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ABSTRACT 

In the analysis of multivariate data, the processing and extracting meaningful results 

becomes very difficult due large number of variables and data. Therefore, statistical 

techniques to deal with such data, by finding linear combinations of existing 

variables, such that each variable is assigned a coefficient or score that determines its 

contribution to that linear combination. These linear combinations are called 

Principal Components (PC) and the methodology used in the determination of the 

PCs is called Principal Component Analysis (PCA). In general the number of PCs is 

expected to be the same as the number of variables. However, the PCs are 

determined such that the great percentage of variation (usually over 90%) in the data 

accumulates in the first few PCs. Then, the remaining PCs become redundant, and 

the information contained in a large number of variables is reduced into a few new 

variables (PCs) that are linear combinations of original variables.  Therefore, a 

technique used in determining the PCs is very important. In this work, theory of PCA 

with related mathematical background is explained and using a certain data set, 

various ways of the application of PCA technique is investigated, obtained results are 

interpreted.  

 

 

 

 

 Keywords: Principle component analysis, data, eigenvalue, eigenvector, covariance, 

correlation, standardized data, centered data.  
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ÖZ 

Çok değişkenli veri analizinde özellikle değişken sayısının çok fazla olduğu 

durumlarda işlem yapıp sonuç çıkarma oldukca zordur. Bu şartlar altında veri 

analizini yapabilmek için geliştirilmiş istatistik teknikler, mevcut değişkenlerin lineer 

kombinezonlarından oluşan ve biribirinde bağımsız yeni değişkenlerin hesaplanmsını 

mümkün kılar. Bu değişkenlere Temel Bileşenler ve bu bileşenlerin 

hesaplanmasınada kullanılan yöntemlerede Temel Bileşenler Analizi denir. 

Hesaplanan temel bileşen sayısı, değişken sayısı kadardır. Ancak, verideki toplam 

değişimin çok büyük bir kısmı ilk birkaç temel bileşen tarafından temsil edilir. 

Sadece bunların analiz ve yorumlamada kullanılması, hesaplamalardaki yoğunluğu 

ciddi miktarda azaltırken, elde edilen sonuçlar tüm kitleyi 90%’ın üstünde bir 

temsiliyeti sahiptir. Geriye kalan ve verideki toplam değişimin çok az bir kısmını 

temsil eden temel bileşenler işleme sokulmaz. Böylece, çok yüksek sayıdaki veri 

miktari çok aza indirgenmiş olur. Bu nedenle temel bileşenlerin hesabında 

kullanımlan yöntemler çok önemlidir. Bu çalışmada temel bileşenler analizinin 

matematiksel temelleri izah edilmiş, belli bir veri seti kullanılarak metodun farklı 

yaklaşımlarla uygulaması yapılıp, elde edilen sonuçlar yorumlanmıştır. 

 

Anahtar kelimeler: Temel bileşenler analizi, veri, özdeğer, özvektör, kovaryans, 

korelasyon, standartlaştırılmış veri, merkezileştirilmiş veri. 
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Chapter 1 

INTRODUCTION 

 

Processing a data set with large number of variables necessitates special techniques. 

Principal Component Analysis (PCA) is one of such methodologies, widely used for 

this purpose.  PCA method is based on finding linear combinations of the variables, 

such that they represent the directions of variation in the multivariate data in 

ascending order. Number of PCs is the same as the number of variables. However, 

only few of the PCs are generally enough to represent the process in question, since 

the large percentage (over 90%) of variation in the process tends to be explained by 

these few PCs.  

Early work by Karl Pearson [1] laid down the foundations on PCA. Interest in PCA 

and its applicatios in data analysis started increasing in 1970s, leading to the 

developments vitnesed today. Many valuable contributions made by different 

researchers. A brief review of this is given in Chaper 2 under literature survey. 

 Chapter 3 explains the necessary mathematical and statistical background necessary 

to understand and develop the PCA methodology.  

In PCA a multivariate data set is considered as an n p  dimensional marix,  p  being 

the number of variables ;  1, ,iX i p  and n  number of observations. The data set is 

manipulated, such that a new set of independent variables ;  1, ,iY i p  consisting of 

linear combinations of the initial variables, named as Principal Components (PC). 
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The PCs are determined so as the first is in the direction where the largest variation 

occurs in the raw data, followed by the remaining PCs representing the direction 

variations in descendin order. Hence, the first few PCs tend to represent the great 

majority of variation in the data set. This provides the facility of understanding the 

process that generated the data by only analizing these few PCs. Theory involved in 

the computation of PCs, ways of their application such as using the raw data, 

centered, or standardized data are explained under Chapter 4.  

A data set consisting of 5 variables is used as a case study to apply the theory to a 

real life example concerning the factors that affect the life of a battery. 
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Chapter 2 

LITERATURE REVIEW 

 

Initial work on PCA dates back to 1901 in the work of Karl Pearson [1], who 

discused the the best way of graphically representing data. Hotelling (1933) [2], [3] 

and and Girshick (1936; 1939) [4] are the researchers that contributed to the theory 

of PCA in 1930s. 

 Among other early researchers worth metioning are the work of Anderson (1963) 

[5] who elaborates on the asymptotic properties of PCs. Rao (1964) [6] talks 

about the use and interpretation of PCs, and als published a book on “Generalized 

Inverse of Matrices and its Applications” in 1971 [9]. Jeffers (1967) [8] offers case 

studies on the application of PCs.  

Mardia et.al. (1979) [23] published what may be considered as one of the first books 

that combines multivariate analysis together with associated theory and applications 

to statistics. 

In the post 1980s period with the advances of computing power, interest has rapidly 

grown in PCA, resulting in many theoretical work as well as successful applications 

in many different fields of endveour. Some of related work that benefited from is 

listed in the references. 
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Chapter 3 

GENERAL REVIEW OF SOME MATHEMTICS 

AND STATISTICS RELATED CONCEPTS 

In this chapter important mathematical and statistical principals which are necessary 

to understand the concepts and methods used in principal component analysis are 

summarized, Centering Matrix and its function in PCA are introduced. 

3.1 Matrix Algebra Concepts 

The use of matrix algebra in many statistical applications is essential. Certain basic 

concepts from matrix algebra are introduced in order to enable the comprehension of 

stastistics to be used in later chapters. 

3.1.1 Inverse of a Matrix    

Let a square matrix A of size n n , which is non-singular 0A  be given. Then there 

exists a matrix
1

A which is called the inverse of A such that: 

                                                           
-1 -1= =AA A A I                                  (3.1) 

 where I  is the identity matrix. 

 The inverse of a sequare n n matrix A can be found by using the following equation 

                                         
1 adj(A)

det(A)

 A                                (3.2) 

where the ( )adj A denotes the adjoint of  matrix A. The adjoint can be calculated by;  
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Let ijbB  to be the matrix whose coefficients are found by taking the determinant of 

the ( 1) (n 1)n   sub-matrix (minor) obtained deleting the thi row and thj column of 

A, and multiplying ijb  by ( 1)i j . The obtained matrix B  is known as the cofactor 

matrix of A [19]. Transpose of gives the adjoint matrix of A. Then from equation 3.2 

the inverse is obtained. 

3.1.2 General Inverse             

A general n n  matrix can be inverted using methods such as the Gauss-Jordan 

elimination, Gaussian elimination, or LU decomposition. The inverse of a product

AB of matrices A and B can be expressed in terms of
1

A and
1

B .   

Consider the following properties on matrices. Let 

C AB  

then  

-1 -1 = =  B A AB A C  

and 

-1 -1 = =A ABB CB . 

Therefore, 

-1 -1 -1 -1 = =( )( )= , C AB CB A C CB A C  

 so 

  
-1 -1 = ,CB A I  

Where, I is the identity matrix, and 

     
-1 -1 -1 -1 = =( ) . B A C AB  

Definition If A is an m n matrix, then G is a generalized inverse of A  if G is an 

m n  matrix with 

                                                                  = AGA A                                   (3.3) 
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If A has an inverse in the usual sense, that is if A is n n and has a two-sided 

inverse 1
A , then 

-1 1 1 1( ) ( ) ( )   A AGA A A A G AA G         

while by (3.3) 

-1 1 1 1 1( ) ( )    A A A A A A A  

Thus, if 1
A exists in the usual sense, then 1G A . This justifies the term 

generalized inverse. Any m n matrix A has at least one generalized inverse G [9]. 

3.1.3 Eigensolutions (Eigenvalue and Eigenvector) 

Matrix A is a square matrix having size n n . Also the non-zero vector x and scalar 

 are given. Then, in    

                                                                  Ax x                                         (3.4) 

 The vector x is called eigenvector of A corresponding to the eigenvalue  [12]. 

Excpression of the determinant ( A ) and trace ( tr( )A ) of matrix A is given as 

below.  

                                                                  
1

p

j

j




A                                     (3.5) 

             
1

( )
p

j

j

tr 


A                               

3.1.4 Orthogonal matrix   

Matrix A of size n n   is orthogonal if 

    
T AA I , 

where
T

A is the transpose of A and I  is the identity matrix. In particular, an 

orthogonal matrix is always invertible, and in component form,
1 T A A  

  1 T

ij ija a   
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where 
-1

ija and 
T

ija  are the ,i j elements of matrix 1
A and T

A respectively. These 

relation make orthogonal matrices particularly easy to compute with, since the 

transpose operation is much simpler than computing an inverse [10]. 

3.1.5 Orthonormal Matrix   

The conditions of achieving orthonormality for two vectors in an inner product 

space are orthogonal and unit vectors.  A set of vectors form an orthonormal set, if 

all vectors in the set are mutually orthogonal and all are unit length. An orthonormal 

set which forms a basis is called an orthonormal basis.  

Definition Let V be an inner-product space. A set of n-vectors 1{ ,..., }n u u V  is 

called orthonormal if and only if  

1 , 1
, : , ,

0

i j

i j ij

if u u
i j

otherwise


 
   


u u  

where ij is the Kronecker delta and .,.    is the inner product defined over V . Let

A be n n matrix as follows: 1 2( , ,..., )nA v v v , iv , 1, ,i n   is row vector. This 

matrix is called orthnormal if it is orthogonal and
2

1iv  .  

3.2 Decomposition of a Matrix 

A matrix A can be decompose or factored by writing the matrix as the product of two 

matrices. There are different methods used in matrix decomposition, such as LU 

decomposition, spectral decomposition (SP), singular value decomposition SVD. 

Each method finds use among a particular class of problems. In principle component 

analysis SP and SVD are widely used. Hence, some detail on these methods is given 

in sections 3.2.1 and 3.2.2.    

3.2.1 Spectral Decompositions  
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This is a method that eatblishes the relationship between a square matrix ant its 

eigenvalues and eigenvectors. It is also called Jordan decomposition. Theorem 3.1 

gives basic idea of the spectral decomposition [21]. 

 

Theorem 3.1 Jordan Decomposition.  Let ( )p pA  be a symmetric matrix. Then 

1

pT T

j j jj



 A ΓΛΓ γ γ  

where 

1( ,..., )pdiag  Λ  

1( ,..., )pΓ γ γ  

and 1,..., p   are the eigenvalues of A . Γ  Is an orthogonal matrix consisting of the 

eigenvectors 1,..., pγ γ  of A. 

Using spectral decomposition powers of a matrix ( )p pA  can be defined. Suppose

A is a symmetric matrix. Then by Theorem 3.1 and for some  

                                                
T A ΓΛ Γ                                  (3.6) 

where 1( ,..., )pdiag   Λ . From equation 3.6 the inverse of the matrix A can be 

obtained by setting 1  ,  

        
1 1 T A ΓΛ Γ . 

3.2.2 Singular Value Decomposition (SVD) 

The singular value decomposition (SVD) is a factorization of a real or 

a complex matrix, with many useful applications in signal processing and statistics. 

Formally, the singular value decomposition of an n p real or complex matrix A is a 

factorization of the form:  
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TA UΛV  

where U is an n p and column orthogonal (its columns are eigenvectors of T
AA ), V  

is an p p and orthogonal (its columns are eigenvectors of T
A A ), and Λ is an 

p p diagonal matrix of the form 

1 0

0

0 0

P





 
 
 
 

  
 
 
  
 

Λ  

with 1 2 ...  > 0 p      and r = rank( )A  . 1,..., p   are called the singular values of

A [22] . 

Example 3.1 

2 6 8

3 1 5

 
  
 

A  

13 15 31
104 52

 and 15 37 53
52 35

31 53 89

T T

 
   

    
    

AA A A  

The eigenvalues and eigenvectors of
T

AA  are:  

1

2

7.096 0.4728 0.8811
,   

131.9 0.8811 0.4728
T TAA AA





     
       

     
λ G  

The eigenvalues and eigenvectors of 
T

A A are: 

1

2

7.096 0.72 0.64 0.28

131.9 ,   0.46 0.73 0.50

0 0.52 0.23 0.82

T TAA AA





   
     

        
        

λ G   

2 6 8

3 1 5
T T

T

AA A A

 
   

 
A G ΛG . 
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3.2.3 Quadratic Forms  

To write a quadratic form )(xQ  a symmetric matrix A  of size n n   and a vector 

nRx  are needed.  

Then               

         
1 1

( )
n n

T

ij i j

i j

x a x x
 

  Q x Ax           (3.7) 

Let A denote an n n symmetric matrix with real entries and let x denote an 1n

column vector [20].  

TQ x Ax  is said to be a quadratic form. Note that 

11 1n

1 1

n1 nn

a a

( ... ) ( ,..., )

a a

T T

n nx x x x

 
 

   
 
 

Q x Ax  

 
2

11 1 12 1 2 1 1

2 2

22 2 1 22 2 2

2

1 1 2 2

...

...

...

...

...

...

n n

n n

n n n n nn n

ij i j

i j

a x a x x a x x

a x x a x a x

a x x a x x a x

a x x


   

   







   



 

For example, consider the matrix  

1 0 0

0 2 0

0 0 4

 
 


 
  

D  

 The general quadratic form Q is given by 
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1

1 2 3 2

3

1 0 0

[ ] 0 2 0

0 0 4

T

x

x x x x

x

   
   

 
   
      

Q x Ax               

1

1 2 3 2

3

[ 2 4 ]

x

x x x x

x

 
 


 
  

 

2 2 3

1 2 2[ 2 ]x x x    

TQ x Ax : A quadratic form is said to be: 

a: negative definite: < 0 Q when 0x   

b: negative semidefinite: 0Q for all x and 0Q for some 0x   

c: positive definite: 0Q  when 0x   

d: positive semidefinite: 0Q  for all x and 0Q for some 0x   

e: indefinite:  > 0 Q for some x and   0 Q for some other x . 

Theorem 3.2: Let matrices A  and B be symmetric and 0B . Then the quadratic 

form 
xxB

Axx
T

T

has a maximum which is the largest eigenvalue of 
1

B A .This can be 

written as 

                            .min...max 21
Bxx

Axx

xxB

Axx

xx
T

T

nT

T

   

where n ,...,, 21  denote the eigenvalues of .1
AB


 The vector which 

maximises (minimizes) 
xxB

Axx
T

T

 is the eigenvector of AB
1

which corresponds to 

the largest (smallest) eigenvalue of AB
1

. If 1Bxx
T

we get  

                                           
1 2max ... min .T T

n      
xx

x Ax x Ax  
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Proof: 
1/2 1/2 T B B BB Γ Λ Γ   is symmetric. Then .

22/1
2

2/1
xBBxxxB  TT

 

 Set 
1/2

1/2
.

B x
y

B x
yields  

 Then                     

                        
1/2 1/2

{ : 1}
max max .

T

T
T

T

 




x y y y

x Ax
y B AB y

x Bx
                       (3.8) 

Let 1/2 1/2 T   B AB Γ Γ  be the spectral decomposition and vector z defined as                             

,Tz Γ y  

Then 

.T T T T z z y ΓΓ y y y  

Thus (3.8) is equivalent to 

2

{ : 1} { : 1}
1

max max
T T

P
T

i i

i

z
 



 
z z z z z z

z Λz  

but  

2 2

1 1max maxi ii
z z    

z z
 

When (1,0,0,...,0)Tz maximum is obtained.  For 1,y γ  
1/2

1.
x B γ  is 

obtained. 

The eigenvalues of 
1

B A and
1/2 1/2 

B AB are equal. This completes the proof.  

Lagrange method can also be used to prove the same theorem. That is maximize 

T
x Ax  Subject to

T
x Bx . Then the Lagrange function is [ 1]T T  L x Ax x Bx  . 

Hence is the lag-range constant. 

max max[ ( 1)].T T T  
x x

x Ax x Ax x Bx  

Setting the first derivative with respect to x is equal to 0 : 
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2 2 0
L




  


Ax Bx
x

 

So 

1  B Ax x  

By the definition of eigenvector and eigenvalue, our maximiser *
x  is 1

B A  

eigenvector corresponding to eigenvalue . 

Hence 

1

{ : 1} { : 1} { : 1}
max max max max

T T T

T T T  

  
  

x x Bx x x Bx x x Bx

x Ax x BB Ax x B x  

gives the maximum eigenvalue of 1
B Ax . Corresponding eigenvector is the 

maximiser *
x . 

3.2.4 Derivative 

  In this section matrix notation for the derivatives will be introduced. Let 

: pf R R   with p variables represented by  a ( 1)p vector x . Let also 
( )f x

x




 be 

the column vector of partial derivatives
( )

, 1,...,
j

f x
j p

x





 and 

( )
T

f x

x




 be the row 

vector of the same derivative. 
( )f x

x




is called the gradient of f . Second order partial 

derivatives are expressed as 
2 ( )

T

f x

x x



 
is the p p matrix of elements 

2 ( )
T

j j

f x

x x



 
,

1,...,i p and 1,...,j p . 
2 ( )

T

f x

x x



 
 is called the Hessian of f . When a is a ( 1)p

vector and 
TA A is a ( )p p matrix 
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,

2 .

T T

T

 
 

 






a x x a
a

x x

x Ax
Ax

x

 

can be written. The Hessian of the quadratic form TQ  x Ax  is expressed as 

2 ( )
2

T

f x

x x




 
A . 

3.3 Statistical Parameters in Multivariate Case 

3.3.1 General on multivariate statistical  

Multivariate statistics is the branch of statistics which deals with the analysis of data 

belonging to many variables. The analysis of simultaneous measurements 

necessitates the use of multivariate techniques. In this section a brief review of some 

descriptive statistics concepts pertaining to the multivariate case will be highlighted. 

3.3.2 Multivariate sample mean   

Let 1,..., nx x  be a particular realization (a random sample of size n) of the random 

variables 1,..., nX X . Then the arithmetic mean x of the random sample gives the 

center of gravity or the average distance from the origin on the real line  . It is 

computed as  

                                                         
1

1 n

i

i

x x
n 

                              (3.9) 

3.3.3   Multivariate sample variance  

If the random variable X represents a particular characteristic of a population, then 

the variance of the population is defined as
2 2 2 2var( ) ( ) ( )X E X E X       . 

Variance measures the average squared deviation from the mean. The larger the 

variance, the more data values are spread around the mean. The sample variance 2s  is                         
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2

2 1
( )

1

n

ii
x x

s
n








                                       (3.10) 

or 

                                
2 2

2 1

1

n

ii
x nx

s
n








                                        (3.11)     

Since a sample is a subset of the population, its variance 2s is can not be expected to 

be the same as the population variance 2 . However, 2s is an unbiased estimator for

2 , which means 2 2( )E S  . 

The following properties on variance – covariance holds. 

1. 2 2

,

T
i j

T

X i j x xX
i j

a a   a
a a  

2. 
2 2 T

X b X  A A A  

3. 
2 2 2

, ,X Y X X Y Y X Y          

4. ( , ) ( , ) ( , )X Y Z X Z Y Z      

5. ( , ) ( , )

T

X Y X Y A B A B  

3.3.4 Multivariate sample covariance 

Let random variables X and Y with joint probability density function f(x, y) be given. 

Covariance between these random variables is defined as  

[( )( )]XY X YE X Y     . 

Here ( )X E X   and ( )Y E Y  . If 0XY  , it means r.v. s are simultaneously 

increasing or decreasing, bu not necessarily at the same rate.  0XY   would mean 

an increase in one variable corresponds to a decrease in the other. In r.v.s are 

independent, then 0XY  . Fr the bivariate case it can be shown that 

( ) ( ) ( )XY E XY E X E Y    . 
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Addition or multiplication of the random variables X andY  results in a new random 

variable. Then, if Z X Y   

                       ( ) ( )  ( )  ( )E Z E X Y E X E Y                                           (3.12) 

                 and if Z XY  

        ( ) ( )  ( ) ( )E Z E XY E X E Y  , when X  andY are independent.           (3.13) 

If  and x yf f are the marginal densities of r.v.s X and Y respectively, then the r.v.s X

and Y are independent iff ( , ) ( ) ( )f x y g x h y . Equation (3.12) holds regardless the r.v.s 

being independent or not. In the case of independence the covariance 0XY  , but the 

vice versa case is not always true.  

  ( ) ( ) ( )XY E XY E X E Y    

Based on the definition of the population covariance, the sample covariance can be 

written as  

                                               1

( )( )

1

n

i i

i
xy

x x y y

s
n



 





                             (3.14) 

and it can also be shown that  

                                                     1

1

n

i i

i
xy

x y nxy

s
n









                                (3.15) 

In application it is impossible to have  xy XYs   This means, the chance is almost 

zero that ( ) 0xy XYP s   . xys  is an unbiased estimator for XY , i.e. ( )xy XYE s  . 

When 0XY  , it does not mean that any random sample from the same population 

will have zero covariance. One way of ensuring that a sample from a continuous 

bivariate distribution will have zero covariance is for the experimenter to choose the 

values of x and y so that 0xys  . However, this causes deviation from the concept of 
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random sampling. One way to see that xys  measures only linear relationships is by 

seeing that the computation of the slope of simple linear regression line includes xys  

as its numerator.  

1

2
2

1

( )( )

( )

n

i i
xyi

n

x

i

x x y y
s

B
s

x x





 

 






 

Thus xys  is proportional to the slope, which shows only the linear relationship 

betweenY and X . Variables with zero sample covariance can be said to be 

orthogonal. By definition, if the dot product of the vectors  1 2, ,...,T

na a aa  and 

 1 2, ,...,T

nb b bb  is 0 a b .  

3.3.5 Multivariate sample correlation   

Since the covariance depends on the scale of measurement of X andY  , it is difficult 

to compare covariances between different pairs of variables. For example, if we 

change a measurement from inches to centimeters, the covariance will change. To 

find a measure of linear relationship that is invariant to changes of scale, we can 

standardize the covariance by dividing by the standard deviations of the two 

Variables. This standardized covariance is called a linear correlation coefficient. The 

population correlation coefficient of two random variables X andY  is 

      
2 2

[( )( )
( , )

( ) ( )

XY X X
XY

X Y X Y

E X y
corr x y

E X E Y

  


   

 
  

 
   .             (3.16) 

Given n pairs of sample data ( , );  1, ,i ix y i n  with respective sample averages  and x y , 

the sample correlation coefficient is defined as  
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                          1

2 2

1 1

( )( )

( ) ( )

n

i i
xy i

xy
n n

x y

i i

i i

x x y y
s

r
s s

x x y y



 

 

 

 



 

        .                (3.17) 

In both the population and sample cases we have 1 1xy    and 1 1xyr    

respectively. 

3.3.6 Variance and covariance matrix  

Variance and covariance are often display jointly in a variance-covariance matrix. 

The variances appear along the diagonal and covariances appear in the off-diagonal 

elements. If the random variable X is n-dimensional, then the vector 

1

n

X

X

 
 


 
  

X   

represents the random variables, each with finite variance. Then the covariance 

matrix Σ, is the matrix whose (i, j) entry is the covariance 

cov( ,Y ) [( )( )]ij i j i i j jX E X X       

where 

( )i iE X   

is the expected value of the thi random variable in the vector X .In other words, we 

have 

                                                     

1 1 1

1

n

n n n

x x x x

x x x x

 

 

 
 

  
 
 

Σ                   (3.18) 

The inverse of this matrix 1
Σ  is the inverse covariance matrix, also known as 

the concentration matrix or precision matrix [11]. The sample covariance matrix S 

can be written as  
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1 1

1

n n

n n n

x x x x

x x x x

s s

s s

 
 

  
 
 

S                                (3.19) 

Expected value of the covariance matrixS  is 

1 1
( )

1

n n
E E

n n n

  
     

 
S Σ Σ Σ S Σ   

It is understood that  [ / ( 1)]n n S  is an unbiased estimator Σ, but S is a biased 

estimator and the ( ) (1/ n)bias E   S Σ Σ  . It can be shown that 
1

n
E

n

 
 

 
S Σ  

as below. 

1 2( ... ) /n n   X X X X . 

1 2

1 2

1 2

1 1 1
( ) E( )

1 1 1
E( ) E( ) E( )

1 1 1 1 1 1
E( ) E( ) E( )

n

n

n

E
n n n

n n n

n n n n n n

   

   

        

X X X X

X X X

X X X μ μ μ μ

 

next, 

1 1

2
1 1

1 1
(  - )(  - ) =

1
( )( )

T
n n

T

j l

j l

n n
T

j l

j l

n n

n

 

 

  
   

  

  

 



X μ X μ X μ X μ

X μ X μ

  

1 1

1
cov( ) E( )E( ) E( )E( )

n n
T T

j l

j ln  

 
      

 
X X μ X μ X μ X μ   

For j l  each entry in ( )E( )T

j lE  X μ X μ  is zero as each entry in the covariance 

between the independent components of jX  and of lX .   

Therefore,  

2
1

1
cov( ) E( )E( )

n
T

jn 

 
   

 
X X μ X μ   
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Since population covariance matrix ( )E( )T

j jE  Σ X μ X μ we can write 

2 2
1

2

1 1
cov( ) ( ) ( ) ( )

1 1
( )

n
T

j j

j

E E
n n

n
n n



 
       

 

 

X X μ X μ Σ Σ Σ

Σ Σ

 

The ( , )thi k  element of ( )( )T

j j X X X X  is ( )( )ji i jk kX X X X  . Sums of products 

and cross product s are written in matrix form as 

1 1 1

1

( )( ) ( ) ( ) ( )
n n n

T T T

j j j j j

j j j

n
T T

j j

j

X

n

  



 
       

 

 

  



X X X X X X X X X

X X XX

 

 Note that   
1

( )
n

j

j

  X X 0and
1

n
T T

j

n


X X  . Then 

1 1

( ) ( )
n n

T T T T

j j j j

j j

E n E nE
 

 
   

 
 X X XX X X XX  

Remembering the fact given a random vector V having ( )E  vV μ  and cov( )  vV Σ , 

( )TE  v v vVV Σ μ μ  leading to 

( )T T

j jE  X X Σ μμ  and
1

( )T TE
n

 XX Σ μμ . 

Based on these results  

1

1
( ) ( ) ( 1)

n
T T T T

j j

j

E nE n n n n
n

 
       

 
 X X XX Σ μμ Σ μμ Σ   

can be written and  since
1

1 n
T T

j j

j

n
n 

  
   
  

S X X XX , the desired result 

( 1)
( )

n
E

n


S Σ   is obtained. 
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3.3.7 Correlation matrix  

The correlation matrix can be seen as the covariance matrix of the standardized  

random variables.Let 1( ,..., )nX X X be n-dimensional random sample, the 

correlation value among iX  and jX is denoted by
i jx xr and give by  

1

1 1

( )( )

( ) ( )

i j

n

ik i jk j

k
x x

n n

ik i jk j

k k

x x x x

r

x x x x



 

 



 



 

 

Obtained
i jx xr values can be represented in ( )n n matrix from  

                                   

1 1

1

n n

n n n

x x x x

x x x x

r r

r r

 
 

  
 
 

R                           (3.20) 

3.3.8 Relationship between covariance and correlation Matrices 

In equations (3.10) and (3.17) computation of sample variance and correlation 

coefficient are given. In multivariate case the covariance matrix Σ  is give in equation 

(3.18) correlation matrix in (3.20). Relationship between S and R are explained 

below. Let  
1/2

D  be defined as the ( )p p sample standard deviation matrix. Its 

sinverseis, 1/2 1/2( ) D D . Writing  
1/2

D  and 
1/2

D  in matrix form we have  

11

221/2

( )

0 0

0 0

0

0 0

p p

pp

s

s

s



 
 
 

  
 
 
 

D   

and 
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11

1/2
22( )

1
0 0

1
0 0

0

1
0 0

p p

pp

s

s

s





 
 
 
 
 

  
 
 
 
 
 

D  

Since  

11 12 1

1 2

p

p p pp

s s s

s s s

 
 

  
 
 

S   

then 

111 12

11 11 11 12 11 1 12 1

1 2 1 2

11 2

1

1

p

p p

p p pp p p

pp p pp pp pp

ss s

s s s s s s r r

s s s r r

s s s s s s

 
 

  
      
    

 
  

R  

Let D be a diagonal matrix obtained from S. The relation between covariance and 

correlation matrices is defined as 

1/2 1/2 R D SD  

1/2 1/2S D RD  

Clearly the knowledge of S enables the easy computation of R and vice versa [16]. 
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Chapter 4 

PRINCIPAL COMPONENT ANALYSIS VIA 

DIFFERENT APPROACHES TO THE DATA MATRIX 

Principal component analysis (PCA) is a dimension reduction technique in a given 

data matrix of size n p , when the number of columns representing the variables are 

very large. This reduction using principal components (PC) becomes essential in 

order to alleviate the difficulty of interpreting the variation in a large number of 

variables. Reducing the dimension by means of finding linear combinations of the 

variables associated with the variation in each variable. Through this approach only 

the first few PCs tends to account for over 90% of variation in the data. Then, instead 

of using a large number of variables to figure out the true variation in the data, using 

only a few (2 or 3) of the PCs will be a much faster way of identifying and 

explaining the variation within a given data set.  Dimension reduction can be applied 

directly to the raw data, to the centered data, or to the normalized data. Each case has 

its advantages and disadvantages depending on the nature of the data. In this chapter, 

the PCA technique will be explained and its application to different data cases will 

be given in detail. In this chapter we will talk about center the data, raw data and 

principle component analysis. We will test the original data (raw data) without 

calculating the center the data and also tested by centering the data and then compare 

both cases and which one better to use. Now we will talk about principle component 

analysis. 
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4.1 Theory of Principle Component Analysis 

PCA can be regarded as transforming a given set of p random variables to another set 

of variables (PCs) . Geometrically, PCs represent the selection of a 

new coordinate system obtained by rotating the original system . The new 

coordinate system obtained represents the directions with maximum variability. 

Given a random vector  representing p random variables with 

covariance matrix Σ and an arbitrary coefficient matrix A, the following linear 

combinations can be written.   

                                  

                              (4.1) 

These linear combinations are the uncorrelated PCs. The first principal component 

has the highest variance. From equation (4.1) variance and covariance are given as 

                                                              (4.2) 

                                                       (4.3) 

In place of any arbitrary coefficient vector a, vectors with unit length u is adopted 

without loss of generality. Then the first PC will be such that  is 

maximum subject to . The PC  will be such that  is maximum 

subject to  and . 

Theorem 4.1: Let B be a positive definite matrix with eigenva1ues and 

associated normalized eigenvectors . Then 

1,...,
T

pY Y   Y

1,..., pX X

1,...,
T

pX X   X

p p

1 1 11 1 1

2 2 21 1 2

1 1

                                    

T

p p

T

p p

T

p p p pp p

Y a X a X

Y a X a X

Y a X a X

   

   

   

a X

a X

a X

( ) ,        1, ,T

iVar Y i p a Σa

( , ) ,        , 1, ,T

i k i kCov Y Y i k p a Σa

1

T
u X 1( )TVar u X

1 1 1T u u
thi T

iu X ( )T

iVar u X

1T

i i u u ( , ) 0 for T T

i kCov k i u X u X

1 0p   

1, , pe e
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                    (4.4) 

Further 

                                   
          (4.5) 

For proof see [18] 

Let be the eigenvalues and  be the corresponding eigenvectors 

of the covariance matrix Σ.   The principal component can be written as  

 

with 

                       (4.6) 

Equation (4.6) can be proved based on Theorem 4.1, equation (4.4) 

Let matrix B= Σ in theorem 4.1. If  and  being a normalized vector ( ), 

then 

 

Similarly using (4.5) from Theorem 4.1  

 

When 

  

 

To show that when  results in , remember that the 

eigenvectors of Σ are orthogonal if all  are not equal. Hence, any two 

eigenvectors will satisfy . Multiplying both sides of   by  

gives 

1 1max  when 

min  when 

T

T

T

p pT









 

 

x 0

x 0

x Bx
x e

x x

x Bx
x e

x x

1

1 1 1
, ,

max  when ,  1, , 1
k

T

kT
k p  


   

x e e

x Bx
x e

x x

1 0p    1, , pe e

thi

1 1 ,   1, ,T

i j i ip pY e X e X i p    e X

( ) ,   1, ,  and ( , )= ,   T T

i i i i i k i kVar Y i p Cov Y Y i k   e Σe e Σe

1a e 1e 1 1 1T e e

1 1 1max = var( )
T T

T

T T
Y


  

a 0

a Σa e Σe
e Σe

a a e e

1

1
, ,

max  ,  1, , 1
k

T

kT
k p 


  

a e e

a Σa

a a

1 1 and 0 for 1, ,  1, , 1T

k k i i k k p     a e e e

1 1
1 1 1 1

1 1

( )
T

Tk k
k k k kT

k k

Var Y  
   

 

  
e Σe

e Σe
e e

0,  T

i k i k e e ( , ) 0i kCov Y Y 

1, p 

0,  T

i k i k e e k k kΣe e T

ie
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It is understood that the principal components are uncorrelated and their variances 

are the eigenvalues of the covariance matrix Σ. 

Remembering that the diagonal elements of Σ are the variances of , and 

then the following relationship becomes evident. 

 

Then total population variance becomes .It is also worth 

mentioning that magnitude of each element of the vector indicates 

the importance of corresponding variable in the PC. The vector element is also 

proportional to the correlation between . This correlation can be computed 

from 

                                          

                          (4.7) 

Obviously  measures the linear correlation between the  random variable and 

the concerned  PC. Tendency is that random variables assigned PC scores  ike  

that are large will have high values. 

 Example 4.1: The following data consisting of 5 variables represent various 

characteristics of silver zinc battery affecting there life time [15]. Magnitude of data 

values for each variable is quite different. Therefore, the PC analysis will be applied 

to the raw data, centered data, and standardized data. Results and interpretations will 

be explained and compared. 

 

( , ) 0 for T T T

i k i k i k k k i kCov Y Y i k     e Σ e e e e e

,  1, ,jX j p

11 1

1 1

( ) ( )
p p

pp j p j

j j

Var X Var Y   
 

      

2

11 1pp p        

1( , , , , )T

i i ik ipe e ee

ike

 and i kY X

, ,  , 1, ,
i k

ik i

Y X

kk

e
i k p





 

,i kY X
thk

thi

,i kY X
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    Table 4.1: Battery failure data represented by the data matrix X. 

 Charge 
rate(amps) 

 
Discharge 

rate(amps) 

Depthof 
discharge 

(%ofratedof 

amperehours) 

 
Temperature 

(  ) 

 
End of  

Charge 

Voltage 

(volts) 

0.375 3.13 60.0 40 2.00 

1.000 3.13 76.8 30 1.99 

1.000 3.13 60.0 20 2.00 

1.000 3.13 60.0 20 1.98 

1.625 3.13 43.2 10 2.01 

1.625 3.13 60.0 20 2.00 

1.625 3.13 60.0 20 2.02 

0.375 5.00 76.8 10 2.01 

1.000 5.00 43.2 10 1.99 

1.000 5.00 43.2 30 2.01 

1.000 5.00 100.0 20 2.00 

1.625 5.00 76.8 10 1.99 

0.375 1.25 76.8 10 2.01 

1.000 1.25 43.2 10 1.99 

1.000 1.25 76.8 30 2.00 

1.000 1.25 60.0 0 2.00 

1.625 1.25 43.2 30 1.99 

1.625 1.25 60.0 20 2.00 

0.375 3.13 76.8 30 1.99 

0.375 3.13 60.0 20 2.00 

 

 

S  Computed from the raw data matrix X is: 

    0.2251   -0.0587   -2.3039   -0.6414    0.0000

   -0.0587    2.0266    4.2253   -0.0403    0.0009

   -2.3039    4.2253  239.1225   10.3368    0.0030

   -0.6414   -0.0403   10.3368   99.7368   -0.01

S

11

    0.0000    0.0009    0.0030   -0.0111    0.0001

 
 
 
 
 
 
 
 

 

The eigenvalues of S  are 1 2 3 4 5239.98,  98.98,  1.95,  0.20,  0.0001          and the 

corresponds eigenvectors forms the columns of the Γ  matrix. The elements of each 

column of the Γ  matrix are the coefficients of the principal components ,  1, ,iY i p .   

1x 2x 3x 4x

c

5x
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0.0098 0.0048  0.0108    0.9999    0.0000   

0.0177 0.0036 0.9998     0.0109   0.0004   

0.9971 0.0735 0.0180    0.0092    0.0000   

0.0735 0.9973 0.0022   0.0055      0.0001   

0.0000 0.0001 0.0004    0.0000   1.0

 

 

 

 



Γ

000   

 
 
 
 
 
 
 
 

 

Total variation in the data 
1

341.11
k

ki



 .First 2 eigenvalues represe 

1 2

1

338.96
0.994

341.11
k

ki

 





 


 or 99.4% of total variation in the data. Using the Γ  matrix, 

principal’s components are written  

1 1 2 3 40.0098 +0.0177 0.9971 0.0735Y X X X X   
 

2 1 2 3 4 50.0048 0.0036 0.0735 0.9973 0.0001Y X X X X X    
 

3 1 2 3 4 50.0108 0.9998 +0.0108X 0.0022 0.0004XY X X X   
 

4 1 2 3 40.9999 0.0109 0.0092 0.0055Y X X X X   
 

5 2 4 50.0004 0.0001Y X X X    . 

Evidently each PC is dominated by one variable only, while remaining variables 

have almost negligible influence. Since 99.4% of variation in the data is represented 

by the first two PCs 1 2 and Y Y , close inspection is necessary.  

First PC 1Y  is a linear combination of the variables 1 2 3 4,  ,  ,  and X X X X . However, the 

coefficient of 3X (depth rate of discharge measured as %rated amps/hr) is the largest 

in absolute terms, dominating 1Y . The temperature ( 0C ) 4X  also has a notable 

influence on 1Y . Second PC 2Y  is a linear combination of all 5 variables. Here, 4X  

(Temperature ( 0C )) is the dominating variable while the depth rate of discharge 

measured as %rated amps/hr 3X also has a some influence on 2Y . Since remaining PCs 

have negligible contribution to the total variation in data, they will not be considered.   
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The relationship ( )i iVar Y   can be checked for this example. For the first PC  

1 1 2 3 4

1

( ) ( 0.0098 0.0177 0.9971 0.0735 )

( 0.01)(0.23) (0.018)(2.03) (0.997)(239.12) (0.074)(99.74) 245.81

Var Y Var X X X X



     

     
 

Since PCs are independent as an example 1Y and 2Y  are checked for independence, 

1 2 1 2 3 4 5

1 2 3 4 5

cov( , ) ov(( 0.0098 0.0177 0.9971 0.0735 0 ),

(0.0048 0.0036 0.0735 0.9973 0.0001 ))

Y Y C X X X X X

X X X X X

     

   
 

Hint: Given random variables 
1, , nX X  and their linear combinations

1 2

1 1

 and 
n n

i i i i

i i

Y a X Y b X
 

   ,  

         1 2

1

( , ) ( ) ( ) ( , )
n

i i i

i i j

Cov Y Y a bVar X i j j i i ja b a b Cov X X
 

               (4.8) 

Using equation 4.8 the covariance between the PCs 
1 2 and Y Y  , are given in appendix 

A. The linear correlation between each PC 
iY  and the variables 

iX  is also worth 

considering. They are computed as  

                                     ,  , 1, ,
i j

ij i

Y X

jj

e
i j p





                        (4.9) 

Equation 4.9 becomes ;  , 1, ,ij i

i j jj

e

Y X s
r i j p


   for the sample data. Then the linear 

correlation coefficient between the variables and the first 2 PCs that accounts for 

99.4% of total variation in the raw data and the variables are given below.  

Table 4.2: Principle component scores and correlation between 1Y  and iX  for raw 

data. 

 
1X  2X  3X  4X  

iie  -0.0098 0.0177 0.9971 0.0735 

i iY Xr  -0.3205 0.193 0.999 0.114 
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Figure 4.1: Relationship between principle component scores and correlation 

1 iY Xr  for 

the raw data. 

Table4.3: Principle component scores and correlation between 2Y  and iX  for raw 

data 

 
1X  2X  3X  4X  5X  

iie  0.0048 0.0036 0.0735 -0.9973 0.0001 

i iY Xr  0.101 0.025 0.0471 -0.011  0.1 

 

 
Figure 4.2: Relationship between principle component scores and correlation (

1 iY Xr ) 

for the raw data. 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

-0.0098 0.0177 0.0735 o.9971 

r 

PC score  

-0.02 
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0.02 
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From Figures 4.1 and 4.2 it can be observed that in general the higher the 

contribution of a variable to the PC, leads to a higher linear correlation between that 

variable and the PC. 

4.1.1 Principal components of centered data 

In an n p data matrix X, if the magnitude of the data values belonging to different 

variables is substantially different than each other, then the variables with bigger 

values will dominate the total variance. This will reflect on the coefficients of the 

PCs, leading to misinterpretations. The problem can be alleviated to a certain extent 

by centering the data matrix, before the computation of the PCs. Here centering 

means subtracting the mean of each variable ;  1, ,jx j p  from the values of that 

variable. That is the expression of the elements of each variable as deviations from 

its mean ;  1, , ;  1, ,ij jx x i n j p   . To express this process in matrix form, let 
nH  be 

the centering matrix defined as 1 T

n n  H H I 11 . Here I is the n n  identity matrix, 1 

is the 1n  vector of 1s. 

Then the centering matrix has the following properties [18]. 

i. It is symmetric and idempotent. 1 2,  T   H H H H H . 

ii. ,  T T  H1 0 H11 11 H 0  

iii. 1,  where 
n

ii
x

n
x x 

  Hx x 1  

iv. Here, premultiplying a column vector by H results in the deviation values    

from the mean. If the data matrix X is premultiplied by the centering matrix, it yields 

the deviation of each element from its corresponding column mean. 

v. 
2

1
( )

n

ii
x xT

n



x Hx  

Centering of the sample data matrix X is given by 
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1/2

*

1

n

X HXD  

 For clarity, such data matrix 
*X  will shortly be called centered data. 

                           Table 4.4: Centered data obtained from raw data given in Table 

      

*

1x
        

*

2x
        

*

3x
      

*

4x
      

*

5x
 

-0.3171 0.0156 -.0416 -0.0246 0.0237 

-0.0151 0.0156 0.2082 -0.0373 -0.2133 

-0.0151 0.0156 -0.0416 -0.0499 0.0237 

-0.0151 0.0156 -0.0416 -0.0499 -0.4503 

0.2871 0.0156 -0.2915 -0.0625 0.2607 

0.2871 0.0156 -0.0416 -0.0499 0.0237 

0.2871 0.0156 -0.0416 -0.0499 0.4977 

-0.3171 0.3169 0.2082 -0.0625 0.2607 

-0.0151 0.3169 -0.2915 -0.0625 -0.2133 

-0.0151 0.3169 -0.2915 -0.0373 0.2607 

-0.0151 0.3169 0.5532 -0.0499 0.0237 

0.2871 0.3169 0.2082 -0.0625 -0.2133 

-0.3171 -0.2874 0.2082 -0.0625 0.2607 

-0.0151 -0.2874 -0.2915 -0.0625 -0.2133 

-0.0151 -0.2874 -0.2082 -0.0373 0.0237 

-0.0151 -0.2874 -0.0416 -0.0752 0.0237 

0.2871 -0.2874 -0.2915 -0.0373 -0.2133 

0.2871 -0.2874 -0.0416 -0.0499 0.0237 

-0.3171 0.0156 0.1963 0.9733 -0.2133 

-0.3171 0.0156 -0.0416 -0.0499 0.0237 

 

Covariance computed from centered data is: 

    0.0526   -0.0046   -0.0164   -0.0173    0.0004

   -0.0046    0.0526    0.0101    0.0008    0.0034

   -0.0164    0.0101    0.0526    0.0106    0.0012

   -0.0173    0.0008    0.0106    0.0526   -0.01

S

17

    0.0004    0.0034    0.0012   -0.0117    0.0526

 
 
 
 
 
 
 
 

 

The eigenvalues of S  are 1 2 3 4 50.0855,  0.0623,  0.0471,  0.0366, 0.0317          and 

the corresponding eigenvectors forms the columns of the Γ  matrix. The elements of 
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each column of the Γ  matrix are the coefficients or scores of the principal 

components ,  1, ,iY i p .   

0.5841 0.0420 0.3709 0.2862 0.6614

0.2428 0.5382 0.7380 0.3257 0.0234

0.5339 0.2960 0.0461 0.7692 0.1834

0.5395 0.3845 0.0446 0.3823 0.6425

0.1538 0.6878 0.5600 0.2725 0.3398

   
 
   
   
 

  
   

Γ  

Total variation in the data
1

0.2632
k

ki



 . However, due to centering of the data there 

has been a considerable smoothing, leading to a more uniform distribution of the 

variation around the mean of each variable. This is visible from the closeness of the 

variances to each other. Never the less, the first 3 eigenvalues represents

1 2 3

1

0.1949
0.74

0.2632
k

ki

  




 
 


or 74% of the total variation of the centered data. But in 

general all PCs will have significant contribution in representing the centered data. 

PCs are given below. 

1 1 2 3 4 50.5841 0.2428 0.5339 0.5395 0.1538Y X X X X X      

2 1 2 3 4 50.0420 0.5382 0.2960 0.3845 +0.6878Y X X X X X      

3 1 2 3 4 50.3709 0.7380 +0.0461X 0.0446 0.5600Y X X X X      

4 1 2 3 4 50.2862X 0.3257 0.7692 0.3823 0.2725Y X X X X      

5 1 2 3 4 50.6614 0.0234 0.1834 0.6425 0.3398Y X X X X X        . 

Inspection of the first PC 1Y  that represents 33% of total variation in the centered 

data, reveals that the variables  1 4 and X X  (charge rate and temperature) have the 
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highest positive influence on
1Y , while 

3X (Depth of discharge) has high negative 

influence. Similar interpretations can be made for the other PCs by close inspection 

of their principal component scores. Computed linear correlation coefficients 

between the first and second PCs, and constituent variables are presented in Tables 

4.5, 4.6, and Figures 4.3 and 4.4. 

Table 4.5: Principle component scores and correlation between 1Y  and iX  for 

centered data 

 
1X  2X  3X  4X  5X  

ie  0.5841 -0.2428 -0.5339 0.5395 0.1538 

i iY Xr  0.745 -0.098 -0.6805 0.6877 0.1960 

 

 
Figure 4.3: Relationship between principle component scores and correlation (

1 iY Xr ) 

for the centered data. 

Table 4.6: Principle component scores and correlation between 2Y  and iX  for 

centered data 

 
1X  2X  3X  4X  5X  

ie  -0.0420 0.5382 0.2960 0.3845 0.6878 

i iY Xr  -0.0497 0.5891 0.3240 0.4208 0.7521 
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-0.4 

-0.2 
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-0.5339 -0.2428 0.1538 0.5395 0.5841 

r 

PC score 
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Figure 4.4: Relationship between principle component scores and correlation (

1 iY Xr ) 

for the centered data. 

Here also the linear correlation between a PC and its constituent variables is 

compatible with the magnitude of the scores associated with that variable. 

4.1.2 Principal components in the multivariate normal case 

In the multivariate normal case the random vector X has parameters mean vector μ  

and covariance matrix Σ . From multivariate normal theory, it is known that the 

density of X is constant. μ  centered ellipsoid is given by 

1 2( ) ( )T c  x μ Σ x μ  

with axes ,  1, ,i ic i p e . Here  and i i e  are the eigenvalues and eigenvectors of Σ. 

Any point on the thi  axis has coordinates that are proportional to the vector 

1( , , )T

i ipe ee in the coordinate system with origin μ  the thi  axis where the point is 

situated is parallel to the original axis 1, , px x .  

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

-0.042 0.296 0.3845 0.5382 0.6878 

r 

PC score  
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Remember the facts that the distance from the point 1, ,T

px x   x  to the origin is 

given by the quadratic form T
x Ax . The square of the distance between 

1[ , ]T

p μ  

and any point x is 2( ) ( )T c  x μ A x μ .  

Without loss of generality μ 0  can be assumed. If 1
Σ  is substituted in place of A 

and from spectral decomposition concept 

1 1 2 2 2

1

1

1 1
( ) ( ) ( ) ( )T T T T

p

p

c
 

       x μ Σ x μ x Σ x e x e x  

can be written. Here 
1 , ,T T

pe x e x  are the PCs ,  1, ,iy i p . Then 

                                                       2 2 2

1

1

1 1
p

p

c y y
 

                   (4.9) 

Since 1 2 0p      , equation 4.9 represents the ellipsoid with axis 1, , py y  in 

the directions , , p1
e e . The direction of the axes of a constant density ellipsoid is 

where the PCs lie in. Hence the x coordinates of any point on the thi ellipsoid are 

proportional to
1[ , , ]T

i i ipe ee . Principal component coordinates will be of the form

[0, ,0, ,0, ,0]i iy y .If μ 0 , then the centered PC ( )T

i iy  e x μ  will have 0
iy   and 

lie in the direction
ie . 

Figure 4.5 shows the constant density ellipsoid of a bivariate normal distribution 

1 2T c x Σ x  with
0

 and =0.75
0


 

   
 

μ 0 . PCs 1 2,  y y  are can also be obtained by rotating 

the original coordinate axes by an amount equal to . 
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Figure 4.5: Constant density ellipsoid of a bivariate normal distribution 

An attempt is made to apply the normal theory for the computation of PCs for the 

battery data assuming the variables are normally distributed. The overall mean for 

the whole data is used for the computation of the standardized values. These are 

given in Table 3. 
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        Table 4.7: Data standardized using the global (overall) mean of the battery data. 

1z
  2z

 3z
 4z

 5z
 

-0.69104 -0.58103 1.689867 0.891239 -0.62615 

-0.66609 -0.58103 2.360715 0.491925 -0.62655 

-0.66609 -0.58103 1.689867 0.092611 -0.62615 

-0.66609 -0.58103 1.689867 0.092611 -0.62695 

-0.64113 -0.58103 1.01902 -0.3067 -0.62576 

-0.64113 -0.58103 1.689867 0.092611 -0.62615 

-0.64113 -0.58103 1.689867 0.092611 -0.62536 

-0.69104 -0.50636 2.360715 -0.3067 -0.62576 

-0.66609 -0.50636 1.01902 -0.3067 -0.62655 

-0.66609 -0.50636 1.01902 0.491925 -0.62576 

-0.66609 -0.50636 3.287123 0.092611 -0.62615 

-0.64113 -0.50636 2.360715 -0.3067 -0.62655 

-0.69104 -0.6561 2.360715 -0.3067 -0.62576 

-0.66609 -0.6561 1.01902 -0.3067 -0.62655 

-0.66609 -0.6561 2.360715 0.491925 -0.62615 

-0.66609 -0.6561 1.689867 -0.70602 -0.62615 

-0.64113 -0.6561 1.01902 0.491925 -0.62655 

-0.64113 -0.6561 1.689867 0.092611 -0.62615 

-0.69104 -0.58103 2.360715 0.491925 -0.62655 

-0.69104 -0.58103 1.689867 0.092611 -0.62615 

 

Covariance of the standardized data using the global mean is computed as  

    0.0004   -0.0001   -0.0037   -0.0010   -0.0000

   -0.0001    0.0032    0.0067   -0.0001    0.0000

   -0.0037    0.0067    0.3813    0.0165    0.0000

   -0.0010   -0.0001    0.0156    0.1590    0.00

S

00

    0.0000    0.0000     0.0000   -0.0000    0.0000

 
 
 
 
 
 
 
 

 

The eigenvalues of S  are 1 2 3 4 50.3827,  0.1578,  0.0031,  0.0003,  0.0001         . 

Principal component scores matrix Γ  made up of the corresponding eigenvectors is 

-0.0098 0.0048 0.0108 0.9999 -0.0000

0.0177 0.0036  -0.9998 0.0109 -0.0004

0.9971  0.0735 0.0180 0.0092 -0.0000

0.0735  -0.9973 -0.0022 0.0055 0.0001

0.0000  0.0001  -0.0004 0.0000 1.0000

 
 
 
 
 
 
 
 

Γ  
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In this case total variation in the data
1

0.544
k

ki



 . First 2 eigenvalues represents 

1 2

1

0.5405
0.9935

0.544k

ki

 





 


 or 99.35% of total variation in the data. 

The first two PCs are 

1 1 2 3 4 50.0098Z +0.0177 +0.9971 0.0735 0.0001Y Z Z Z Z   
 

2 1 2 3 4 50.0048 +0.0036 0.0735 -0.9973 +0.0001Y Z Z Z Z Z  . 

It is seen that the use of global mean has resulted a significant reduction in the total 

variation as compared with the raw data which hase total variance
1

341.11
k

ki



 . On 

the other hand, PCs for the raw data and standardized using the global mean are the 

same.  However, total variance in the centered data
1

0.2632
k

ki



 , is about half of 

the total variance of the standardized data. This is mainly due to the fact that, 

centering a data matix is based on column averages and standard deviations, which 

effectively results in greater smoothing of the data values.  
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Chapter 5 

CONCLUSION 

 

Principal component analysis is basically a method designed to transform high 

dimensional data using an orthogonal transformation. In the process a linear 

combination of the original variables is computed that forms a new set of 

independent variables. However, application of the method to any process may not 

result in a set of PCs that may not reflect the true picture of the original data. The 

following cases are examined. 

When the the variables of the data set have similar scale. Application of the PCA 

under these conditions will help obtain PCs that are capable of explaining the overall 

variation without large deviations from the real variation in the data.  

When the variables of the data set have different units, or data values of different 

variables have significant difference in terms of magnitute. In such cases either 

centering of the data, or standardizing based on global mean can be used. 

Centering the data is carried out on the mean of individual variables. This in effect 

shifts the center of each variable to zero and standardize each variable accordingly. 

This process reduces the wide variation among variables. PCA is then performed and 

obtained PCs tends to explain the significance of each variable better than by direct 

application of PCA to raw data. 
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Standardizing the data using the global mean smooths the fluctuations in the 

variances of individual variables. Subsequent application of PCA to standardized 

data yields the same PCs as those obtained from raw data, indicating that each 

variable retained its initial significance. 

A data set consisting of 5 variables that affects the failure of a battery was used to 

test the theory given in this thesis. All obtained results are consistent with the theory 

of PCA. 
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Appendix:  Computation to show independence of PCs 1y and 2y  obtained from raw 

data. 

1 2 11 22

33 44

1 2 1 3

1 4 1 5

2 3

cov( , ) ( 0.0098 0.0048) var( ) (0.0177 0.0735) var(X )

(0.9971 0.0735) var(X ) (0.0753 0.9973) var( )

0.00005cov(X , X ) 0.0060cov(X , X )

0.0101cov(X , X ) 0.0001cov(X , X )

0.0023cov( , ) 0.0174

Y Y X

X

X X

    

   

 

 

  2 4

2 5 3 4

3 5 4 5

cov(X , X )

0.0001cov(X , X ) 0.9998cov(X , X )

0.0001cov(X , X ) 0.0001cov(X , X )

 

 

 

1 2 1 3

1 4 1 5

2 3 2

( 0.0098 0.0048)( 0.0098 ) (0.0177 0.0735)(

(0.9971 0.0735)( ) (0.0753 0.9973)( )

0.00005cov(X ,X ) 0.0060cov(X ,X )

0.0101cov(X ,X ) 0.0001cov(X ,X )

  0.0036)

0.0

0.0023cov

180 0.0

( , ) 0.0174

0

cov(X

55

,XX X

     

   

 

 

  4

2 5 3 4

3 5 4 5

)

0.0001cov(X ,X ) 0.9998cov(X ,X )

0.0001cov(X ,X ) 0.0001cov(X ,X )

 

 

 

( 0.0098 0.0048)( 0.0098 ) (0.0177 0.0735)(

(0.9971 0.0735)( ) (0.0753 0.9973)( )

0.00005( ) 0.0060( )

0.0101( ) 0

  0.0036)

0.0180 0.0055

0.0048 0.0108 

0.9999 0..0001( )

0.0023

0000

0.9998( ) 0.0174( )

0.0001

0.0109

     

   

 

 

 







( ) 0.9998( )

0.0

0.0004 0.0092

0.001( ) 0.00010000 0.0 )1( 00









 

0.0000005 0.0000005 0.001320

0.000403 0.0000002 0.0000650

0.0100990 0.00000001 0.0023

0.0002 0.00000004 0.00919616

0.00000001 0.00000001

  

  

  

  

 

 

0.00121603 0   
 

 

 
 

 

 
 

 

 

 
 

 


