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ABSTRACT 

In this thesis four interesting points of mathematical analysis are handled.                

At first, some examples of continuous nowhere differentiable functions are 

discussed. Secondly, the Lebesgue-Cantor singular function is considered, which is 

continuous but the fundamental theorem of calculus is not valid for this function. 

Next, space-filling functions, which are continuous surjections from the interval to 

the square, are considered. Finally, two examples of infinitely many times 

differentiable functions which are not analytic are considered. 

Keywords: mathematical analysis, continuous functions, differentiable functions, 

series, convergence.  
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ÖZ 

Tezde matematiksel analizin dört önemli noktası açıklanmıştır. Önce sürekli ve hiç 

türevi olmayan birkaç fonksiyon örneği verilmiştir. Sonra Lebesgue-Cantor singüler 

fonksiyonuna bakılmıştır. Bu fonksiyon sürekli olmasına rağmen analizin temel 

teoremi ona uygulanamamaktadır. Daha sonra uzay dolduran eğrilere bakılmıştır. 

Bunlar aralıktan kareye örten  fonksiyonlardır. Son olarak her basamaktan türeve 

sahip olan fakat  analitik olmayan fonksiyonlar ele alınmıştır. 

Anahtar kelimeler: matematiksel analiz, sürekli fonksiyonlar, türevlenebilir 

fonksiyonlar, seriler, yakınsaklık. 
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Chapter 1 

INTRODUCTION 

As it is known, continuity and differentiability are very important concepts of 

mathematics. Over the centuries many mathematicians have been interested in 

continuity and differentiability trying to find the relation between them. At the 

beginning, most of mathematicians believed that every continuous function is 

differentiable but actually this statement was not true. For the first time, in 1806 

Ampere talked about continuity and differentiability trying to construct a continuous 

nowhere differentiable function at that time. After Ampere, Bernard Bolzano in 

1830, Cellèrier  in1860, and Riemann  in 1861, found  functions of this nature but did  

not publish at that time. In 1872 Weierstrass found a first continuous nowhere 

differentiable function and published this in 1875. Weierstrass’ discovery put an end 

to former arguments. But the converse statement is true that if a function is 

differentiable then it is continuous [1]. In Chapter 2 we discuss this type of functions 

that are continuous everywhere but nowhere differentiable. In Chapter 3 we consider 

Lebesgue Cantor function, that is function based on the Cantor set. At the beginning 

of Chapter 3 we show how to construct the Cantor set. The Cantor set is an important 

set in mathematics. In Chapter 3 many significant properties of the Cantor set are 

proved. Then Cantor function is defined and it is proved that the Cantor function is 

nowhere differentiable on Cantor set. In Chapter 4 space filling curves are define. 

Some examples of such curves, construction and proof of the fact that they are 

continuous but nowhere differentiable are discussed.           
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 In this example we showed that this function does not contain zero. In Chapter 5 

there are infinitly many times differentiable but not analytic function in Chapter 5 we 

discussed, about analytic function while each function can be written by Taylor 

series is analytic. Two examples are considered in this chapter are analytic by using 

Taylor inequality and also we have two interesting examples that have infinitely 

many times differentiable but not analytic function.    
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Chapter 2 

CONTINUOUS NOWHERE DIFFERENTIABLE 

FUNCTIONS 

 2.1 Introduction  

According to the well-known relation between differentiability and continuity, if a 

function is differentiable at       then it is continuous at     , but the converse of 

this statement does not hold. This means that a function can be continuous but not 

differentiable. Actually, there are many examples of continuous function which is not 

differentiable at one or few points. A popular example of such function is the 

absolute value function:  ( )  | |  which is continuous at every point but not 

differentiable at      [1]. During eighteenth and early nineteenth centuries the 

mathematicians believed that every continuous function has derivative, but the 

scientist Andre Marie Ampere, did the first research about this idea in 1806, but 

Ampere was not successful in his effort. In 1872 Karl Theodor Wilhelm Weierstrass, 

showed that there exists a function that is continuous everywhere but nowhere 

differentiable. After that in 1903 Takagi conferred his example. In 1930 Van der 

Waerden published his function. After this the number of continuous nowhere 

differentiable functions proved rapidly. In this chapter we discuss three continuous 

nowhere differentiable functions. Then we consider Baire category theorem and its 

application to  (      )  demonstrating that continuous nowhere differentiable 

functions on          are typical points of the Banach space  (      ) of the 

continuous functions on            
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2.2 History  

At first, we give some examples supporting the idea of a continuous nowhere 

differentiable function.  

(a)  Bernard Bolzano function (      )  

The first example of continuous nowhere differentiable function found by Bolzano in 

1830. Bolzano’s  function is build as an example of a function that is continuous on 

interval        but not monotone on any subinterval. Later Bolzano showed that the 

points at which this function has no derivative [1], are everywhere dense in the 

interval        Bolzano’s function is defined as a limit of continuous functions 

             defined on an interval        Here    is a linear function satisfying 

    ( )     and     ( )       

  ( )    (   )
   

   
  

To define the function   , Bolzano divides the interval       into four subintervals 

limited by points,  

          
 

 
(   )         

 

 
(   )        

 

 
(   )            

   is constructed to be linear in each of these four subintervals. The function    is 

defined analogously, if each of the four subintervals is considered instead of the 

interval          … In 1922 Karel Rychlık showed that the  Bolzano function is 

continuous and nowhere differentiable [2]. 

(b)  Riemann function (     ) 

In 1860, Riemann considered the function  

 ( )  ∑
    (   )

  

 

   

      
 

 
   (  )  

 

 
   (  )    
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This function continuous since the series converges uniformly and it is nowhere 

differentiable [3]. In 1916 Hardy showed that the Riemann function is not 

differentiable at all irrational multiples of  .  After this in 1969 Gerver showed that 

this function is actually differentiable at the all the rational multiples of    of the 

form  
  

 
 where   and   is odd integers. 

(c)  Cellèrier function (      ) 

In 1860 Cellèrier considered the function  

 ( )  ∑
 

  

 

   

   (   )  

              This function is continuous but nowhere differentiable, the 

Cellèrier function was not published until 1890 [3].  

(d)  Weierstrass function (      ) 

In 1872 Karl Weierstrass presented his famous Weierstrass function to the Royal 

Academy of Science in Berlin, Germany. The Weierstrass function is the first 

continuous nowhere differentiable function, published in 1875 by due Bois-

Reymond,  

 ( )  ∑       (  

 

   

  )  

where       and   is a positive odd integer greater than 1 such that      

 

 
 .   This function is everywhere continuous but nowhere differentiable  [3], [4]. 

(e)  Darboux function  (      ) 

 ( )  ∑
 

  

 

   

   ((   )  )  

This function is published in 1875. 
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(f)  Peano function (      ) 

   (          )
 

 (
(  ( 

    )( 
        )( 

          )  )
 

((    )( 
       )( 

         )  )
 

) 

Here the operator                                          and    denotes the 

    iterate of   [5]. 

(g)  Takagi function in (      ) 

 ( )   ∑  
 (     )

  

 

   

                    

where  ( )      (   ) the distance from   to nearest integer [6]. 

(h) Faber function (      ) 

In 1907 the German mathematician Georg Faber found an example of everywhere 

continuous nowhere differentiable function in the form  

 ( )  ∑
 

   
      

 

   

    (      )  

(i)  Van der Waerden function (      ) 

      ( )   ∑
 

   

 

   

    (      ) 

                       ∑
 

   

 

   

      |      |  

where       |      | denotes the distance from   to the nearest integer [7]. 

(j)  Schoenberg functions (      )  

The Schoenberg two functions  ( )  and   ( ) are defined by 

 ( )  
 

 
∑  

 

   
 (   

 

   

 )           



 

7 

 

   ( )  
 

 
∑

 

  

 

   

 (        )           

where  (   )   ( ) for every     [5]. 

2.3 Weierstrass function 

Many famous mathematicians have believed that every continuous function must be 

differentiable, but Karl Weierstrass shocked the mathematical community by proving 

the existence of a continuous nowhere differentiable function. Weierstrass was not 

the first mathematician who constructed a continuous nowhere differentiable 

function, he was the first, sharing it with the rest of the mathematical community. In 

1875 he presented this result during his lecture and then in 1875 published. In fact 

Weierestrass simply gave a formula for such a function for any     with     

  and for odd integer   satisfying       
 

 
    Define the function       by       

          ( )   ∑   

 

   

   (    )                                                   (   )             

                                (  )      (   )       (    )       (    )    . 

This function is called Weierstrass continuous nowhere differentiable function. 

The following is the graph of Weierstrass function for       and     . From this 

graph it is seen that this is a continuous function but has no tangent line anywhere, 

therefore  ( ) is nowhere differentiable. 

 

 



 

8 

 

 
Figure 2-1: Weierstrass function where       and        

The proof of continuity of Weierstrass function is based on Weierstrass M-test for 

functional series. 

2.3.1 (Uniform convergence)  

A sequence of a functions {  }  is said to be uniformly convergent to   on the set   if 

for each      there is an integer    such that  

    |  ( )   ( )|    

for all     and     .  A series  

∑   ( )           

 

   

 

converges uniformly on   if the sequence {  }   of partial sums defined by 

   ( )  ∑  

 

   

( )                                

converges uniformly on   [8] . 
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Theorem 2.3.2 The limit of a uniformly convergent sequence or series of continuous 

function is continuous [8]. 

Theorem 2.3.3 ( Weierstrass M-test ) Suppose that     is a sequence of real  valued 

functions, defined on a set    . Suppose further that for every     there exist a 

real constant    such that  |  ( )|      for every        If the numerical series  

∑   

 

   

 

converges, then the series  

  ∑   

 

   

( ) 

is uniformly convergent on    [9]. 

Theorem 2.3.4  The Weierstrass function  ( ) defined by (1)  is continous.        

Proof. Since       then   

∑    
 

   
   

 

   

 

Because       |      (    )|                       |      (    )|    . 

Thus, by the Weierstrass M-Test, and by Theorem  (2.3.2) the Weierstrass function is 

the uniform limit of continuous functions. Therefore,   from (1) is continuous  

[9],[10]. 

Theorem 2.3.5 The Weierstrass function  ( ) defined by (1)  is nowhere 

differentible.  

Proof. Let    be a fixed arbitrary real number. We will show that  ( ) is not 

differentiable at        by constracting two sequences    and   , such that       

from the right and         from the left, such that the difference quotients  

 (  )   (  )

     
        

 (  )   (  )
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do not have the same limit. In fact, the absolute value of the left and right quotients 

diverge to   as    , and have  opposite signs.    

 For each    , choose an integer      such that  

      

 
          

 

 
 

 Define     

              

Let                be   

   
    

  
                         

    

  
  

This gives   

       
      

  
                          

      

  
   

Therefore,   

             . 

As           from the left and         from the right. We  first calculate 

the left-hand difference quotient:  

 (  )   (  )

     
 ∑   

   (      )     (     )

      

 

   

              

                                        ∑(  ) 
   (     )     (     )

  (     )

   

   

                

                                                    ∑ (    
   (       )      (       )

     
)              ( 

 

   

) 

                                                                                            

where    and    refer to respective sums. We will consider each of these sums 

separately by first rearranged   :  
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       ∑ ((  ) 
   (     )     (     )

  (     )
)

   

   

 

                                         ∑(   )(  )    (
   (     )

 
)

   

   

   (
   (     )

 )

      
   (     )

 

   

Here we used the trigonometric identity  

               
   

 
   

   

 
    

 

We have 

|
   (   

(     )
 )

   
(     )

 

|    

since  
    

 
     The absolute value of the first sum in (2) can be estimated as follows 

|  |  |∑(   )(  )    (
   (     )

 
)

   

   

   (
   (     )

 )

      
   (     )

 

|    

 

                         ∑(  )  
 

    

   

   

  (  )      
 

    
(  )                  ( )     

 

Since   is odd integer and         the terms of the second sum in (2) can be 

rearranged as  

   (       )     (     (
    

  
)) 

                         (   (     )) 

                                     (  )  
       (  )   
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and 

    (       )     (     (
       

  
)     (             )           

By the summation formula for cosine 

   (   )                                                                          

we have 

           (       )     (     )    (       )     (     )      (       )  

                                     (  )  
      (       )       

      (  )     (       )                                           

This means that we can express     as               

       ∑ (    
   (       )     (       )

     
)

 

   

          

              ∑ (    
 (  )   (  )     (       )

 
      

  

)

 

   

        

         (  )  (  ) ∑   
     (       )

      

 

   

                   

By assumption   (   )  each term in the series  

∑
     (       )

      

 

   

                               

is nonnegative and      ( 
 

 
  

 

 
  . Then we can find the lower bound of this series  

∑   
     (       )

      

 

   

 
     (     )

      
 

 

  
 
 

 
 

 
                ( ) 

The inequalities in (3) and (4) imply the existence of     and    with      and 

         such that 

 (  )   (  )

     
 (  )  (  )   (

 

 
   

 

    
)   
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If we consider the right-hand difference quotient, then the process is much the same. 

We express the difference quotient as a two partial sums, shown as  

 (  )   (  )

     
   

    
 
 

Similar to what we showed before, it can be deduce that  

                      |  
 |  

 

    
(  )                                  ( )      

Considering the cosine term containing    
 
, we arrive at, because   is odd integer 

and          

   (       )     (     (
    

  
))                                                   

                           (   (     ))                                                     

                                      (  )  
       (  )                                                       

       
  ∑ (    

   (           (       

     
)

 

   

   

                         ∑ (    
 (  )   (  )     (       )

      

  

)

 

   

 

              (  )  (  ) ∑
     (       )

      

 

   

           

Similar to above, we can find a lower bound for the series  

 ∑   
     (       )

      

 

   

 
     (     )

      
 

 

  ( 
 
 )

 
 

 
                 ( ) 

Hence, as before there exist           and      such that  

 (  )   (  )

     
  (  )  (  )   (

 

 
   

 

    
)  
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Since       
 

 
   which is equivalent to  

 

    
 

 

 
 ,  the left-hand in  (4) and  

right-hand in  (6) difference quotients have differet signs. Also, since  

   
   

(  )             

we see that the Weierstrass function  ( ) has no derivative at      Since    was 

arbitrary real number, then  ( ) is nowhere differentiable  [10], [9] ,[11], [12].    

2.4 Takagi function  

In 1903 Takagi discovered a continuous nowhere differentiable function that is   

simpler than Weierstrass function. The Takagi function T is defined by 

 ( )   ∑
 (   )

  

 

   

                                   

                                      ( )  
 

 
 (  )  

 

 
 (  )  

 

 
 (  )      

where  ( )      (   ) the distance from   to nearest integer the following is the 

graph of Takagi function [6].            

 

 

  

 

 

 

 

 

 

Figure 2-2: Takagi function 
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In order to show that Takagi function is nowhere differentiable we use the following 

lemma. 

Lemma 2.4.1  Let   defined on the open interval (   ) and differentiable at the 

point   (   )  Let {  }     {  }  be two sequences in (   ) converging to   such 

that          and           for               [6]. 

Then  

  ( )     
   

 (  )   (  )   

     
     

Proof   We must prove that       , there exist an integer   such that 

|
 (  )   (  )   

     
   ( )|                                            ( ) 

Since   is differentiable at  , then for each positive number   there exist a positive 

number   such that  

|
 (  )   (  )   

     
   ( )|  

 

 
                               |   |       

so that  

| ( )   ( )    ( )(   )|  
 

 
  |   |                         |   |       

Since                        it follows that there are  numbers           

such that 

|    |                         |    |    for all       , 

so if we choose      {       }, then we have  

|    |         |    |     for all     . 

From (1) that,         we have 

| (  )   ( )    ( )(    )|  
 

 
  |    |  
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        | (   )   ( )    ( )(    )|  
 

 
  |    |           

By using the triangle inequality we obtain    

                  | (   )   ( )    ( )(    )| 

      |{ (  )   ( )    ( )(    )}  { (  )   ( )    ( )(    )}| 

 | (  )   ( )    ( )(    )|  | (  )   ( )    ( )(    )| 

 
 

 
  |    |  

 

 
  |    |   

  
 

 
  |     |  

 

 
  |     | 

  
 

 
  |     |                  

Since       divided this inequality by non-zero term       then for     we 

get 

|
 (  )   (  )   

     
   ( )|  

 

 
      

then  

  ( )     
   

 (  )   (  )   

     
            

Theorem 2.4.2 The Takagi function is continuous but nowhere differentiable. 

Proof: First, demonstrate that  ( )  is continuous by using Weierstrass M-test and 

definition of uniform convergence.        
 

  
     is positive integer. Then  

|
 (   )

  
|  

 

  
     

                                                                                                                 

   ∑
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Then  ( )  is uniformly convergent. This implies that  ( )  is uniformly continuous 

[13] .                                            

Show that Takagi function is nowhere differentiable. Let   be a fixed arbitrary real 

number, and for each      let            be any two sequences such that    
 

  
  

and    
   

   
 , where       By contrary, assume that   ( ) exists. Then by lemma 

(2.4.1)          where          and         
    

      
 

           Then 

    (  )   (  )   

          
   ( )  

    (  )   (  )   

          
 ∑

     (  )     (  )   

          

   

   

  

where   ( )      (   )                  In the case      we have       

 (  )   (  )     But in case    ,    is linear on         with the slope 

  
 ( ),  which is the right-hand derivative of      at  . Thus,  

    (  )   (  )   

          
 ∑   

 ( )

   

   

  

Since   
 ( )     then as      the series does not converge form the right. This 

is contradiction with the assumption that   ( ) exists. Therefore the Takagi function 

is nowhere differentiable [6] , [12] , [13].     

 2.5 Van der Waerden function   

Another example of continuous nowhere differentiable function is the Van der 

Waerden. The construction of Takagi and Van der Waerden functions are very 

similar. Van der Waerden published his function in 1930.  This function is  defined 

by 

 ( )   ∑
 

   

 

   

    (      )  ∑
 

   

 

   

      |      | 
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Where       |     | denotes the distance from   to nearest integer [7]. The 

following is the graph Van der Waerden function. 

 
Figure 2-3: Van der Waerden function 

Theorem 2.5.1 The Van der Waerden function is continuous but nowhere 

differentiable. 

Proof: First, we prove that it is continuous. This follows from that fact that the 

infinite sum of continuous functions, which converges uniformly, is itself 

continuous.  For this we use the Weierstrass M-test we have 

  ( )  
 

   
    (      )  

then 

|  ( )|  
 

   
               

                                                       ∑
 

   
                  

 

   

 

                                                        ∑   
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then  

 ( )  ∑   

 

   

  ∑
 

   
    (      )            

 

   

 

So, the Van der Waerden function is continuous. 

We now prove that for all      ( ) is not differentiable at  . To show that  ( ) is not 

differentiable, we will construct a sequence       such that  

   
   

 (    )   ( )

  
   

does not exist. Consider       write   in decimal expansion 

                 Let  

   {
                         
                             

   

Note that as                                          

 (    )   ( )

  
 ∑

   

      
 

 

   

    (   (    )  )      (      )

     
   

                                           ∑       (    (   (    )  )      (      ))

 

   

  

This infinite series has actually no finite sum. Consider two cases. First for     

the terms in this sum are equal to zero, because  

    (   (    )  )      (      )                         

     (      )      (       )      (      )      

On the other hand, in the second case when      we can write  

                          

   (    )                   (    )         

where        Suppose now that  
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Then we also have  

                (    )  
 

 
     

This means that    

    (   (    )  )      (      )          

                                                          
 

 
                

         we have  

         (   (    )  )      (      )       

In other word 

 (    )   ( )

  
  ∑   

 

   

  

does not exists. Therefore  ( )  is nowhere differentiable [7] , [14]. 

2.6 Baire category theorem 

The Baire category classifies the points of a given metric space to be the typical and 

non-typical. To explain the issue give the following definitions. 

2.6.1 A metric space is a pair (   )  where   is a nonempty set and   is a metric on 

 , that is a function defined on        such that for              we have [15]: 

 ( )   is real-valued, nonnegative , 

 (  )   (   )                          

 (   )  (   )   (   )     

 (  )  (   )   (   )   (   )  

2.6.2 The sequence {  } is Cauchy sequence in a metric space (   ) if          

     such that          (      )     The metric space (   ) is said to be 

complete if every Cauchy sequence {  } in   is convergent, that is there is    

             (      )     [3]. 
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2.6.3 Let   be a matric space and    . We say that   is dense in   if     , 

where     is closure of  . 

2.6.4   is said to be nowhere dense in   if every neighborhood   in   contains 

another neighborhood    such that         [15]. 

2.6.5 We say that the set   is of the first category if it is a union of countable number 

of nowhere dense sets in    It is said to be the second category if it is not of the first 

category  [15]. 

Theorem 2.6.6 Baire category theorem Let   be a complete metric space and let 

    be a set of the first category in  . Then     is dense in    

Proof: Let   be arbitrary neighborhood in  . It suffices to prove that       . 

For this let  

  ⋃  

 

   

   

where every    is nowhere dense in    Construct a nested sequence of closed balls 

{  } in the following way. Let    be any neighborhood of    and radius less than 

one. It contains a neighborhood    such that  

          

since    is nowhere dense in  . Then we take a closed ball    contained     After 

that we consider any neighborhood    in    of radius less than  
 

 
. Since    is 

nowhere dense in X,    contains a neighborhood    such that           Take a 

closed ball    contained in   . Continuing in this way we construct nested sequence 

of closed ball {  }  Hence there exists  

  ⋂     
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Additionally, from         we get      for every positive integer         

Hence,  

  ⋃     

 

   

   

that is        We conclude that        [15] , [16]. 

According to this theorem the points of a set of the first category are non-typical 

while the points of the set of the second category are typical. Application of this 

theorem to   shows that   is a set of the first category while the set II of irrational 

numbers is of the second category. Respectively, irrational numbers are typical 

points of  , while rational numbers are non-typical. 

Banach, Mazurkiewicz theorem considers this issue for the space  (   ) of 

continuous functions on         

Theorem 2.6.7 (Banach-Mazurkiewicz) The set of all continuous nowhere 

differentiable function on       is of the second category in  (   ), where  (   ) is 

the space of continuous functions [12]. 

This theorem shows that the main body of  (   ) consists of continuous nowhere 

differentiable functions. Differentiable functions form a small part of  (   )  
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Chapter 3 

SINGULAR FUNCTIONS 

3.1 Introduction 

By fundamental theorem of calculus  

∫   
 

 

( )    ( )   ( ) 

if   continuously differentiable. More generally, this equality holds if   has at most 

countable number of discontinuities. In the case when the number of discontinuities 

are uncountable then this equality does not hold. The example of such singular 

function is Lebesgue-Cantor function. Definition of Lebesgue-Cantor function is 

based on Cantor ternary set, or shortly Cantor set. Therefore, in this chapter we first 

consider Cantor set, derive properties of this set, and then define Lebesgue-Cantor 

function. 

 3.2 Cantor set   

The Cantor set is a very interesting set, constructed by Georg Cantor in 1883. It is 

simply a subset of the interval       which is defined in the following way.             

Let     =        Define    to be the set that results when the open middle third is 

removed; that is   

      (
 

 
 
 

 
)  [  

 

 
]  [

 

 
  ]  

Using the way of definition of      construct    by removing the open middle third of 

each of the components of       
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               ([  
 

 
]  [

 

 
 
 

 
])⋃([

 

 
 
 

 
]  [

 

 
  ])   

Continuing in this way   times we obtain a set    which contains    closed intervals 

each having length  
 

  
 . Finally, we define the Cantor set    to be the intersection of 

all   : 

  ⋂   

 

   

  

In other words   is the remainder of the interval       after the iterative process of 

removing open middle thirds taken to infinity:  

        [(
 

 
 
 

 
)  (

 

 
 
 

 
)   ]  

Figure 3-1: The Cantor set. 

In fact    , since we are always removing open middle thirds, then for any      

      Also     in the same manner. Moreover, if   is an endpoint of some closed 

interval of some particular set     then it will be an endpoint of one of the intervals 

of     . Since at each stage endpoints are never removed, then      for all  . 

Thus,   at least includes the endpoints of all of the intervals that construct each of the 

sets      Sometimes, the Cantor set is called as Cantor ternary set, because the 

numbers from this set can be written as 
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∑
  

  
    

 

   

   

 where     {   } for each    Generally every point          has a ternary 

expansion of the form  

∑
  

  

 

   

        

 where    {     } for each    and this expansion is unique for   except    has a 

finite expansion of the form  

          ∑
  

  
                   

 

   

 

         {   }  In this case we let the expansion of   be as  

  ∑
  

  

 

   

 ∑
 

  

 

     

 

if     , and  

  ∑ 
  

  

 

   

   ∑
 

  

 

     

 

if       Then each         has a unique ternary expansion. In addition, the 

intervals that construct      are obtained by removing the middle thirds from the 

intervals that construct     therefore,  

   {          ∑
  

  
     {   }            }  

  

   

 

Hence,  

   ∑
  

  

 

   

                           

if and only if     {   } for each positive integer    [10]. 

The Cantor set has properties:  



 

26 

 

1) The Cantor set is non empty. 

2) The Cantor set is closed.  

3) The Cantor set nowhere dense.  

4) The Cantor set is compact. 

5) The Cantor set is uncountable.  

6) The Cantor set has measure zero. 

Proof 1) Since      then   is non empty. 

Proof 2) Every    is a finite union of closed intervals. Since, all    are closed,   is 

closed because it is an intersection of closed sets    ,            

Proof 3) Every element of   is a limit point of a sequence of elements of the  

complement of   . This shows that every neighborhood of a point in   intersects 

with the complement, this means that there does not exist an open subset of   so 

          

Proof 4) In part 2) it was proved that the Cantor set   is closed. It is also bounded 

since          Then,   is compact since it is closed and bounded. 

Proof 5 Assume the contrary,   is countable. Definitely,   is not finite. So , it should 

be denumerable set like {          }. We can write the ternary expansion of 

           as follows  

                

                  
                   

                                                                                            
where     {   }   Define a new number   which has ternary expansion  

 

                

with                                        This number is obviously in   , but 

it is not inside in the set {          }. This contradiction proves that   is 

uncountable. 
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Proof 6) Note that the measure of the interval       is      If  

                

then the measure of                 (   )  (   )  If                then the 

measure of             is (   )  (   )   Apply thus measure operations to 

the Cantor set. Then the measure of          equals  

  
 

 
   

 

 
   

 

  
      

 

    
 

        ∑  
  

    

 

   

 
 

 
∑ (

 

 
)

 

 
 

 

 

   

 
 

  
 
 

      

So the measure of the Cantor set equals to          

3.3 Lebesgue-Cantor function 

A Lebesgue-Cantor function is an example of singular function for which the 

fundamental theorem of calculus does not hold. Define the Cantor function on the 

Cantor set     By construction,     if and only if   has the ternary expansion  

  
  

 
 

  

 
 

  

  
    

where            {   }  Define the Lebesgue-Cantor function   on   by 

 ( )  
    

 
 

    

 
 

    

 
     

Clearly,         and        imply that  (  )   (  ). Moreover,   ( )        

since every         which has the binary expansion  

  
  

 
 

  

  
 

  

  
    

where            {   }  corresponds to 
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Extend    to       in the following way. Let                            be the 

open intervals which are removed from       to obtain the Cantor set    The left 

boundary point              of       belongs to  . Let  ( )   (    ) if       . 

Then   is defined on       so that   increases at points of   and is constant on each 

    . The following is the graph of Lebesgue-Cantor function. 

 
Figure 3-2: The Lebesgue-Cantor function 

This extension of   is called the Lebesgue-Cantor function. By definition, this  

function is an increasing function from       to      . It has no jump discontinuity 

since its rang equal to      . Hence, the Cantor function is continuous. Let us show 

that the Lebesgue-Cantor function is non-differentiable at every point of the Cantor 

set  . Take any    . Let        be the closed intervals as defined above. Introduce 

the numbers      and      by letting       =     ,      . Then there exist a sequence 

{  } such that  

     
        

  

By construction,                 with  
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and  

     
 

  

 
      

  

  
 

 

    
 

 

    
                   

where          {   }           

     
      

 
 

    
 

 

    
   

               
 

    
∑

 

  

 

   

   

 
 

  
   

Then  

     
        

 
 

  
   

and  

 (     
)   (     

)  
 

    
 

 

    
              

               
 

    
∑

 

  

 

   

 

 
 

  
   

Then  

  (     
)      (     

)  
 

  
    

So  

   
   

 (     
)   (     

)
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If        
 for some  , then        

          
   implying that the right 

derivative of    at   does not exist. If        
 for some  , then        

 

         
    implying that the left derivative of    at   does not   exist.                   

If      
        

 for every  , then from  

 (     
)   ( )

     
  

 
 ( )   (     

)

       

 
 (     

)   (     
)

     
      

   

we get that the derivative of    at   does not exist. Then   is non differentiable at 

every point of   of the Cantor set [4] , [17] . 
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Chapter 4 

SPACE FILLING CURVE 

4.1 Introduction  

In 1878 the German mathematician George Cantor made a shocking discovery  by  

finding  a remarkable  bijective function from                       But in 1879 Netto 

proved that the  Cantor’s map is not continuous. After Netto’s result, some 

mathematicians began to look for continuous surjective mappings of this sort . In 1890 

Giuseppe Peano found one, continuous function that maps the unit interval 

surjectively to the unit square. Such a map is called space filling curve.  After this the 

other space filling curves were followed by Hilbert in 1891, H.Lebesgue in 1904, 

Sierpinski in 1912, K. Knopp in 1917… etc [17]. 

4.1.1 A space filling curve is a surjective continuous function from the unit interval 

onto    assuming that         

 4.1.2 A function            is continuous if all its components are continuous. 

 4.1.3: A function             is differentiable if all its components are 

differentiable. 

4.2 Peano function  

The Peano curve or Peano function is maps         onto              It is based 

on the ternary expansion of the real numbers. Let         has the ternary expansion 

    ̇        . This means that  
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where             {     }  Then the Peano function  ( ) is defined as  

                 ( )   [
 ( ) 

 ( )
]                                  ( ) 

where  ( ) and  ( ) are the first and the second components of   ( ) and they are 

defined as ternary expansions  

 ( )    ̇  ( 
    )( 

        )                     ( )  

            ( )    ̇( 
    )( 

       )                         ( )             

Here,   is operator     
     , for    {     } and    is the     iterate of  . 

 

Figure 4-1: First three iteration of Peano curve 

Theorem 4.2.1 The Peano function  ( ) is continuous but nowhere differentiable. 

Proof.  First, we prove that both components  ( ) and  ( )  are continuous. Let as 

show that the first component    of Peano function, defined by ( ), is continuous 

from the right at all        ). 

Let       ̇                   be the ternary representation of     that does not 

have infinitely many trailing      and let           ̇                 . We 

have         ̇                         ̇                 

                           ̇            ̅              

So for any              )   the first    digits after the ternary point are equal  

    ̇                        
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We have  

|  ( )    (  )|  |  ̇  ( 
    ) (       )  

                                              ̇  ( 
    ) (       ) | 

                             
|               | 

    
  

|                            |

    
   

                 ( 
 

     ) (   
 

 
 

 

 
 

 

  
  )   

 

               . 

Hence     is continuous from the right. 

To show that    continuous from the left in (        assume    has the ternary 

representation      ̇                  

and let   

     ̇                   

Then  

                      ̇                                             

Hence, for    (                which has a ternary representation with the same first 

    digits as        we obtain  

|    ( )      (  )|   |  ̇  ( 
    ) (       )    ̇  ( 

    ) (       )   | 

                 
 

    
(   

 

 
 

 

 
 

 

  
 )   

 

  
             

So    is continuous from the left in (    . Then   is continuous in         The 

continuity of second component of   ( ) follows from  

 ( )    ( 
 

 
 )  

Now let as show that   is nowhere differentiable on         For any                         

     ̇                               we define the sequence  {  } by            

     ̇                        where                 (      )  This 
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implies that |    |  
 

     
   By  (2) ,  ( ) and  (  ) differ only at position      

in the ternary representations. So, we have  

|  ( )    (  )|  
|                             |

    
 

 

    
   

and hence ,  

|  ( )    (  )|

|    |
 

 

    
 

     

 
                   

Hence    is not differentiable at    Since         is arbitrary   is nowhere 

differentiable on         Since  ( )    ( 
 

 
 )    ( ) is also nowhere differentiable 

on      . This proves the theorem [5] , [18]. 

4.3 Hilbert’s space filling curve 

After Giuseppe Peano, in 1891 David Hilbert found another space filling curve . Let   

        and                               where                 

Hilbert divided          into the same number of subsets and define the mapping  

between them. Its easy to proceed this in case    . So we let        

Define mapping from                      as shown in Picture 4.2 (left). Then 

divide each subset into the same number of subsets define a mapping between them 

as in Picture 4.2 (medium). Continuing in this way for third and other iterations, in 

the unit square we obtain a curve which is called the Hilbert’s curve [5]. 

 

Figure 4-2: Hilbert curve 
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Theorem 4.3.1 The Hilbert’s curve is continuous but nowhere differentiable.  

Proof: First we show that the Hilbert curve is continuous. Since the curve at the      

iteration is obtained by division of   in to     subintervals, the length of each 

subintervals is   
 

   
 . therefore taking               so that 

|       |   
 

   
           

we obtain  

      ‖   (  )     (  )‖   
√ 

  
   

Thus,                      is continuous.  

To show that the Hilbert function nowhere differentiable, let       Then for any 

       , choose a          such that 

|    |  
  

   
   

the components     and    of the images of   and    are separated by at least a square 

side length of  
 

   . So 

|
  ( )     (  )

      
|     

  

  
  

This proves the theorem [5] . 

 4.4 Sierpiński curve 

In 1921 Sierpiński introduced another example of space filling curve. The Sierpiński 

function is defined  

{ 
   ( )             
    (   )    

                               

where  ( ) is continuous bounded even function 
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        ( )   
 ( )

 
 

 ( )(  ( ))

 
 

 ( ) (  ( )) (  ( ))

 
   , 

where both     are periodic functions with the period 1 and defined by  

 ( )   {
                              [ 

 

 
 
 

 
)              

                         [   
 

 
)   [

 

 
  )  

 

  ( )  {

 

    
                [  

 

 
)  [

 

 
  
 

 
 )  

 

     
                 [

 

 
  
 

 
)  [

 

 
   )  

 

where     ( )    (  ( ))   for every     . The following is the graph of the 

second, third and fourth iterations of Sierpiński curve [5]. 

 
Figure 4-3: Sierpiński curve 

4.5 Schoenberg curve  

Another example of space filling curve is Schoenberg function. Schoenberg 

published this example in 1938.  Schoenberg showed that his function is continuous 

space filling curve. After many years in 1981, J.Alsina proved that it is nowhere 

differentiable.  

Define the first and second components of Schonberg function as  

 ( )  
 

 
∑  

 

  
 (   

 

   

 )   
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 ( )  
 

 
∑

 

  

 

   

 (        )  

where 

  ( )  

{
 
 
 

 
 
                                     

 ⁄          

                        ⁄     
 ⁄              

                                           ⁄       
 ⁄                          

                             ⁄     
 ⁄                 

                                ⁄                     

 

 
   Figure 4-4: Schoenberg’s   function. 

It is seen that  ( ) is even and periodic function with the period 2. 

Theorem 4.5.1: The Schoenberg function is continuous but nowhere differentiable. 

Proof: First, we show that   and   are continuous. We know  

   |
 

  
 ( )|  

 

  
   

For any     we also note that 

∑ (
 

 
)

 

    

 

   

 

By Weierstrass M-test   ( )         ( ) are both uniformly converges since a 

uniformly convergent series of continuous functions represents a continuous 
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function. Then  ( )         ( ) are continuous. To show that both  are nowhere 

differentiable    (      ), we distinguish three cases  

(   ) First let      choose     
 

  
  and consider  ( )      Then 

 (   ⁄ )   
 

 
∑

 

  
 (     )

 

   

   

Since 

  (    )   {
                
                  

      

we get  

 (
 

  
)  

 

 
∑

 

  

 

   

 
 

  
      

Hence   

   
 (  )   ( )

  
 (

 

 
)
 

         

which                                      ( )                 As  ( )  

 (  )  we also have that    ( ) does not exist. 

 (    ) Let        Then we see that  

          ( )  
 

 
∑

 

  

 

   

  
 

 
      

Choose      
 

                                Then we have  

        (  )   (  
 

  
)  

 

 
∑

 

  
 (        )    

 

   

 

When         (        )   , and when      (        )     Then we 

get 

 (  )  
 

 
∑  

 

  

 

   

  (
 

 
)
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This gives us 

 ( )   (  )

     
  

  (
 
 )

 

  (  
 
  )

  
   (

 
 )

 

 
  

      (
 

 
)
 

      

as     which diverges to  . This means that    ( ) does not exist. As   ( )  

 (  ) we also have    ( ) does not exist.  

(   ) Let   (      )   We can find for every such   two sequence {   }  {  }  that 

satisfy the requirement of the Lemma 2.4.1 so that the limit does not exist. Let 

                    denotes the integer part of     And let            and 

             , it is easy to show that, for sufficiently large             and 

that            . These satisfy the conditions of Lemma 2.4.1 so that the 

sequence    can have infinitely many even values or infinitely many odd values or 

both. If there are infinitely many even values, denote the subsequence of even 

integers  again by       Then we have    

 (  )   
 

 
∑

 

  

 

   

 (      )   

                 (  )   
 

 
∑

 

  

 

   

 (           )   

 Hence 

 (  )   (  )   
 

 
∑

 

  

 

   

 (           )   
 

 
∑

 

  

 

   

 (      ) 

                
 

 
∑

 

  

   

   

( (           )   (      )) 

                    
 

 
∑

 

  

 

   

( (           )   (      )) 
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 For the first summation if      then       
 

 
   and from a definition of   ( ) we 

can get the lower bound  

 (           )   (      )           

From this we can get a lower bound form     by 

    
 

 
∑

 

  

   

   

     

                   
 

    
∑ (

 

 
)
 

    
   

   

  

                      
 

    
((

 

 
)
 

  )     

For the second summation as               is odd. Recall that each    is even in 

this case so let           and                and we know that    is even 

and     is odd (   is the product of an even and odd    is the sum of an even and 

odd integers). This means that  (  )    and  (  )    then  

   
 

 
∑

 

  

 

   

 ( (  )   (  )) 

       
 

 
∑

 

  

 

   

(      )   
 

  
   

We note that           and putting it all together we have  

 
 (  )   (  )

     
    (      )                                   

                                    (
 

  
 

 

    
((

 

 
)
 

  ))   

                         
 

 
(
 

 
)

 

 
 

 
              

Which is diverges to   as      This means that    ( )  does not exist. If there are  
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infinitly many odd, then we can define                as before with the odd 

subsequence of       We want to get an upper bound for       such as before. We  

estimate    by 

   
 

 
∑

 

  

   

   

       
 

    
((

 

 
)
 

  )   

For     as                                 odd and                  is 

even this means that    (  )    and  (  )      then we get  

    
 

 
∑

 

  

   

   

(  (  )   (  ))   
 

 
∑

 

  

   

   

 (    )   
 

  
    

 Putting it all together we have  

 (  )   (  )

     
    (      )                                 

                                  (
 

    
((

 

 
)
 

  )  
 

  
) 

                            
 

 
(
 

 
)
 

 
 

 
            

which diverges to    as                           ( )  does not exist. Then in 

both cases    ( )  does not exist, since   (   )  was arbitrary, then  ( ) is nowhere 

differentiable on (   ). And since   ( )   (  ) we obtain that  ( ) is nowhere 

differentiable on (   )  [5]. 

 Example 4.5.4 A space filling curve is continuous function which does not have 

content zero. Let us demonstrate this in the example of Schoenberg function. Let  

 ( )  

{
 

                   
 ⁄  

           ⁄     
 ⁄

              ⁄      

  

Extend   to [-1,1] as an even function with the period 2 and let 
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  ( )  ∑
 (  (   ) )

  

 

   

   

     ( )  ∑
 (      )

  

 

   

       

where         Since    and    are well defined on       and both    and    are 

continuous we consider   (     )  (      )  which describes the curve 

  {   ( )   ( )} on  . We confirm that                 Indeed, we have  

  ∑
 (  (   ) )

  

 

   

 ∑
 

  

 

   

           

since    ( )         Similarly,       ( )               This implies 

the inclusion                

For the reverse inclusion                take any (     )              and 

write the binary expansion of          as  

   ∑
  

  

 

   

    

and  

   ∑
  

  

 

   

      

where    and    are either  0 or 1. Then      (  ) and      (  )   if     has the 

ternary expansion. Then 

   
   

 
 

   

  
 

   

  
 

   

  
    

since          Then we calculate that 

  (   )        (
   

 
 

   

  
   

     

     
 

     

     
 

   

     
 

   

   
  ) 

                (                          )  
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Letting  

   
   

 
 

   

  
 

     

  
 

     

  
    

we get that  (  (   )  )   (  ) since f has period 2. If        then,      

 
 ⁄    This implies that  (  )     Also if      then   ⁄        This implies 

that  (  )      Also,   (  (   )  )   (  )    . This proves that  

  (  )  ∑
 (  (   )  )

  

 

   

 ∑
  

  

 

   

              

In the same analogue, we can prove that   (  )    . This               and, 

hence,               , this implies that   does not have content zero [10].   
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Chapter 5 

INFINITELY MANY TIMES DIFFERENTIABLE BUT 

NOT ANALYTIC FUNCTIONS 

 5.1 Introduction  

Since the Taylor series of  ( ) includes all order derivative of   ( ), every analytic 

function has all order derivative. The converse of this statement does not hold: there 

are infinitely many times differentiable functions on the interval   which are not 

analytic. In this chapter we consider two such interesting functions. 

5.1.1 Assume that  ( ) has all order derivatives at   . The series of the form  

∑
 ( )(  )

  

 

   

(    )
  

or  

 (  )   (  )
 (    )  

 (  )
  

  
 (    )

  
 (  )

 

  
(    )

    

is called the Taylor series of   ( )  about     [19]. 

Remark 5.1.2  Taylor series of  ( ) about    always converges to  ( ) if       

but it may not converges to   ( )  for       . 

 5.1.3  If a Taylor series of  ( ) about    converges to  ( ) for all   in same 

neighborhood of   , then   is said to be analytic at   . If        then the Taylor 

series is called Maclaurin series [19] . 

5.2 Analytic functions                                                                    

According to definition, a function is analytic if it is equal to its Taylor series. How 
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can we show that the function is analytic? For this, we split Taylor series into the 

sum of     Taylor polynomial    ( ) and the remainder   ( ) as  

∑
  (  )

  

 

   

(    )
    ( )    ( )  

Then  ( ) equal to its Taylor series about    on the same neighborhood of    , if and 

only if    ( )    as     for all   in this neighborhood [20]. 

Theorem 5.2.1 (Taylor inequality)  Let   has continuous (   ) order derivatives 

for |    |   .  If  |    ( )|      then the reminder term satisfies  

|  ( )|  
  

(   ) 
|    |

      

Proof: We consider the case     . The higher values of  , the proof can be done 

by repeating the proof for the case      many times. By fundamental theorem of 

calculus  

 ( )   (  )  ∫   ( )
 

  

                                         

       (  )  ∫ (  (  )  ∫    ( )
 

  

  )  
 

  

 

                   (  )    (  )(    )  ∫ ∫    ( )
 

  

 

  

       

Here  

     ( )   (  )    (  )(    )                                        

and  

   ( )  ∫ ∫    ( )
 

  

 

  

                                                       

Therefore,  

|  ( )|  ∫ ∫    ( )
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   ∫ ∫     
 

  

 

  

   ∫ (    )  
 

  

    

                           

(    )
  

  
   

This proves the theorem. 

Example 5.2.2 The exponential function  ( )     is analytic function on  . To 

prove we use Taylor inequality . We have   

 (   )( )      

So,  

For all     with |    |     

We have  

| (   )( )|         

Then by Taylor’s inequality  

|  ( )|  
     

(   ) 
|    |

    

                    
|    |

   

(   )     
    

This tends to 0 as      So for each     with |    |     

   ∑
   

  

 

   

(    )
    

This means that    is analytic function on    

Example 5.2.3 The function  ( )       is analytic on  . To prove note that 

    ( ) equals to one of the function                        Therefore,  

|  ( )|  
|    |

   

(   ) 
           

Thus      is analytic on  . Its Taylor series about      equal to. 
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     ∑(  )   
     

(    ) 

 

   

   

 5.3 Elements of multiplicative differentiation. 

To consider examples of infinitely many times differentiable but not analytic 

function we will use methods of multiplicative calculus. If  ( ) is a positive 

function, then its multiplicative derivative is defined by 

  ( )     
   

(
 (   )

 ( )
)

 
 

  

Comparing   ( ) with  

             ( )     
   

 (   )   ( ) 

 
      

we see that the difference  (   )   ( ) is replaced by the ratio  (   )   ( ) 

and the division by   is replaced by the raising to the reciprocal power   ⁄   As it 

follows from the above, the multiplicative derivative is denoted by   ( )  The 

multiplicative derivative of    is called the second multiplicative of  , denoted by 

      In a similar way the     multiplicative derivative of   can be defined. We use 

the notion   ( )          , where   ( )      If    is a positive function on   and 

the derivative of   at   exists, then one can calculate  

  ( )     
   

(
 (   )

 ( )
)

 
 

                                                                                

           
   

(  
 (   )   ( )

 ( )
)

 ( )
 (   )  ( )

   
 (   )  ( ) 

 
    

 
 ( )

 

         
  ( ) 
 ( )   (     ) ( )                                                                    

where (    )( )      ( )   If the second derivative of   at   exists, then by 

substitution we obtain  
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   ( )   (     ) ( )   (    )  ( )   

Repeating this   times, we conclude that if   is positive function and     derivative 

of   at   exists, then 

  ( )( )   (    )( )
( )             

A formula similar to Newton’s binomial formula can be derived to express  ( )( ) 

in terms of multiplicative derivatives: 

                      ( )( )  ∑
(   ) 

  (     ) 
 ( )( )(     (   ))( ) 

   

   

                  (     ) 

 5.4 First example   

The function  

                      ( )={ 
  

 

                      
                          

 

is infinitely many times differentiable at      but is not analytic at       We 

claim that   is infinitely many times differentiable on  . A verification of this 

statement is easy at every     but more difficult at    . We use 

multiplicative calculus to prove that   ( )    for every          For this, 

consider      and show that  

                                 ( )( )   
(  )   (   ) 

     ,   =0, 1, 2, ...                           (5.4.1) 

This is true for      in the form   ( )( )   ( )   
  

 

      Assume that its true 

for    and calculate for (   ): 

  (   )( )     
   

 
(
(  )   (   ) 

(   )    
(  )   (   ) 

    ) 
 
      

By binomial formula, 
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        (   )( )     
   

(
(  )   (   ) 

(   )   
 

(  )   (   ) 

    
)

 

 
                            

      
   

(  )   (   ) ((   )        )

     (   )   
      

                
   

(  )   (   ) ((   )            )

     (   )   
 

                
   

(  )   (   ) ((   )           )

    (   )   
     

   
(  )   (   )     

     
                                            

      
(  )   (   ) 

    
                                                        

Hence, 

  (   )( )   
(  )   (   ) 

        

By induction,  (5.4.1)  holds for every             N                        

(5.3.1) and obtain 

    ( )( )  ∑
(  )     (   ) (     )   ( )( )

  (     )        
         

   

   

 

Multiple application of this formula yields 

 ( )( )

 
  ( ) ∑

    

  

  

   

           

where      is integer and    is positive integer      .  We need not the exact 

value of these integers. By multiply application, we have  

   
    

 ( )

  
    

    

 
  
  

  
    

    

 
  

 
 
  

    
   

 
 
 

  
    

Thus, 
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 ( )( )

 
            

Implying  (   )(  )    whenever  ( )(  )   . Since  ( )     By induction, 

we conclude that  ( )(  )    for every          Since   in an even function, 

we easily deduce  ( )(  )    for every         Thus  ( )( )    for every  

        . So, the Taylor series of  ( ) about 0 is  

∑
  ( )

  

 

   

    

which converges for every       and it is sum is the zero function while  

 ( )     only at       In other words   is not analytic at      and on every 

interval containing       while it is infinitely many times differentiable on   

[20]. 

 5.5 Second example   

The function  

                      ( )={    
 

                   
                          

 

is infinitely many times differentiable at      but is not analytic at       To 

show that   is infinitely many times differentiable on   we use the same 

technique as in the previous example. Clearly  ( ) infinitely many times 

differentiable at    . We claim that the same holds at       Let as show that 

  ( )    for every           For this, consider      and show that  

                                 ( )( )   
(  )   ( ) 

     ,   =0, 1, 2, ...                           (5.5.1) 

This is true for      in the form   ( )( )   ( )     
 

     Assume that it is true 

for    and calculate for (   ): 

  (   )( )     
   

 
(
(  )   ( ) 
(   )    

(  )   ( ) 
    ) 
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By binomial formula, 

        (   )( )     
   

(
(  )   ( ) 

(   )   
 

(  )   ( ) 

    
)

 

 
                            

            
   

(  )   ( ) ((   )        )

     (   )   
      

                 
   

(  )   ( ) ((   )          )

     (   )   
 

              
   

(  )   ( ) ((   )       )

    (   )   
     

             
(  )   (   )   

     
                                            

                   
(  )   (   ) 

    
                                                        

Hence, 

  (   )( )   
(  )   (   ) 

        

By induction, (5.5.1)  holds for every             N                  rmula  

(5.3.1) and obtain 

    ( )( )  ∑
(  )     (   ) (   )   ( )( )

  (     )       
         

   

   

 

Multiple application of this formula yields 

 ( )( )

 
  ( ) ∑

    

  

  

   

           

where      is an integer and    is positive integer      .  We need not the 

exact value of these integers. By multiply application, we have  

   
    

 ( )

  
    

    

 
  
 

  
    

    

 
  

 
 
 

    
   

  

  
    

Thus, 
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 ( )( )

 
            

implying  (   )(  )    whenever  ( )(  )   . Since  ( )     By induction, 

we conclude that  ( )(  )    for every          We easily deduce 

 ( )(  )    for every         Thus   ( )( )    for every          . So, 

the Taylor series of  ( ) about 0 is  

∑
  ( )

  

 

   

   

which converges for every       and it is sum is the zero function while  

 ( )     only at       In other words   is not analytic at      and on every 

interval containing       while it is infinitely many times differentiable on   

[20]. 
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