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ABSTRACT

In the analysis of multivariate data, the processing and extracting meaningful results
becomes very difficult due large number of variables and data. Therefore, statistical
techniques to deal with such data, by finding linear combinations of existing
variables, such that each variable is assigned a coefficient or score that determines its
contribution to that linear combination. These linear combinations are called
Principal Components (PC) and the methodology used in the determination of the
PCs is called Principal Component Analysis (PCA). In general the number of PCs is
expected to be the same as the number of variables. However, the PCs are
determined such that the great percentage of variation (usually over 90%) in the data
accumulates in the first few PCs. Then, the remaining PCs become redundant, and
the information contained in a large number of variables is reduced into a few new
variables (PCs) that are linear combinations of original variables. Therefore, a
technique used in determining the PCs is very important. In this work, theory of PCA
with related mathematical background is explained and using a certain data set,
various ways of the application of PCA technique is investigated, obtained results are

interpreted.

Keywords: Principle component analysis, data, eigenvalue, eigenvector, covariance,

correlation, standardized data, centered data.



o)A
Cok degiskenli veri analizinde oOzellikle degisken sayismnin ¢ok fazla oldugu
durumlarda iglem yapip sonu¢ ¢ikarma oldukca zordur. Bu sartlar altinda veri
analizini yapabilmek i¢in gelistirilmis istatistik teknikler, mevcut degiskenlerin lineer
kombinezonlarindan olusan ve biribirinde bagimsiz yeni degiskenlerin hesaplanmsini
miimkiin  kilar. Bu degiskenlere Temel Bilesenler ve bu bilesenlerin
hesaplanmasinada kullanilan yOntemlerede Temel Bilesenler Analizi denir.
Hesaplanan temel bilesen sayisi, degisken sayis1 kadardir. Ancak, verideki toplam
degisimin ¢ok biiyiik bir kismi ilk birkag temel bilesen tarafindan temsil edilir.
Sadece bunlarin analiz ve yorumlamada kullanilmasi, hesaplamalardaki yogunlugu
ciddi miktarda azaltirken, elde edilen sonuglar tiim kitleyi 90%’in iistiinde bir
temsiliyeti sahiptir. Geriye kalan ve verideki toplam degisimin ¢ok az bir kismini
temsil eden temel bilesenler isleme sokulmaz. Bdylece, ¢ok yiiksek sayidaki veri
miktari ¢ok aza indirgenmis olur. Bu nedenle temel bilesenlerin hesabinda
kullanimlan yontemler ¢ok Onemlidir. Bu calismada temel bilesenler analizinin
matematiksel temelleri izah edilmis, belli bir veri seti kullanilarak metodun farkl

yaklasimlarla uygulamasi yapilip, elde edilen sonuglar yorumlanmustir.

Anahtar kelimeler: Temel bilesenler analizi, veri, 6zdeger, 6zvektor, kovaryans,

korelasyon, standartlastirilmis veri, merkezilestirilmis veri.
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Chapter 1

INTRODUCTION

Processing a data set with large number of variables necessitates special techniques.
Principal Component Analysis (PCA) is one of such methodologies, widely used for
this purpose. PCA method is based on finding linear combinations of the variables,
such that they represent the directions of variation in the multivariate data in
ascending order. Number of PCs is the same as the number of variables. However,
only few of the PCs are generally enough to represent the process in question, since
the large percentage (over 90%) of variation in the process tends to be explained by

these few PCs.

Early work by Karl Pearson [1] laid down the foundations on PCA. Interest in PCA
and its applicatios in data analysis started increasing in 1970s, leading to the
developments vitnesed today. Many valuable contributions made by different
researchers. A brief review of this is given in Chaper 2 under literature survey.

Chapter 3 explains the necessary mathematical and statistical background necessary

to understand and develop the PCA methodology.

In PCA a multivariate data set is considered as an nxp dimensional marix, p being
the number of variables X;; i=1...,p and n number of observations. The data set is
manipulated, such that a new set of independent variables Y;; i=1...,p consisting of

linear combinations of the initial variables, named as Principal Components (PC).



The PCs are determined so as the first is in the direction where the largest variation
occurs in the raw data, followed by the remaining PCs representing the direction
variations in descendin order. Hence, the first few PCs tend to represent the great
majority of variation in the data set. This provides the facility of understanding the
process that generated the data by only analizing these few PCs. Theory involved in
the computation of PCs, ways of their application such as using the raw data,

centered, or standardized data are explained under Chapter 4.

A data set consisting of 5 variables is used as a case study to apply the theory to a

real life example concerning the factors that affect the life of a battery.



Chapter 2

LITERATURE REVIEW

Initial work on PCA dates back to 1901 in the work of Karl Pearson [1], who
discused the the best way of graphically representing data. Hotelling (1933) [2], [3]
and and Girshick (1936; 1939) [4] are the researchers that contributed to the theory

of PCA in 1930s.

Among other early researchers worth metioning are the work of Anderson (1963)
[5] who elaborates on the asymptotic properties of PCs. Rao (1964) [6] talks
about the use and interpretation of PCs, and als published a book on “Generalized
Inverse of Matrices and its Applications” in 1971 [9]. Jeffers (1967) [8] offers case

studies on the application of PCs.

Mardia et.al. (1979) [23] published what may be considered as one of the first books
that combines multivariate analysis together with associated theory and applications

to statistics.

In the post 1980s period with the advances of computing power, interest has rapidly
grown in PCA, resulting in many theoretical work as well as successful applications
in many different fields of endveour. Some of related work that benefited from is

listed in the references.



Chapter 3

GENERAL REVIEW OF SOME MATHEMTICS
AND STATISTICS RELATED CONCEPTS

In this chapter important mathematical and statistical principals which are necessary
to understand the concepts and methods used in principal component analysis are
summarized, Centering Matrix and its function in PCA are introduced.

3.1Matrix Algebra Concepts

The use of matrix algebra in many statistical applications is essential. Certain basic
concepts from matrix algebra are introduced in order to enable the comprehension of
stastistics to be used in later chapters.

3.1.1 Inverse of a Matrix

Let a square matrix A of size nxn, which is non-singular|A| #0 be given. Then there

exists a matrix A"which is called the inverse of A such that:
AAT=A"A=I (3.1)
where | is the identity matrix.
The inverse of a sequare nx n matrix A can be found by using the following equation

A i)
det(A)

(3.2)

where the adj(A) denotes the adjoint of matrix A. The adjoint can be calculated by;



Let B=Db; to be the matrix whose coefficients are found by taking the determinant of

the (n—1) x (n—1) sub-matrix (minor) obtained deleting the i" row and j" column of
A, and multiplyingb;; by (-1)"’. The obtained matrix B is known as the cofactor

matrix of A [19]. Transpose of gives the adjoint matrix of A. Then from equation 3.2
the inverse is obtained.

3.1.2 General Inverse

A general nxn matrix can be inverted using methods such as the Gauss-Jordan
elimination, Gaussian elimination, or LU decomposition. The inverse of a product
AB of matrices A and B can be expressed in terms of A 'and B™.

Consider the following properties on matrices. Let

C=AB

then

B=A"'AB=A"C
and

A=ABB'=CB™".
Therefore,

C=AB=(CB*)(A'C)=CB*A"C,
SO

CB'A*=l,
Where, | is the identity matrix, and
B*A'=C'=(AB)™.
Definition If Ais an mxnmatrix, thenG is a generalized inverse of A if Gis an

mx n matrix with

AGA = A (3.3)



If Ahas an inverse in the usual sense, that is if Aisnxnand has a two-sided
inverse A™, then
AY(AGA)A™ = (A*A)G(AA™) =G
while by (3.3)
AYA)AT=(ATAAT=A"
Thus, if A exists in the usual sense, then G = A™. This justifies the term
generalized inverse. Any mxnmatrix A has at least one generalized inverse G [9].
3.1.3 Eigensolutions (Eigenvalue and Eigenvector)
Matrix Ais a square matrix having sizenxn. Also the non-zero vector x and scalar
Aare given. Then, in
AX = AX (3.4)
The vector x is called eigenvector of A corresponding to the eigenvalue A[12].

Excpression of the determinant (|A|) and trace (tr(A)) of matrix A is given as

below.
p
A=TT4 @5)
j=1
P
tr(A)=> 4,
j=1
3.1.4 Orthogonal matrix
Matrix A of size "*N s orthogonal if
AAT =1,

where A" is the transpose of A and | is the identity matrix. In particular, an
orthogonal matrix is always invertible, and in component form, A™ = AT

-1 T
g =8



where a‘lij and aTij are the i, j elements of matrix A~*and AT respectively. These

relation make orthogonal matrices particularly easy to compute with, since the
transpose operation is much simpler than computing an inverse [10].

3.1.5 Orthonormal Matrix

The conditions of achieving orthonormality for two vectors in an inner product
space are orthogonal and unit vectors. A set of vectors form an orthonormal set, if
all vectors in the set are mutually orthogonal and all are unit length. An orthonormal
set which forms a basis is called an orthonormal basis.

Definition Let V be an inner-product space. A set of n-vectors{u,,...,u,}eV is

called orthonormal if and only if

1 if <u,u;>=1

Vit 5”-,{0 otherwise

where J;; is the Kronecker delta and <.,.> is the inner product defined over V . Let
Abenxnmatrix as follows: A =(v,,V,,...,V,),V;,i=1...,n is row vector. This
matrix is called orthnormal if it is orthogonal and |v; |, =1.

3.2 Decomposition of a Matrix

A matrix A can be decompose or factored by writing the matrix as the product of two
matrices. There are different methods used in matrix decomposition, such as LU
decomposition, spectral decomposition (SP), singular value decomposition SVD.
Each method finds use among a particular class of problems. In principle component
analysis SP and SVD are widely used. Hence, some detail on these methods is given
in sections 3.2.1 and 3.2.2.

3.2.1 Spectral Decompositions



This is a method that eatblishes the relationship between a square matrix ant its
eigenvalues and eigenvectors. It is also called Jordan decomposition. Theorem 3.1

gives basic idea of the spectral decomposition [21].

Theorem 3.1 Jordan Decomposition. Let A(px p) be a symmetric matrix. Then
T p T
A=TAL" = Zj:lijyjyj
where

A =diag(4,,...,4,)

L=(y.07,)
and 4,..., 4, are the eigenvalues of A.T" Is an orthogonal matrix consisting of the

eigenvectorsy,,....y, of A.

Using spectral decomposition powers of a matrix A(p x p) can be defined. Suppose
A'is a symmetric matrix. Then by Theorem 3.1 and for some & € ‘R

A% =TAT’ (3.6)
where A* =diag(4,...,A4;). From equation 3.6 the inverse of the matrix Acan be
obtained by setting o =-1,

A'=TAT".
3.2.2 Singular Value Decomposition (SVD)
The singular value decomposition (SVD) is a factorization of a real or
a complex matrix, with many useful applications in signal processing and statistics.
Formally, the singular value decomposition of an nx preal or complex matrix Ais a

factorization of the form:



A=UAV'

where U is annx pand column orthogonal (its columns are eigenvectors of AA™), V

is an px pand orthogonal (its columns are eigenvectors of ATA), and A is an

px pdiagonal matrix of the form
Ay 0

with4 >4, >..2 4, >0 andr=rank(A) . 4,...,4, are called the singular values of
Al22].

Example 3.1
2 6 8
A=
315
13 15 31
; (104 52 T
AA' = and A'/A=|15 37 53
52 35
31 53 89

The eigenvalues and eigenvectors of AAT are:
A 7.096 0.4728 -0.8811
)\4 T = = y G =
M4 131.9 M 1-0.8811 -0.4728

The eigenvalues and eigenvectors of A’ Aare:

7.096 0.72 064 0.28

A :Fﬂ: 1319, G, ,=| 046 -0.73 0.50
AA ].2 AA

0 -0.52 0.23 0.82

. [2 68
A=G, AGy, =" | .|



3.2.3 Quadratic Forms

To write a quadratic form Q(x) a symmetric matrix A of size nxn and a vector

xeR" are needed.

Then

n n

Q) =x"Ax=>" > a;xX, (3.7)

i=1  j=1
Let A denote an nx nsymmetric matrix with real entries and let x denote annx1

column vector [20].

Q =x" Ax is said to be a quadratic form. Note that

a4y,

Q=xX"Ax=(x..x)| I " (X0 X)
a‘n]_ cos a

nn

= a11X12 T A XX, o+ 3, X X,
A, X, X, + By X+t By X
+...

+...

+...
2
+a, X, X, + A, X, X, .+ A, X,

=D %X

i<j

For example, consider the matrix

o N O
H~ O O

The general quadratic formQ is given by

10



1 0 0} x
Q=x"Ax=[x X, %][0 2 0|x,
0 0 4] x

X

:[X1 2X, 4X3] X3

X3

=[x2+2x + %]
Q =x" Ax: A quadratic form is said to be:
a: negative definite: Q<0 whenx #0
b: negative semidefinite: Q <0 for all xand Q = O for some X #0
c: positive definite: Q >0 whenx # 0

d: positive semidefinite: Q >0 for allxand Q =0 for some X =0

e: indefinite: Q > 0 for some xandQ < 0 for some other x.

Theorem 3.2: Let matrices A andBbe symmetric andB >0. Then the quadratic

x" AX . . . :
BT x has a maximum which is the largest eigenvalue of B™A . This can be

form

written as

X" AX . X' AX
max =A>A =>...>2 A =min )
x xBTx hz4 " x X' BX

where /11,/7«2,---, /7«,1 denote the eigenvalues of B'A. The vector which

X" AX
xBTx

maximises (minimizes) is the eigenvector of B~ A which corresponds to

the largest (smallest) eigenvalue of B™*A . If x" Bx =1we get

maxx' AxX= 4, >4, >...> A, =minx' Ax.

11



Proof: BY> =T ,A"?,T", is symmetric. Then XB" x = HXT Bl’ZH2 = HB“ZXHZ.

.
ax XTAX = max y'B 2 AB %y, (3.8)
x X BXx {yy'y=p

Let B"2AB™2 =T'AT" be the spectral decomposition and vector z defined as
z=TI"y,
Then
2'z= yTFFTy = yTy.
Thus (3.8) is equivalent to

P

max z'Az= max » Az’

{z:z"z=1} {z:2"z=1} -y !

but
max Y Az <Amax Y.zl =14

.
when Z=(1,0,0,...,0)" maximum is obtained. For y=7, X=B"%y,. is
obtained.

The eigenvalues of B™*A and B™"2AB™?are equal. This completes the proof.

Lagrange method can also be used to prove the same theorem. That is maximize
x"Ax Subject tox'Bx. Then the Lagrange function isL =x"Ax—A[x"Bx-1] .
Hence A is the lag-range constant.

max X" Ax = max[x' Ax—A(x' Bx—-1)].

Setting the first derivative with respect to x is equal to 0 :

12



%=2Ax—2/18x:0
OX

So
BAX = AX
By the definition of eigenvector and eigenvalue, our maximiser x isB™A

eigenvector corresponding to eigenvalue A .

Hence

max X Ax= max X' BB'Ax= max X' BAx=max1
{x:x"Bx=1} {x:x"Bx=1} {xx"Bx=1}

gives the maximum eigenvalue of B*Ax. Corresponding eigenvector is the
maximiser X .

3.2.4 Derivative

In this section matrix notation for the derivatives will be introduced. Let

of (x
f :R? — R with p variables represented by a (px1) vectorx. Let also % be

of (X)

.., p and P be the row

of (x) . 1

the column vector of partial derivatives R j=
X .
J

o X) . . .
vector of the same derivative. is called the gradient of f . Second order partial

0 (x
6xj6ij ’

8% f (%)
X

derivatives are expressed as v is the px pmatrix of elements
X

2
i=1..pand j=1..p %Xf f()T() is called the Hessian of f . When ais a(px1)

vector and A=ATisa (px p)matrix

13



fa'x ox'a

OX OX
T
ox' AX _2Ax
OX

can be written. The Hessian of the quadratic form Q = x" Ax is expressed as

8% f (x)

=2A.
OXOX"

3.3 Statistical Parameters in Multivariate Case

3.3.1 General on multivariate statistical

Multivariate statistics is the branch of statistics which deals with the analysis of data
belonging to many variables. The analysis of simultaneous measurements
necessitates the use of multivariate techniques. In this section a brief review of some
descriptive statistics concepts pertaining to the multivariate case will be highlighted.
3.3.2 Multivariate sample mean

Let x,,...,x, be a particular realization (a random sample of size n) of the random
variables X,,..., X , . Then the arithmetic mean x of the random sample gives the

center of gravity or the average distance from the origin on the real line % . It is

computed as
X==>'x (3.9)

3.3.3 Multivariate sample variance

If the random variable X represents a particular characteristic of a population, then
the variance of the population is defined as var(X) = o* = E(X — 1) = E(X?) — 1/°.
Variance measures the average squared deviation from the mean. The larger the

variance, the more data values are spread around the mean. The sample variance s’ is

14



s’ = Zln(xfj) (3.10)

or

" X2 —nx?
52:—2.:1 : (3.11)
n-1

Since a sample is a subset of the population, its variance s?is can not be expected to
be the same as the population variance o?. However, s?is an unbiased estimator for
o?, which means E(S?) = o”.

The following properties on variance — covariance holds.

2 T 2
1 o%, =a oxa:ZaiajaXin
¥

2 _ 2 AT

2. O,y =A0yA
3. o2, =040, +0,, +O°
: x+y = Ox xy TOyx Y

4. Oxivz)=0xz)tOyyz)

.
5. Opxpy) =AoyB

3.3.4 Multivariate sample covariance
Let random variables X and Y with joint probability density function f(x, y) be given.

Covariance between these random variables is defined as

oxy = EIX = 1)(Y — )]
Here p1, = E(X) and &, =E(Y). Ifo,, >0, it means r.v. s are simultaneously
increasing or decreasing, bu not necessarily at the same rate. o,, <0 would mean

an increase in one variable corresponds to a decrease in the other. In r.v.s are

independent, then o, =0. Fr the bivariate case it can be shown that

oy = E(XY)—E(X)E(Y) .

15



Addition or multiplication of the random variables X andY results in a new random

variable. Then, if z=X+Y

E(Z)=E(X +Y) = E(X) + E(Y) (3.12)
and if z=Xxy
E(Z) =E(XY) = E(X)E(Y), when X andY are independent. (3.13)

If £, and f, are the marginal densities of r.v.s X and Y respectively, then the r.v.s X
and Y are independent iff f(x,y)=g(x)h(y) . Equation (3.12) holds regardless the r.v.s
being independent or not. In the case of independence the covariance o,, =0, but the
vice versa case is not always true.

o = E(XY)—E(X)E(Y)
Based on the definition of the population covariance, the sample covariance can be

written as

> (%~ %)%~ )
Sy =" (3.14)
n-1

and it can also be shown that

i XYi— nW
_ =l

S —
Y n—1

(3.15)

In application it is impossible to have s, =o,, This means, the chance is almost
zero that P(s, =0, )=0. s, is an unbiased estimator foro,,, i.e. E(S,)=0y.

When o, =0, it does not mean that any random sample from the same population

will have zero covariance. One way of ensuring that a sample from a continuous

bivariate distribution will have zero covariance is for the experimenter to choose the

values of x and y so thats,, =0. However, this causes deviation from the concept of

16



random sampling. One way to see thats,, measures only linear relationships is by

seeing that the computation of the slope of simple linear regression line includess,,

as its numerator.

n

Z(Xi _7)(Yi _7) S

B ==L _ Ty

i(x—f)2 >x

Thus s,, is proportional to the slope, which shows only the linear relationship

betweenY and X . Variables with zero sample covariance can be said to be

orthogonal. By definition, if the dot product of the vectors a' =[a,,8,,...,a,] and

b" =[byb,....b,] isa-b=0.

3.3.5 Multivariate sample correlation

Since the covariance depends on the scale of measurement of X andY , it is difficult
to compare covariances between different pairs of variables. For example, if we
change a measurement from inches to centimeters, the covariance will change. To
find a measure of linear relationship that is invariant to changes of scale, we can
standardize the covariance by dividing by the standard deviations of the two
Variables. This standardized covariance is called a linear correlation coefficient. The

population correlation coefficient of two random variables X andY is

Prv_ EI(X = )(y — #1)
PxPr E(X =) JE(Y —1,)?

Pxy =COIr(X,y)= (3.16)

Given n pairs of sample data (x,y,); i=1...,n with respective sample averagesx andy ,

the sample correlation coefficient is defined as

17



> (%~ X)(y; — )
R A = . (3.17)

s, \/ﬁ(xi XY (-9

i=1

In both the population and sample cases we have 1< p, <1 and -1<r, <1

respectively.
3.3.6 Variance and covariance matrix
Variance and covariance are often display jointly in a variance-covariance matrix.

The variances appear along the diagonal and covariances appear in the off-diagonal

Xl
elements. If the random variable X is n-dimensional, then the vector X =
X

n

represents the random variables, each with finite variance. Then the covariance
matrix X, is the matrix whose (i, j) entry is the covariance
Zy = cov(X;, Y;) = E[(X; — ) (X — )]
where
# = E(X)
is the expected value of the i" random variable in the vector X .In other words, we

have

G e
X% %Xy

r=| i . (3.18)

The inverse of this matrix ™ is the inverse covariance matrix, also known as
the concentration matrix or precision matrix [11]. The sample covariance matrix S

can be written as
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S=| : .. (3.19)

Expected value of the covariance matrix S is

E(S)_”—lz 2—12—> E(—lsj X
n_

It is understood that [n/(n—1)]S is an unbiased estimator X, but Sis a biased

estimator and the bias = E(S) —X=—(1/n)X . It can be shown that E [nil Sj =

as below.
X=X, +X,+..+ X )In.

E(X) = E(1X1+£X2 +---+1xn)
n n n

CEEX)+ECEX,) 4 +EEX,)
n n n

:lE(X1)+1E(X2)++lE(Xn):lu+lu++lu:u
n n n n n n

next,

X-pX- u)T{%in —uj[%ix —u]

=—ZZ(X -w)(X, —n)'

j=1 1=1

cov(X) = E(X-p) E(X—p)" = n(ZZE(X -wEX, u)J

=1 1=1
For j=1 eachentry in E()_(j ~w) E(X, —p)" is zero as each entry in the covariance

between the independent components of X; and of X .

Therefore,

n" =

cov(X) = %(ZE(X ) E(X - u)J
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Since population covariance matrix X =E(X; —p) E(X; —p)" we can write

cov()_():%[iE()_(j ~WE(X, —p)T]:%(Z+Z+---+Z)

:iz(nZ):l):
n n

The (i,k)" element of (X; = X)(X; = X)" is (X, = X; (X —X,) . Sums of products

and cross product s are written in matrix form as

i(xj - X)(X; - X)’ =i(xj - X)X] +[i(xj —F()j(—)?)T

[ = =L

=> X, X] —nXX'

i=L

Note that > (X;-X)=0andnX" =) X" .Then

= =1

E[ XX —n>‘<>‘<TJ=ZE(xjx})—nE(>‘<>‘<T)
j=1

j=1
Remembering the fact given a random vector V having E(V) =p, andcov(V) =X,
E(VW')=X, +pn, leading to
o 1
E(X,X])=X+pp" and E(XX") =EZ+WT .
Based on these results

n

E(X;X?)—nE(XX") =nZ +npp’ —n(iz+uuT)= (n-DHx
i1 n

can be written and sinceS = (%)[ZXJXI —nXX" ) . the desired result
i1

-1
E(S) = %Z is obtained.
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3.3.7 Correlation matrix

The correlation matrix can be seen as the covariance matrix of the standardized

random variables.Let X = (X,,..., X, ) be n-dimensional random sample, the
correlation value among X; and X is denoted byrxixl_ and give by

Z(Xik _Yi)(xjk _Xj)

k=1
\/Z(Xik _K)Z(Xjk _71')

k=1 k=1

XiXj

Obtained r - values can be represented in (nxn) matrix from

rxixn r Xlxn
R=| @ . (3.20)
r e r

3.3.8 Relationship between covariance and correlation Matrices
In equations (3.10) and (3.17) computation of sample variance and correlation
coefficient are given. In multivariate case the covariance matrix X is give in equation

(3.18) correlation matrix in (3.20). Relationship between S and R are explained

below. Let D"? be defined as the (p x p) sample standard deviation matrix. Its

sinverseis, (DY?)” = D™Y2. Writing D"? and D™ in matrix form we have

sy 0 0]

D1/2 _ 0 \/g 0
: .0

0 0o ... M

and
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! 0 0
'\/gll
1/2 0 1
D™ n = S22
N . 0
L Spp
Since
Su Sp Slp
S = : :
Sip Sp Spp
then

Sy S1p U |-
s ase s [ [1on, oo

pp

Slp Szp LAY —_—
| VSuSm S2p /S Ve \Ser |

Let D be a diagonal matrix obtained from S. The relation between covariance and

correlation matrices is defined as
R — D71/28D71/2
S — D1/2 RD1/2

Clearly the knowledge of S enables the easy computation of R and vice versa [16].
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Chapter 4

PRINCIPAL COMPONENT ANALYSIS VIA

DIFFERENT APPROACHES TO THE DATA MATRIX

Principal component analysis (PCA) is a dimension reduction technique in a given
data matrix of size nx p, when the number of columns representing the variables are
very large. This reduction using principal components (PC) becomes essential in
order to alleviate the difficulty of interpreting the variation in a large number of
variables. Reducing the dimension by means of finding linear combinations of the
variables associated with the variation in each variable. Through this approach only
the first few PCs tends to account for over 90% of variation in the data. Then, instead
of using a large number of variables to figure out the true variation in the data, using
only a few (2 or 3) of the PCs will be a much faster way of identifying and
explaining the variation within a given data set. Dimension reduction can be applied
directly to the raw data, to the centered data, or to the normalized data. Each case has
its advantages and disadvantages depending on the nature of the data. In this chapter,
the PCA technique will be explained and its application to different data cases will
be given in detail. In this chapter we will talk about center the data, raw data and
principle component analysis. We will test the original data (raw data) without
calculating the center the data and also tested by centering the data and then compare

both cases and which one better to use. Now we will talk about principle component

analysis.
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4.1 Theory of Principle Component Analysis
PCA can be regarded as transforming a given set of p random variables to another set

of variables (PCs) Y' =Y,,....Y, |. Geometrically, PCs represent the selection of a

new coordinate system obtained by rotating the original system X,,..., X . The new
coordinate system obtained represents the directions with maximum variability.

Given a random vector X' :[xl,...,xp] representing p random variables with

covariance matrix X and an arbitrary pxp coefficient matrix A, the following linear
combinations can be written.

Y1:aIXZa11X1+"'+a1pxp

T(Z:aZX:a21Xl+---+.?;12po (4.1)
Y, =anX=271FJ1X1+-~~+."71F,F,Xp
These linear combinations are the uncorrelated PCs. The first principal component
has the highest variance. From equation (4.1) variance and covariance are given as
Var(Y)=a'Xa, i=1...,p 4.2)
Cov(Y,Y,)=a Xa,, ik=1...,p (4.3)
In place of any arbitrary coefficient vector a, vectors with unit length u is adopted
without loss of generality. Then the first PC u] Xwill be such that var(u/X) is

maximum subject toulu, =1. The i"PC u’X will be such that varu’x) is maximum

subject to ulu, =1 and Cov(u] X,u; X) =0 fork <i.

Theorem 4.1: Let B be a positive definite matrix with eigenvalues 4 >--->4 >0and

associated normalized eigenvectorse,,....e,. Then
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x"Bx

max ——=4 when x=¢,

x20 X' X (44)
"Bx

min :lp whenx=ep

x20 X' X

Further
X' Bx 4
Jnex ~— =, Whenx=e,_,, k=1...,p-1 (4.5)

For proof see [18]
Let 4 >--->4 >0be the eigenvalues and e,,...,e, be the corresponding eigenvectors
of the covariance matrix £. The i" principal component can be written as
Y =eiX=g, X +--+e X, i=1...,p

with

Var(Y,)=e/Ze, = 4, i=L...,pand Cov(Y, Y,)=e Ze,, i=Kk (4.6)
Equation (4.6) can be proved based on Theorem 4.1, equation (4.4)
Let matrix B= X in theorem 4.1. If a=e, and e, being a normalized vector (eje, =1),
then

T T
a Xa e Xe
— =A4= ——=e/ Ze=Var(Y,)
a0 3'a e'e

Similarly using (4.5) from Theorem 4.1

a'Xa
max ﬂ:ﬂkﬂ , k:].,...,p—l

ale;,..ey

When

a=e ande; e =0fori=1...k, k=1...,p-1

T
ek+12ek+1

T
ek+1ek+l

T
= ek+i|.2ek+l :Var(Yk+l) = /lk+1

To show that when ee =0, i=k results inCov(Y,Y,)=0, remember that the
eigenvectors of X are orthogonal if all 4,...2, are not equal. Hence, any two

eigenvectors will satisfyele, =0, i =k . Multiplying both sides of Xe =Ae, by e

gives

25



Cov(Y,,Y,)=¢e/Xe =¢ Le, =Aee, =0fori=k
It is understood that the principal components are uncorrelated and their variances

are the eigenvalues of the covariance matrix X.

Remembering that the diagonal elements of X are the variances of X, j=1....,p, and

then the following relationship becomes evident.
p p
Oy +ee0y = D Var(X,) = A +---+ A, = Y Var(Y;)
j=1 j=1

Then total population variance becomes o’ =g, +:--0,, =4 +--+4,.It is also worth
mentioning that magnitude of each element of the vector e/ =(e,.....e,.....e,) indicates
the importance of corresponding variable in the PC. The vector element e, is also
proportional to the correlation between Y, and X,. This correlation can be computed

from

ek g 4.7)

Py, x, =

Obviously p, ,, measures the linear correlation between the k" random variable and
the concerned i PC. Tendency is that random variables assigned PC scores |e,|
that are large will have high p, , values.

Example 4.1: The following data consisting of 5 variables represent various
characteristics of silver zinc battery affecting there life time [15]. Magnitude of data
values for each variable is quite different. Therefore, the PC analysis will be applied
to the raw data, centered data, and standardized data. Results and interpretations will

be explained and compared.
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Table 4.1: Battery failure data represented by the data matrix X.

X, Charge X X Depthof X4 Xs
rate(amps) | Discharge discharge Temperature End of
rate(amps) | (%ofratedof (C) Charge
amperehours) Voltage
(volts)
0.375 3.13 60.0 40 2.00
1.000 3.13 76.8 30 1.99
1.000 3.13 60.0 20 2.00
1.000 3.13 60.0 20 1.98
1.625 3.13 43.2 10 2.01
1.625 3.13 60.0 20 2.00
1.625 3.13 60.0 20 2.02
0.375 5.00 76.8 10 2.01
1.000 5.00 43.2 10 1.99
1.000 5.00 43.2 30 2.01
1.000 5.00 100.0 20 2.00
1.625 5.00 76.8 10 1.99
0.375 1.25 76.8 10 2.01
1.000 1.25 43.2 10 1.99
1.000 1.25 76.8 30 2.00
1.000 1.25 60.0 0 2.00
1.625 1.25 43.2 30 1.99
1.625 1.25 60.0 20 2.00
0.375 3.13 76.8 30 1.99
0.375 3.13 60.0 20 2.00

S Computed from the raw data matrix X is:

0.2251 -0.0587 -2.3039 -0.6414 0.0000
-0.0587 2.0266 4.2253 -0.0403 0.0009
S=| -23039 4.2253 239.1225 10.3368 0.0030
-0.6414 -0.0403 10.3368 99.7368 -0.0111
0.0000 0.0009 0.0030 -0.0111 0.0001

The eigenvalues of S are 4 =239.98, 1, =98.98, 4, =1.95, 4, =0.20, 4, =0.0001 and the

corresponds eigenvectors forms the columns of the I matrix. The elements of each

column of the T matrix are the coefficients of the principal componentsy,, i=1,...,p.
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-0.0098 0.0048 0.0108 0.9999 -0.0000
0.0177 0.0036 —0.9998 0.0109 -0.0004
I'=| 09971 0.0735 0.0180 0.0092  —-0.0000
0.0735 -0.9973 -0.0022  0.0055 0.0001
0.0000 0.0001 -0.0004  0.0000  1.0000

Total variation in the data Z;Ak =341.11.First 2 eigenvalues represe

Al —M:o,gm or 99.4% of total variation in the data. Using the r matrix,

2 =
Zi:llk 341.11

principal’s components are written

Y, =—0.0098X,+0.0177X, +0.9971X,, +0.0735X,

Y, =0.0048X, +0.0036X , +0.0735X,, — 0.9973X,, +0.0001X
Y, =0.0108X, —0.9998X,+0.0108X, —0.0022X , —0.0004X
Y, =0.9999X, +0.0109X, +0.0092 X , +0.0055X,

Y, =-0.0004X , —0.0001X, + X .

Evidently each PC is dominated by one variable only, while remaining variables
have almost negligible influence. Since 99.4% of variation in the data is represented

by the first two PCsY, and Y, close inspection is necessary.

First PC Y, is a linear combination of the variables X,, X,, X,, and X,. However, the
coefficient of X, (depth rate of discharge measured as %rated amps/hr) is the largest
in absolute terms, dominatingy,. The temperature (°C) X, also has a notable
influence ony,. Second PC Y, is a linear combination of all 5 variables. Here, X,

(Temperature (°c)) is the dominating variable while the depth rate of discharge
measured as %rated amps/hr X, also has a some influence ony,. Since remaining PCs

have negligible contribution to the total variation in data, they will not be considered.
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The relationship Vvar(Y,)=4 can be checked for this example. For the first PC

Var(Y,) =Var(-0.0098X, +0.0177 X, +0.9971X, +0.0735X,,) =
(~0.01)(0.23) +(0.018)(2.03) + (0.997)(239.12) + (0.074)(99.74) = 245.81= 4,

Since PCs are independent as an example Y,andY, are checked for independence,

cov(Y,,Y,) =Cov((-0.0098X, +0.0177 X, —0.9971X, +0.0735X,, + 0X,),
(0.0048X, +0.0036X, +0.0735X,—-0.9973X, + 0.0001X5))

Hint: Given random variables X,,..., X, and their linear combinations
Y, =iaixi and, =ib,xi )
COV(Yl,YZ) = Zn:aibiVar(Xi) +Z Z (a.lbJ +ajbI)COV(XI y X J) (48)

Using equation 4.8 the covariance between the PCs Y, and Y, , are given in appendix
A. The linear correlation between each PC Y, and the variables X, is also worth

considering. They are computed as

o P (4.9)

Equation 4.9 becomes r,, =&l j=1,...p for the sample data. Then the linear

correlation coefficient between the variables and the first 2 PCs that accounts for

99.4% of total variation in the raw data and the variables are given below.

Table 4.2: Principle component scores and correlation between Y, and X, for raw
data.

X, X, X, X,
e -0.0098 | 0.0177 |0.9971 | 0.0735

-0.3205 | 0.193 0.999 0.114
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Figure 4.1: Relationship between principle component scores and correlation r,, for

the raw data.

Table4.3: Principle component scores and correlation between Y, and X, for raw

data
X, X, X, X, X
. 0.0048 0.0036 0.0735 -0.9973 0.0001

I, 0.101 0.025 0.0471 -0.011 0.1

0.12

r
0.1 /\ A

/ N/ \

0.04 / \/

0.02 /

0 T T T T 1
-0.9473 0.0001 0.0036 0.0048 0.0735
-0.02
PC score

Figure 4.2: Relationship between principle component scores and correlation (r, )
for the raw data.
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From Figures 4.1 and 4.2 it can be observed that in general the higher the
contribution of a variable to the PC, leads to a higher linear correlation between that

variable and the PC.

4.1.1 Principal components of centered data

In an nx pdata matrix X, if the magnitude of the data values belonging to different
variables is substantially different than each other, then the variables with bigger
values will dominate the total variance. This will reflect on the coefficients of the
PCs, leading to misinterpretations. The problem can be alleviated to a certain extent
by centering the data matrix, before the computation of the PCs. Here centering

means subtracting the mean of each variable x;j=1...,p from the values of that

J

variable. That is the expression of the elements of each variable as deviations from
its mean x, —x;; i=1....n; j=1...,p . To express this process in matrix form, let H, be
the centering matrix defined asH=H_=1-n"11". Here | is the nxn identity matrix, 1

is the nx1 vector of 1s.

Then the centering matrix has the following properties [18].
I. It is symmetric and idempotent. H=H" =H™", H*=H..
ii. H1=0, H11' =11"H=0

2t

=1
n

iil. Hx =x—X1, where X =
iv. Here, premultiplying a column vector by H results in the deviation values
from the mean. If the data matrix X is premultiplied by the centering matrix, it yields

the deviation of each element from its corresponding column mean.

LIPS
V. X Hx = 205

n

Centering of the sample data matrix X is given by
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X, = 1 HXD ™2

N

For clarity, such data matrix X. will shortly be called centered data.

Table 4.4: Centered data obtained from raw data given in Table
X, X, X, X, X,
-0.3171 | 0.0156 | -.0416 |-0.0246 | 0.0237
-0.0151 | 0.0156 | 0.2082 | -0.0373 | -0.2133
-0.0151 | 0.0156 | -0.0416 | -0.0499 | 0.0237
-0.0151 | 0.0156 | -0.0416 | -0.0499 | -0.4503
0.2871 | 0.0156 | -0.2915 | -0.0625 | 0.2607
0.2871 | 0.0156 | -0.0416 | -0.0499 | 0.0237
0.2871 | 0.0156 | -0.0416 | -0.0499 | 0.4977
-0.3171 | 0.3169 | 0.2082 | -0.0625 | 0.2607
-0.0151 | 0.3169 | -0.2915 | -0.0625 | -0.2133
-0.0151 | 0.3169 | -0.2915 | -0.0373 | 0.2607
-0.0151 | 0.3169 | 0.5532 | -0.0499 | 0.0237
0.2871 | 0.3169 | 0.2082 | -0.0625 | -0.2133
-0.3171 | -0.2874 | 0.2082 | -0.0625 | 0.2607
-0.0151 | -0.2874 | -0.2915 | -0.0625 | -0.2133
-0.0151 | -0.2874 | -0.2082 | -0.0373 | 0.0237
-0.0151 | -0.2874 | -0.0416 | -0.0752 | 0.0237
0.2871 | -0.2874 | -0.2915 | -0.0373 | -0.2133
0.2871 | -0.2874 | -0.0416 | -0.0499 | 0.0237
-0.3171| 0.0156 | 0.1963 | 0.9733 | -0.2133

-0.3171 | 0.0156 | -0.0416 | -0.0499 | 0.0237

Covariance computed from centered data is:

0.0526 -0.0046 -0.0164 -0.0173 0.0004
-0.0046 0.0526 0.0101 0.0008 0.0034
S=| -0.0164 0.0101 0.0526 0.0106 0.0012
-0.0173 0.0008 0.0106 0.0526 -0.0117
0.0004 0.0034 0.0012 -0.0117 0.0526

The eigenvalues of S are 4 =0.0855, 4, =0.0623, 4, =0.0471, 4, =0.0366, 4, =0.0317 and

the corresponding eigenvectors forms the columns of the I matrix. The elements of
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each column of the T matrix are the coefficients or scores of the principal

componentsy,, i=1,...,p.

0.5841 -0.0420 -0.3709 0.2862 —0.6614
—0.2428 0.5382 -0.7380 -0.3257 0.0234
I'=| -05339 0.2960 0.0461 0.7692 -0.1834
0.5395 0.3845 0.0446 —0.3823 -0.6425
0.1538 0.6878 0.5600 -0.2725 -0.3398

Total variation in the dataZLﬂk =0.2632. However, due to centering of the data there

has been a considerable smoothing, leading to a more uniform distribution of the
variation around the mean of each variable. This is visible from the closeness of the

variances to each other. Never the less, the first 3 eigenvalues represents

At 01989 740 74% of the total variation of the centered data. But in
S 4 02632

general all PCs will have significant contribution in representing the centered data.

PCs are given below.

Y, = 0.5841X, —0.2428X, —0.5339X, + 0.5395X , +0.1538X,

Y, =-0.0420X, +0.5382 X, +0.2960X , +0.3845X ,+0.6878 X,

Y, =—0.3709X, —0.7380X,+0.0461X,, +0.0446 X , + 0.5600 X .

Y, =0.2862X, —0.3257 X, + 0.7692X , —0.3823X,, — 0.2725X,

Y, =—0.6614X, +0.0234X , —0.1834X , +—0.6425X , +—0.3398X, .

Inspection of the first PC Y, that represents 33% of total variation in the centered

data, reveals that the variables X, and X, (charge rate and temperature) have the
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highest positive influence ony,, while X, (Depth of discharge) has high negative

influence. Similar interpretations can be made for the other PCs by close inspection

of their principal component scores. Computed linear correlation coefficients

between the first and second PCs, and constituent variables are presented in Tables

4.5, 4.6, and Figures 4.3 and 4.4.

Table 4.5: Principle component scores and correlation between Y, and X, for

centered data

X, X, X, X, X
&, 0.5841 -0.2428 -0.5339 0.5395 0.1538
(o 0.745 -0.098 -0.6805 0.6877 0.1960
1
r
0.8
0‘6 K
0.4 //
0.2 /
O T T T T 1
-0.5339 -O,ﬁ 0.1538 0.5395 0.5841
-04 /
-0.6 7
-0.8
PC score

Figure 4.3: Relationship between principle component scores and correlation (r, )
for the centered data.

Table 4.6: Principle component scores and correlation between Y, and X, for
centered data

X, X, X, X, X,
e -0.0420 0.5382 0.2960 0.3845 0.6878
L -0.0497 0.5891 0.3240 0.4208 0.7521
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Figure 4.4: Relationship between principle component scores and correlation (r, )

for the centered data.

Here also the linear correlation between a PC and its constituent variables is
compatible with the magnitude of the scores associated with that variable.
4.1.2 Principal components in the multivariate normal case

In the multivariate normal case the random vector X has parameters mean vector p

and covariance matrix = . From multivariate normal theory, it is known that the

density of X is constant. p centered ellipsoid is given by
(x—p)' = (x—p)=c’
with axes tc[4e, i=1...,p. Here 4 ande, are the eigenvalues and eigenvectors of X.

Any point on the i" axis has coordinates that are proportional to the vector

e’ =(e,,....e,) In the coordinate system with origin y the i" axis where the point is

situated is parallel to the original axis x,,...,x; .
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Remember the facts that the distance from the point x" =[x1 ..... xp] to the origin is

given by the quadratic formx’Ax . The square of the distance between p™ =[4,...4,]

and any point X is (x—p)" A(x—p)=c’.

Without loss of generality p=0 can be assumed. If £ is substituted in place of A

and from spectral decomposition concept

X-p) ' Z'(x—-p)=x'2x=c"> %(elx)z +---+/%(e;x)2
P

can be written. Here e[x,....eTx arethe PCsy,, i=1...,p. Then

2

1, 1 5,
. e 4.
Cc %ler +ﬂp y: (4.9)

Since 4, >4,>--->2,>0, equation 4.9 represents the ellipsoid with axis y,,...,y, in
the directions e,,...,e,. The direction of the axes of a constant density ellipsoid is

where the PCs lie in. Hence the x coordinates of any point on the i" ellipsoid are

proportional toe] =[e,....,e,1. Principal component coordinates will be of the form

¥, =[0....,0,¥;,0,...,0] .Ifp =0, then the centered PC y, =e] (x—p) Will have » =0 and

lie in the directione, .

Figure 4.5 shows the constant density ellipsoid of a bivariate normal distribution

X'Zx=c? withp=0 :[8} and p=0.75. PCs y,, y, are can also be obtained by rotating

the original coordinate axes by an amount equal toe.
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i)

u=0
p=.15

Figure 4.5: Constant density ellipsoid of a bivariate normal distribution

An attempt is made to apply the normal theory for the computation of PCs for the
battery data assuming the variables are normally distributed. The overall mean for
the whole data is used for the computation of the standardized values. These are

given in Table 3.
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Table 4.7: Data standardized using the global (overall) mean of the battery data.
Zl ZZ Z3 24 ZS

-0.69104 | -0.58103 | 1.689867 | 0.891239 | -0.62615
-0.66609 | -0.58103 | 2.360715 | 0.491925 | -0.62655
-0.66609 | -0.58103 | 1.689867 | 0.092611 | -0.62615
-0.66609 | -0.58103 | 1.689867 | 0.092611 | -0.62695
-0.64113 | -0.58103 | 1.01902 -0.3067 | -0.62576
-0.64113 | -0.58103 | 1.689867 | 0.092611 | -0.62615
-0.64113 | -0.58103 | 1.689867 | 0.092611 | -0.62536
-0.69104 | -0.50636 | 2.360715 | -0.3067 | -0.62576
-0.66609 | -0.50636 | 1.01902 -0.3067 | -0.62655
-0.66609 | -0.50636 | 1.01902 | 0.491925 | -0.62576
-0.66609 | -0.50636 | 3.287123 | 0.092611 | -0.62615
-0.64113 | -0.50636 | 2.360715 | -0.3067 | -0.62655
-0.69104 | -0.6561 | 2.360715 | -0.3067 | -0.62576
-0.66609 | -0.6561 1.01902 -0.3067 | -0.62655
-0.66609 | -0.6561 | 2.360715 | 0.491925 | -0.62615
-0.66609 | -0.6561 | 1.689867 | -0.70602 | -0.62615
-0.64113 | -0.6561 1.01902 | 0.491925 | -0.62655
-0.64113 | -0.6561 | 1.689867 | 0.092611 | -0.62615
-0.69104 | -0.58103 | 2.360715 | 0.491925 | -0.62655
-0.69104 | -0.58103 | 1.689867 | 0.092611 | -0.62615

Covariance of the standardized data using the global mean is computed as

0.0004 -0.0001 -0.0037 -0.0010 -0.0000
-0.0001 0.0032 0.0067 -0.0001 0.0000
S=| -0.0037 0.0067 0.3813 0.0165 0.0000
-0.0010 -0.0001 0.0156 0.1590 0.0000
0.0000 0.0000 0.0000 -0.0000 0.0000

The eigenvalues of S are 4, =0.3827, 4, =0.1578, 4, =0.0031, 4, =0.0003, 4, =0.0001.
Principal component scores matrix I made up of the corresponding eigenvectors is

-0.0098 0.0048 0.0108 0.9999 -0.0000
0.0177 0.0036 -0.9998 0.0109 -0.0004
I'=| 09971 0.0735 0.0180 0.0092 -0.0000
0.0735 -0.9973 -0.0022 0.0055 0.0001
0.0000 0.0001 -0.0004 0.0000 1.0000
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In this case total variation in the datazika =0.544. First 2 eigenvalues represents

At/ 05405 4 9935 or 99.35% of total variation in the data.

k
Zi:llk 0.544

The first two PCs are

Y, =-0.0098Z,+0.0177Z,+0.9971Z, +0.0735Z,, +0.0001Z,

Y, =0.0048Z,+0.0036Z,, +0.0735Z,,-0.9973Z,+0.0001Z, .

It is seen that the use of global mean has resulted a significant reduction in the total
variation as compared with the raw data which hase total variance " 4 =341.11. On
the other hand, PCs for the raw data and standardized using the global mean are the
same. However, total variance in the centered dataZLﬂk =0.2632, is about half of

the total variance of the standardized data. This is mainly due to the fact that,
centering a data matix is based on column averages and standard deviations, which

effectively results in greater smoothing of the data values.
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Chapter 5

CONCLUSION

Principal component analysis is basically a method designed to transform high
dimensional data using an orthogonal transformation. In the process a linear
combination of the original variables is computed that forms a new set of
independent variables. However, application of the method to any process may not
result in a set of PCs that may not reflect the true picture of the original data. The

following cases are examined.

When the the variables of the data set have similar scale. Application of the PCA
under these conditions will help obtain PCs that are capable of explaining the overall

variation without large deviations from the real variation in the data.

When the variables of the data set have different units, or data values of different
variables have significant difference in terms of magnitute. In such cases either

centering of the data, or standardizing based on global mean can be used.

Centering the data is carried out on the mean of individual variables. This in effect
shifts the center of each variable to zero and standardize each variable accordingly.
This process reduces the wide variation among variables. PCA is then performed and
obtained PCs tends to explain the significance of each variable better than by direct

application of PCA to raw data.
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Standardizing the data using the global mean smooths the fluctuations in the
variances of individual variables. Subsequent application of PCA to standardized
data yields the same PCs as those obtained from raw data, indicating that each

variable retained its initial significance.

A data set consisting of 5 variables that affects the failure of a battery was used to
test the theory given in this thesis. All obtained results are consistent with the theory

of PCA.
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Appendix: Computation to show independence of PCs y, and y, obtained from raw
data.

cov(Y,,Y,) =(—0.0098x0.0048) var(X,,) +(0.0177x0.0735) var(X,,)
—(0.9971x0.0735) var(X,,) — (0.0753x 0.9973) var(X,,)
+0.00005cov(X,, X,)—0.0060cov(X,, X,)

+0.0101cov(X,, X,)—0.0001cov(X,, X;)

—0.0023cov(X,, X,)—0.0174cov(X,, X,)

+0.0001cov(X,, X;) +0.9998 cov(X,, X,)

—0.0001cov(X,, X;) +0.0001cov(X,, X;)

= (—0.0098x 0.0048)(-0.0098 ) +(0.0177 x 0.0735)(0.0036)
—(0.9971x0.0735)(0.0180) — (0.0753x 0.9973)(0.0055)
+0.00005cov(X,, X,) —0.0060cov(X,, X;)

+0.0101cov(X,;, X,)—0.0001cov(X,, X;)

—0.0023cov(X,, X,;)—0.0174cov(X,, X,)

+0.0001cov(X,, X,) +0.9998 cov(X,, X,)

—0.0001cov(X,, X;)+0.0001cov(X,, X;)

= (—0.0098x 0.0048)(-0.0098 ) +(0.0177 x0.0735)(0.0036)
—(0.9971x0.0735)(0.0180) — (0.0753x 0.9973)(0.0055)
+0.00005(0.0048) —0.0060(0.0108 )

+0.0101(0.9999) —0.0001(—0.0000)

—0.0023(—0.9998) —0.0174(0.0109)

+0.0001(—0.0004) +0.9998(0.0092)

~0.0001(-0.0000) + 0.0001(0.0001)
=~ 0.0000005 + 0.0000005 — 0.001320

—0.000403+0.0000002 —0.0000650
+0.0100990 +0.00000001+0.0023
—0.0002 —-0.00000004 +0.00919616

+0.00000001+ 0.00000001
=0.00121603=0

46



