

Multi Objective Optimization of Control Parameters

for Auto-Steering of Off-Road Vehicles

Hamed Mahdizadeh

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

March 2014

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree Master of

Science in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Mehmet Bodur

 Supervisor

Examining Committee

1. Asst. Prof. Dr. Adnan Acan

2. Asst. Prof. Dr. Mehmet Bodur

3. Asst. Prof. Dr. Ahmet Ünveren

http://cmpe.emu.edu.tr/unveren/
http://cmpe.emu.edu.tr/unveren/

iii

ABSTRACT

In this thesis, the lateral controller parameters of an agricultural tractor vehicle were

optimized to reduce both the root mean square error (ERMS), and the peak error

(Epeak), by using two evolutionary multi-objective optimization algorithms. The

lateral controller of a tractor provides tracking of a desired path with minimum

lateral error, which enhances the efficiency of agricultural plantation since many

processes in agriculture require tracking a desired path.

The evolutionary multi-objective optimization algorithms: NSGA-II and MODE are

commonly used search algorithms to find the Pareto-front of the optimal solutions

for multiple fitness functions. In parameter optimization of the lateral controller, two

fitness functions, ERMS and Epeak, were evaluated along a predefined reference path of

tracking through the simulation of the tractor motion in an agricultural field.

Results of the optimization by both methods supported each other closely, and the

optimization reduced the error figures down to 0.0016 m Epeak, and 0.0004 m ERMS.

The obtained Pareto-front can be used to compromise between the Epeak and ERMS in

setting the controller parameters best way for the conditions of the application.

Keywords: NSGA-II - MODE - Lateral Error – Auto-Steering Control

iv

ÖZ

Bu tezde, otomatik sürüş denetimli bir tarım aracının sürüş denetleç parametreleri,

evrimsel çok-amaçlı optimizasyon algoritması kullanarak, hem hatanın karesinin

ortalamasının kökünu (ERMS) hem de hatanın tepe değerini azaltmak üzere optimize

edildi. Traktörün sürüş denetleci takip edilecek yolun en az yanal hata ile izlenmesini

sağlar. Tarımda takip edilecek bir yolun izlenmesini gerektiren bir çok süreç

bulunduğundan yanal hata azalınca tarımda ekim verimi de artar.

Çok amaçlı evrimsel optimizasyon algoritmaları olan NSGA-II ve MODE genellikle

birden fazla uygunluk fonksiyonlu problemler için optimum çözümlerdeki Pareto-

önü elde etmek için kullanılan arama algoritmalarıdır. Yanal denetim

parametrelerinin optimizasyonunda, uygunluk fonksiyonları olarak kullanılan rmse

ve tepe hata, traktörün önceden seçilmiş bir izlenecek yol boyunca simülasyonu

yoluyla elde edilmiştir.

Her iki yöntemle optimizasyon sonuçları birbirlerini yakından desteklemektedir.

Optimizasyon sonucu bulunan parametrelerden elde edilen yanal hatanın rmse değeri

0.0004 m’ye, tepe değeri 0.0016 m’ye kadar düşmüştür. Pareto-önden elde edilen

parametrelerden uygulama koşullarına bağlı olarak tepe ve rmse hatalar arasında en

iyi uzlaşma sağlayacak olanını kullanmak mümkündür.

Anahtar Kelimeler: NSGA-II - MODE - Yanal hata – Otomatik sürüş denetimi

v

ACKNOWLEDGMENT

I am very grateful for the completion of this thesis. At first, I thank God for giving

me the strength and potential to continue, guidance and opportunity to pursue the

present study up to a concluding level. Secondly, my immense gratitude goes to my

family for growing the science passion in sacrifices as well as their encouragement

and me even when I almost gave up.

I want to thank some important people without whom I would not have been able to

complete this research work. Firstly, my supervisors: Asst. Prof. Dr. Mehmet Bodur,

for his professional guidance and time. Secondly, my profound appreciation goes to

those who helped me in one way or the other to contribute great ideas and advices

especially my classmates and close friends for without them, this study would not be

possible.

Finally, my all appreciation also goes to my darling friend, Paniz for her advice, time

and support. I must say you are a good friend indeed.

vi

DEDICATION

To My Family

vii

1 TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

ACKNOWLEDGMENT .. v

DEDICATION .. vi

LIST OF FIGURES .. xi

LIST OF TABLES ... xii

LIST OF ABBREVIATIONS ... xiii

1 INTRODUCTION ... 1

2 DLARP AS AUTO STEER CONTROL OF A TRACTOR 5

2.1 Lateral Control of a Tractor ... 5

2.1.1 Non-Holonomic Tangential Motion and Side Slip Motion of a Tractor.. 5

2.1.2 Fundamental Laws and Constraints of Motion for Dynamic Simulation 6

2.2 Lateral Control Law of Auto-Steerring Tractor ... 7

2.2.1 Peak and RMS Lateral Displacement Errors ... 8

2.2.2 Desired Test Path of the Simulations ... 9

2.2.3 Look-ahead Reference Point Control ... 10

2.3 Evaluation of the Fitness Functions ... 12

3 NON-DOMINATED SORTING GENETIC ALGORITHM-II 13

3.1 Evolutionary Optimization ... 13

3.1.1 Single-Objective Optimization .. 13

viii

3.1.2 Evolutionary Optimization Algorithms ... 14

3.1.3 Crossover, Mutation, and Selection Operators 14

3.1.4 Genetic Algorithm ... 16

3.1.5 Multi Objective Optimization .. 16

3.1.6 Pareto Optimal Solutions ... 17

3.1.7 Pareto Front of a Multi-Objective Problem ... 17

3.1.8 Non-dominated Sorting Genetic Algorithm (NSGA) 18

3.1.9 Dominance Rank of Individuals .. 18

3.2 NSGA-II Algorithm ... 18

3.2.1 Initialization of Population of Chromosomes .. 20

3.2.2 Selection of Parents to Generate Child Population 21

3.2.3 Simulated Binary Crossover (SBX) ... 21

3.2.4 Polynomial Mutation ... 23

3.2.5 Next Generation ... 23

3.3 Application of NSGA-II for Controller Parameters 23

3.3.1 Initialization of the Population ... 24

3.3.2 Binary Crossover ... 25

3.3.3 Polynomial Mutation ... 25

3.3.4 Selection ... 26

3.3.5 Iteration of Generations ... 26

3.4 Summary .. 27

ix

4 MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION 28

4.1 Differential Evolution .. 28

4.2 Multi-Objective Optimization Differential Evolution 28

4.2.1 Population .. 29

4.2.2 Rank and Crowding Distance Calculation ... 29

4.2.3 DE Mutation ... 30

4.2.4 DE Crossover ... 30

4.2.5 Selection ... 30

4.3 Application of MODE to search Pareto Front of Controller 30

4.3.1 Structure of the Chromosomes ... 31

4.3.2 Initialization of the Population ... 31

4.4 Mutation ... 32

4.5 Crossover ... 32

4.6 Selection ... 33

4.7 Summary .. 34

5 RESULTS AND DISCUSSIONS .. 35

5.1 Multi Objective Nature of Problem ... 35

5.2 NSGA-II and MODE Settings ... 36

5.3 Results with Population Size 100 after 300 and 1000 Generations 36

5.4 Search in a Narrower Solution Space .. 40

5.5 Results of Population size 100 with 1000 Generations.............................. 41

x

5.6 Effect of Pareto Optimal on the Lateral Error along the Path 43

5.7 Summary .. 45

6 CONCLUSIONS .. 46

6.1 Future works .. 47

REFERENCE ... 48

xi

LIST OF FIGURES

Figure 1: Non-holonomic Motion of 4-wheel Tractor ... 6

Figure 2: Illustration of related variables of auto-steering control 11

Figure 3: Flowchart for NSGA-II [5] ... 20

Figure 4: Chromosome in Population .. 24

Figure 5: Pareto Front for NSGA-II after 300 Generations 26

Figure 6: Pareto Front for NSGA-II after 1000 Generations 27

Figure 7: MODE Flowchart [7] ... 29

Figure 8: Pareto Front by MODE after 300 Generations ... 33

Figure 9: Pareto Front in MODE after 1000 iteration of Generations 34

Figure 10: Pareto Front in NSGA-II and MODE after 300 Generations 37

Figure 11: Pareto Front in NSGA-II and MODE after 1000 Generation................... 38

Figure 12: Motion of the Tractor Desire Reference Path .. 39

Figure 13: Lateral Error of the Tractor along the Reference Path 40

Figure 14: Pareto Front in NSGA-II and MODE with 300 Generations 41

Figure 15: Pareto Front for MODE and NSGA-II for 1000 Generations 42

Figure 16: Motion of the Tractor and the Desired Reference Path 43

Figure 17: Lateral Error of the Tractor along the Reference Path 44

xii

LIST OF TABLES

Table 1: Initialized Population and Evaluate Objective... 25

Table 2: Initialized Population and Evaluate Objective... 32

Table 3: Controller Parameters for Pareto Optimal Points .. 37

Table 4: Controller Parameters for Pareto Optimal Points .. 39

Table 5: Controller Parameters for Pareto Optimal Points by MODE 41

Table 6: Controller Parameters for Pareto Optimal Points .. 43

xiii

LIST OF ABBREVIATIONS

NSGA-II: Non-Domination sorting Genetic Algorithm

MODE: Multi Objective Differential Evolution

RMSE: Root Mean Square Error

1

 Chapter 1

1 INTRODUCTION

Automation and introduction of robots in industrial and agricultural production are

typical demands of the contemporary industrialization. Consequently, the dynamic

control of robots has been an important research field in systems control and artificial

intelligence areas [1]. The tuning of controller parameters has been studied using

various approaches including adaptive [2], and evolutionary search methods [3].

Modernization and automation of agricultural processes are necessary to satisfy the

qualitative and quantitative market demands of the increased population. Automation

of farming tasks on a field requires incorporation of many technologies. Energy

savings by agricultural automation may enhance production efficiency, which can

result in remarkable financial benefits. The efficiency of the agricultural production

depends mainly on the terrain properties, surrounding environment conditions, and

the precision of the farming machines, including the path tracking accuracy of the

agricultural machines. The high lateral error at the curvature transitions is a common

problem in path tracking control systems of existing autonomous agricultural

machine technology. The lateral tracking error of auto-steering tractors, which is an

important factor on efficiency of the automated agriculture, has two main

components, the peak error, and the root-mean-square error, along the path. Among

the auto-steering lateral error control systems, the double look-ahead reference point

2

(DLARP) controller provides the best results provided their controller settings are

optimal [4].

The main topic of this thesis is to obtain the optimal controller parameters of a

DLARP controller by means of evolutionary optimization methods. The tracking

process has mainly two kinds of independent lateral errors: peak and rmse. A multi-

objective optimization method is necessary to minimize these two independent errors

simultaneously [4].

The search of a set of solutions for a multi-input fitness function by testing and

evolving generations of population forms an evolutionary search algorithm. The

evolutionary algorithms are considered an alternative to solve difficult optimization

problems, relied on mainly genetic algorithms and evolutionary strategies. Among

many evolutionary algorithms, this study has focused on differential evolution (DE)

and genetic algorithms.

Darwin’s evolution theory together with the advanced knowledge of genetics

explains the steady change of species to evolve in the direction of fitness to the

natural conditions of the life by three mechanisms of the chromosomes in a

population: the mutation of a gene, the crossover of the genes, and the selection of

genes for reproduction. Genetic algorithms are inspired from this theory to search the

optimum solution of a mathematical function to minimize a cost function which is

also called an objective function, or a fitness function. An evolutionary algorithm

starts with a population of chromosomes, which corresponds the parameters of

candidate-solutions. It selects a number of chromosomes according to their fitness

scores as parents. It uses a kind of mutation and crossover on the parent

3

chromosomes to get the child chromosomes that forms the population of the next-

generation. The algorithm needs several generations to reduce the fitness function to

a satisfactory level using crossover, mutation, and selection operators [15].

The NSGA-II algorithm is non-dominated sorting genetic algorithm. It is a genetic

algorithm modified for deployment of the solutions using multiple objective

optimizations function. The algorithm uses an evolutionary process to develop next

generations by evolutionary operators including selection by multiple fitness

functions, genetic crossover, and genetic mutation [5].

The differential evolution (DE) algorithm uses a simple mutation operator based on

differences between pairs of solutions with the aim of finding a search direction

based on the repartition of solutions in the current population. DE also utilizes a

steady-state-like replacement mechanism, where the newly generated offspring

competes only against its corresponding parent and replaces it if the offspring has a

higher fitness value. DE uses similar computational steps of typical standard

evolutionary algorithm. The DE-variants perturb the chromosomes in the current-

generation population with the scaled differences of randomly selected and distinct

population members, without needing the probability distribution of the population

while generating the offspring population [7].

The next chapter describes the dynamics of an auto-steered tractor and its lateral

DLARP control unit, which is modelled to simulate the motion of the tractor along a

typical desired path for the evaluation of the peak and the rmse value of the lateral

error along that desired path as the two fitness functions of the evolutionary

optimization processes. The third and fifth chapters introduce NSGA-II and MODE

4

algorithms on two simple examples. The fourth and sixth chapters display the results

of NSGA-II and MODE on the optimization of the DLARP controller parameters.

The last chapter concludes the overall results of the thesis.

The third chapter explains NSGA-II and its application to obtain the pareto-front of

the steering controller settings. The forth chapter explains MODE to determine the

Pareto-front of the steering control parameters to reduce booth peak and RMS errors.

The fifth chapter contains a discussion about the effect of Pareto-optimal solution on

the lateral error of the tractor. The sixth chapter contains a conclusion of the thesis.

5

Chapter 2

2 DLARP AS AUTO STEER CONTROL OF A

TRACTOR

2.1 Lateral Control of a Tractor

An agricultural tractor mostly steered along a predefined reference trajectories.

Driving the tractor along these trajectories is a tedious task, and manual driving

mostly results in considerable deviation from these desired reference trajectories. The

driving task is accomplished automatically using a lateral controller that decides on

the steering angle of the front wheels of a typical four wheel tractor. At a typical 8

m/s speed, a manually driven tractor may typically have lateral error around 0.2 m in

average while tracking a line, and up to 1.2 m peak error is easily observable

especially at the transients of the curvatures. For automatic steering of the tractors,

the best performing lateral control method in the literature is obtained by DLARP,

double look-ahead reference point control law [4].

A four wheel vehicle with front wheel steering moves tangential to the rear and front

tyres if the friction forces on the tyres stops sidewise slip movements. But the soil is

not a solid ground therefore slip and skid is considerably large for agricultural

applications [4].

2.1.1 Non-Holonomic Tangential Motion and Side Slip Motion of a Tractor

A typical four wheel tractor on a solid ground is expected to move tangential to the

rear and front tyre directions. They are equipped with Ackerman type steering

mechanism that directs the front wheels to a desired steering angle  within the upper

6

and lower bounds of the mechanism. The kinematic motion of the tractor is called

non-holonomic because of this tangential motion constraint. However, a tractor on

the typical agricultural soil makes considerable amount of sidewise slip motion

together with the translational skid motion. Thus, a tractor floats on the soil surface

because of lateral forces on the tyres while it moves forward tangential to the tyres

[4]. The motion of the tractor is mostly modelled by shifting left and right tyres on

the central axis to simplify the tractor dynamics to a bicycle as seen in Figure 1.

Figure 1: Non-holonomic Motion of 4-wheel Tractor

with Ackermann Steering Mechanism while turning about the center ‘o’. Dashed

figure is bicycle representation of the tractor.

2.1.2 Fundamental Laws and Constraints of Motion for Dynamic Simulation

The motion of a bicycle-tractor on the loose soil surface may be modelled

considering the following laws and constraints: a) Newton’s law of acceleration that

explains the relation between the force on a body and the linear acceleration of the

body on the direction of the force, b) Euler’s law of angular acceleration that

determines the direction of the motion as a result of torque on the tractor body, c)

tangential constraints of holonomic motion that relates the steering direction to the

7

side slip forces on the tyres and results in change of direction of the tractors motion,

d) the random effect of the soil clods on the side slip forces that gives a random

disturbance to the direction of motion. All of these forces are formulated in [4] for

the successful simulation of motion of an agricultural machine by the MatLab codes

in Appendix 1 [4].

In addition to the coding of the equation of motion, the simulation of the motion of

an auto-steering tractor requires two main components: a desired trajectory which is

described by a sequence of points in a plane, and a simulation of a control law that

governs the steering angle as a function of the states of the tractor and the observed

deviations from the desired path. There are commonly used desired test paths to test

the performance of the system that contains typical common patterns of tractor paths

in an agricultural field, such as a circular section between two lines. The control law

DLARP is known as one of the most successful control laws to reduce the lateral

deviations from the desired path [4].

2.2 Lateral Control Law of Auto-Steerring Tractor

The aim of an auto-steering control law is to keep the tractor on the desired reference

trajectory with minimum deviation from the path. The deviation from the path at a

given time is measured by the distance dN from the centre of gravity of the tractor to

the nearest point on the reference path. This distance is called the lateral

displacement error, the lateral error, or shortly error. The quality of an auto-steering

control law may be determined by measuring this error along a typical desired

reference trajectory that contains commonly used components of desired path

sections for a typical agricultural activity. These typical desired trajectories are called

test trajectory for performance measurement of the control law [4].

8

Along with the lateral displacement error, the directional displacement error is also

an important parameter considering the control of the tractor motion. However,

directional error has negligible effect compared to the effect of the lateral error on

the agricultural product efficiency [1],[4].

2.2.1 Peak and RMS Lateral Displacement Errors

The peak error, Epeak, of the tractor is the maximum absolute lateral displacement

along the test path. It is an important performance criterion for the performance of

the tracking control since a large peak error means a large deviation from the test

path. The peak error occurs especially when the tractor is taking the corners or

making U-turns. The advanced adaptive control laws make their peak error

especially at the points of curvature transition, until the adaptive law reduce the error

to the minimum level right after the curvature is changed [1],[4].

If the motion of the tractor is stable, along the linear or circular parts of the test path,

any deviation from the path converges asymptotically to zero. A good measure of the

performance is the root of the mean of the squared error, shortly abbreviated by

RMSE and shown by the symbol ERMS.

 Epeak = 0max (())eT
Nt d t (1)

 ERMS=   2

0

1
()

eT

Nt
e

d t dt
T  . (2)

In a computer simulation, peak and RMSE can be easily calculated using N samples

of dN which are observed periodically with time steps T=Te/N.

9

 Epeak= 1max (())N
n Nd n (3)

 ERMS= 2

1

1
(())

N
Nn

d n
N  (4)

Both Epeak and ERMS are non-negative real numbers determined by the calculation of

the lateral deviations dN of the tractor along a desired reference test path [4].

2.2.2 Desired Test Path of the Simulations

The desired reference test path, shortly the desired test path or desired path is

represented by a sequence of coordinates which shall be tracked by the auto-steered

tractor. In Appendix 1, the program “pathmaker.m” generates a typical desired path

for the simulation. In the coding, the first line determines the arguments of the

pathmaker function. The arguments x0 and y0 are the coordinates of the start point of

the path, dt is the duration of timesteps of the points on the path, speed is the forward

speed of the tractor, firstlength is the length of the first linear section that goes along

x coordinate, radius is the radius of the u-turn, and lastlength is the lenght of the

linear section after the u-turn. The second line gives a typical example for the

arguments, which is employed to generate all desired paths of the simulation runs in

this thesis. Lines 4-7 of the code opens a file named pathdef.m and puts the headings

of the columns in the file. Lines 8-11 generate the points along the first linear section

of the path. Lines 12-16 generate the u-turn of the path as a 180 degrees semi-

circular section. Lines 17-20 generate the linear part after the u-turn. Lines 21-23

terminate the path matrix in pathdef.m, and finally close the file pathdef.m, which

returns the generated matrix of path to the simulation code with the name path. The

matrix path contains around 6700 rows of vectors. Each row is made of {s, x, y, a, i},

where s is the curvilinear distance of the vector from the start point, x and y are the

10

positional coordinates x and y, a is the approach angle of the path in radians, and i is

the identification number of the vector starting from 1 for the first row [1],[4].

2.2.3 Look-ahead Reference Point Control

The look-ahead reference point control law proposes a control rule which calculates

the steering angle des by four terms based on the nearest (normal) point PN on the

path, and two look-ahead reference points 1LP and 2LP .

 1 1 2 2des d N N NK d K K K       (5)

where, dN is the lateral deviation of the tractor to the path which is measured by the

distance from PN to the centre-of-gravity (CoG) of the tractor; N, 1 and 2 are

angular deviations between the heading angles of the tractor and the path points PN,

PL1 and PL2; { N 1 2, , ,dK K K K } are controller coefficients, which are the control

parameters to be searched to reduce Nd to a reasonably low level along the desired

test path. Moreover, the points PL1 and PL2 are at the distances L1 and L2 from the

point PN as seen in Figure 2. The four controller coefficients together with the two

look-ahead distances form the parameter set of the lateral control [1].

11

Figure 2: Illustration of related variables of auto-steering control

Although there are total six controller parameters in the control law, there are two

constraints to be satisfied by the controller for a successful tracking along a line and

along a circle. The first constraint is related to the stability along a linear path, and it

specifies that KN+K1+K2=KNLine. This constraint is easy to verify analytically since

N=1=2 while the desired path is a line. Its value is obtained along a linear test path

as KNLine= 5.6. The second constraint is related to the compensation of the centrifugal

forces along the circular movements. It specifies that KLCirc = K1 L1 + K2 L2 shall be

constant to compensate the centrifugal effect of circumflex on a circular path. The

value KLCirc =2.28 is easily obtained by testing the tractor motion along the circular

section of the test path. These constraints are employed to determine i) K1 from K2,

L1, and L2 and then ii) KN from K1 and K2 using

 K1= (KLCircK2 L2)/L1; and KN=KNLineK1K2. (6)

12

Consecutively, introducing the constants {KLCirc, KNLine} reduces the number of

independent parameters to four, namely {KD, K2, L1, L2} [1],[2].

2.3 Evaluation of the Fitness Functions

The MatLab code of the fitness function is listed in the Appendix 1 with the file

name fitness2.m. In this code, the function is called by six parameters, corresponding

to {KN, KD, K1, K2, L1, and L2}, and it returns two values, Epeak, and ERMS. Lines 3 to

6 contain the settings for path, and permission of three kinds of plots. Lines 7 to 19

initialize the coefficients for the simulation of the motion of the tractor, which is

described by Bevly and Derrick as described in [4]. Lines 20 and 21 are related to the

linear and circular tests, and obsolete for the search of the best parameters. Lines 22

to 26 contain the typical values of control parameters, and the linear and circular path

constraints. Lines 27 to 37 initialize the simulation variables of the test to set the

tractor to the initial point. Line 38 is the start of the simulation loop. Lines 39 to 45

update the time, and several Cartesian and angular coordinates related to the motion

of tractor. Lines 46 to 57 search the normal point dN on the desired path and finds

steer angle. Lines 58 to 70 calculate the position of look ahead points and then find

angular deviation for each point. Line 73 applies control law to the tractor once at

every 50ms period. Line 78 provides shortcut to quit if the controller settings are

unsuccessful. Lines 81 to 84 simulate the hydraulic servo-actuator of the tractor.

Lines 86 to 102 contain the equation of motion for local longitudinal and lateral

acceleration and velocities of the tractor. Lines 103 to 105 integrate the velocities to

the position of the tractor in absolute coordinate frame. Epeak and ERMS are calculated

at lines 116 and 117. Lines 112 to 128 contain the codes of plots [2],[4].

13

Chapter 3

3 NON-DOMINATED SORTING GENETIC

ALGORITHM-II

3.1 Evolutionary Optimization

Evolutionary optimization algorithms have been inspired from Darwin’s Evolution

Theory and the Genetics Science that explains the evolution of the population to have

higher survival rate with every new generation. The first idea started with Genetic

Algorithms (GA) to search optimum solutions for general single-objective

optimization problems.

3.1.1 Single-Objective Optimization

A single-objective optimization problem is defined as a search of solution x that

minimize a scalar f(x) satisfying the constraints gi(x)0 and hi(x)=0 in the universe of

solutions x . In many applications, the constraints g and h may not exist. 

In general case of single-objective optimization, the vector of decision variables

x=(x1, x2, x3,…, xn)
T
 is n-dimensional, and the function f(x) is a scalar from R

n
 to R.

The function f(x) may have a single minimum, or multiple minimum points. The

problem of searching global minimum of f(x) forms a single-objective global

minimum optimization problem.

14

3.1.2 Evolutionary Optimization Algorithms

In evolutionary optimization algorithms, an individual or a chromosome corresponds

to a vector x=(x1, x2, x3, …, xn)
T
 in the universe of solutions . Each of the

components of the solution vector is called a decision variable, or a gene.

Darwin’s concept of “Survival of the fittest” matches to score an individual by the

scalar value of f(x). Consequently, f(x) as a score is called an objective function, or a

fitness function.

The algorithm works iteratively on a population of candidate solutions, in other

terms population of individuals, which is simply a collection of chromosomes. Each

iteration is called a generation. The offspring population is generated from parent

population by a set of evolutionary operations inspired from nature, such as,

recombination, and mutation. A selection operator determines the population of the

next generation. A termination condition determines the end of the algorithm. The

termination condition of most algorithms is based on count of iterations, count of

fitness evaluation, or CPU time.

3.1.3 Crossover, Mutation, and Selection Operators

Mutation corresponds to simply random change of one of the decision variables of an

individual, or equivalently it corresponds to a random change of a gene in a

chromosome. The mutation operator generates an offspring individual from an

individual x=(x1, x2, x3, …, xn)
T
 by randomly changing at least one of the decision

variables.

Crossover generates offspring individuals by combining suitable parts of at least two

parent solutions. One of many existing crossover methods may be used depending on

15

the structure of the problem and its representation. In simplest form, single point

crossover requires randomly determination of the crossover point, where first part of

the parent is combined to the second part of another parent to form two offspring.

Crossover operation may generate a better offspring individual in fitness compared to

both parents by combining the contributive parts of the parents to an offspring. More

elaborated two-point crossover operator requires two randomly selected crossover

points to replace the inner part of the chromosomes of the two parents.

An evolutionary algorithm applies crossover and mutation operations on the current

population of the solutions to generate a higher number of offspring population

compared to the current population. The selection operator determines the

individuals that will take part in the population of the next generation. From many

selection methods, elitist selection takes the individuals with the best fitness values

into the next population.

Elitist selection has disadvantages such as easily locking to local optimums instead

of searching for global optimum. The tournament selection method selects the best of

the randomly selected set of individuals, allowing some of the less fit individuals into

the next generation. Similarly, to overcome the same problem, the fitness

proportionate selection method, also called roulette wheel method, uses the

probability pi=fi/(j=1…N fj) while selecting among N individuals.

16

3.1.4 Genetic Algorithm

A genetic algorithm is defined on a fitness function f(x), with solution universe

xR
n
, a parent population size pZ

+
, a larger offspring population size qZ

+
, the

evolutionary operators c: crossover operator, m: mutation operator, and s: selection

operator, and the termination condition  by the following structure:

start with t=0; and initial population P(0)={ x1, … , xp},

while(termination condition  not satisfied) do

 apply crossover to get offspring population: P’(t)=c(P(t)),

 apply mutation on the offspring population: P”(t)=m(P’(t)),

 select next population: P(t+1)=s(P(0),P”(0)),

 update iteration count: t=t+1,

 enddo.

The termination condition is mostly specified on number of generations.

3.1.5 Multi Objective Optimization

A multi-objective optimization problem is similar to single objective problem, but, it

is defined by a search of solutions x that minimize a multi-valued objective function

F(x) in the universe of solutions x . The problem of searching global minimum of

F(x) forms a multi-objective global minimum optimization problem.

Since F(x) is not scalar, the minimum of the objective function is not a scalar value.

There are many methods to deal with the multi-objective optimization problems,

such as converting multi-valued objectives to a scalar, for example, by introducing

some weighting factors. However, Vilfredo Pareto’s idea of Pareto-Optimality forms

a very common base to determine the Pareto-front of the multi objective optimization

problems.

17

3.1.6 Pareto Optimal Solutions

A point x*  is a weakly Pareto optimal if there is no x  that satisfies x*≠ x and

fi(x*)<fi(x), for i=1,…, k. That means, there is no other solution x which is better

than x* for any objectives of the multi-objective optimization problem. Furthermore,

A point x*  is a strict Pareto optimal if there is no x  that satisfies x*≠ x and

fi(x*) ≤ fi(x), for i=1,…, k. Accordingly, a solution is pareto-optimal if it is not-

dominated by any other solution in decision variable space. A pareto-optimal

solution is the best optimal solution with respect to all objectives, and, it cannot be

improved in any objective without worsening in another objective. Therefore, terms

non-dominated solution and Pareto-optimal refers exactly to the same concept.

3.1.7 Pareto Front of a Multi-Objective Problem

For a given multi-objective problem with the objective function F(x), and Pareto

optimal set P*, the Pareto front PF* is collection of all non-dominated vectors in the

objective function space, PF*= {u = F(x) | xP*}.

In other words, the values of objective functions related to each solution of a Pareto-

optimal set in objective space are called Pareto-front.

The Pareto-front of a problem has a significant importance in determination of the

best values for the decision variables since it directly displays the values of the

objective functions corresponding to the Pareto optimal. This thesis is focused on

obtaining the Pareto-front for the for the automatic steering controller parameters of

a tractor by evolutionary methods to minimize both its lateral peak and lateral RMS

error.

18

3.1.8 Non-dominated Sorting Genetic Algorithm (NSGA)

One of the commonly used popular multi-objective genetic algorithms is NSGA. It is

known as a very effective optimization algorithm, but, it has been generally criticized

for its computational complexity, lack of elitism and difficulty to set sharing

parameter values [9].

3.1.9 Dominance Rank of Individuals

In multi-objective evolutionary algorithms, the selection is based on the measures of

dominance, such as dominance rank, dominance count and dominance depth. The

dominance rank r of an individual x is the number of individuals that dominates x

plus 1. The dominance rank is used in selection operator of NSGA to converge the

population to a Pareto optimal rich set.

Although NSGA converges to a Pareto optimal rich population, there is no

mechanism to distribute the Pareto optimal solutions on the Pareto front

homogenously. This disadvantage of the algorithm is defeated in further developed

multi-objective evolutionary optimization algorithm, NSGA-II.

3.2 NSGA-II Algorithm

NSGA-II is improved from NSGA mainly in sorting method. Faster conversion rates

were obtained by elitism. In addition, the initialization of a sharing parameter is

eliminated from the algorithm. The diversity of Pareto optimal solutions in NSGA-II

is obtained using “crowding-distance” density estimation method [5].

Elitism is name of method, which copies a number of best chromosomes (or a few

best chromosomes) to new population, and uses other standard methods for selection

19

of the remaining. Elitism can very rapidly increase performance of GA, because it

prevents losing the best-found solution [5].

As shown in Figure 3, the population in initialized the population is sorted based on

non-domination into each front. Individuals are assigned fitness and rank values.

Non-dominated individuals are assigned rank one, and individuals dominated only by

one individual are assigned rank two. For each individual, crowding distance value is

calculated as a measure of closeness of individual to its neighbors. Binary

tournament method is applied to select parents from the population according to the

rank and crowding distance. Individuals of a smaller rank and those with higher

crowding distance are preferred with higher probability. Crossover and mutation

operators are applied on the parent population to generate offspring population. The

population with the current population and current offspring is sorted again based on

rank and distance, and only the best N individuals are selected for the next population

[5].

20

Figure 3: Flowchart for NSGA-II [5]

3.2.1 Initialization of Population of Chromosomes

Population is initialized by random values that are within the specified range. Each

chromosome consists of the decision variables. Moreover, the value of the objective

functions, rank and crowding distance information is added to the chromosome

vector but only the elements of the vector, which has the decision variables, are

operated upon to perform the genetic operations like crossover and mutation. The

fitness of population is sorted by using non-domination-sort. This returns two

columns for each individual, which are the rank and the crowding distance

corresponding to their position in the front they belong. At this stage the rank and the

Begin: initialize
population P and Q

(size 2N)

Report final population and

Stop

Evaluate objective

functions

Rank population Selection

Crossover

Mutation

Evaluate objective function

Combine parent and child population

Calculate Rank and Crowding dist.

Select Individuals for P and Q

Elitism

Termination

Condition
No

Yes

21

crowding distance for each chromosome is added to the chromosome vector for easy

of computation [9].

3.2.2 Selection of Parents to Generate Child Population

Selection operator sorts the individuals based on non-domination and with crowding

distance. The individuals are selected by using a binary tournament selection with

crowed-comparison-operator [10].

NSGA-II uses binary tournament selection. In binary tournament process, the

objective function of two randomly selected individuals is compared, and better one

is selected as a parent. It is repeatedly carried out for the pool size, which is the

number of parents to be selected. The tournament selection function has three major

arguments: chromosomes, pool and tour. The function uses only the information

from last two elements, the rank of domination and the crowding distance. Selection

is based on rank, and crowding distance. A lower rank and higher crowding distance

is the selection criteria [9].

3.2.3 Simulated Binary Crossover (SBX)

The simulated binary crossover is widely used in real valued genetic algorithms to

generate and select the children ci,k from the parents pi,k with a spread factor k 0

[8].

     kkkkk ppc ,2,1,1 11
2

1
  (7)

     kkkkk ppc ,2,1,2 11
2

1
  (8)

22

Children selected by this method have almost similar distribution, and similar search

power compared to the one-point crossover with a binary coded search. The

probability distribution of child solution is:

     kcP  1
2

1
 if 10   (9)

    
2

1
1

2

1




k

cP


 Otherwise , (10)

where  c is the distribution for crossover and the distribution can be obtained by

sampling randomly in (0, 1) [8].

SBX algorithm starts with a uniform random number u in interval (0,1). If u<0.5 then

 is calculated by

)1(

1

)2()(


 cuu
 , (11)

else, it is calculated by

1

1

)]1(2[

1
)(






cu

u


 . (12)

Higher c increases the probability of children closer to parents. Using , the

children are computed by (7) and (8).

23

3.2.4 Polynomial Mutation

The mutant gene of the child ck is obtained from the parent gene pk according to the

upper and lower bounds of the gene, and a random variation k.

   k

l

k

u

kkk pppc  (13)

Where pk
u
 and pk

l
 are the upper and lower bound on the parent gene, and k is

calculated from a polynomial distribution by using a random number in (0,1) interval

[8].

   12
1

1


m

krk

 , if rk<0.5 (14)

    1

1

121  mkk r  , if 5.0kr (15)

where m is mutation distribution index.

3.2.5 Next Generation

The current and new generations are combined as a solution pool. The solution pool

is sorted using non-dominated sorting algorithm and crowding distance methods.

Next generation is formed by choosing the members among the solution pool.

3.3 Application of NSGA-II for Controller Parameters

In this section, the searches of optimum control parameters of an automated farming

vehicle are conducted to track a predetermined path on a loose soil surface. In

optimizing the formulated problem, we require the minimization of both ERMS and

Epeak, which are measures of the lateral error of tracking on the linear and circular

24

paths. The problem has a multi-objective character and suitable for searching Pareto-

optimal surface by NSGA-II algorithm. As explained in Chapter 2, the lateral error

Epeak and ERMS depends on the controller settings KD, K2, L1, and L2. The

chromosomes of NSGA-II algorithm are composed of four genes, and four

attachments: the two objective functions f1=Epeak and f2=ERMS, R=rank and

CD=crowding distance.

3.3.1 Initialization of the Population

At the initialization phase of the NSGA-II algorithm the initial population size is set

to 100 chromosomes, and the crossover and mutation ratio of the algorithm were set

to 0.8 and 0.2. The genes of the chromosomes were generated randomly within the

boundaries (-5, 5). The fitness values of each chromosome are attached to the

chromosomes as seen in Figure 5.

 Figure 4: Chromosome in Population

The fitness values, the rank of domination, and the crowding distance of each

chromosome are attached to the chromosomes, and the selection process was carried

using these attached decision variables. The selected individuals were processed by

crossover and mutation procedures. Table 1 contains the first ten individuals from the

initialized population and their attached fitness values.

K2 L1 L2 Epeak ERMS KD

25

 Table 1: Initialized Population and Evaluated Objective

KD K2 L1 L2 f1=Epeak f2=ERMS

-3.1565 0.8315 1.5844 -0.919 0.0322 0.00921

1.3115 -1.9286 0.6983 3.868 0.0333 0.03570

0.9143 -2.0292 0.6954 -0.7162 0.0354 0.0088

-1.3897 -0.3658 0.9004 2.9311 0.0358 0.00576

0.3575 1.5155 -1.4868 -0.2155 0.0376 0.00126

2.3110 -0.6576 2.4121 -4.9363 0.0565 0.00187

-3.915 0.9298 -0.6848 0.9412 0.0630 0.00156

0.6294 -2.8116 -2.7464 0.8268 0.0741 0.00197

1.2647 -0.8049 -0.4431 4.6336 0.0808 0.03105

-0.4462 -2.9077 1.8057 2.6469 0.0300 0.00518

3.3.2 Binary Crossover

Binary crossover operator processed two selected parents and generated two

offspring. As an example, let the parents be crossed at a random gene marked by

superscripts (1) and (2):

p1= (-3.1565, 0.8315
(1)

, 1.5844, -0.919) and p2= (1.3115, -1.9286
(2)

, 0.6983, 3.868).

The offspring are composed of the parents by replacing the selected gene, i.e,

o1= (-3.1565, -1.9286
(2)

, 1.5844, -0.919), and o2= (1.3115, 0.8315
(1)

, 0.6983, 3.868).

This operation is carried for all genes of the selected parents with the probability that

is specified by the crossover ratio.

3.3.3 Polynomial Mutation

The mutation operator is applied on a randomly selected gene of the selected

offspring with a probability specified by mutation ratio. For example let the

underlined gene of offspring o1 be the randomly selected gene.

o1= (-3.1565, -1.9286
(2)

, 1.5844, -0.919).

The underlined gene is replaced by a random number in the bounds of that gene:

c1= (-3.1565, -1.9286
(2)

, 2.1473, -0.919).

26

3.3.4 Selection

Non-dominated sorting is carried out by sorting the chromosomes in their rank of

domination, and in each rank in their crowding distance. For this purpose, the rank

and crowding distance of each chromosome is calculated, and attached to the

chromosomes. By tournament selection, the chromosomes are selected starting from

the best-ranked (rank1) solutions. Selected chromosomes are placed in the archive.

Rank-2 and further rank solutions were selected with decreasing probabilities.

3.3.5 Iteration of Generations

The procedures described by 3.3.2 to 3.3.4 are carried iteratively to select the best

solutions into the archive. Figure 5 shows the Pareto-front after three hundred

generation.

 Figure 5: Pareto Front for NSGA-II after 300 Generations

Similarly, Figure 6 illustrates the best non-dominated solutions after one thousand

generations.

ERMS

Epeak

27

 Figure 6: Pareto Front for NSGA-II after 1000 Generations

3.4 Summary

In this chapter, we described NSGA-II algorithm, and applied the algorithm to get

the Pareto-front of the problem of lateral control of a tractor.

ERMS

Epeak

28

Chapter 4

4 MULTI-OBJECTIVE DIFFERENTIAL

EVOLUTION

4.1 Differential Evolution

Differential evolution (DE) is an evolutionary optimization method that searches

better solutions by random walk. Differential Evolution was introduced by Ken Price

and Rainer Storm, as a simple evolutionary algorithm that generates new

chromosome solutions by vector sum of three selected individuals of the population.

As shown in Figure 7 the algorithm has a greedy-like selection of child only if its

fitness is better compared to parents. DE often outperforms traditional evolutionary

algorithms in searching best solutions if the genes consist of only scalars. A variety

of DE operators was proposed for producing the next generation [14].

4.2 Multi-Objective Optimization Differential Evolution

The single objective DE algorithm cannot be applied directly for multi objective

problems because the selection criteria by better fitness cannot work in multi

objective case. In single objective, the offspring replace the parents when it is better.

In multi-objective case, the solutions that dominate the others are the best solutions

of the population, and therefore the offspring replace the parents if they dominate

parents. This procedure is repeated until the number of created offspring reach to the

population size [14].

29

4.2.1 Population

The initial population is started by random chromosomes. The fitness values of each

chromosome of the population is computed and attached to the chromosomes. Both

the chromosomes of the current population and new population are used to generate

next population by the mutation and binomial crossover operators.

Figure 7: MODE Flowchart [7]

4.2.2 Rank and Crowding Distance Calculation

The individuals are compared for domination in objective functions, and their rank is

assigned accordingly. Next, the Crowding-distance of the individuals are calculated

and attached to the chromosomes [7].

Fitness evaluation Start Initialization

DE Crossover

 DE Mutation

Fitness Evaluation and

selection

Termination

Condition

End

Yes

No

30

After ranking and Crowding-distance assignment, the selected Np individuals are

processed by DE operation, which is a sequence of DE mutation, crossover and

selection [7].

4.2.3 DE Mutation

The mutation operator selects randomly three individuals p1, p2, p3 of the population

as parent, and generates the new offspring o using the scale factor Fs [14].

1 2 3()i s i io p F p p   (16)

4.2.4 DE Crossover

DE crossover operation is applied on all genes of the mutant chromosome in a

random sequence with a crossover probability CR. For this purpose, for each gene, a

random value  is chosen in (0, 1). If both CR< and the mutant chromosome has

better rank than the parent, then mutant is taken as a child [14].

4.2.5 Selection

The elitist selection operator selects the chromosome for next generation by

comparing the rank and Crowding-distance of the children and parents. The

individuals with a lower rank and higher Crowding-distance are selected as the new

parent. The lowest rank individuals form the set of Pareto-optimal solutions [7].

4.3 Application of MODE to search Pareto Front of Controller

In this chapter, the search of optimum control parameters of an automated farming

vehicle planned to track a predetermined path on a loose soil surface. The motion of

the auto steered tractor is modeled and the test procedure of the system to measure

the lateral peak and RMS errors ıs explained in Chapter 2. MODE algorithm is

suitable in searching the Pareto optimal solutions, and graphically represents the

31

corresponding Pareto-front to pick the best solution depending on the preference of

the farming operator.

4.3.1 Structure of the Chromosomes

For MODE algorithm, each solution shall be expressed as a chromosome that

consists of an array of genes. The four independent controller coefficients, KD, K2,

L1, and L2 are the four scalar genes of a chromosome. Depending on the needs of the

operators, some values such as the values of objective (fitness) functions f1=Epeak and

f2=ERMS are attached to each chromosome.

4.3.2 Initialization of the Population

The population is initialized by homogeneously distributed random numbers in

interval (-5, 5). The selected crossover ratio and scale factor is CR=0.5 and F=0.5 as

given in typical examples of similar problems.

Lateral peak and RMS errors for each chromosome of the population is evaluated to

obtain the values of the objective functions. After evaluating their objective values,

the population is sorted by non-dominated sorting procedure as described in Section

3.3.3 for NSGA-II. Table 2 shows the first ten chromosomes of the initial population

and the values of two objective functions.

32

Table 2: Initialized Population and Evaluated Objective

KD K2 L1 L2 Epeak ERMS

-1.4834 3.3083 0.8526 0.4972 0.0253 0.00334

4.1719 -2.1416 2.5720 2.5373 0.0252 0.00702

-1.1955 0.6782 -4.2415 -4.4615 0.0210 0.00515

0.3080 2.7917 4.3417 0.7722 0.0474 0.00947

1.2338 -0.6938 -0.1452 0.9178 0.0819 0.00482

-0.7409 -0.7096 0.9967 -0.6944 0.0235 0.00459

1.9266 0.5422 -2.2066 -0.1770 0.0373 0.00738

-0.9930 1.9960 -4.7404 0.8693 0.0305 0.00345

0.8929 -0.6535 -0.0351 -0.3587 0.0344 0.00804

-2.7102 4.3734 -3.4762 3.2582 0.0224 0.00330

4.4 Mutation

Three parents, pi1, pi2 and pi3, of population are selected for mutation operator and

the mutant m is calculated by using the mutation scale factor F=0.5.

 1 2 3()i i im p F p p  

-1.4834 4.1719 -1.1955

3.3083 -2.1416 0.6782

0.8526 2.5720 -4.2415

0.4972 2.5373 -4.4615

m F

      
      
        
      
      
       

4.5 Crossover

Crossover operator acts with probability CR=0.5, by generating a random number 

in interval (0, 1), and comparing it to CR. If CR< then the parent is selected as

child. Otherwise, mutant is select as a child.

 c=
if

otherwise

p CR

m



33

4.6 Selection

For the selection, the objective functions of both parent and child are evaluated to get

their objective values (fitness). The elitist selection operation prefers the smaller rank

of domination and larger Crowding-distance for the next generation and pareto-front.

Figure 8 illustrates the best non-dominated solution set in the pareto-front for the

MODE problem after three hundred generation.

Figure 8: Pareto Front by MODE after 300 Generations

The Figure 9 illustrates the best non-domination solution set in the pareto-front for

the MODE problem for one thousand generation.

ERMS

Epeak

34

 Figure 9: Pareto Front in MODE after 1000 iteration of Generations

4.7 Summary

In this chapter, we have given a simple example to explain MODE and show on this

problem to create a small population to apply systematic mutation, crossover and

selection and to create next generation. After more and more iteration, it converges to

a set of non-dominated solution and starts to build up the Pareto front of the solution

space.

ERMS

Epeak

35

 Chapter 5

5 RESULTS AND DISCUSSIONS

5.1 Multi Objective Nature of Problem

The efficiency of the agricultural processes strongly depends on the terrain

properties, surrounding environment conditions, and the path tracking accuracy of

the automatic agricultural machines. The curvature transitions create common

problems in path tracking control systems resulting in lateral tracking deviation. The

lateral tracking error has two main components, the Epeak, and the root-mean-square

ERMS, along the path. The importance of the lateral error at the curvature transitions

was addressed by Lenain et al. (2006) and the controller parameters of a double look-

ahead reference point controller has been optimized to minimize both the Epeak and

the ERMS of an agricultural tractor manually by a multi stage steepest descent

optimization algorithm.

NSGAII and MODE are multi-objective evolutionary optimization algorithms, which

can find the pareto-optimal border of the solution space for a multi-objective

problem. In this study, the controller parameters of an agricultural tractor are

optimized using two multi objective optimization algorithms, NSGA-II and MODE

[2].

Both NSGA-II and MODE requires mainly two structural parameters, the population

size, and the number of generations to terminate the algorithm. The evolutionary

36

optimization algorithms used the fitness values, Epeak and ERMS, which were obtained

by the simulated runs of the tractor along a typical test-path. Tests were carried for a

set of structural parameters and the followings are observed from the results of these

test runs.

5.2 NSGA-II and MODE Settings

Those genes of the chromosome, KD, K2, L1, and L2 were bounded in interval (-5, 5)

and the population size is tested at 300 and 1000. The crossover and mutation

probability ratios in the NSGA-II for all cases are 0.8 for crossover and 0.2 for

mutation. In the MODE algorithm, the crossover is 0.5 and scale factor value is 0.5.

After a number of tests, we found that the best value for the DE scale factor is 0.5

and DE crossover ratio is 0.5, as it is given in examples.

In this group of runs, the populations of both algorithms were set to one hundred,

and, the number of generations was set to three hundred. Both algorithms were

started with random population interval KD = (-5, 5), K2 = (-5, 5), L1 = (-5, 5) and L2=

(-5, 5). For NSGAII the execution time takes 35 min. For MODE, it takes 40 min to

complete 300 generation.

5.3 Results with Population Size 100 after 300 and 1000 Generations

In Figure 10, the y-axis represents the ERMS and the x-axis represents the Epeak. Pareto

front of both NSGA-II and MODE are plotted in the same graph. The minimum Epeak

and the minimum ERMS obtained by NSGA-II are 0.0038m, and 0.0011m,

respectively. For the MODE, the minimum Epeak is 0.0025m, and the minimum ERMS

comes out 0.00077m. The large difference in the minimum errors of these algorithms

indicates that the population size and the number of generations shall be larger to get

better results. The pareto-optimal solutions of MODE are listed in Table 3.

37

 Figure 10: Pareto Front in NSGA-II and MODE after 300 Generations

 Table 3: Controller Parameters for Pareto Optimal Points

Pareto Optimal Solution Pareto Front

KD K2 L1 L2 Epeak ERMS

1.0981 2.16178 0.681764 -0.5935122 0.0029915 0.000772037

0.4169 2.31855 0.671671 -0.6032823 0.0025353 0.000774146

0.5624 2.29602 0.696577 -0.5679995 0.0030398 0.000714612

0.3833 1.93876 0.710725 -0.6242900 0.0030345 0.000766813

Figure 11 is obtained as a result of setting the populations of the algorithms both to

one hundred and the number of generations to one thousand. The algorithms started

with random population interval KD =(-5, 5), K2 =(-5, 5), L1 =(-5, 5) and L2 =(-5, 5).

In NSGAII, the crossover was 0.8 and mutation operation was 0.2. The

implementation time was 3:30 min. For MODE, the crossover factor fixed 0.5, and

the scaling factor fixed 0.5. The implementation time was 4 hour.

MODE

NSGA-II

Epeak

ERMS

38

In Figure 11, the pareto-front of NSGA-II and MODE are shown on the same plot.

The y-axis denotes the ERMS and the x-axis denotes the Epeak. The minimum Epeak

and, the minimum ERMS achieve by NSGA-II are 0.0031m, and 0.0013m,

respectively. From the MODE, the minimum Epeak is 0.0019m, and the minimum

ERMS comes out 0.00067. The large difference in the minimum error of these

algorithms, indicate that the population size and the number of generation shall be

larger to get better results.

Figure 11: Pareto Front in NSGA-II and MODE after 1000 Generation

Table 4 shows the controller parameters for pareto-optimal points after 1000

generations.

MODE

NSGA-II

ERMS

Epeak

39

 Table 4: Controller Parameters for Pareto Optimal Points

Pareto Optimal Solution Pareto Front

KD K2 L1 L2 Epeak ERMS

1 0.5544 3.9159 0.613971 -0.4458441 0.0019759 0.000613085

2 0.4561 3.8005 0.627220 -0.4444833 0.0020955 0.000609584

3 0.6897 3.7699 0.624200 -0.4395144 0.0022349 0.000594679

4 0.1473 3.4240 0.639277 -0.4690074 0.0019338 0.000674838

5 0.4965 3.9447 0.627356 -0.4307716 0.0021417 0.000605518

Figure 12 shows the resulting lateral deviation for a simulation along the desired

reference path using the Pareto-optimal solution #3 in the left plot. The right side is

the zoom to the maximum Epeak that occurred in the dashed small window. Figure 13

shows the lateral error dN of the tractor along the reference path.

Figure 12: Motion of the Tractor Desire Reference Path

Y

X

Y

X

40

 Figure 13: Lateral Error of the Tractor along the Reference Path

5.4 Search in a Narrower Solution Space

In this group of runs, the populations of both algorithms were set to one hundred,

and, the number of generations was set to one thousand. Both algorithms were started

with random population between KD = (1, 5), K2 = (1, 5), L1 = (-1, 1) and L2 = (-1,1).

In NSGA-II, the crossover was 0.8 and a mutation operation was 0.2 in searching the

optimal solutions. The performance time takes 35 min. For MODE, the crossover

factor is set to 0.5, the scaling factor is set to 0.5 in searching this solution, and it

takes 40 min.

In Figure 14, the Pareto-front of NSGA-II and MODE are shown on the same plot.

The y-axis represents the ERMS and the x-axis represents the Epeak. The minimum

Epeak and the minimum ERMS obtained by NSGA-II are 0.0035m, and 0.00067m,

respectively. For MODE, the minimum Epeak is 0.0021m, and the minimum ERMS

comes out 0.00054m. The large difference in the minimum errors of these algorithms

dN

Curvilinear Distance

41

indicates that the population size and the number of generations shall be larger to get

better results.

 Figure 14: Pareto Front in NSGA-II and MODE with 300 Generations

 Table 5: Controller Parameters for Pareto Optimal Points by MODE

Pareto Optimal Solution Pareto Front

KD K2 L1 L2 Epeak ERMS

1 0.9826 5.1164 0.60129 -0.3776356 0.0021053 0.000541194

2 0.7321 4.2383 0.61262 -0.41567040 0.0021039 0.000585480

5.5 Results of Population size 100 with 1000 Generations

Figure 15 shows the results of both algorithms with the populations size100 and

number of generations 1000 when genes of the chromosome are bounded in intervals

KD = (1, 5), K2 = (1, 5), L1 = (-1, 1) and L2 = (-1, 1).

ERMS

Epeak

MODE

NSGA-II

42

The crossover and mutation operation in NSGA-II were 0.8 and 0.2. The operation

time was 3:30 min. For MODE, the crossover ratio was set to 0.5, and the scaling

factor was set to 0.5. The operation time of MODE took four hours.

In Figure 15, the Pareto-front of NSGA-II and MODE are shown on the same plot.

The y-axis denotes the ERMS and the x-axis denotes the Epeak. The minimum Epeak

and, the minimum ERMS achieve by NSGA-II are 0.0019m, and 0.0007m,

respectively. MODE delivered the minimum Epeak 0.0016m, and the minimum ERMS

0.0004m. The large difference in the minimum error of these algorithms, indicate

that the population size and the number of generation shall be larger to get better

results.

Figure 15: Pareto Front for MODE and NSGA-II for 1000 Generations

ERMS

MODE

NSGA-II

Epeak

43

5.6 Effect of Pareto Optimal on the Lateral Error along the Path

The best Pareto-optimal solutions obtained from all search runs are shown in Table

6. The resulting lateral deviation for the Pareto-optimal solution #1 is demonstrated

by a simulation along the desired reference path in the left plot of Figure 16. The plot

at the right side zooms into the dashed small window to show the maximum Epeak.

 Table 6: Controller Parameters for Pareto Optimal Points

Pareto Optimal Solution Pareto Front

KD K2 L1 L2 Epeak ERMS

1 0.8648 7.4208 0.559544 -0.3081386 0.0016235 0.000483704

2 0.9018 7.3861 0.560413 -0.3091005 0.0016270 0.000478973

3 1.0092 6.5188 0.586364 -0.3208218 0.0020289 0.000477510

4 1.2401 6.5164 0.580384 -0.3141057 0.0020838 0.000477118

5 1.6543 6.6306 0.586108 -0.3204827 0.0021680 0.000470331

 Figure 16: Motion of the Tractor and the Desired Reference Path

Figure 17 compares the effects of the Pareto optimal solutions on the lateral error of

the tractor along the reference path. Smaller RMS error is a result of faster

Y

X

Y

X

44

convergence of the tractor motion to the linear or circular section of the path, and

there is a compromise between minimum peak and minimum RMS errors. The red

curve shows the error of the extreme Pareto optimal point with minimum peak error,

which is given at the first row of Table 6. The blue curve belongs to the error with

the minimum RMS error, which is given at the last row of the same table. It is clearly

visible that red curve has higher error at the beginning of the 10
th

 meter compared to

the blue curve. This error indicates the lower convergence rate of red curve

compared to the blue curve. The tractor operator may select a lower peak error if the

task is critical especially at the transients of the curvatures, or may select a controller

setting that provides lower RMS error to improve the performance of tracking the

linear sections of the path.

 Figure 17: Lateral Error of the Tractor along the Reference Path

 for the Pareto-optimal solutions #1:Blue, #3:Green, #5:Red

dN

Curvilinear Distance

45

5.7 Summary

This chapter illustrates the result of both algorithms: NSGA-II and MODE, which

reduced the lateral errors Epeak and ERMS. As it is seen in Table 6, the minimum Epeak

and ERMS in NSGA-II are 0.0019m, 0.0007m while the ERMS and Epeak are 0.0016m,

0.0004m respectively in MODE algorithm.

46

 Chapter 6

6 CONCLUSIONS

The aim of this study is to reduce the lateral error of the simulated tracking action of

an agricultural tractor along a typical agricultural desired path. The most important

features of the lateral error along a typical path are the Epeak, and ERMS, which are

independent components of the error along the path. A multi-objective optimization

algorithm is required to search the best parameter settings to have both minimum

Epeak and ERMS. The best parameter settings form a non-dominated solution surface,

which is described by a set of Pareto-front points.

This study applied NSGA-II, and MODE algorithms to determine the Pareto-front

surface that compromise both peak and RMS errors. The lateral controller parameters

of an actual tractor may be set to the controller parameters corresponding to the

Pareto-front points depending on the importance of ERMS or Epeak in the agricultural

application.

The search gave better non-dominated solution surfaces with typical errors {Epeak

=0.0016m, ERMS =0.0004 m} compared to reported error {Epeak =0.0044m, ERMS

=0.0015m} in [4]. Using the results of this study, the tractor operator may select a

lower peak error if the task is critical especially at the transients of the curvatures, or

may select a controller setting that provides lower RMS error to improve the

performance of tracking the linear sections of the path.

47

6.1 Future works

The real time application of the evolutionary optimization algorithms to enhance the

lateral control parameters requires mainly development of these algorithms in a

learning structure with a fast convergence rate. Development of such algorithms may

be a sounding feature task for the real time enhancement of the control parameters.

48

REFERENCE

[1] M. Bodur, "Real-time population based optimization for adaptive motion control

of robot manipulators," Engineering Letters, vol. 16, pp. 27-35, Mar 2008.

[2] M. Bodur, "An adaptive cross-entropy tuning of the pid control for robot

manipulators"" in Proceedings of the 2007 International Conference of

Computational Intelligence and Intelligent Systems (ICCIIS-07), pp. 93-98,

July 2007

[3] M. Bodur and M. E. Sezer, "Adaptive control of flexible multilink

manipulators," International Journal of Control, vol. 58, no. 3, pp. 519-536,

1993

[4] M. Bodur, E. Kiani. H. Hacisevki. "Double look-ahead reference point control

for autonomous agricultural vehicles," Biosystems Engineering, Volume 113,

Issue 2, pages 173-186) , 2012.

[5] A Pratap, S Agarwal, and T. Meyarivan. Kalyanmoy Deb, "A fast and elitist

multiobjective genetic algorithm: NSGA–II," in IEEE Transactions on

Evolutionary Computation, 2002.

[6] T, Josef, "Differential evolution: competitive setting," in Proceedings of the

International Multiconference on, 2006.

[7] Babu, B.V. and M.M. Jehan, 2003. Differential evolution for multi-objective

optimization. Proceedings of IEEE Congress on Evolutionary Computation,

Dec. 8-12, IEEE Press, Canberra, Australia, pp: 2696-2703.

[8] Yixin, Li Huiyuan.S, "An improved density estimation method in NSGA2," in

IET Conference Publications, china, 2012.

[9] De, S. Bhattacharyya, S. Chakraborty, S. Sarkar, B.N. Prabhakar, P.K. Bose, S.

"Gray scale image segmentation by nsga-ii based optimusic activation function,"

in Communication Systems and Network Technologies (CSNT), International

Conference on , 2012.

49

[10] Carlos A. Coello Coello; Gary B. Lamont; David A. Van Veldhuisen (2007).

Evolutionary algorithms for solving multi-objective problems. Springer. ISBN

978-0-387-36797-2. Retrieved 1 November 2012.

[11] F. Cordeiro and A. Silva-Filho, " NSGAII applied to unified second level cache

memory hierarchy tuning aiming energy and performance optimization," in

Computing Systems (WSCAD-SCC), 2010 11th Symposium on.

[12] A. Silva-Filho, C. Bastos-Filho, D. Falcao, F. Cordeiro and R. Castro, "An

optimization mechanism intended for two-level cache hierarchy to improve

energy and performance using the NSGAII algorithm," in Computer

Architecture and High Performance Computing SBAC-PAD '08. 20th

International Symposium on , 2008.

[13] U. K.Chakraborty, Advance in differantial evolution, mathematics &computer

science , University of Missouri Books, 2008.

[14] S. Bechikh, N. Belgasmi, L. Ben Said and K. Ghedira, " A novel multi-objective

memetic algorithm for continuous optimization," in Tools with Artificial

Intelligence,ICTAI '08. 20th IEEE International Conference on , 2008.

[15] A. da Cruz, R. Cardoso, E. Wanner and R. Takahashi, "A multiobjective non-

linear dynamic programming approach for optimal biological control in soy

farming via NSGA-II," in Evolutionary Computation, CEC 2007. IEEE

Congress on.

[16] S. Das and P. Suganthan, " Differential Evolution: A Survey of the State-of-the-

Art," in Evolutionary Computation, IEEE Transactions on (Volume:15 , Issue:1)

, 2011.

[17] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan "Pareto

Optimization of Power System Reconstruction Using NSGA-II Algorithm," in

Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific .

[18] S. Bandaru, R. Tulshyan and K. Deb, "Modified SBX and adaptive mutation for

real world single objective optimization," in Evolutionary Computation (CEC),

2011 IEEE Congress on , New Orleans, LA.

[19] T. Bhattacharjee and A. Chakraborty, "Congestion management in a deregulated

50

power system using NSGAII," in Power India Conference, 2012 IEEE Fifth .

51

APPENDIX

52

1 MatLab Code of Path Generator and Fitness Function

 pathmaker.m
 1 function pathmaker(x0,y0,dt,speed,firstlength,radius,lastlength)
 2 %pathmaker(0,0,0.005,2,10,7,22)
 3 clc
 4 fh=fopen('pathdef.m','w');
 5 fprintf(fh,'function path=pathdef()\r\n path=[');
 6 ds=speed*dt; s=0;x=-radius; y=-firstlength; i=1; a=pi/2;
 7 fprintf(fh,'%f %f %f %f %i\r\n', s, x, y, a, i);
 8 while(s<firstlength)
 9 s=s+ds; x=-radius; y=y+ds; i=i+1; a=pi/2;
 10 fprintf(fh,'%f %f %f %f %i\r\n', s, x, y, a, i);
 11 end
 12 while(s<firstlength+radius*pi)
 13 s=s+ds; sa=s-firstlength; a=pi/2-sa/radius;
 14 x=-radius*cos(sa/radius); y=radius*sin(sa/radius); i=i+1;
 15 fprintf(fh,'%f %f %f %f %i\r\n', s, x, y, a, i);
 16 end
 17 while(s<firstlength+radius*pi+lastlength)
 18 s=s+ds; x=radius; y=y-ds; i=i+1; a=-pi/2;
 19 fprintf(fh,'%f %f %f %f %i\r\n', s, x, y, a, i);
 20 end
 21 fprintf(fh,']; \r\n');
 22
 23 fclose(fh);
 24 end
 25
 26 %-----end of file

fitness2.m
 1 function [peakd, rmsd]=fitness2(kN,kD,k1,k2,L1,L2)
 2 %[a,b]=fitness(0,3,0,4,-0.8,0.8)
 3 % Path and Plot
 4 path=pathdef; len_path=size(path,1); startstep=0.001;
 5 plotgrA=0; plotgrB=0; plotgrM=0; % no plot for evol.search
 6 %plotgrA=1; plotgrB=0; plotgrM=1;% plot to get path and dN
 7 % Vehicle Coefficients
 8 x=1; y=2; w=3; % Positional terms
 9 % Steering parameter
 10 s=0; b=0; v=2.0; smax=0.5585; smin=-smax;
 11 % Path parameters L2>L1
 12 R=abs(path(1,2));
 13 % Bevly & Derrick (2008) coefficients
 14 m=11340; I=18500; Lf=1; Lr=2.0; L=Lf+Lr;
 15 Cr=286479; Cf=137510; Fr=0;
 16 dt=0.01; dtc=0.05; dts=0.001;
 17 ds=path(2,1); equit=0.3; cquit=0;
 18 ibest=1; vbest=[]; iter=0; tcalc=0;
 19
 20 LrmseS=1050;LrmseE=1500; LpeakS=100; LpeakE=2100;
 21 Lcancel=2400; Lpoff=900; % for circular and overall test
 22 % Controller Coefficients
 23 %kN=0; kD=3; k1=0; k2= 4.7;L1=-0.7;L2= 0.73;
 24 KNLine=5.6; KLCirc=2.28;
 25 k1=(KLCirc-k2*L2)/L1; kN=KNLine-k1-k2;
 26
 27 %--initialization--
 28 t=0; j=0; tf=25;
 29 ts=t; s1=0; s2=0; s3=0; % actuator time and states
 30 tc=t+dt; % controller time
 31 % Initial position and heading pv=[R -Lr+25 -pi/2];
 32 pv=[-R-startstep Lr-10 pi/2];
 33 vv=[0 v 0]; % Initial velocities
 34 av=[0 0 0]; % Initial acceleration
 35 xr=pv(x)-Lr*cos(pv(w)); yr=pv(y)-Lr*sin(pv(w));
 36 clear ov; % observation vector is cleared
 37 idN=2; dsign=1;
 38 while(t<tf)
 39 t=t+dt; j=j+1; %time & iteration
 40 %simplification of program notation
 41 Cw= cos(pv(w)); Sw= sin(pv(w)); Cs= cos(s); Cb= cos(b);
 42 % CoG (x,y) --> (xr,yr) rear wheels point
 43 xrp=xr; yrp=yr; xr=pv(x) - Lr*Cw; yr=pv(y) - Lr*Sw;
 44 if(t==dt), xrp=xr; yrp=yr; end % debug

53

 45 if tc>=t, tc=tc+dtc; % control part
 46 % control starts with finding pN
 47 % inputs idN, xr, yr,thetar, path outputs idN, dN, d
 48 idNs=idN; idNend=idN+200;
 49 xk=path(idN-1,2); yk= path(idN-1,3);
 50 ddNp= (xk-xr)*(xk-xr)+(yk-yr)*(yk-yr); ddNpp=ddNp;
 51 for kdN=idNs:idNend,
 52 xk=path(kdN,2); yk= path(kdN,3);
 53 ddN=(xk-xr)*(xk-xr)+(yk-yr)*(yk-yr);
 54 idN=max(kdN-1,2);
 55 if(ddNp<ddN), break; end
 56 ddNpp=ddNp; ddNp=ddN;
 57 end
 58 dNbest=sqrt(ddNp); dNfw=sqrt(ddN); dNbw=sqrt(ddNpp);
 59 if(dNfw<dNbw), dNnext=dNfw; else dNnext=dNbw; end
 60 dN=nearestdist(dNbest,dNnext,ds); dN=abs(dN);
 61 thetaP=path(idN,4); thetaN=thetaP-pv(w);
 62 thetaP1=path(min(max(idN+round(L1/ds),1),len_path),4);
 63 theta1=thetaP1-pv(w);
 64 thetaP2=path(min(max(idN+round(L2/ds),1),len_path),4);
 65 theta2=thetaP2-pv(w);
 66 ca=path(idN,1); xn=path(idN,2); yn=path(idN,3);
 67 % determine sign of distance
 68 xNd=-xn+path(idN+1,2); yNd=-yn+path(idN+1,3);
 69 dsign= sign(xNd*(-yr+yn)-yNd*(-xr+xn));
 70 d= dsign*abs(dN);
 71
 72 % Control Law for steer angle
 73 sd=kD*d + kN*thetaN + k1*theta1 + k2*theta2;
 74 end
 75 %--control part is over, vehicle simulation starts here---------
 76
 77 % Quit the case if error exceeds a threshold
 78 eer=abs(d); if eer>equit, cquit=1; t=tf; end
 79
 80 % Servo Actuator
 81 while(ts<t), ts=ts+dts;
 82 s=sd*0.000297 + 2.894*s1 - 2.858997*s2 +0.9647*s3 ;
 83 s3=s2; s2=s1;s1=s; end
 84 s=max(min(s,smax),smin);
 85
 86 % Vehicle equations of motion
 87 % Friction force is normal to tires
 88 if s>=0, Ff= -Cf*(s-b- vv(w)*Lf*Cb/v);
 89 else Ff= Cf*(b + vv(w)*Lf*Cb/v-s); end
 90 Fc=m*(v*cos(b))^2*tan(s)*sign(b)/L; Fwf=27e3*sin(s);
 91 ddy=(-Fr-Ff*Cs-Fc+Fwf)/m+v*vv(w);
 92 av(w)= (-Ff*Cs*Lf + Fr*Lr+Fwf*Lf)/I;
 93 av(x)=-ddy*Sw; av(y)= ddy*Cw;
 94 % Absolute Velocities
 95 vv(x)=vv(x)+av(x)*dt;vv(y)= vv(y)+av(y)*dt; vv(w)=vv(w)+av(w)*dt;
 96 % Constant Forward Velocity
 97 vyy=-vv(x)*Sw+vv(y)*Cw; % Lateral y velocity
 98 vv(x)=-vyy*Sw + v*Cw; vv(y)= vyy*Cw + v*Sw;
 99 % Side slip angle
100 b= atan2(vv(y),vv(x))-pv(w);
101 Fr= Cr*(b - vv(w)*Lr*Cb/v); % Friction force is normal to tires
102 % Vehicle positions and orientation
103 pv(x)=pv(x) + vv(x)*dt;
104 pv(y)=pv(y) + vv(y)*dt;
105 pv(w)=pv(w) + vv(w)*dt;
106 %===
107 % 1 2 3 4 5 6 7 8 9 10 11 Observation Vector
108 % t s Xn Yn d xr yr dN thetaN dsign ca
109 ov(j,:)=[t s xn yn d xr yr dN thetaN dsign ca];
110 end % case run completed
111
112 L_ov=size(ov,1);
113 if cquit, peakd=equit; rmsd=equit;
114 else
115 [peaka,ipeak]=max(ov(100:2100,8));
116 peakd = abs(ov(ipeak+100,5));
117 rmsd = sqrt(ov(100:1500,5)'*ov(100:1500,5)/(1500-100)) ;
118 poff=ov(900,5);
119 dispvec=[L1 L2 k1 k2 peakd*1000 rmsd*1000 poff*1000];
120 % plot the testdrive
121 if plotgrA,

54

122 figure(2);
123 plot(ov(:,6),ov(:,7),'LineWidth',1.5);hold on;
124 plot(ov(:,3),ov(:,4),'r','LineWidth',0.5); end
125 if plotgrM,
126 figure(1);
127 plot(ov(:,11),ov(:,5),'r','LineWidth',1.5); end
128 end
129 return
130
131 function d=nearestdist(d1,d2,d0)
132 e=(d1*d1-d2*d2-d0*d0)/(2*d0); d=sqrt(abs(d2*d2-e*e)); a=-e;
133 return
134

55

2 MatLab Code of MODE

1 clear all;
2 close all;
3 clc;
4 MODEDat.NOBJ = 2;
5 MODEDat.NRES = 0;
6 MODEDat.NVAR = 4;
7 MODEDat.FieldD =[zeros(MODEDat.NVAR,1)...
1. nes(MODEDat.NVAR,1)];
8 MODEDat.Initial=[zeros(MODEDat.NVAR,1)...
1. ones(MODEDat.NVAR,1)];
9 MODEDat.XPOP= 50*MODEDat.NOBJ;
10 MODEDat.Esc = 0.5;
11 MODEDat.Pm = 0.5;
12 MODEDat.InitialPop=[];
13 MODEDat.MAXGEN =300;
14 MODEDat.MAXFUNEVALS = 15000000*MODEDat.NVAR...
15 *MODEDat.NOBJ;
16 MODEDat.SaveResults='yes';
17 MODEDat.CounterGEN=0
18 MODEDat.CounterFES=0
19 OUT=MODE(MODEDat);
20 function OUT=MODE(MODEDat)
21 %% Reading parameters from MODEDat
22 Generaciones = MODEDat.MAXGEN; % Maximum number of generations.
23 Xpop = MODEDat.XPOP;
24 Nvar = MODEDat.NVAR;
25 Nobj = MODEDat.NOBJ;
26 Bounds = MODEDat.FieldD;
27 Initial = MODEDat.Initial;
28 ScalingFactor = MODEDat.Esc;
29 CrossOverP = MODEDat.Pm;
30 % mop = MODEDat.mop;

31 %% Initial random population
32 Parent = zeros(Xpop,Nvar);
33 Mutant = zeros(Xpop,Nvar);
34 Child = zeros(Xpop,Nvar);
35 FES = 0;
36 for xpop=1:Xpop
37 Parent(xpop,1)=-1+(1+1).*rand;
38 Parent(xpop,2)=-1+(1+1).*rand;
39 Parent(xpop,3)=-1+(1+1).*rand;
40 Parent(xpop,4)=-1+(1+1).*rand;

41 end;
42 Initial(nvar,1)+(Initial(nvar,2)...

43 if size(MODEDat.InitialPop,1)>=1
44 Parent(1:size(MODEDat.InitialPop,1),:)=MODEDat.InitialPop;
45 end
46 JxParent1=zeros(Xpop,1);
47 JxParent2=zeros(Xpop,1);
48 for L=1:Xpop
49 [A,B] = fitness2(Parent(L,1),Parent(L,2),Parent(L,3),Parent(L,4)); %

parents cost value
50 JxParent1(L)=A;
51 JxParent2(L)=B;
52 end
53 FES = FES+Xpop;
54 %% Evolution process
55 for n=1:Generaciones
56 for xpop=1:Xpop
57 rev=randperm(Xpop);
58 %% Mutant vector calculation
59 Mutant(xpop,:)= Parent(rev(1,1),:)+ScalingFactor*...

(Parent(rev(1,2),:)- Parent(rev(1,3),:));
60 %% Crossover operator
61 for nvar=1:Nvar
62 if rand() > CrossOverP
63 Child(xpop,nvar) = Parent(xpop,nvar);
64 else
65 Child(xpop,nvar) = Mutant(xpop,nvar);
66 End
67 end

56

68 end
69 JxChild1=zeros(Xpop,1);
70 JxChild2=zeros(Xpop,1);
71 for L=1:Xpop
72 [A,B] = fitness2(Child(L,1),Child(L,2),Child(L,3),Child(L,4)); %

parents cost value
73 JxChild1(L)=A;
74 JxChild2(L)=B;
75 end

76 FES=FES+Xpop;

77 %% Selection
78 for xpop=1:Xpop
79 if JxChild1(xpop,:) <= JxParent1(xpop,:) ...
80 && JxChild2(xpop,:) <= JxParent2(xpop,:)
81 Parent(xpop,:) = Child(xpop,:);
82 JxParent1(xpop,:) = JxChild1(xpop,:);
83 JxParent2(xpop,:) = JxChild2(xpop,:);
84 end
85 End
86 PFront(:,1)=JxParent1;
87 PFront(:,2)=JxParent2;
88 PSet=Parent;
89 % combined two vector value into one
90 JxParent(:,1)= JxParent1;
91 JxParent(:,2)= JxParent2;
92 OUT.Xpop = Parent; % Population
93 OUT.Jpop = JxParent; % Poopulation's Objective Vector
94 OUT.PSet = PSet; % Pareto Set
95 OUT.PFront = PFront; % Pareto Front
96 OUT.Param = MODEDat; % MODE Parameters
97 MODEDat.CounterGEN = n;
98 MODEDat.CounterFES = FES;

99 % [OUT MODEDat]=PrinterDisplay(OUT,MODEDat); % To print results on

screen

100 if FES>MODEDat.MAXFUNEVALS || n>MODEDat.MAXGEN
101 disp('Termination criteria reached.')
102 break;
103 end
104 end

105 OUT.Xpop=PSet;
106 OUT.Jpop=PFront;
107 [OUT.PFront, OUT.PSet]=DominanceFilter(PFront,PSet); %A Dominance

Filter

108 f strcmp(MODEDat.SaveResults,'yes')
109 save(['OUT_' datestr(now,30)],'OUT'); %Results are saved
110 end

111 disp('+++

++')
112 disp('Red asterisks : Set Calculated.')
113 disp('Black diamonds : Filtered Set.')
114 if strcmp(MODEDat.SaveResults,'yes')
115 disp(['Check out OUT_' datestr(now,30) ...
116 variable on folder for results.'])
117 end
118 disp('+++

++')

119 F=OUT.PFront;
120 for xpop=1:size(OUT.PFront,1)
121 if Nobj==1
122 figure(123); hold on;
123 plot(MODEDat.CounterGEN,log(min(F(:,1))),'dk',
124 'MarkerFaceColor','k'); grid on; hold on;
125 elseif Nobj==2
126 figure(123); hold on
127 plot(F(xpop,1),F(xpop,2),'dk','MarkerFaceColor','k');...
128 grid on; hold on;
129 elseif Nobj==3
130 figure(123); hold on;
131 plot3(F(xpop,1),F(xpop,2),F(xpop,3),'dk','MarkerFaceColor','k

57

132 grid on; hold on;
133 end
134 end
135 %
136 function [OUT Dat]=PrinterDisplay(OUT,Dat)

137 disp('--')
138 disp(['Generation: ' num2str(Dat.CounterGEN)]);
139 disp(['FEs: ' num2str(Dat.CounterFES)])
140 disp(['Pareto Front Size: ' mat2str(size(OUT.PFront,1))]);
141 disp('--')

142 if mod(Dat.CounterGEN,1)==0
143 if Dat.NOBJ==3
144 figure(123);
145 plot3(OUT.PFront(:,1),OUT.PFront(:,2),OUT.PFront(:,3),'*r');
146 grid on;
147 elseif Dat.NOBJ==2
148 figure(123);
149 plot(OUT.PFront(:,1),OUT.PFront(:,2),'*r'); grid on;
150 elseif Dat.NOBJ==1
151 figure(123);
152 plot(Dat.CounterGEN,log(min(OUT.PFront(:,1))),'*r'); ...
153 grid on; hold on;
154 end
155 end

156 function [Frente Conjunto]=DominanceFilter(F,C)
157 Xpop=size(F,1);
158 Nobj=size(F,2);
159 Nvar=size(C,2);
160 Frente=zeros(Xpop,Nobj);
161 Conjunto=zeros(Xpop,Nvar);
162 k=0;
163 for xpop=1:Xpop
164 Dominado=0;
165 for compara=1:Xpop
166 if F(xpop,:)==F(compara,:)
167 if xpop > compara
168 Dominado=1;
169 break;
170 end
171 else
172 if F(xpop,:)>=F(compara,:)
173 Dominado=1;
174 break;
175 end
176 end
177 end
178 if Dominado==0
179 k=k+1;
180 Frente(k,:)=F(xpop,:);
181 Conjunto(k,:)=C(xpop,:);
182 end
183 end
184 Frente=Frente(1:k,:);
185 Conjunto=Conjunto(1:k,:);
186

58

3 MatLab Code of NSGA-II

1 pop=100;
2 gen=1000;
3 if isnumeric(pop) == 0 || isnumeric(gen) == 0
4 error('Both input arguments pop and gen should be integer datatype');
5 end
6 % Minimum population size has to be 20 individuals
7 if pop < 20
8 error('Minimum population for running this function is 20');
9 end
10 if gen < 5
11 error('Minimum number of generations is 5');
12 end
13 % Make sure pop and gen are integers
14 pop = round(pop);
15 gen = round(gen);
16 function [number_of_objectives, number_of_decision_variables,

min_range_of_decesion_variable, max_range_of_decesion_variable] =
objective_description_function()

17 g = sprintf('Input the number of objective: ');
18 % Obtain the number of objective function
19 number_of_objectives = input(g);
20 if number_of_objectives < 2
21 error('This is a multi-objective optimization function hence the

minimum number of objectives is two');
22 end
23 g = sprintf('\nInput the number of decision variables: ');
24 % Obtain the number of decision variables
25 number_of_decision_variables = input(g);
26 clc
27 for i = 1 : number_of_decision_variables
28 clc
29 g = sprintf('\nInput the minimum value for decision variable %d : ',

i);
30 % Obtain the minimum possible value for each decision variable
31 min_range_of_decesion_variable(i) = input(g);
32 g = sprintf('\nInput the maximum value for decision variable %d : ',

i);
33 % Obtain the maximum possible value for each decision variable
34 max_range_of_decesion_variable(i) = input(g);
35 clc
36 end
37 g = sprintf('\n Now edit the function named "evaluate_objective"
38 x = input(g, 's');
39 if isempty(x)
40 x = 'x';
41 end
42 while x ~= 'c'
43 clc
44 x = input(g, 's');
45 if isempty(x) x = 'x';
46 end
47 end
48 function f = initialize_variables(N, M, V, min_range, max_range)
49 min = min_range;
50 max = max_range;
51 for j = 1 : V
52 f(i,j) = min(j) + (max(j) - min(j))*rand(1);
53 end
54 peakd=0;
55 rmsd=0;
56 [peakd, rmsd]=fitness2(f(i,1),f(i,2),f(i,3),f(i,4));
57 f(i,V + 1: K) =[peakd, rmsd];
58 end
59 function f = initialize_variables(N, M, V, min_range, max_range)
60 function f = non_domination_sort_mod(x, M, V)
61 [N, m] = size(x);
62 clear m
63 function f = genetic_operator(parent_chromosome, M, V, mu, mum,

l_limit, u_limit)
64 [N,m] = size(parent_chromosome);
65 clear m
66 p = 1;
67 was_crossover = 0;
68 was_mutation = 0;

59

69 for i = 1 : N
70 % With 90 % probability perform crossover
71 if rand(1) < 0.9
72 child_1 = [];
73 child_2 = [];
74 parent_1 = round(N*rand(1));
75 if parent_1 < 1
76 parent_1 = 1;
77 End
78 % Select the second parent
79 parent_2 = round(N*rand(1));
80 if parent_2 < 1
81 parent_2 = 1
82 End
83 while

isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
84 parent_2 = round(N*rand(1));
85 if parent_2 < 1
86 parent_2 = 1;
87 End
88 End
89 parent_1 = parent_chromosome(parent_1,:);
90 parent_2 = parent_chromosome(parent_2,:)
91
92 for j = 1 :
93 u(j) = rand(1);
94 if u(j) <= 0.5
95 bq(j) = (2*u(j))^(1/(mu+1));
96 else
97 bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
98 End
99 % Generate the jth element of first child
100 child_1(j) = ...
101 0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
102 % Generate the jth element of second child
103 child_2(j) = ...
104 0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));
105 if child_1(j) > u_limit(j)
106 child_1(j) = u_limit(j);
107 elseif child_1(j) < l_limit(j)
108 child_1(j) = l_limit(j);
109 end
110 if child_2(j) > u_limit(j)
111 child_2(j) = u_limit(j);
112 elseif child_2(j) < l_limit(j)
113 child_2(j) = l_limit(j)
114 end
115 end
116 peakd=0;
117 rmsd=0;
118 [peakd,rmsd]=fitness2(child_1(:,1),child_1(:,2),child_1(:,3),child_1(:,

4));
119 child_1(:,V + 1: M + V) = [peakd, rmsd];
120 peakd=0;
121 rmsd=0;
122 [peakd,rmsd]=fitness2(child_2(:,1),child_2(:,2),child_2(:,3),child_2(:,

4));
123 child_2(:,V + 1: M + V) = [peakd, rmsd];
124 was_crossover = 1;
125 was_mutation = 0;
126 Else
127 % Select at random the parent
128 parent_3 = round(N*rand(1));
129 if parent_3 < 1
130 parent_3 = 1;
131 end
132 child_3 = parent_chromosome(parent_3,:);
133 for j = 1 : V
134 r(j) = rand(1);
135 if r(j) < 0.5
136 delta(j) = (2*r(j))^(1/(mum+1)) - 1;
137 else
138 delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
139 end
140 % Generate the corresponding child element.
141 child_3(j) = child_3(j) + delta(j);
142 % space.

60

143 if child_3(j) > u_limit(j)
144 child_3(j) = u_limit(j);
145 elseif child_3(j) < l_limit(j)
146 child_3(j) = l_limit(j);
147 end
148 end
149 peakd=0;
150 rmsd=0;
151 [peakd,rmsd]=fitness2(child_3(:,1),child_3(:,2),child_3(:,3),c

hild_3(:,4));
152 child_3(:,V + 1: M + V) = [peakd, rmsd];
153 % Set the mutation flag
154 was_mutation = 1;
155 was_crossover = 0;
156 end
157 if was_crossover
158 child(p,:) = child_1;
159 child(p+1,:) = child_2;
160 was_cossover = 0;
161 p = p + 2;
162 elseif was_mutation
163 child(p,:) = child_3(1,1 : M + V);
164 was_mutation = 0;
165 p = p + 1;
166 end
167 end
168 f = child;
169 front = 1;
170 F(front).f = [];
171 individual = [];
172 function f = tournament_selection(chromosome, pool_size, tour_size)
173 [pop, variables] = size(chromosome);
174 rank = variables - 1;
175 distance = variables;
176 for i = 1 : pool_size
177 % Select n individuals at random, where n = tour_size
178 for j = 1 : tour_size
179 % Select an individual at random
180 candidate(j) = round(pop*rand(1));
181 % Make sure that the array starts from one.
182 if candidate(j) = =
183 candidate(j) = 1;
184 End
185 if j > 1
186 % Make sure that same candidate is not choosen.
187 while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
188 candidate(j) = round(pop*rand(1));
189 if candidate(j) == vc0
190 candidate(j) = 1
191 end
192 end
193 end
194 end
195 for j = 1 : tour_size
196 c_obj_rank(j) = chromosome(candidate(j),rank);
197 c_obj_distance(j) = chromosome(candidate(j),distance);
198 end
199 % Find the candidate with the least rank
200 min_candidate = ...
201 find(c_obj_rank == min(c_obj_rank));
202 if length(min_candidate) ~= 1
203 max_candidate = ...
204 find(c_obj_distance(min_candidate)==max(c_obj_distance(min_candidate)))

;
205 if length(max_candidate) ~= 1
206 max_candidate = max_candidate(1);
207 end
208 (i,:) = chromosome(candidate(min_candidate(max_candidate)),:);
209 Else
210 % Add the selected individual to the mating pool
211 f(i,:) = chromosome(candidate(min_candidate(1)),:);
212 end
213 end
214 for i = 1 : N
215 individual(i).n = 0;
216 individual(i).p = [];
217 for j = 1 : N

61

218 dom_less = 0;
219 dom_equal = 0;
220 dom_more = 0;
221 for k = 1 : M
222 if (x(i,V + k) < x(j,V + k))
223 dom_less = dom_less + 1;
224 elseif (x(i,V + k) == x(j,V + k))
225 dom_equal = dom_equal + 1;
226 else
227 dom_more = dom_more + 1;
228 end
229 end
230 if dom_less == 0 && dom_equal ~= M
231 individual(i).n = individual(i).n + 1;
232 elseif dom_more == 0 && dom_equal ~= M
233 individual(i).p = [individual(i).p j]
234 end
235 end
236 if individual(i).n ==
237 x(i,M + V + 1) = 1;
238 F(front).f = [F(front).f i];
239 end
240 end
241 % Find the subsequent fronts
242 while ~isempty(F(front).f)
243 Q = [];
244 for i = 1 : length(F(front).f)
245 if ~isempty(individual(F(front).f(i)).p)
246 for j = 1 : length(individual(F(front).f(i)).p)
247 individual(individual(F(front).f(i)).p(j)).n
248 individual(individual(F(front).f(i)).p(j)).n - 1;
249 if individual(individual(F(front).f(i)).p(j)).n ==
250 x(individual(F(front).f(i)).p(j),M + V + 1) = ...
251 front + 1;
252 Q = [Q individual(F(front).f(i)).p(j)];
253 End
254 End
255 end
256 end
257 front = front + 1;
258 F(front).f = Q;
259 end
260 [temp,index_of_fronts] = sort(x(:,M + V + 1));
261 for i = 1 : length(index_of_fronts)
262 sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
263 end
264 current_index = 0;
265 for front = 1 : (length(F) - 1)
266 % objective = [];
267 distance = 0;
268 y = [];
269 previous_index = current_index + 1;
270 for i = 1 : length(F(front).f)
271 y(i,:) = sorted_based_on_front(current_index + i,:);
272 end
273 current_index = current_index + i;
274 % Sort each individual based on the objective
275 sorted_based_on_objective = [];
276 for i = 1 : M
277 [sorted_based_on_objective, index_of_objectives] = ...
278 sort(y(:,V + i));
279 sorted_based_on_objective = [];
280 for j = 1 : length(index_of_objectives)
281 sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
282 end
283 f_max = ...
284 sorted_based_on_objective(length(index_of_objectives), V + i
285 f_min = sorted_based_on_objective(1, V + i);
286 y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i
287 Inf;
288 y(index_of_objectives(1),M + V + 1 + i) = Inf;
289 for j = 2 : length(index_of_objectives) – 1
290 next_obj = sorted_based_on_objective(j + 1,V + i);
291 previous_obj = sorted_based_on_objective(j - 1,V + i);
292 if (f_max - f_min == 0)
293 y(index_of_objectives(j),M + V + 1 + i) = Inf
294 else

62

295 y(index_of_objectives(j),M + V + 1 + i) = ...
296 (next_obj - previous_obj)/(f_max - f_min);
297 End
298 end
299 end
300 distance = [];
301 distance(:,1) = zeros(length(F(front).f),1);
302 for i = 1 : M
303 distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
304 end
305 y(:,M + V + 2) = distance;
306 y = y(:,1 : M + V + 2);
307 z(previous_index:current_index,:) = y;
308 end
309 f = z();
310 mu = 20;
311 mum = 20;
312 offspring_chromosome = ...
313 genetic_operator(parent_chromosome, ...
314 M, V, mu, mum, min_range, max_range);
315 [main_pop,temp] = size(chromosome);
316 [offspring_pop,temp] = size(offspring_chromosome);
317 % temp is a dummy variable.
318 clear temp
319 intermediate_chromosome(1:main_pop,:) = chromosome;
320 intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 :

M+V) = ...offspring_chromosome;
321 intermediate_chromosome = ...
322 non_domination_sort_mod(intermediate_chromosome, M, V);
323 chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
324 if ~mod(i,100)
325 clc
326 fprintf('%d generations completed\n',i);
327 end
328 end
329 save solution.txt chromosome -ASCII
330 if M == 2
331 plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');
332 elseif M ==3
333 plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
334 end

63

