulsion while Robo3.2 favours Slit repulsion during the midline 

crossing events in the commissural axons (Chen et al., 2008). Another example can 

be given from the C. elegans genome. The FGF receptor, EGL-15 has two isoforms 

namely EGL-15(5A) and EGL-15(5B). These isoforms differ in their extracellular 

domains leading to different functions in the gonadal chemoattraction of the 

migrating sex myoblasts (SMs). Isoform 5A plays a role in attraction of the 

migrating SMs to the gonad, while isoform 5B plays a role in repulsion of the 

migrating SMs from the gonad (Lo et al., 2008). Although there are many studies in 

the literature which report on protein isoforms, their functions and interactions, they 

mainly focus on single genes. However, it is important to perform large-scale 

analyses in order to understand the effect of transcript diversity mechanisms on 

isoform interactions and to gain insight on their functions at a global level. 
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1.2 Overview of the Study 

In this study, a large scale analysis is performed to measure the diversity in human 

protein isoform interactions based on the systematic analysis of the scientific 

literature by using biomedical text mining methods. The main goal of this study is to 

understand the effects of transcript diversity on the human protein interaction 

networks and to gain insights into functional similarities of protein isoforms. For this 

purpose, a comprehensive text mining pipeline utilising the content of the Human 

Splicing Database, version 3 (HumanSDB3) (Taneri et al., 2004; Taneri et al., 2005) 

is developed to gather interactions of the isoforms from the scientific literature. 

HumanSDB3 provides comprehensive genomic and transcriptomic data for human 

alternatively spliced genes. However, data regarding the protein isoform interactions 

is not included in the current version of the database (Taneri et al., 2004; Taneri et 

al., 2005). 

In order to extract the interactions of the isoforms linked to the clustered transcripts 

from HumanSDB3, a total number of 4,083,094 Medline abstracts are analysed 

through an automated text mining pipeline (Kafkas et al., 2007; Kafkas et al., 2008; 

Kafkas et al., 2009a). For this purpose, a Support Vector Machine (SVM) (Vapnik, 

1995) (here called the IASEL SVM classifier) trained on the BioCreative-II IAS 

corpus (Krallinger et al., 2008) with a novel and high performing feature set is used 

for selecting interaction abstracts (Kafkas et al., 2009b). Another SVM (here called 

the PPI SVM classifier) trained by utilising syntactic parsers information on the 

AIMed corpus (Bunescu et al., 2005) is utilised to extract the isoforms‟ interactions 

from the selected abstracts (Kafkas et al., 2010a). Manual analysis on a randomly 

selected set of findings reveals that overall the developed automated methods exhibit 
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state of the art performance (53.22% precision, 68.94% recall, 60.07% F1-score). The 

isoform interactions extracted from the scientific literature are archived in an 

interaction database called the Transcript Based Isoform Interaction Database 

(TBIID) (accessible via http://tbiid.emu.edu.tr). The database contains 31,819 

distinct interactions belonging to 7,161 proteins. The content of TBIID is utilised to 

quantify the variability in isoform interactions. The variability analysis is based on 

the subset of interactions belonging to clusters having more than one distinct 

interacting protein isoform. During the variability analysis, differences in the number 

of interaction partners are quantified for a total number of 1,226 proteins and a total 

number of 1,540 interactions. The results reveal that almost all of the clusters 

analysed (99%) contain isoforms showing variation in their interactions. Similar 

results are obtained in comparison to the reference PPI databases. The results 

indicate that isoforms are characterised to interact with unique partners and hence 

they involve in different interaction networks for potentially exhibiting different 

biological functions (Kafkas et al., 2010b). This study is important given that it 

demonstrates that alternative splicing and possibly other kinds of transcript diversity 

mechanisms lead proteome diversity and thus have a potential to generate a highly 

diverse interactome. The core of this study is published in (Kafkas et al., 2011). 

1.3 Hypotheses of the Study 

The major hypotheses of this study:  For the first time, this study bridges transcript 

diversity and protein interactions to analyse the effects of transcriptome and thus 

proteome diversity on the human interactome using data from the scientific literature 

at a large scale. Although, biomedical text mining methods have been used to tackle 

PPI extraction or other kinds of information extraction tasks (Albert et al., 2003; 

http://tbiid.emu.edu.tr/
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Donaldson et al., 2003; Hakenberg et al., 2010; Miwa et al., 2009b; Waagmeester et 

al., 2009), only a few studies have benefited from such methods to gather alternative 

splicing and transcript diversity relevant information from the scientific literature 

(Cheng et al., 2008; Shah et al., 2005). However, alternatively spliced variants as 

well as other kinds of isoforms are the main sources of proteome diversity which has 

a potential to lead to significant variation in protein interactions (Jaeger et al., 2008). 

Therefore, it is important to have a global perspective on the variability in isoform 

interactions. For this purpose, an analysis is presented for the first time to quantify 

the isoform interaction variability. 

TBIID is presented as a novel database which serves as a comprehensive resource on 

isoform interactions and supports further investigation on functional differences of 

isoforms based on the interaction variability presented. 

Two designed PPI related tools, the IASEL SVM classifier and the PPI SVM 

classifier are presented as practical tools in the biomedical text mining domain. To 

the best of our knowledge, the IASEL SVM classifier used in this study has the 

second best performance reported in the literature on the BioCreative-II IAS test 

corpus. It is not possible to directly compare all the existing PPI extractors due to 

different pre-processing methods and/or evaluation metrics used to report their 

performances. However, the developed PPI extractor performs at the state-of-the art 

level on the AIMed corpus, given that its performance is within the performance 

range of the other PPI extractors reported in the literature which follows the same 

performance evaluation prodecure. 
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1.4 Organisation of the Thesis 

This thesis is organised as follows: Chapter 1 presents the introduction. In Chapter 2, 

the biological background focusing on the major transcriptome diversity source, 

alternative splicing is presented. Chapter 3 provides background in PPI extraction 

related biomedical text mining tasks. Chapter 4 provides details of the developed text 

mining systems for extracting isoform interactions from the scientific literature. 

Chapter 5 describes the isoform interaction variability analysis in detail. Chapter 6 

presents the generated database, TBIID. Comparison of the content of this database 

with publicly available PPI resources is discussed and the web interface of the 

database is described in this chapter. Lastly, in Chapter 7, the findings are 

summarised, discussed and future research directions are presented. The details of 

the evaluation metrics and SVM library which is used for designing the IASEL and 

PPI extraction classifiers are presented in the appendices. 
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   Chapter 2 

2. ALTERNATIVE SPLICING 

2.1 Eukaryotic Gene Structure 

All organisms, including the simplest uni-cellular and the most complex mammals 

consist of cells. Simple organisms (e.g. bacteria) have prokaryotic cells, while the 

more complex ones (e.g. vertebrates) have eukaryotic cells. One of the most 

fundamental differences between the two types of cells is that: a eukaryotic cell has a 

nucleus containing its DNA, while the genetic material is not membrane-bound in a 

prokaryotic cell. DNA is the heredity material nearly in every cell of almost all 

organisms (Miko and LeJeune, 2009). Structure of the DNA molecule is depicted in 

Figure 2.1. DNA stores the complete genetic information needed for building and 

maintaining an organism. This information is stored as a code made up of four 

nucleotide bases: Adenin (A), Guanine (G), Thymin (T), and Cytosine (C). DNA 

consists of two strands of nucleotides in the form of a double-helix. A nucleotide 

molecule is made up of one base, a sugar molecule (deoxyribose) and a phosphate 

molecule (Miko and LeJeune, 2009). Genes are made of DNA and are the basic 

functional units of heredity. They act as instructions to make protein molecules. In a 

eukaryotic cell, DNA is organised into structures called chromosomes. Eukaryotes 

have diverse number of genes and chromosomes (Miko and LeJeune, 2009). For 

example, it is estimated that humans have between 20,000 and 25,000 genes 

(International Human Genome Sequencing Consortium, 2004). It is known that a 
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human cell contains 23 pairs of chromosomes, where 22 pairs are autosomes and the 

remaining pair is the sex chromosomes (Miko and LeJeune, 2009).  

 

Figure 2.1: Structure of DNA 

 (Source: http://publications.nigms.nih.gov/thenewgenetics/chapter1.html) 

Eukaryotic gene expression refers to the generation of protein or RNA from the 

information contained in the gene (Larson et al., 2009). Structure of a eukaryotic 

gene is important for the regulation of gene expression. Eukaryotic genes often have 

regulatory regions that facilitate gene expression (Lynch, 2006). These regions are 

promoters, transcriptional start site, exonic, intronic regulatory motifs and 

transcriptional stop site (Figure 2.2). Transcription is the process of RNA synthesis 

from the DNA template during gene expression (see section 2.2 for details) 

(Moorhouse and Barry, 2004). Promoters which are also called transcription 

regulatory regions are located upsteam of genes. Promoters contain binding regions 

for the RNA polymerase enzyme and transcription factors, which are involved in the 

transcription regulation process. Transcription start sequences identify where DNA 

http://publications.nigms.nih.gov/thenewgenetics/chapter1.html
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transcription starts. Exons are the coding regions and introns are non-coding regions 

of a gene. Transcription stop sequences are located downstream of a gene and specify 

where RNA transcription stops.  

 

Figure 2.2: Eukaryotic Gene Structure 

 (Source: http://www.ncbi.nlm.nih.gov/books/NBK22032/) 

2.2 Eukaryotic Gene Expression and Cellular Mechanisms 

Increasing its Complexity 

Each cell‟s behaviour is controlled and determined by the functional molecules 

called proteins. Eukaryotic gene expression refers to the synthesis process of a 

functional product, which is often a protein as well as non-coding RNAs (Figure 

2.3). It starts with the process of transcription, where messenger RNA (mRNA) is 

synthesized from the DNA template (Miko and LeJeune, 2009). Transcription starts 

with the binding of RNA polymerase enzyme to the promoter region of the DNA. 

This binding process is mediated by a protein complex formed from transcription 

factors. During the process of transcription, RNA polymerase reads through the DNA 

sequence and produces a complementary RNA sequence called precursor mRNA 

(pre-mRNA) (Miko and LeJeune, 2009). A modified guanine nucleotide is added to 

the 5'-end of the pre-mRNA, shortly after the start of transcription. This process is 

termed as capping. Capping is important for maintaining mRNA's stability and 

translation (Furuichi and Shatkin, 2007). Transcription is terminated by the cleavage 

http://www.ncbi.nlm.nih.gov/books/NBK22032/
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of the produced transcript and followed by polyadenylation process, which involves 

the addition of A bases to the 3'-end of the pre-mRNA sequence. Polyadenylation is 

important for the translation and stability of mRNA molecule (Colgan and Manley, 

1997). 

A pre-mRNA molecule, which is transcribed from DNA consists of introns and 

exons. Introns are spliced out after transcription, while exons are retained in the final 

mRNA molecule. The process of intron removal and exon ligation is referred to as 

splicing (Nilsen, 2003). Splicing is performed by a ribonucleoprotein complex, called 

spliceosome. The spliceosome is composed of five small nuclear RNAs, termed as 

U1, U2, U4, U5, U6 and more than 300 distinct proteins (Nilsen, 2003). Briefly, the 

spliceosome works as follows: First it recognises the 3' and 5' splice sites of exon-

intron junctions on the pre-mRNA. The 5' and 3' splice sites on the pre-mRNA are 

the conserved sequences that define starts and ends of introns. The recognition of 5 ' 

and 3' splice sites by the spliceosome is still not well understood. Nevertheless, it is 

known that the splice sites interact with some specific RNA and protein factors for 

engaging the spliceosome into splicing (Nilsen, 2003). Once the ends are recognised, 

the nucleotide sequence between these ends is removed and the exons are spliced 

together. In many cases, splice sites are joined together in different combinations 

resulting in different mRNAs and therefore generating RNA transcript diversity 

(Matlin et al., 2005). This phenomenon is termed as alternative splicing which is 

discussed below.  

Splicing is followed by translation, which is the protein synthesis from the mRNA 

template (Moorhouse and Barry, 2004). Translation starts with the binding of the 

ribosome small subunit to the 5' end of the mRNA sequence. This process is 
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mediated by proteins called the initiation factors. During the translation process, the 

ribosome reads through the mRNA sequence and produces a protein. Termination of 

the process occurs when the ribosome reads a stop codon.  

 

Figure 2.3: Eukaryotic Gene Expression 

 (Source: http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/ApplExpression.shtml) 

Gene expression in eukaryotic cells is a complicated process which involves large 

number of protein-protein, protein-RNA and protein-DNA interactions (see section 

2.3 for details). Several mechanisms including alternative splicing, alternative 

polyadenylation and RNA editing contribute to the complexity of gene expression. 

These mechanisms are discussed in detail in the following sections. 

2.2.1 Alternative Splicing 

Alternative splicing is the process producing different mRNAs from the same 

primary pre-mRNA by making use of different splice sites (Matlin et al, 2005). This 

process is depicted in Figure 2.4. As a result of this process, structurally and 

functionally different proteins can be produced from the same gene. Alternative 

splicing is widespread in different eukaryotic organisms (Kashyap and Sharma, 

http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/ApplExpression.shtml
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2007). Hence, this process contributes to transcriptome and proteome diversity. For 

example, alternative splicing leads to production of different Neurospora 

crassa Tob55 protein isoforms (a fungal protein), which differ in their ability to 

insert β-barrel proteins into the outer mitochondrial membrane (Hoppins et al., 

2007). 

 

Figure 2.4: Alternative Splicing 
Exons are shown in blue, red, green and yellow rectangles while introns are uncoloured. Protein 

domains are shown in circles. 

 
(Source: http://designmatrix.wordpress.com/2010/03/30/introns-and-design-2/) 

Effect of alternative splicing on a single gene as well as genome-wide level has been 

analysed in several studies. Its effect on a particular gene at the transcript level can 

range from a few transcript variants to a very large number of transcript variants. For 

example, it is possible to produce up to 38,016 different mRNAs from the 

Drosophila (fruit fly) DSCAM gene, which contains 95 alternatively spliced exons 

(Celotto and Graveley, 2001). The potential number of mRNAs that can be produced 

from the DSCAM gene is more than twice the number of genes in the entire 

Drosophila genome. Splice variants are generally termed as major and minor 

isoforms. Type of a particular isoform often highly depends on the tissue in which 

http://designmatrix.wordpress.com/2010/03/30/introns-and-design-2/
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the gene is expressed (Trafton, 2008). Major isoforms more frequently appear than 

minor ones. In addition, it is possible to have multiple major isoforms for a given 

gene and they differ as the tissues differ. For example, in M. galloprovincialis 

(mussel), tropomyosin has 3 isoforms which are designated as TM1, TM2 and TM3. 

TM1 is identified as the major isoform, which appears in the various muscle tissues 

including adductor, cardiac, anterior pedal retractor, mantle and gills. On the other 

hand, TM2 and TM3 are identified as minor isoforms appearing only in the mantle 

and in both the mantle and gills, respectively (Itoh and Fujinoki, 2008).  

Genome-wide analyses on sequence data have revealed that alternative splicing is 

widespread within and across different eukaryotic genomes. In human, 81-94% 

(Koscielny et al., 2009; Taneri et al., 2005; Wang et al., 2008), in mouse 74-79% 

(Koscielny et al., 2009; Taneri et al., 2005), in rat 39-61% (Koscielny et al., 2009; 

Lee et al., 2007; Taneri et al., 2005) and in rice 42% (Filichkin et al., 2010) of genes 

have been found to exhibit alternative splicing. These findings indicate that 

alternative splicing is present across eukaryotic species and contributes to the 

transcript diversity to different degrees in various genomes. 

2.2.2 Alternative Polyadenylation 

Similar to alternative splicing, alternative polyadenylation is another widespread 

mechanism controlling the gene expression. This process leads to the generation of 

multiple mRNAs which differ in their 3' UTRs (untranslated regions) or coding 

regions from a single gene (Shen et al., 2008). Polyadenylation starts with the 

interaction of the CPSF enzyme and CstF with specific sequences (termed as poly(A) 

signals) on the generated RNA for its cleavage from the 3' UTR after the 

transcription process (Giammartino et al., 2011). Shortly after, the polyadenylation 

javascript:void(0);
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catalyser, polyadenylate polymerase creates the poly(A) tail (a sequence 

of adenine nucleotides). The protein PAB2, binds to the created poly(A) tail, for 

increasing the affinity of the catalyser. Polyadenylation stops whenever the poly(A) 

tail becomes long enough and the enzyme can no longer bind to CPSF. In the case of 

alternative polyadenylation, selection of the alternative sites depends on the 

expression of the proteins involving in polyadenylation as well as extracellular 

stimuli (Shell et al., 2005). 

In some cases, the alternative polyadenylation sites are located in the 3' UTR only. 

This results in production of multiple mRNAs differing in their 3' UTRs but all of 

them code the same protein. In some other cases, alternative polyadenylation sites 

exist in internal introns/exons resulting in generation of different protein isoforms 

(Giammartino et al., 2011). Thus, similar to alternative splicing, alternative 

polyadenylation contributes to proteome diversity. 

Genome-wide level bioinformatics studies have revealed that ~54% (Zhang, Lee and 

Tian, 2005; Tian, Zhang and Lutz, 2005) and ~60% (Shen et al., 2011) of genes in 

human and in A. thaliana respectively undergo alternative polyadenylation. These 

findings indicate that alternative polyadenylation plays a significant role in gene 

expression regulation across different species. 

2.2.3 RNA Editing 

RNA editing is a means for post-transcriptional alteration of RNA sequences, which 

can occur in different forms: nucleotide insertion, deletion and substitution 

(Farajollahi and Maas, 2010). RNA editing alters the basic coding sequence only. 

Thus, it does not include RNA processing events which are the cases in splicing and 

http://en.wikipedia.org/wiki/Adenine
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polyadenylation.  RNA editing takes place prior to splicing of the pre-mRNA; where 

these modifications can also result in alternative splicing. 

RNA editing can alter the genetic information content carried by an mRNA 

transcript, both by changing the coding sequence or by creating new splicing sites. 

Edited RNA transcripts exhibit different sequences compared to their unedited 

counterpart transcripts. Therefore, they may show different functional activities from 

that shown by the unedited transcripts. Hence, RNA editing can increase the 

proteome complexity of organisms. 

Among the various types of RNA editing, the A-to-I base modification is the most 

widespread type in higher eukaryotes (Nishikura, 2010). During the A-to-I editing, 

adenosine (A) residues are deaminated and changed into inosine (I) residues. The 

editing of adenosines is catalysed by a small family of enzymes termed adenosine 

deaminases acting on RNA (ADARs) (Reenan, 2001). There are 3 different ADARs 

in human; ADAR1, ADAR2 and ADAR3 where the first two ones are responsible 

from most of the A-to-I editing process (Farajollahi and Maas, 2010). ADAR1 and 

ADAR2 are ubiquitously expressed in the brain, where 1/17,000 nucleotide is edited 

(Paul and Bass, 1998). Other known RNA editing types include C-to-U, G-to-A, and 

U-to-C.  In C-to-U editing, a cytidine (C) nucletide is deaminated and changed into a 

uridine (U). The ApoBec-1 enzyme plays a catalyser role in the editing of cytidines 

(Chester et al., 2000). For the case of G-to-A, U-to-C editing, neither the molecular 

mechanism(s) nor the involved enzymes are known to date. 
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2.3 Mechanism and Types of Alternative Splicing 

The exons to be retained in the final mRNA molecule are determined by the process 

of splicing. Regulation and selection of splice sites is done by trans-acting protein 

(repressors and activators) networks which bind to cis-acting sites (silencers and 

enhancers) of the RNA forming splicing signals (Wang and Burge, 2008). In addition 

to these signals, there are other signals playing a role in alternative splice site 

selection. Exons and introns may have enhancer and silencer sites where proteins can 

bind and regulate alternative splice site selection. These sites are called Exonic 

Splicing Enhancer (ESE), Exonic Splicing Silencer (ESS), Intronic Splicing 

Enhancer (ISE) and Intronic Splicing Silencer (ISS) (Cartegni et al., 2002). 

Splicing activator proteins, which are generally members of the serine/arginine-rich 

(SR) protein family bind to ESEs and enable Exon Definition which is the process of 

recognition of a particular exon by the spliceosome (Cartegni et al., 2002; Matlin et 

al., 2005). They may also bind to ISEs and can promote Intron Definition which is 

the process of recognition of a particular intron by the spliceosome. 

Splicing repressor proteins, such as heterogeneous nuclear ribonucleoproteins 

(hnRNPs) family including hnRNPA1 and polypyrimidine tract binding protein 

(PTB), bind to ESSs and silence splicing (Cartegni et al., 2002). They may also bind 

to ISSs and result in skipping of alternative exons (Cartegni et al., 2002; Matlin et 

al., 2005)  

There are five main types of alternative splicing (Figure 2.5). These are listed below: 
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(a) Cassette-exon inclusion or skipping: In this type, an exon may be retained or 

spliced out of the pre-mRNA.  

(b) Alternative 3' splice-site selection: In this type, an alternative 3' splice site 

(acceptor) is used. This changes the 5' boundary of the downstream exon. 

(c) Alternative 5' splice-site selection: In this type of splicing, an alternative 5' splice 

site (donor) is used. This changes the 3' boundary of the upstream exon. 

(d) Mutually exclusive exons: In this type of splicing, only one of two exons is 

retained in mRNAs, but not both of them. 

(e) Intron retention: In this type, a sequence may be retained to the final mRNA or 

spliced out as an intron. This type is different than exon skipping given that the 

sequence retained is not flanked by introns. 

 

Figure 2.5: Types of Alternative Splicing 
Constitutive exons are those which are not spliced out by a splicing reaction 

 (Source: (Cartegni et al., 2002)) 
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2.4 Regulation of Alternative Splicing 

During the process of alternative splicing, different protein coding regions (exons) 

are combined in different ways. In this process, the choice of splice sites to be 

combined depends on interaction of the protein factors with specific sequences 

(signals) on the mRNA. Hence, alternative splicing is the result of a complex 

regulatory network depending on large number of sequences and factors. Specific 

sequences which take part in the process of alternative splicing are splicing 

enhancers and silencers (cis-acting elements) located on the pre-mRNA molecule 

which can lead to the selection or skipping of a particular splice site respectively. 

Protein factors (trans-acting elements) can affect the splicing process by binding to 

cis-acting elements or the spliceosome. Additionally, tissues, physiological 

conditions like stress, as well as developmental stages of organisms can play a role in 

the regulation of alternative splicing (Matlin et al., 2005; Woodley and Valcarcel 

2002).  

Recent large-scale studies have shown that alternative splicing is a tissue specific 

process (Castle et al., 2008; Wang et al., 2008). For example, Castle and colleagues 

have studied alternative splicing events in 48 different human tissues and have 

shown that 42% of the exons analysed are differently expressed in at least one of the 

tissues (Castle et al., 2008). Tissue specificity of alternative splicing is mainly driven 

by tissue-specific trans-acting factors targeting cis-acting RNA elements (Black 

2003). For example, an RNA-binding protein in mouse called Fox-1 is expressed in 

three different tissues; brain, heart, and skeletal muscle. However, it regulates 

alternative splicing of the F1γ and α-actinin genes in muscle only (Jin et al., 2003). 
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Trans-acting factors also play a role in the regulation of alternative splicing events in 

specific developmental stages and/or psychological conditions. In C. elegans, the 

Fox-1 protein binds to the xol-1 gene and regulates its alternative splicing during the 

sex determination phase (Meyer 2000). In mouse, neuronal acetylcholinesterase 

(AChE) is alternatively spliced during the neuronal development phase. SC35 protein 

is one of the splicing factors regulating alternative splicing of this particular gene. 

Detailed analysis on AChE‟s alternative splicing events have revealed that under 

stress, increased SC35 leads to replacement of AChE-S by the AChE-R splicing 

variant (Meshorer et al., 2005). 

Regulation of alternative splicing is very complicated and disturbance of this process 

such as mutations in cis-acting elements or trans-acting factors can cause diseases 

like cancer (Faustino and Cooper, 2003). For example, some variants of BRCA1 

(Breast cancer gene 1) play a role in hereditary breast cancers. Such variants are 

generated due to an inherited nonsense mutation in a particular exon (exon 18) which 

causes disturbance of an exon silencing enhancer. This alters the binding of splicing 

factor, the SR protein SF2/ASF, leading to inappropriate skipping of the exon 18 

(Millevoi et al., 2009). Therefore, it is important to analyse the role of alternative 

splicing in gene regulation at a large scale (Ramani et al., 2010) for understanding 

the diseases associated with its mechanism and enabling discovery of therapeutic 

drugs. 

2.5 Conservation of Alternative Splicing 

Splicing is a conserved mechanism in eukaryotes. The conserved splicing mechanism 

consists of the splicing signals that enableRNA recognition by the spliceosome (e.g. 

exon-intron junctions at the 5' and 3' ends of introns) and the core of the machinery 
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which is formed by five spliceosomal small nuclear ribonucleoproteins and many 

protein factors (Keren et al., 2010). Comparative genomic studies focusing on 

different eukaryotes, especially vertebrates have revealed that they have a high level 

of genetic similarity. For example, cats have 90% (Pontius et al., 2007), cows have 

80% (Elsik et al., 2009) and mice have 80% (Mouse Genome Sequencing 

Consortium, 2002) genetic identity to humans. Such genomes share high number of 

genes, usually with conserved intron-exon structures. Scientists have studied 

evolutionarily conservation of alternative splicing by focusing on such conserved 

genes (orthologous) between different genomes. They mainly have analysed 

alternative splicing patterns (Baek and Green, 2005; Nurtdinov et al., 2007; Sorek 

and Ast, 2003; Thanaraj et al., 2003). For example, in a large scale study, 1,753 

constitutive and 243 alternative exons (exons that are alternatively spliced across 

species) which are conserved between human and mouse genomes have been 

reported (Sorek and Ast, 2003). In another large scale study, it has been estimated 

that 7.2% (± 1.1%) of the human exons which are conserved in the mouse genome 

undergo alternative splicing in both genomes (Sorek et al., 2006).  Analyses on the 

conserved exons have shown that alternative exons are less conserved than 

constitutive exons in eukaryotes (Keren et al., 2010; Nurtdinov et al., 2007). In 

addition to exonic sequences, intronic sequences are also evolutionarily conserved. 

Thanaraj and colleagues have shown that 15% of the alternative and 67% of the 

constitutive human introns are conserved in mouse (Thanaraj et al, 2003).  

Evolutionary conservation of splicing patterns provides insights into the functional 

significance of alternative splicing. For example, the sex determination pathway in 

Drosophila melanogaster (fruit fly) which is controlled by an alternative splicing 

cascade and is vital for the organism‟s survival evolves rapidly (Sánchez, 2008). In 
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the species that are closely related to Drosophila, the cascade exhibits slight 

differences. In other related insects, such as the Musca domestica (house fly) and the 

Ceratitis capitata (Mediterranean fruit fly), the pre-mRNA which corresponds to the 

first gene in the sex-determination pathway does not splice in a sex-specific manner 

(Sánchez, 2008). This shows that alternative splicing provides evolutionary plasticity 

given that splicing patterns constantly evolve. 

2.6 Effect of Alternative Splicing on Protein Structures 

Proteins vary in their biological activities which depend on their distinct three 

dimensional (3D) structures. The 3D structure of a protein is determined by its amino 

acid sequence which is coded by exons and translated from the mRNA sequence 

during the gene expression process. Alternative splicing leads to production of 

isoforms having differences in their amino acid sequences, and thus 3D protein 

structures by making use of different splice sites of the pre-mRNA (Möröy and 

Heyd, 2007). Since alternative splicing can insert, delete or modify functional protein 

domains (Taneri et al., 2004), differences in protein structures potentially lead to 

differences in isoform function. Therefore, exons are crucial parameters playing a 

role in transcript and thus protein diversity in eukaryotes. 

The effect of alternative splicing on a particular gene at protein function level can 

vary from the production of isoforms having the same function, to small functional 

differences to completely opposite functions. Functional differences of isoforms 

potentially lead to differences in their interaction partners. For example, the human 

gene Rab6A which plays an important role in eukaryotic cell membrane transport 

control has two isoforms, namely Rab6A and Rab6A'. Protein sequences of these 

isoforms differ in only three amino acid residues, which are located in regions 
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flanking their PM3 GTP-binding domains. Analyses on these particular isoforms 

have revealed that both of them inhibit secretion in HeLa cells, but Rab6A stimulates 

the redistribution of Golgi proteins into the endoplasmic reticulum while Rab6A' 

does not. This shows that Rab6A can induce Golgi-to-endoplasmic reticulum 

retrograde transport whereas Rab6A cannot. Furthermore, analyses have shown that 

Rab6A‟ interacts with two Rab6A protein interaction partners, namely GAPCenA 

and clone 1, but not with the kinesin-like protein Rabkinesin-6 (a Golgi-associated 

Rab6A effector). These findings suggest that alternative splicing leads to production 

of Rab6A isoforms, which exhibit functional differences and interact with distinct 

sets of protein partners (Echard et al., 2000). 

Alternative splicing events are also prevalent in plant genomes such as Arabidopsis 

thaliana. Two alternatively spliced forms of the serine-arginine-rich (SR45) protein, 

which is a pre-mRNA splicing factor, have been studied in A. thaliana (Zang and 

Mount, 2009). Isoform 1 (SR45.1) differs by 8 amino acids from isoform 2 

(SR45.2). A loss-of-function mutant plant that cannot make SR45 protein exhibits 

some developmental phenotypes affecting roots and flowers. When SR45.1 isoform 

is expressed in a mutant, the flower phenotype is restored but not the root phenotype. 

On the other hand, when SR45.2 isoform is expressed, the rooth growth is restored 

but not the floral morphology. Results show that two SR45 isoforms have distinct 

functions. Furthermore, this particular case shows that alternative splicing has an 

important role in the plant growth and development. 

In order to gain a global insight, it is important to analyse the effect of alternative 

splicing on a large scale to understand the effects of this process on proteome and 

interactome. For example, Resch and colleagues have performed a comprehensive 
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analysis on Alternative Splicing Database (ASD) to understand how alternative 

splicing affects protein domains. For this purpose, they have gathered 4422 major 

and 8962 minor isoforms from ASD and by using the PFAM and SMART domain 

databases they have identified 554 protein domains which have been modified by 

alternative splicing. In 92% of the cases (509), protein domains were partially or 

fully absent in the minor isoforms, while in 8% of the cases alternative splicing 

introduced new domains into minor isoforms. They have identified 50 different 

protein domains including some well-characterised interaction domains (like KRAB, 

Kelch) which have been preferentially removed by alternative splicing more 

frequently than average. Furthermore, they have shown on a number of selected 

examples like Kruppel transcription factors and Pbx2 that alternative splicing 

changes structure of the isoforms mainly by removing protein interaction domains 

which leads to redirection of protein interaction networks at key points (Resch et al., 

2003). 

In another large-scale study, Fardilha and colleagues have reported on the high 

interaction diversity within the human testis protein phosphatase 1 (PP1) interactome 

(Fardilha et al., 2011). PP1 is a serine/threonine-specific phosphatase, where its 

different forms form complexes with PP1 interacting proteins and affect functions of 

cell. PP1 is encoded by 3 different genes namely PP1-alpha, PP1-beta and PP1-

gamma. There are two different forms of PP1-gamma: PP1-gamma1 and PP1-

gamma2 generated through tissue-specific alternative splicing. PP1-gamma1 is 

expressed in many different tissues such as heart, brain and liver, while PP1-gamma2 

is expressed in testis and is involved in the regulation of spermatozoa motility. The 

study has targeted to identify the PP1-gamma2 interacting proteins by using several 

experimental methods (such as yeast two hybrid and co-immunoprecipitation) in 
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human testis. The formed interactome has been reported as the largest human testis 

PP1 interactome. By using this interactome, it has been shown that there is high 

diversity among the regulatory protein sets binding to PP1 isoforms in different 

tissues (77 interacting proteins in testis and 7 proteins in sperm). The reported PP1-

binding proteins serve as potential targets for pharmacological interventions. 

In short, the examples given above for large-scale analyses as well as the studies 

focusing on a single gene provide evidence that different isoforms of the same 

protein potentially are involved in different interaction networks. 
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Chapter 3 

3. TEXT MINING FOR PROTEIN-PROTEIN 

INTERACTIONS 

In response to the recent developments in the field of biomedicine, large amount of 

experimental and computational PPI data are gathered and accompanied with an 

exponential increase in the number of publications describing these findings. Hence, 

there is a great interest from scientific communities in automatically extracting PPI 

data from text which holds the promise of easily discovering biological knowledge.  

Automated PPI extraction systems reported in the literature are based on a general 

text mining system architecture which is depicted in Figure 3.1. 
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Figure 3.1: General Text Mining System Architecture for PPI Extraction  
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The system consists of following main components: 

1) Biomedical Literature Databases: Such databases are repositories keeping 

track the published biomedical text and serving as input sources for all typical 

text mining based systems. PubMed at NCBI which is the most widely used 

biomedical literature repository and United Kingdom PubMed Central 

(UKPMC) (http://ukpmc.ac.uk/) which gives access to full text articles can be 

listed as typical biomedical text resources. 

2) Information Retrieval: This component focuses on searching and gathering 

relevant documents from large document collections based on user queries. 

3) Protein Name Recognition and Gene Normalisation: The aim of this 

component is to identify protein mentions within text by their names and/or 

symbols. In some particular cases, the identified protein names are required to 

be linked to their protein database identifiers with an additional step called as 

normalisation. Identifying protein mentions (and normalising them) before 

attempting to extract interactions between them is strictly mandatory for this 

particular system. Therefore, success of this process in terms of recall and 

precision plays a crucial role in PPI extraction. 

4) Interaction Article Selection: Initial large set of retrieved documents by 

component (1) can be further processed to sub-select documents which are 

likely to report on PPIs. Performing this process before PPI extraction is not as 

crucial as protein name recognition. Nevertheless, it is believed that this 

process increases success rate of PPI extraction (Krallinger et al., 2008). 

5) PPI Extraction: PPI extraction is commonly addressed as identifying binary 

relationship between two proteins. This component remains as the core 

module in this particular text mining system. 

http://ukpmc.ac.uk/
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6) Visualization: This component provides an interactive and user friendly way 

to end-users for utilising with the gathered knowledge. Although integration of 

this module in to the architecture is not mandatory, visualization helps to 

disclose the findings to the community working in the field of biomedicine 

and hence it can be considered to be very a rewarding component. 

Following sub-sections provide background in detail on the system components 

presented above. 

3.1 Information Retrieval 

Information retrieval (IR) deals with the representation, organisation, storage and 

access to information items such as documents and web pages (Baeza-Yates and 

Ribeiro-Neto, 2011). Early IR systems required to submit requests that were run in 

batches and took hours or even days to return results given that computers had low 

computational power and capacity at that time (Hersh, 2009). However, 

advancements in computer technology led to the development of today‟s IR systems 

which can deal with exponentially growing massive amount of data. Google 

(http://www.google.com/) which is probably the leading Web search engine and 

Entrez, the PubMed IR system at NCBI (http://www.ncbi.nlm.nih.gov/pubmed) for 

biomedical domain could be listed as most widely used IR systems.  

A typical IR system is composed of content, hardware to store the content and a 

software application enabling to access and retrieve the content based on user 

queries. There are two main processes in IR. These are indexing and retrieval. In 

indexing, metadata (i.e. meta-information about the information in the content) is 

assigned to items contained in the collection in order to retrieve them efficiently. 

http://www.google.com/
http://www.ncbi.nlm.nih.gov/pubmed
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Content can be searched either based on user-queries or documents. In query-based 

search, queries are formed by using several search terms like protein or disease name 

of interest which are often connected by Boolean operators (AND, OR, NOT). 

Documents which match metadata are retrieved by interacting with the IR system. In 

the case of document-based search, rather than several keywords, the whole 

document is provided to the system and the retrieved set is a ranked list of documents 

similar to the provided one. Google Scholar (http://scholar.google.com/) which is 

dedicated to academic literature and Entrez IR systems support both types of 

searches. 

During the last couple of decades, several challenges have been organised to evaluate 

IR systems in a community-wide manner. The largest IR challenge evaluation is the 

Text REtrieval Conferences (TREC) which started in 1992 (Harman, 1993). TREC is 

organised as an annual event where the tracks (tasks) are defined and queries as well 

as documents are provided to the challenge participants. TREC hosted Genomics 

track from 2003 to 2007 which was one of the largest as well as longest community-

wide evaluation in biomedical domain. Several tasks such as ad hoc retrieval, 

document classification and extraction of GeneRIF were included in this track. 

In PPI extraction, IR is utilised as a selection step which enables the retrieval of 

abstracts including proteins under investigation. Therefore, efficient selection of the 

input data to be processed by PPI extraction system is essential. Hence, search terms 

which are used to formulate queries for seeking the content should be carefully 

selected. 

http://scholar.google.com/
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3.2 Protein Name Recognition and Gene Normalisation 

Named Entity Recognition (NER) is the first step in many information extraction 

systems where the aim is to identify pre-defined objects called Named Entities (NE) 

in text. An NE is a word or group of words that denotes a specific object or group of 

objects. Such entities are location, person and organization as defined by 6th and 7th 

Message Understanding Conferences (MUC) in the newswire domain (Grishman and 

Sundheim, 1996; Kaufmann, 1998) and genes, chemicals, drugs, diseases, etc in the 

biomedical domain (Collier et al., 2001; Wilbur et al., 1999). In particular, NEs to be 

identified are genes/proteins in PPI extraction. This process is a crucial initial step 

affecting the overall PPI pipeline performance.   

Several approaches have been proposed in the literature for protein name 

recognition. One such approach is the dictionary-based approach. Systems relying on 

this approach such as Whatizit Swissprot (Rebholz-Schuhmann et al., 2008) often 

exploit one or more terminological resources like Swissprot DB 

(http://www.expasy.ch/sprot) and Entrez Gene DB 

(http://www.ncbi.nlm.nih.gov/gene) to identify protein name locations in text. Such 

systems generally achieve high precision with the expense of recall given that they 

utilise well defined gene/protein names. 

Another approach used to identify protein names is the rule-based. Systems based on 

this approach, such as YAPEX (Franzen et al., 2002) and KEX (Fukuda et al., 1998) 

generally utilise manually formed rules describing common naming structures for 

specific term groups by using orthographic or lexical evidences. Disadvantage of 

these systems is the generalisation problem of rules to apply new domains. 

http://www.expasy.ch/sprot
http://www.ncbi.nlm.nih.gov/gene
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In recent years, machine learning (ML) based systems have gained popularity due to 

their robustness and high accuracy in NER. Such systems like Genia tagger 

(http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/), ABNER (Settles, 2005) and 

BioTagger-GM (Torii et al., 2009) rely on a single classifier or a combination of 

multiple classifiers trained by using an ML algorithm such as Conditional Random 

Field (CRF), or SVM which employs a feature vector based on the training corpus. 

The feature vector often includes orthographic (e.g. digit, lowercase), morphological 

(e.g. prefix, suffix), and lexical features (e.g. part of speech tag). Bunescu and 

colleagues have shown in a comparative study that machine learning based protein 

name recognisers perform better than dictionary and rule based recognisers on the 

AIMed corpus (Bunescu et al., 2005). 

A number of systems reported in the literature have used ML approaches in 

combination with dictionary and/or ruled-based approaches to boost performance in 

protein name recognition. For example, NLProt (Mika and Rost, 2004) has combined 

a dictionary and a rule-based filtering module with several SVMs to tag protein 

names in text. Similarly, BioTagger-TM has utilised terminological information from 

Biothesarus (Liu et al., 2006) and UMLS (Bodenreider, 2004) using machine 

learning frameworks and system combination. 

Although there are many protein name recognisers proposed in the literature, it is 

difficult to compare their performances since they have been developed and 

evaluated based on different corpora including Genia Corpus (Ohta et al., 2002), 

Yapex (Franzen et al., 2002), BioCreative-I (Hirschman et al., 2005a) and II (Smith 

et al., 2008) datasets, and JNLPBA (Kim et al., 2004) dataset. Nevertheless, several 

challenges have been organised to allow community-wide evaluations of the protein 

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
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name recognisers. The shared task of the Joint Workshop on Natural Language 

Processing in Biomedicine and its Applications (JNLPBA-2004) (Kim et al., 2008) 

was one of such challenges. Others include, the Critical Assessment of Information 

Extraction systems in Biology (BioCreative) I and II challenges which were 

organised in 2004 and 2006 respectively (Hirschman et al., 2005a; Smith et al., 

2008). 

Despite all the efforts regarding protein name recognition, the overall performances 

of systems are still low compared to performances in the newswire domain. The 

highest scoring NER system has shown a human-curator comparable performance 

(F1-score of 96%) at MUC (Kaufmann, 1998). On the other hand, in the biomedical 

domain, best performances have been reported as F1-score values of 72.55% in 

JNLPBA-2004 (Kim et al., 2008), 83% in BioCreative-I (Yeh et al., 2005) and 

87.21% in BioCreative-II (Smith et al., 2008) which are significantly below the 

performance achieved in the newswire domain. The lower NER performances in 

biomedical domain can be attributed to several factors such as wide use of 

abbreviations, synonyms, homonyms, ambiguous names, inconsistent naming 

conventions, widespread and inconsistent use of white space and special characters 

such as „+‟, „-„  and „/‟ (Dimililer et al., 2009). Moreover, new molecular object 

names are introduced to the domain frequently and some of them are used for only a 

short time period. Hence, protein name recognition still remains as a challenging task 

in the biomedical domain and indeed, it is hard to apply in real use cases especially 

due to two factors: synonymy and ambiguity (Khalid, et al., 2008). Synonymy occurs 

when one protein name is referred to by several different names. For example, the 

protein CD95 is also named as FAS and APT1. Ambiguity occurs when the same 
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protein name can refer to more than one protein. For example, a search for the name 

CD95 in Entrez Gene DB returns 131 matches belonging to 19 different species.   

In order to stimulate developments concerning the two aforementioned factors, 

BioCreative has organised several competitions for gene normalisation (GN) task 

(Hirschman et al., 2005b; Morgan et al., 2008; Lu et al., 2011). This task involves 

recognition of the mentioned gene/protein names in text and linking them to database 

identifiers (IDs). The BioCreative challenges have introduced the first gold standard 

datasets for the GN task and have allowed implementation of a number of practical 

gene normalisers. 

The focus of BioCreative-I has been on the normalisation of gene names in the 

Medline abstracts to their corresponding Entrez Gene DB IDs for different model 

organisms including fly, mouse and yeast. This challenge has attracted 8 participants. 

Highest performances have been reported as 92% for yeast, 82% for fly, 79% for 

mouse in F1-score (Hirschman et al., 2005b). In the BioCreative-II GN task, the 

genes and proteins have been associated with human only. Therefore, this task was 

easier compared to the GN task in BioCreative-I. In total, 20 participants have 

submitted results for the task and the best system has achieved an F1-score value of 

81% (Morgan et al., 2008). In the BioCreative-III GN challenge, participants have 

been provided with full text articles instead of abstracts without any species 

information and asked to return a ranked list of gene IDs. These make the task harder 

than the GN task addressed in the two previous BioCreative challenges. The 

BioCreative-III GN challenge has attracted 14 different teams and performances 

have been reported in term of Threshold Average Precision (TAP-k), which is 

specifically used to measure the retrieval efficiency by taking ranking into 
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consideration. The highest TAP-k scores have been reported as 0.3248 (k=5), 0.3469 

(k=10), and 0.3466 (k=20) (Lu et al., 2011). 

A typical gene normaliser integrates 3 main steps: (1) recognition of gene/protein 

mentions in the text, (2) gathering a list of candidate gene IDs by mapping the 

recognised genes to their corresponding DB IDs and (3) disambiguation. Various 

methods have been proposed in the literature for each of these steps. For (1), several 

state-of-the-art performing systems such as GNAT (F1-score of 81.4% on the 

BioCreative data) (Hakenberg et al., 2008) and ProMiner (F1-score of 80% on the 

BioCreative-II data) (Fluck et al., 2007) have utilised protein name dictionaries only 

while some of them such as GeNo (F1-score of 86.4% on the BioCreative-II data) 

(Wermter et al., 2009) have employed both dictionaries as well as ML methods for 

detecting gene/protein names in text. 

For (2) mentioned above, generally, similarity matching methods such as cosine 

similarity and exact matching have been applied to generate a candidate ID list for 

each recognised protein/gene name (Fundel et al., 2007; Hakenberg et al., 2008).  

For (3) mentioned above, various similarity scores have been introduced or adopted 

from the existing solutions to eliminate false positive IDs (Dai et al., 2010; Fundel et 

al., 2007; Hakenberg et al., 2008, Wermter et al, 2009) given that multiple IDs can 

be gathered for a single gene. For example, in GNAT (Hakenberg et al., 2008) and in 

the system described by (Dai et al., 2010) external knowledge for each tagged gene, 

such as GO terms chromosome locations and alike, have been collected to calculate 

the likelihoods representing the similarity of the identified text with the knowledge to 

tackle the disambiguation problem. 
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Similarly, factors complicating the protein name recognition task play a role in gene 

normalisation. Especially ambiguity of gene/protein names with the common English 

words and with other organisms keeps this task challenging and leaves some room 

for performance improvement. 

3.3 Interaction Article Selection 

Interaction article detection can be considered as a binary text classification problem 

where the positive and negative classes correspond to relevant and irrelevant 

documents respectively. The aim of this step is to reduce the initial large number of 

retrieved documents to a manageable size by selecting those documents which are 

most likely to contain PPI.  

Although this process is important for both reducing the workload significantly and 

increasing the success rate of PPI extraction, it has been neglected by many early PPI 

extraction systems (Krallinger et al., 2008). Nevertheless, some studies carried out 

by (Marcotte et al., 2001) and (Donaldson et al., 2003) have reported the first such 

protein interaction document filtering systems by using Bayesian and machine 

learning approaches respectively. Recently, this task has been intensively studied in 

the BioCreative challenges enabling community-wide evaluations. In BioCreative-II, 

the task has been addressed as Interaction Article Subtask (IAS) revealing the first 

gold standard dataset in the domain (Krallinger et al., 2008). This challenge has 

attracted 19 participants. Most successful systems have utilised machine learning 

approaches and adopted one or more forms of term weighting schemes from the 

standard text classification problem (Lan et al., 2007, Abi-Haidar et al., 2007) while 

some have used domain dependent features such as the number of protein mentions 

in text (Abi-Haidar et al., 2007; Ehrler et al., 2007) and mentioned named entities, 



40 

 

and protein interaction verbs (Ehrler et al., 2007). The highest F1-score achieved in 

BioCreative-II IAS is 78% (Lan et al., 2007). Their approach relied on an SVM 

trained using Bag-of-Words (BOW) features in combination with protein name 

entities. Lan and colleagues have improved their system after the challenge to an F1-

score of 80.25% by combining several features including BOW, trigger words 

describing PPIs and protein name entities (Lan et al., 2009). Tsai and colleagues 

have reported an F1-score 2.90% higher than that top-ranking system in BioCreative-

II IAS (Tsai et al., 2008). In their study, they have employed SVMs and exploited 

likely positive and unlabeled data to improve the classification performance. Another 

high performing system has been developed by (Wang et al., 2008) who used the 

Adaboost (Freund and Schapire, 1997) method for feature combination and utilised 

the SVMs achieving an F1-score of 84.38% on the BioCreative-II IAS dataset. 

More recently, the task has been highlighted as Article Classification Task (ACT) in 

the BioCreative-II.5 and BioCreative-III challenges. The BioCreative-II.5 ACT was 

more challenging compared to the article selection tasks in BioCreative-II and III 

given that full texts have been provided instead of abstracts (Lietner et al., 2010). In 

addition, in the BioCreative-II.5 and III challenges, participants have been asked to 

order articles by their likelihood to contain PPIs, in principle having the true hits in 

the top ranks. The evaluation scheme to be used had to make convenience for 

measuring performances of the systems by taking into account the produced ranked 

list of results that would match the gold standard. Therefore, an evaluation scheme 

called area under the interpolated precision/recall-curve (AUC iP/R) has been 

selected (Bradley, 1997). This scheme ideally measures precision and recall with 

respect to the ranked list of results generated by the systems. 
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In the BioCreative-II.5 challenge, the participants have been provided with training 

and test datasets each one containing 595 full text FEBS letters articles. 61 and 63 of 

these sets have been labelled as PPI relevant articles in the test and training sets 

respectively. This challenge has attracted 8 participants. Similar to the Biocreative-II 

IAS challenge, the best performing systems have utilised methods from machine 

learning and the best performance has been reported as an AUC iP/R value of 67.8% 

(Leitner et al., 2010).  

The BioCreative-III ACT challenge has attracted 10 participants. They have been 

provided with a balanced training set consisting of 2280 Medline abstracts, a 

development and a test set consisting of 4000 and 6000 abstracts respectively. 15% 

of these sets have been identified as PPI relevant abstracts. In this challenge, 

participants have relied on generally statistical methods like chi-square, mutual 

information and frequency cut-off for feature selection or term weighting. Some of 

them have also used dimensionality reduction methods on top of their features 

(Agarwal et al., 2010; Doğan et al., 2010; Fontaine et al., 2010; Lourenco et al., 

2010). Half of the participants have used, either SVM or SVM in combination with 

another supervised machine learning approach for selecting interaction abstracts 

(Lourenco et al., 2010; Agarwal et al, 2010; Wang et al., 2010; Doğan et al., 2010). 

For example, (Agarwal et al., 2010) has used Naive Bayes and (Doğan et al., 2010) 

has used Nearest Neighbour. The best performing system has used a Huber classifier 

(Zhang 2004) and achieved an F1-score value of 61.42% with 67.98% AUC iP/R 

(Kim and Wilbur 2010). In this study, they have utilised grammatical relations 

extracted by C&C parser (Curran et al., 2007) which indicates dependency relations 

between words to design their classifier. In addition to grammatical relations, they 

have used MeSH terms, unigrams, bigrams, trigrams, gene tagging (generated from 
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the grammatical relations by replacing protein names with a special tag) and meta 

features (automatically induced meta bigram features).  

3.4 Protein-Protein Interaction Extraction 

PPI extraction is widely studied in the literature given that PPIs are crucial in 

analysing the cellular processes including signalling, regulation and metabolism at 

system biology level. Several approaches have been proposed to extract PPIs from 

the biomedical literature. Early studies have used the co-occurrence statistics of 

proteins (Shatkay et al., 2000; Stapley et al., 2000) and pre-defined patterns 

(templates) expressing rules (Blaschke et al., 1999; Hatzivassiloglou and Weng, 

2002; Ono et al., 2001; Wong 2001) for PPI extraction. For example Ono and 

colleagues have used protein mentions, POS-tags of tokens constituting the sentences 

and a set of interaction keywords to form the patterns (Ono et al., 2001). Their 

system have been reported to achieve >80% recall and >90% precision. 

Several studies have utilised parsers to parse sentences either fully (Friedman et al., 

2001) or partially (shallow) (Thomas et al., 2000) to form more complicated 

templates with syntactic and semantic constraints. Shallow-parsing based systems 

decompose the sentences partially, identify certain phrasal components and extract 

local dependencies between them. (Yang et al., 2009) has employed a link grammar 

to analyse syntactic roles within sentences while (Fundel et al., 2007) has utilised a 

dependency parser for the PPI extraction which has been estimated to achieve 80% 

precision and 80% recall. Some rule-based PPI extraction systems have adopted 

dynamic programming techniques to discover patterns automatically and handle 

complex cases such as the system reported in (Huang et al., 2004). This system has 

achieved about 80.0% recall and about 80.5% precision. Co-occurrence and rule-
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based methods are known to have some drawbacks. Typically, co-occurrence based 

systems achieve high recall at the expense of low precision. The drawback associated 

with rule-based systems is the discovery of new patterns and applicability of rules to 

other data since usually they are generated by using a single training dataset. 

In recent years, several publicly available PPI corpora such as AIMed (Bunescu et 

al., 2005), BioInfer (Pyysalo et al., 2007) and HPRD50 (Fundel et al., 2007), 

IEPA (Ding et al., 2002) and LLL (Nedellec 2005) as well as BioCreative datasets 

(Krallinger et al., 2008; Leitner et al., 2010) have been developed. These corpora 

make it convenient to implement and evaluate ML based PPI extraction systems. ML 

approaches such as SVM (Miwa et al., 2009a; Miyao et al., 2008; Yang et al., 

2010a), maximum entropy (Sun et al., 2007) and bayesian network (Chowdhary et 

al., 2009) have been extensively used to develop PPI extraction systems. Such 

systems can extract PPIs by learning rules automatically from a corpus based on a 

feature set as opposed to rule-based method that needs domain expert aid to define a 

set of rules. The feature set often includes, standard bag-of-word (Landeghem et al., 

2008; Mutsumori et al., 2006), POS-tag and orthographic (Giuliano et al., 2006) and 

syntactic features obtained through high-quality domain specific dependency and 

deep parsers such as Charniak-Lease (Andrew et al., 2007), Ksdep (Sagae and Tsujii, 

2007) and Enju (Miyao and Tsujii, 2008). In many recent studies, such parsers have 

been extensively used to extract different features based on the syntactic and 

semantic relations between words. (Airola et al., 2008; Erkan et al., 2007; Miwa et 

al., 2009a; Miwa et al., 2009b; Miyao et al., 2008; Sætre et al., 2007; Yang  et al., 

2011). Such studies have proven that use of the syntactic features and combining 

different kernels (e.g. tree, linear) can boost performance in PPI extraction. For 

example, (Sætre et al.; 2007) has used an SVM with a tree kernel for syntactic 

http://www.sciencedirect.com/science/article/pii/S1532046409001129#bib23
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shortest path features and a linear kernel for context features related to words 

between, before and after the target protein pair. This system has achieved an F1-

score of 37.80% on the AIMed corpus when only the linear kernel utilising BOW 

features is used. The performance has been increased to 52% when all the kernels are 

combined. Alternatively, (Airola et al., 2008) has proposed an all-path graph kernel. 

In this approach, a given sentence is represented as a dependency graph and 

dependencies connecting two entities outside the shortest path as well as on the 

shortest path are considered. This method has been reported to achieve an F1-score of 

56.40% on AIMed. Miwa and colleagues have combined all the lexical and syntactic 

parsing features using multiple kernels to alleviate the limitations of each feature 

(Miwa et al., 2008; Miwa et al., 2009a; Miwa et al., 2009b). Their systems have 

achieved at the state-of-the-art level on different benchmark data sets including 

AIMed (>60% F1-score). (Yang et al., 2011) has proposed to use weighted linear 

combination of the individual kernels proposed by Miwa and colleagues instead of 

assigning the same weight to each one. The system has achieved at the-state-of-the-

art performance on different benchmark corpora (64.41% F1-score on AIMed). In 

(Yang et al., 2010b), the effect of different kernel combination strategies has been 

investigated. It has been reported that using ranking SVM for combining different 

kernels achieves the best performance among the methods used (64.88% F1-score). 

The benchmark datasets available for the PPI extraction task are small. Therefore, 

the supervised machine learning methods tend to suffer from the data sparseness 

problems given that they attempt to obtain knowledge from a limited amount of 

labelled data (Miwa et al., 200b). Therefore, Li and colleagues have proposed to use 

unlabeled biomedical texts to enhance the performance of supervised learning for 

PPI extraction (Li et al., 2010). Their semi-supervised learning algorithm trained by 
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using local lexical features such as words and n-grams surrounding the protein pair 

of interest has achieved an F1-score of 63.60% on AIMed.  

Apart from the proposed methods, the impacts of individual parsers, features as well 

as kernels on the PPI extraction have been investigated. (Miyao et al. 2008) has 

shown that the accuracy of syntactic parsers play a role in the overall performance of 

the PPI systems. (Landeghem et al., 2008) has analysed the effect of syntactic and 

lexical features on different publicly available PPI datasets. Similarly, (Niu et al., 

2010) has analysed various features including, lexical, interaction keyword, 

dependency, pattern and phrase. The effect of various kernels such as, tree, graph on 

PPI extraction has been analysed in (Tikk et al., 2010). In this study, the methods 

have been evaluated on different PPI datasets using cross-validation, cross-learning 

and cross-corpus evaluation. Their study has shown that the kernels utilising 

dependency trees generally perform better than kernels based on syntactic trees. 

A wide range of results have been reported in the literature for the PPI extraction 

systems. Unfortunately, direct comparison of the systems is difficult due to 

differences in evaluation resources, metrics and strategies used to develop these 

systems (Aiorola et al., 2008; Sætre et al., 2007). While some systems have been 

reported to achieve 86-95% recall and precision (Ono et al., 2001), in the recent 

BioCreative-II and II.5 challenges the best systems have been reported to achieve 

29% (Krallinger et al., 2008) and 30% (Leither et al., 2010) F1-score. On the other 

hand, the reported results on the AIMed corpus are ranging from 33% (Yakushiji et 

al., 2005) to 65% (Miwa et al., 2009b) F1-score. This difference is mainly due to the 

fact that in the BioCreative PPI tasks, gene normalisation is not separated from PPI 
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identification. However, these results suggest that the PPI extraction problem is far 

from solved. 

3.5 Protein-Protein Interaction Networks 

In an organism, proteins systematically interact with each other creating dynamic 

interaction networks for regulating biological activities of cells. Hence, to fully 

observe the functional organization of the proteome efforts are directed to establish 

graph representations called protein-protein interaction networks (PPINs) (Cho et al., 

2004). In a PPIN, vertices represent proteins and edges represent protein interactions.  

Often, PPIN data is collected and stored in public databases, such as DIP (Xenarios 

et al., 2000) and HPRD (Keshava et al., 2009). Software platforms like Cytoscape 

(Shannon et al., 2003) which specialised for graph representations of interactions are 

used to generate and analyse PPINs. Figure 3.1 is a screen shot representing the 

usage of Cytoscape for analysing a PPIN.  
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Figure 3.2: Cytoscape Screenshot Showing Analysis of a PPIN 

 (Source: http://www.ncibi.org/gateway/mimiplugin.html) 

Different methods including experimental, computational and automated literature 

mining have been used to generate PPINs for different organisms such as H. pylori 

(Rain et al., 2001), S. cerevisiae (Ito et al., 2001; Uetz et al., 2000), C. elegans (Li et 

al., 2004), D. melanogaster (Giot et al., 2001), A. thaliana (Li et al., 2011), mus 

musculus (Li et al., 2010) and Homo sapiens (Stelzl et al., 2005). Such PPINs are 

being utilised to understand evolution (Stumpf et al., 2007), mechanisms of diseases 

(Chen et al., 2009; Goñi et al., 2008; Hwang et al., 2008; Ideker et al., 2008; 

Zanzoni et al., 2009;) such as cancer (Gong et al., 2010) and Alzheimer‟s disease 

(Ofran et al., 2006) and drug targets (Ruffner et al., 2007). 

There are several PPINs utilising text mining or text mining in combination with 

experimental methods in the literature. One such system is STRING (Szklarczyk et 

http://www.ncibi.org/gateway/mimiplugin.html
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al., 2011) which covers PPI data currently for more than 1100 different organisms. 

The PPI data stored in STRING is gathered based on experimental as well as text 

mining methods. Simple co-occurrence based approach is used to extract the PPIs 

from the scientific literature. 

The Information Hyperlinked Over Proteins (iHOP) (Hoffman and Valencia, 2005) is 

the first open-access, large-scale biological literature navigation system for PPIs 

containing 23.4 million sentences and 110,000 different genes from more than 2,800 

organisms. Sentences describing PPIs are extracted based on the tri-occurrence 

method which requires co-occurrence of two protein mentions and a verb describing 

protein interactions in the same sentence. 

Info-Pubmed runs on PubMed database of NCBI aiding scientists to find protein-

protein and gene-diseases associations which are extracted based on deep syntactic 

analysis of sentence structure (Ninomiya et al., 2007). 

CoPub (Fleuren et al., 2011) is a text mining based system that detects co-occurring 

biomedical concepts in the Medline abstracts. The biomedical concepts covered by 

CoPub are human, mouse and rat genes, biological processes, molecular functions 

and cellular components from GO, liver pathologies, diseases, drugs and pathways. 

The retrieved relations between terms can be visualised using the Cytoscape web 

plug-in (Shannon et al., 2003). 

Mouse PPIN which runs on Mouse protein-protein interaction DataBase (MppDB) 

(Li et al., 2010) can be given as an example for organism specific PPINs. MppDB 

contains PPI data from 6 different publicly available databases: HPRD (Keshava et 

http://medline.cos.com/
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al., 2009), IntAct (Hermjakob et al., 2004), the Biomolecular Interaction Database 

(BIND) (Bader et al., 2001), DIP (Xenarios et al., 2000), The MIPS Mammalian 

Protein-Protein Interaction Database (MIPS) (Pagel et al., 2005), MINT (Zanzoni et 

al., 2002) and also from the scientific literature. In order to gather the PPIs, first 

sentences containing co-occurrences of proteins are collected from the Medline 

abstracts. Second, a naïve Bayesian model is used on top of the sentences to filter 

false-positive interactions. Third, a SVM algorithm is further used to select protein 

pairs with physical interactions. Current version of the database includes more than 

5,000 and 10,000 interactions of mouse proteins gathered from the reference PPI 

datasets and the literature respectively. 

Another organism specific PPIN runs on the AtPID database (Li et al., 2011) which 

focuses on interactions between the Arabidopsis proteins. The PPI data covered by 

AtPID is collected through experiments and expanded by automated text mining 

methods. Currently, the database contains approximately 13,000 protein interactions.   

Despite the efforts in generating extensive PPINs, for the most of the organisms, the 

PPI data gathered is far from complete. For example, the human interactome size is 

estimated as ~650,000 (Stumpf et al., 2008). However, PINA which is one of the 

most comprehensive PPI resources currently reports only 85,053 interactions for 

human. As the experimental and biomedical text mining methods improve, the PPINs 

will be enlarged in the future and will better assist research in the domain of 

biomedicine. 

 

http://portal.acm.org/author_page.cfm?id=81100424995&coll=GUIDE&dl=GUIDE&trk=0&CFID=95977449&CFTOKEN=13300500
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Chapter 4 

4. MINING THE SCIENTIFIC LITERATURE FOR 

ISOFORM INTERACTIONS 

4.1 Dataset Used - a Human Alternative Splicing Database 

The transcript data coding protein isoforms are gathered from HumanSDB3. This 

database consists of clusters each of which containing a set of overlapping 

transcripts. Transcripts of a particular cluster are grouped according to their sequence 

similarities and are mapped to the same genomic region (locus). Methods developed 

to construct this database are described in (Taneri et al., 2004, Taneri et al., 2005). 

Briefly, a total of 4,635,471 transcript sequences are collected from UniGene human 

clusters (version no. 173) and are aligned to the genome (UCSC hg17) sequence by 

using blat (Kent, 2002). Transcripts are either full-length mRNAs or EST (Expressed 

Sequence Tag) sequences. Top 10% of the mapped transcripts are aligned to the 

genomic region by using SIM4 (Florea et al., 1998). Top scoring matches are further 

screened for having at least 75% identity to the genome and containing at least two 

exons each of which having 95% or greater identity to the genome. Clusters having 

at least three transcripts are retained otherwise were discarded. Consequently, the 

database contains a total number of 1,459,966 transcripts from 20,707 different 

clusters.  Each cluster has 70.5 transcripts on the average. 3,881 (18.69%) out of 20, 

707 clusters are invariant while remaining 16,826 (81.31%) clusters are variant 

(Taneri, 2005). A variant cluster contains transcripts exhibiting alternative splicing. 
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On the other hand, an invariant cluster does not exhibit any alternative splicing 

(Taneri, 2005). Therefore, invariant clusters were excluded from this study. Table 4.1 

shows two variant clusters of HumanSDB3 with a subset of their transcripts. The 

cluster with identifier (ID) Hs.3.chr6n.16927 contains alternatively spliced 

transcripts of gamma-aminobutyric acid (GABA) receptor, rho 1. NM_002042 and 

M62400 are GenBank IDs for two of the several overlapping transcripts clustered 

together in Hs.3.chr6n.16927. They are two different alternatively spliced transcripts 

of this gene. Cluster Hs.3.chr19n.10387 contains alternatively spliced transcripts of 

fibrillin 3. HumanSDB3 clusters are accessible through Scripps Genome Center web 

interface (http://emmy.ucsd.edu/). 

Table 4.1 Two Variant Clusters of HumanSDB3 with Subsets of Their Transcripts 

Cluster ID GenBank Ids 

Hs.3.chr6n.16927 NM_002042 
M62400 

CD672849 

AW949752 

AW949742 

Hs.3.chr19n.10387 CD634027 

CD634046 

BI523489 

NM_032447 

 

4.2 Overview of the Text Mining Pipeline 

The text mining pipeline developed to build TBIID is depicted in Figure 4.1. The 

pipeline consists of cluster based screening, abstract retrieval, abstract selection and 

PPI extraction units. The following sub-sections provide details on the units. 

 

 

 

 

http://emmy.ucsd.edu/
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4.3 Cluster Based Screening 

4.3.1 Definitions 

This section describes the definitions that are introduced and used during the 

screening process of the HumanSDB3 data. 

Defined Transcript (DT): It is a transcript which is annotated in the Entrez Gene DB 

with at least one official symbol and name.  

Following categorisation is used to distinguish the HumanSDB3 variant clusters 

according to the number of DTs in them:  

(a) Cluster with Undefined Transcripts (CUT): Such clusters do not contain any DT. 

(b) Cluster with a Single defined Transcript (CST): Such clusters contain only a 

single DT. 

(c) Cluster with Multiple defined Transcripts (CMT): Such clusters contain multiple 

DTs. 

4.3.2 Methods for Screening the Transcript Data 

During the cluster-based screening depicted in Figure 4.2, each variant cluster from 

HumanSDB3 is screened for its annotated transcripts with its official symbol, name, 

aliases and designations in the Entrez Gene DB of NCBI 

(http://www.ncbi.nlm.nih.gov/gene). Annotated transcripts are termed in this work as 

Defined Transcripts (DTs). A DT has at least one official symbol and name from 

TBIID 
PPI  

Extraction 

Abstract 

Selection 

HumanSDB3 

Cluster 

Based 

Screening 

PubMed 

Abstract 

Retrieval 

Figure 4.1: Text Mining Pipeline 

http://www.ncbi.nlm.nih.gov/gene
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Entrez Gene DB. Once the DTs are identified, each cluster is classified according to 

the number of DTs in them. A cluster which does not contain any DT is classified as 

Cluster with Undefined Transcripts (CUT). A cluster containing only a single DT is 

classified as Cluster with a Single defined Transcript (CST). A cluster containing 

multiple DTs is classified as Cluster with Multiple Defined Transcripts (CMT). 

Indeed, a very stringent procedure is applied to construct HumanSDB3. Transcripts 

of a given cluster are mapped to the same locus with high sequence similarities. 

Nevertheless, it is possible that DTs linked to the same CMT could also represent 

other kinds of isoforms, i.e. products of allelic or duplicated genes. Table 4.2 shows a 

sample CMT (cluster ID Hs.3.chr14p.5840) and a CST (cluster id Hs.3.chr15p.6725). 

The DTs with GeneBank IDs NM_000624 and CR601472 linked to the given CMT 

denote two different serpin isoforms, SERPINA5 (Entrez Gene ID:5104) and 

SERPINA3 (Entrez Gene ID:12), respectively. Analysis of this particular CMT 

based on the literature reveals that  its DTs denote isoforms encoded by two different 

serpine genes located on the human chromosome 14q32 (Illingsley et al., 1993). 

Previous studies have shown that these genes have a certain structural similarity and 

can be clustered together in the same serpin gene cluster. These evidences indicate 

that they evolved through gene duplication (Illingsley et al., 1993; Pelissier et al., 

2008; Rollini and Fournier, 1997). The CST contains a single DT with Gene Bank ID 

X04665 encoding THBS1 (Entrez Gene ID:7057) protein. 
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Table 4.2: Example CST and CMT Clusters 

Cluster 

Type  

Cluster 

 ID  

Transcript 

ID  

Gene 

ID 

Official 

Symbol  

Official Name 

CMT Hs.3.chr14p.5840 NM_000624 5104 SERPINA5 

serpin peptidase 
inhibitor, clade A (alpha-

1 antiproteinase, 

antitrypsin), member 5 

 

CMT Hs.3.chr14p.5840 CR601472 12 SERPINA3 

serpin peptidase 

inhibitor, clade A (alpha-

1 antiproteinase, 

antitrypsin), member 3 

CST Hs.3.chr15p.6725 X04665 7057 THBS1 thrombospondin 1 
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Figure 4.2: Cluster Based Screening 
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4.3.3 Analysis of Variant Clusters 

A total number of 16,826 variant clusters from HumanSDB3 are analysed in the 

cluster-based screening phase. Results documented in Table 4.3 reveal that majority 

of the clusters corresponding to 72.50% (12,192) contain only one DT (i.e. they are 

CSTs). 21.21% (3,568) of clusters are identified as CUTs. Such clusters correspond 

to empty clusters since no annotation could be found in the Entrez Gene DB for any 

of their transcripts. In addition, 3.68% (620) clusters are identified as overlapping 

clusters. An overlapping cluster contains at least one DT which shares the same 

annotation with another DT belonging to a different cluster. CUTs and overlapping 

clusters are discarded from the study since they are not relevant for this work. A 

small portion corresponding to 2.65% (446) of the variant clusters are identified as 

CMTs. Analysis reveal that there are a total of 13,174 DTs contained in 12,638 CST 

and CMT clusters.  

Table 4.3: Overview of the Distribution of HumanSDB3 Variant Clusters 

Total 
Variant 

Clusters 
CUT 

Overlapping 

Clusters 
CST CMT CST+CMT 

Numeric 16,826 3,568 620 12,192 446 12,638 

Percentage (%) 100 21.21 3.68 72.46 2.65 75.11 

 

4.4 Abstract Retrieval 

All DTs from CSTs and CMTs are used during the abstract retrieval phase. In order 

to retrieve the relevant abstracts, first a rich Search Term Set (STS) is formed for 

each DT. Then, STSs are used to search and retrieve the abstracts relevant to the DTs 

from PubMed. For this purpose, the Entrez Programming Utilities (eUtils) toolkit 

which provides remote access to the NCBI‟s infrastructure is facilitated (Bathesda, 

2010).  
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4.4.1 Methods Used for Retrieving Abstracts that Belong to Isoforms 

4.4.1.1 Search Term Set Formation 

Figure 4.3 illustrates the STS generation process. Each DT is screened in Entrez 

Gene DB of NCBI for its official symbol, name, aliases (other symbols) and 

designations (other names) by using Esearch utility of the eUtils toolkit. Relevant 

search fields for each transcript are gathered by using its GeneBank (transcript) ID as 

the search term. The general form of a query is as follows:   

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&term=GenBankID. 

In order to increase recall, each DT is also screened in the Swissprot DB, with 

additional symbols and names. Further STS expansion is achieved by using synonym 

generation. Missing nomenclature rules in protein naming complicates the abstract 

retrieval process. Often, there are more than one representation forms for a single 

protein. For example; “OMA-1”, “OMA1” and “OMA 1” are all synonyms which 

can be used for the same protein. The Entrez abstract retrieval system automatically 

expands search term with a limited extent. For example; search for either “OMA-1” 

or “OMA 1” results in same set of abstracts. However, abstracts belonging to 

“OMA1” are missed. Therefore, in order to have a complete STS, “OMA1” is 

generated, where it includes a symbol like “OMA 1” or “OMA-1” in the synonym 

generation process. Similarly, “OMA 1” is generated, where the STS includes 

“OMA1”.  

Another factor complicating the abstract retrieval is usage of common English words 

(e.g. “NOT”, “CELL”, “END”, “FISH”, “AGE”, “AIM”) and single letters (e.g. “P” 

and “H”) as symbols for proteins. Usage of such symbols results in retrieval of a very 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&term=GenBankID
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large set of abstracts, where many of them are expected to be irrelevant to the protein 

(i.e. false positive). For example, around 4,300,000 and 3,300,000 abstracts are 

retrieved from PubMed, when “CELL” and “P” are used as search terms, 

respectively. Hence, all English like words and single letters are removed from each 

final STS. 

                                                                                                                                                                                                                                                                                    

Figure 4.3: STS Generation Process                  

4.4.1.2 Retrieving the Relevant Abstracts from PubMed 

In this phase, firstly relevant abstracts for each DT are searched in PubMed by using 

Esearch utility of the eUtils toolkit. For this purpose, a query is formed for each DT 

based on its STS. The search is restricted with documents in English language and 

the human organism. Following is a sample search query for human isoform CDH5 

having a STS containing its symbol and name only: 

           Synonym Generator 

        {Generated Synonym(s)} 

NBCI‟s Entrez Gene DB 

Swissprot  DB 

      GenBank ID 

                             {Symbol,Name,Aliase(s), Designation(s)} 

                   {Additional,Symbol(s),Additional Name(s)} 

{Symbol,Name,Aliase(s),Designation(s)}  
{Additional,Symbol(s),Additional name(s)}  {Generated Synonym(s)} 
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http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=PubMed&retmax=1&use

history=y&term=(("CDH5"[Text Word]) OR ("CADHERIN 5, TYPE 2"[Text 

Word])) AND English [Lang] AND "humans"[MesH Terms] 

Two parameters are returned as search result: QueryKey and WebEnv. Relevant 

abstracts of the isoform are retrieved by facilitating these parameters and Efetch 

utility of the eUtils. General form of a query used to retrieve abstracts is as follows: 

http://www.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?retype=abstract&retmode=xml

&retstart=$retstart&retmax=20db=PubMed&query_key=$QueryKey&WebEnv=$W

ebEnv 

4.4.2 Results and Discussion on Abstract Retrieval 

4.4.2.1 Improvement on Search Term Set Size 

Total numbers of search terms gathered for different STSs is documented in Table 

4.4. There are a total of 25,001 search terms corresponding to 1.90 search terms/DT 

on the average, when only official symbols and names are used. This number 

increases to 88,371, when aliases and designations from the Entrez Gene DB are 

added to the official symbols and names (6.72 search terms/DT). The search space is 

expanded with 26,220 additional search terms obtained from the Swissprot DB. 

Hence, a total of 117,852 search terms are gathered from both repositories, 

corresponding to 8.79 search terms/DT on the average. The search space is further 

expanded with additional 56,637 generated synonyms (4.30 search terms/DT). 

Consequently, a total number of 171,238 search terms corresponding to 13.00 search 

terms/DT on the average are used to retrieve the relevant abstracts. Hence, the final 

http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=PubMed&retmax=1&usehistory=y&term
http://www.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=PubMed&retmax=1&usehistory=y&term
http://www.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?retype=abstract&retmode=xml&retstart=$retstart&retmax=20db=PubMed&query_key=$QueryKey&WebEnv=$WebEnv
http://www.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?retype=abstract&retmode=xml&retstart=$retstart&retmax=20db=PubMed&query_key=$QueryKey&WebEnv=$WebEnv
http://www.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?retype=abstract&retmode=xml&retstart=$retstart&retmax=20db=PubMed&query_key=$QueryKey&WebEnv=$WebEnv
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STS is improved by a factor of 6.84 compared to the initial STS containing official 

symbols and names only.  

Table 4.4: Number of Search Terms Corresponding to STSs 

Search Term Set 
Number of Search 

Terms 

Number of Search 

Terms/DT 

Symbols + Names (Entrez Gene DB) 25,001 1.90 

Symbols + Names + Aliases + Designations 

(Entrez Gene DB) 
88,381 6.71 

Symbols + Definitions (Swissprot DB) 26,220 1.99 

Total of Entrez Gene DB and Swissprot DB 114,601 8.70 

Generated Synonyms 56,637 4.30 

Total of Entrez Gene DB, Swissprot DB and 

Generated Synonyms 
171,238 13.00 

 

4.4.2.2 Effect of Search Term Set Expansion on Abstract Retrieval  

The effect of STS expansion on abstract retrieval is analysed and depicted in Table 

4.5. A total of 1,040,783 abstracts (79.00 abstracts/DT) are retrieved by using only 

symbol and name search fields from the Entrez Gene DB. This number dramatically 

increase to 4,002,003 (303.78 abstracts/DT) when all search fields from the Entrez 

Gene DB are used. 102,990 (7.81 abstracts/DT) additional abstracts are retrieved by 

using search terms gathered from the Swissprot DB. When search terms from both 

the Entrez Gene DB and the Swissprot DB are utilised, a total number of 4,104,993 

abstracts are retrieved (311.60 abstracts/DT). Furthermore, 82,868 additional 

abstracts are retrieved by facilitating the synonym generation. Consequently, in total 

4,187,861 relevant abstracts corresponding to 317.89 abstracts per DT on the average 

are retrieved for all DTs. The improvement is measured as a factor of 4.02 compared 

to the initial number of abstracts retrieved using STSs including official symbols and 

names only. Analysis results reveal that expansion of the STS leads to a significant 

increase in the total number of abstracts retrieved.  
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Table 4.5: Average Number of Abstracts Retrieved Corresponding to Search Term 

Sets 

Search Term Set 
Number of 

Abstracts retrieved 

Avg. Number of 

Abstracts 

retrieved/DT 

Symbols + Names (Entrez Gene DB) 1,040,783 79.00 

Symbols + Names + Aliases + Designations 

(Entrez Gene DB) 
4,002,003 303.78 

Symbols + Definitions (Swissprot DB) 102,990 7.81 

Total of Entrez Gene DB and Swissprot DB 4,104,993 311.60 

Generated Synonyms 82,868 6.29 

Total of Entrez Gene DB, Swissprot DB and 

Generated Synonyms 
4,187,861 317.89 

 

4.5 Abstract Selection 

Identification of abstracts which are likely to contain PPI information from the 

retrieved abstract set is an important prior process which decreases the workload as 

well as affects the quality of the PPI extraction task. Therefore, an Interaction 

Abstract SELection (IASEL) system is developed. Different interactions of the 

isoforms are the main focus of this study. Therefore, each abstract is screened for its 

protein mentions using the Genia tagger (http://www-tsujii.is.s.u-

tokyo.ac.jp/GENIA/tagger/) and number of distinct protein mentions is recorded. 

Abstracts containing at least two different protein names are selected for further 

investigation. Such abstracts are classified as interaction abstract or non-interaction 

abstract by using an SVM classifier (here called the IASEL SVM Classifier). Details 

of the developed classifier are provided in the following subsections.  

4.5.1 IASEL Classifier System 

The IASEL classifier system is depicted in Figure 4.4. The system is composed of a 

pre-processing unit, a feature extraction and combination unit and an SVM classifier.  

 

 

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
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Figure 4.4: IASEL System Overview  

 In the pre-processing unit, first each document is tokenised and tokens are converted 

to their stems. Next, each document is screened for its protein name mentions and all 

specific protein mentions are replaced with the word “PROT” to avoid the data 

sparseness problem. Then, all capitalisations, digits and special symbols are removed 

from the document. Genia Tagger is utilised for tokenisation, stemming and protein 

name tagging. Stop words are removed by using the list given in 

(www.pdg.cnb.uam.es/martink/LINKS/stop_word_list.txt). Tokens having length 

less than three characters are also removed, since many protein names contain more 

than two characters (Lan et al., 2007). 

In the feature extraction and combination phase, performance contributions of 5 

different term weighting schemes (TWSs) and domain specific features namely 

number of distinct protein mentions and document classification scores are 

investigated. 

SVM which is one of the most widely used machine learning based classifiers in text 

mining applications is used to select the documents covering protein-protein 

Feature Extraction and Combination 

Document classification 

score 

Classified 
Document 

SVM 
Classifier 

Term weighting scheme 

Number of distinct protein 

name mentions 

Pre-processing 

 

 

 

Input 
Document 

tokenisation,  stemming  
protein name tagging 

stop word removal, term 

length thresh-holding 

http://www.pdg.cnb.uam.es/martink/LINKS/stop_word_list.txt
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interactions (Chen et al., 2005). Robustness of these classifiers has been 

demonstrated in various text classification problems (Leopold and Kindermann, 

2002; Burges, 1998) as well as in the recent BioCreative-II IAS challenge (Krallinger 

et al., 2008). In this method, feature vectors are mapped into a higher dimensional 

space using a kernel function and then an optimal hyper-plane separating positive 

and negative data with the maximum margin is computed. Maximizing the margin 

improves generalisation ability of a given SVM classifier. The SVM
Light

 package 

(http://svmlight.joachims.org/) is utilised to implement the SVM classifier. The 

classifier is trained by using a linear kernel. 

The BioCreative-II IAS dataset is used for training the SVM classifier and testing its 

performance. The training set consists of 3536 positive which are relevant 

(interaction) abstracts and 1959 negative which are irrelevant abstracts. The 

validation set includes 338 positive and 339 negative abstracts taken from the test 

data. 

4.5.2 Features Used 

4.5.2.1 Statistical Term Weighting Schemes 

In text classification, TWSs are widely used to assign appropriate weights to the 

terms for improving the classification performance (Lan et al., 2006). In order to 

design the IASEL SVM classifier, a set of TWSs is analysed to select the best 

performing one. The set consists of 5 different TWSs utilised in general text 

classification tasks. Standard BOW (Salton and Buckley, 1988) representation is 

used to represent each document as a vector of values, where each value represents a 

weight belonging to a term found in the document. Details on the TWSs used in the 

study are provided below.  

http://svmlight.joachims.org/
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Table 4.6 shows the numbers of documents which contain term ti (i=1..M, M:total 

number of distinct terms in the training dataset) and do not contain term ti in the 

positive and negative classes. These numbers play a role in calculating weights of the 

terms based on the TWSs listed below. 

Table 4.6: Contingency Table for Document Frequency of Term ti in Different 

Classes 

Document Class it  
it  

Positive a b 

Negative c d 

 

(1) Normalised Term Frequency (NTF): 

In this scheme, a weight is assigned to each term depending on the number of 

occurrences of the term in the document (Joachims, 2002). Term frequency (TF) is 

utilised in this task since it is a traditional scheme widely used in many text 

classification systems (Lan et al., 2006). However, in order to eliminate the effect of 

the document‟s length, normalised version of the term frequency scheme is used. 

Normalised term frequency of each term is calculated by using the equation (4.1) 

(Joachims, 2002).  

NTF=
document  theoflength 

document in the   t termof  occurence ofnumber i  (4.1) 

(2) NTF x Inverse Document Frequency (NTF.IDF):  

The NTF scheme has the disadvantage of considering all terms as equally important 

while assessing the relevancy on a given document. This results in having important 

terms with little or no discriminating power in determining the relevance for a given 

document. For example, a set of documents on the protein families is likely to 



65 

 

contain the term “protein” in every document leading to overestimate the term‟s 

importance by assigning a high weight during the relevancy assessing process of a 

given document. The aim of NTF.IDF is to diminish the effect of terms which occur 

often in the set for making them meaningful in determining the relevant documents. 

Thus, high IDF scores are assigned to rare terms, whereas the IDF scores of frequent 

terms are likely to be low (Salton and Buckley, 1988).  

This weighting scheme is selected to be used since it is popularly used in many text 

classification tasks (Lan et al., 2006). NTF.IDF weight of each term is calculated by 

using the equation (4.2) (Joachims, 2002). 

)(
log 2

ca

N
NTF


  (4.2) 

where, 

N: Total number of documents in the corpus 

(3) NTF x Relevance Frequency (NTF.RF):   

The disadvantage associated with the IDF scheme lays in the absence of class 

information in calculation the term weights.  More specifically, IDF scores of the 

terms are calculated based on only the sum of document frequencies of the terms 

where the terms appear, i.e. a and c values in Table 4.6. This leads to assign the same 

IDF value to the terms having different a/c ratios. In the cases of a>c or c>a, the 

traditional IDF can fail in improving the discriminating power of terms. Hence, (Lan 

et al., 2006) has proposed the RF factor which takes a/c ratio into account. 



66 

 

NTF.RF is engaged into the analyses since its efficiency in text classification has 

been successfully demonstrated in the BioCreative-II IAS by the best performing 

system (Lan et al., 2007). NTF.RF weight of each term is calculated by using the 

equation (4.3) (Lan et al., 2006). 

)2(log 2
c

a
NTF   (4.3) 

(4) NTF x Balanced Relative Frequency (NTF.BRF): 

Tsai and colleagues have proposed the BRF factor by mentioning that RF emphasises 

terms that are more frequently appear in positive rather than negative documents but 

ignore frequencies of terms other than target ones in documents (Tsai et al., 2008). 

Therefore, RF works well when the portion of positive documents is smaller than the 

negatives one. 

NTF.BRF is used in this study since it has been utilised in one of the previous IAS 

studies reporting high classification performance on the BioCreative-II IAS dataset 

(Tsai et al., 2008). NTF.BRF weight of each term is calculated by using the equation 

(4.4). 

)2(log 2
dc

ba
NTF




  (4.4) 

 

(5) NTF x Chi-square (NTF. 2 ): 

Apart from the factors mentioned above, feature selection metrics, such as 

information gain and 2  can also be successfully used for term weighting (Lan et al., 

2006). For example, Deng and colleagues have reported that TF. 2 outperforms 
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TF.IDF  in their study which they have used an SVM for text categorisation (Deng et 

al., 2004). IDF and RF consider document frequencies of terms where the terms 

appear only (i.e. a and c numbers in Table 4.6). However, 2  considers document 

frequencies of terms where the terms do not appear (i.e. b and d numbers in Table 

4.6) as well as appear (i.e. a and c numbers in Table 4.6). 

NTF. 2 is selected to be used in this study since it is a promising term weighting 

scheme. NTF. 2 weight of each term is calculated by using the equation (4.5) (Yang 

and Pedersen 1997). 

)()()()(

)( 2

dbcadcba

bcadN
NTF




  (4.5) 

where, 

N: Total number of documents in the corpus 

4.5.2.2 Domain Specific Features 

4.5.2.2.1 Number of Distinct Protein Mentions 

It is demonstrated in (Abi-Haidar et al., 2007) that for a randomly selected 

document, the probability of being a document discussing protein interactions 

increases with the number of distinct protein mentions in the document. The 

distribution of Number of distinct Protein Mentions (NPM) in interaction and non-

interaction abstracts of the BioCreative-II IAS training set are documented (Figure 

4.5). Results show that NPM values are higher in the majority of the interaction 

abstracts compared to the non-interaction abstracts. Therefore, NPM is believed to 

serve as a good domain specific feature for the IASEL task. In general, NPM value is 

obtained by dividing the number of distinct protein mentions by the maximum 

number of distinct protein mentions in the dataset used.  
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(a) Distribution of NPM values in the 

interaction abstract set 

 

 
(b) Distribution of NPM values in the 

non-interaction abstract set 

 

Figure 4.5: Histograms Showing the Distribution of NPM in the BioCreative-II IAS 

Training Dataset 

4.5.2.2.2 Document Classification Scores 

Marcotte and colleagues have proposed a Bayesian method to classify abstracts as 

interaction or non-interaction abstracts (Marcotte et al., 2001). In this approach, first 

the “discriminating words” which are words describing PPIs are identified. Then, 

each document is assigned to a score calculated based on the frequencies of the 

discriminating words occurring in the document. A given score represents the 

likelihood of the document for being an interaction document. In this study, these 

scores are termed as Document Classification Scores (DCSs) and used as domain 

specific features to train the IASEL SVM classifier. 

Discriminating word selection is based on occurrence statistics of the words from 

two different datasets: (1) A dataset consisted of interaction abstracts only and (2) A 

dataset consisted of a specific number of randomly selected abstracts. In the 

experimental set up, a total number of 250 interaction abstracts are randomly selected 
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from the BioCreative-II IAS training set for (1). In order to form set (2), a total 

number of 61,777 abstracts are randomly selected from the PubMed DB. First, 

frequencies of all words in both dataset are calculated. Then, a “Dictionary” is 

formed from the set containing randomly selected abstracts‟ words having 

frequencies greater than a pre-specified number (this number is selected as 3 as 

suggested in (Marcotte et al., 2001). Each word is assigned to a score called the ln(p-

score) (LNP-score) indicating its discriminative power by using equation (4.6) 

ln p(n/N,f) )!ln()ln( nNfnNf   (4.6) 

where, 

N: Total number of words in the dataset containing interaction abstracts 

n: Total number of occurrences of a word in the dataset containing interaction 

abstracts 

f: Dictionary frequency of a word 

This approximation is valid when the total number of words used to generate the 

dictionary is much greater than N and when f is small. 

Words having LNP-score smaller than a pre-specified number are selected as 

“Discriminating Words” and used to form a “Discriminating Word List” (DWL).  

The formed DWL includes the words within the top 40% range of the whole list. 

Any discriminating algorithm is biased by its training set. Therefore, gene and 

protein names as well as names of specific cellular systems and pathways are 

manually removed to alleviate this problem. 
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Document class scores are calculated by using the following equation: 

S= ))(*ln( ,,

,

,

iNiI

i iN

iI

i ffN
f

f
n           (4.7) 

where, 

in : Number of occurrences of “Discriminating Word” i in the abstract 

iNf , : Dictionary frequency of “Discriminating Word” i 

iIf , : Frequency of “Discriminating Word” i in the dataset containing interaction 

abstracts 

N: Total number of words in the abstract 

Figure 4.6 shows the distribution of DCSs in the BioCreative-II IAS training dataset. 

Results demonstrate that majority of the interaction abstracts have positive scores 

while the majority of the non-interaction abstracts have scores around or less than 

zero. Hence, the usage of DCS could be extremely representative of the domain since 

it is generated from a Bayesian classifier trained on a set of biomedical documents.  
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(a) Distribution of DCS values in the 

interaction abstract set 

 

 
(b) Distribution of DCS values in the 

non-interaction abstract set 

 

Figure 4.6: Histograms showing the Distribution of DCSs in the BioCreative-II IAS 

Training Dataset 

4.5.3 Results and Discussion on Interaction Abstract Selection 

4.5.3.1 Effect of Feature Concatenation 

The effect of concatenating different features is analysed using the BioCreative-II 

IAS train and test dataset. Firstly, the performance of the SVM classifier trained 

using domain specific features only is analysed and depicted in Table 4.7. Results 

show that, the classifier achieves an F1-score value of 69.90% and 76.01% when only 

normalised NPM score and DCS is used, respectively. On the other hand, F1-score 

increases to 79.37% when NPM is concatenated with DCS since these domain 

specific features exhibit complementary precision/recall behaviours. 
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Table 4.7: Classification Performance by Using Combination of Domain Specific 

Features Only 

NPM DCS Precision(%) Recall(%) F1-Score(%) 

X   62.68 78.99 69.90 

  X 76.58 75.44 76.01 

X X 76.44 82.54 79.37 
NPM: distinct Number of Protein Mentions, DCS: Document Classification Scores, X sign indicates that the feature is used in 

the classifier design, Results are on the positive class 

Secondly, both aforementioned pre-processing techniques namely stop word removal 

and term length thresholding are applied and the effect of combining TWSs with the 

domain specific features are analysed (Table 4.8). The total number of terms is 

calculated as 43,837 and the BOW approach is used to represent the documents as a 

vector of values to the SVM classifier. When, NPM is concatenated with the term 

weights, compared to the classifiers‟ performance utilising term weights only, the 

precision decreases for all of the TWSs except the ones utilising NTF.IDF and 

NTF.
2 . On the other hand, the recall increases for all classifiers. This is reflected on 

to the F1-score value where it decreases for all classifiers except the one using 

NTF. 2 .  

When, DCS is concatenated with the term weights, precision increases for all 

classifiers while recall decreases for all classifiers except the one utilising NTF. 2 . 

This results in a decrease in F1-score for all classifiers. On the other hand, 

concatenation of term weights with the two domain specific features results in an 

increase in the F1-score values. This result is expected since combining features 

which have complementary precision/recall behaviour generally improves the 

classification performance (Zhang et al., 2007). The best performing classifier uses 

NTF. 2 term weights concatenated with the two domain specific features and 

achieves an F1-score of 81.31%. 
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Table 4.8: Classification Performance Using Different Feature Sets 

TWS NPM DCS Precision(%) Recall(%) F1-Score(%) 

NTF.IDF     73.04 82.54 77.50 

NTF.IDF X   73.20 84.02 78.24 

NTF.IDF   X 74.58 78.99 76.72 

NTF.IDF X X 75.00 83.43 78.99 

NTF     73.35 82.25 77.55 

NTF X   71.19 86.96 78.29 

NTF   X 77.74 77.51 77.62 

NTF X X 77.59 81.95 79.71 

NTF.     76.52 78.11 77.31 

NTF. X   75.27 83.73 79.27 

NTF.   X 79.76 79.29 79.52 

NTF. X X 78.51 84.32 81.31 

NTF.BRF     76.23 77.81 77.01 

NTF.BRF X   75.55 81.36 78.35 

NTF.BRF   X 77.95 76.33 77.13 

NTF.BRF X X 78.26 79.88 79.06 

NTF.RF     76.37 78.40 77.37 

NTF.RF X   76.11 81.07 78.51    

NTF.RF   X 78.79 76.92 77.84 

NTF.RF X X 78.61 80.47 79.53 
TWS: Term Weighting Scheme, NPM: distinct Number of Protein Mentions, DCS: Document Classification Scores, X sign 

indicates that the domain specific feature is concatenated to the TWS, Results are on the positive class 

In order to gain insights into the superior performance of NTF. 2  over the other 

TWSs when they are concatenated with NPM and DCS, dynamic ranges of the 

features used are analysed in Table 4.9. NTF. 2  has a larger range compared to the 

ranges of other TWSs. Therefore, its superior performance can be attributed to its 

large dynamic range of weights which fits with the dynamic ranges of the two 

domain specific features, especially with DCS. 

Table 4.9: The Maximum and Minumim Values of the Features Analysed 

Maximim/Minimum 

value for the classes 

Features 

NTF NTF.IDF NTF.RF NTF.BRF    NTF. NPM DCS 

maximim value 

(positive class) 
1.40×10-1 3.16 6.05×10-1 6.03×10-1 105.83 1 58.75 

minimum value 

(positive class) 
5.18×10-3 6.34×10-2 5.19×10-3 5.18×10-3 1.96×10-8 

4.88×10-2 
-23.22 

maximim value 

(negative class) 
1.50×10-1 2.90 4.21×10-1 4.19×10-1 98.04 1 48.52 

minimum value 

(negative class) 
4.41×10-3 5.66×10-2 4.41×10-3 4.40×10-3 1.32×10-8 0 -49.33 

 

2
2
2
2

2
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A Z-test analysis is appield on performances of the classifiers utilising TWSs in 

addition to the two domain specific features in order to understand if there is any 

statistically significant difference in the classifier performances. Z-score for each pair 

of classifier is calculated by using the following equation: 

N

FF

FF
scoreZ

BA

)1(2 


  

(4.7) 

where, 

FA and FB are the F1-scores of any two classifiers A and B respectively, 

N is the number of training documents,  

F is calculated  by (FA+FB)/2. 

 

Z-score for each pair of classifier, p(A,B) is documented in Table 4.10. The 

difference in the classifer performances is assumed to be statistically significant at a 

confidence level of 95% if Z-score>1.96. Based on this analysis, it can be concluded 

that the classifier trained by using NTF. 2  in concatenation with NPM and DCS 

performs better than the ones trained using  term weights NTF.IDF and NTF.BRF in 

concatenation with NPM and DCS. The analysis shows that, there is no statistically 

significant difference in the performances for the remaining pairs of classifiers. 
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Table 4.10: Z-scores of classifier pairs 

Feature Set Used to 

Train A 

Feature Set Used to 

Train B 
FA FB Z-score 

{NTF, NPM, DCS} {NTF.IDF, NPM, DCS} 0.7971 0.7899 0.75 

{NTF, NPM, DCS} {NTF. 2 , NPM, DCS} 0.7971 0.8131 1.70 

{NTF, NPM, DCS} {NTF.BRF, NPM, DCS} 0.7971 0.7906 0.68 

{NTF, NPM, DCS} {NTF.RF, NPM, DCS} 0.7971 0.7953 0.19 

{NTF. 2 , NPM, DCS} {NTF.IDF, NPM, DCS} 0.8131 0.7899 2.45 

{NTF. 2 , NPM, DCS} {NTF.BRF, NPM, DCS} 0.8131 0.7906 2.37 

{NTF. 2 , NPM, DCS} {NTF.RF, NPM, DCS} 0.8131 0.7953 1.89 

{NTF.IDF, NPM, DCS} {NTF.BRF, NPM, DCS} 0.7899 0.7906 0.07 

{NTF.IDF, NPM, DCS} {NTF.RF, NPM, DCS} 0.7899 0.7953 0.56 

{NTF.BRF, NPM, DCS} {NTF.RF, NPM, DCS} 0.7906 0.7953 0.49 

 

The best classification performances from Table 4.7 and Table 4.8 are compared 

with other state-of-the-art performing systems reported in the literature in Table 4.11. 

The system trained by using NTF.  , NPM and DCS is 3.31% better than the best 

system‟s performance of the BioCreative-II IAS challenge which achieves an F1-

score of 78.00% (Lan et al., 2007). Also, it is 1.06% better than the system reported 

in (Lan et al., 2009) utilising classifier combination for the IASEL task. Furthermore, 

the performance is 0.41% better than the system described in (Tsai et al., 2008) 

which reports an F1-score of 80.90%. However, it falls behind the best reported 

system in (Wang et al., 2008) by 3.07% which uses the Adaboost method for feature 

concatenation on the same data set. 

Using term weights as features in the BOW approach could suffer from large feature 

vector dimension. Therefore, the classifier‟s performance trained by using the two 

domain specific features only is also compared with the state-of-the-art systems. Its 

performance is competitive with the high performing systems listed in the table 

which use a feature set including term weights in addition to domain specific 

features. Furthermore, the performance of this system is 1.37% better than the top 

2
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ranking system in the BioCreative-II IAS challenge which uses a large feature set 

based on the NTF.RF scheme (Lan et al., 2007). However, it should be noted that, 

although, the feature vector dimension is reduced from thousands to only 2 by not 

using the BOW features in the feature set, computation of DCSs with the Naïve 

Bayes classifiers is still computationally expensive. 

Table 4.11: Performances of High-Performing IASEL Systems on the BioCretive-II 

IAS Test Set 

IASEL Study F1-Score(%) 

(Wang et al., 2008) 84.38 

SVM trained on the set {NTF.   , NPM and DSC} 81.31 

(Tsai et al.,2008) 80.91 

(Lan et al., 2009) 80.25 

SVM trained on the set {NPM and DCS} 79.37 

(Lan et al., 2007) 78.00 
 

4.5.3.2 Training a Classifier for the Selection of Interaction Abstracts 

The IASEL SVM classifier which is used for selecting the interaction abstracts from 

the set of retrieved abstracts is trained on the BioCreative-II IAS training and test 

datasets together. In order to design the classifier, performances of different feature 

sets including TWSs are compared when they are concatenated with NPM and DCS 

by using 10-fold cross validation (Table 4.12). The SVM trained with a feature set 

including term weights from NTF.
2 , NPM and DCS is selected as the IASEL SVM 

classifier given that it achieves the best F1-score value (90.59%) on the BioCreative-

II IAS dataset. 

 

 

 

 

2
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Table 4.12: Performances of Different Feature Sets on the BioCreative-II IAS 

Dataset 

Feature Set 

10-Fold Cross Validation 

Precision(%) Recall(%) F1-score(%) 

NTF.
2 + NPM + DCS 91.28 89.92 90.59 

NTF.IDF + NPM + DCS 89.97 88.77 89.36 

NTF.RF + NPM + DCS 89.27 87.28 88.26 

NTF.BRF + NPM + DCS 89.24 87.28 88.25 

NTF + NPM + DCS 89.17 87.26 89.20 
NPM: distinct Number of Protein Mentions, DCS: Document Classification Scores, + sign representes feature concatenation, 

Results are on the positive class 

 

Figure 4.7 depicts the utilisation of the IASEL SVM classifier for selecting the 

abstracts which are likely to contain PPI information from the retrieved set of 

relevant abstracts. 
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Figure 4.7: Interaction Abstract Selection 
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4.6 PPI Extraction 

PPI extraction is commonly formalised as a binary classification task where the 

system identifies the protein pairs having biological relationship in a given sentence. 

A sample interaction sentence and a pair of interest are shown in Figure 4.8.  

 

 

Figure 4.8: An Example Sentence Including PPI Data 

4.6.1 PPI Extraction System Overview   

The PPI extraction system developed for identifying the interaction pairs is depicted 

in Figure 4.9. The system consists of a pre-processing unit, a syntactic parsing unit 

and an SVM classifier. 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Overview of the PPI Extraction System 

In the pre-processing unit, first, the tagged protein names in the selected interaction 

abstracts are normalised by using GNAT (Hakenberg et al., 2008). In this study, 

normalisation is particularly required in order to link the isoforms and their 

interactions to DTs from the HumanSDB3 clusters for further analysis. Next, 

sentences having n different proteins (n>2) are selected and replicated into 

nC2 sentences. Each replicated sentence has exactly two of the protein names tagged 
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and replaced with “PROT1” and “PROT2” while the rest of the protein tags are 

replaced with “PROT”. Figure 4.10 shows 3 replicated sentences for the sentence 

shown in Figure 4.8 which includes 3 protein mentions. 

 

 

 

Figure 4.10: Example Replicated Sentences 

In the syntactic parsing module, two different syntactic parsers are employed to 

document dependency and deep relations between the words constituting the 

sentences respectively. 

The SVM classifier implemented for identifying the interaction pairs is trained by 

using multiple kernels utilising the information from two different syntactic parsers. 

For this purpose, tree kernels in SVM
Light

 (SVM-TK) (Moschitti, 2006) package is 

used. Tree kernels measure the similarity between two input trees by counting their 

common sub trees. For example, Figure 4.11 illustrates graphical representation of 

the parse trees of two noun phrases according to the syntactic tree kernels. The 

similarity between the two trees is calculated as 3 given that 3 out of 5 structures are 

identical. 

 

LEC[PROT1] induces chemotaxis and adhesion by interacting with CCR1[PROT2] and CCR8[PROT] 

LEC[PROT1] induces chemotaxis and adhesion by interacting with CCR1[PROT] and CCR8[PROT2] 

LEC[PROT] induces chemotaxis and adhesion by interacting with CCR1[PROT1] and CCR8[PROT2] 
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Figure 4.11: Example Parse Trees 

(Source: http://disi.unitn.it/moschitti/Tree-Kernel.htm) 

4.6.2 Features Used   

Features used for PPI extraction are generated by utilising the standard BOW 

approach in addition to dependency and deep relations from the syntactic parsers 

used.  

4.6.2.1 Bag-of-Words 

It‟s widely accepted that words surrounding the candidate entities potentially carry 

evidence regarding their relationship (Phan et al., 2007). Therefore, standard BOW 

representation is utilised as features. The set of features includes first three left stem 

words, first three right stem words and all the stem words between the two protein 

names. Figure 4.12 shows the BOW features for the sentence given in Figure 4.8. 

Left: - 

Between: induce, chemotaxis, and, adhesion, by, interact, with 

Right: and, PROT 

 

Figure 4.12: BOW Features 

4.6.2.2 Syntactic Relations 

Efficiency of syntactic parsing techniques in PPI extraction task have been 

demonstrated in several previous studies (Airola et al., 2008; Miwa et al., 2009a; 
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Miwa et al., 200b; Miyao et al., 2008; Sætre et al., 2007). Such studies take into 

account the grammatical content of the sentences including dependencies between 

words and deep structures rather that the word itself. The designed PPI extraction 

system uses the dependency and deep relations generated using the dependency 

parser, Ksdep (Sagae and Tsujii, 2007) and the deep parser, Enju (Miyao and Tsujii, 

2008) tuned for the biomedical domain. 

A dependency parser takes sentences as input and produces a graph for each sentence 

where the nodes are the words and the arcs are dependency links between words. 

Figure 4.13 shows a parse tree produced by Ksdep for the interaction sentence shown 

in Figure 4.8. Ksdep generates binary relations between head and dependent nodes. 

For example, in the figure, the verb “induces” is the head node of “PROT1” as well 

as “by” which are the subject and a verb modifier in the sentence respectively. 

Existences of dependent nodes “PROT1” and “by” depend on the existence of their 

head node, “induce”, in the sentence. The shortest path between the protein pairs of 

interest is used to extract dependency relations as features. Figure 4.14 shows a 

sample feature in tree format extracted from the dependency relations shown in 

Figure 4.8 where the prefix “r” refers the reverse relation. Reverse relation indicates 

that the direction of the arc between a given head-dependent pair is reverse. 

ROOT PROT1  induces  chemotaxis  and  adhesion  by  interacting  with  PROT2  and  PROT  .

SUB

P

VMOD

NMOD

OBJ
NMOD

PMOD VMOD

NMODPMOD

NMOD

   

Figure 4.13: Dependency Relations Generated by Ksdep 
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Figure 4.14: Shortest Path Dependency Feature 

A deep parser takes sentences as input and produces a graph for each sentence 

representing syntactic as well as semantic relations among the words. Figure 4.15 

shows the parse graph generated for the interaction sentence shown in Figure 4.8 by 

Enju parser. This parser uses Predicate-Argument Structure (PAS) to represent the 

semantic relations between the words. For example, in the figure, the verb “induces” 

is the predicate and the subject “PROT1” is its first argument (arg1) while the object 

“chemotaxis” is its second argument (arg2). Figure 4.16 shows an example feature in 

the tree format extracted from the deep relations shown in Figure 4.15 where the 

prefix “r” refers the reverse relation. 

PROT1  induces  chemotaxis  and  adhesion  by  interacting  with  PROT2  and  PROT 
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Figure 4.15: Deep Relations Generated by Enju 

 

 

 

Figure 4.16: Shortest Path Deep Feature  

4.6.3 Results and Discussions on PPI Extraction 

The SVM is trained on the AIMed corpus which is one of the largest PPI corpora 

consisting of 225 Medline abstracts belonging to human. In the corpus, protein 

names as well as the exact locations of statements expressing PPI information have 

(ENJU (rverb_arg12_arg1 (PROT1 interact)) (rprep_arg12_arg1 (interact 

with))(prep_arg12_arg2 (with PROT2))) 

 

 

(KSDEP (SUB (PROT1 induce))(rVMOD (induce by)) (rPMOD (by interact))(rVMOD (interact 

with))(rPMOD (with PROT))(rNMOD (PROT PROT2))) 
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been annotated providing an opportunity to develop PPI extraction systems using ML 

approaches. The corpus version and splitting procedure recommended in (Airola et 

al., 2008) are used for conducting the experiments. The dataset includes 1000 

positive and 4834 negative pairs. 

Several experiments are conducted by using different combinations of the BOW and 

syntactic features described in section 4.6.2 on the AIMed corpus. Results from these 

experiments are reported in Table 4.13. The performance is measured in an abstract 

wise 10-fold cross validation (the corpus is splitted into 10 sets including equal 

number of abstracts) by using one-answer-per-occurrence criterion. In addition, the 

separating hyper-plane of the SVM is controlled by setting the regularization 

parameter C to 2. This value is chosen by cross-validation experiments. 

Table 4.13: PPI Extraction Performance on AIMed Corpus by Using Different 

Feature Sets 

B: BOW features, K: Features extracted by using Ksdep, E: Features extracted by using Enju, T: Tree Kernel, L: Linear        

Kernel, Results are on the positive class 

 

Different syntactic parsers can handle different layers of syntactic relations. The 

dependency parser misses some deep relations whereas the deep parser misses some 

shallow relations. In addition, the kernels used have some different advantages and 

disadvantages. For example, the linear kernel utilising BOW features can combine 

the words while ignoring the order of the words and their relations. The tree kernels 

can calculate the similarity between the shortest paths while ignoring the words and 

Feature Set 
Kernel 

Type Precision(%) Recall(%) F1-Score(%) 

BOW K E T L 

X       X 51.69 37.36 42.82 

  X   X   58.63 38.30 45.61 

    X X   58.88 33.92 42.40 

  X X X   57.38 37.06 44.34 

X X   X X 58.65 49.59 53.13 

X   X X X 57.78 48.07 52.08 

X X X X X 60.77 49.70 54.20 
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paths outside of the shortest paths (Miwa et al., 2009b). Hence, different features 

capture different aspects from the sentences. In parallel to these, results show that the 

performance of the SVM classifier improves when different kernels are combined 

and it achieves the best performance (F1-score value of 54.20%) when all features are 

concatenated. This classifier called the PPI SVM classifier. 

Even though, many PPI extraction systems have been reported in the literature, each 

system has utilised different pre-processing methods resulting in different number of 

pairs from the AIMed corpus. Furthermore, different systems have used different 

evaluation procedures such as one-answer-per-occurrence (if the same protein is 

mentioned multiple times in the sentence, the interaction must be extracted for each 

occurrence) and one-answer- per-relation (multiple occurrences of the same protein 

interaction are considered one correct answer). Such factors make the comparison of 

different systems difficult (Pyysalo et al., 2008). Therefore, the PPI SVM classifier is 

compared with other systems which have reported their performances on the AIMed 

corpus by using the same splitting method with (Airola et al., 2008) only (Table 

4.14). The state-of-the-art systems generally rely on an SVM classifier and combine 

multiple kernels to tackle the PPI extraction problem. The systems reported in (Miwa 

et al., 2009a; Miwa et al., 2009b; Miwa et al., 2008; Miyao et al., 2008) have trained 

SVM classifiers which combine linear kernels utilising BOW features, tree kernels 

utilising shortest path syntactic features generated through dependency and deep 

parsers and the all-path graph kernel proposed in (Airola et al., 2008) which uses 

graph features. Miwa and colleagues have reported the highest F1-score of 65.20% 

(Miwa et al., 2009b) while the classifier using the graph kernel alone has been 

reported to achieve an F1-score of 56.40% (Airola et al., 2008). Yang and colleagues 

have expanded the feature set proposed by (Miwa et al., 2009a) with additional 
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BOW features such as interaction keywords and protein names distance (Yang et al., 

2010a) and proposed to combine the kernels by using SVM ranking (Yang et al., 

2010b) or kernel weighting approaches (Yang et al., 2011). These studies 

demonstrate that different kernel combination methods could also help to develop a 

high performing PPI classifier (F1-score of 64.88% in (Yang et al., 2010b) and F1-

score of 64.41% in (Yang et al., 2011)). Li and colleagues have shown that semi-

supervised learning is another method for designing a high performing classifier (Li 

et al., 2010). Their system has achieved an F1-score of 63.50%. On the other hand, 

lower performances have been obtained when a single kernel is used (F1-score of 

54.70% in (Liu et al., 2010) and F1-score of 53.50% in (Niu et al., 2010)). 

Table 4.14: Performances of Different PPI Extraction systems on AIMed 

B: BOW, S: features generated by using syntactic parsers, L:Linear Kernel, T:Tree Kernel G: Graph kernel, P: Precision, R: 

Recall, F: F1-Score, Results are on the positive class 

The PPI SVM classifier developed in this study has an F1-score of 54.20%. Syntactic 

features from Ksdep and Enju parsers as in (Miwa et al., 2008) are utilised to train 

the SVM classifier. However, the BOW approach used is different from the approach 

used in their studies. The BOW approach used relies on the words surrounding the 

target protein pair while their approach relies on the top 1000 words with frequency 

information surrounding the target pair. Factors, which make the direct comparison 

PPI Extraction 

Study 

#positive 

pairs 
#pairs 

Feature 

set 

Kernel 

Type 
P(%) R(%) F(%) 

(Miwa et al., 2009b) 1000 5834 B+S L+T+G 60.00 71.90 65.20 

(Yang et al., 2010b) 1000 5834 B+S L+T+G 59.57 71.16 64.88 

(Yang et al., 2011) 1000 5834 B+S L+T+G 57.72 71.07 64.41 

(Miwa et al., 2008) 1005 5648 B+S L+T+G 60.40 69.30 64.30 

(Li et al., 2010) 1000 5834 B+S L 60.47 68.31 63.50 

(Miwa et al., 2009a) 1000 5834 B+S L+T+G 55.00 68.80 60.80 

(Miyao et al., 2008) 1059 5648 B+S L+T 54.90 65.60 59.50 

(Yang et al., 2010a) 1000 5834 B+S L+T+G 49.28 70.04 57.85 

(Airola et al.,2008) 1000 5834 S G 52.90 61.80 56.40 

(Liu et al., 2010) 1000 5834 B+S  L 63.40 48.80 54.70 

Our system 1000 5834 B+S L+T 60.77 49.70 54.20 

(Niu et al., 2010) 1000 5834 B+S L 70.20 43.20 53.50 
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between the PPI SVM classifier and the others difficult, are number of pairs reported 

for the AIMed corpus, parameter tuning and F1-score calculation method. (Miyao et 

al., 2008) has included self-interacting pairs and identified ~200 less negative pairs 

than other studies in AIMed. (Aiorola et al., 2008) has applied leave-one-out 

principle to tune the parameters while Miwa and colleagues have controlled the 

position of the separating hyper-plane of the SVM by varying the threshold and 

calculating the average (Miwa et al., 2008; Miwa et al., 2009a). Furthermore, (Miwa 

et al., 2009b) has reported their performances as macro-averaged F1-score which is 

based on the calculation of F1-score per document and then averaging it across 

documents. This factor makes the comparison difficult and unfair since other systems 

as well as the classifier developed in this work report their performance using the 

one-answer-per-occurrence criterion. The PPI SVM classifier achieves high precision 

which is desired for the interaction variation analysis described in Chapter 5. The 

system‟s performance is within the acceptable range of the state of the art 

considering the issues discussed above. 

Figure 4.17 depicts the utilisation of the PPI SVM classifier for selecting the 

interaction protein pairs from the set of abstracts selected by the IASEL SVM 

classifier. 
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Figure 4.17: Interaction Pair Selection 
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4.7 Literature Mining Results 

Literature analysis results are shown in Table 4.15. A total number of 4,083,094 

abstracts are retrieved from the PubMed DB for 12,638 different human alternatively 

spliced genes. Abstracts containing less than two different protein mentions are 

removed as mentioned earlier. From the remaining set of 2,465,692 abstracts, 

205,270 abstracts are identified as containing PPI information according to the 

developed IASEL SVM classifier. From these abstracts, a total number of 267,718 

sentences containing at least two different protein names are selected and a total 

number of 1,200,483 hypothetical protein interaction pairs are generated from them. 

Each pair is tested for interaction by using the developed PPI extraction classifier. 

Consequently, a total number of 33,158 distinct interactions are identified. Self-

interacting proteins are excluded from the analysis since the interactions of different 

isoforms are the main focus of this study. 

Table 4.15: Literature Analysis Results for Human Alternatively Spliced Genes 

Phase Total 

Abstract Retrieval# 4,083,094 

Abstract Selection 
Abstract* 2,465,692 

Interaction abstracts 205,270 

PPI Extraction 

Sentence* 267,718 

Protein pairs generated 1,200,483 

Distinct Interaction protein pairs 33,158 

                 #Although in total 4,187,861 records are retrieved, 4,083,094 of them have abstract text while the 
             remaining 104,767 have title only  
           *Text containing at least two different protein mentions 
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4.8 Linking Literature Mining Results to HumanSDB3 

4.8.1. Definitions 

Following categorisation is used to distinguish between the extracted interacting 

pairs according to the cluster types of the protein partners constituting the pairs. 

(a) CMT-CMT: Both interaction partners are from CMTs. 

(b) CMT-CST: One of the interaction partners is from a CMT while the other is from 

a CST. 

(c) CMT-NA: One of the interaction partners is from a CMT while the other one 

cannot be identified as an isoform linked to any variant cluster from HumanSDB3 

(NA for Not Available). 

(d) CST-CST: Both interaction partners are form CSTs 

(e) CST-NA: One of the interaction partners is from a CST while the other one 

cannot be identified as an isoform linked to any variant cluster from HumanSDB3 

(NA for Not Available). 

4.8.2. Distribution of Isoform Interactions Based on the Validation 

against HumanSDB3 

Each extracted protein interaction pair through the developed text mining pipeline is 

validated against HumanSDB3 (Table 4.16). For this purpose, Entrez Gene DB IDs 

of the isoforms are referenced to their corresponding DTs in HumanSDB3. Both 

protein partners are confirmed in the database for a total number of 22,018 (66.40%) 

interaction pairs which constitutes the majority of the extracted interactions. Only 

one of the interaction partners could be validated in the database for a total number 

of 9,801 (29.56%) pairs. There is no reference in the database for the remaining 

1,339 (4.04%) interaction pairs. Interaction pairs having at least one protein 
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referencing to a DT in HumanSDB3 are used to construct the TBIID. In total, 31,819 

(96%) pairs of the extracted interactions are imported into TBIID. 

Table 4.16: Distribution of Interaction Pairs Based on the Validation Against 

HumanSDB3 

` Reference in HumanSDB3 
Number of 

Pairs 
Percentage (%) 

Both proteins 22,018 66.40 

Only one protein 9,801 29.56 

None 1,339 4.04 

Total 33,158 100 

 

For the purpose of interaction variability analysis to be described in Chapter 5, all the 

31,819 interaction pairs are further classified according to the cluster types of the 

protein partners as shown in Table 4.17. A total number of 102 (0.32%) pairs are 

identified as CMT-CMT type, where both protein partners belong to a CMT. For 

2,548 (8.01%) pairs, one of the proteins belongs to a CMT while the other belongs to 

a CST. A total number of 697 (2.19%) pairs are identified as CMT-NA, where one of 

the proteins belongs to a CMT while there is no reference in HumanSDB3 for the 

other. Majority of the pairs (19,368, 60.87%) are CST-CST type. CST-NA type 

represents the pairs with only one of the partners belonging to a CST, while the other 

one has no reference in HumanSDB3. A total number of 9,104 (28.61%) of the 

interaction pairs are identified as such pairs. 
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Table 4.17: Distribution of Interaction Pairs According to Cluster Types of Protein 

Partners 

Cluster Types of 

Protein Partners 

Number of 

Pairs 
Percentage (%) 

CMT-CMT 102 0.32 

CMT-CST 2,548 8.01 

CMT-NA 697 2.19 

CST-CST 19,368 60.87 

CST-NA 9,104 28.61 

Total 31,819 100 

4.9 Manual Assessment of the Text Mining Pipeline 

Text mining systems often generate systematic errors at the output level, mainly due 

to the limitations of the automated tools developed. As stated earlier, the text mining 

pipeline implemented consists of a protein name normalisation tool, an SVM 

classifier discriminating interaction abstracts and another SVM classifier for 

extracting the interaction protein pairs. An error introduced at the earlier stages of the 

pipeline can propagate causing a combined disturbance to the final output. The SVM 

classifier used for discriminating interaction abstracts is one of the best performing 

systems in the IASEL domain (F1-score of 81.31% on BioCreative-II IAS test 

dataset,  see section 4.5.2.1). Hence, the classifier performance is believed to achieve 

high enough to have sufficient recall for the analysis. However, several 

misclassification errors may araise during gene normalisation and PPI extraction 

tasks. For example, protein mentions in the abstracts are normalised to their 

corresponding Entrez Gene DB IDs by using GNAT. Although GNAT is one of the 

high performing normalisers in the domain, it comes with a limited recall (73.8%) 

due to missed protein names, their partial recognition or wrong assignments of 

protein IDs. For example the sentence “Tudor domain missense mutations, including 

one found in an SMA patient, impair the interaction between SMN and fibrillarin (as 

well as the common snRNP protein SmB)” states that “SMN” and “SmB” do interact. 
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However, the interaction information is missed (false negative) given that the GNAT 

does not normalise the protein “SmB”.  

The SVM classifier utilised in the PPI extraction task uses dependency and semantic 

relations between the tokens constituting the sentence through several syntactic 

parsers. The efficiency of use of such parsing techniques in PPI extraction task has 

been demonstrated in previous studies (Airola et al., 2008; Miwa et al., 2009b; 

Miyao et al., 2008). Nevertheless such systems often fail when the word describing 

the interaction does not occur in the shortest path between the interaction protein 

partners in the generated parse tree. The SVM classifier used in PPI extraction task is 

trained on the AIMed corpus which is a gold standard but a small corpus. It contains 

only 225 abstracts from DIP PPI database. Training the SVM classifier on such a 

small corpus limits its generalisation capabilities (the SVM classifier achieved an F1-

score of 54.20% by using 10-fold cross validation) (Miwa et al., 2009b). For 

example the sentence “CD26 mediates NH(2) terminus processing of CCL22, 

leading to the production of CCL22 (3-69) and CCL22 (5-69) that do not interact 

with CCR4” from Table 6.3 contains a negation and a coordination leading to the 

extraction of an interaction between “CCL22” and “CCR4” which is a false positive. 

Several examples of false negatives and false positives introduced by the pipeline are 

shown in Table 4.18 and Table 4.19, respectively. 
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Table 4.18: Example False Negatives 

PubMed ID Sentence Comments 

Source 

of 

Error(s) 

9878398 

“In particular, p38 was found to associate 

with itself to form a dimer, but also with 

p43, with the class I tRNA synthetases 

ArgRS and GlnRS, with the class II 

synthetases AspRS and LysRS, and with 

the bifunctional GluProRS.” 

Abstract is an 

interaction abstracts 

and GNAT detects and 

normalizes both p38 

and p43 

PPI 

Extraction 

Module 

11509571 

“Tudor domain missense mutations, 

including one found in an SMA patient, 

impair the interaction between SMN and 

fibrillarin (as well as the common snRNP 

protein SmB).” 

Abstract is an 

interaction abstracts 

and GNAT misses the 

entire protein name 

SmB 

GNAT 

1646816 

“Treatment of this PCI-binding material 

with chondroitinase ABC, but not with 

chondritinase AC or heparitinase, abolished 
binding to PCI-Sepharose, confirming the 

glycosaminoglycan nature of this material 

and suggesting the involvement of 

dermatan sulfate in binding.” 

Abstract is an 

interaction abstract and 
GNAT misses the 

entire protein name 

Sepharose 

GNAT 

 

Table 4.19: Example False Positives 

PubMed 

ID 
Sentence Comments 

Source 

of Error(s) 

11907260 

“Palmitoylation of tetraspanin proteins: 

modulation of CD151 lateral interactions, 

subcellular distribution, and integrin-

dependent cell morphology.” 

Abstract is an IA but 

the sentence is not an 

interaction sentence 

PPI 

Extraction 

Module 

12618216 

“The N-terminal non-RGS domain of human 

regulator of G-protein signalling 1 contributes 

to its ability to inhibit pheromone receptor 
signalling in yeast.” 

Abstract is not an 

interaction abstract 

and sentence is not 
definitive 

IASEL and 

PPI 

Extraction 
Module 

14517274 

“To analyze how M protein allows evasion of 

phagocytosis, we used the M22 protein, which 

has features typical of many M proteins and 

has two well-characterized regions binding 
human plasma proteins: the hypervariable 

NH2-terminal region binds C4b-binding 

protein (C4BP) , which inhibits the classical 

pathway of complement activation; and 

adjacent semivariable region binds IgA-Fc.” 

Abstract is an 

interaction abstract but 

GNAT misses some 

protein name parts of 
cb4-binding protein 

and assigns another 

GeneID to its 

abbreviation C4BP 

GNAT and 

PPI 
Extraction 

Module 

15067078 

“CD26 mediates NH(2) terminus processing of 

CCL22, leading to the production of CCL22 

(3-69) and CCL22 (5-69) that do not interact 

with CCR4.” 

Abstract is an 

interaction abstract 

and sentence contains 

negation of an 

interaction 

 

PPI 

Extraction 

 Module 
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Performance of the text mining system developed is evaluated manually. For this 

purpose, a total of 100 sentences are selected randomly and 212 protein interaction 

pairs belonging to these sentences are analysed. A total number of 91 out of 212 

pairs are identified as true positives. A total number of 80 out of 212 pairs are 

identified as false positives and the remaining 41 pairs are identified as false 

negatives. Overall, the performance of the pipeline is estimated at an F1-score of 

60.07% with 68.94% recall and 53.22% precision. 
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Chapter 5 

5. IDENTIFICATION OF THE VARIABILITY IN 

ISOFORM INTERACTIONS 

5.1 Definitions 

This section describes the definitions that are introduced and used during the process 

of variability analysis in isoform interactions. 

Following categorisation is used to distinguish CMTs (Clusters with multiple defined 

transcripts) according to the number of interacting isoforms in them: 

(a) CMTs with Multiple Interacting Isoforms (CMT/MII): Clusters with at least two 

isoforms with known interactions. 

(b) CMTs with a Single Interacting Isoform (CMT/SII): Clusters with only one 

interacting isoform. 

(c) CMT has No Interacting Isoforms (CMT/NII): Clusters which contain no 

interacting isoform.  

For a given CMT/MII, different interaction types can be distinguished between the 

isoforms: 

(a) Shared Interaction (S): In this type of interaction several isoforms have the same 

interaction partner. 

(b) Unique Interaction (U): In this type of interaction only one isoform interacts with 

a distinct partner.  
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Following categorisation is used to distinguish CMT/MIIs according to the different 

combinations of interactions contained in them:  

(a) CMT/MII having unique interactions and external interaction partners 

(CMT/MII-eU): The interaction partner is external to the CMT/MII and is unique for 

the given isoforms 

 (b) CMT/MII having shared interactions and external interaction partners 

(CMT/MII-eS): The interaction partner is external to the CMT/MII, and is shared 

between isoforms. 

(c) CMT/MII having both types of interactions and external interaction partners 

(CMT/MII-eB): Isoforms have both external unique and external shared interaction 

partners. 

 (d) CMT/MII having internal interaction partners (CMT/MII-i): Isoforms from the 

same CMT/MII could interact with one another. 

5.2 Interaction Types 

Isoforms exhibiting variability in their structures could also exhibit variability in 

their functions and thus in their interactions. The variability in their interactions 

serves as a significant indicator for the functional variability of the isoforms. 

Therefore, the distribution of isoform interactions contained in CMT clusters is 

analysed in order to assess the variability within their interactions and gain insights 

into their functional variability. For this purpose, firstly CMTs are categorised based 

on the number of interacting isoforms contained in them. Figure 5.1 illustrates this 

categorisation. If a CMT cluster contains at least two isoforms having interactions as 

shown in Figure 5.1.a then it is categorised as a CMT with Multiple Interacting 

Isoforms (CMT/MII). There are CMTs, where only one of their isoforms has 
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interactions (Figure 5.1.b). Such CMTs are categorised as CMT with only a Single 

Interacting Isoform (CMT/SII). A CMT can contain isoforms without any interaction 

information. Such a cluster is categorised as a CMT with No Interacting Isoforms 

(CMT/NII), as shown in Figure 5.1.c. 

 

Figure 5.1: Categories of CMTs Based on the Number of Interacting Isoforms 

(a)CMT/MII (b)CMT/SII (c)CMT/NII (Definitions are provided in Secion 5.1) 

 

The oval shapes represent CMTs. The black-filled circles in the CMTs represent isoforms while the 

ones outside the CMTs represent the interaction partners of the isoforms. Arrows represent 

interactions between the isoforms and their protein partners. 

Secondly, in order to assess the variation in interactions, CMT/MIIs are categorised 

according to the interaction types of their isoforms (Figure 5.2).  An isoform can 

have a Shared Interaction (S) if it has the same interaction partner with other 

isoforms. When only one isoform interacts with a distinct partner the interaction is 

termed as Unique Interaction (U). CMT/MIIs are grouped into four categories 

according to the different combinations of interactions. If the interaction partner is 

external to the CMT/MII and is unique for the given isoforms then the cluster is 

categorised as CMT/MII-eU (Figure 5.2.a). If the interaction partner is external to 

the CMT/MII, and it is shared between isoforms then the cluster is categorised as 
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CMT/MII-eS (Figure 5.2.a). Isoforms can have both external unique and external 

shared interaction partners. In such a case the cluster is categorised as CMT/MII-eB 

(Figure 5.2.c). Isoforms belonging to the same CMT/MII can have internal 

interactions. Such clusters are categorised as CMT/MII-i (Figure 5.2.d). 

 

Figure 5.2: Categories of CMT/MIIs Based on the Interaction Types of Isoforms 

(a)CMT/MII-eU (b)CMT/MII-eS (c)CMT/MII-eB (d)CMT/MII-i (Definitions are 

provided in Secion 5.1) 

 

The oval shapes represent CMTs. The black-filled circles in the CMTs represent isoforms while the 

ones outside the CMTs represent the interaction partners of the isoforms. Arrows represent 

interactions between the isoforms and their protein partners. U: Unique interaction, S: Shared 

interaction, i: Internal interaction. 

5.3 Interaction Variability Analysis 

Isoforms of a given gene can share the same function, they can show minimal 

functional differences, or they can have opposite functions (Stamm et al., 2005). 

Changes in the functional behaviours of the isoforms could be expected to be 

reflected in their interactions and consequently in their interaction partners. More 

specifically, when isoforms have unique interactions then it is expected that they 
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could exhibit different functional behaviours. On the other hand, when the isoforms 

interact with the same partners, it is expected to observe smaller functional 

variability. Therefore, distributions of shared and unique interactions of the isoforms 

are documented in order to gain insight into their functional variability. 

Literature-based distribution of interaction pairs belonging to CMTs are depicted in 

Figure 5.3. No interaction information is found for a total of 164 CMTs (CMT/NII), 

while at least one interaction pair is found for 282 CMTs. A total of 194 out of 282 

CMTs contain only one interacting isoform (CMT/SII), while the remaining 88 

CMTs contain multiple interacting isoforms (CMT/MII). A total of 12 clusters 

include isoforms having intra-cluster interactions with possible external interactions 

(CMT/MII-i). Analysis on the clusters having external interactions reveals one 

CMT/MII-eS having only shared interactions, 70 CMT-MII-eU having only unique 

interactions and 5 CMT/MII-eB clusters having both shared and unique interactions. 

Hence, 87 out of 88 (99%) clusters analysed exhibit unique interactions. This is a 

significant finding in that it indicates that the human isoforms in the CMTs exhibit 

high variability in the selection of their interaction partners. 
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Figure 5.3: Interaction Variation Analysis of CMTs Based on Automated Literature 

Mining 

(see section 5.1 for abbreviations) 

The analysis shows that CMT/SIIs are more frequent than the other CMT types 

which could be due to for several reasons. Major isoforms are more frequently 

reported in the literature compared to the minor ones given that such isoforms are 

more commonly studied in experiments. In addition, depending on the tissues as well 

as developmental stage specificity of alternative splicing, mRNA or EST sequences 

of some isoforms may have not been available during the construction phase of the 

HumanSDB3. Hence such isoforms are not included in the study. In addition, some 

interaction data could be missed by the text mining system used. 

Further investigation is carried out on 5 CMT/MII-eB and 10 out of 12 CMT/MII-i 

clusters in order to document the distribution of unique versus shared interactions 

(Figure 5.3, Table 5.1). The remaining two CMT/MII-i clusters contain only unique 

interactions. Hence, they are excluded from the analysis. All 15 clusters are 
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categorised into two classes based on the total number of isoforms contained in them 

(>2 or 2 isoforms). The average ratio of unique versus shared interactions for each 

category is measured as above 5.60 for each category. 

Table 5.1: Statistics on CMT/MII-eB and CMT/MII-i with Shared and Unique 

Interactions Based on the Literature Analysis 

Iso/CMT* 
HumanSDB3 

Cluster ID 
CMT/MII 

Type 

Nof 

Iso 

Nof 

S 

Nof 

U 

Nof 

S/Iso 

Nof 

U/Iso 
U/S 

Avg 

U/S 

 
 
 
 
 
2 
 

 
 
 
 

Hs.3.chr6p.16643 CMT/MII-i 2 22 38 11 19 1.73 

 
 
 
 
 

5.68 
 

 
 
 
 

Hs.3.chr17p.8013 CMT/MII-i 2 20 50 10 25 2.5 

Hs.3.chr11p.3558 CMT/MII-eB 2 12 24 6 12 2 

Hs.3.chr6n.17144 CMT/MII-i 2 10 46 5 23 4.6 

Hs.3.chr1n.278 CMT/MII-i 2 8 35 4 17.5 4.38 

Hs.3.chr5n.15390 CMT/MII-eB 2 8 52 4 26 6.5 

Hs.3.chr14p.5840 CMT/MII-i 2 4 25 2 12.5 6.25 

Hs.3.chr12p.4823 CMT/MII-i 2 2 40 1 20 20 

Hs.3.chr17n.8529 CMT/MII-eB 2 2 6 1 3 3 

Hs.3.chr19p.9432 CMT/MII-eB 2 2 19 1 9.5 9.5 

Hs.3.chr22p.13094 CMT/MII-i 2 2 4 1 2 2 

 
>2 

 
 

Hs.3.chr6p.16595 CMT/MII-i 3 14 38 4.67 12.67 2.71  
5.62 

 
 

Hs.3.chr3p.13906 CMT/MII-eB 3 2 11 0.67 3.67 5.5 

Hs.3.chr17n.8527 CMT/MII-i 4 5 15 1.25 3.75 3 

Hs.3.chr17n.8355 CMT/MII-i 5 4 45 0.8 9 11.25 

*CMT is either a CMT/MII-eB or a CMT/MII-i, Iso:Isoforms, Nof:Number of, Avg:Average, S:Shared interactions, U:Unique 
interactions (see section 5.1 for abbreviations) 

5.4 Validation of the Text Mining Results Against Public PPI DBs 

The literature-based interaction variability analysis results are validated against the 

results obtained based on the publicly available PPI data from PINA (Wu et al., 

2009). PINA includes binary interactions from six major PPI DBs: IntAct 

(Hermjakob i., 2004), MINT (Zanzoni et al., 2002), BioGRID (Stark et al., 2006), 

DIP (Xenarios et al., 2000), HPRD (Keshava et al., 2009) and MIPS/MPact (Pagel et 

al., 2005). In contrast to many other PPI DBs, PINA does not include either complex 

or genetic interactions. Therefore, it is suitable for the purpose of this study. All self 

and non-human interactions are removed from the PINA resulting in a 
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comprehensive PPI set including 58,221 interactions between 11,856 different human 

proteins.  

In order to validate the literature based findings, PINA is searched for the PPI data 

linked to the isoforms from all CMTs. For this purpose, Entrez Gene DB IDs of the 

isoforms are converted to their corresponding Uniprot accession numbers, given that 

protein partners in PINA are identified with their Uniprot accession numbers. 

Uniprot mapping system is utilised for the ID conversion process 

(http://www.uniprot.org/). 

Distribution of the interaction pairs gathered from PINA in the CMTs is shown in 

Figure 5.4. A total of 101 out of 446 CMTs contain no interaction information for any 

of their isoforms (CMT/NII). A total number of 187 CMTs contain only one 

interacting isoform (CMT/SII), while the remaining 158 CMTs contain multiple 

interacting isoforms (CMT/MII). Further investigation based on the interaction types 

of isoforms from the CMT/MIIs shows that there are 4 CMT/MII-i, 9 CMT/MII-eS, 

117 CMT-MII-eU and 28 CMT/MII-eB. The analysis reveals that majority of the 

CMT/MIIs (149 out of 158, 94.30%) exhibit variability in interactions. This finding 

serves as a significant indicator for the generation of interactome diversity due to 

transcript diversity. 

http://www.uniprot.org/
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Figure 5.4: Interaction Variation Analysis of CMTs Based on PINA 

(see section 5.1 for abbreviations) 

Distributions of unique versus shared interactions, for a total of 30 clusters (28 

CMT/MII-eB and 2 CMT/MII-i) which include both types of interactions, are 

documented in Table 5.2. The remaining two CMT/MII-i clusters are excluded, since 

they contain unique interactions only. The clusters are categorised according to the 

total number of interacting isoforms contained in them and the average ratio of 

unique versus shared interactions which are documented for each category. Clusters 

including two isoforms have slightly higher average ratio (8.82) than the average 

ratio obtained for the clusters including more than two isoforms (7.53). The average 

ratio of unique versus shared interactions calculated by using the gathered PPI data is 

slightly higher than the values calculated based on the literature analysis since the 

mapping procedure yields more a finely grained PPI dataset. It is worth to note that 

the distribution of the isoform interaction types in PINA is in agreement with the 

findings obtained through the literature analysis.  
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The interaction variability analysis results show that the isoforms are specialised 

towards selecting unique interaction partners and thus they are likely to be involved 

in different protein interaction networks. This indicates that the diversity introduced 

into isoform interactions by the transcript diversity mechanisms is potentially 

significant. In addition, given the different interactions of isoforms, it is expected that 

the isoforms exhibit different biological functions and thus they are likely to be 

involved in different molecular pathways.  

Table 5.2: Statistics on CMT/MII-eB and CMT/MII-i with Shared and Unique 

Interactions Based on PINA 

Iso/CMT* Cluster ID CMT Type 
Nof 

Iso 

Nof 

S 

Nof 

U 

Nof 

S/Iso 

Nof 

U/Iso 
U/S 

Avg 

U/S 

2 

Hs.3.chr11p.3558 CMT/MII-eB 2 40 12 20 6 0.3 

8.82 

Hs.3.chr17n.8529 CMT/MII-i 2 22 54 11 27 2.45 

Hs.3.chr5n.15390 CMT/MII-eB 2 18 71 9 35.5 3.94 

Hs.3.chr6p.16643 CMT/MII-eB 2 10 13 5 6.5 1.3 

Hs.3.chr12n.4463 CMT/MII-eB 2 8 6 4 3 0.75 

Hs.3.chr19n.10450 CMT/MII-eB 2 6 25 3 12.5 4.17 

Hs.3.chr6n.17144 CMT/MII-eB 2 6 26 3 13 4.33 

Hs.3.chr17n.8585 CMT/MII-eB 2 4 4 2 2 1 

Hs.3.chr1n.278 CMT/MII-eB 2 4 10 2 5 2.5 

Hs.3.chr6n.17040 CMT/MII-eB 2 4 13 2 6.5 3.25 

Hs.3.chr11n.3142 CMT/MII-eB 2 2 48 1 24 24 

Hs.3.chr17p.8013 CMT/MII-eB 2 2 9 1 4.5 4.5 

Hs.3.chr17p.8043 CMT/MII-eB 2 2 43 1 21.5 21.5 

Hs.3.chr1n.361 CMT/MII-eB 2 2 134 1 67 67 

Hs.3.chr2p.10772 CMT/MII-eB 2 2 4 1 2 2 

Hs.3.chr4p.14617 CMT/MII-eB 2 2 11 1 5.5 5.5 

Hs.3.chr4p.14694 CMT/MII-eB 2 2 3 1 1.5 1.5 

>2 

Hs.3.chr16p.7233 CMT/MII-eB 3 27 2 9 0.67 0.07 

7.53 

Hs.3.chr15p.6760 CMT/MII-eB 3 8 18 2.67 6 2.25 

Hs.3.chr3p.13906 CMT/MII-eB 3 8 57 2.67 19 7.13 

Hs.3.chr17n.8437 CMT/MII-eB 3 6 8 2 2.67 1.33 

Hs.3.chr11n.3383 CMT/MII-i 3 4 10 1.33 3.33 2.5 

Hs.3.chr17n.8754 CMT/MII-eB 3 2 64 0.67 21.33 32 

Hs.3.chr6p.16595 CMT/MII-eB 3 2 15 0.67 5 7.5 

Hs.3.chr9n.19822 CMT/MII-eB 3 2 59 0.67 19.67 29.5 

Hs.3.chr12n.4311 CMT/MII-eB 4 6 14 1.5 3.5 2.33 

Hs.3.chr17n.8527 CMT/MII-eB 4 2 13 0.5 3.25 6.5 

Hs.3.chr17n.8355 CMT/MII-eB 5 16 81 3.2 16.2 5.06 

Hs.3.chr1p.1548 CMT/MII-eB 6 18 2 3 0.33 0.11 

Hs.3.chr5p.15887 CMT/MII-eB 14 12 19 0.86 1.36 1.58 

*CMT is either a CMT/MII-eB or a CMT/MII-i cluster, Iso:Isoforms, Nof:Number of, Avg:Average, S:Shared interactions, 

U:Unique interactions (see section 5.1 for abbreviations) 
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Chapter 6 

6. TBIID: TRANSCRIPT BASED ISOFORM 

INTERACTION DATABASE 

6.1 TBIID in Comparison to Public PPI DBs 

The PPI data gathered from the literature throughout this study is imported into a 

new database called TBIID. This databse contains the protein interactions of human 

protein isoforms. TBIID consists of 31,819 interactions between 7,161 distinct 

proteins out of which 5,615 are identified as being an isoform linked to either CSTs 

or CMTs of HumanSDB3. There are a total number of 1,540 interactions between 

1,226 different proteins belonging to CMT/MII clusters exhibiting interaction 

variation (i.e. CMT/MII-eB, CMT/MII-eU and CMT/MII-i). 994 out of 1,226 

proteins have a reference DT from HumanSBD3.  

Here, TBIID content is compared against PINA (Wu et al., 2009), in terms of the 

number of overlapping proteins and interactions are documented as shown in Figure 

6.1. There are a total number of 4,944 (69.04%) overlapping proteins and 2,863 

(9.00%) overlapping interactions between TBIID and PINA. The overlapping 

numbers are calculated as 927 (75.61%) and 141 (9.16%) for proteins and 

interactions respectively, when only the CMT/MIIs exhibiting interaction variation 

from TBIID are considered. These results show that the content of TBIID is 

complementary to the existing PPI DBs constituting PINA. Indeed, this result is 
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expected given that the two PPI DBs exploits different resources and uses different 

methods to gather the PPI data. 

 

Figure 6.1: Venn Diagrams Showing Overlaps between PINA and TBIID 

 (a) Protein overlaps (b) Interaction overlaps 

Analysis of the content of PINA (Table 6.1) shows that the majority of the 

interaction pairs (33,725 pairs) corresponding to 57.92% is reported by only one of 

the PPI DBs constituting PINA. Total numbers of 16,086 (27.63%), 5,182 (8.90%) 

and 3,102 (5.33%) interaction pairs are shared by two, three and four DBs, 

respectively. The remaining 126 (0.22%) interaction pairs are shared by five DBs 

while there is no interaction pair shared by all 6 DBs in PINA. Similarly, overlapping 

interaction pairs in TBIID are mainly reported in one (1,198 pairs, 41.84%) or two 

DBs (1,210 pairs, 42.26%). Total numbers of 338 (11.81%), 97 (3.39%) and 20 

(0.70%) overlapping pairs are reported in three, four and five DBs, respectively. It is 

important to note that 85.55% of interactions in PINA are reported only in one or two 

DBs. This number is 84.1% when TBIID is considered. 
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Table 6.1: Interaction Pair Distribution in PINA and Overlapping Sets 

 

Dataset 

 

Number of PPI DBs containing the interaction pairs 

1 2 3 4 5 

PINA 
33,725 

(57.92%) 

16,086 

(27.63%) 

5,182 

(8.90%) 

3,102 

(5.33%) 

126 

(0.22%) 

TBIID* 
1,198 

(41.84%) 

1,210 

(42.26%) 

338 

(11.81%) 

97 

(3.39%) 

20 

(0.70%) 

*Overlapping interactions with PINA only 

These results indicate that the current major PPI DBs cover different sections of the 

interactome. Previous comprehensive analyses on the major PPI databases also report 

that overlapping portions between these DBs are very low given that often different 

extraction methods, curation methods and publication records are used to construct 

them (Cusick et al., 2009; Mathivanan et al., 2006; Prieto and Rivas, 2006). These 

reasons could also lead to the low number of overlapping interaction pairs (2,863 

pairs, 9.00%) between PINA and TBIID. Hence, publication records used to 

construct PINA and TBIID are analysed. Results show that there are a total number 

of 19,372 unique PubMed records referred by the interaction pairs in PINA. 8,326 

(42.98%) of these records are found to be overlapping in the retrieved relevant 

abstract set of isoforms (4,083,094 abstracts) while 7,333 (37.85%) of them are 

found in the interaction abstract set (205,270 PubMed records). Results reveal that 

there is a high rate of discrepancy between the PubMed record sets used to generate 

TBIID and PINA. The portion of the source text used to gather the PPI data could be 

another important factor playing role in low percent of overlap. The PPI information 

contained in TBIID is extracted from the freely available Medline abstracts only. On 

the other hand, curators often facilitate full text articles leading to higher rates of 

PPIs for building literature-curated PPI databases, where some of them are included 

in PINA (Krallinger et al., 2008). In addition, some interactions could be missed 

during the building phase of the TBIID generation, given that it is developed by 



109 

 

using automated text mining methods. Another factor is a 4% error rate introduced 

during the protein ID conversion process. Entrez Gene IDs of proteins from TBIID 

have to be converted to their corresponding Uniprot accession numbers in order to 

gather their interactions from PINA. Finally, research conducted in the scope of this 

study is based on the transcript data linked to the variant clusters from HumanSDB3 

where a large portion (~81.00%) but not the complete genome is considered. 

6.2 TBIID Web-Interface 

A web-interface which enables users to analyse interaction data contained in TBIID 

is developed. This data in TBIID is linked to HumanSDB3. Hence, TBIID serves as a 

link between interactions of protein isoforms and their transcriptomic data. TBIID 

content is publicly accessible through http://tbiid.emu.edu.tr.  

Search for interactions of a given protein can be done through a query system 

embedded into the web-interface (Figure 6.2). The query system is invoked by 

submitting the protein‟s Entrez Gene ID or official symbol listed in Entrez Gene DB. 

In case of search based on a given symbol, the system allows several variations of 

the symbol. For example, it is not sensitive to upper/lower case letters, and spaces 

between digits and the letters are ignored. Users can also search the content of TBIID 

for interactions extracted from a particular PubMed record by submitting its PubMed 

ID to the system. 

 

http://tbiid.emu.edu.tr/
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Figure 6.2: Query Interface of TBIID 

Usage of the web-interface as well as the benefit of TBIID is demonstrated below by 

using an example CMT (HumanSDB3 Cluster ID: Hs.3.chr1n.278) from 

HumanSDB3. The CMT contains two DTs for human IgG Fc Receptor III (FCGR3). 

The DTs code two distinct but 97% identical allelic isoforms, namely FCGR3A and 

FCGR3B (Rogers and Scinicariello, 2006).  

Figure 6.3 is a screenshot from TBIID illustrating the retrieval of the interactions of 

FCGR3B along with its isoform FCGR3A data by using its official symbol from 

TBIID. The table on top in the figure contains information on the isoforms linked to 

the CMT. The queried isoform is highlighted with green colour. In this table, the 

isoforms are linked to Nucleotide DB of NCBI (provides sequence information) and 

HumanSDB3 through their transcript IDs and HumanSDB3 cluster IDs respectively. 

They are also linked to the Entrez Gene DB through their Gene DB IDs. Entrez Gene 

DB provides some external information on proteins such as functions (based on GO 

concepts) and metabolic pathways that they involve in. Such information is 

important for understanding isoform interactions. 

The lower table in the figure provides information on interaction partners of the 

isoform FCGR3B (Figure 6.3). Interaction data contained in TBIID is referenced to 
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the source text from PubMed DB enabling manual analysis of the questionable 

records. Shared interactions of the isoforms are shown in yellow. Interactions of the 

protein partners can be retrieved from TBIID content by clicking on their symbols.  

The utility of TBIID could be demonstrated by using FCGR3 isoforms. Examining 

the GO data provided in the Entrez Gene DB through the web-interface of TBIID 

reveals that FCGR3A and FCGR3B isoforms share several molecular functions (Ig 

binding and receptor activity) and are involved in immune response processes. 

Therefore it could be expected that those isoforms have shared interactions. 

Analysing the content of PINA reveals that there are 12 interaction partners for 

FCGR3A (APCS, CD247, CD38, CD4, FCER1G, GP6, FCGR1A, IGHG, LCK, 

PTPRC, SHC1, ZAP70) and only 4 partners for FCGR3B (APCS, IGHG1, 

M(2)21AB, Myb). According to PINA, these isoforms have two shared interaction 

partners (APRCS and IGHG1). On the other hand, by utilising TBIID, it is possible 

to expose other interesting interaction partners of the isoforms. For example, PTPRC 

(Entez Gene ID: 5788) is reported by TBIID as a shared interaction partner which is 

not reported by any of the major PPI DBs constituting PINA. This shared interaction 

is supported by evidences from the literature (see PubMed IDs: 8157290 and 

9173906). In addition, TBIID reports TEC (see Entrez Gene ID:7006, PubMed ID: 

15899983) as another unique interaction partner for FCGR3B isoform. These 

findings indicate that TBIID contains valuable data, which is complementary to the 

existing major PPI databases for analysing differential interactions of the isoforms. It 

is important to uncover differential interactions of isoforms for a good understanding 

of different biological processes that the isoforms are involved in. 
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Figure 6.3: Screenshot Representing the Content 

ID: Identifier, PMID: PubMed Identifier 

It is also possible to visualize interactions of the queried isoform graphically as 

shown in Figure 6.4.  In this case, interactions of the isoform will be listed along with 

the interactions of other isoform(s) linked to the same cluster. In Figure 6.4, 

FCGR3B and its unique interaction partners are shown in green tones while 

FCGR3A and its unique interaction partners are shown in blue tones. Shared 

interaction partners are shown in yellow. This mode of visualization enables the 

TBIID users to simultaneously analyse the shared and unique interactions of the 

isoforms. This functional feature brings uniqueness to TBIID. 



113 

 

 

Figure 6.4: TBIID Screenshot Graphically Showing Visualization of Isoform 

Interactions 
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Chapter 7 

7. DISCUSSION, CONCLUSION AND FUTURE WORK 

7.1 Discussion and Concluding Remarks 

In this thesis, (i) TBIID is presented as a new database covering PPI data on human 

protein isoforms and (ii) its content is utilised to investigate the variability in the 

isoform interactions. The biomedical literature is exploited automatically to gather 

protein interactions involving isoforms linked to clustered transcript data from 

HumanSDB3. For this purpose, the transcript data from clusters of HumanSDB3, 

which exhibit alternative splicing and which represent a significant portion of the 

human genome (~81%) are analysed. DTs within each cluster are identified and a 

rich STS by using Gene DB, Swissprot DB and synonym generation is compiled for 

each DT. Relevant abstracts are retrieved from the PubMed DB by using these STSs.  

A state-of-the art performing SVM classifier is trained on the BioCreative-II IAS 

corpus with a novel set of features and used to select those abstracts which are likely 

to contain PPI information. This classifier achieves an F1-score of 81.31% on the 

BioCreative-II IAS dataset, which is the second best performance reported in the 

literature to the best of our knowledge. Protein interactions involving isoforms from 

the selected abstracts are extracted by using another SVM trained by utilising 

features from syntactic parsers on the AIMed corpus. The performance of this 

classifier is measured at an F1-score of 54.20% with a precision of 60.77% and a 

recall of 49.50% by using 10-fold cross validation. The classifier achieves at state-of-
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the-art level and has a high precision which is desirable for the purpose of the study. 

Nevertheless, the overall performance of the text mining pipeline is analysed 

manually on a random set of extracted interaction protein pairs. The performance is 

estimated at an F1-score of 60.07% with 68.94% recall and 53.22% precision which 

is considered to be high enough to carry out further analysis on the extracted data. 

The content of TBIID is compared against a comprehensive public PPI resource, 

PINA. A total number of 4,944 (69.04%) overlapping proteins and a total number of 

2,863 (9.00%) overlapping interactions between the two resources are identified. 

Results are in parallel with the previous studies which highlight low overlap rates 

between the public PPI DBs due to the usage of different extraction and curation 

methods as well as publication records to generate them. 

A large scale PPI analysis is applied on TBIID content to measure the variability in 

the isoform interactions. For this purpose, distributions of shared and unique 

interaction partners of the isoforms linked to CMT/MIIs are analysed. Results reveal 

that majority of the proteins coded by the transcripts isoforms in CMT/MIIs (99%) 

exhibit variation in their protein interactions. This is a significant finding in that it 

sheds light on how alternative splicing and possibly other transcript diversity 

mechanisms introduce variation in protein interactions. In addition, quantitative 

analysis on CMT/MIIs indicates that isoforms tend to interact with the same partners 

with a ratio of 1/5 only i.e isoforms are specialised towards forming unique 

interactions rather than shared ones. Importantly, with these results, it is 

quantitatively demonstrated that alternative splicing and other transcript diversity 

mechanisms generate transcript diversity, which generates proteome diversity, which 

leads to interactome diversity. Similar findings are obtained by using PINA which 
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contains PPI data from major publicly available PPI DBs. These results indicate that 

the isoforms tend to form unique interactions, and are possibly involved in different 

interaction networks thus potentially achieving different biological functions. It is 

important to note that the obtained interaction variability and validation analyses 

results depend on the text mining approaches used in the study, available PPI data in 

the public resources as well as the cluster organisation in HumanSDB3. Use of a 

different cluster organisation, a set of public PPI data and text mining methods could 

yield different results complementing TBIID. Nevertheless, based on the methods 

used, current available data and the current results obtained in this study, it can be 

concluded that transcript diversity is a widespread process leading diverse proteomes 

and presents a potential to generate a significantly diverse interactomes. 

TBIID is the first DB covering comprehensive PPI information linked to human 

protein isoforms. It serves as a bridge between isoform interactions and transcript 

diversity. Hence, documentation of and further analyses of potential differential 

interactions of protein isoforms from TBIID will help understand the effect of 

alternative splicing and also possibly other transcript diversity mechanisms on the 

human proteome and interactome at a large scale. 

 In this study, for the first time, a large scale analysis is applied on TBIID content to 

quantify the variability in the isoform interactions. Although, CMTs could also 

contain other kinds of isoforms in addition to alternative splicing variants, it is likely 

that source of the interaction variability is alternative splicing given that 

HumanSDB3 variant clusters contain transcripts exhibiting alternative splicing 

events. Nevertheless, further sequence-based detailed investigation on each CMT 

would identify the exact transcript diversity source and/or exact type of alternative 
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splicing implicated in each differential isoform interaction. TBIID can be utilised 

towards such further experimental investigation on the CMTs and their unique as 

well as shared interactions. In addition to that, the developed text mining tools serves 

as practical tools in PPI related biomedical text mining tasks.   

7.2 Future Work 

In the future, the study may be extended to include further investigation on the 

functional variability of the protein isoforms. A possible variability analysis can be 

based on the distribution of functional annotations on the basis of Gene Ontology 

concepts, especially biological processes and molecular functions. Interaction 

partners of isoforms exhibiting functional diversity are known as good potential 

targets for pharmacological interventions (Da  Cruz e Silva et al., 2004). Therefore, 

data on interactions and functions of the isoforms play an important role in designing 

drugs specific to isoforms. Such drugs offer therapeutic advantages like preventing 

disease progress over their non-specific types given that specific isoforms could be 

involved in different biological pathways by playing different functional roles. 

It is also possible to extend the study to gather disease-related information associated 

with the isofoms from CMTs by utilising the biomedical literature. This information 

is important for a good understanding of the transcript diversity mechanism, aberrant 

isoforms and their implications in abnormal protein functions. In addition, such 

information could serve as an important resource for molecular therapies.  

Alternative splicing is a tissue specific cellular mechanism. Indeed, this information 

is important for a good understanding of alternative splicing events. Therefore, 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22da%20Cruz%20e%20Silva%20OA%22%5BAuthor%5D
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content of TBIID may be expanded to include tissue specificity information for the 

isoforms and link this information to their interaction specificity. 

The transcript data provided in HumanSDB3 dates back to 2004 and was organised 

by using UCSC human genome version 17 (hg.17). Currently, Scripps Genome 

Center directs its efforts for generation of an updated version of HumanSDB by 

using recent transcript data and latest version of the human genome (hg.19). This will 

lead to a different cluster organization and clusters will contain more up to date 

transcript data compared to HumanSDB3. The developed text mining pipeline may 

be employed to analyse the new human alternative splicing database which would 

lead to generation of an updatedversion of TBIID. 

TBIID is constructed based on an automated analysis of the biomedical literature 

indeed relying on existing knowledge from freely available PubMed abstracts. More 

PPI data can be extracted by searching full-length papers. However, this can be 

realised to a limited extend due to the copyright limitations of full-length articles. 

Nevertheless, this may be introduced to the database with forthcoming releases. 

Furthermore, the study presented here may be expanded to several different 

organisms such as mouse and rat given that splicing DBs are available for several 

different transcriptomes (Taneri et al., 2005; Taneri et al., 2011). This would enable 

scientist to carry out species-specific as well as comparative studies on transcript 

diversity and isoform interactions.Such organisms have proximity since there are 

genes, which are evolutionarily conserved between them. For example, human shares 

at least 80% of genes with mouse (Mouse Genome Sequencing Consortium, 2002) 
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Therefore, coverage of each individual species specific database may be expanded 

based on the conserved genes and thus likely conserved interactions. 
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Appendix A: Evaluation Metrics 

Although there are a number of different metrics used to evaluate performances of 

the information extraction systems in the domain, the most popular metrics are 

Recall (R), Precision (P) and F-score. In this study, performances of the designed 

classifiers are evaluated based on these metrics. Following counts are involved in 

calculation of the R, P and F-score values: 

True Positive (TP): Number of positive objects (correctly) classified as positive by 

the system. 

False Negative (FN): Number of positive objects (incorrectly) classified as negative 

by the system. 

False Positive (FP): Number of negative objects (incorrectly) classified as positive by 

the system. 

True Negative (FN): Number of negative objects (correctly) classified as negative by 

the system. 

 

Recall is defined as the ratio between the correctly identified objects and the total 

number of objects. It is calculated by using the equation (A.1). 

FNTP

TP
R


  (A.1) 

Precision is defined defined as the ratio between the correctly identified objects and 

the number of objects identified by the system. It is calculated by using the equation 

(A.2).  

FPTP

TP
P


  (A.2) 

 



160 

 

F-score is defined as the harmonic mean between precision and recall. It is calculated 

by using the equation (A.3). 

 
RP

scoreF
1

1
1

1






  
(A.3) 

where,   is a factor used for assigning weights to precision and recall. It is possible 

to adjust this factor according to the system requirements. Typically, equal weights 

are assigned to precision and recall ( 5.0 ). In this particular case, F-score is 

termed as the F1-score and calculated by using the equation (A.4). 

RP

PR
scoreF




2
1  (A.4) 
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Appendix B: Support Vector Machines 

SVM (Vapnik, 1995) is a machine learning algorithm used for solving binary 

classification problem based on the recognised patterns from the analysis of a given 

set of training data. It has been successfully used in many classification problems 

including many text mining and document classification tasks (Joachims, 2002). An 

SVM training algorithm computes an optimal hyperplane separating positive and 

negative data by maximizing the margin between the hyperplane and nearest training 

data points (called the support vectors). In the classification phase, the margin is used 

to predict the class of new examples as positive or negative. 

 

The concept can be expressed mathematically as follows: 

A given set of labelled training data is denoted as,  ),(),....,,(),,( 2211 ll yxyxyxL   

where, 

 (xi, yi) (i=1..l) corresponds to (instance, class) pairs used to represent the i
th

 data 

point from the set, 

 T

idii xxx ,...,, 21ix  denotes the the feature vector of the i
th 

data point in the d-

dimensional space, 

}1,1{ iy denotes the class label of the i
th

 data point, 

the SVM computes the maximum-margin hyperplane that divides the positive and 

negative data points by optimising the following problem: 

 

In the case that data can be linearly separable, hyperplane which is used for the 

decision is defined as: 

0 bxw  (B.1) 
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where, . denotes the dot product,   TNwww ,...,, 21w  is the weight vector and b  

(bias) is the threshold from the origin. The objective here is to choose the w  and b  

values to maximize the distance (margin) between the two parallel hyperplanes 

which are represented by 1 bxw  and 1 bxw .  

 

The classification task is depicted in Figure B.1. The straight line denotes the 

decision boundary that divides the feature space into two. Data points on the decision 

boundary must satisfy the equation (B.1). 

 

Figure B.1. Illustration of a Linearly Separable Classification Problem 

Data points on the margins are the support vectors. 

 

The distance between the hyperplanes is calculated as: 

w

2
d  

(B.2) 

 

Hence the objective becomes minimizing w . Following should be taken into 

account in order to prevent data points to fall into the margin: 



163 

 









1 if  1

1 if  1

i

i

yb

yb

i

i

xw

xw
 

(B.3) 

where yi denotes the target class label (1,-1) and i=1..N. 

 

(B.2) can be substituted by: 

2

2
w

 
(B.4) 

and (B.3) can be rewritten as: 

1)(yi  bixw  (B.5) 

Therefore, the problem can be expressed as an optimization problem and formalised 

as shown below: 

2
min

2
w

w
 

(B.6) 

1)(yi  bixw   ,  for i=1..N (B.7) 

 

Lagrange multiplier method is applied to solve the equation (B.6) which can be 

expressed as: 

  , 1)(y  -
2

1

1

ii

2





N

i

p bL ixww   
(B.8) 

where i denotes the i
th
 lagrange multiplier.  

Taking the derivative of Lp with respect to w gives: 





N

i 1

ii y ixw   
(B.9) 

Sum for w  in (B.9) needs to be evaluated over the support vectors which are at the 

minimum distance away from the hyperplane. i.e. points where  0i . 

Taking the derivative of Lp with respect to b  gives. 
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



N

i 1

ii 0y  
(B.10) 

(B.10) does not give b . Hence, by using the Karush-Kuhn-Tucker (KKT) conditions, 

(B.5) is represented as: 

   . 01i  byi ixw  (B.11) 

 

Substituting (B.9) and (B.10) into (B.8) gives the dual form of Ld: 

 
2

1
  -

ji,

ji

N

1i

ji xx  


jiiD yyL   
(B.12) 

Hence, the function needs to be maximized in order to solve the optimization 

problem.  Quadratic approaches can be applied to solve the problem and compute the 

values of i, b and w.   

The decision boundary is represented as: 

 0
N

1i













byii xxi  
(B.13) 

and the target class of an test data point z is predicted as follows: 

  







 



N

i

ii bysignbsignf
1

)( zxzwz i  
(B.14) 

 

It is possible to extend the methodology of the SVM to data which is noisy. This 

introduces the idea of slack variable,  for allowing some data points to be 

misclassified and the trade-off (C) between maximizing the margin and minimizing 

the number of misclassified variables for penalizing the misclassification. The 

problem is represented as follows: 

k
N

i

iC 







 

1

2

2
min 

w

w
 

(B.15) 
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







1 if  1

1 if - 1
  subject to

iii

iii

yb

yb





xw

xw
 (B.16) 

where, i=1..N and C&k are used to represent misclassification penalty.  

In most of the real world applications the data is not linearly separable. In this case, a 

kernel function is used to transform the data into a higher dimensional space (x) so 

that it becomes linearly separable. In such a case, the problem is represented as 

follows: 

2
min

2
w

w
 

(B.17) 

 

 







1 if  1

1 if  1
  subject to

ii

ii

yb

yb

xw

xw
 

(B.18) 

Based on the approach of the linear SVM and the quadratic programming, class of a 

given test data point z, can be predicted as: 

       



N

i

iii bysignbsignf
1

..)( zxzwz   
(B.19) 

Kernel function is used to replace the dot product given that its computation in a high 

dimensional space is expensive. A kernel function is represented as 

     xxxx 
T

K , , which denotes the distance between x  and x transformed by 

 . Hence, a given test data point z is classified based on the following: 

  







 



N

i

iii bKysignf
1

,)( zxz   
(B.20) 

Several examples to kernel functions are listed below (polynomial, radial basis 

function and sigmoid in order): 



166 

 

 
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 (D.21) 

 


