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ABSTRACT 

The efficiency and robustness of iterative methods can be improved using a 

preconditioner that causes a change in the original matrix implicitly or explicitly. 

Usually preconditioners are constructed using the structure of the coefficient matrix. 

Therefore a preconditioner which works well for one class of matrices may fail to 

give good results for an other class. 

The focus of this study is to analyze, the efficiency of approximate inverse 

preconditioners for solving linear systems that arises from the discretization of the 

Poisson equation on a rectangle with Dirichlete boundary conditions. To realize this 

first, geometric construction of second order and a class of third order iterative 

methods for approximating a simple root of the nonlinear equation  ( )    are 

investigated. Then by the generalization of these methods to Banach spaces, and 

applying them to the equation  ( )         , Newton and Chebyshev 

iterative methods for matrix inversion are studied. These methods are applied to 

solve linear system of equations obtained from difference analog of Dirichlet 

problem of Laplace’s equation on a rectangle. The research is proceeded with the 

numerical results achieved and some discussions are made based on these results. 

Keywords: Chebyshev’s method, approximate inverse preconditioner, finite 

difference scheme, Laplace equation. 
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ÖZ 

Iteratif yöntemlerin verimlilik ve sağlamlığı kapalı veya açık olarak, orijinal matrisde 

bir değişime neden olan bir önkoşullandırıcı kullanılarak geliştirilebilir. Genellikle 

önkoşullandırıcılar katsayı matrisinin yapısı kullanılarak inşa edilir. Bu nedenle bir 

sınıf matrisler için iyi çalışan bir önkoşullandırıcı başka bir sınıf için iyi sonuçlar 

vermekte  başarısız olabilir. 

Bu çalışmanın odak noktası dikdörtgen üzerinde Dirichlet sınır koşullu Poisson 

denkleminin ayrıştırılması ile oluşan lineer sistemlerin çözümünde  yaklaşık ters 

önkoşullandırıcıların etkinliğini analiz etmektir. Bunu ğerçekleştirmek için önce, 

( ) 0f x   doğrusal olmayan denklemin basit bir kökünün yaklaşımında ikinci 

mertebeden ve üçüncü mertebeden olan bir sınıf iteratif yöntemlerinin  geometrik 

oluşumu incelendi. Daha sonra bu yöntemlerin Banach uzaylarına genişletilmesi ve  

1( ) 0F N N A     denklemine uygulanması ile  Newton ve Chebyshev iteratif 

yöntemleri çalışıldı. Bu yöntemler  Laplace denkleminin dikdörtgen üzerinde 

Dirichlet sınır koşullu probleminin farklar analoğundan elde edilen lineer denklem 

sistemini çözmek için uygulandı. Araştırma elde edilen sonuçlar ile ilerlendirildi ve 

bu sonuçlara dayanarak bazı değerlendirmeler yapıldı. 

Anahtar kelimeler: Chebyshev yöntemi, yaklaşık ters önkoşollandırıcı, sonlu fark 

şemaları, Laplace denklemi. 
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Chapter 1 

1 INTRODUCTION 

In scientific and engineering problems often arise large linear systems 

      (1.1) 

where           and       . Direct solvers like Householder transformation, LU 

factorization, Gaussian elimination methods are preferred if reliability is important 

and huge amount of work and storage are needed, causing deficiency in the 

implementation. Preconditioned Krylov subspace methods are more efficient 

methods since they use a second matrix named as preconditioner that changes the 

coefficient matrix implicitly and explicitly causing a more preferable form. An 

effective preconditioner increases the rate of the used iterative algorithm, 

considerably. Moreover an iterative method may diverge if a  preconditioner is not 

used. In general three types of preconditioners for a matrix A are constructed: 

(1) Implicit methods 

(2) Explicit methods 

(3) Hybrid  methods  

(1) Implicit methods: In these methods, approximate inverse is built implicitly, and 

an approximate decomposition of   is formed. One of these implicit methods is 

incomplete LU factorization. The idea of an incomplete factorization was first given 

in [1]-[6]. The generalization of the method to matrices portioned in block matrix 
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form is given in [7]. The incomplete LU factorization preconditioners were 

developed especially for M-matrices. Therefore the standard ILU factorization faces 

problems, when the coefficient matrix is indefinite. 

Let         and   be the defect matrix. 

                  

The matrices     or     may have very large norms causing very large perturbations 

when   is not diagonally dominant. In this case ILU decomposition is ineffective.  

(2) Explicit methods: With explicit methods we compute an approximation M or 

explicit form of the inverse     of a given nonsingular matrix  . In these methods to 

solve the linear system (1.1) the left preconditioning 

        (1.2) 

can be used, combined with iteration. Since both   and   are explicitly available, 

each iteration requires, matrix vector multiplication. It is also possible to use right 

preconditioning system 

      , (1.3) 

and iterate to get the vector y and then finally calculate  

     . (1.4) 

Among many preconditioning methods to solve (1.1) a special emphasize is given on 

preconditioned conjugate gradient methods. The conjugate gradient method is 

proposed in the years 1940-1950. See Hestenes and Stiefel [8]. Conjugate gradient 
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method minimizes quadratic functions such as  ( )  .
 

 
    /    , when A is 

positive definite and symmetric, or the residual function  ( )  (    ) (    ) 

in general, and minimization takes place over Krylov spaces. If the matrix   in (1.1) 

is positive definite and symmetric then the conjugate gradient in preconditioned form 

can be constructed. It is obtained using M-inner product defined by the 

preconditioning matrix M which is symmetric, positive definite as 

〈   〉       

and      is self adjoint. Let   denote the pseudoresidual at the     iteration and 

      (     ). (PCGM) with the next pseudo code presenting a partial 

description of the computer implementation is given in Owe Axelsson [9] 

                    

          

                     

                       

                (1.5) 
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An other preconditioned method is given by Lanczos [10], [11] which generates A-

orthogonal or M-orthogonal vectors to solve linear system (1.1) when   is positive 

definite and symmetric matrix. For Lanczos method with A-orthogonal vectors an 

inner product is selected as 

〈   〉       

for the symmetric positive definite matrix M, and in the algorithm (1.5) the A-

orthogonal vectors d at the     iteration are [9] 

               
       

    

where 

 
   

(      )    

   
   

 (1.6) 

 
     

   
   

          
 (1.7) 

For the M-orthogonal version of the Lanczos method, the inner product is taken as  

〈   〉           
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where   is symmetric and nonsingular and the recurrence coefficients (1.6), (1.7) 

takes the form [9] 

   
      

      
   ,           

      

          
     

respectively. 

The preconditioning of conjugate gradient method and Lanczos method can be 

implemented implicitly or explicitly based on the construction of  . 

(3) Hybrid Methods: These methods are the combination of implicit and explicit 

methods. The combination of explicit and implicit preconditioners in the block 

matrix incomplete factorization method is an example for an Hybrid method. Such 

methods have been studied by Axelsson, Brink Kempler and ll’ in [7] for block-

tridiagonal M-matrices, and by Conass, Golub and Mevrent [12] and for matrices 

with a general sparsity pattern by Axelsson [13] and Axelsson and Polman [14]. An 

other example is  incomplete factorization of an explicitly preconditioned matrix. In 

this method an explicit preconditioner   is calculated first, then an implicit 

preconditioner C to     where        which yields the preconditioner     , 

is constructed. This method can be given in the following algorithm [9]; 

Step1: Compute an explicit preconditioner  , (  )          (   )    where   is a 

subset of the full set *(   )            +, and        for all index pairs 

outside the sparsity pattern  . 

Step2: Compute an implicit preconditioner to       . One may use block 

incomplete factorization of     
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Step3: Solve the system (1.1) or      ̅  where  ̅    , using an iterative method 

with the preconditioner for    . 

We principally mentioned types of preconditioners. The main purpose of a 

preconditioning is to accelerate the convergence rate of an iterative method. 

Therefore in implementation, a preconditioned iteration should require less time than 

the unpreconditioned iteration. This could be done if the preconditioner is computed 

easily and the application is practical. However preconditioners generally suffers 

from some drawback; 

1. It is hard to be sure that, a given algorithm will converge in a reasonable time, 

when faced with a new problem with different coefficient matrix  , satisfying 

the necessary conditions. 

2. A successful preconditioner for one class of problem may be ineffective for 

an other class. 

Therefore the effectiveness of a preconditioner strongly depends on the structure of 

the coefficient matrix  . 

Recently constructing approximations   to the inverse of   are attracting attentions. 

There has been a lot of interest in such approximate matrix inversions [15]-[18], and 

in the use of them as inverse preconditioners. 

In this project we investigate second and third order convergent approximate 

methods of inverse preconditioners in solving linear systems arising from difference 
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analog of the Poisson equation on a rectangle with Dirichlet boundary conditions. 

The study is prepared as follows: 

In Chapter 2, geometric construction of Newton method and a class of third order 

convergent methods are given for nonlinear equation  ( )   . These methods are 

extended to Banach spaces and applied to the equation  ( )         . As a 

result the Schulz iteration [19] also known as Newton method (NM) 

        (      )                      , (1.8) 

and a third order convergent algorithm of Chebyshev’s method (CM) by S. Amat and 

S. Busquier [20], 

        (      (      ))                  (1.9) 

where    is an initial approximation to     are studied. Formulas (1.8), (1.9) are 

used to construct approximate method of inverse preconditioners in solving (1.1). 

Computer algorithms of (NM) and (CM) are also provided. 

In Chapter 3, 5-point and 9-point difference analog of Dirichlet Poisson equation on 

a rectangle is given. The structure of the coefficient matrix for the obtained system of 

finite difference equations using Lexicographical ordering is analyzed. 

In Chapter 4, a model problem is taken and the system of finite difference equations 

obtained from 5-point and 9-point schemes are solved using approximate methods of 

inverse preconditioners by both Newton and Chebyshev iterations for different mesh 

steps. Numerical results and discussions are given. 

In Chapter 5, concluding remarks are provided based on the numerical results 

obtained in Chapter 4.  
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Chapter 2 

2 GEOMETRIC CONSTRUCTION AND FORMULAS 

FOR METHODS OF APPROXIMATE INVERSE 

PRECONDITIONERS 

2.1 Introduction 

For a given nonsingular matrix A, an iterative matrix inversion scheme is a set of 

instructions for generating a sequence *           + converging to    . These 

instructions should provide a way to select the initial approximation    and specify 

how to improve the approximate inverse from    to      for each  . These 

schemes also need a stopping criterion to determine whether the desired inverse has 

been obtained. In this Chapter geometric construction of Newton and a class of third 

order convergent methods: Chebyshev [21], Halley [22] and Super Halley [23] 

methods are analyzed. Generalization of these methods to Banach Spaces for 

obtaining iterative matrix inversion algorithms for nonsingular matrices is 

investigated. Computer algorithms for Newton and Chebyshev iteration as 

approximate inverse preconditioning methods for solving      where        

and        is nonsingular are provided. 

2.2 Geometric Construction of Newton and a Class of Third Order  

Convergent Methods: Real Case 
 

Consider the scalar nonlinear equation 

  ( )   , (2.1) 

To get an iterate    approximating the simple root of (2.1) we use the tangent line  
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  ( )   (  )    (  )(    ) (2.2) 

at (    (  ). Evaluating (2.2) at the point (      ) we get  

 
        

 (  )

  (  )
                         (2.3) 

which has quadratic convergence at a simple root. There are considerably high 

number of works studying the convergence, characteristics of this iterative method, 

see [21], [24]. If the order of convergence is higher than the velocity of convergence 

is faster, however cost of computation may also be increased. This is the starting 

point to search high order convergent iterative methods with tolerable cost for 

computation. The following iterative schemes are constructed by taking tangent 

curves with quadratic equations, to the graph of   at (    (  )), as given in [20]. 

Consider the equation  

             , (2.4) 

which defines a hyperbola and take the tangency conditions 

  (  )   (  )         
 (  )    (  )      

  (  )     (  ). (2.5) 

We take (2.4) in the form 

  (    )(   (  ))  (   (  ))   (    )     . (2.6) 

From first condition in (2.5) results    . Differentiating (2.6), we obtain  

  0(   (  ))  (    )
  

  
1  

  

  
    . (2.7) 

Appling second condition of (2.5) on (2.7) at (    (  )) 



10 

 

gives     (  ). Differentiating (2.7) results in  

  0 
  

  
 (    )

   

   1  
   

     . (2.8) 

Imposing the conditions (2.5), on (2.8) the coefficient   satisfies 

 ,   (  )-     (  )   , 

and 

    
   (  )

   (  )
    

Substituting the values of the unknown coefficients       into (2.6) follows 

  
   (  )

   (  )
(    )(   (  ))     (  )    (  )(    )   . (2.9) 

Let the x-intersection point of the hyperbola (2.9) be (      ) then  

 
   (  )

   (  )
(       )(  (  ))   (  )    (  )(       )   , 

(       ) 0
   (  )

   (  )
 (  )    (  )1   (  )   , 

solving for      , yields 

        
 (  )

   (  )
   (  )

 (  )    (  )
      

Let   (  )  
   (  ) (  )

  (  ) 
 which is called the Logarithmic convexity of   at    [25], 

        
 (  )

 
   (  )  (  )    (  )

    
  (  )

,  (  )   -  (  )
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  (  )

,    (  )-  (  )
          (2.10) 

This iteration is called the Halley method. Geometric construction of Chebyshev 

algorithm is obtained from a parabola of the form 

            . 

Consider the parabola 

  (   (  ))
 
 (   (  ))   (    )     , (2.11) 

and apply the conditions (2.5) to get    . From differentiating (2.11) one gets  

   (   (  ))
  

  
 

  

  
     , (2.12) 

and imposing   (  )   (  )  and    (  )    (  )  we obtain       (  ). 

Similarly differentiating (2.12) follows; 

   0
  

  

  

  
 (   (  ))

   

   1  
   

      , (2.13) 

and from (2.5) we get  

  0(  (  ))
 
1     (  )   , 

   
 

 
[

   (  )

(  (  ))
 ]  

Substituting the results of         we achieve  

 
 

 

 
[

   (  )

(  (  ))
 ] (   (  ))

 
 (   (  ))    (  )(    )   . (2.14) 

At the point (      ) where the parabola and x-axis intercepts equation (2.14) gives 
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[

   (  )

(  (  ))
 ] (  (  ))

 
  (  )    (  )(       )   . 

Solving for     , 

 
        [  

 

 
  (  )]

 (  )

  (  )
         (2.15) 

thus, the Chebyshev’s formula is achieved. Next we consider the hyperbola in the 

form 

                 . (2.16) 

To ensure that hyperbola passes through (    (  )), (2.16) is taken as 

  (   (  ))
 
  (    )(   (  ))  (   (  ))  

 (    )     , 

(2.17) 

and    . Differentiating (2.17) we obtain 

   (   (  ))
  

  
  (   (  ))   (    )

  

  
 

  

  
    . (2.18) 

Evaluating (2.18) at (    (  )) and applying the 1
st
 and 2

nd
 tangency conditions in 

(2.5) yields 

     (  ). 

Differentiating (2.18), implicitly gives 

  [.
  

  
/
 

 (   (  ))
   

   ]   
  

  
  0

  

  
 (    )

   

   1  
   

     , 

and applying the conditions (2.5) we get 

  (  ( ))   ,   (  )-     (  )   . 
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Solving this equation for  , results in 

   
   (  )

 (  (  )) 
 

 

  (  )
      

Substituting the values of           in (2.17) follows; 

 

      (   (  ))
  [ 

   (  )
 (  (  )) 

 
 

  (  )
]  (  )

 (   (  ))    (  )
      (2.19) 

Evaluating (2.19) at (      ) becomes 

 

        [  

 
   (  )

  
  (  )
  (  )

]
 (  )

  (  )
                   (2.20) 

where   depends on  , as given in [20]. A class of third order convergent methods, 

are represented in (2.20). By taking    , (2.20) results in (2.15) which is the 

Chebyshev’s method. If     
   (  )

   (  )
, (2.20)  yields (2.10) the Halley’s method. If  

   
   (  )

  (  )
 then (2.20) implies the Super Halley’s method as: 

 
        6  

 

 
 

  (  )

    (  )
7
 (  )

  (  )
                (2.21) 

proposed in [26]. As the limit case when           
 
 , equation (2.21) gives the 

formula (2.3) which is the Newton’s method. 

2.3 Generalization to Banach Spaces 

Definition 1: [9] The real function   form a vector space   to   , is called a norm 

on  , given by ‖ ‖ for     and satisfies the properties; 

i) ‖ ‖    and ‖ ‖                (2.22) 
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ii)          ‖  ‖  | |‖ ‖   

iii)         ‖   ‖  ‖ ‖  ‖ ‖ 

where   is a scalar and       are arbitrary vectors, if      or      , then 

‖ ‖  (∑ |  |
  

   )      (Euclidean norm) 

‖ ‖  ∑ |  |
 
               (The absolute sum norm)                                              (2.23) 

‖ ‖      |  |         (The maximum norm) 

Theorem 1: [9]  ‖ ‖        
‖  ‖

‖ ‖
  is a matrix norm.                                     (2.24) 

Definition 2: [27] The mapping           is Fréchet (or F-) differentiable at 

     ( ) if there is an    (     ) such that 

       
‖ (   )  ( )   ‖

‖ ‖
  . (2.25) 

The linear operator   is denoted by   ( ), and is called the F-derivative of   at  . 

Consider the equation 

  ( )   , (2.26) 

with a general map      . The formula (2.3) and (2.21) can be generalized to 

Banach spaces as follows: [20] 

         ,  (  )-
    (  ) (2.27) 

 
        [  

 

 
,    ,  (  )-

    (  )-
    (  )]  

 (  )
    (  ) (2.28) 
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respectively. Here   is identity matrix, 

   ( )  ,  ( )-      ( ),  ( )-    ( ), (2.29) 

is a linear operator on   for some    ,   ( ) denote the first order Fréchet 

derivative of   and ,  ( )-   is the inverse operator of   , assuming ,  ( )-   exist. 

    is the second Fréchet derivative of  . The calculation of    ( ) in (2.29) is 

problematic, for some equations. For example consider the nonlinear system; 

   (          )    

  (          )    

  

(2.30) 

  (          )   , 

The first order Fréchet derivative is  (          ) and it is given as  

 (          )  

(

 
 

   
   

 
   
   

 
   
   

 
   
   

   
   
   

 
   
   

 
   
   

 
   
   )

 
 
  

which is     matrix involving    values. Second order derivative     has    values 

involving, 

  ( )  

(

  
 

     ( )

   
  

     ( )

      
 
     ( )

      
 

     ( )

      

   
     ( )

      
 
     ( )

      
 
     ( )

      
 

     ( )

   
 )

  
 
  

which is the Hessian’s matrix of    , i=1,2,3,…,n [27]. To compute   ( ) both high 

storage capacity and computational effort are required due to the number and the size 
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of the Hessian’s matrices. Recently, to solve this problem many authors proposed 

multi-step methods, which does not require the evaluation of    ( ). Some of these 

studies are [28]-[31]. The following two-step recurrence formula which has third 

order convergence rate is given in [31].  

           (  )
    (  ) 

          (  )
    (    )         

(2.31) 

The two step method (2.31) can also be obtained from (2.28) if b is considered as 

[20]; 

  (    ), 
 (  )-

    (  )  
 

 
  (  ) (  )   (    ) 

2.4 Convergence of Newton and a Class of Third Order Methods 

Many authors studied the convergence of Newton method in Banach spaces. A basic 

work is given by Kantorovich [32], which asserts that Newton iterative method 

applied to a more general system of nonlinear equations  ( )   , converges to a 

solution    near some given point    provided Jacobian of the system satisfies a 

Lipschitz condition near    D and its inverse at    satisfies certain boundedness 

conditions. 

Theorm 2: (Kantorovich [32])  

Assume for some      that ,  (  )-
   exists and that 

i) ‖,  (  )-
  ‖    

ii) ‖,  (  )-
    (  )‖    

iii) ‖  ( )    ( )‖   ‖   ‖ 
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for all x and y in D with       
 

 
. Let    * | ‖    ‖    + where 

   4
  √    

 
5   

Now if      then the Newton iterations         ,  (  )-
    (  ) are well 

defined, remains in    and converges to       such that  (  )   . In addition 

‖     ‖  
 

 
(
(  √    )

  

  
                 

The original proof of Kantorovich theorem [32] is long and very complex, therefore 

many authors [33]-[36] studied to give a nice threatment of this proof. The 

convergence of iterative methods of third order in (2.28) under Kantorovich 

conditions and posteriori error estimates are given by S. Amat, and S. Busquier in 

[37]. 

Lemma 1: [37] Let      be such that   (  ) exist. Assume there exists a real 

number     such that  

‖,  (  )-
   (   ( )     ( ))‖   ‖   ‖, 

for all     in D. Then 

 ‖,  (  )-
   2 ( )   ( )   ( )(   )  

 

 
   ( )(   )(  

 )3‖  
 

 
‖   ‖ , 

(2.32) 
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 ‖,  (  )-
   *  ( )    ( )+‖

 .‖,  (  )-
     ( )‖  

 

 
‖   ‖/ ‖   ‖ 

(2.33) 

for all     in D . 

Theorem 3: [37] Let us assume      is such that ,  (  )-
   exist and for some 

positive real numbers     and   satisfying   
(     )

 
   (     )

   
 and that 

i) ‖,  (  )-
   (  )‖    

ii) ‖,  (  )-
     (  )‖    

iii) ‖,  (  )-
   *   ( )     ( )+‖   ‖   ‖ 

for all     in D. Besides if         (      (  
 ))

 (  )

  (  )
 where               

   
 

 

   (  ) (  )

,  (  )- 
  then for all      

‖       ‖              

That is *  + is a majoring sequence of *  +,    . 

2.5 Approximate Matrix Inversion 

If we apply the algorithm (2.27) to the equation  ( )           we get the 

Newton method (NM) in (1.8) 

       (      )                        

or                                 (      )                           

By applying the algorithm (2.28) when    , yields the sequence of approximation 

(1.9), which is Chebyshev method (CM) 

       (      (      )) or 
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     (      (      ))               

given in [20]. 

It is also possible to use the Neumann series 

     ∑(    ) 
 

   

 

which converges when  (    )   . If first two terms are taken we obtain (1.8). if 

first three terms are taken we get (1.9). 

Theorem 4: [31] 

Let   [   ] be any nonsingular matrix. If    is chosen such that ‖  ‖  

‖     ‖    then the formula (1.8) converges quadratically to     . 

Proof: The proof of the Theorem 4 is given in [31] as follows:  

Let           be the error matrix. From (1.8) we get 

          (      )(    (      )) (2.34) 

 (      )(        ) 

                        

                   

             (2.35) 

 ‖    ‖  ‖  ‖‖   ‖ (2.36) 
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               (2.37) 

 ‖     ‖  ‖   ‖‖   ‖  ‖   ‖  (2.38) 

If ‖   ‖    then by (2.38), ‖   ‖    , ‖   ‖    , …, ‖   ‖      then by 

(2.36), ‖  ‖   ‖  ‖, ‖  ‖  ‖  ‖‖   ‖    ‖  ‖   ‖   ‖       ‖  ‖. 

Now by induction it can be shown that 

If  ‖   ‖      then ‖  ‖     as     

therefore              and by (2.36), ‖    ‖  ‖ ‖‖  ‖  and if       

then 
‖    ‖

‖  ‖ 
 ‖ ‖ which gives that order of convergence is at least 2. 

Theorem 5: [16]  

Let   [   ] be a nonsingular matrix and    be an initial approximate inverse taken 

such that ‖  ‖  ‖     ‖    then the formula (1.9) converges to     with third 

order. 

Proof: Proof is given in [16] and mainly based on ideas in [31] and [38]. 

             be the error at     iteration. Using (1.9) 

                [  ,      (      )-] 

      ,        (   )
 - 

  (     )
  (  )

  (2.39) 

Since ‖  ‖   , then from (2.39) we have that 

‖    ‖  ‖  ‖
    ‖  ‖

    
   as     
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i.e.         as     and       , as    . Let           then by 

(1.9) we obtain 

                (      (      )) 

 (      )(    (      )(    (      ))) 

 (      )(      (  )
 ) 

       (   )
  

       (   )
  

So ‖    ‖  ‖ ‖ ‖  ‖
  

2.6 Methods of Approximate Inverse Preconditioners  

Let    be the approximate inverse obtained after performing     iterations by (NM) 

in (1.8) or by (CM) in (1.9) satisfying ‖     ‖      for some desired 

accuracy  .    can be applied to the system      in (1.1) as a right 

preconditioning as 

          (2.40) 

We obtain the approximate solution of   as       since      . It is also 

possible to apply    as a left precinditioner to the system (1.1) as 

         , (2.41) 

In left preconditioned system (2.41) again the approximate solution is      . 

Next we show that, if         then, 

         for all         (2.42) 
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where    is the preconditioner in (NM) or in (CM). Let    be the approximate 

inverse at     iteration in (NM). Assume    is selected such that         then 

       (      ) 

    (      ) 

   (       ) 

   (      )  

     

so (2.42) is true for    . Using mathematical induction let us assume that (2.42) is 

true for     then  

         (      ) 

    (      ) 

   (       ) 

        (      )  

            

By using the same technique (2.42) is verified for Chebyshev method (1.9) in [16]. 

The computer algorithms for solving the linear system (1.1) using (1.8) and (1.9) are 

as follows, based on the algorithm for (NM) given in [15]. 
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Algorithm: Newton Method (NM) 

 Step1: Input (               
  ) (2.43) 

Step2:       

Step3:      (    ) 

Step4: Evaluate   ‖   ‖  

    

Step5: While       Do 

      

       (    ) 

Evaluate   ‖   ‖  

      

End Do 

Step6:       

Algorithm: Chebyshev Method (CM) 

 Step1: Input (               
  ) (2.44) 

Step2:       

Step3:      (    (    )) 

Step4: Evaluate p ‖   ‖  
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Step5: While       Do 

      

       (    (    )) 

Evaluate p ‖   ‖  

      

End Do 

Step6: x     

In these algorithms   is the predescribed accuracy,    is the preconditioner of   in 

the     Newton and Chebyshev iterations, where    is the initial approximate 

inverse.  
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Chapter 3 

3 FINITE DIFFERENCE SCHEMES FOR POISSON’S 

EQUATION 

3.1 Introduction 

The construction of difference schemes for the numerical solution of Poisson 

problem with Dirichlet conditions on the sides of a rectangle is analyzed. Using 5 

and 9 point stencils system of difference equations are obtained. The structure of the 

coefficient matrices arised from the difference equations are investigated. 

3.2 The Dirichlet Poisson Problem on Rectangle 

Let   *(   )            + be an open rectangle              be the 

sides of this rectangle including the vertices. Let the numbering be in 

counterclockwise direction starting from the side which lies on the x-axis. 

The Dirichlet Poisson equation on a rectangle is 

 
   

   

   
 

   

   
  (   )        (3.1) 

                           

3.3 Construction of Difference Schemes 

The construction of 5-point and 9-point schemes are given as follows in [39]. Let us 

draw two systems of parallel lines on the plane: 

            (3.2) 
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Consider the node (   ) of the net, and take the four nodes closest to it which are 

(     ) (     ) (     ) (     ) as shown in the figure below 

                       

 

 

 

Figure 3.1: 5-Point Stencil. 

We aim to find an approximate expression for    at the node (   ). From Taylor’s 

formula the expressions for the neighboring points of     are as follows: 

                
  

  
    

  

  
    

  

  
      

                 
  

  
    

  

  
    

  

  
      

                
  

  
    

  

  
    

  

  
      

 
                 

  

  
    

  

  
    

  

  
          (3.3) 

𝑢𝑖 𝑘 𝑢𝑖   𝑘 𝑢𝑖   𝑘 

𝑢𝑖 𝑘   

𝑢𝑖 𝑘   
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We look for    as linear combination of the differences in (3.3). The next expression 

is obtained for    depending on the derivatives by adding the equations in (3.3) term 

by term. 

                                           

 6
  

  
(  

    
 )  

  

  
(  

    
 )  

  

  
(  

    
 )   7 

(3.4) 

which yields 

  

  
              (3.5) 

where 

 
     

   

  
(       )  

   

  
(       )    (3.6) 

is the remainder term. Taking the values of derivatives up to fourth orders, and 

evaluating the fourth order derivatives at the mean points      becomes an expression 

of the form 

 
     

   

  
    (3.7) 

where, 

      8|
   

   
|  |

   

   
|9        | |     

For the Poisson equation (3.1) we get 

  

             , (3.8) 
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when the remainder term      in (3.5) is neglected. If  (   )    in (3.8) then we get 

the difference equation of the Laplace equation as; 

  

         , (3.9) 

Which is an approximation of (3.5). 

Assign a square mesh   , with step   
 

  
 

 

  
            are integers, 

obtained with the lines in (3.2) as                                         

          .   
  is the set of grids on              and    ⋃   

  
      

̅̅̅̅  

     . The following difference problem is obtained, for (3.1), 

 
        

  

 
          (3.10) 

       
         

               , (3.11) 

where    
  is the trace of    on   

  and  

    (   )  ( (     )   (     )   (     )   (     )) (3.12) 

derived from (3.8). 

Next we consider a high accurate difference operator. Beside with the values of the 

function at the nodes of the net (   ) (     ) (     ) (     ) (     ) 

which are considered in the formation of       we also consider the values of   at 

the nodes (       ) (       ) (       ) (       ) as shown in 

Figure 3.2 . 

 



29 

 

 

 

 

 

 

 

Figure 3.2: 9-Point Stencil. 

and expand them near the point      using Taylor’s formula, 

               (
 

  
 

 

  
)  

  

  
(
 

  
 

 

  
)
 

  
  

  
(
 

  
 

 

  
)
 

    

               ( 
 

  
 

 

  
)   

  

  
( 

 

  
 

 

  
)
 

  
  

  
( 

 

  
 

 

  
)
 

    

               ( 
 

  
 

 

  
)   

  

  
( 

 

  
 

 

  
)
 

  
  

  
( 

 

  
 

 

  
)
 

    

 
               (

 

  
 

 

  
)    

  

  
(
 

  
 

 

  
)
 

  
  

  
(
 

  
 

 

  
)
 

    

(3.13) 

with the above differences we form the sum       which gives  

𝑢𝑖   𝑘   

𝑢𝑖 𝑘   

𝑢𝑖   𝑘   𝑢𝑖 𝑘   

𝑢𝑖   𝑘   

𝑢𝑖   𝑘 𝑢𝑖   𝑘 

𝑢𝑖   𝑘   

𝑢𝑖 𝑘 
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  8
  

  
(       )  

  

  
(              )

 
  

  
(                       )   9 

(3.14) 

Finally we will look for the combination                 to get an approximate 

expression for   . There is no way to choose    and    such that the fourth order 

derivatives will vanish, however by choosing    
 

    and    
 

    the term with the 

fourth order derivatives form a biharmonic operator 

    
   

   
  

   

      
 

   

   
 

which is known since     (   ) and       (   ). Therefore we get the high 

accurate scheme 

  

   (            )     
   

  
    

   

  
.     

  

        /  

     , 

(3.15) 

where  

     
 

 

  

  
6       

  

      
      

   

      
7    

if we ignore the error term     , results 

  

   
(            )     

   

  
    

   

  
4     

  

      
  5 (3.16) 

If      then (3.16) gives a high accurate scheme for the Laplace equation, as 
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(            )     (3.17) 

by which the exact equation (3.15) is approximated. 

If     (   ) then (3.16) gives 

  

   
(            )

 6     
   

  
      

   

  
4        

      
      

57  

(3.18) 

When the function  (   ) is given analytically then the implementation of (3.18) is 

not troubling. However if  (   ) is given as grid function, then the values on the 

right side of  (3.18) can be approximated using difference schemes of high accuracy. 

Assuming that  (   ) is given analytically we derive the following difference 

problem for the Dirichlet Poisson equation on the rectangle given in (3.1) as follows; 

 
        

   

  
6     

 

  
        

 

  
  4        

      
      

57 (3.19) 

where   

      
           

             , (3.20) 

and 

    (   )

 
( (     )   (     )   (     )   (     ))

 

 
( (       )   (       )   (       )   (       ))

  
 

(3.21) 

defined from (3.18) . 
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3.4 Lexicographical Ordering for the Poisson Model Problem 

Consider the difference problem given in equations (3.10), (3.11) for grid values on 

the boundary   
                  is known for the boundary data (3.11), i.e.  

       
 (    )  for            

         
 (      )  for            (3.22) 

     
   

 (      )  for            

       
 (    )  for            

The number of unknown      is (    )  (    ) which is the number of inner 

grid points. The system of equations is obtained by eliminating the boundary values 

(3.22) which appears in (3.10). We form the commonly used matrix form      

with an (    )(    )  (    )(    ) matrix   and (    )(    )    

dimensional vectors   and   by representing the twofold indexed unknown      by a 

single indexed vector  . This implies that the inner grid points must be enumerated in 

some way. Figure 3.3 represents the Lexicographical ordering, [40] 
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Figure 3.3: Lexicographical Ordering, for the case      and     . 

The coefficient matrix   obtained for the difference problem (3.10), (3.11) using 

Lexicographical ordering has the following structure in Figure 3.4 . 

 

 

 

 

Figure 3.4: Structure of the Coefficient Matrix Using 5-point Scheme and 

Lexicographical Ordering. 

Accordingly   takes the form of a block-tridiagonal matrix built from (    )  

(    ) blocks   which again are tridiagonal (    )  (    ) matrices. I is the 

(    )  (    ) identity matrix. 
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Using the difference problem (3.19), (3.20) for obtaining highly accurate numerical 

solution of the Dirichlet Poisson equation on the rectangle given in (3.1) and 

applying the Lexicographical ordering the coefficient matrix   has the structure as 

given in Figure 3.5 , [40] 

 

 

 

 

 

 

 

 

 

Figure 3.5: Structure of the Matrix A Using 9-point  Scheme and Lexicographical 

Ordering. 

Both   and   are tridiagonal matrices of size (    )  (    ) and   is a block 

tridiagonal matrix built from (    )  (    ) blocks. The coefficient matrix   

obtained both from the 5-point difference and the 9-point difference analog using 

Lexicographical ordering is diagonally dominant, positive definite and symmetric 

matrix. 
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Chapter 4 

4 NUMERICAL RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter accomplishes the study with the numerical solution of the test problem 

chosen from Laplace’s equation. Second and high order accurate difference schemes 

are used to get the system of equations for the approximate solutions. The obtained 

algebraic linear systems are solved by preconditioning them with approximate 

inverses via (NM) and (CM). The computations are performed in Mathematica and 

numerical results are displayed with tables and figures. 

4.2 Description of the Model Problem 

Let   be the rectangle defined as 

  *(   )            +, consider the problem 

               

      ( )             *            + 

      ( )    ( )             *            + 

      ( )     ( )            *            + 

               *            + 
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The exact solution of this problem is  (   )      ( )    ( ). This model problem, 

is represented in Figure 4.1, with mesh step   
 

 
. 

 

 

 

 

 

 

 

Figure 4.1: The Model Problem and Representation of Inner Grids for h=1/4. 

4.3 The Choice of the Initial Inverse 

It is given in Theorem 4 (Theorem 5) in Chapter 2 that if ‖     ‖    then (NM) 

(respectively (CM) converges). Therefore it is important to choose an approximate 

initial inverse    which satisfies this condition for   obtained from second order (5-

point) and high order (9-point) schemes. For the algebraic linear system obtained 

from 5-point scheme,    is selected as the diagonal matrix 

   [
 

 
 
 

 
   

 

 
] 

and for the algebraic linear system arised from 9-point scheme it is selected as 

   [
 

  
 
 

  
   

 

  
]  

𝑦 

𝑥 𝑢  
 

𝑢5 
5 

𝑢  
 

𝑢  
 

𝑢7 
 

𝑢  
 

𝑢  
 

𝑢9 

𝑢  
 

𝑢  𝑠𝑖𝑛 𝑥    ( )    𝑜𝑛 𝛾  
 

𝑢      𝑜𝑛 𝛾  
 

𝑢      ( )    𝑦 
 

𝑢  𝑠𝑖𝑛 𝑥   𝑜𝑛 𝛾  
 

   𝑜𝑛 𝛾  



37 

 

Table 4.1 represents the initial errors between the identity matrix and     in second 

norm for the linear systems obtained using difference schemes with mesh steps 

  
 

 
 
 

 
 
 

  
 . 

Table 4.1: Initial Errors in Second Norm for the Linear Systems Obtained                   

from 5-Point and 9-Point Schemes. 

 

 

 

 

 

4.4 Computational Results 

The algorithms (2.42) and (2.43) are realized by using Mathematica and sparse 

matrix computations, due to the property that, the coefficient matrix   has 5-nonzero 

diagonals, and 9-nonzero diagonals when arised from 5-point and 9-point schemes 

respectively. 

Tables 4.2 - 4.4 represents the CPU-times and the errors in maximum norm per 

iteration solved by (NM), for 5-point scheme. 

 

 

5-point scheme 9-point scheme 

  ‖     ‖  ‖     ‖  

 

 
 0.707107 0.665685 

 

 
 0.92388 0.909814 

 

  
 0.980785 0.977016 



38 

 

Table 4.2: Maximum Errors and CPU-Times by (NM), Using 5-Point               

Scheme with h=1/4. 

Iteration ‖    ‖  CPU time 

1 0.34268 4.33681×10
-19

 

2 0.171173 1.50704×10
-17

 

3 0.042542 0.016 

4 0.002345 0.032 

5 0.000324855 0.064 

Table 4.3: Maximum Errors and CPU-Times by (NM), Using 5-Point              

Scheme with h=1/8. 

Iteration ‖    ‖  CPU time 

1 0.696826 0.032 

2 0.551503 0.046 

3 0.395184 0.14 

4 0.203264 0.249 

5 0.05734 0.515 

6 0.015625 1.123 

7 0.0000670886 1.888 

8 0.0000933207 2.699 

Table 4.4: Maximum Errors and CPU-Times by (NM), Using 5-Point               

Scheme with h=1/16. 

Iteration ‖    ‖  CPU time 

1 0.901475 0.016 

2 0.828801 0.124 

3 0.717372 0.453 

4 0.580328 2.776 

5 0.410804 22.792 

6 0.214423 84.366 

7 0.0614492 163.739 

8 0.00510848 229.758 

9 0.0000150869 318.46 

The Tables 4.5 - 4.7 presents the CPU-Time and the errors in maximum norm per 

iteration solved by (CM), for 5-point scheme. 
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Table 4.5: Maximum Errors and CPU-Times by (CM), Using 5-Point                 

Scheme with h=1/4. 

Iteration ‖    ‖  CPU time 

1 0.228485 1.30104×10
-18

 

2 0.0282675 0.015 

3 0.000289966 0.016 

4 0.000334916 0.031 

Table 4.6: : Maximum Errors and CPU-Times by (CM), Using 5-Point                  

Scheme with h=1/8. 

Iteration ‖    ‖  CPU time 

1 0.616165 0.016 

2 0.363531 0.094 

3 0.0849632 0.655 

4 0.00109617 1.872 

5 0.0000933188 4.212 

Table 4.7: Maximum Errors and CPU-Times by (CM), Using 5-Point                  

Scheme with h=1/16. 

Iteration ‖    ‖  CPU time 

1 0.858971 0.047 

2 0.696446 0.499 

3 0.456363 18.642 

4 0.152793 132.492 

5 0.00657905 313.296 

6 0.0000231964 629.152 

The Figures 4.2 – 4.4 compare the convergency of the (NM) and (CM) with respect 

to the errors in maximum norm per iteration, obtained for the model problem using 

5-point scheme. 
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Figure 4.2: Comparison of the Convergency of (NM) and (CM) Using 5-Point 

Scheme for h=1/4. 

 

Figure 4.3: Convergency Comparison of (NM) and (CM) Using 5-Point Scheme with 

h=1/8. 
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Figure 4.4: Comparison of the Convergency between (NM) and CM) Using 5-Point 

Scheme with h=1/16. 

Tables 4.8 – 4.10 demonstrates the CPU-time and errors in maximum norm per 

iteration solved by the (NM) using 9-point scheme. 

Table 4.8: The Maximum Errors and the CPU-Times by the (NM) Using                   

9-Point Scheme with h=1/4. 

Iteration ‖    ‖  CPU time 

1 0.297164 0.015 

2 0.131721 0.015 

3 0.0257342 0.016 

4 9.90784×10
-4

 0.031 

5 1.47042×10
-6

 0.031 

6 2.71928×10
-9

 0.093 
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Table 4.9: The Maximum Errors and the CPU-Times by the (NM) Using                  

9-Point Scheme with h=1/8. 

Iteration ‖    ‖  CPU time 

1 0.667265 0.016 

2 0.517839 0.063 

3 0.346072 0.249 

4   0.159098 1.014 

5 0.0350901 2.512 

6 0.0017048 4.946 

7 4.02388×10
-6

 8.845 

8 2.72061×10
-11

 16.38 

Table 4.10: The Maximum Errors and the CPU-Times by the (NM) Using                 

9-Point Scheme with h=1/16. 

Iteration ‖    ‖  CPU time 

1 0.889034 0.047 

2 0.802113 0.281 

3 0.684669  2.324 

4 0.540570 30.296 

5 0.358293 201.663 

6 0.166407 399.861 

7 0.037548 774.201 

8 0.00191431 1442.63 

9 4.97578×10
-6

 2880.17 

10 3.29532×10
-11

 6240.57 

11 7.1907×10
-13

 13778.6 

Tables 4.11 – 4.13 displays the CPU-time and errors in maximum norm per iteration 

by the (CM) using 9-point scheme. 

Table 4.11: The Maximum Errors and CPU-Times by the (CM) Using                      

9-Point Scheme for h=1/4. 

Iteration ‖    ‖  CPU time 

1 0.194803 0.015 

2 0.0170823 0.016 

3 1.12666×10
-5

 0.047 

4 2.72254×10
-9

 0.078 
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Table 4.12: The Maximum Errors and CPU-Times by the (CM) Using                        

9-Point Scheme for h=1/8. 

Iteration ‖    ‖  CPU time 

1 0.572891 0.156 

2 0.311594 0.468 

3 0.0562883 2.511 

4 0.000341877 7.41 

5 3.59302×10
-11

 18.626 

Table 4.13: The Maximum Errors and CPU-Times by the (CM) Using                            

9-Point Scheme for h=1/16. 

Iteration ‖    ‖  CPU time 

1 0.846079 0.312 

2 0.660144 4.711 

3 0.407870 128.498 

4 0.111965 633.879 

5 0.00258994 1784.17 

6 3.20283×10
-8

 5025.67 

7 3.59302×10
-11

 18868.6 

8 7.1907×10
-13

 29674.13 

The Figures 4.5 – 4.7 compare the convergency between the (NM) and (CM) with 

respect to the errors in maximum norm per iteration, obtained for the solution of the 

model problem using 9-point scheme. 
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Figure 4.5: Convergency Comparison of (NM) and (CM) Using 9-Point Scheme with 

h=1/4. 

 

Figure 4.6: Convergency comparison of (NM) and (CM) Using 9-Point Scheme with 

h=1/8. 
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Figure 4.7: Convergency comparison of (NM) and (CM) Using 9-Point Scheme with 

h=1/16. 

4.5 Discussions 

The implementation of (NM) for the model problem using 5-point scheme requires at 

least 5 iterations for   
 

 
, 7 iterations for   

 

 
 and 9 iterations for   

 

  
 in order 

to have the accuracy  (  ). However (CM) needs 3 iterations for   
 

 
, 5 iteration 

for   
 

 
 and 6 iterations for   

 

  
 for the solution of the same system. These 

results can be observed from Tables 4.2 – 4.7. The comparisons of the CPU-time by 

both methods with respect to the iteration numbers to get an accuracy of  (  ) for 

mesh steps   
 

 
, 
 

 
 and 

 

  
 is presented in Table 4.14. 
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Table 4.14: Minimal Iteration Numbers and CPU-Times by (NM) and (CM), for 5-

point scheme. 

  
Iteration by 

(NM) 

Iteration by 

(CM) 

Total no. of matrix 

multiplications (CPU-

time) (NM) 

Total no. of matrix 

multiplications (CPU-

time) (CM) 

 

 
 5 3 10 - (0.064) 9 - (0.016) 

 

 
 7 5 14 - (1.888) 15 - (4.212) 

 

  
 9 6 18 - (318.46) 18 - (629.152) 

The minimal iteration numbers required for the approximate inverse preconditioned 

linear system by (NM) arised from 9-point scheme is 6, 8 and 11 for   
 

 
, 
 

 
 and 

 

  
 

respectively, to achieve the accuracy of  (  ). The minimal iteration numbers for 

  
 

 
, 
 

 
 and 

 

  
 are 4, 5 and 8 respectively by (CM) in order to get the similar order 

of accuracy. The comparisons of the total number of matrix multiplications, and 

required CPU-times for these minimal iterations are given in Table 4.15. 

Table 4.15: Minimal Iteration Numbers and CPU-Times by (NM) and (CM) with 9-

Point Scheme. 

  
Iteration by 

(NM) 

Iteration by 

(CM) 

Total no. of matrix 

multiplications 

(CPU-time) (NM) 

Total no. of matrix 

multiplications 

(CPU-time) (CM) 

 

 
 6 4 12 - (0.093) 12 - (0.078) 

 

 
 8 5 16 - (16.38) 15 - (18.377) 

 

  
 11 8 22 - (13778.6) 24 - (29674.13) 
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From Tables 4.14 and 4.15 one can conclude that (CM) performed less iteartion than 

(NM) to achieve accuracy of  (  ) and  (  ) respectively. These results can also 

be observed from the Figures 4.2 – 4.7 
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Chapter 5 

5 CONCLUSION 

The effectiveness of approximate inverse preconditioners by Newton’s method (NM) 

and Chebysheve’s method (CM) are analyzed for algebraic linear systems of 

difference equations in solving the Dirichlet type Poisson equation on a rectangle. 

The cost of forming the initial approximate inverse    is minimized by choosing 

them as diagonal matrices with main diagonal entries as the reciprocals of the 

original coefficient matrix entries  , arised from second order (5-point) and high 

order (9-point) schemes. By this choice of the initial approximate inverse the error in 

second norm between the identity matrix and     is obtained to be less than 1. 

Ofcourse as close as  we take the initial approximate inverse to the exact inverse, less 

number of iterations will be needed.  Newton and Chebyshev methods are explicit 

preconditioning methods, attempting to approximate    , which is usually dense, 

even though the coefficient matrix   is sparse matrix. For this purpose 

implementation of (NM) method is realized by performing 2 matrix by matrix 

multiplication and (CM) is applied by performing 3 matrix by matrix multiplication, 

per iteration. 

In this study it is shown that when started with the same initial approximate inverse, 

(CM) is converging faster than (NM). The CPU-times presented for the realization of 

these methods also depend on the performance of Mathematica, therefore these 

values may change if one uses a different programing language. 
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Finally we like to mention that these explicit approximate inverse preconditioners 

require several matrix by matrix multiplications at each iteration, and needs the 

storage of the full approximate inverse matrix. However the computational cost 

needed for constructing these preconditioners can be tolerated, for time dependent 

problems when implicit schemes are used, resulting a sequence of algebraic linear 

systems having same coefficient matrix and different right-hand side. 
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