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ABSTRACT 

In this thesis, the lateral controller parameters of an agricultural tractor vehicle were 

optimized to reduce both the root mean square error (ERMS), and the peak error 

(Epeak), by using two evolutionary multi-objective optimization algorithms. The 

lateral controller of a tractor provides tracking of a desired path with minimum 

lateral error, which enhances the efficiency of agricultural plantation since many 

processes in agriculture require tracking a desired path. 

The evolutionary multi-objective optimization algorithms: NSGA-II and MODE are 

commonly used search algorithms to find the Pareto-front of the optimal solutions 

for multiple fitness functions. In parameter optimization of the lateral controller, two 

fitness functions, ERMS and Epeak, were evaluated along a predefined reference path of 

tracking through the simulation of the tractor motion in an agricultural field. 

Results of the optimization by both methods supported each other closely, and the 

optimization reduced the error figures down to 0.0016 m Epeak, and 0.0004 m ERMS. 

The obtained Pareto-front can be used to compromise between the Epeak and ERMS in 

setting the controller parameters best way for the conditions of the application. 

Keywords: NSGA-II - MODE - Lateral Error – Auto-Steering Control  
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ÖZ 

Bu tezde, otomatik sürüş denetimli bir tarım aracının sürüş denetleç parametreleri, 

evrimsel çok-amaçlı optimizasyon algoritması kullanarak, hem hatanın karesinin 

ortalamasının kökünu (ERMS) hem de hatanın tepe değerini azaltmak üzere optimize 

edildi. Traktörün sürüş denetleci takip edilecek yolun en az yanal hata ile izlenmesini 

sağlar. Tarımda takip edilecek bir yolun izlenmesini gerektiren bir çok süreç 

bulunduğundan yanal hata azalınca tarımda ekim verimi de artar. 

Çok amaçlı evrimsel optimizasyon algoritmaları olan NSGA-II ve MODE genellikle 

birden fazla uygunluk fonksiyonlu problemler için optimum çözümlerdeki Pareto-

önü elde etmek için kullanılan arama algoritmalarıdır. Yanal denetim 

parametrelerinin optimizasyonunda, uygunluk fonksiyonları olarak kullanılan rmse 

ve tepe hata, traktörün önceden seçilmiş bir izlenecek yol boyunca simülasyonu 

yoluyla elde edilmiştir. 

Her iki yöntemle optimizasyon sonuçları birbirlerini yakından  desteklemektedir. 

Optimizasyon sonucu bulunan parametrelerden elde edilen yanal hatanın rmse değeri 

0.0004 m’ye, tepe değeri 0.0016 m’ye kadar düşmüştür. Pareto-önden elde edilen 

parametrelerden uygulama koşullarına bağlı olarak  tepe ve rmse hatalar arasında en 

iyi uzlaşma sağlayacak olanını kullanmak mümkündür.  

Anahtar Kelimeler: NSGA-II - MODE - Yanal hata – Otomatik sürüş denetimi  
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  Chapter 1 

1 INTRODUCTION 

Automation and introduction of robots in industrial and agricultural production are 

typical demands of the contemporary industrialization. Consequently, the dynamic 

control of robots has been an important research field in systems control and artificial 

intelligence areas [1]. The tuning of controller parameters has been studied using 

various approaches including adaptive [2], and evolutionary search methods [3]. 

Modernization and automation of agricultural processes are necessary to satisfy the 

qualitative and quantitative market demands of the increased population. Automation 

of farming tasks on a field requires incorporation of many technologies. Energy 

savings by agricultural automation may enhance production efficiency, which can 

result in remarkable financial benefits. The efficiency of the agricultural production 

depends mainly on the terrain properties, surrounding environment conditions, and 

the precision of the farming machines, including the path tracking accuracy of the 

agricultural machines. The high lateral error at the curvature transitions is a common 

problem in path tracking control systems of existing autonomous agricultural 

machine technology. The lateral tracking error of auto-steering tractors, which is an 

important factor on efficiency of the automated agriculture, has two main 

components, the peak error, and the root-mean-square error, along the path. Among 

the auto-steering lateral error control systems, the double look-ahead reference point 
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(DLARP) controller provides the best results provided their controller settings are 

optimal [4].  

The main topic of this thesis is to obtain the optimal controller parameters of a 

DLARP controller by means of evolutionary optimization methods. The tracking 

process has mainly two kinds of independent lateral errors: peak and rmse. A multi-

objective optimization method is necessary to minimize these two independent errors 

simultaneously [4]. 

The search of a set of solutions for a multi-input fitness function by testing and 

evolving generations of population forms an evolutionary search algorithm. The 

evolutionary algorithms are considered an alternative to solve difficult optimization 

problems, relied on mainly genetic algorithms and evolutionary strategies. Among 

many evolutionary algorithms, this study has focused on differential evolution (DE) 

and genetic algorithms. 

Darwin’s evolution theory together with the advanced knowledge of genetics 

explains the steady change of species to evolve in the direction of fitness to the 

natural conditions of the life by three mechanisms of the chromosomes in a 

population: the mutation of a gene, the crossover of the genes, and the selection of 

genes for reproduction. Genetic algorithms are inspired from this theory to search the 

optimum solution of a mathematical function to minimize a cost function which is 

also called an objective function, or a fitness function. An evolutionary algorithm 

starts with a population of chromosomes, which corresponds the parameters of 

candidate-solutions. It selects a number of chromosomes according to their fitness 

scores as parents. It uses a kind of mutation and crossover on the parent 
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chromosomes to get the child chromosomes that forms the population of the next-

generation. The algorithm needs several generations to reduce the fitness function to 

a satisfactory level using crossover, mutation, and selection operators [15]. 

The NSGA-II algorithm is non-dominated sorting genetic algorithm. It is a genetic 

algorithm modified for deployment of the solutions using multiple objective 

optimizations function. The algorithm uses an evolutionary process to develop next 

generations by evolutionary operators including selection by multiple fitness 

functions, genetic crossover, and genetic mutation [5].  

The differential evolution (DE) algorithm uses a simple mutation operator based on 

differences between pairs of solutions with the aim of finding a search direction 

based on the repartition of solutions in the current population. DE also utilizes a 

steady-state-like replacement mechanism, where the newly generated offspring 

competes only against its corresponding parent and replaces it if the offspring has a 

higher fitness value. DE uses similar computational steps of typical standard 

evolutionary algorithm. The DE-variants perturb the chromosomes in the current-

generation population with the scaled differences of randomly selected and distinct 

population members, without needing the probability distribution of the population 

while generating the offspring population [7]. 

The next chapter describes the dynamics of an auto-steered tractor and its lateral 

DLARP control unit, which is modelled to simulate the motion of the tractor along a 

typical desired path for the evaluation of the peak and the rmse value of the lateral 

error along that desired path as the two fitness functions of the evolutionary 

optimization processes. The third and fifth chapters introduce NSGA-II and MODE 
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algorithms on two simple examples. The fourth and sixth chapters display the results 

of NSGA-II and MODE on the optimization of the DLARP controller parameters. 

The last chapter concludes the overall results of the thesis. 

The third chapter explains NSGA-II and its application to obtain the pareto-front of 

the steering controller settings. The forth chapter explains MODE to determine the 

Pareto-front of the steering control parameters to reduce booth peak and RMS errors. 

The fifth chapter contains a discussion about the effect of Pareto-optimal solution on 

the lateral error of the tractor. The sixth chapter contains a conclusion of the thesis.    
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Chapter 2 

2 DLARP AS AUTO STEER CONTROL OF A 

TRACTOR   

2.1  Lateral Control of a Tractor 

An agricultural tractor mostly steered along a predefined reference trajectories. 

Driving the tractor along these trajectories is a tedious task, and manual driving 

mostly results in considerable deviation from these desired reference trajectories. The 

driving task is accomplished automatically using a lateral controller that decides on 

the steering angle of the front wheels of a typical four wheel tractor. At a typical 8 

m/s speed, a manually driven tractor may typically have lateral error around 0.2 m in 

average while tracking a line, and up to 1.2 m peak error is easily observable 

especially at the transients of the curvatures. For automatic steering of the tractors, 

the best performing lateral control method in the literature is obtained by DLARP, 

double look-ahead reference point control law [4].  

A four wheel vehicle with front wheel steering moves tangential to the rear and front 

tyres if the friction forces on the tyres stops sidewise slip movements. But the soil is 

not a solid ground therefore slip and skid is considerably large for agricultural 

applications [4]. 

2.1.1 Non-Holonomic Tangential Motion and Side Slip Motion of a Tractor  

A typical four wheel tractor on a solid ground is expected to move tangential to the 

rear and front tyre directions. They are equipped with Ackerman type steering 

mechanism that directs the front wheels to a desired steering angle  within the upper 
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and lower bounds of the mechanism. The kinematic motion of the tractor is called 

non-holonomic because of this tangential motion constraint. However, a tractor on 

the typical agricultural soil makes considerable amount of sidewise slip motion 

together with the translational skid motion. Thus, a tractor floats on the soil surface 

because of lateral forces on the tyres while it moves forward tangential to the tyres 

[4]. The motion of the tractor is mostly modelled by shifting left and right tyres on 

the central axis to simplify the tractor dynamics to a bicycle as seen in Figure 1. 

 

Figure 1: Non-holonomic Motion of 4-wheel Tractor  

with Ackermann Steering Mechanism while turning about the center ‘o’. Dashed 

figure is bicycle representation of the tractor. 

 

2.1.2 Fundamental Laws and Constraints of Motion for Dynamic Simulation 

The motion of a bicycle-tractor on the loose soil surface may be modelled 

considering the following laws and constraints: a) Newton’s law of acceleration that 

explains the relation between the force on a body and the linear acceleration of the 

body on the direction of the force, b) Euler’s law of angular acceleration that 

determines the direction of the motion as a result of torque on the tractor body, c) 

tangential constraints of holonomic motion that relates the steering direction to the 
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side slip forces on the tyres and results in change of direction of the tractors motion, 

d) the random effect of the soil clods on the side slip forces that gives a random 

disturbance to the direction of motion. All of these forces are formulated in [4] for 

the successful simulation of motion of an agricultural machine by the MatLab codes 

in Appendix 1 [4].  

In addition to the coding of the equation of motion, the simulation of the motion of 

an auto-steering tractor requires two main components: a desired trajectory which is 

described by a sequence of points in a plane, and a simulation of a control law that 

governs the steering angle as a function of the states of the tractor and the observed 

deviations from the desired path. There are commonly used desired test paths to test 

the performance of the system that contains typical common patterns of tractor paths 

in an agricultural field, such as a circular section between two lines. The control law 

DLARP is known as one of the most successful control laws to reduce the lateral 

deviations from the desired path [4]. 

2.2  Lateral Control Law of Auto-Steerring Tractor 

The aim of an auto-steering control law is to keep the tractor on the desired reference 

trajectory with minimum deviation from the path. The deviation from the path at a 

given time is measured by the distance dN from the centre of gravity of the tractor to 

the nearest point on the reference path. This distance is called the lateral 

displacement error, the lateral error, or shortly error. The quality of an auto-steering 

control law may be determined by measuring this error along a typical desired 

reference trajectory that contains commonly used components of desired path 

sections for a typical agricultural activity. These typical desired trajectories are called 

test trajectory for performance measurement of the control law [4].  
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Along with the lateral displacement error, the directional displacement error is also 

an important parameter considering the control of the tractor motion. However, 

directional error has negligible effect compared to the effect of the lateral error on 

the agricultural product efficiency [1],[4].  

2.2.1 Peak and RMS Lateral Displacement Errors 

The peak error, Epeak, of the tractor is the maximum absolute lateral displacement 

along the test path. It is an important performance criterion for the performance of 

the tracking control since a large peak error means a large deviation from the test 

path. The peak error occurs especially when the tractor is taking the corners or 

making U-turns. The advanced adaptive control laws make their peak error 

especially at the points of curvature transition, until the adaptive law reduce the error 

to the minimum level right after the curvature is changed [1],[4]. 

If the motion of the tractor is stable, along the linear or circular parts of the test path, 

any deviation from the path converges asymptotically to zero. A good measure of the 

performance is the root of the mean of the squared error, shortly abbreviated by 

RMSE and shown by the symbol ERMS. 

                        Epeak = 0max ( ( ) )eT
Nt d t                                                                          (1) 

                       ERMS=   2

0

1
( )

eT

Nt
e

d t dt
T  .                                                                     (2) 

In a computer simulation, peak and RMSE can be easily calculated using N samples 

of dN which are observed periodically with time steps T=Te/N.  
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                          Epeak= 1max ( ( ) )N
n Nd n                                                                          (3) 

                       ERMS= 2

1

1
( ( ))

N
Nn

d n
N                                                                         (4) 

Both Epeak and ERMS are non-negative real numbers determined by the calculation of 

the lateral deviations dN of the tractor along a desired reference test path [4]. 

2.2.2  Desired Test Path of the Simulations 

The desired reference test path, shortly the desired test path or desired path is 

represented by a sequence of coordinates which shall be tracked by the auto-steered 

tractor. In Appendix 1, the program “pathmaker.m” generates a typical desired path 

for the simulation. In the coding, the first line determines the arguments of the 

pathmaker function. The arguments x0 and y0 are the coordinates of the start point of 

the path, dt is the duration of timesteps of the points on the path, speed is the forward 

speed of the tractor, firstlength is the length of the first linear section that goes along 

x coordinate, radius is the radius of the u-turn, and lastlength is the lenght of the 

linear section after the u-turn. The second line gives a typical example for the 

arguments, which is employed to generate all desired paths of the simulation runs in 

this thesis. Lines 4-7 of the code opens a file named pathdef.m and puts the headings 

of the columns in the file. Lines 8-11 generate the points along the first linear section 

of the path. Lines 12-16 generate the u-turn of the path as a 180 degrees semi-

circular section. Lines 17-20 generate the linear part after the u-turn. Lines 21-23 

terminate the path matrix in pathdef.m, and finally close the file pathdef.m, which 

returns the generated matrix of path to the simulation code with the name path. The 

matrix path contains around 6700 rows of vectors. Each row is made of {s, x, y, a, i}, 

where s is the curvilinear distance of the vector from the start point, x and y are the 
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positional coordinates x and y, a is the approach angle of the path in radians, and i is 

the identification number of the vector starting from 1 for the first row [1],[4]. 

2.2.3  Look-ahead Reference Point Control 

The look-ahead reference point control law proposes a control rule which calculates 

the steering angle des by four terms based on the nearest (normal) point PN on the 

path, and two look-ahead reference points 1LP and 2LP .  

                     1 1 2 2des d N N NK d K K K                                                          (5) 

where, dN is the lateral deviation of the tractor to the path which is measured by the 

distance from PN to the centre-of-gravity (CoG) of the tractor; N, 1 and 2 are 

angular deviations between the heading angles of the tractor and the path points PN, 

PL1 and PL2; { N 1 2, , ,dK K K K } are controller coefficients, which are the control 

parameters to be searched to reduce Nd  to a reasonably low level along the desired 

test path. Moreover, the points PL1 and PL2 are at the distances L1 and L2 from the 

point PN as seen in Figure 2. The four controller coefficients together with the two 

look-ahead distances form the parameter set of the lateral control [1].   
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Figure 2: Illustration of related variables of auto-steering control 

 

Although there are total six controller parameters in the control law, there are two 

constraints to be satisfied by the controller for a successful tracking along a line and 

along a circle. The first constraint is related to the stability along a linear path, and it 

specifies that KN+K1+K2=KNLine. This constraint is easy to verify analytically since 

N=1=2 while the desired path is a line. Its value is obtained along a linear test path 

as KNLine= 5.6. The second constraint is related to the compensation of the centrifugal 

forces along the circular movements. It specifies that KLCirc = K1 L1 + K2 L2 shall be 

constant to compensate the centrifugal effect of circumflex on a circular path. The 

value KLCirc =2.28 is easily obtained by testing the tractor motion along the circular 

section of the test path. These constraints are employed to determine i) K1 from K2, 

L1, and L2 and then ii) KN from K1 and K2 using 

           K1= (KLCircK2 L2)/L1; and KN=KNLineK1K2.                                              (6) 
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Consecutively, introducing the constants {KLCirc, KNLine} reduces the number of 

independent parameters to four, namely {KD, K2, L1, L2} [1],[2].    

2.3  Evaluation of the Fitness Functions 

The MatLab code of the fitness function is listed in the Appendix 1 with the file 

name fitness2.m. In this code, the function is called by six parameters, corresponding 

to {KN, KD, K1, K2, L1, and L2}, and it returns two values, Epeak, and ERMS. Lines 3 to 

6 contain the settings for path, and permission of three kinds of plots. Lines 7 to 19 

initialize the coefficients for the simulation of the motion of the tractor, which is 

described by Bevly and Derrick as described in [4]. Lines 20 and 21 are related to the 

linear and circular tests, and obsolete for the search of the best parameters. Lines 22 

to 26 contain the typical values of control parameters, and the linear and circular path 

constraints. Lines 27 to 37 initialize the simulation variables of the test to set the 

tractor to the initial point. Line 38 is the start of the simulation loop. Lines 39 to 45 

update the time, and several Cartesian and angular coordinates related to the motion 

of tractor. Lines 46 to 57 search the normal point dN on the desired path and finds 

steer angle. Lines 58 to 70 calculate the position of look ahead points and then find 

angular deviation for each point. Line 73 applies control law to the tractor once at 

every 50ms period. Line 78 provides shortcut to quit if the controller settings are 

unsuccessful. Lines 81 to 84 simulate the hydraulic servo-actuator of the tractor. 

Lines 86 to 102 contain the equation of motion for local longitudinal and lateral 

acceleration and velocities of the tractor.  Lines 103 to 105 integrate the velocities to 

the position of the tractor in absolute coordinate frame. Epeak and ERMS are calculated 

at lines 116 and 117. Lines 112 to 128 contain the codes of plots [2],[4]. 
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Chapter 3 

3 NON-DOMINATED SORTING GENETIC 

ALGORITHM-II 

3.1  Evolutionary Optimization 

Evolutionary optimization algorithms have been inspired from Darwin’s Evolution 

Theory and the Genetics Science that explains the evolution of the population to have 

higher survival rate with every new generation. The first idea started with Genetic 

Algorithms (GA) to search optimum solutions for general single-objective 

optimization problems.  

3.1.1 Single-Objective Optimization  

A single-objective optimization problem is defined as a search of solution x that 

minimize a scalar f(x) satisfying the constraints gi(x)0 and  hi(x)=0 in the universe of 

solutions x . In many applications, the constraints g and h may not exist. 

In general case of single-objective optimization, the vector of decision variables 

x=(x1, x2, x3,…, xn)
T
 is n-dimensional, and the function f(x) is a scalar from R

n
 to R. 

The function f(x) may have a single minimum, or multiple minimum points. The 

problem of searching global minimum of f(x) forms a single-objective global 

minimum optimization problem. 
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3.1.2 Evolutionary Optimization Algorithms 

In evolutionary optimization algorithms, an individual or a chromosome corresponds 

to a vector x=(x1, x2, x3, …, xn)
T
 in the universe of solutions . Each of the 

components of the solution vector is called a decision variable, or a gene.  

Darwin’s concept of “Survival of the fittest” matches to score an individual by the 

scalar value of f(x). Consequently, f(x) as a score is called an objective function, or a 

fitness function.  

The algorithm works iteratively on a population of candidate solutions, in other 

terms population of individuals, which is simply a collection of chromosomes. Each 

iteration is called a generation. The offspring population is generated from parent 

population by a set of evolutionary operations inspired from nature, such as, 

recombination, and mutation. A selection operator determines the population of the 

next generation. A termination condition determines the end of the algorithm. The 

termination condition of most algorithms is based on count of iterations, count of 

fitness evaluation, or CPU time. 

3.1.3 Crossover, Mutation, and Selection Operators 

Mutation corresponds to simply random change of one of the decision variables of an 

individual, or equivalently it corresponds to a random change of a gene in a 

chromosome. The mutation operator generates an offspring individual from an 

individual x=(x1, x2, x3, …, xn)
T
 by randomly changing at least one of the decision 

variables. 

Crossover generates offspring individuals by combining suitable parts of at least two 

parent solutions. One of many existing crossover methods may be used depending on 
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the structure of the problem and its representation. In simplest form, single point 

crossover requires randomly determination of the crossover point, where first part of 

the parent is combined to the second part of another parent to form two offspring. 

Crossover operation may generate a better offspring individual in fitness compared to 

both parents by combining the contributive parts of the parents to an offspring. More 

elaborated two-point crossover operator requires two randomly selected crossover 

points to replace the inner part of the chromosomes of the two parents. 

An evolutionary algorithm applies crossover and mutation operations on the current 

population of the solutions to generate a higher number of offspring population 

compared to the current population. The selection operator determines the 

individuals that will take part in the population of the next generation. From many 

selection methods, elitist selection takes the individuals with the best fitness values 

into the next population.   

Elitist selection has disadvantages such as easily locking to local optimums instead 

of searching for global optimum. The tournament selection method selects the best of 

the randomly selected set of individuals, allowing some of the less fit individuals into 

the next generation. Similarly, to overcome the same problem, the fitness 

proportionate selection method, also called roulette wheel method, uses the 

probability pi=fi/(j=1…N fj) while selecting among N individuals. 
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3.1.4 Genetic Algorithm 

A genetic algorithm is defined on a  fitness function f(x), with solution universe 

xR
n
, a parent population size pZ

+
, a larger offspring population size qZ

+ 
, the 

evolutionary operators c: crossover operator,  m: mutation operator, and s: selection 

operator, and the termination condition  by the following structure: 

start with t=0; and initial population P(0)={ x1, … ,  xp}, 

 

while( termination condition  not satisfied) do  

 

    apply crossover to get offspring population:  P’(t)=c(P(t)), 

 

    apply mutation on the offspring population:  P”(t)=m(P’(t)), 

 

    select next population:  P(t+1)=s(P(0),P”(0)), 

 

    update iteration count:  t=t+1, 

 

    enddo. 

 

The termination condition is mostly specified on number of generations. 

3.1.5 Multi Objective Optimization 

A multi-objective optimization problem is similar to single objective problem, but, it 

is defined by a search of solutions x that minimize a multi-valued objective function 

F(x) in the universe of solutions x .  The problem of searching global minimum of 

F(x) forms a multi-objective global minimum optimization problem. 

Since F(x) is not scalar, the minimum of the objective function is not a scalar value. 

There are many methods to deal with the multi-objective optimization problems, 

such as converting multi-valued objectives to a scalar, for example, by introducing 

some weighting factors. However, Vilfredo Pareto’s idea of Pareto-Optimality forms 

a very common base to determine the Pareto-front of the multi objective optimization 

problems.  
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3.1.6 Pareto Optimal Solutions 

A point x*  is a weakly Pareto optimal if there is no x  that satisfies x*≠ x and 

fi(x*)<fi(x), for i=1,…, k.  That means, there is no other solution x which is better 

than x* for any objectives of the multi-objective optimization problem. Furthermore, 

A point x*  is a strict Pareto optimal if there is no x  that satisfies x*≠ x and 

fi(x*) ≤ fi(x), for i=1,…, k. Accordingly, a solution is pareto-optimal if it is not-

dominated by any other solution in decision variable space. A pareto-optimal 

solution is the best optimal solution with respect to all objectives, and, it cannot be 

improved in any objective without worsening in another objective. Therefore, terms 

non-dominated solution and Pareto-optimal refers exactly to the same concept. 

3.1.7 Pareto Front of a Multi-Objective Problem 

For a given multi-objective problem with the objective function F(x), and Pareto 

optimal set P*, the Pareto front PF* is collection of all non-dominated vectors in the 

objective function space, PF*= {u = F(x) | xP*}.  

In other words, the values of objective functions related to each solution of a Pareto-

optimal set in objective space are called Pareto-front. 

The Pareto-front of a problem has a significant importance in determination of the 

best values for the decision variables since it directly displays the values of the 

objective functions corresponding to the Pareto optimal. This thesis is focused on 

obtaining the Pareto-front for the for the automatic steering controller parameters of 

a tractor by evolutionary methods to minimize both its lateral peak and lateral RMS 

error. 
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3.1.8 Non-dominated Sorting Genetic Algorithm (NSGA) 

One of the commonly used popular multi-objective genetic algorithms is NSGA. It is 

known as a very effective optimization algorithm, but, it has been generally criticized 

for its computational complexity, lack of elitism and difficulty to set sharing 

parameter values [9]. 

3.1.9 Dominance Rank of Individuals 

In multi-objective evolutionary algorithms, the selection is based on the measures of 

dominance, such as dominance rank, dominance count and dominance depth. The 

dominance rank r of an individual x is the number of individuals that dominates x 

plus 1. The dominance rank is used in selection operator of NSGA to converge the 

population to a Pareto optimal rich set. 

Although NSGA converges to a Pareto optimal rich population, there is no 

mechanism to distribute the Pareto optimal solutions on the Pareto front 

homogenously. This disadvantage of the algorithm is defeated in further developed 

multi-objective evolutionary optimization algorithm, NSGA-II. 

3.2  NSGA-II Algorithm 

NSGA-II is improved from NSGA mainly in sorting method. Faster conversion rates 

were obtained by elitism. In addition, the initialization of a sharing parameter is 

eliminated from the algorithm. The diversity of Pareto optimal solutions in NSGA-II 

is obtained using “crowding-distance” density estimation method [5].  

Elitism is name of method, which copies a number of best chromosomes (or a few 

best chromosomes) to new population, and uses other standard methods for selection 
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of the remaining. Elitism can very rapidly increase performance of GA, because it 

prevents losing the best-found solution [5]. 

As shown in Figure 3, the population in initialized the population is sorted based on 

non-domination into each front. Individuals are assigned fitness and rank values. 

Non-dominated individuals are assigned rank one, and individuals dominated only by 

one individual are assigned rank two. For each individual, crowding distance value is 

calculated as a measure of closeness of individual to its neighbors. Binary 

tournament method is applied to select parents from the population according to the 

rank and crowding distance. Individuals of a smaller rank and those with higher 

crowding distance are preferred with higher probability. Crossover and mutation 

operators are applied on the parent population to generate offspring population. The 

population with the current population and current offspring is sorted again based on 

rank and distance, and only the best N individuals are selected for the next population 

[5].  
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Figure 3: Flowchart for NSGA-II [5] 

 

3.2.1 Initialization of Population of Chromosomes 

Population is initialized by random values that are within the specified range. Each 

chromosome consists of the decision variables. Moreover, the value of the objective 

functions, rank and crowding distance information is added to the chromosome 

vector but only the elements of the vector, which has the decision variables, are 

operated upon to perform the genetic operations like crossover and mutation. The 

fitness of population is sorted by using non-domination-sort. This returns two 

columns for each individual, which are the rank and the crowding distance 

corresponding to their position in the front they belong. At this stage the rank and the 
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crowding distance for each chromosome is added to the chromosome vector for easy 

of computation [9]. 

3.2.2 Selection of Parents to Generate Child Population 

Selection operator sorts the individuals based on non-domination and with crowding 

distance. The individuals are selected by using a binary tournament selection with 

crowed-comparison-operator [10].  

NSGA-II uses binary tournament selection. In binary tournament process, the 

objective function of two randomly selected individuals is compared, and better one 

is selected as a parent. It is repeatedly carried out for the pool size, which is the 

number of parents to be selected. The tournament selection function has three major 

arguments: chromosomes, pool and tour. The function uses only the information 

from last two elements, the rank of domination and the crowding distance. Selection 

is based on rank, and crowding distance. A lower rank and higher crowding distance 

is the selection criteria [9]. 

3.2.3  Simulated Binary Crossover (SBX)  

The simulated binary crossover  is widely used in real valued genetic algorithms to 

generate and select the children ci,k from the parents pi,k with a spread factor k 0 

[8].   

                   kkkkk ppc ,2,1,1 11
2

1
          (7) 

                   kkkkk ppc ,2,1,2 11
2

1
         (8) 
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Children selected by this method have almost similar distribution, and similar search 

power compared to the one-point crossover with a binary coded search. The 

probability distribution of child solution is: 

                kcP  1
2

1
    if    10                                                               (9) 

               
2

1
1

2

1




k

cP


   Otherwise    ,                                                      (10) 

 

where  c is the distribution for crossover and the distribution can be obtained by 

sampling randomly in (0, 1) [8].  

SBX algorithm starts with a uniform random number u in interval (0,1). If u<0.5 then 

 is calculated by    

                             
)1(

1

)2()(


 cuu
             ,                                      (11) 

else, it is calculated by  

                                     
1

1

)]1(2[

1
)(






cu

u


  .              (12) 

Higher c increases the probability of children closer to parents.  Using , the 

children are computed by (7) and (8). 
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3.2.4 Polynomial Mutation  

The mutant gene of the child ck is obtained from the parent gene pk according to the 

upper and lower bounds of the gene, and a random variation k.  

                                    k

l

k

u

kkk pppc                                                             (13) 

Where pk
u
 and pk

l
 are the upper and lower bound on the parent gene, and k is 

calculated from a polynomial distribution by using a random number in (0,1) interval 

[8].  

                    12
1

1


m

krk

    ,   if       rk<0.5         (14) 

                    1

1

121  mkk r    ,   if    5.0kr                                                       (15) 

 

where m is mutation distribution index.  

3.2.5  Next Generation  

The current and new generations are combined as a solution pool. The solution pool 

is sorted using non-dominated sorting algorithm and crowding distance methods. 

Next generation is formed by choosing the members among the solution pool. 

3.3  Application of NSGA-II for Controller Parameters 

In this section, the searches of optimum control parameters of an automated farming 

vehicle are conducted to track a predetermined path on a loose soil surface. In 

optimizing the formulated problem, we require the minimization of both ERMS and 

Epeak, which are measures of the lateral error of tracking on the linear and circular 
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paths. The problem has a multi-objective character and suitable for searching Pareto-

optimal surface by NSGA-II algorithm. As explained in Chapter 2, the lateral error 

Epeak and ERMS depends on the controller settings KD, K2, L1, and L2. The 

chromosomes of NSGA-II algorithm are composed of four genes, and four 

attachments: the two objective functions f1=Epeak and f2=ERMS, R=rank and 

CD=crowding distance.  

3.3.1 Initialization of the Population 

At the initialization phase of the NSGA-II algorithm the initial population size is set 

to 100 chromosomes, and the crossover and mutation ratio of the algorithm were set 

to 0.8 and 0.2. The genes of the chromosomes were generated randomly within the 

boundaries (-5, 5). The fitness values of each chromosome are attached to the 

chromosomes as seen in Figure 5.  

 
                                        Figure 4: Chromosome in Population 

 

The fitness values, the rank of domination, and the crowding distance of each 

chromosome are attached to the chromosomes, and the selection process was carried 

using these attached decision variables. The selected individuals were processed by 

crossover and mutation procedures. Table 1 contains the first ten individuals from the 

initialized population and their attached fitness values.    

 

K2 L1 L2 Epeak ERMS KD 
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                   Table 1: Initialized Population and Evaluated Objective  

KD K2 L1 L2 f1=Epeak f2=ERMS 

-3.1565 0.8315 1.5844 -0.919 0.0322 0.00921 

1.3115 -1.9286 0.6983 3.868 0.0333 0.03570 

0.9143 -2.0292 0.6954 -0.7162 0.0354 0.0088 

-1.3897 -0.3658 0.9004 2.9311 0.0358 0.00576 

0.3575 1.5155 -1.4868 -0.2155 0.0376 0.00126 

2.3110 -0.6576 2.4121 -4.9363 0.0565 0.00187 

-3.915 0.9298 -0.6848 0.9412 0.0630 0.00156 

0.6294 -2.8116 -2.7464 0.8268 0.0741 0.00197 

1.2647 -0.8049 -0.4431 4.6336 0.0808 0.03105 

-0.4462 -2.9077 1.8057 2.6469 0.0300 0.00518 

 

3.3.2 Binary Crossover 

Binary crossover operator processed two selected parents and generated two 

offspring. As an example, let the parents be crossed at a random gene marked by 

superscripts (1) and (2):  

p1= (-3.1565, 0.8315
(1)

, 1.5844, -0.919) and p2= (1.3115, -1.9286
(2)

, 0.6983, 3.868).  

The offspring are composed of the parents by replacing the selected gene, i.e,   

o1= (-3.1565, -1.9286
(2)

, 1.5844, -0.919), and o2= (1.3115, 0.8315
(1)

, 0.6983, 3.868). 

This operation is carried for all genes of the selected parents with the probability that 

is specified by the crossover ratio. 

3.3.3 Polynomial Mutation 

The mutation operator is applied on a randomly selected gene of the selected 

offspring with a probability specified by mutation ratio. For example let the 

underlined gene of offspring o1 be the randomly selected gene.  

o1= (-3.1565, -1.9286
(2)

, 1.5844, -0.919).  

The underlined gene is replaced by a random number in the bounds of that gene:  

c1= (-3.1565, -1.9286
(2)

, 2.1473, -0.919). 
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3.3.4 Selection 

Non-dominated sorting is carried out by sorting the chromosomes in their rank of 

domination, and in each rank in their crowding distance. For this purpose, the rank 

and crowding distance of each chromosome is calculated, and attached to the 

chromosomes. By tournament selection, the chromosomes are selected starting from 

the best-ranked (rank1) solutions. Selected chromosomes are placed in the archive. 

Rank-2 and further rank solutions were selected with decreasing probabilities. 

3.3.5  Iteration of Generations 

The procedures described by 3.3.2 to 3.3.4 are carried iteratively to select the best 

solutions into the archive. Figure 5 shows the Pareto-front after three hundred 

generation.   

 
                          Figure 5: Pareto Front for NSGA-II after 300 Generations 

 

Similarly, Figure 6 illustrates the best non-dominated solutions after one thousand 

generations.  

ERMS 

 

Epeak 
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                        Figure 6: Pareto Front for NSGA-II after 1000 Generations 

 

 

3.4  Summary 

In this chapter, we described NSGA-II algorithm, and applied the algorithm to get 

the Pareto-front of the problem of lateral control of a tractor.   

ERMS 

 

Epeak 
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Chapter 4 

4 MULTI-OBJECTIVE DIFFERENTIAL         

EVOLUTION 

4.1  Differential Evolution 

Differential evolution (DE) is an evolutionary optimization method that searches 

better solutions by random walk. Differential Evolution was introduced by Ken Price 

and Rainer Storm, as a simple evolutionary algorithm that generates new 

chromosome solutions by vector sum of three selected individuals of the population. 

As shown in Figure 7 the algorithm has a greedy-like selection of child only if its 

fitness is better compared to parents. DE often outperforms traditional evolutionary 

algorithms in searching best solutions if the genes consist of only scalars. A variety 

of DE operators was proposed for producing the next generation [14]. 

4.2  Multi-Objective Optimization Differential Evolution 

The single objective DE algorithm cannot be applied directly for multi objective 

problems because the selection criteria by better fitness cannot work in multi 

objective case. In single objective, the offspring replace the parents when it is better. 

In multi-objective case, the solutions that dominate the others are the best solutions 

of the population, and therefore the offspring replace the parents if they dominate 

parents. This procedure is repeated until the number of created offspring reach to the 

population size [14]. 
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4.2.1 Population 

The initial population is started by random chromosomes. The fitness values of each 

chromosome of the population is computed and attached to the chromosomes. Both 

the chromosomes of the current population and new population are used to generate 

next population by the mutation and binomial crossover operators. 

 

Figure 7: MODE Flowchart [7] 

 

4.2.2 Rank and Crowding Distance Calculation  

The individuals are compared for domination in objective functions, and their rank is 

assigned accordingly. Next, the Crowding-distance of the individuals are calculated 

and attached to the chromosomes [7]. 
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After ranking and Crowding-distance assignment, the selected Np individuals are 

processed by DE operation, which is a sequence of DE mutation, crossover and 

selection [7]. 

4.2.3  DE Mutation  

The mutation operator selects randomly three individuals p1, p2, p3 of the population 

as parent, and generates the new offspring o using the scale factor Fs [14]. 

                                 
1 2 3( )i s i io p F p p                                                             (16)  

4.2.4  DE Crossover  

DE crossover operation is applied on all genes of the mutant chromosome in a 

random sequence with a crossover probability CR. For this purpose, for each gene, a 

random value  is chosen in (0, 1). If both CR< and the mutant chromosome has 

better rank than the parent, then mutant is taken as a child [14]. 

4.2.5  Selection 

The elitist selection operator selects the chromosome for next generation by 

comparing the rank and Crowding-distance of the children and parents. The 

individuals with a lower rank and higher Crowding-distance are selected as the new 

parent. The lowest rank individuals form the set of Pareto-optimal solutions [7]. 

4.3  Application of MODE to search Pareto Front of Controller 

In this chapter, the search of optimum control parameters of an automated farming 

vehicle planned to track a predetermined path on a loose soil surface. The motion of 

the auto steered tractor is modeled and the test procedure of the system to measure 

the lateral peak and RMS errors ıs explained in Chapter 2. MODE algorithm is 

suitable in searching the Pareto optimal solutions, and graphically represents the 
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corresponding Pareto-front to pick the best solution depending on the preference of 

the farming operator.   

4.3.1 Structure of the Chromosomes 

For MODE algorithm, each solution shall be expressed as a chromosome that 

consists of an array of genes. The four independent controller coefficients, KD, K2, 

L1, and L2 are the four scalar genes of a chromosome. Depending on the needs of the 

operators, some values such as the values of objective (fitness) functions f1=Epeak and 

f2=ERMS are attached to each chromosome.   

4.3.2 Initialization of the Population 

The population is initialized by homogeneously distributed random numbers in 

interval (-5, 5). The selected crossover ratio and scale factor is CR=0.5 and F=0.5 as 

given in typical examples of similar problems. 

Lateral peak and RMS errors for each chromosome of the population is evaluated to 

obtain the values of the objective functions. After evaluating their objective values, 

the population is sorted by non-dominated sorting procedure as described in Section 

3.3.3 for NSGA-II. Table 2 shows the first ten chromosomes of the initial population 

and the values of two objective functions.  
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Table 2: Initialized Population and Evaluated Objective 

KD K2 L1 L2 Epeak ERMS 

-1.4834 3.3083 0.8526 0.4972 0.0253 0.00334 

4.1719 -2.1416 2.5720 2.5373 0.0252 0.00702 

-1.1955 0.6782 -4.2415 -4.4615 0.0210 0.00515 

0.3080 2.7917 4.3417 0.7722 0.0474 0.00947 

1.2338 -0.6938 -0.1452 0.9178 0.0819 0.00482 

-0.7409 -0.7096 0.9967 -0.6944 0.0235 0.00459 

1.9266 0.5422 -2.2066 -0.1770 0.0373 0.00738 

-0.9930 1.9960 -4.7404 0.8693 0.0305 0.00345 

0.8929 -0.6535 -0.0351 -0.3587 0.0344 0.00804 

-2.7102 4.3734 -3.4762 3.2582 0.0224 0.00330 

 

4.4  Mutation 

Three parents, pi1, pi2 and pi3, of population are selected for mutation operator and 

the mutant m is calculated by using the mutation scale factor F=0.5.  

                                             1 2 3( )i i im p F p p                                              

-1.4834 4.1719 -1.1955

3.3083 -2.1416 0.6782

0.8526 2.5720 -4.2415

0.4972 2.5373 -4.4615

m F

      
      
        
      
      
       

 

4.5  Crossover 

Crossover operator acts with probability CR=0.5, by generating a random number  

in interval (0, 1), and comparing it to CR. If CR< then the parent is selected as 

child. Otherwise, mutant is select as a child. 

                       c= 
if 

otherwise

p CR

m


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4.6  Selection 

For the selection, the objective functions of both parent and child are evaluated to get 

their objective values (fitness). The elitist selection operation prefers the smaller rank 

of domination and larger Crowding-distance for the next generation and pareto-front.  

Figure 8 illustrates the best non-dominated solution set in the pareto-front for the 

MODE problem after three hundred generation.  

 
Figure 8: Pareto Front by MODE after 300 Generations 

 

The Figure 9 illustrates the best non-domination solution set in the pareto-front for 

the MODE problem for one thousand generation.  
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                 Figure 9: Pareto Front in MODE after 1000 iteration of Generations 

 

 

4.7  Summary 

In this chapter, we have given a simple example to explain MODE and show on this 

problem to create a small population to apply systematic mutation, crossover and 

selection and to create next generation. After more and more iteration, it converges to 

a set of non-dominated solution and starts to build up the Pareto front of the solution 

space.  

ERMS 
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  Chapter 5 

5 RESULTS AND DISCUSSIONS 

5.1  Multi Objective Nature of Problem 

The efficiency of the agricultural processes strongly depends on the terrain 

properties, surrounding environment conditions, and the path tracking accuracy of 

the automatic agricultural machines. The curvature transitions create common 

problems in path tracking control systems resulting in lateral tracking deviation. The 

lateral tracking error has two main components, the Epeak, and the root-mean-square 

ERMS, along the path. The importance of the lateral error at the curvature transitions 

was addressed by Lenain et al. (2006) and the controller parameters of a double look-

ahead reference point controller has been optimized to minimize both the Epeak and 

the ERMS of an agricultural tractor manually by a multi stage steepest descent 

optimization algorithm.   

NSGAII and MODE are multi-objective evolutionary optimization algorithms, which 

can find the pareto-optimal border of the solution space for a multi-objective 

problem. In this study, the controller parameters of an agricultural tractor are 

optimized using two multi objective optimization algorithms, NSGA-II and MODE 

[2]. 

Both NSGA-II and MODE requires mainly two structural parameters, the population 

size, and the number of generations to terminate the algorithm. The evolutionary 
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optimization algorithms used the fitness values, Epeak and ERMS, which were obtained 

by the simulated runs of the tractor along a typical test-path. Tests were carried for a 

set of structural parameters and the followings are observed from the results of these 

test runs. 

5.2  NSGA-II and MODE Settings 

Those genes of the chromosome, KD, K2, L1, and L2 were bounded in interval (-5, 5) 

and the population size is tested at 300 and 1000. The crossover and mutation 

probability ratios in the NSGA-II for all cases are 0.8 for crossover and 0.2 for 

mutation. In the MODE algorithm, the crossover is 0.5 and scale factor value is 0.5. 

After a number of tests, we found that the best value for the DE scale factor is 0.5 

and DE crossover ratio is 0.5, as it is given in examples.  

In this group of runs, the populations of both algorithms were set to one hundred, 

and, the number of generations was set to three hundred. Both algorithms were 

started with random population interval KD = (-5, 5), K2 = (-5, 5), L1 = (-5, 5) and L2= 

(-5, 5). For NSGAII the execution time takes 35 min. For MODE, it takes 40 min to 

complete 300 generation.  

5.3  Results with Population Size 100 after 300 and 1000 Generations 

In Figure 10, the y-axis represents the ERMS and the x-axis represents the Epeak. Pareto 

front of both NSGA-II and MODE are plotted in the same graph. The minimum Epeak 

and the minimum ERMS obtained by NSGA-II are 0.0038m, and 0.0011m, 

respectively. For the MODE, the minimum Epeak is 0.0025m, and the minimum ERMS 

comes out 0.00077m. The large difference in the minimum errors of these algorithms 

indicates that the population size and the number of generations shall be larger to get 

better results. The pareto-optimal solutions of MODE are listed in Table 3. 
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   Figure 10: Pareto Front in NSGA-II and MODE after 300 Generations 

 

          

         Table 3: Controller Parameters for Pareto Optimal Points 

Pareto Optimal Solution Pareto Front 

KD K2 L1 L2 Epeak ERMS 

1.0981 2.16178 0.681764 -0.5935122 0.0029915 0.000772037 

0.4169 2.31855 0.671671 -0.6032823 0.0025353 0.000774146 

0.5624 2.29602 0.696577 -0.5679995 0.0030398 0.000714612 

0.3833 1.93876 0.710725 -0.6242900 0.0030345 0.000766813 

 

Figure 11 is obtained as a result of setting the populations of the algorithms both to 

one hundred and the number of generations to one thousand. The algorithms started 

with random population interval KD =(-5, 5), K2 =(-5, 5), L1 =(-5, 5) and L2 =(-5, 5). 

In NSGAII, the crossover was 0.8 and mutation operation was 0.2. The 

implementation time was 3:30 min. For MODE, the crossover factor fixed 0.5, and 

the scaling factor fixed 0.5. The implementation time was 4 hour. 

MODE 

NSGA-II 

Epeak 

ERMS 
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In Figure 11, the pareto-front of NSGA-II and MODE are shown on the same plot.  

The y-axis denotes the ERMS and the x-axis denotes the Epeak. The minimum Epeak 

and, the minimum ERMS achieve by NSGA-II are 0.0031m, and 0.0013m, 

respectively. From the MODE, the minimum Epeak is 0.0019m, and the minimum 

ERMS comes out 0.00067. The large difference in the minimum error of these 

algorithms, indicate that the population size and the number of generation shall be 

larger to get better results.  

 
Figure 11: Pareto Front in NSGA-II and MODE after 1000 Generation  

 

Table 4 shows the controller parameters for pareto-optimal points after 1000 

generations. 
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ERMS 

Epeak 
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       Table 4: Controller Parameters for Pareto Optimal Points 

Pareto Optimal Solution Pareto Front 

# KD K2 L1 L2 Epeak ERMS 

1 0.5544 3.9159 0.613971 -0.4458441 0.0019759 0.000613085 

2 0.4561 3.8005 0.627220 -0.4444833 0.0020955 0.000609584 

3 0.6897 3.7699 0.624200 -0.4395144 0.0022349 0.000594679 

4 0.1473 3.4240 0.639277 -0.4690074 0.0019338 0.000674838 

5 0.4965 3.9447 0.627356 -0.4307716 0.0021417 0.000605518 

 

 

Figure 12 shows the resulting lateral deviation for a simulation along the desired 

reference path using the Pareto-optimal solution #3 in the left plot. The right side is 

the zoom to the maximum Epeak that occurred in the dashed small window. Figure 13 

shows the lateral error dN of the tractor along the reference path.  

 

Figure 12: Motion of the Tractor Desire Reference Path 
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                        Figure 13: Lateral Error of the Tractor along the Reference Path 

 

5.4  Search in a Narrower Solution Space  

In this group of runs, the populations of both algorithms were set to one hundred, 

and, the number of generations was set to one thousand. Both algorithms were started 

with random population between KD = (1, 5), K2 = (1, 5), L1 = (-1, 1) and L2 = (-1,1).  

In NSGA-II, the crossover was 0.8 and a mutation operation was 0.2 in searching the 

optimal solutions. The performance time takes 35 min. For MODE, the crossover 

factor is set to 0.5, the scaling factor is set to 0.5 in searching this solution, and it 

takes 40 min.  

In Figure 14, the Pareto-front of NSGA-II and MODE are shown on the same plot. 

The y-axis represents the ERMS and the x-axis represents the Epeak. The minimum 

Epeak and the minimum ERMS obtained by NSGA-II are 0.0035m, and 0.00067m, 

respectively. For MODE, the minimum Epeak is 0.0021m, and the minimum ERMS 

comes out 0.00054m. The large difference in the minimum errors of these algorithms 

dN 

 

Curvilinear Distance 
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indicates that the population size and the number of generations shall be larger to get 

better results. 

 

               Figure 14: Pareto Front in NSGA-II and MODE with 300 Generations 

 

       Table 5: Controller Parameters for Pareto Optimal Points by MODE 

Pareto Optimal Solution Pareto Front 

# KD K2 L1 L2 Epeak ERMS 

1 0.9826 5.1164 0.60129 -0.3776356 0.0021053 0.000541194 

2 0.7321 4.2383 0.61262 -0.41567040 0.0021039 0.000585480 

 

5.5  Results of Population size 100 with 1000 Generations  

Figure 15 shows the results of both algorithms with the populations size100 and 

number of generations 1000 when genes of the chromosome are bounded in intervals 

KD = (1, 5), K2 = (1, 5), L1 = (-1, 1) and L2 = (-1, 1). 

ERMS 

 

Epeak 
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The crossover and mutation operation in NSGA-II were 0.8 and 0.2. The operation 

time was 3:30 min. For MODE, the crossover ratio was set to 0.5, and the scaling 

factor was set to 0.5. The operation time of MODE took four hours. 

In Figure 15, the Pareto-front of NSGA-II and MODE are shown on the same plot. 

The y-axis denotes the ERMS and the x-axis denotes the Epeak. The minimum Epeak 

and, the minimum ERMS achieve by NSGA-II are 0.0019m, and 0.0007m, 

respectively. MODE delivered the minimum Epeak 0.0016m, and the minimum ERMS 

0.0004m. The large difference in the minimum error of these algorithms, indicate 

that the population size and the number of generation shall be larger to get better 

results. 

 

Figure 15: Pareto Front for MODE and NSGA-II for 1000 Generations 
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5.6  Effect of Pareto Optimal on the Lateral Error along the Path 

The best Pareto-optimal solutions obtained from all search runs are shown in Table 

6. The resulting lateral deviation for the Pareto-optimal solution #1 is demonstrated 

by a simulation along the desired reference path in the left plot of Figure 16. The plot 

at the right side zooms into the dashed small window to show the maximum Epeak. 

       Table 6: Controller Parameters for Pareto Optimal Points 

Pareto Optimal Solution Pareto Front 

# KD K2 L1 L2 Epeak ERMS 

1 0.8648 7.4208 0.559544 -0.3081386 0.0016235 0.000483704 

2 0.9018 7.3861 0.560413 -0.3091005 0.0016270 0.000478973 

3 1.0092 6.5188 0.586364 -0.3208218 0.0020289 0.000477510 

4 1.2401 6.5164 0.580384 -0.3141057 0.0020838 0.000477118 

5 1.6543 6.6306 0.586108 -0.3204827 0.0021680 0.000470331 

 

 

             Figure 16: Motion of the Tractor and the Desired Reference Path 

 

Figure 17 compares the effects of the Pareto optimal solutions on the lateral error of 

the tractor along the reference path. Smaller RMS error is a result of faster 
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convergence of the tractor motion to the linear or circular section of the path, and 

there is a compromise between minimum peak and minimum RMS errors. The red 

curve shows the error of the extreme Pareto optimal point with minimum peak error, 

which is given at the first row of Table 6.  The blue curve belongs to the error with 

the minimum RMS error, which is given at the last row of the same table. It is clearly 

visible that red curve has higher error at the beginning of the 10
th

 meter compared to 

the blue curve. This error indicates the lower convergence rate of red curve 

compared to the blue curve. The tractor operator may select a lower peak error if the 

task is critical especially at the transients of the curvatures, or may select a controller 

setting that provides lower RMS error to improve the performance of tracking the 

linear sections of the path.    

 
                    Figure 17: Lateral Error of the Tractor along the Reference Path 

     for the Pareto-optimal solutions #1:Blue, #3:Green, #5:Red 
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5.7  Summary  

This chapter illustrates the result of both algorithms: NSGA-II and MODE, which 

reduced the lateral errors Epeak and ERMS. As it is seen in Table 6, the minimum Epeak 

and ERMS in NSGA-II are 0.0019m, 0.0007m while the ERMS and Epeak are 0.0016m, 

0.0004m respectively in MODE algorithm.  
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        Chapter 6 

6 CONCLUSIONS 

The aim of this study is to reduce the lateral error of the simulated tracking action of 

an agricultural tractor along a typical agricultural desired path. The most important 

features of the lateral error along a typical path are the Epeak, and ERMS, which are 

independent components of the error along the path. A multi-objective optimization 

algorithm is required to search the best parameter settings to have both minimum 

Epeak and ERMS.  The best parameter settings form a non-dominated solution surface, 

which is described by a set of Pareto-front points.  

This study applied NSGA-II, and MODE algorithms to determine the Pareto-front 

surface that compromise both peak and RMS errors. The lateral controller parameters 

of an actual tractor may be set to the controller parameters corresponding to the 

Pareto-front points depending on the importance of ERMS or Epeak in the agricultural 

application.  

The search gave better non-dominated solution surfaces with typical errors {Epeak 

=0.0016m, ERMS =0.0004 m} compared to reported error {Epeak =0.0044m, ERMS 

=0.0015m} in [4]. Using the results of this study, the tractor operator may select a 

lower peak error if the task is critical especially at the transients of the curvatures, or 

may select a controller setting that provides lower RMS error to improve the 

performance of tracking the linear sections of the path. 
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6.1  Future works 

The real time application of the evolutionary optimization algorithms to enhance the 

lateral control parameters requires mainly development of these algorithms in a 

learning structure with a fast convergence rate. Development of such algorithms may 

be a sounding feature task for the real time enhancement of the control parameters.  
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1 MatLab Code of Path Generator and Fitness Function 

  pathmaker.m                                           
  1  function pathmaker(x0,y0,dt,speed,firstlength,radius,lastlength) 
  2  %pathmaker(0,0,0.005,2,10,7,22) 
  3  clc 
  4  fh=fopen('pathdef.m','w'); 
  5  fprintf(fh,'function path=pathdef()\r\n path=[ '); 
  6  ds=speed*dt; s=0;x=-radius; y=-firstlength; i=1; a=pi/2; 
  7  fprintf(fh,'%f  %f   %f   %f   %i\r\n', s, x, y, a, i ); 
  8  while(s<firstlength) 
  9     s=s+ds; x=-radius; y=y+ds; i=i+1; a=pi/2; 
 10     fprintf(fh,'%f  %f   %f   %f   %i\r\n',  s, x, y, a, i ); 
 11  end 
 12  while(s<firstlength+radius*pi) 
 13     s=s+ds; sa=s-firstlength; a=pi/2-sa/radius; 
 14     x=-radius*cos(sa/radius); y=radius*sin(sa/radius); i=i+1; 
 15     fprintf(fh,'%f  %f   %f   %f   %i\r\n',  s, x, y, a, i); 
 16  end 
 17  while(s<firstlength+radius*pi+lastlength) 
 18     s=s+ds; x=radius; y=y-ds; i=i+1; a=-pi/2; 
 19     fprintf(fh,'%f  %f   %f   %f   %i\r\n',  s, x, y, a, i); 
 20  end 
 21     fprintf(fh,']; \r\n' ); 
 22 
 23  fclose(fh); 
 24  end 
 25 
 26  %-----end of file 
 
fitness2.m 
  1  function [peakd, rmsd]=fitness2(kN,kD,k1,k2,L1,L2) 
  2  %[a,b]=fitness(0,3,0,4,-0.8,0.8) 
  3  % Path and Plot 
  4  path=pathdef; len_path=size(path,1); startstep=0.001; 
  5  plotgrA=0; plotgrB=0; plotgrM=0; % no plot for evol.search 
  6  %plotgrA=1; plotgrB=0; plotgrM=1;% plot to get path and dN  
  7  % Vehicle Coefficients    
  8   x=1; y=2; w=3;       % Positional terms 
  9  % Steering parameter 
 10   s=0; b=0; v=2.0; smax=0.5585; smin=-smax; 
 11  % Path parameters L2>L1 
 12   R=abs(path(1,2)); 
 13  % Bevly & Derrick (2008) coefficients 
 14  m=11340; I=18500; Lf=1; Lr=2.0; L=Lf+Lr; 
 15  Cr=286479; Cf=137510; Fr=0; 
 16  dt=0.01; dtc=0.05; dts=0.001; 
 17  ds=path(2,1); equit=0.3; cquit=0; 
 18  ibest=1; vbest=[]; iter=0; tcalc=0; 
 19 
 20  LrmseS=1050;LrmseE=1500; LpeakS=100; LpeakE=2100; 
 21  Lcancel=2400; Lpoff=900; % for circular and overall test 
 22  % Controller Coefficients  
 23  %kN=0; kD=3; k1=0; k2= 4.7;L1=-0.7;L2= 0.73; 
 24  KNLine=5.6; KLCirc=2.28; 
 25  k1=(KLCirc-k2*L2)/L1; kN=KNLine-k1-k2; 
 26 
 27  %--initialization---------------------------------------- 
 28  t=0; j=0; tf=25; 
 29  ts=t; s1=0; s2=0; s3=0; % actuator time and states 
 30  tc=t+dt; % controller time 
 31  % Initial position and heading pv=[R -Lr+25 -pi/2]; 
 32    pv=[-R-startstep Lr-10 pi/2]; 
 33  vv=[0  v   0];    % Initial velocities 
 34  av=[0  0   0];    % Initial acceleration 
 35  xr=pv(x)-Lr*cos(pv(w)); yr=pv(y)-Lr*sin(pv(w)); 
 36  clear ov; % observation vector is cleared 
 37  idN=2; dsign=1; 
 38  while( t<tf) 
 39      t=t+dt; j=j+1; %time & iteration    
 40      %simplification of program notation  
 41      Cw= cos(pv(w)); Sw= sin(pv(w)); Cs= cos(s); Cb= cos(b); 
 42      % CoG (x,y) --> (xr,yr) rear wheels point 
 43      xrp=xr; yrp=yr; xr=pv(x) - Lr*Cw; yr=pv(y) - Lr*Sw; 
 44      if(t==dt), xrp=xr; yrp=yr; end % debug      
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 45      if tc>=t, tc=tc+dtc; % control part 
 46  %   control starts with finding pN  
 47      % inputs idN, xr, yr,thetar, path  outputs idN, dN, d 
 48      idNs=idN; idNend=idN+200; 
 49      xk=path(idN-1,2); yk= path(idN-1,3); 
 50      ddNp= (xk-xr)*(xk-xr)+(yk-yr)*(yk-yr); ddNpp=ddNp; 
 51      for kdN=idNs:idNend, 
 52          xk=path(kdN,2); yk= path(kdN,3); 
 53          ddN=(xk-xr)*(xk-xr)+(yk-yr)*(yk-yr); 
 54          idN=max(kdN-1,2); 
 55          if(ddNp<ddN), break; end 
 56          ddNpp=ddNp; ddNp=ddN; 
 57      end 
 58      dNbest=sqrt(ddNp); dNfw=sqrt(ddN); dNbw=sqrt(ddNpp); 
 59      if(dNfw<dNbw), dNnext=dNfw; else dNnext=dNbw; end 
 60      dN=nearestdist(dNbest,dNnext,ds); dN=abs(dN); 
 61      thetaP=path(idN,4); thetaN=thetaP-pv(w); 
 62      thetaP1=path(min(max(idN+round(L1/ds),1),len_path),4); 
 63      theta1=thetaP1-pv(w); 
 64      thetaP2=path(min(max(idN+round(L2/ds),1),len_path),4); 
 65      theta2=thetaP2-pv(w); 
 66      ca=path(idN,1); xn=path(idN,2); yn=path(idN,3); 
 67      % determine sign of distance 
 68      xNd=-xn+path(idN+1,2); yNd=-yn+path(idN+1,3); 
 69      dsign= sign(xNd*(-yr+yn)-yNd*(-xr+xn)); 
 70      d= dsign*abs(dN); 
 71 
 72      % Control Law for steer angle 
 73      sd=kD*d + kN*thetaN + k1*theta1 + k2*theta2; 
 74     end 
 75    %--control part is over, vehicle simulation starts here--------- 
 76 
 77      % Quit the case if error exceeds a threshold 
 78       eer=abs(d);  if eer>equit, cquit=1; t=tf;  end 
 79 
 80      % Servo Actuator 
 81      while(ts<t), ts=ts+dts; 
 82         s=sd*0.000297 + 2.894*s1 - 2.858997*s2 +0.9647*s3 ; 
 83         s3=s2; s2=s1;s1=s; end 
 84      s=max(min(s,smax),smin); 
 85 
 86    % Vehicle equations of motion 
 87      % Friction force is normal to tires 
 88      if s>=0, Ff= -Cf*(s-b- vv(w)*Lf*Cb/v); 
 89      else Ff= Cf*(b + vv(w)*Lf*Cb/v-s); end 
 90      Fc=m*(v*cos(b))^2*tan(s)*sign(b)/L; Fwf=27e3*sin(s); 
 91      ddy=(-Fr-Ff*Cs-Fc+Fwf)/m+v*vv(w); 
 92      av(w)= (-Ff*Cs*Lf + Fr*Lr+Fwf*Lf)/I; 
 93      av(x)=-ddy*Sw; av(y)= ddy*Cw; 
 94      % Absolute Velocities 
 95      vv(x)=vv(x)+av(x)*dt;vv(y)= vv(y)+av(y)*dt; vv(w)=vv(w)+av(w)*dt; 
 96      % Constant Forward Velocity 
 97      vyy=-vv(x)*Sw+vv(y)*Cw; % Lateral y velocity  
 98      vv(x)=-vyy*Sw + v*Cw; vv(y)= vyy*Cw + v*Sw; 
 99      % Side slip angle 
100      b= atan2(vv(y),vv(x))-pv(w); 
101      Fr= Cr*(b - vv(w)*Lr*Cb/v); % Friction force is normal to tires           
102      % Vehicle positions and orientation 
103      pv(x)=pv(x) + vv(x)*dt; 
104      pv(y)=pv(y) + vv(y)*dt; 
105      pv(w)=pv(w) + vv(w)*dt; 
106      %=============================================================== 
107      %        1 2 3  4  5  6  7   8   9     10    11 Observation Vector 
108      %        t s Xn Yn d  xr yr  dN thetaN dsign ca 
109      ov(j,:)=[t s xn yn d  xr yr  dN thetaN dsign ca ]; 
110  end % case run completed 
111 
112   L_ov=size(ov,1); 
113   if cquit, peakd=equit; rmsd=equit; 
114   else 
115    [peaka,ipeak]=max(ov(100:2100,8)); 
116    peakd = abs(ov(ipeak+100,5)); 
117    rmsd  = sqrt(ov(100:1500,5)'*ov(100:1500,5)/(1500-100) ) ; 
118    poff=ov(900,5); 
119    dispvec=[ L1 L2 k1 k2 peakd*1000 rmsd*1000 poff*1000 ]; 
120     % plot the testdrive 
121    if plotgrA, 
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122      figure(2); 
123      plot(ov(:,6),ov(:,7),'LineWidth',1.5);hold on; 
124      plot(ov(:,3),ov(:,4),'r','LineWidth',0.5); end 
125    if plotgrM, 
126      figure(1); 
127      plot(ov(:,11),ov(:,5),'r','LineWidth',1.5); end 
128   end 
129  return 
130 
131  function d=nearestdist(d1,d2,d0) 
132  e=(d1*d1-d2*d2-d0*d0)/(2*d0); d=sqrt(abs(d2*d2-e*e)); a=-e; 
133  return 
134 
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2 MatLab Code of MODE 

1 clear all; 
2 close all; 
3 clc; 
4 MODEDat.NOBJ = 2;                          
5 MODEDat.NRES = 0;                           
6 MODEDat.NVAR = 4;                           
7 MODEDat.FieldD =[zeros(MODEDat.NVAR,1)... 
1. nes(MODEDat.NVAR,1)];  
8 MODEDat.Initial=[zeros(MODEDat.NVAR,1)... 
1. ones(MODEDat.NVAR,1)];  
9 MODEDat.XPOP= 50*MODEDat.NOBJ;              
10 MODEDat.Esc = 0.5;                          
11 MODEDat.Pm  = 0.5;                            
12 MODEDat.InitialPop=[];                      
13 MODEDat.MAXGEN =300;                      
14 MODEDat.MAXFUNEVALS = 15000000*MODEDat.NVAR...   
15 *MODEDat.NOBJ;                          
16 MODEDat.SaveResults='yes';                 
17 MODEDat.CounterGEN=0 
18 MODEDat.CounterFES=0 
19 OUT=MODE(MODEDat);                        
20 function OUT=MODE(MODEDat) 
21 %% Reading parameters from MODEDat 
22 Generaciones  = MODEDat.MAXGEN;    % Maximum number of generations. 
23 Xpop          = MODEDat.XPOP;       
24 Nvar          = MODEDat.NVAR;       
25 Nobj          = MODEDat.NOBJ;       
26 Bounds        = MODEDat.FieldD;     
27 Initial       = MODEDat.Initial;    
28 ScalingFactor = MODEDat.Esc;   
29 CrossOverP    = MODEDat.Pm;         
30 % mop           = MODEDat.mop;      

 
31 %% Initial random population 
32 Parent = zeros(Xpop,Nvar);   
33 Mutant = zeros(Xpop,Nvar);   
34 Child  = zeros(Xpop,Nvar);   
35 FES    = 0;                  
36 for xpop=1:Xpop 
37 Parent(xpop,1)=-1+(1+1).*rand; 
38 Parent(xpop,2)=-1+(1+1).*rand; 
39 Parent(xpop,3)=-1+(1+1).*rand; 
40 Parent(xpop,4)=-1+(1+1).*rand; 

 
41 end; 
42 Initial(nvar,1)+(Initial(nvar,2)... 

 
43 if size(MODEDat.InitialPop,1)>=1 
44 Parent(1:size(MODEDat.InitialPop,1),:)=MODEDat.InitialPop; 
45 end 
46 JxParent1=zeros(Xpop,1); 
47 JxParent2=zeros(Xpop,1); 
48 for L=1:Xpop 
49 [A,B] = fitness2(Parent(L,1),Parent(L,2),Parent(L,3),Parent(L,4) ); % 

parents cost value  
50 JxParent1(L)=A; 
51 JxParent2(L)=B; 
52 end 
53 FES = FES+Xpop;    
54 %% Evolution process 
55 for n=1:Generaciones  
56 for xpop=1:Xpop 
57 rev=randperm(Xpop); 
58 %% Mutant vector calculation   
59 Mutant(xpop,:)= Parent(rev(1,1),:)+ScalingFactor*... 

(Parent(rev(1,2),:)- Parent(rev(1,3),:)); 
60 %% Crossover operator 
61 for nvar=1:Nvar 
62   if rand() > CrossOverP 
63 Child(xpop,nvar) = Parent(xpop,nvar); 
64   else 
65 Child(xpop,nvar) = Mutant(xpop,nvar); 
66     End 
67    end 
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68 end 
69 JxChild1=zeros(Xpop,1); 
70 JxChild2=zeros(Xpop,1); 
71 for L=1:Xpop 
72 [A,B] = fitness2(Child(L,1),Child(L,2),Child(L,3),Child(L,4)); %    

parents cost value  
73 JxChild1(L)=A; 
74 JxChild2(L)=B; 
75 end 

 
76 FES=FES+Xpop; 

 
77 %% Selection  
78  for xpop=1:Xpop 
79    if JxChild1(xpop,:) <= JxParent1(xpop,:) ... 
80        &&  JxChild2(xpop,:) <= JxParent2(xpop,:) 
81    Parent(xpop,:) = Child(xpop,:); 
82    JxParent1(xpop,:) = JxChild1(xpop,:); 
83    JxParent2(xpop,:) = JxChild2(xpop,:); 
84    end 
85     End 
86 PFront(:,1)=JxParent1; 
87 PFront(:,2)=JxParent2; 
88   PSet=Parent; 
89    % combined two vector value into one 
90  JxParent(:,1)= JxParent1; 
91 JxParent(:,2)= JxParent2; 
92 OUT.Xpop           = Parent;   % Population 
93 OUT.Jpop           = JxParent; % Poopulation's Objective Vector 
94 OUT.PSet           = PSet;     % Pareto Set 
95 OUT.PFront         = PFront;   % Pareto Front 
96 OUT.Param          = MODEDat;  % MODE Parameters 
97 MODEDat.CounterGEN = n; 
98 MODEDat.CounterFES = FES; 

 
99 %      [OUT MODEDat]=PrinterDisplay(OUT,MODEDat); % To print results on 

screen 
 

100 if FES>MODEDat.MAXFUNEVALS || n>MODEDat.MAXGEN 
101   disp('Termination criteria reached.') 
102   break; 
103  end 
104  end 

 
105 OUT.Xpop=PSet; 
106 OUT.Jpop=PFront; 
107 [OUT.PFront, OUT.PSet]=DominanceFilter(PFront,PSet); %A Dominance 

Filter 
 

108 f strcmp(MODEDat.SaveResults,'yes') 
109 save(['OUT_' datestr(now,30)],'OUT'); %Results are saved 
110 end 

 
111 disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++') 
112 disp('Red  asterisks : Set Calculated.') 
113 disp('Black diamonds : Filtered Set.') 
114 if strcmp(MODEDat.SaveResults,'yes') 
115 disp(['Check out OUT_' datestr(now,30) ... 
116 variable on folder for results.']) 
117 end 
118 disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++') 
 

119 F=OUT.PFront; 
120 for xpop=1:size(OUT.PFront,1) 
121 if Nobj==1 
122 figure(123); hold on; 
123 plot(MODEDat.CounterGEN,log(min(F(:,1))),'dk', 
124 'MarkerFaceColor','k'); grid on; hold on; 
125 elseif Nobj==2 
126 figure(123); hold on 
127 plot(F(xpop,1),F(xpop,2),'dk','MarkerFaceColor','k');... 
128 grid on; hold on; 
129 elseif Nobj==3 
130 figure(123); hold on; 
131 plot3(F(xpop,1),F(xpop,2),F(xpop,3),'dk','MarkerFaceColor','k   
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132 grid on; hold on; 
133 end 
134 end 
135 % 
136 function [OUT Dat]=PrinterDisplay(OUT,Dat) 

 
137 disp('------------------------------------------------') 
138 disp(['Generation: ' num2str(Dat.CounterGEN)]); 
139 disp(['FEs: ' num2str(Dat.CounterFES)]) 
140 disp(['Pareto Front Size: ' mat2str(size(OUT.PFront,1))]); 
141 disp('------------------------------------------------') 

 
142 if mod(Dat.CounterGEN,1)==0 
143 if Dat.NOBJ==3 
144 figure(123); 
145 plot3(OUT.PFront(:,1),OUT.PFront(:,2),OUT.PFront(:,3),'*r');  
146 grid on; 
147 elseif Dat.NOBJ==2 
148 figure(123); 
149 plot(OUT.PFront(:,1),OUT.PFront(:,2),'*r'); grid on; 
150 elseif Dat.NOBJ==1 
151 figure(123); 
152 plot(Dat.CounterGEN,log(min(OUT.PFront(:,1))),'*r'); ... 
153 grid on; hold on; 
154 end 
155 end 

 
156 function [Frente Conjunto]=DominanceFilter(F,C) 
157 Xpop=size(F,1); 
158 Nobj=size(F,2); 
159 Nvar=size(C,2); 
160 Frente=zeros(Xpop,Nobj); 
161 Conjunto=zeros(Xpop,Nvar); 
162 k=0; 
163 for xpop=1:Xpop 
164 Dominado=0; 
165 for compara=1:Xpop 
166 if F(xpop,:)==F(compara,:) 
167 if xpop > compara 
168 Dominado=1; 
169 break; 
170 end 
171 else 
172 if F(xpop,:)>=F(compara,:) 
173 Dominado=1; 
174 break; 
175 end 
176 end 
177 end 
178 if Dominado==0 
179 k=k+1; 
180 Frente(k,:)=F(xpop,:); 
181 Conjunto(k,:)=C(xpop,:); 
182 end 
183 end 
184 Frente=Frente(1:k,:); 
185 Conjunto=Conjunto(1:k,:); 
186  
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3 MatLab Code of NSGA-II 

1 pop=100; 
2 gen=1000; 
3 if isnumeric(pop) == 0 || isnumeric(gen) == 0 
4 error('Both input arguments pop and gen should be integer datatype'); 
5 end 
6 % Minimum population size has to be 20 individuals 
7 if pop < 20 
8 error('Minimum population for running this function is 20'); 
9 end 
10 if gen < 5 
11 error('Minimum number of generations is 5'); 
12 end 
13 % Make sure pop and gen are integers 
14 pop = round(pop); 
15 gen = round(gen); 
16 function [number_of_objectives, number_of_decision_variables,      

min_range_of_decesion_variable, max_range_of_decesion_variable] = 
objective_description_function() 

17 g = sprintf('Input the number of objective: '); 
18 % Obtain the number of objective function 
19 number_of_objectives = input(g); 
20 if number_of_objectives < 2 
21 error('This is a multi-objective optimization function hence the 

minimum number of objectives is two'); 
22 end 
23 g = sprintf('\nInput the number of decision variables: '); 
24 % Obtain the number of decision variables 
25 number_of_decision_variables = input(g); 
26 clc 
27 for i = 1 : number_of_decision_variables 
28 clc 
29 g = sprintf('\nInput the minimum value for decision variable %d : ', 

i); 
30 % Obtain the minimum possible value for each decision variable 
31 min_range_of_decesion_variable(i) = input(g); 
32 g = sprintf('\nInput the maximum value for decision variable %d : ', 

i); 
33 % Obtain the maximum possible value for each decision variable 
34 max_range_of_decesion_variable(i) = input(g); 
35 clc 
36 end 
37 g = sprintf('\n Now edit the function named "evaluate_objective"  
38 x = input(g, 's'); 
39 if isempty(x) 
40 x = 'x'; 
41 end 
42 while x ~= 'c' 
43 clc 
44 x = input(g, 's'); 
45 if isempty(x) x = 'x'; 
46 end 
47 end     
48 function f = initialize_variables(N, M, V, min_range, max_range) 
49 min = min_range; 
50 max = max_range; 
51 for j = 1 : V 
52 f(i,j) = min(j) + (max(j) - min(j))*rand(1); 
53 end 
54 peakd=0;  
55 rmsd=0; 
56 [peakd, rmsd]=fitness2(f(i,1),f(i,2),f(i,3),f(i,4)); 
57 f(i,V + 1: K) =[peakd, rmsd]; 
58 end 
59 function f = initialize_variables(N, M, V, min_range, max_range) 
60 function f = non_domination_sort_mod(x, M, V) 
61 [N, m] = size(x); 
62 clear m 
63 function f  = genetic_operator(parent_chromosome, M, V, mu, mum, 

l_limit, u_limit) 
64 [N,m] = size(parent_chromosome); 
65 clear m 
66 p = 1; 
67 was_crossover = 0; 
68 was_mutation = 0; 
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69 for i = 1 : N 
70 % With 90 % probability perform crossover 
71 if rand(1) < 0.9 
72      child_1 = []; 
73      child_2 = []; 
74       parent_1 = round(N*rand(1)); 
75     if parent_1 < 1 
76        parent_1 = 1; 
77     End 
78     % Select the second parent 
79        parent_2 = round(N*rand(1)); 
80     if parent_2 < 1 
81      parent_2 = 1 
82     End 
83       while       

isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:)) 
84     parent_2 = round(N*rand(1)); 
85    if parent_2 < 1 
86   parent_2 = 1; 
87     End 
88    End 
89      parent_1 = parent_chromosome(parent_1,:); 
90      parent_2 = parent_chromosome(parent_2,:)     
91     
92    for j = 1 :  
93       u(j) = rand(1); 
94    if u(j) <= 0.5 
95       bq(j) = (2*u(j))^(1/(mu+1));  
96 else 
97    bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1)); 
98  End 
99 % Generate the jth element of first child 
100 child_1(j) = ... 
101 0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j)); 
102 % Generate the jth element of second child 
103 child_2(j) = ... 
104 0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j)); 
105 if child_1(j) > u_limit(j) 
106 child_1(j) = u_limit(j); 
107 elseif child_1(j) < l_limit(j) 
108 child_1(j) = l_limit(j); 
109 end 
110 if child_2(j) > u_limit(j) 
111 child_2(j) = u_limit(j); 
112 elseif child_2(j) < l_limit(j) 
113 child_2(j) = l_limit(j) 
114 end 
115 end 
116 peakd=0; 
117 rmsd=0; 
118 [peakd,rmsd]=fitness2(child_1(:,1),child_1(:,2),child_1(:,3),child_1(:,

4)); 
119 child_1(:,V + 1: M + V) = [peakd, rmsd]; 
120 peakd=0; 
121 rmsd=0; 
122 [peakd,rmsd]=fitness2(child_2(:,1),child_2(:,2),child_2(:,3),child_2(:,

4)); 
123 child_2(:,V + 1: M + V) =  [peakd, rmsd]; 
124 was_crossover = 1; 
125 was_mutation = 0; 
126 Else 
127 % Select at random the parent 
128 parent_3 = round(N*rand(1)); 
129 if parent_3 < 1 
130 parent_3 = 1; 
131 end 
132 child_3 = parent_chromosome(parent_3,:); 
133 for j = 1 : V 
134 r(j) = rand(1); 
135 if r(j) < 0.5 
136 delta(j) = (2*r(j))^(1/(mum+1)) - 1; 
137 else 
138 delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1)); 
139 end 
140 % Generate the corresponding child element. 
141 child_3(j) = child_3(j) + delta(j); 
142 % space. 
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143 if child_3(j) > u_limit(j) 
144 child_3(j) = u_limit(j); 
145 elseif child_3(j) < l_limit(j) 
146 child_3(j) = l_limit(j); 
147 end 
148 end 
149 peakd=0; 
150 rmsd=0; 
151 [peakd,rmsd]=fitness2(child_3(:,1),child_3(:,2),child_3(:,3),c  

hild_3(:,4)); 
152 child_3(:,V + 1: M + V) = [peakd, rmsd]; 
153 % Set the mutation flag 
154 was_mutation = 1; 
155 was_crossover = 0; 
156 end 
157 if was_crossover 
158 child(p,:) = child_1; 
159 child(p+1,:) = child_2; 
160 was_cossover = 0; 
161 p = p + 2; 
162 elseif was_mutation 
163 child(p,:) = child_3(1,1 : M + V); 
164 was_mutation = 0; 
165 p = p + 1; 
166 end 
167 end 
168 f = child; 
169 front = 1; 
170 F(front).f = []; 
171 individual = []; 
172 function f = tournament_selection(chromosome, pool_size, tour_size) 
173 [pop, variables] = size(chromosome); 
174 rank = variables - 1; 
175 distance = variables; 
176 for i = 1 : pool_size 
177 % Select n individuals at random, where n = tour_size 
178 for j = 1 : tour_size 
179 % Select an individual at random 
180 candidate(j) = round(pop*rand(1)); 
181 % Make sure that the array starts from one.  
182 if candidate(j) = =  
183 candidate(j) = 1; 
184 End 
185 if j > 1 
186 % Make sure that same candidate is not choosen. 
187 while ~isempty(find(candidate(1 : j - 1) == candidate(j))) 
188 candidate(j) = round(pop*rand(1)); 
189 if candidate(j) == vc0 
190 candidate(j) = 1 
191 end 
192 end 
193 end 
194 end 
195 for j = 1 : tour_size 
196 c_obj_rank(j) = chromosome(candidate(j),rank); 
197 c_obj_distance(j) = chromosome(candidate(j),distance); 
198 end 
199 % Find the candidate with the least rank 
200 min_candidate = ... 
201 find(c_obj_rank == min(c_obj_rank)); 
202 if length(min_candidate) ~= 1 
203 max_candidate = ... 
204 find(c_obj_distance(min_candidate)==max(c_obj_distance(min_candidate)))

; 
205 if length(max_candidate) ~= 1 
206 max_candidate = max_candidate(1); 
207 end 
208 (i,:) = chromosome(candidate(min_candidate(max_candidate)),:); 
209 Else 
210 % Add the selected individual to the mating pool 
211 f(i,:) = chromosome(candidate(min_candidate(1)),:); 
212 end 
213 end 
214 for i = 1 : N 
215 individual(i).n = 0; 
216 individual(i).p = []; 
217 for j = 1 : N 
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218 dom_less = 0; 
219 dom_equal = 0; 
220 dom_more = 0; 
221 for k = 1 : M 
222 if (x(i,V + k) < x(j,V + k)) 
223 dom_less = dom_less + 1; 
224 elseif (x(i,V + k) == x(j,V + k)) 
225 dom_equal = dom_equal + 1; 
226 else 
227 dom_more = dom_more + 1; 
228 end 
229 end 
230 if dom_less == 0 && dom_equal ~= M 
231 individual(i).n = individual(i).n + 1; 
232 elseif dom_more == 0 && dom_equal ~= M 
233 individual(i).p = [individual(i).p j] 
234 end 
235 end    
236 if individual(i).n ==  
237 x(i,M + V + 1) = 1; 
238 F(front).f = [F(front).f i]; 
239 end 
240 end 
241 % Find the subsequent fronts 
242 while ~isempty(F(front).f) 
243 Q = []; 
244 for i = 1 : length(F(front).f) 
245 if ~isempty(individual(F(front).f(i)).p) 
246 for j = 1 : length(individual(F(front).f(i)).p) 
247 individual(individual(F(front).f(i)).p(j)).n 
248 individual(individual(F(front).f(i)).p(j)).n - 1; 
249 if individual(individual(F(front).f(i)).p(j)).n == 
250 x(individual(F(front).f(i)).p(j),M + V + 1) = ... 
251 front + 1; 
252 Q = [Q individual(F(front).f(i)).p(j)]; 
253 End 
254 End 
255 end 
256 end 
257 front =  front + 1; 
258 F(front).f = Q; 
259 end 
260 [temp,index_of_fronts] = sort(x(:,M + V + 1)); 
261 for i = 1 : length(index_of_fronts) 
262 sorted_based_on_front(i,:) = x(index_of_fronts(i),:); 
263 end 
264 current_index = 0; 
265 for front = 1 : (length(F) - 1) 
266 %    objective = []; 
267 distance = 0; 
268 y = []; 
269 previous_index = current_index + 1; 
270 for i = 1 : length(F(front).f) 
271 y(i,:) = sorted_based_on_front(current_index + i,:); 
272 end 
273 current_index = current_index + i; 
274 % Sort each individual based on the objective 
275 sorted_based_on_objective = []; 
276 for i = 1 : M 
277 [sorted_based_on_objective, index_of_objectives] = ... 
278 sort(y(:,V + i)); 
279 sorted_based_on_objective = []; 
280 for j = 1 : length(index_of_objectives) 
281 sorted_based_on_objective(j,:) = y(index_of_objectives(j),:); 
282 end 
283 f_max = ... 
284 sorted_based_on_objective(length(index_of_objectives), V + i 
285 f_min = sorted_based_on_objective(1, V + i); 
286 y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i 
287  Inf; 
288 y(index_of_objectives(1),M + V + 1 + i) = Inf; 
289 for j = 2 : length(index_of_objectives) – 1 
290 next_obj  = sorted_based_on_objective(j + 1,V + i); 
291 previous_obj  = sorted_based_on_objective(j - 1,V + i); 
292 if (f_max - f_min == 0) 
293 y(index_of_objectives(j),M + V + 1 + i) = Inf 
294 else 



62 

 

295 y(index_of_objectives(j),M + V + 1 + i) = ... 
296 (next_obj - previous_obj)/(f_max - f_min); 
297 End 
298 end 
299 end 
300 distance = []; 
301 distance(:,1) = zeros(length(F(front).f),1); 
302 for i = 1 : M 
303 distance(:,1) = distance(:,1) + y(:,M + V + 1 + i); 
304 end 
305 y(:,M + V + 2) = distance; 
306 y = y(:,1 : M + V + 2); 
307 z(previous_index:current_index,:) = y; 
308 end 
309 f = z(); 
310 mu = 20; 
311 mum = 20; 
312 offspring_chromosome = ...  
313 genetic_operator(parent_chromosome, ...  
314 M, V, mu, mum, min_range, max_range); 
315 [main_pop,temp] = size(chromosome); 
316 [offspring_pop,temp] = size(offspring_chromosome); 
317 % temp is a dummy variable. 
318 clear temp 
319 intermediate_chromosome(1:main_pop,:) = chromosome; 
320 intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : 

M+V) = ...offspring_chromosome; 
321 intermediate_chromosome = ... 
322 non_domination_sort_mod(intermediate_chromosome, M, V); 
323 chromosome = replace_chromosome(intermediate_chromosome, M, V, pop); 
324 if ~mod(i,100) 
325 clc 
326 fprintf('%d generations completed\n',i); 
327 end 
328 end 
329 save solution.txt chromosome -ASCII 
330 if M == 2 
331 plot(chromosome(:,V + 1),chromosome(:,V + 2),'*'); 
332 elseif M ==3 
333 plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*'); 
334 end 
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