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ABSTRACT

In this thesis we studied the numerical techniques for the solution of one dimensional
diffusion equations. The discrete approximation of the model problem is based on
different finite difference schemes. These schemes are the Explicit, Implicit, Crank
Nicolson and the Weighted Average schemes. For each finite difference method we
studied the local truncation error, consistency and numerical results from the solution
of two model problems are considered to evaluate the performance of each scheme

according to the accuracy and programming efforts.

Kay word: Diffusion equation, Finite difference method, Truncation error, Stability,

Consistency, Convergence.



0z

Yapilan bu ¢alisma tek boyutlu diflizyon differansiyel denklem problemlerinin
sayisal analiz teknikleri kullanilarak ¢ozulmesi ile ilgilidir. Bu yapilan ¢alismada dort
farkli sonlu farklar yontemi problemin ¢ézimdi icin kullanilmistir. Dort farkli sonlu
farklar yonteminin detayli olarak nasil elde edildigi, kesme hatalari, stabilite sartlart ,
yogunlugu ve yakinsamalar1 detayli olarak anlatilmistir. Sonlu farklar metodlart iki

degisik problem iizerine uygulanmis ve bu metodlarin karsilastirilmasi yapilmustir.

Anahtar kelimeler: Diflizyon differansiyel denklem, sonlu farklar yontemleri,

kesme hatasi, stabilite, yogunluk ve yakinsama.
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Chapter 1

INTRODUCTION

The diffusion equation (or heat equation) is of fundamental importance in scientific

fields and engineering problem. The one dimensional diffusion equation is
U = QUyy 0<x<L ,0<t<T, (1.1

where, u = u(x, t) is the dependent variable, and « is a constant coefficient. To

solve equation (1.1), it is required a specific initial condition at t = 0, given
u(x,0) = f(x) 0<x<IL, (1.2)

and boundary conditions at x = 0 and x = L. The general form of boundary

conditions is
Y1u(0,t) + B1u,(0,t) = g,(t)
You(L,t) + Bou, (L, t) = g,(t) (1.3)

The solution of (1.1) with (1.2) and (1.3) is to find u(x, t), satisfying the boundary

conditions as follows [1].

1) If Y; # 0and B; = 0, then equation (1.3) gives Dirichlet boundary condition
2) If Y; =0and B; # 0, then equation (1.3) gives Neumann boundary condition
3) fY;+0andp; =0andY, =0and B, # Oor If Y; =0and B; # 0and

Y, # 0 and B, = 0 equation (1.3) gives mixed boundary conditions.



The solution of the one dimensional diffusion equation using several finite difference
methods with Dirichlet and Neumann type boundary conditions is the core of study

in this thesis.

The derivation of each finite difference scheme for Dirichlet and Neumann type

boundary conditions are discussed in chapter 2.

In Chapter 3, we presented local truncation error, consistency, stability and

convergence of finite difference scheme.

In Chapter 4, we presented the numerical result from solving two module problems.

Concluding remarks are given each module problem.

In Chapter 5, general conclusion from work are presented



Chapter 2

THE FINITE DIFFERENCE METHOD

In this Chapter we focus on finite difference methods (FDMs), which are widely
used and are the most straight forward numerical approach for solving PDE’s. These
methods are derived from the truncated Taylor’s series where a given PDE and
boundary and initial conditions are replaced by a set of algebraic equations that are
then solved by several well-known numerical techniques. We analyzed different
schemes for first and second order derivatives then applied them to discretize

diffusion equation with initial and boundary conditions.

2.1 Taylor Series and Difference Approximations for Derivative

terms in PDE’s

Let us consider in case of the function u(x, t) of two independent variables x and t.
We first partition the spatial interval [0,L]and temporal interval [0,T]into

respective finite grids as follows.

x; = ihx i=01,....N where = Ax. (2.1.1)

t; = jAt j=01,.....M where — = At. (2.1.2)



The numerical solution to the PDE’s is an approximation to the exact solution that is

obtained using a discrete representation to the PDE at the grid point x; in the discrete

spatial mesh at every time level ¢; (see Fig 2.1) [7].

N
-
i,j+1
- - L @
=L i i—1,j
L 2
Ati ii—1
<>

Ax

Figure 2.1: The finite difference grid in the solution region

Let us denote the numerical solution of u(x, t) such that

u; ;= ulx;, t;)

Consider the Taylor series for u;,4 ; ,u;—1; and u; j,, respectively [2].

ou . (Ax)? 0w, ;
by BN 07Uy b

Uiss = Uyj o+ A ox 2 0Ox?

ou;; (Ax)? 0%y
a;’ + = E)x;] + 0((A%)?)

Ui-1j = Uij — Ax

aui,j (At)z azui,j 3
ot 2 oz T 0127

ul-'j+1 = ui'j + At

(2.1.3)

(2.1.4)

(2.1.5)

(2.1.6)



If we only consider O(Ax) terms in equation (2.1.4) and (2.1.5) then we arrive

at the forward and backward difference approximation for u, respectively.

Ju Ujp1,j — Ui

— =— A 2.1.7

(a_u) _ Wij i 0(Ax) (2.1.8)
0x ij Ax

If we only consider O(At) terms in equation (2.1.6) then we arrive at the forward
difference approximation for u;.

ou Upjr1 — Ui
_—) =— A 2.1.9
(at)i,- ac o@D (2.1.9)

We can also derive a higher order approximation for u, by subtracting (2.1.5)
from (2.1.4), then we obtain at the central difference in space approximation for

Uy

du Uit1,j — Ui-1,j
—) =———2 4+ 0((Ax)?). 2.110
(6x>ij 2Ax + (( X) ) ( )

We can also perform similar approach to obtain an approximation for the

second derivative u,,. To achieve the central difference for the second

u

2
derivative in space, add Eq. (2.1.4) and Eq. (2.1.5), solve expansion for ZT and

2

the result is written by

azu ui_lj - ZuU + ui+1j
= . . . 0((Ax)? 2.1.11
(axz) i o) (2.1.11)



2.1.1 Explicit Method (FTCS)

The explicit finite difference method based on forward difference approximation of

first order derivative.

ou Ujj+1 — Ui
-] =——7 2.1.12
&), % @112

also based on the central difference approximation to second order derivative.

azu _ ui_,_l,j - Zui‘j + ui_l,j
0x2 L (Ax)? ’

and substituting these in Equation (1.1) results

Uijrr —Wij _ Wiprj = 2Ug5 H Uiy,

T =a i (2.1.13)

In explicit finite difference method, the temperature at time j + 1 depends on the

temperature at time j, shown as in Figure (2.2). Solving u; ;4 in Eq. (2.1.13we get.

alt
Upjrr —Uij = 37 (ui+1,j —2u;; + ui—l,j) , (2.1.14)
where r = 225
(Ax)?
Upjer = Wi j + T(ui+1,j —2u;; + ui—1,j) (2.1.15)
Therefore
Ujjy1 = TUjp1j T 1- Zr)ui,j t U1 - (2.1.16)

Eq. (2.1.16) is called explicit finite difference or Forward Time Center Space

(FTCS) approximation to the heat equation given in (1.1) [5].



ij+1

i—1,j i,j i+1,j

At

<> X
Ax
Figure 2.2: Represent point scheme for FTCS

Furthermore we can rewrite Eq. (2.1.16) in matrix vector form as;

T Uj+1 7 11— 2r r 0 o[ Ui T TU T
Uz, j+1 T 1-2r r . Uy, j
- _ : (2.1.17)
r 1-2r T .
[uy-1j+11 L | . . r 1 —2rdluy—q, + Tuy ;|

2.1.2 Implicit Method (BTCS)
We can derive the implicit method by substituting forward difference approximation
(2.1.9) in left hand side of (1.1) and central difference approximation at time (j + 1)

in the right hand side of (1.1) [5].

Upjpr — Uij Uipq,je1 — 2Ug 541+ Uimq,j41
Yijrr —Wij _ 2.1.18
At (Ax)? ( )




Now arrange Eqg. (2.1.18) to get

alt
Ujjr1 — Ujj = (AT)Z (ui+1,j+1 —2U 4 + ui—l,j+1)’ (2.1.19)

alAt . . .
where r = mthen (2.1.19) is given by;
Ujjr1 — Ujj = T(ui+1,j+1 —2U 4 + ui—l,j+1) . (2.1.20)
Therefore

—Tui_l,j+1 + (1 + Zr)ui_j+1 - rui+1,j+1 = ui,j i = 1,2,3, e, N — 1 (2121)

The equation (2.1.21) is known as Backward Time, Centered Space (BTCS) or
Implicit Method. In implicit method there are more terms in level above than those in
level below is shown in Figure (2.3). Consequently, the equation cannot be
reorganized to gain easy algebraic formula similar to the explicit method to
determine u;;,, [6]. Although this is a disadvantage of implicit method, it has the

advantage of being unconditionally stable [3].

i—1, Li+1 i+1,
j+1 j+1

o—
AtI b
>

>
Ax

Figure 2.3: Represents point scheme for BTCS

=




Equation (2.1.21) gives us a set of linear equations at every spatial point ; ;, and

they will be solved correctly through the use of matrix method [5],

where 1 <i < N —1andu,;,uy,; are fixed because they are boundary conditions;

Ifi=1

(A +2r)uy jyq —TUp jp1 = Ugj +TUY;, (2.1.22a)
1<i<N-1

—TUy_1,j41 T (14 27Uy jp1 — TUN41,j41 = Un,j (2.1.22b)
i=N-1

—TUy_zj41 T (1 — 27Uy j41 = Un—1,j T TUN (2.1.22¢)

We have a set of linear equations. The unknowns are on the left hand side of the
equation and they give us a tri-diagonal matrix to solve equation

(2.1.22a — 2.1.22c). The tridiagonal matrix will be in this form [3].



_(1 + 27‘) -r 0 0 . . Ir Uij+1 7
-r AQ+2r -r . Uz, j+1
0
0
-r (14 2r) -r
-r (1 + 2r)llUn—1,j+1]
[ ul‘j +ru0‘j 7
uz’j

(2.1.23)

(Un-—1,j + TUy,j |
2.1.3 Crank Nicolson Method

Crank Nicolson method is a popular method to use for parabolic equations since it is
second order accurate and unconditionally stable. This method is implicit, but
different from simple implicit (BTCS) method explained in the former Section, as in

this method the right hand is chosen at time j and at time (j + 1) is shown in Figure

(2.4) [7].

10



At

T i—1 [ i+1 x

Figure 2.4: Represent point scheme for Crank Nicolson Method

du Ujjr1 — Ui
- = 2.1.24
(at)ij At (2.1.24)
azu ui_lj — Zuij + ul-+1j
_ Ui, : : 2.1.25
<6x2>i ,. @x)? (21:25)

(2.1.26)

2

(6 u) Upptj+1 — 2Uj 541 + Uimg j41

2 - 2
Ljt1 (Ax)

Consider the heat equation (1.1) at midpoint (x;, tj+1) and instead of (Z;‘) put
2

average of central difference (i, + %) [3].

(E)u) B ((')Zu) (2.1.27)

ot i,j+% O0x?2 i'j+% 1.

Uije1 — Uij _ al [ui+1,j = 22U j + Uiqj | Uiggjen — 25 T ui—1,j+1] (2.1.28)
At 2 (Ax)? (Ax)?

11



Therefore

Upjr1 — Upj =
alt
20022 [wivs — 2Usj + Uimgj + Uiy jor — 2Us g + Uimgjpa]  (2.1.29)
alt . .
where r = o7 then (2.1.19) it will be;

(i o1 = uij) = TlUirn; — 25 + Upmq j + Ugprjor — 2U joq + Uiog, 4] (2.1.30)
Separate j on one side and (j + 1) on the another side of equation (2.1.30) giving

—TUi_1j41 + (2 + 20U jp1 — TU 1

=TUi—1,j + (2 - Zr)ui,j + TUjt1,j » (2131)
wherei =1,2,3,........,N — 1.
Generally the right hand side of equation (2.1.31) contains three known values and
left hand contains three unknowns, Implicit method generate a set of (N-1) linear

equation, which should be solved at each time level. The set of equations generate a

tridiagonal matrix and can be solved by Thomas algorithm [3].

12



The Crank-Nicholson method can be written in a matrix vector form is as follows.

[2+2r —r S . O Ui+ 7 [T THo 41
0
-r 2+2r -r
0
+ —
-r 2+2r -r .
-r 2+2r | _uN_l‘j_,_l_ —_ruN,j+1-
2-2r r [ U Tlo,j
. (0]
r 2-2r r
0 .
+1 - (2.1.32)
r 2-2r r _ _
0 r 2-2r ] _uN_l’j_ _TuN’j_

2.1.4 The Method of Weighted Averages

0%u
92x

In this method we use two finite difference approximation to in Eq, (1.1), first

one by three points in level below ¢;, the other one uses three pointe on level above

ti+1. The left hand use forward difference approximation is used for the first

. . ou
derivative s [5].

Ujjr1 — Upj (72_11 _ 52_11
— =« [0 <6x2>, | +(1-0) <ax2 BE (2.1.33)
1,j+1 i,j

owy (2

Substitute (ﬁ)u+1 , (axz)u and rearranging, the equation (2.1.33), gives

Upj1 —Uj @
AL = x)? [e(ui+1,j+1 —2u;j4q + ui—l,j+1)

+(1 - 9)(ui+1,j - Zul-,j + ui_llj)] (2134)

13



alt
Uijr1 = Ui = aya [0 (i1, a1 — 20 j1 + Uim1j41)

+(1 - 9)(ui+1']’ - Zui’j + ui_l'j)] ) (2135)

alt

taking r = e

and then (2.1.35) takes the form

Ujjr1 — Upj = T[Q(ui+1,j+1 —2u; 4 + ui—l,j+1)

+(1 - 9)(ui+1']’ - Zui’j + ui_l'j)] (2136)

The formula (2.1.36) as known as weighted average or & —method is shown in
Figure (2.5). Where 6is non-negative weights0 <6 <1. If 6 =0,1,% from
equation (2.1.36) we obtain Explicit, Implicit and Crank Nicolson method

respectively. The equation (2.1.36) is stable for any% <6<l butfor0<6O< % to

be stable r < — (1 —26)" [3].

] R
X
i— i i+1
Ax
Figure 2.5: Represent point scheme for weighted average approximation

14



To system of equation in (2.1.36) where u at time level j is known and we want to

find u at time level j + 1 is

—10U;_qj41 + (L +2r0)u; joq — 70U jo = T(1— Oy +

[1—2r(1—6)Juy; +7(1— Oy i=123 ..., N—=1 . (2.1.37)

Here ug j,q and uy 4, as being known the Eq, (2.1.37) generate a set of (n — 1)
linear equations which the coefficient matrix is tridiagonal [5]. Which can be solved

by Thomas Algorithm [3]. It is suitable to write (2.1.37) in vector form, so let

u] = [ul,j,uz’j, ver ee e s .,uN_Lj]T .

Than we can write Eq. (2.1.37) as;

M—roClwW/* ™ =[1+r(1-0)Clw +rf™ , (2.1.38)
where
2 1 .. ] [ Bugjri + (1= 0)u,; ]
1 -2 1 0
c=]| . . | fr= . (2.1.39)
1 -2 1 0
1 -2 [Oup jrq + (1 — Ouy jiqd

15



2.2 Neumann Boundary Condition
In previous section we have considered the problems with Dirichlet boundary
conditions. Now we consider problems with Neumann boundary condition. From Eq.

(1.3),if Y = 0and § # 0 we have.

ux(OJ t) = gl(t) ) ux(Li t) = gZ(t) (221)

Which has Neumann conditionatx =0, x = L.

It is possible to use forward or backward difference to represent Neumann boundary
condition at left and right end of the domain, but it is generally preferable to use
central difference formula by introducing the fictitious temperature u;_,; at the
external grid point x = (i —1)Ax and as shown in Figure (2.5). The boundary

condition at i — 1 is represented by Figure (2.6) [3].

Upj—U-q,j

2.2.2
2Ax ( )

(ux)O,j =

L X
Figure 2.5: Introduce fictitious temperature

16



Also introduce u;,, at the end of the rod at the external grid point x = (i + 1)Ax.

The boundary condition at i + 1 can be represent by [3].

Uit1,j — Ui-1j

2.2.3
2Ax ( )

(ux)i, ji=

The temperatures u_, ; and u;,.1,; are unknown and this leads to more equations. It is
possible to eliminated u_, ; and u;,, ; between these equations. These methods are
applied to find boundary condition in following schemes [3].

2.3.1 Explicit Method with Neumann Boundary

Consider explicit method representation of Eq.(2.1.16)
Wi = TUp1j + (1= 20wy + Ui 5,
at x = 0 gives us
Ugjy1 = Ugj T r(u_llj — 2uy; + uljj) . (2.24)

Applying central difference for the boundary at x = 0 than we obtain,

ul’j - u_llj

i (2.2.5)

(ux)o,j =

Substitute into (2.2.1) we get an approximation of the Neumann condition at (0, jAt)

as
u_1; = uy; — 20xg,(jAt) . (2.2.6)
Use Eq, (2.2.6) to discretize explicit method (2.2.4) resulting

uO‘j+1 = (1 — Zr)uo‘j + Zrul‘j - ZTAxgl(]At) (227)

17



Now, consider explicit method at x = L = NAx

uN‘j+1 = uN’j + T'(uN_Lj - Z‘U.N’j + uN+1‘j) . (228)

We apply the following central difference formula for right boundary condition at

x =1L,

Un+1,j — UN-1,j
2Ax '

(W)n,j = (2.2.9)

Substitute into (2.2.1) we obtain an approximation of the Neumann condition at

((N + 1)Ax, jAt) as
Uyy1j = Uy_1; + 28xg,(jAL) . (2.2.10)
Use Eq(2.2.10) to discretize explicit method (2.2.8) than gives as
Uy, j+1 = 2Tuy—g + (1 = 2r)uy ; + 2rAxg,(jAL) . (2.2.11)

Matrix form as (2.2.11) can be written in

F Yoj+1 ] [1-2r 2r O . . . o Yoi
A roo1-2r g
0
Un—1j41 r 1-2r r Un-1,
| u’N,j+1 ] | . . . . . 2r l—2r_ | uN’j ]
[—2rAxg; (JAL)
0
+ : (2.2.12)
[ 2rAxg,(jAt) |

18



2.3.2 Implicit Method with Neumann Boundary

Consider implicit method represented as the following;

—TUiq e+ (L + 20w g — TUg 41 = Uy (2.2.13)
at x = 0 gives us

—TU_g 41+ (1 + 21 Ug 1 — TUj41 = Ugj - (2.2.14)
Applying central difference for the boundary at x = 0 than we obtain

Ugj+1 = U-1,j+1
2Ax ’

(U)o, j+1 = (2.2.15)

substitute into (2.2.1) we obtain an approximation of the Neumann condition at

(0,jAt) as
U_q,j41 = Ug,j41 — 28xg, (JAL) . (2.2.16)
Use Eq(2.2.16) to discretize explicit method (2.2.14) than gives as
(1 + 2r)ug j4q — 21Uq j4q + 278X g (JAL) = up; . (2.2.17)
Now, consider implicit method at x = L
UNj+1 — T(”N—1,j+1 — 2uy; + uN+1,j+1) =uUyj; - (2.2.18)
We apply central difference for right boundary condition at x = L we get

_ UN+1,j+1 ~ UN-1,j+1
UN,j+1 = S Ax

(2.2.19)

19



Substitute into (2.2.1) we obtain an approximation of the Neumann condition at

((N + DAx, (j + 1)At) as
Uns1,j41 = Un-1,j41 + 20xg2(( + DAL) : (2.2.20)
Use Eq(2.2.20) to discretize implicit method (2.2.18) than gives as

—2ruy_1j+1 + (1 + 2)uy j41 — 2rAxg,(( + DAL) = uy; (2.2.21)

We can write in matrix form

i r Uoj+1 1 [ Uo,j ]
1+2r —2r u1J+1 ul’j
-r 14+2r -r
-r 1+2r -—r
Un_1j Un_1j
—2r 1+2r || N-ti#t N-1j
L Un,j+1 1 L Upy,j

2rAxg; ((j + 1)At)T
0

+ ' (2.2.22)

0
[2rAxg,((j + 1)At)]
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2.3.3 Crank Nicolson Method with Neumann Boundary

Consider Crank Nicolson method represent as follow
—TU_qjp1 + (2 + 20U — TU41j11 =
TUj_1,j + (2 - Zr)ui,j + TUjy1j » (2223)

at x = 0 gives as
—TU_q 11+ 2+ 2r)Ugjpq — TUj4r = TUg;+ (2= 2N)ugj +Tugj . (2.2.24)

Applying central difference for the boundary at x = 0 at time level j + 1 and j than

we obtain

Ugj+1 — U—q,j+1
2Ax

ul,j - u—l,j
2Ax

= Uxdo; = (Ux)oj+1 (2.2.25)

substitute into (2.2.1) we obtain an approximation (0, jAt) as
U_yj=uyj— 20xg; GAE) , U_yjp1 = Upjpq — 28xg, (G + 1DAL) . (2.2.26)
Use Eq(2.2.26) to discretize Crank Nicolson method (2.2.24) than gives as

(2 + 2T)u0’j+1 — Zrul'j_l_l + ZTAXgl((] + 1)At)

= (2 - 2r)uy; + 2ruy j — 2rAxg, (jAt) (2.2.27)
at x = L gives as

—TUy_1j41 + 2+ 2)Uy j41 — TUNG1j+1 =

TuN_l'j + (2 - ZT)uN'j + TuN_l_l'j (2228)
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Now, we apply central difference for right boundary condition at x = L to find left

side

UN41,j — UN-1,j UN+1,j+1 — UN-1,j+1
(Udn,j = JZAx L, (W dn,j+1 = ! o Ax / (2.2.29)

Substitute into (2.2.1) we obtain an approximation of the Neumann condition at

((N + 1Ax, jAt) as
Unt1j = Un—1,j + 280, (GAL) , Uyy1j+1 = Un-1,j+1 T 28xg9,(( + 1)AL) (2.2.30)
Use Eq(2.2.30) to discretize Crank Nicolson method (2.2.28) than gives as

—2ruy_q1j+1 + 2+ 2r)uy jo1 — 2rdxg,(( + 1)AL) =

2rui_q,; + (2 — 2r)uy; + 2rAxg, (jAL) (2.2.31)
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We can write in tire-diagonal matrix form

[ 2+ 2r
—r

-2r
2+2r

-r

-r

[ 2rAxg,((j + 1)At) 1
0

| —2rAxg, (.(j + 1)At).

r

2+2r
-2r

2-2r
2r

—-r

2+2r |L

2-2r |l

1r %oj+1 7

U1,j+1

UN-1,j+1

ul,j

Un-1,j
Upy,j

Uy j+1 |

—2rAxg, (jAL)]
0

| 2rAxg,(jAt) |

2.3.4 Weighted Average Approximation with Neumann Boundary

Consider weighted average method at x = 0

—10u_q 11+ (1 +2r0)ug jpq — 10Uy j4 =17(1 — Qu_y; +

[1—=2r(1—6)]ug; +r(1—0uy;
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Applying central difference for the boundary at x = 0 at time level j + 1 and j than
we obtain (2.2.25). Substitute into (2.2.1) we obtain an approximation of the

Neumann condition at (0, jAt) as
U_q i1 = Upjpr — 28xg, (G + DAL) , u_y; =uy; — 20xg,(jAL) . (2.2.34)
Use equation (2.2.34) to discretize Weight average method (2.2.33) than gives as

(1 +2r0)ug jpq — 210Uy jyq + 2rAxg (G + DAL = [1—2r(1 - 0)]u,; +

2r(1 — 0)uy; — 2r(1 — 6)Axg, (jAL) . (2.2.35)
Now, consider weighted average at x = L give as

—rOuy_qj41+ (1 +2r0)uy jiq —rOuysyjpr =17(1— Ouy_y; +

[1-2r(1—)]Juy; +r(1—Duysy; - (2.2.36)

Apply central difference for right boundary condition at x = L as given in (2.2.29).
Substitute into (2.2.1) we obtain an approximation of the Neumann condition at

((N + DAx, jAt) as

Unt1je1 = Un—1,j41 T 28xg,(( + DAL) ,ujyq,j = Ui_q,; + 28xg,((AL) (2.2.37)
Use Eq(2.2.37) to discretize weighted average method (2.2.36) than gives as

—ZreuN_l’j_Fl + (1 + ZTH)uN'j_l_l - ZTHAxgz((] + 1)At) = 2T(1 — Q)UN_L]- +

[1—2r(1— 6)]uy, + 2r(1 — 8)Axg,((jAL) (2.2.38)
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We can write in the matrix tridiagonal form

[1—7r0CIw/* = [1+7r(1—0)Cluw/ + 2rf™, (2.2.39)
where
U = [Ug, Up, cor eee ee e e, Uy, UN T,
and
-2 2
1 -2 1
C= , fr=
1 -2 1
2 =2

—(1 —60)Axg,(jAt) — 0Axg,((j + 1)AL)
0

[ (1 -0)Axg,(jAL) + 0Axg,((j + 1)At) |
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Chapter 3

LOCAL TRUNCTION ERROR, CONSISTENCY AND
STABILITY OF DIFFERENCE SCHEMES

3.1 Local Truncation Error

Local truncation error represents the difference between an exact differential
equation and its finite difference representation at a point in space and time. Local
truncation error provides a basis for comparing local accuracies of various difference
schemes. In particular, if the partial differential equation satisfied by the exact
solution U is written F(U) and if F(u) is the equation satisfied by the discrete

approximation u then truncation error at the (i, j)th mesh pointis T; ; = F; ;(U) [4].

3.2 Local Truncation Error for Diffusion Equation

We analyze the local truncation error for diffusion equation,

au 02U

at the mesh point (i, j) for three classical schemes and Weighted Average scheme as
follows.
3.2.1 Local Truncation Error for Explicit Method (FTCS)

L Wi — Wiy Wisnj — 22U T U
Fi,j(u) = At - (AX)Z , (322)

substituting U for u we obtain

i1 ~ Uiy Uipyj — 20U + Uiy
At (Ax)?

U
T;j=F;U) = (3.2.3)
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Use Taylor’s expansion for U; 44 j, U;_4 j and U; j, 1 ,we have the following.

by n <au) , (802 (02U (Ax)° (9°U
i+1j = Yij T AX\ 57 Lj 2\ 0x? y 6 \0x® ij
RGN CACATN 3.2.4
24 \ox*), G24)

Uierj = Uy — A (GU) , (B0? (02U (@) (0°U
i-1j = Vij = 8%\ 57 i 2 \0x2 L 6 \0x? ij

G2 CACATN 3.2.5
(o), (3.2.5)

Uiisg=U +At(aU) +(At)2 o +(At)3 o°u
Ljtt = P ot/ 2 \otz) 6 \ot*)

(A)* (94U
5] (3.2.6)
g

Substituting equations (3.2.4 — 3.2.6) in equation (3.2.3) then give

ou 0%U 1 02U
Ti,j:Fi,j(U): E—W +?At W
ij iLj

1 9*U .
_E (sz) <W>” + 0((At)2) + 0((Ax) ), (327)

where U(x; t;) is the solution of the differential equation.

U 92U
2] =0 (3.2.8)
ij

Therefore the main part of the local truncation error is

WAL 1L (00U i0g
2"\ 12 &0 ox* ), (3.2.9)
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Hence

T, = 0(At) + 0((Ax)?) . (3.2.10)

Thus the explicit solution to equation (3.2.1) is O(At) accurate in time and
0((Ax))? accurate in space.
3.2.2 Local Truncation Error for Implicit Method (FTCS)

Wijer = Wij  Wi—gje1 — 2U 11 + Uit j41
= — , 3.2.11
@ At (Ax)? ( :

substituting U for u we obtain

i+t ~ Ui Uicgjer = 2Ui 541+ Uigg
At (Ax)?

U
Ti,j = Fi,j(u) = (3212)

Use Taylor’s expansion for U;_4 1, Ui41,j+1 » We have the following

U _ U o+A <6U) +At<aU) +(Ax)2 02U +(At)2 02U
i+1,j+1 — Yij X Ox . ot y 2 0x2 ’ 2 0t2 y
AL 92U +(Ax)3 93U +(At)3 93U +(Ax)2At 93U

X2\ oxat L6 \a) "6 \ar) T2 0x70t),

" (AD)? [ 23U +(Ax)4 94U +(At)4 94U
*5 \oxor? o2& \oxt) Tz \aet)

2 2 4 3 4
| (A0 < 04U ) , 8 At(a U)
ij ij

4 0x20t? 6 0x30t
+ A (At)3 A + 3.2.13
X6 \oxots . ' (3.2.13)
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U A (6U> +At(aU) +(Ax)2 02U +(At)2 0%U
i-1,j+1 — Yij X Ox . ot i 2 02 g 2 0t2 y
AL 92U (Ax)3 (93U +(At)3 a3U +(Ax)2At a3U

\oxar), "6 \aa®) T e \ar ) T2 0x70t),

L, (802 ((0°U +(Ax)4 94U +(At)4 94U
X5 \oxoe2 o2& \oxt) T \aet )

N (Ax)*(At)? [ o*U (Ax)3 At 0*U
4 0x20t? . 6 dx30t g
A (At)3 0*u + 3.2.14
X6 \oxors . ' (3.2.14)

Substituting equations (3.2.13), (3.2.14) and (3.2.6) in (3.2.12) then gives.

. _ (U3 L1 02U L, (0%
v\ Tax) T2\ ae) T 12 X\ oxt .

+0((AD)?) + 0((A0)Y) (3.2.15)

where U is the solution of the differential equation.

ou 02U
iLj

From equation (3.2.15) the principal part of the local truncation error for implicit

scheme is

L (2V L oanz (22Y 3.2.17
27 \ae7 ), 12 (4% oxt), (3.217)
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Hence
T;j = 0(At) + 0((Ax)?) (3.2.18)

Thus the implicit solution to equation (3.2.1) is O (At) accurate in time and
0((Ax)?)accurate in space.
3.2.3 Local Truncation Error for Crank Nicolson

Consider the crank Nicolson method

) = Uijrr — Wi 1 Uiy — 20 Uy
iJ At 2 (Ax)?

Uipq,je1 — 2541 T Uimq,j41
(Ax)?

1, (3.2.19)

substituting U for u we obtain

pjt1 = Uiy 1 Uipq,j = 2U; i+ Uiy,

U
Ty = R =—"5 2 (Ax)?

Uirrje1 — 2Uj41 F Uiy ji1
(Ax)?

1. (3.2.20)

Substituting equation(3.2.4 — 3.2.6), (3.2.13)and (3.2.14) in (3.2.20) then gives

. oU 92U +At(’) oU 92U +(At)2 93U
T\ 9t 9x2  2ot\oc ox2) 6 \otr*)

(Ax)? (9*U
(e <W>U+0((At)3)+0(mx)3) . (22D)

where U is the solution of the differential equation.

ou 9%U
W_ﬁ =0. (3.2.22)
i
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From equation (3.2.21) the principal part of the local truncation error for Crank-

Nicolson scheme is

(At)? (03U (Ax)? (0*U
6 (F),,_ 12 <W> (3.2.23)
i,j i,j
Hence
T,; = 0((At)?) + 0((Ax)?). (3.2.24)

Thus the Crank-Nicolson solution to equation (3.2.1) is O((Ax)? ) accurate in space
and O((At)?) accurate in time.
3.2.4 Local Truncation Error for Weighted Average

Ui j+1 — Uij 1
Fij(w) = ~ 02 [0(Wisyje1 — 2Ui 41 + Ui jt1)

+(1 - 9)(ui+1,j - Zui,j + ui_ljj)] , (3225)
substituting U for u we obtain

Uy iv1 — Uy 1
T,j =F;(U) = -/ - — a0)? [0(Uit1j+1 — 2Uijs1 + Uiy j41)

+(1 - 9)(Ui+1,j - 2Ui,j + Ui—l,j)] . (3226)

Substituting equation (3.2.4 — 3.2.6), (3.2.13) and (3.2.14) in (3.2.26) than gives

ro_ (%Y 92U a0 (LoY 6)aZU (Ax)? (9%U
T\t ox? y ot\z ot “ox*) . 12 \ox*)

(At)? (93U (At)3 (0*U (A)? [ 0*U
+ + 0
6 ot3 L 24 \ ot* L 2 \0x2%0t?

) . (3.2.27)
ij
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Where U is the solution of differential equation

oUu 0%U
ij

If 6 = % the equation (3.2.27) gives us Crank Nicolson scheme, which is second

order accurate in both At and Ax. Another choice to & = 0,1 gives us O(At) accurate

in time and 0 ((Ax)?)accurate in space.

3.3 Consistency

The notion of consistency addresses the problem of whether the finite difference
approximation is really representing the partial differential equation. We say that a
finite difference approximation is consistent with a differential equation if the finite
difference equations converge to the original equation as the time and space grids are
refined. Hence, if the truncation error goes to zero as time and space grids are refined
we conclude that the scheme is consistent [4].

3.3.1 Consistency of Explicit Method

For the explicit solution to the diffusion equation, the truncation error is,

T,. =F, (U) = aU+62U +1At 0%y
BT RWAES T g T a2 g2 ot ),

1A204U 0((A)?) + 0((Ax)* 3.31
~Law (leg (@) +0(@A0H (331

Thus as Ax — 0 and At — 0 then T; ; = 0, hence the explicit method is consistent

with partial differential equation (3.2.1).
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3.3.2 Consistency of Implicit Method

For the implicit solution to the diffusion equation, the truncation error is,

. _ (U0 L1 92U L, (0
W=\t oxz) T2°\oz) T127F \oxt)
i,j LJ L]

+0((A1)?) + 0((Ax)H) (3.3.2)

Thus as Ax — 0 and At — 0 then T; ; = 0, hence the implicit method is consistent
with partial differential equation (3.2.1)
3.3.3 Consistency of Crank Nicolson Method

For the Crank Nicolson solution to the diffusion equation, the truncation error is,

. oU 92U +At0 U 92U +At2 33U
T\ 9t ox2 o 2ot\ot ax2) " 6 \ot3)

2 4
_%@Tﬁ’) +0(A0®) + 0((Ax)?) (33.3)
ij

Thus as Ax — 0 and At — 0 then T; ; = 0, hence the Crank Nicolson method is
consistent with partial differential equation (3.2.1).

3.4 Stability and Convergence of Finite Difference Schemes

3.4.1 Stability and Convergence

The stability of a numerical scheme is associated with propagation of numerical
error. A finite difference scheme is stable if the error stays constant or decrees as the
iterative process goes on. On contrary, if the error grows with time, the scheme is

said to be unstable
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Definition 3.4.1.1 [4]

A finite difference scheme is stable if the scheme do not allows the growth of error in

the solution with different time level.

A numerical scheme is convergent if the computed solution of the discretized
equation leads to the exact solution of the differential equation as the time and grid

spacing lead to zero.

This will have definition as shown below. The computed solution w; ; must approach
the exact solution U of the differential equation at any point x; = iAx and t; = jAt
when Ax and At lead to zero while keeping x; and t; constant. In other hand, the

error
&,j = U — Uij (3.4.1)
Satisfying the following convergence condition

Atg’;lolgi’fl - 0O atfixed x; = iAx and t; = jAt (3.4.2)

Theorem 3.4.1.1 (Lax theorem) [4]
For a well-posed initial and boundary value problem, if a finite difference scheme is
consistent with the partial differential equation, then the stability is the necessary and

sufficient condition for convergence that is

Consistency + stability < convergence
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3.4.2 Von Neumann Stability Analysis
There are many approaches to analyze whether a finite difference scheme is stable or
unstable. In this thesis, we will consider the Von Neumann stability analysis for

presented finite difference schemes.

The Von Neumann stability analysis is most commonly used, but it is restricted to
linear initial value problems with constant coefficients. For more sophisticated
problems including variable coefficients, nonlinearities and complicated boundary
conditions, this method is useful to determine necessary conditions for stability. The
only class of problems for which Von Neumann analysis provides also sufficient
conditions is the class of initial value problems with periodic boundary conditions.
The basic idea of this analysis is given by defining the discrete Fourier transform of

u as follows [1,3].

The discrete Fourier transform of u € ¢, is the function @ € L, [—m, 7] defined by

(o]

i(é) = \/%_n z e"méy,,  foré € [—m, ] (3.4.3)

m=—oo

The transform can be inverted by

U, —imEG(&)dé (3.4.4)

1 Y
- f e
Vo)
and then Parselval’s relation is given as given

lallz = flully . (3.4.5)
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Consider the difference scheme with discrete Fourier transform and Parselval’s

identity that gives the inequality as follows.

[+, < KePMHOk0|, (3.4.6)
But since, we can find K and p to satisfy

@™, < KePO DR,

@™, < pONE%l; (3.4.7)

where ||%9)|, is the initial condition. Then the difference scheme is stable in

transform space L, if

p(§) <1 . (3.4.8)

Where p(&) is the amplification factor for the difference scheme.

Now, we take the discrete Fourier transform without writing all of the summation, let

define the operator f: £, — L, ([—m, ]) as the discrete Fourier transform

[ee]

1 —-im
f(u)=\/7_n Z e My, (3.4.9)

m=—oo
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Where f is linear and preserves the norm. If we define the shift operators as
S+u={wv} where v, = V41 k=041, ..., (3.4.10)

then

fStw) = et f(w)

= e (%) . (3.4.11)

This result will make stability analysis much easier.
3.4.2.1 Stability of Explicit Method

Consider the equation of explicit scheme
Wjje1 = TUipr; + (1 =205 +ui_q (3.4.12)
Apply Von Neumann analysis on(3.4.12) , to get
4 = re% % + (1 — 21, + re %
= [rcosé +isin§ +rcos& —isin +1—2r]i;
i1 = (1 = 2r(1 — cos &));
fjq = (1 — 4rsin? %) il
Then,

1 = PO (3.4.13)

The amplification factor of (3.4.11) is

p() =1- 4rsin2§ (3.4.14)
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For stability must satisfy [p(§)| < 1. That is

—1S1—4sin2§S1,

N | =

Hence the explicit scheme is conditionally stable and stability criteriais r <

3.4.2.2 Stability of Implicit Scheme

Consider the equation of implicit scheme.

—TUj_y jpq + (L + 20U — Tl 1 = Wy (4.2.15)

Apply Von Neumann stability analysis on(4.2.15), therefore.
—re‘ifﬁjﬂ + (1 +2r) ity — reifﬁjﬂ =14,
(—rcosé —isiné +1+2r —rcosé —isiné)iijy, = 1,

[1+ 2r(1 —cos&)]tjq =T ,
58] N
1+ 4r sin E Uiy = Uy,

Ujyq = =p®)i; , (4.2.16)

£l
1+ 4r sinzz
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Where amplification factor of (4.2.15) is

1
p(§) = —s- (4.2.17)
1 + 4r sin? >

Scheme is stable if [p(&)| < 1. That is

1

-1< (4.2.18)

— <1
1+4rsin2%

—2>4rsin?Z>0 . (4.2.19)

N | ™

From above inequality (4.2.19) scheme is stable for all positive value of r. that is,
implicit scheme is unconditionally stable.
3.4.2.3 Stability of Crank Nicolson Scheme

Consider the equation of Crank Nicolson scheme
—TU_qj41 + 2+ 27U jq — TUq 41
=1uUj_qj+ (2= 2r)u;j + Ty (4.2.20)
Apply Von Neumann analysis on (4.2.20), to achieve
—re % + (2 + 2r)Tj4y —relil = re 0 + (2 - 2r)i; + rel

(2 + 2r — 2r cos §)ilj4q = (2 — 27 + 27 cos &)l

. (@2—=2r+2rcosé) _
Y1 = (2+2r—2rcos€)uj

1 — 4r sin?
= p(O); . (4.2.21)

Ujp1 =

DNV [NV Yy

1 + 47 sin?
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The amplification factor of (4.2.20) is

1—4r sinzg
p) = ———% (4.2.22)
1 + 47 sin? 5
Scheme is stable if [p(&)| < 1. That is
1—4r sinzg
-1< 3 <1 . (4.2.23)
1 4 4r sin® 3

From above inequality (4.2.22) scheme is stable for all value of r. Hence Crank Nicolson is
unconditionally stable.
3.4.2.4 Stability of Weighted Average Scheme

Consider the equation of weighted average scheme
Ui jor = Up; = [ O(Ugsr,jan — 2Ug a1 + Uiy, jsn)
+(1 = 0)(wipr; — 2wij + ui—n )] - (4.2.24)
Apply Von Neumann stability analysis on(4.2.24), therefore
(1 —2r6(cos¢ — 1))t = (1 + 2r(1 — 6)(cos & — 1)

(@ +2r(1—-6)(cos§ — 1))
Y1 = (1-2rf8(cosé —1))

Remember that cos& = 1 — ZSinzg therefor cos§ — 1 = —2sin? % and we obtain

1—4r(1- H)Sinzg

aj+1 = f
1 + 470 sin? 5
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The amplification factor of (4.2.24) is

1 —4r(1 — 0)sin?

NV

p(§) = (4.2.26)

1+ 4r0 sinZ%

Scheme is stable if |p(&)] < 1. Since 6€[0,1] than 4resin2§ > 0 we have

1 + 4r@sin? % — 4rsin? %

<1

p(§) =

)

1+ 405in2%

we finally need

. 26 -2§
1+ 4r0Bsin > 4rsin 5

> -1
1+ 495in2%

o 1—4r(1- H)Sinzg >—1-— 4r95in2§
) ¢
~1>=2r(1—-260)sin 5
212 2r(1-26) . (4.2.27)

From above inequality (4.2.27) is satisfied for all positive r if 6 > % in this case

weighted average scheme is unconditionally stable. But if 8 < %we require

1
< -
"=20-20)
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Chapter 4

NUMERICAL RESULTS

In this Chapter we present the numerical results from solving two model problems
using finite difference schemes described in Chapter 2. In our computations we used
various values of r = 0.4,0.5,1 with fixed Ax = 0.05. In order to check accuracy

of u using discussed finite difference schemes the following error calculation is used;
&=y —uyl, .

where w;; is the solution calculate by the numerical methods at the node i in the jth

time level and U;; is the exact solution at the node i in the jth time level.
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Problem 1 ( Dirichlet type of boundary condition )
Up = Uyy 0<x<1l, 0<t<1
with initial condition
u(x,0) = sinmx 0<x<1

and boundary conditions

u(0,t) =0 0<t<1

w(l,t)=0 0<t<1
where
-t

Uexact = u(x, Y) =e sin Tx
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X
(b)
K e Solution of u(t) att=1

Figure 4.1: Exact and approximate solution of u(x, t) using three different numerical
schemes of time level ¢t = 1 with different values of
@r=04 @(O)r=05 ()r=1
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Figure 4.2: Maximum error vs. time for three different schemes with
@r=04 ({O)r=05 (c) r =1 respectively
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Exact solution FTCS method

(b)

BTCS method CN method

t 00

(© (d)

Figure 4.3: Exact and numerical solution of three different schemes with » = 0.5 and
Ax = 0.05
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Problem 2 (Neumann type of boundary conditions)

Up = Uyy 0<x<1l , 0<t<1
with initial condition

u(x,0) = cosmx 0<x<1
and boundary conditions

u,(0,t) =0 0<t<1

uy(1,t) =0 0<t<1

where
-t

Upxact = U(x,y =e COS TTX
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Figure 4.4: Exact and approximate solution of u(x, t) using three different numerical
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Figure 4.5: Maximum error vs. time for three different schemes with
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Figure 4.6: Exact and numerical solution of three different schemes with » = 0.5 and
Ax = 0.05

50



Based on the considered comparison factors to evaluate the performance of the three
finite difference schemes according to the stability criteria, we observed from the
numerical results that these schemes work well and each scheme produced
reasonable results for problem 1 and problem 2. Figures (4.1 and 4.4) illustrates
exact and numerical solution of the three different schemes at time level t = 1 and
Figure (4.3 and 4.6) illustrates exact and approximation solutions of three different

schemes for whole domain.

The other factors for comparison worth to consider are the maximum error reduction
for each time level. Figures (4.2 and 4.5) illustrate the maximum error reduction to
solve problem 1 and problem 2 respectively. Using r = 0.4,0.5,1.we observed

from both Figures that Crank Nicolson scheme is most accurate than other schemes.
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Chapter 5

CONCLUSION

In this thesis, FTCS, BTCS and Crank Nicolson scheme were applied to the one
dimensional diffusion equation. We observed from numerical computation that these
methods worked well according to the stability criteria and each scheme produced
reasonable results for evaluating approximation of u. Each of the finite difference
methods considered its own advantages and disadvantages. Explicit method is very
easy to calculate numerically but has low accuracy must use small At and unstable
for r > 0.5. Implicit and Crank Nicolson methods are unconditionally stable,
computer time required at each step is higher. On the other hand Crank Nicolson
method is more accurate, and faster than Implicit and Explicit methods according to
the order of truncation error.Therefore difficult to judgment of the best scheme

according to their own advantages and disadvantages.
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