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ABSTRACT 

In this thesis we studied the numerical techniques for the solution of one dimensional 

diffusion equations. The discrete approximation of the model problem is based on 

different finite difference schemes. These schemes are the Explicit, Implicit, Crank 

Nicolson and the Weighted Average schemes. For each finite difference method we 

studied the local truncation error, consistency and numerical results from the solution 

of two model problems are considered to evaluate the performance of each scheme 

according to the accuracy and programming efforts.  
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                                                                ÖZ 

Yapılan bu çalışma tek boyutlu difüzyon differansiyel denklem problemlerinin 

sayısal analiz teknikleri kullanılarak çözülmesi ile ilgilidir. Bu yapılan çalışmada dört 

farklı sonlu farklar yöntemi problemin çözümü için kullanılmıştır. Dört farklı sonlu 

farklar yönteminin detaylı olarak nasıl elde edildiği, kesme hataları, stabilite şartları , 

yoğunluğu ve yakınsamaları detaylı olarak anlatılmıştır. Sonlu farklar metodları iki 

değişik problem üzerine uygulanmış ve bu metodların karşılaştırılması yapılmıştır. 

 

 

 

 

 

 

 

 

 

 

Anahtar kelimeler: Difüzyon differansiyel denklem, sonlu farklar yöntemleri, 

kesme hatası, stabilite, yoğunluk ve yakınsama.   
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Chapter 1 

INTRODUCTION 

The diffusion equation (or heat equation) is of fundamental importance in scientific 

fields and engineering problem. The one dimensional diffusion equation is 

                            𝑢𝑡 = 𝛼𝑢𝑥𝑥                                   0 < 𝑥 < 𝐿   , 0 < 𝑡 < 𝑇,                     (1.1)  

where, 𝑢 = 𝑢(𝑥, 𝑡) is the dependent variable, and ∝ is a constant coefficient. To 

solve equation (1.1), it is required a specific initial condition at 𝑡 = 0, given 

     𝑢(𝑥, 0) = 𝑓(𝑥)                 0 ≤ 𝑥 ≤ 𝐿,                                                      (1.2) 

and boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿. The general form of boundary 

conditions is  

  Ɣ1𝑢(0, 𝑡) + 𝛽1𝑢𝑥(0, 𝑡) = 𝑔1(𝑡) 

           Ɣ2𝑢(𝐿, 𝑡) + 𝛽2𝑢𝑥(𝐿, 𝑡) = 𝑔2(𝑡)                                     (1.3) 

The solution of (1.1) with (1.2) and (1.3) is to find 𝑢(𝑥, 𝑡), satisfying the boundary 

conditions as follows [1]. 

1) If  Ɣ𝑖 ≠ 0 and 𝛽𝑖 = 0, then equation (1.3) gives Dirichlet boundary condition     

2) If  Ɣ𝑖 = 0 and 𝛽𝑖 ≠ 0, then equation (1.3) gives Neumann boundary condition   

3) If  Ɣ1 ≠ 0 and 𝛽1 = 0 and Ɣ2 = 0 and 𝛽2 ≠ 0 or If  Ɣ1 = 0 and 𝛽1 ≠ 0 and 

Ɣ2 ≠ 0 and 𝛽2 = 0 equation (1.3) gives mixed boundary conditions.      
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The solution of the one dimensional diffusion equation using several finite difference 

methods with Dirichlet and Neumann type boundary conditions is the core of study 

in this thesis.  

The derivation of each finite difference scheme for Dirichlet and Neumann type 

boundary conditions are discussed in chapter 2. 

In Chapter 3, we presented local truncation error, consistency, stability and 

convergence of finite difference scheme. 

In Chapter 4, we presented the numerical result from solving two module problems. 

Concluding remarks are given each module problem. 

In Chapter 5, general conclusion from work are presented 
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Chapter 2 

THE FINITE DIFFERENCE METHOD 

 

In this Chapter we focus on finite difference methods (FDMs), which are widely 

used and are the most straight forward numerical approach for solving PDE’s. These 

methods are derived from the truncated Taylor’s series where a given PDE and 

boundary and initial conditions are replaced by a set of algebraic equations that are 

then solved by several well-known numerical techniques. We analyzed different 

schemes for first and second order derivatives then applied them to discretize 

diffusion equation with initial and boundary conditions.   

2.1 Taylor Series and Difference Approximations for Derivative 

terms in PDE’s 

Let us consider in case of the function 𝑢(𝑥, 𝑡) of two independent variables 𝑥 and 𝑡. 

We first partition the spatial interval [0, 𝐿] and temporal interval [0, 𝑇] into 

respective finite grids as follows. 

𝑥𝑖 = 𝑖∆𝑥                       𝑖 = 0,1, … . . 𝑁             where         
𝐿

𝑁
= ∆𝑥.                           (2.1.1) 

𝑡𝑗 = 𝑗∆𝑡                       𝑗 = 0,1, . . … ,𝑀             where    
𝑇

𝑀
= ∆𝑡.                               (2.1.2) 
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The numerical solution to the PDE’s is an approximation to the exact solution that is 

obtained using a discrete representation to the PDE at the grid point 𝑥𝑖 in the discrete 

spatial mesh at every time level 𝑡𝑗 (see Fig 2.1) [7]. 

 

 

 

 

 

 

                                                  

 

           Figure 2.1: The finite difference grid in the solution region 

Let us denote the numerical solution of  𝑢(𝑥, 𝑡) such that 

          𝑢𝑖,𝑗 = 𝑢(𝑥𝑖, 𝑡𝑖)                                                                                        (2.1.3) 

Consider the Taylor series for 𝑢𝑖+1,𝑗   , 𝑢𝑖−1,𝑗 and 𝑢𝑖,𝑗+1 respectively [2]. 

𝑢𝑖+1,𝑗 = 𝑢𝑖,𝑗 + ∆𝑥
𝜕𝑢𝑖,𝑗

𝜕𝑥 
 +  

(∆𝑥)2

2
 
𝜕2𝑢𝑖,𝑗

𝜕𝑥2
+ 𝑂((∆x)3)                                   (2.1.4) 

𝑢𝑖−1,𝑗 = 𝑢𝑖,𝑗 − ∆𝑥
𝜕𝑢𝑖,𝑗

𝜕𝑥
 + 

(∆𝑥)2

2
 
𝜕2𝑢𝑖,𝑗

𝜕𝑥2
+ 𝑂((∆x)3)                                   (2.1.5) 

𝑢𝑖,𝑗+1 = 𝑢𝑖,𝑗 + ∆𝑡 
𝜕𝑢𝑖,𝑗

𝜕𝑡
+ 

(∆𝑡)2

2
 
𝜕2𝑢𝑖,𝑗

𝜕𝑡2
+  𝑂((∆x)3)                                   (2.1.6) 

 

𝑖, 𝑗 + 1 

∆t 

∆𝒙 

∆𝑥 

𝑖, 𝑗 𝑖 − 1, 𝑗 𝑖 − 1, 𝑗 

𝑖, 𝑗 − 1 
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If we only consider 𝑂(∆𝑥) terms in equation (2.1.4) and (2.1.5) then we arrive 

at the forward and backward difference approximation for 𝑢𝑥 respectively. 

(
𝜕𝑢

𝜕𝑥
)
𝑖𝑗

=
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑥
+ 𝑂(∆𝑥)                                                           (2.1.7) 

(
𝜕𝑢

𝜕𝑥
)
𝑖𝑗

=
𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

∆𝑥
+ 𝑂(∆𝑥)                                                          (2.1.8) 

If we only consider 𝑂(∆𝑡) terms in equation (2.1.6) then we arrive at the forward 

difference approximation for 𝑢𝑡 . 

(
𝜕𝑢

𝜕𝑡
)
𝑖𝑗

=
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
+ 𝑂(∆𝑡)                                                          (2.1.9) 

We can also derive a higher order approximation for 𝑢𝑥 by subtracting (2.1.5) 

from (2.1.4), then we obtain at the central difference in space approximation for 

𝑢𝑥. 

(
𝜕𝑢

𝜕𝑥
)
𝑖𝑗

=
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑥
+ 𝑂((∆x)2).                                                      (2.110) 

We can also perform similar approach to obtain an approximation for the 

second derivative 𝑢𝑥𝑥. To achieve the central difference for the second 

derivative in space, add Eq. (2.1.4) and Eq. (2.1.5), solve expansion for 
𝜕2𝑢

𝜕𝑥2
 and 

the result is written by 

(
𝜕2𝑢

𝜕𝑥2
) =

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

(∆𝑥)2
+ 𝑂((∆x)2)                                            (2.1.11) 
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2.1.1 Explicit Method (FTCS) 

The explicit finite difference method based on forward difference approximation of 

first order derivative. 

(
𝜕𝑢

𝜕𝑡
)
𝑖𝑗

=
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
,                                                    (2.1.12) 

also based on the central difference approximation to second order derivative. 

(
𝜕2𝑢

𝜕𝑥2
)

𝑖,𝑗

=
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
   ,                                                     

and substituting these in Equation (1.1) results 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
= 𝛼

𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
    .                               (2.1.13) 

In explicit finite difference method, the temperature at time 𝑗 + 1 depends on the 

temperature at time 𝑗, shown as in Figure (2.2). Solving 𝑢𝑖,𝑗+1 in Eq. (2.1.13we get. 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 =
𝛼∆𝑡

∆𝑥2
(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)      ,                        (2.1.14) 

 where 𝑟 =
𝛼∆𝑡

(∆𝑥)2
 

𝑢𝑖,𝑗+1 = 𝑢𝑖,𝑗 + 𝑟(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)                             (2.1.15) 

 Therefore 

𝑢𝑖,𝑗+1 = 𝑟𝑢𝑖+1,𝑗 + (1 − 2𝑟)𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗    .                             (2.1.16) 

Eq. (2.1.16) is called explicit finite difference or Forward Time Center Space 

(FTCS) approximation to the heat equation given in (1.1) [5]. 
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Figure 2.2: Represent point scheme for FTCS 

Furthermore we can rewrite Eq. (2.1.16) in matrix vector form as; 

 

[
 
 
 
 
 
 
 
 

𝑢1,𝑗+1

𝑢2,𝑗+1

.

.

.

.

.

.
𝑢𝑁−1,𝑗+1]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
1 − 2𝑟 𝑟 0  .

𝑟 1 − 2𝑟 𝑟  .
 .   .
  .  .
    .
     
   . .
  𝑟 1 − 2𝑟 𝑟
. . . 𝑟 1 − 2𝑟]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑢1,𝑗 + 𝑟𝑢0,𝑗

𝑢2,𝑗

.

.

.

.

.

.
𝑢𝑁−1, + 𝑟𝑢𝑁,𝑗]

 
 
 
 
 
 
 
 

 (2.1.17) 

2.1.2 Implicit Method (BTCS) 

We can derive the implicit method by substituting forward difference approximation  

(2.1.9) in left hand side of (1.1) and central difference approximation at time (𝑗 + 1) 

in the right hand side of (1.1) [5]. 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
 = 𝛼

𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

(∆𝑥)2
                                              (2.1.18) 

 

𝑖, 𝑗 + 1 

𝑖, 𝑗 𝑖 − 1, 𝑗 𝑖 + 1, 𝑗 

∆𝑥 

∆𝑡 

𝑥 

𝑡 
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Now arrange Eq. (2.1.18) to get 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 =
𝛼∆𝑡

(∆𝑥)2
(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1),                            (2.1.19) 

where 𝑟 =
𝛼∆𝑡

(∆𝑥)2
 then (2.1.19) is given by; 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 = 𝑟(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1) .                                 (2.1.20)  

Therefore 

 −𝑟𝑢𝑖−1,𝑗+1 + (1 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑢𝑖,𝑗        𝑖 = 1,2,3,… . . , 𝑁 − 1   (2.1.21) 

The equation (2.1.21) is known as Backward Time, Centered Space (BTCS) or 

Implicit Method. In implicit method there are more terms in level above than those in 

level below is shown in Figure (2.3). Consequently, the equation cannot be 

reorganized to gain easy algebraic formula similar to the explicit method to 

determine  𝑢𝑖,𝑗+1 [6].  Although this is a disadvantage of implicit method, it has the 

advantage of being unconditionally stable [3]. 

 

 

 

 

 

 

Figure 2.3: Represents point scheme for BTCS 

 

𝑖 − 1, 
𝑗 + 1 

𝑖, 𝑗 + 1 𝑖 + 1, 
𝑗 + 1 

 

 

𝑖, 𝑗 ∆𝑡 

∆𝑥 

𝑡 

𝑥 
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Equation (2.1.21) gives us a set of linear equations at every spatial point 𝑢𝑖,𝑗, and 

they will be solved correctly through the use of matrix method [5], 

where 1 ≤ 𝑖 ≤ 𝑁 − 1 and 𝑢0,𝑗  , 𝑢𝑁,𝑗 are fixed because they are boundary conditions; 

If  𝑖 = 1            

(1 + 2𝑟)𝑢1,𝑗+1 − 𝑟𝑢2,𝑗+1 = 𝑢1,𝑗 + 𝑟𝑢0,𝑗 ,                                    (2.1.22𝑎) 

1 < 𝑖 < 𝑁 − 1    

−𝑟𝑢𝑁−1,𝑗+1 + (1 + 2𝑟)𝑢𝑁,𝑗+1 − 𝑟𝑢𝑁+1,𝑗+1 = 𝑢𝑁,𝑗                     (2.1.22𝑏) 

𝑖 = 𝑁 − 1           

−𝑟𝑢𝑁−2,𝑗+1 + (1 − 2𝑟)𝑢𝑁−1,𝑗+1 = 𝑢𝑁−1,𝑗 + 𝑟𝑢𝑁,𝑗                    (2.1.22𝑐) 

We have a set of linear equations. The unknowns are on the left hand side of the 

equation and they give us a tri-diagonal matrix to solve equation                  

(2.1.22𝑎 − 2.1.22𝑐). The tridiagonal matrix will be in this form [3]. 
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[
 
 
 
 
 
 
 
 
 
 
(1 + 2𝑟) −𝑟 0 0 . .

−𝑟 (1 + 2𝑟 −𝑟   .
0 .    .
0  .   .
.     .
.   .  .
.     .
.     .
.    . .
.   −𝑟 (1 + 2𝑟) −𝑟
. . . . −𝑟 (1 + 2𝑟)]

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

𝑢1,𝑗+1

𝑢2,𝑗+1

.

.

.

.

.

.

.

.
𝑢𝑁−1,𝑗+1]

 
 
 
 
 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 
 
 
 

𝑢1,𝑗 + 𝑟𝑢0,𝑗

𝑢2,𝑗

.

.

.

.

.

.

.

.
𝑢𝑁−1,𝑗 + 𝑟𝑢𝑁,𝑗]

 
 
 
 
 
 
 
 
 
 

          (2.1.23)       

2.1.3 Crank Nicolson Method 

Crank Nicolson method is a popular method to use for parabolic equations since it is 

second order accurate and unconditionally stable. This method is implicit, but 

different from simple implicit (BTCS) method explained in the former Section, as in 

this method the right hand is chosen at time 𝑗 and at time (𝑗 + 1) is shown in Figure 

(2.4) [7]. 
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(
𝜕u

𝜕𝑡
)
𝑖,𝑗

=
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
                                                                            (2.1.24) 

(
𝜕2u

𝜕𝑥2
)

𝑖,𝑗

=
𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

(∆𝑥)2
                                                        (2.1.25) 

(
𝜕2u

𝜕𝑥2
)

𝑖,𝑗+1

=
𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

(∆𝑥)2
                                      (2.1.26) 

Consider the heat equation (1.1) at midpoint (𝑥𝑖, 𝑡𝑗+1

2

) and instead of (
 𝜕2𝑢 

𝜕𝑥2 ) put 

average of central difference (𝑖, 𝑗 +
1

 2 
) [3]. 

(
𝜕𝑢

𝜕𝑡
)
𝑖,𝑗+

1
2

= (
𝜕2𝑢

𝜕𝑥2
)

𝑖,𝑗+
1
2

                                                                   (2.1.27) 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
= 𝛼

1

2
[
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
+

𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

(∆𝑥)2
] (2.1.28) 

 

𝑖 − 1 𝑖 𝑖 + 1 

∆𝑡 

∆𝑥 

𝑡 

𝑥 

𝑗 + 1 

𝑗 

Figure 2.4: Represent point scheme for Crank Nicolson Method 
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Therefore 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 =          
𝛼∆𝑡

2(∆𝑥)2
[𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1]    (2.1.29) 

where 𝑟 =
𝛼∆𝑡

(∆𝑥)2
 then (2.1.19) it will be; 

(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) = 𝑟[𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1]  (2.1.30)       

Separate 𝑗 on one side and (𝑗 + 1) on the another side of equation (2.1.30) giving 

−𝑟𝑢𝑖−1,𝑗+1 + (2 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1         

= 𝑟𝑢𝑖−1,𝑗 + (2 − 2𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖+1,𝑗  ,            (2.1.31) 

where 𝑖 = 1,2,3, …… . . , 𝑁 − 1. 

Generally the right hand side of equation (2.1.31) contains three known values and 

left hand contains three unknowns, Implicit method generate a set of (N-1) linear 

equation, which should be solved at each time level. The set of equations generate a 

tridiagonal matrix and can be solved by Thomas algorithm [3]. 
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The Crank-Nicholson method can be written in a matrix vector form is as follows. 

[
 
 
 
 
 
 
 
 

rr

rrr

rrr

rr

22.....

22.

...

...

..0

.22

.....22









]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑢1,𝑗+1

.

.

.

.

.

.

.
𝑢𝑁−1,𝑗+1]

 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
−𝑟𝑢0,𝑗+1

0
.
.
.
.
.
.

−𝑟𝑢𝑁,𝑗+1]
 
 
 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 
 

rr

rrr

rrr

rr

220....

22.

...

...

..0

.22

.....22









]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑢1,𝑗

.

.

.

.

.

.

.
𝑢𝑁−1,𝑗]

 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
𝑟𝑢0,𝑗

𝑜
.
.
.
.
.
.

𝑟𝑢𝑁,𝑗]
 
 
 
 
 
 
 
 

            (2.1.32) 

2.1.4 The Method of Weighted Averages 

In this method we use two finite difference approximation to 
𝜕2𝑢

 𝜕2𝑥 
 in Eq, (1.1), first 

one  by three points in level below 𝑡𝑗, the other one uses three pointe on level above 

𝑡𝑗+1. The left hand use forward difference approximation is used for the first 

derivative 
𝜕𝑢

𝜕𝑡
 [5]. 

𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗

∆𝑡
= 𝛼 [𝜃 (

𝜕2𝑢

𝜕𝑥2
)

𝑖,𝑗+1

+ (1 − 𝜃) (
𝜕2𝑢

𝜕𝑥2
)

𝑖,𝑗

]   .                              (2.1.33) 

Substitute  (
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗+1

 , (
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

 and rearranging, the equation (2.1.33), gives  

𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗

∆𝑡
=

𝛼

(∆𝑥)2
[𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1)    

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)]               (2.1.34)  
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𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗 =
𝛼∆𝑡

(∆𝑥)2
[𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1)    

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)] ,              (2.1.35) 

taking 𝑟 =
𝛼∆𝑡

(∆𝑥)2
 and then (2.1.35) takes the form 

𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗 = 𝑟[𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1)    

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)]                     (2.1.36) 

The formula (2.1.36) as known as weighted average or 𝜃 −method is shown in 

Figure (2.5). Where 𝜃 is non-negative weights 0 ≤ 𝜃 ≤ 1. If 𝜃 = 0,1,
1

2
 from 

equation (2.1.36) we obtain Explicit, Implicit and Crank Nicolson method 

respectively. The equation (2.1.36) is stable for any 
1

2
≤ 𝜃 ≤ 1, but for 0 ≤ 𝜃 <

1

2
 to 

be stable 𝑟 ≤
1

 2 
 (1 − 2𝜃)−1 [3]. 

 

 

 

 

 

 

 

Figure 2.5: Represent point scheme for weighted average approximation 

 

𝑖 −          𝑖              𝑖 + 1    

𝑗 + 1 

𝑗 

 

 

 

∆𝑡 

∆𝑥 

𝑥 

𝑡 
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To system of equation in (2.1.36) where 𝑢 at time level 𝑗 is known and we want to 

find 𝑢 at time level 𝑗 + 1 is 

−𝑟𝜃𝑢𝑖−1,𝑗+1 + (1 + 2𝑟𝜃)𝑢𝑖,𝑗+1 − 𝑟𝜃𝑢𝑖+1,𝑗+1 = 𝑟(1 − 𝜃)𝑢𝑖−1,𝑗 + 

[1 − 2𝑟(1 − 𝜃)]𝑢𝑖,𝑗 + 𝑟(1 − 𝜃)𝑢𝑖+1,𝑗           𝑖 = 1,2,3, …… . , 𝑁 − 1    .             (2.1.37) 

Here 𝑢0,𝑗+1 and 𝑢𝑁,𝑗+1 as being known the Eq, (2.1.37) generate a set of (𝑛 − 1) 

linear equations which the coefficient matrix is tridiagonal [5]. Which can be solved 

by Thomas Algorithm [3]. It is suitable to write (2.1.37) in vector form, so let             

𝑢𝑗 = [𝑢1,𝑗, 𝑢2,𝑗, ………… . . , 𝑢𝑁−1,𝑗]
𝑇
  . 

Than we can write Eq. (2.1.37) as; 

[I − 𝑟𝜃𝐶]𝑢𝑗+1 = [I + 𝑟(1 − 𝜃)𝐶]𝑢𝑗 + 𝑟𝑓𝑛     ,                                       (2.1.38) 

where 

𝐶 =

[
 
 
 
 
 
 
 
 

.

21.....

121.

...

...

...

.121

.....12









]
 
 
 
 
 
 
 
 

 , 𝑓𝑛 =

[
 
 
 
 
 
 
 
 
 

𝜃𝑢0,𝑗+1 + (1 − 𝜃)𝑢0,𝑗

0
.
.
.
.
.
0

𝜃𝑢𝑁,𝑗+1 + (1 − 𝜃)𝑢𝑁,𝑗+1]
 
 
 
 
 
 
 
 
 

      (2.1.39) 
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2.2 Neumann Boundary Condition 

In previous section we have considered the problems with Dirichlet boundary 

conditions. Now we consider problems with Neumann boundary condition. From Eq. 

(1.3), if Ɣ = 0 and 𝛽 ≠ 0 we have. 

𝑢𝑥(0, 𝑡) = 𝑔1(𝑡) , 𝑢𝑥(𝐿, 𝑡) = 𝑔2(𝑡)                                                    (2.2.1) 

Which has Neumann condition at 𝑥 = 0 , 𝑥 = 𝐿. 

It is possible to use forward or backward difference to represent Neumann boundary 

condition at left and right end of the domain, but it is generally preferable to use 

central difference formula by introducing the fictitious temperature 𝑢𝑖−1,𝑗 at the 

external grid point 𝑥 = (𝑖 − 1)∆𝑥 and as shown in Figure (2.5). The boundary 

condition at 𝑖 − 1 is represented by Figure (2.6) [3]. 

(𝑢𝑥)0,𝑗 =
𝑢1,𝑗 − 𝑢−1,𝑗

2∆𝑥
                                                           (2.2.2) 

 

 

 

 

                               Figure 2.5: Introduce fictitious temperature                                                  

 

𝑖 − 1        𝑖        𝑖 + 1   −1           0       1   

       0                                                                     𝐿         𝑥   

Type equation here. 

𝑡 
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Also introduce 𝑢𝑖+1  at the end of the rod at the external grid point 𝑥 = (𝑖 + 1)∆𝑥. 

The boundary condition at 𝑖 + 1 can be represent by [3]. 

(𝑢𝑥)𝑖,𝑗 =
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑥
                                                     (2.2.3) 

The temperatures 𝑢−1,𝑗 and 𝑢𝑖+1,𝑗 are unknown and this leads to more equations. It is 

possible to eliminated 𝑢−1,𝑗 and 𝑢𝑖+1,𝑗 between these equations. These methods are 

applied to find boundary condition in following schemes [3]. 

2.3.1 Explicit Method with Neumann Boundary 

Consider explicit method representation of Eq.(2.1.16) 

𝑢𝑖,𝑗+1 = 𝑟𝑢𝑖+1,𝑗 + (1 − 2𝑟)𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 ,                                      

at 𝑥 = 0 gives us 

𝑢0,𝑗+1 = 𝑢0,𝑗 + 𝑟(𝑢−1,𝑗 − 2𝑢0,𝑗 + 𝑢1,𝑗)  .                                  (2.2.4) 

Applying central difference for the boundary at 𝑥 = 0 than we obtain, 

(𝑢𝑥)0,𝑗 =
𝑢1,𝑗 − 𝑢−1,𝑗

2∆𝑥
                                                         (2.2.5) 

Substitute into (2.2.1) we get an approximation of the Neumann condition at (0, 𝑗∆𝑡) 

as  

𝑢−1,𝑗 = 𝑢1,𝑗 − 2∆𝑥𝑔1(𝑗∆𝑡)  .                                                  (2.2.6) 

Use Eq, (2.2.6) to discretize explicit method (2.2.4) resulting 

𝑢0,𝑗+1 = (1 − 2𝑟)𝑢0,𝑗 + 2𝑟𝑢1,𝑗 − 2𝑟∆𝑥𝑔1(𝑗∆𝑡)                             (2.2.7) 
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Now, consider explicit method at 𝑥 = 𝐿 = 𝑁∆𝑥 

𝑢𝑁,𝑗+1 = 𝑢𝑁,𝑗 + 𝑟(𝑢𝑁−1,𝑗 − 2𝑢𝑁,𝑗 + 𝑢𝑁+1,𝑗) .                             (2.2.8) 

We apply the following central difference formula for right boundary condition at 

𝑥 = 𝐿, 

(𝑢𝑥)𝑁,𝑗 =
𝑢𝑁+1,𝑗 − 𝑢𝑁−1,𝑗

2∆𝑥
  .                                                       (2.2.9) 

Substitute into (2.2.1) we obtain an approximation of the Neumann condition at          

((𝑁 + 1)∆𝑥, 𝑗∆𝑡) as 

𝑢𝑁+1,𝑗 = 𝑢𝑁−1,𝑗 + 2∆𝑥𝑔2(𝑗∆𝑡)  .                                                 (2.2.10) 

Use Eq(2.2.10) to discretize explicit method (2.2.8) than gives as 

𝑢𝑁,𝑗+1 = 2𝑟𝑢𝑁−1 + (1 − 2𝑟)𝑢𝑁,𝑗 + 2𝑟∆𝑥𝑔2(𝑗∆𝑡)     .                              (2.2.11) 

Matrix form as (2.2.11) can be written in 

[
 
 
 
 
 
 
 
 

𝑢0,𝑗+1

𝑢1,𝑗+1

.

.

.

.

.
𝑢𝑁−1,𝑗+1

𝑢𝑁,𝑗+1 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

rr

rrr

rrr

rr

212.....

21.

...

...

..0

.21

....0221









]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑢0,𝑗

𝑢1,𝑗

.

.

.

.

.
𝑢𝑁−1,𝑗

𝑢𝑁,𝑗 ]
 
 
 
 
 
 
 
 

                          

+

[
 
 
 
 
 
 
 
 
−2𝑟∆𝑥𝑔1(𝑗∆𝑡)

0
.
.
.
.
.
.

2𝑟∆𝑥𝑔2(𝑗∆𝑡) ]
 
 
 
 
 
 
 
 

                     (2.2.12) 
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2.3.2 Implicit Method with Neumann Boundary  

Consider implicit method represented as the following;                          

−𝑟𝑢𝑖−1,𝑗+1 + (1 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑢𝑖,𝑗  ,                  (2.2.13)                 

at 𝑥 = 0 gives us 

−𝑟𝑢−1,𝑗+1 + (1 + 2𝑟)𝑢0,𝐽+1 − 𝑟𝑢1,𝑗+1 = 𝑢0,𝑗     .                  (2.2.14) 

Applying central difference for the boundary at 𝑥 = 0 than we obtain 

(𝑢𝑥)0,𝑗+1 =
𝑢1,𝑗+1 − 𝑢−1,𝑗+1

2∆𝑥
       ,                                                  (2.2.15) 

substitute into (2.2.1) we obtain an approximation of the Neumann condition at 

(0, 𝑗∆𝑡) as  

𝑢−1,𝑗+1 = 𝑢1,𝑗+1 − 2∆𝑥𝑔1(𝑗∆𝑡)           .                                     (2.2.16) 

Use Eq(2.2.16) to discretize explicit method (2.2.14) than gives as 

(1 + 2𝑟)𝑢0,𝑗+1 − 2𝑟𝑢1,𝑗+1 + 2𝑟∆𝑥𝑔1(𝑗∆𝑡) = 𝑢0,𝑗    .                    (2.2.17) 

Now, consider implicit method at 𝑥 = 𝐿 

𝑢𝑁,𝑗+1 − 𝑟(𝑢𝑁−1,𝑗+1 − 2𝑢𝑁,𝑗 + 𝑢𝑁+1,𝑗+1) = 𝑢𝑁,𝑗      .                          (2.2.18) 

We apply central difference for right boundary condition at 𝑥 = 𝐿 we get 

𝑢𝑁,𝑗+1 =
𝑢𝑁+1,𝑗+1 − 𝑢𝑁−1,𝑗+1

2∆𝑥
                                                   (2.2.19) 
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Substitute into (2.2.1) we obtain an approximation of the Neumann condition at           

((𝑁 + 1)∆𝑥, (𝑗 + 1)∆𝑡) as 

𝑢𝑁+1,𝑗+1 = 𝑢𝑁−1,𝑗+1 + 2∆𝑥𝑔2((𝑗 + 1)∆𝑡)                 .                       (2.2.20) 

Use Eq(2.2.20) to discretize implicit method (2.2.18) than gives as 

−2𝑟𝑢𝑁−1,𝑗+1 + (1 + 2𝑟)𝑢𝑁,𝑗+1 − 2𝑟∆𝑥𝑔2((𝑗 + 1)∆𝑡) = 𝑢𝑁,𝑗  .                       (2.2.21) 

We can write in matrix form 

[
 
 
 
 
 
 
 
 

rr

rrr

rrr

rr

212.....

21.

...

...

...

.21

......221









]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

𝑢0,𝑗+1

𝑢1,𝐽+1

.

.

.

.

.

.
𝑢𝑁−1,𝑗+1

𝑢𝑁,𝑗+1 ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

𝑢0,𝑗

𝑢1,𝑗

.

.

.

.

.

.
𝑢𝑁−1,𝑗

𝑢𝑁,𝑗 ]
 
 
 
 
 
 
 
 
 

 

+

[
 
 
 
 
 
 
 
 
 
2𝑟∆𝑥𝑔1((𝑗 + 1)∆𝑡)

0
.
.
.
.
.
.
0

2𝑟∆𝑥𝑔2((𝑗 + 1)∆𝑡)]
 
 
 
 
 
 
 
 
 

                                 (2.2.22) 

 

 

 



 

21 

 

2.3.3 Crank Nicolson Method with Neumann Boundary 

Consider Crank Nicolson method represent as follow 

−𝑟𝑢𝑖−1,𝑗+1 + (2 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 

𝑟𝑢𝑖−1,𝑗 + (2 − 2𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖+1,𝑗  ,        (2.2.23) 

at 𝑥 = 0 gives as 

−𝑟𝑢−1,𝑗+1 + (2 + 2𝑟)𝑢0,𝑗+1 − 𝑟𝑢1,𝑗+1 = 𝑟𝑢−1,𝑗 + (2 − 2𝑟)𝑢0,𝑗 + 𝑟𝑢1,𝑗  .     (2.2.24) 

Applying central difference for the boundary at 𝑥 = 0 at time level 𝑗 + 1 and 𝑗  than 

we obtain 

𝑢1,𝑗 − 𝑢−1,𝑗

2∆𝑥
= (𝑢𝑥)0,𝑗       ,      

𝑢1,𝑗+1 − 𝑢−1,𝑗+1

2∆𝑥
= (𝑢𝑥)0,𝑗+1      ,          (2.2.25) 

substitute into (2.2.1) we obtain an approximation (0, 𝑗∆𝑡) as  

𝑢−1,𝑗 = 𝑢1,𝑗 − 2∆𝑥𝑔1(𝑗∆𝑡)    ,    𝑢−1,𝑗+1 = 𝑢1,𝑗+1 − 2∆𝑥𝑔1((𝑗 + 1)∆𝑡)    .  (2.2.26) 

Use Eq(2.2.26) to discretize Crank Nicolson method (2.2.24) than gives as 

             (2 + 2𝑟)𝑢0,𝑗+1 − 2𝑟𝑢1,𝑗+1 + 2𝑟∆𝑥𝑔1((𝑗 + 1)∆𝑡) 

= (2 − 2𝑟)𝑢0,𝑗 + 2𝑟𝑢1,𝑗 − 2𝑟∆𝑥𝑔1(𝑗∆𝑡)     ,                 (2.2.27) 

at 𝑥 = 𝐿 gives as  

−𝑟𝑢𝑁−1,𝑗+1 + (2 + 2𝑟)𝑢𝑁,𝑗+1 − 𝑟𝑢𝑁+1,𝑗+1 = 

𝑟𝑢𝑁−1,𝑗 + (2 − 2𝑟)𝑢𝑁,𝑗 + 𝑟𝑢𝑁+1,𝑗    (2.2.28) 
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Now, we apply central difference for right boundary condition at 𝑥 = 𝐿 to find left 

side 

           (𝑢𝑥)𝑁,𝑗 =
𝑢𝑁+1,𝑗 − 𝑢𝑁−1,𝑗

2∆𝑥
   ,   (𝑢𝑥)𝑁,𝑗+1 =

𝑢𝑁+1,𝑗+1 − 𝑢𝑁−1,𝑗+1

2∆𝑥
        (2.2.29) 

Substitute into (2.2.1) we obtain an approximation of the Neumann condition at          

((𝑁 + 1)∆𝑥, 𝑗∆𝑡) as 

𝑢𝑁+1,𝑗 = 𝑢𝑁−1,𝑗 + 2∆𝑔2(𝑗∆𝑡) ,   𝑢𝑁+1,𝑗+1 = 𝑢𝑁−1,𝑗+1 + 2∆𝑥𝑔2((𝑗 + 1)∆𝑡)  (2.2.30) 

Use Eq(2.2.30) to discretize Crank Nicolson method (2.2.28) than gives as 

−2𝑟𝑢𝑁−1,𝑗+1 + (2 + 2𝑟)𝑢𝑁,𝑗+1 − 2𝑟∆𝑥𝑔2((𝑗 + 1)∆𝑡) =                                            

2𝑟𝑢𝑖−1,𝑗 + (2 − 2𝑟)𝑢𝑖,𝑗 + 2𝑟∆𝑥𝑔2(𝑗∆𝑡)                (2.2.31) 
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We can write in tire-diagonal matrix form  

[
 
 
 
 
 
 
 
 

rr

rrr

rrr

rr

222.....

22.

...

...

...

.22

.....222









]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑢0,𝑗+1

𝑢1,𝑗+1

.

.

.

.

.
𝑢𝑁−1,𝑗+1

𝑢𝑁,𝑗+1 ]
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 

2𝑟∆𝑥𝑔1((𝑗 + 1)∆𝑡)
0
.
.
.
.
.
.

−2𝑟∆𝑥𝑔2((𝑗 + 1)∆𝑡)]
 
 
 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 
 

rr

rrr

rrr

rr

222.....

22.

...

...

...

.22

.....222









]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

𝑢0,𝑗

𝑢1,𝑗

.

.

.

.

.
𝑢𝑁−1,𝑗

𝑢𝑁,𝑗 ]
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
−2𝑟∆𝑥𝑔1(𝑗∆𝑡)

0
.
.
.
.
.
.

2𝑟∆𝑥𝑔2(𝑗∆𝑡) ]
 
 
 
 
 
 
 
 

  (2.2.32) 

2.3.4 Weighted Average Approximation with Neumann Boundary 

Consider weighted average method at 𝑥 = 0 

−𝑟𝜃𝑢−1,𝑗+1 + (1 + 2𝑟𝜃)𝑢0,𝑗+1 − 𝑟𝜃𝑢1,𝑗+1 = 𝑟(1 − 𝜃)𝑢−1,𝑗 + 

[1 − 2𝑟(1 − 𝜃)]𝑢0,𝑗 + 𝑟(1 − 𝜃)𝑢1,𝑗         .               (2.2.33) 
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Applying central difference for the boundary at 𝑥 = 0 at time level 𝑗 + 1 and 𝑗  than 

we obtain (2.2.25). Substitute into (2.2.1) we obtain an approximation of the 

Neumann condition at (0, 𝑗∆𝑡) as  

𝑢−1,𝑗+1 = 𝑢1,𝑗+1 − 2∆𝑥𝑔1((𝑗 + 1)∆𝑡)   ,   𝑢−1,𝑗 = 𝑢1,𝑗 − 2∆𝑥𝑔1(𝑗∆𝑡)    .       (2.2.34) 

Use equation (2.2.34) to discretize Weight average method (2.2.33) than gives as 

(1 + 2𝑟𝜃)𝑢0,𝑗+1 − 2𝑟𝜃𝑢1,𝑗+1 + 2𝑟∆𝑥𝑔1((𝑗 + 1)∆𝑡) =   [1 − 2𝑟(1 − 𝜃)]𝑢0,𝑗 + 

2𝑟(1 − 𝜃)𝑢1,𝑗 − 2𝑟(1 − 𝜃)∆𝑥𝑔1(𝑗∆𝑡)   .          (2.2.35) 

Now, consider weighted average at 𝑥 = 𝐿 give as 

−𝑟𝜃𝑢𝑁−1,𝑗+1 + (1 + 2𝑟𝜃)𝑢𝑁,𝑗+1 − 𝑟𝜃𝑢𝑁+1,𝑗+1 = 𝑟(1 − 𝜃)𝑢𝑁−1,𝑗 + 

[1 − 2𝑟(1 − 𝜃)]𝑢𝑁,𝑗 + 𝑟(1 − 𝜃)𝑢𝑁+1,𝑗       .          (2.2.36) 

Apply central difference for right boundary condition at 𝑥 = 𝐿 as given in (2.2.29).  

Substitute into (2.2.1) we obtain an approximation of the Neumann condition at          

((𝑁 + 1)∆𝑥, 𝑗∆𝑡) as 

𝑢𝑁+1,𝑗+1 = 𝑢𝑁−1,𝑗+1 + 2∆𝑥𝑔2((𝑗 + 1)∆𝑡) , 𝑢𝑖+1,𝑗 = 𝑢𝑖−1,𝑗 + 2∆𝑥𝑔2((𝑗∆𝑡)  (2.2.37) 

Use Eq(2.2.37) to discretize weighted average method (2.2.36) than gives as 

−2𝑟𝜃𝑢𝑁−1,𝑗+1 + (1 + 2𝑟𝜃)𝑢𝑁,𝑗+1 − 2𝑟𝜃∆𝑥𝑔2((𝑗 + 1)∆𝑡) = 2𝑟(1 − 𝜃)𝑢𝑁−1,𝑗 + 

[1 − 2𝑟(1 − 𝜃)]𝑢𝑁,𝑗 + 2𝑟(1 − 𝜃)∆𝑥𝑔2((𝑗∆𝑡)              (2.2.38) 

 

 

 



 

25 

 

We can write in the matrix tridiagonal form 

[I − 𝑟𝜃𝐶]𝑢𝑗+1 = [I + 𝑟(1 − 𝜃)𝐶]𝑢𝑗 + 2𝑟𝑓𝑛,                                    (2.2.39) 

where  

𝑢 = [𝑢0, 𝑢1, …………… , 𝑢𝑁−1, 𝑢𝑁]𝑇, 

and 

𝐶 =

[
 
 
 
 
 
 
 
 

22.....

121.

...

...

...

.121

.....22









]
 
 
 
 
 
 
 
 

    ,    𝑓𝑛 =

[
 
 
 
 
 
 
 
 
−(1 − 𝜃)∆𝑥𝑔1(𝑗∆𝑡) − 𝜃∆𝑥𝑔1((𝑗 + 1)∆𝑡)

0
.
.
.
.
.
.

(1 − 𝜃)∆𝑥𝑔2(𝑗∆𝑡) + 𝜃∆𝑥𝑔2((𝑗 + 1)∆𝑡) ]
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Chapter 3 

 LOCAL TRUNCTION ERROR, CONSISTENCY AND 

STABILITY OF DIFFERENCE SCHEMES  

3.1 Local Truncation Error  

Local truncation error represents the difference between an exact differential 

equation and its finite difference representation at a point in space and time. Local 

truncation error provides a basis for comparing local accuracies of various difference 

schemes. In particular, if the partial differential equation satisfied by the exact 

solution 𝑈 is written 𝐹(𝑈) and if 𝐹(𝑢) is the equation satisfied by the discrete 

approximation 𝑢 then truncation error at the (𝑖, 𝑗)th mesh point is 𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) [4]. 

3.2 Local Truncation Error for Diffusion Equation  

We analyze the local truncation error for diffusion equation, 

𝜕𝑈

  𝜕𝑡  
=  

𝜕2𝑈

𝜕𝑥2
                                                               (3.2.1) 

at the mesh point (𝑖, 𝑗) for three classical schemes and Weighted Average scheme as 

follows. 

3.2.1 Local Truncation Error for Explicit Method (FTCS)   

𝐹𝑖,𝑗(𝑢) =
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
−

𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖1,𝑗

(∆𝑥)2
          ,            (3.2.2) 

substituting 𝑈 for 𝑢 we obtain 

𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) =
𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

∆𝑡
−

𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗

(∆𝑥)2
              (3.2.3) 
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Use Taylor’s expansion for 𝑈𝑖+1,𝑗, 𝑈𝑖−1,𝑗 and 𝑈𝑖,𝑗+1 ,we have the following.  

    𝑈𝑖+1,𝑗 = 𝑈𝑖,𝑗 + ∆𝑥 (
𝜕𝑈

𝜕𝑥
)
𝑖,𝑗

+
(∆𝑥)2

2
(
𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
(∆𝑥)3

6
(
𝜕3𝑈

𝜕𝑥3
)

𝑖,𝑗

           

    + 
(∆𝑥)4

24
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ ⋯               (3.2.4) 

                   𝑈𝑖−1,𝑗 = 𝑈𝑖,𝑗 − ∆𝑥 (
𝜕𝑈

𝜕𝑥
)
𝑖,𝑗

+
(∆𝑥)2

2
(
𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

−
(∆𝑥)3

6
(
𝜕3𝑈

𝜕𝑥3
)

𝑖,𝑗

   

+
(∆𝑥)4

24
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+. . .                  (3.2.5) 

          𝑈𝑖,𝑗+1 = 𝑈𝑖,𝑗 + ∆𝑡 (
𝜕𝑈

𝜕𝑡
)
𝑖,𝑗

+
(∆𝑡)2

2
(
𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

+
(∆𝑡)3

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

 

+
(∆𝑡)4

24
(
𝜕4𝑈

𝜕𝑡4
)

𝑖,𝑗

+ ⋯     .            (3.2.6) 

Substituting equations (3.2.4 − 3.2.6) in equation (3.2.3) then give 

                    𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) = (
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
1

 2 
∆𝑡 (

𝜕2𝑈

𝜕𝑡
)

𝑖,𝑗

 

                          −
1

 12 
(∆𝑥2) (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ 𝑂((∆𝑡)2) + 𝑂((∆𝑥)4),              (3.2.7) 

where 𝑈(𝑥𝑖,𝑡𝑗) is the solution of the differential equation. 

(
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

= 0                                                          (3.2.8) 

Therefore the main part of the local truncation error is 

1

 2 
∆𝑡 (

𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

−
1

 12 
(∆𝑥)2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

                                   (3.2.9) 
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Hence 

𝑇𝑖,𝑗 = 𝑂(∆𝑡) + 𝑂((∆𝑥)2)  .                                        (3.2.10) 

Thus the explicit solution to equation (3.2.1) is 𝑂(∆𝑡) accurate in time and 

𝑂((∆𝑥))2 accurate in space. 

3.2.2 Local Truncation Error for Implicit Method (FTCS) 

𝐹𝑖,𝑗(𝑢) =
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
−

𝑢𝑖−1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1

(∆𝑥)2
  ,                 (3.2.11) 

substituting 𝑈 for 𝑢 we obtain 

𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑢) =
𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

∆𝑡
−

𝑈𝑖−1,𝑗+1 − 2𝑈𝑖,𝑗+1 + 𝑈𝑖+1,𝑗+1

(∆𝑥)2
 .             (3.2.12) 

Use Taylor’s expansion for 𝑈𝑖−1,𝑗+1, 𝑈𝑖+1,𝑗+1 , we have the following 

𝑈𝑖+1,𝑗+1 = 𝑈𝑖,𝑗 + ∆𝑥 (
𝜕𝑈

𝜕𝑥
)
𝑖,𝑗

+ ∆𝑡 (
𝜕𝑈

𝜕𝑡
)
𝑖,𝑗

+
(∆𝑥)2

2
(
𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
(∆𝑡)2

2
(
𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

 

∆𝑥∆𝑡 (
𝜕2𝑈

𝜕𝑥𝜕𝑡
)

𝑖,𝑗

+
(∆𝑥)3

6
(
𝜕3𝑈

𝜕𝑥3
)

𝑖,𝑗

+
(∆𝑡)3

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

+
(∆𝑥)2

2
∆𝑡 (

𝜕3𝑈

𝜕𝑥2𝜕𝑡
)

𝑖,𝑗

 

+∆𝑥
(∆𝑡)2

2
(

𝜕3𝑈

𝜕𝑥𝜕𝑡2
)

𝑖,𝑗

+
(∆𝑥)4

24
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+
(∆𝑡)4

24
(
𝜕4𝑈

𝜕𝑡4
)

𝑖,𝑗

+
(∆𝑥)2(∆𝑡)2

4
(

𝜕4𝑈

𝜕𝑥2𝜕𝑡2
)

𝑖,𝑗

+
(∆𝑥)3

6
∆𝑡 (

𝜕4𝑈

𝜕𝑥3𝜕𝑡
)

𝑖,𝑗

+ ∆𝑥
(∆𝑡)3

6
(

𝜕4𝑈

𝜕𝑥𝜕𝑡3
)

𝑖,𝑗

+ ⋯                          .                        (3.2.13) 
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𝑈𝑖−1,𝑗+1 = 𝑈𝑖,𝑗 − ∆𝑥 (
𝜕𝑈

𝜕𝑥
)
𝑖,𝑗

+ ∆𝑡 (
𝜕𝑈

𝜕𝑡
)
𝑖,𝑗

+
(∆𝑥)2

2
(
𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
(∆𝑡)2

2
(
𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

 

−∆𝑥∆𝑡 (
𝜕2𝑈

𝜕𝑥𝜕𝑡
)

𝑖,𝑗

−
(∆𝑥)3

6
(
𝜕3𝑈

𝜕𝑥3
)

𝑖,𝑗

+
(∆𝑡)3

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

+
(∆𝑥)2

2
∆𝑡 (

𝜕3𝑈

𝜕𝑥2𝜕𝑡
)

𝑖,𝑗

 

−∆𝑥
(∆𝑡)2

2
(

𝜕3𝑈

𝜕𝑥𝜕𝑡2
)

𝑖,𝑗

+
(∆𝑥)4

24
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+
(∆𝑡)4

24
(
𝜕4𝑈

𝜕𝑡4
)

𝑖,𝑗

  

+
(∆𝑥)2(∆𝑡)2

4
(

𝜕4𝑈

𝜕𝑥2𝜕𝑡2
)

𝑖,𝑗

−
(∆𝑥)3

6
∆𝑡 (

𝜕4𝑈

𝜕𝑥3𝜕𝑡
)

𝑖,𝑗

− ∆𝑥
(∆𝑡)3

6
(

𝜕4𝑈

𝜕𝑥𝜕𝑡3
)

𝑖,𝑗

+ ⋯                             .                              (3.2.14) 

Substituting equations (3.2.13), (3.2.14) and (3.2.6) in (3.2.12) then gives. 

𝑇𝑖,𝑗 = (
𝜕𝑈

 𝜕𝑡 
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
1

2
∆𝑡 (

𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

−
1

12
∆𝑥2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

  

                                  +𝑂((∆𝑡)2) + 𝑂((∆𝑥)4)     ,                 (3.2.15) 

where 𝑈 is the solution of the differential equation. 

(
𝜕𝑈

 𝜕𝑡 
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

= 0  .                                                  (3.2.16) 

From equation (3.2.15) the principal part of the local truncation error for implicit 

scheme is 

1

2
∆𝑡 (

𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

−
1

12
(∆𝑥)2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

       .                                (3.2.17) 
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Hence 

𝑇𝑖,𝑗 = 𝑂(∆𝑡) + 𝑂((∆𝑥)2)                                              (3.2.18) 

Thus the implicit solution to equation (3.2.1) is 𝑂(∆𝑡) accurate in time and 

𝑂((∆𝑥)2)accurate in space. 

3.2.3 Local Truncation Error for Crank Nicolson  

 Consider the crank Nicolson method  

𝐹𝑖,𝑗(𝑢) =
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
−

1

2
[ 
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
  

           +
𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1 

(∆𝑥)2
] ,   (3.2.19) 

 substituting 𝑈 for 𝑢 we obtain  

𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) =
𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

∆𝑡
−

1

2
[ 
𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗

(∆𝑥)2
          

           +
𝑈𝑖+1,𝑗+1 − 2𝑈𝑖,𝑗+1 + 𝑈𝑖−1,𝑗+1 

(∆𝑥)2
 ] .  (3.2.20) 

Substituting equation(3.2.4 − 3.2.6), (3.2.13)and (3.2.14) in (3.2.20) then gives   

𝑇𝑖,𝑗 = (
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
∆𝑡

2

𝜕

𝜕𝑡
(
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
(∆𝑡)2

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

 

−
(∆𝑥)2

12
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ 𝑂((∆𝑡)3) + 𝑂((∆𝑥)3)    ,             (3.2.21) 

where 𝑈 is the solution of the differential equation. 

(
𝜕𝑈

 𝜕𝑡 
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

= 0  .                                             (3.2.22) 



 

31 

 

From equation (3.2.21) the principal part of the local truncation error for Crank-

Nicolson scheme is 

(∆𝑡)2

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

−
(∆𝑥)2

12
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

                                  (3.2.23) 

Hence 

𝑇𝑖,𝑗 = 𝑂((∆𝑡)2) + 𝑂((∆𝑥)2).                                      (3.2.24) 

Thus the Crank-Nicolson solution to equation (3.2.1) is 𝑂((∆𝑥)2  ) accurate in space 

and 𝑂((∆𝑡)2) accurate in time. 

3.2.4 Local Truncation Error for Weighted Average  

𝐹𝑖,𝑗(𝑢) =
𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗

∆𝑡
−

1

(∆𝑥)2
  [𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1)    

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)] , (3.2.25) 

substituting 𝑈 for 𝑢 we obtain 

𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) =
𝑈𝑖,𝑗+1 − 𝑈𝑖.𝑗

∆𝑡
−

1

(∆𝑥)2
  [𝜃(𝑈𝑖+1,𝑗+1 − 2𝑈𝑖,𝑗+1 + 𝑈𝑖−1,𝑗+1)     

        +(1 − 𝜃)(𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗)]   .    (3.2.26) 

Substituting equation (3.2.4 − 3.2.6), (3.2.13) and (3.2.14) in (3.2.26) than gives 

𝑇𝑖,𝑗 = (
𝜕𝑈

 𝜕𝑡 
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+ ∆𝑡
𝜕

𝜕𝑡
(
1

2

𝜕𝑈

𝜕𝑡
− 𝜃

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

−
(∆𝑥)2

12
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

 

+
(∆𝑡)2

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

+
(∆𝑡)3

24
(
𝜕4𝑈

𝜕𝑡4
)

𝑖,𝑗

− 𝜃
(∆𝑡)2

2
(

𝜕4𝑈

𝜕𝑥2𝜕𝑡2
)

𝑖,𝑗

  ,         (3.2.27) 
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Where 𝑈 is the solution of differential equation 

(
𝜕𝑈

 𝜕𝑡 
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

= 0   .                                           (3.2.28) 

If 𝜃 =
1

2
  the equation (3.2.27) gives us Crank Nicolson scheme, which is second 

order accurate in both ∆𝑡 and ∆𝑥. Another choice to 𝜃 = 0,1 gives us 𝑂(∆𝑡) accurate 

in time and 𝑂((∆𝑥)2)accurate in space. 

3.3 Consistency 

The notion of consistency addresses the problem of whether the finite difference 

approximation is really representing the partial differential equation. We say that a 

finite difference approximation is consistent with a differential equation if the finite 

difference equations converge to the original equation as the time and space grids are 

refined. Hence, if the truncation error goes to zero as time and space grids are refined 

we conclude that the scheme is consistent [4]. 

3.3.1 Consistency of Explicit Method 

For the explicit solution to the diffusion equation, the truncation error is, 

                    𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) = (
𝜕𝑈

𝜕𝑡
+

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
1

 2 
∆𝑡 (

𝜕2𝑈

𝜕𝑡
)

𝑖,𝑗

 

                          −
1

 12 
(∆𝑥)2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ 𝑂((∆𝑡)2) + 𝑂((∆𝑥)4)                (3.3.1) 

Thus as ∆𝑥 → 0 and ∆𝑡 → 0 then 𝑇𝑖,𝑗 = 0, hence the explicit method is consistent 

with partial differential equation (3.2.1). 
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3.3.2 Consistency of Implicit Method 

For the implicit solution to the diffusion equation, the truncation error is,              

𝑇𝑖,𝑗 = (
𝜕𝑈

 𝜕𝑡 
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
1

2
∆𝑡 (

𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

−
1

12
∆𝑥2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

  

                                  +𝑂((∆𝑡)2) + 𝑂((∆𝑥)4)                       (3.3.2) 

Thus as ∆𝑥 → 0 and ∆𝑡 → 0 then 𝑇𝑖,𝑗 = 0, hence the implicit method is consistent 

with partial differential equation (3.2.1) 

3.3.3 Consistency of Crank Nicolson Method 

For the Crank Nicolson solution to the diffusion equation, the truncation error is,              

𝑇𝑖,𝑗 = (
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
∆𝑡

2

𝜕

𝜕𝑡
(
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
∆𝑡2

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

 

−
∆𝑥2

12
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ 𝑂(∆𝑡)3) + 𝑂((∆𝑥)3)                    (3.3.3) 

Thus as ∆𝑥 → 0 and ∆𝑡 → 0 then 𝑇𝑖,𝑗 = 0, hence the Crank Nicolson method is 

consistent with partial differential equation (3.2.1). 

3.4 Stability and Convergence of Finite Difference Schemes 

3.4.1 Stability and Convergence 

The stability of a numerical scheme is associated with propagation of numerical 

error. A finite difference scheme is stable if the error stays constant or decrees as the 

iterative process goes on. On contrary, if the error grows with time, the scheme is 

said to be unstable 
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Definition 3.4.1.1 [4] 

A finite difference scheme is stable if the scheme do not allows the growth of error in 

the solution with different time level. 

A numerical scheme is convergent if the computed solution of the discretized 

equation leads to the exact solution of the differential equation as the time and grid 

spacing lead to zero. 

This will have definition as shown below. The computed solution 𝑢𝑖,𝑗  must approach 

the exact solution 𝑈 of the differential equation at any point 𝑥𝑖 = 𝑖∆𝑥 and 𝑡𝑗 = 𝑗∆𝑡 

when ∆𝑥 and ∆𝑡 lead to zero while keeping 𝑥𝑖  and 𝑡𝑗  constant. In other hand, the 

error 

𝜀𝑖,𝑗 = 𝑢𝑖,𝑗 − 𝑈𝑖,𝑗                                                           (3.4.1) 

Satisfying the following convergence condition  

lim
∆𝑡,∆𝑥→0

|𝜀𝑖,𝑗| → 0 at fixed 𝑥𝑖 = 𝑖∆𝑥 and 𝑡𝑗 = 𝑗∆𝑡                            (3.4.2) 

Theorem 3.4.1.1 (Lax theorem) [4] 

For a well-posed initial and boundary value problem, if a finite difference scheme is 

consistent with the partial differential equation, then the stability is the necessary and 

sufficient condition for convergence that is 

          Consistency + stability ↔ convergence 
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3.4.2 Von Neumann Stability Analysis 

There are many approaches to analyze whether a finite difference scheme is stable or 

unstable. In this thesis, we will consider the Von Neumann stability analysis for 

presented finite difference schemes. 

The Von Neumann stability analysis is most commonly used, but it is restricted to 

linear initial value problems with constant coefficients. For more sophisticated 

problems including variable coefficients, nonlinearities and complicated boundary 

conditions, this method is useful to determine necessary conditions for stability. The 

only class of problems for which Von Neumann analysis provides also sufficient 

conditions is the class of initial value problems with periodic boundary conditions. 

The basic idea of this analysis is given by defining the discrete Fourier transform of 

𝑢 as follows [1,3]. 

 

The discrete Fourier transform of 𝑢 ∈ ℓ2 is the function 𝑢̃ ∈ 𝐿2 [−𝜋, 𝜋] defined by 

𝑢̃(𝜉) =
1

√2𝜋
∑ 𝑒−𝑖𝑚𝜉𝑢𝑚        for 𝜉 ∈ [−𝜋, 𝜋]                                (3.4.3)

∞

𝑚=−∞

 

The transform can be inverted by 

𝑢2 =
1

√2𝜋
∫ 𝑒−𝑖𝑚𝜉𝑢̃(𝜉)𝑑𝜉  ,                                             (3.4.4)

𝜋

−𝜋

 

and then Parselval’s relation is given as given 

‖𝑢̃‖2 = ‖𝑢‖2    .                                                          (3.4.5) 



 

36 

 

Consider the difference scheme with discrete Fourier transform and Parselval’s 

identity that gives the inequality as follows. 

‖𝑢𝑛+1‖2 ≤ 𝐾𝑒𝛽(𝑛+1)𝑘‖𝑢0‖2                                         (3.4.6) 

But since, we can find 𝐾 and 𝛽 to satisfy 

⃦𝑢̃𝑛+1  ⃦2 ≤ 𝐾𝑒𝛽(𝑛+1)𝑘  ⃦𝑢̃0  ⃦2 , 

⃦𝑢̃𝑛+1  ⃦2 ≤ 𝜌(𝜉)  ⃦𝑢̃0  ⃦2       ,                                              (3.4.7) 

where   ⃦𝑢̃0  ⃦2 is the initial condition. Then the difference scheme is stable in 

transform space 𝐿2, if 

𝜌(𝜉) ≤ 1                   .                                                      (3.4.8) 

Where 𝜌(𝜉) is the amplification factor for the difference scheme.  

 

Now, we take the discrete Fourier transform without writing all of the summation, let 

define the operator 𝑓: ℓ2 → 𝐿2 ([−𝜋, 𝜋]) as the discrete Fourier transform  

𝑓(𝑢) =
1

√2𝜋
∑ 𝑒−𝑖𝑚𝜉

∞

𝑚=−∞

𝑢𝑚                                         (3.4.9) 
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Where 𝑓 is linear and preserves the norm. If we define the shift operators as 

𝑆 ± 𝑢 = {𝓋𝑘}          where 𝓋𝑘 = 𝓋𝑘±1   , 𝑘 = 0,±1,…,              (3.4.10) 

then 

𝑓(𝑆 ± 𝑢) = 𝑒±𝑖𝜉𝑓(𝑢) 

= 𝑒±𝑖𝜉𝑢̃(𝜉)  .                                           (3.4.11) 

This result will make stability analysis much easier.  

3.4.2.1 Stability of Explicit Method 

Consider the equation of explicit scheme 

𝑢𝑖,𝑗+1 = 𝑟𝑢𝑖+1,𝑗 + (1 − 2𝑟)𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗                               (3.4.12) 

Apply Von Neumann analysis on(3.4.12) , to get  

𝑢̃𝑗+1 = 𝑟𝑒𝑖𝜉𝑢̃𝑗 + (1 − 2𝑟)𝑢̃𝑗 + 𝑟𝑒−𝑖𝜉𝑢̃𝑗  

= [𝑟 cos 𝜉 + 𝑖 sin 𝜉 + 𝑟 cos 𝜉 − 𝑖 sin 𝜉 + 1 − 2𝑟]𝑢̃𝑗  

𝑢̃𝑗+1 = (1 − 2𝑟(1 − cos 𝜉))𝑢̃𝑗 

𝑢̃𝑗+1 = (1 − 4𝑟sin2
𝜉

2
) 𝑢̃𝑗 

Then, 

𝑢̃𝑗+1 = 𝜌(𝜉)𝑢̃𝑗                                                           (3.4.13) 

 

The amplification factor of (3.4.11) is 

𝜌(𝜉) = 1 − 4𝑟sin2
𝜉

2
                                                       (3.4.14) 
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For stability must satisfy |𝜌(𝜉)| ≤ 1. That is  

−1 ≤ 1 − 4sin2
𝜉

2
≤ 1 , 

−2 ≤ −4𝑟sin2
𝜉

2
≤ 0 , 

1

2
≥ 𝑟 sin

𝜉

2
≥ 0 , 

0 ≤ 𝑟sin2
𝜉

2
≤

1

2
 . 

Hence the explicit scheme is conditionally stable and stability criteria is  𝑟 ≤
1

2
 

3.4.2.2 Stability of Implicit Scheme 

Consider the equation of implicit scheme.  

−𝑟𝑢𝑖−1,𝑗+1 + (1 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑢𝑖,𝑗      .                    (4.2.15) 

Apply Von Neumann stability analysis on(4.2.15), therefore. 

−𝑟𝑒−𝑖𝜉𝑢̃𝑗+1 + (1 + 2𝑟)𝑢̃𝑗+1 − 𝑟𝑒𝑖𝜉𝑢̃𝑗+1 = 𝑢̃𝑗  , 

(−𝑟 cos 𝜉 − 𝑖 sin 𝜉 + 1 + 2𝑟 − 𝑟 cos 𝜉 − 𝑖 sin 𝜉)𝑢̃𝑗+1 = 𝑢̃𝑗  , 

[1 + 2𝑟(1 − cos 𝜉)]𝑢̃𝑗+1 = 𝑢̃𝑗  , 

[1 + 4𝑟 sin2
𝜉

2
] 𝑢̃𝑗+1 = 𝑢̃𝑗  , 

𝑢̃𝑗+1 =
1

1 + 4𝑟 sin2 𝜉
2

𝑢̃𝑗 = 𝜌(𝜉)𝑢̃𝑗    ,                             (4.2.16) 
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Where amplification factor of (4.2.15) is 

𝜌(𝜉) =
1

1 + 4𝑟 sin2 𝜉
2

  .                                                   (4.2.17) 

Scheme is stable if |𝜌(𝜉)| ≤ 1. That is 

−1 ≤
1

1 + 4𝑟 sin2 𝜉
2

≤ 1                                                (4.2.18) 

−2 ≥ 4𝑟 𝑠𝑖𝑛2
𝜉

2
≥ 0   .                                            (4.2.19)  

From above inequality (4.2.19) scheme is stable for all positive value of 𝑟. that is, 

implicit scheme is unconditionally stable. 

3.4.2.3 Stability of Crank Nicolson Scheme 

Consider the equation of Crank Nicolson scheme 

−𝑟𝑢𝑖−1,𝑗+1 + (2 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 

= 𝑟𝑢𝑖−1,𝑗 + (2 − 2𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖+1,𝑗 .            (4.2.20) 

Apply Von Neumann analysis on (4.2.20), to achieve 

−𝑟𝑒−𝑖𝜉𝑢̃𝑗+1 + (2 + 2𝑟)𝑢̃𝑗+1 − 𝑟𝑒𝑖𝜉𝑢̃𝑗+1 = 𝑟𝑒−𝑖𝜉𝑢̃𝑗 + (2 − 2𝑟)𝑢̃𝑗 + 𝑟𝑒𝑖𝜉𝑢̃𝑗 

(2 + 2𝑟 − 2𝑟 cos 𝜉)𝑢̃𝑗+1 = (2 − 2𝑟 + 2𝑟 cos 𝜉)𝑢̃𝑗 

𝑢̃𝑗+1 =
(2 − 2𝑟 + 2𝑟 cos 𝜉)

(2 + 2𝑟 − 2𝑟 cos 𝜉)
𝑢̃𝑗 

𝑢̃𝑗+1 = (
1 − 4𝑟 sin2 𝜉

2

1 + 4𝑟 sin2 𝜉
2

) = 𝜌(𝜉)𝑢̃𝑗  .                           (4.2.21) 
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The amplification factor of  (4.2.20) is 

𝜌(𝜉) = (
1 − 4𝑟 sin2 𝜉

2

1 + 4𝑟 sin2 𝜉
2

)     .                                          (4.2.22) 

Scheme is stable if |𝜌(𝜉)| ≤ 1. That is 

−1 ≤
1 − 4𝑟 sin2 𝜉

2

1 + 4𝑟 sin2 𝜉
2

≤ 1    .                                     (4.2.23) 

From above inequality (4.2.22) scheme is stable for all value of 𝑟. Hence Crank Nicolson is 

unconditionally stable.   

3.4.2.4 Stability of  Weighted Average Scheme 

Consider the equation of weighted average scheme 

𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗 = 𝑟[ 𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1) 

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)]   .          (4.2.24)  

Apply Von Neumann stability analysis on(4.2.24), therefore 

(1 − 2𝑟𝜃(cos 𝜉 − 1))𝑢̃𝑗+1 = (1 + 2𝑟(1 − 𝜃)(cos 𝜉 − 1)𝑢̃𝑗 

𝑢̃𝑗+1 =
(1 + 2𝑟(1 − 𝜃)(cos 𝜉 − 1))𝑢̃𝑗

(1 − 2𝑟𝜃(cos 𝜉 − 1))
  . 

Remember that cos 𝜉 = 1 − 2𝑠𝑖𝑛2 𝜉

2
  therefor cos 𝜉 − 1 = −2𝑠𝑖𝑛2 𝜉

 2 
 and we obtain 

𝑢̃𝑗+1 = (
1 − 4𝑟(1 − 𝜃)sin2 𝜉

2

1 + 4𝑟𝜃 sin2 𝜉
2

) 𝑢̃𝑗 = 𝜌(𝜉)𝑢̃𝑗                  (4.2.25) 
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The amplification factor of (4.2.24) is 

𝜌(𝜉) =
1 − 4𝑟(1 − 𝜃)sin2 𝜉

2

1 + 4𝑟𝜃 sin2 𝜉
2

                                           (4.2.26) 

Scheme is stable if |𝜌(𝜉)| ≤ 1. Since 𝜃𝝐[0,1] than 4𝑟𝜃𝑠𝑖𝑛2 𝜉

2
 ≥ 0 we have 

𝜌(𝜉) =
1 + 4𝑟𝜃𝑠𝑖𝑛2 𝜉

2 − 4𝑟𝑠𝑖𝑛2 𝜉
2

1 + 4𝜃𝑠𝑖𝑛2 𝜉
2

 ≤ 1  , 

we finally need 

1 + 4𝑟𝜃𝑠𝑖𝑛2 𝜉
2 − 4𝑟𝑠𝑖𝑛2 𝜉

2

1 + 4𝜃𝑠𝑖𝑛2 𝜉
2

≥ −1 

∴ 1 − 4𝑟(1 − 𝜃)𝑠𝑖𝑛2
𝜉

2
≥ −1 − 4𝑟𝜃𝑠𝑖𝑛2

𝜉

2
 

∴ 1 ≥ 2𝑟(1 − 2𝜃)𝑠𝑖𝑛2
𝜉

2
 

∴ 1 ≥ 2𝑟(1 − 2𝜃)  .                                               (4.2.27) 

From above inequality (4.2.27)  is satisfied for all positive 𝑟 if 𝜃 ≥
1

2
  in this case 

weighted average scheme is unconditionally stable. But if 𝜃 <
1

2
 we require 

𝑟 ≤
1

2(1 − 2𝜃)
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Chapter 4 

NUMERICAL RESULTS 

In this Chapter we present the numerical results from solving two model problems 

using finite difference schemes described in Chapter 2. In our computations we used 

various values of 𝑟 = 0.4 , 0.5 , 1 with fixed ∆𝑥 = 0.05. In order to check accuracy 

of 𝑢 using discussed finite difference schemes the following error calculation is used; 

𝜀 = ‖𝑈𝑖𝑗 − 𝑢𝑖𝑗‖∞
  , 

where 𝑢𝑖𝑗  is the solution calculate by the numerical methods at the node 𝑖 in the 𝑗th 

time level and 𝑈𝑖𝑗  is the exact solution at the node 𝑖 in the 𝑗th time level. 
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Problem 1 ( Dirichlet type of boundary condition ) 

𝑢𝑡 = 𝑢𝑥𝑥                 0 < 𝑥 < 1   ,    0 < 𝑡 ≤ 1 

with initial condition  

𝑢(𝑥, 0) = sin 𝜋𝑥                0 ≤ 𝑥 ≤ 1 

and boundary conditions 

𝑢(0, 𝑡) = 0           0 < 𝑡 ≤ 1 

𝑢(1, 𝑡) = 0         0 < 𝑡 ≤ 1 

where  

𝑢𝑒𝑥𝑎𝑐𝑡 = 𝑢(𝑥, 𝑦) = 𝑒−𝜋2𝑡 sin 𝜋𝑥 
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(a) 

 
(b) 

 
                                                                  (c)  

 

Figure 4.1: Exact and approximate solution of 𝑢(𝑥, 𝑡) using three different numerical      

schemes of time level 𝑡 = 1 with different values of 

(a) 𝑟 = 0.4     (b) 𝑟 = 0.5       (c) 𝑟 = 1 
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                                                    (a) 

 
                                                    (b) 

  
 

                                                              (c) 

Figure 4.2: Maximum error vs. time for three different schemes with 

(a) 𝑟 = 0.4     (b) 𝑟 = 0.5         (c) 𝑟 = 1  respectively 
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(a)                                                                    (b) 

 

    
(c)                                                                     (d) 

Figure 4.3: Exact and numerical solution of three different schemes with 𝑟 = 0.5 and 

∆𝑥 = 0.05 
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Problem 2 (Neumann type of boundary conditions) 

                              𝑢𝑡 = 𝑢𝑥𝑥                          0 < 𝑥 < 1     ,   0 < 𝑡 < 1 

with initial condition 

                                           𝑢(𝑥, 0) = cos 𝜋𝑥               0 ≤ 𝑥 ≤ 1 

and boundary conditions 

𝑢𝑥(0, 𝑡) = 0                          0 < 𝑡 ≤ 1 

                                          𝑢𝑥(1, 𝑡) = 0                         0 < 𝑡 ≤ 1 

where  

𝑢𝑒𝑥𝑎𝑐𝑡 = 𝑢(𝑥, 𝑦 = 𝑒−𝜋2𝑡 cos 𝜋𝑥 
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(a) 

 
(b) 

 
                                                                  (c) 

Figure 4.4: Exact and approximate solution of 𝑢(𝑥, 𝑡) using three different numerical      

schemes of time level 𝑡 = 1 with different values of 

(a) 𝑟 = 0.4     (b) 𝑟 = 0.5       (c) 𝑟 = 1 

 



 

49 

 

 
    (a) 

 
   (b) 

 
(c) 

Figure 4.5: Maximum error vs. time for three different schemes with 

(a) 𝑟 = 0.4     (b) 𝑟 = 0.5         (c) 𝑟 = 1   respectively 
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(a)                                                                   (b) 

 
                               (c)                                                                  (d) 

Figure 4.6: Exact and numerical solution of three different schemes with 𝑟 = 0.5 and 

∆𝑥 = 0.05 
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Based on the considered comparison factors to evaluate the performance of the three 

finite difference schemes according to the stability criteria, we observed from the 

numerical results that these schemes work well and each scheme produced 

reasonable results for problem 1 and problem 2. Figures (4.1 and 4.4) illustrates 

exact and numerical solution of the three different schemes at time level 𝑡 = 1 and 

Figure (4.3 and 4.6) illustrates exact and approximation solutions of three different 

schemes for whole domain.  

The other factors for comparison worth to consider are the maximum error reduction 

for each time level. Figures (4.2 and 4.5) illustrate the maximum error reduction to 

solve problem 1 and problem 2 respectively. Using 𝑟 = 0.4 , 0.5 , 1.we observed 

from both Figures that Crank Nicolson scheme is most accurate than other schemes.  
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Chapter 5 

CONCLUSION 

In this thesis, FTCS, BTCS and Crank Nicolson scheme were applied to the one 

dimensional diffusion equation. We observed from numerical computation that these 

methods worked well according to the stability criteria and each scheme produced 

reasonable results for evaluating approximation of 𝑢. Each of the finite difference 

methods considered its own advantages and disadvantages. Explicit method is very 

easy to calculate numerically but has low accuracy must use small ∆𝑡 and unstable 

for  𝑟 > 0.5. Implicit and Crank Nicolson methods are unconditionally stable, 

computer time required at each step is higher. On the other hand Crank Nicolson 

method is more accurate, and faster than Implicit and Explicit methods according to 

the order of truncation error.Therefore difficult to judgment of the best scheme 

according to their own advantages and disadvantages.    
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