
i

Numerical Solution of Diffusion Equation in One

Dimension

Zana Salahaldeen Rashid Zangana

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Applied Mathematics and Computer Science

Eastern Mediterranean University

July 2014

Gazimağusa, North Cyprus

ii

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Applied Mathematics and Computer Science

 Prof. Dr. Nazim Mahmudov

 Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion; it is fully adequate,

in scope and quality, as a thesis for the degree of Master of Science in Applied

Mathematics and Computer Science.

 Assoc. Prof. Dr. Derviş Subaşı

 Supervisor

__

1. Prof. Dr. Adıguzel Dosiyev ______________________________

2. Assoc. Prof. Dr. Derviş Subaşı ______________________________

3. Asst. Prof. Dr. Suzan Cival Buranay ______________________________

Examining Committee

iii

ABSTRACT

In this thesis we studied the numerical techniques for the solution of one dimensional

diffusion equations. The discrete approximation of the model problem is based on

different finite difference schemes. These schemes are the Explicit, Implicit, Crank

Nicolson and the Weighted Average schemes. For each finite difference method we

studied the local truncation error, consistency and numerical results from the solution

of two model problems are considered to evaluate the performance of each scheme

according to the accuracy and programming efforts.

Kay word: Diffusion equation, Finite difference method, Truncation error, Stability,

Consistency, Convergence.

iv

 ÖZ

Yapılan bu çalışma tek boyutlu difüzyon differansiyel denklem problemlerinin

sayısal analiz teknikleri kullanılarak çözülmesi ile ilgilidir. Bu yapılan çalışmada dört

farklı sonlu farklar yöntemi problemin çözümü için kullanılmıştır. Dört farklı sonlu

farklar yönteminin detaylı olarak nasıl elde edildiği, kesme hataları, stabilite şartları ,

yoğunluğu ve yakınsamaları detaylı olarak anlatılmıştır. Sonlu farklar metodları iki

değişik problem üzerine uygulanmış ve bu metodların karşılaştırılması yapılmıştır.

Anahtar kelimeler: Difüzyon differansiyel denklem, sonlu farklar yöntemleri,

kesme hatası, stabilite, yoğunluk ve yakınsama.

v

ACKNOWLEDGEMENT

I would like to express my sincere thanks to my supervisor Assoc. Prof. Dr. Derviş

Subaşi for his patience, support and guidance which helped me during the

preparation of this thesis.

My sincere thanks also goes to Mathematics Department at EMU for their support

and assistance.

I would also like to thank my parent and all my family for their unconditional

support throughout my study.

Finally, I would like to thank all my friends for their support and encouragement me

with their best wishes.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ……………………………………………………………………………………iv

ACKNOWLEDGEMENT ... v

LIST OF FIGURES .. viii

1 INTRODUCTION .. 1

2 THE FINITE DIFFERENCE METHOD .. 3

2.1 Taylor Series and Difference Approximations for Derivative terms in PDE’s . 3

2.1.1 Explicit Method (FTCS) ... 6

2.1.2 Implicit Method (BTCS) ... 7

2.1.3 Crank Nicolson Method .. 10

2.1.4 The Method of Weighted Averages .. 13

2.2 Neumann Boundary Condition .. 16

2.3.1 Explicit Method with Neumann Boundary ... 17

2.3.2 Implicit Method with Neumann Boundary ... 19

2.3.3 Crank Nicolson Method with Neumann Boundary 21

2.3.4 Weighted Average Approximation with Neumann Boundary 23

3 LOCAL TRUNCTION ERROR, CONSISTENCY AND STABILITY OF

DIFFERENCE SCHEMES .. 26

3.1 Local Truncation Error... 26

3.2 Local Truncation Error for Diffusion Equation ... 26

3.2.1 Local Truncation Error for Explicit Method (FTCS) 26

3.2.2 Local Truncation Error for Implicit Method (FTCS) 28

3.2.3 Local Truncation Error for Crank Nicolson .. 30

3.2.4 Local Truncation Error for Weighted Average ... 31

3.3 Consistency .. 32

vii

3.3.1 Consistency of Explicit Method .. 32

3.3.2 Consistency of Implicit Method .. 33

3.3.3 Consistency of Crank Nicolson Method ... 33

3.4 Stability and Convergence of Finite Difference Schemes 33

3.4.1 Stability and Convergence .. 33

3.4.2 Von Neumann Stability Analysis .. 35

3.4.2.1 Stability of Explicit Method ... 37

3.4.2.2 Stability of Implicit Scheme .. 38

3.4.2.3 Stability of Crank Nicolson Scheme .. 39

3.4.2.4 Stability of Weighted Average Scheme .. 40

4 NUMERICAL RESULTS .. 42

5 CONCLUSION ... 52

REFERENCES .. 53

viii

LIST OF FIGURES

Figure 2.1: The finite difference grid in the solution region……………………...…..4

Figure 2.2: Represent point scheme for Explicit …………...…………...…………7

Figure 2.3: Represents point scheme for Implicit………………...…………………..9

Figure 2.4: Represent point scheme for Crank Nicolson…………………...……….11

Figure 2.5: Represent point scheme for weighted average approximation………....15

Figure 2.5: Introduce fictitious temperature……………………………...…………17

Figure 4.1: Exact and approximate solution of 𝑢(𝑥, 𝑡) using three different numerical

schemes of time level 𝑡 = 1 with different values of (a) 𝑟 = 0.4 (b) 𝑟 = 0.5 (c) 𝑟 =

1...46

Figure 4.2: Maximum error vs. time for three different schemes with (a) 𝑟 = 0.4 (b)

𝑟 = 0.5 (c) 𝑟 = 1 respectively……………………………………………...……....47

Figure 4.3: Exact and numerical solution of three different schemes with 𝑟 = 0.5

and ∆𝑥 = 0.05……………..……………….....…………………………………….48

Figure 4.4: Exact and approximate solution of 𝑢(𝑥, 𝑡) using three different numerical

schemes of time level 𝑡 = 1 with different values of (a) 𝑟 = 0.4 (b) 𝑟 = 0.5

(c) 𝑟 = 1………………………..……………………………………...…………….50

Figure 4.5: Maximum error vs. time for three different schemes with (a) 𝑟 = 0.4 (b)

𝑟 = 0.5 (c) 𝑟 = 1 respectively……………………………………………………..51

Figure 4.6: Exact and numerical solution of three different schemes with 𝑟 = 0.5 and

∆𝑥 = 0.05………………………...……………………………...………………….52

1

Chapter 1

INTRODUCTION

The diffusion equation (or heat equation) is of fundamental importance in scientific

fields and engineering problem. The one dimensional diffusion equation is

 𝑢𝑡 = 𝛼𝑢𝑥𝑥 0 < 𝑥 < 𝐿 , 0 < 𝑡 < 𝑇, (1.1)

where, 𝑢 = 𝑢(𝑥, 𝑡) is the dependent variable, and ∝ is a constant coefficient. To

solve equation (1.1), it is required a specific initial condition at 𝑡 = 0, given

 𝑢(𝑥, 0) = 𝑓(𝑥) 0 ≤ 𝑥 ≤ 𝐿, (1.2)

and boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿. The general form of boundary

conditions is

 Ɣ1𝑢(0, 𝑡) + 𝛽1𝑢𝑥(0, 𝑡) = 𝑔1(𝑡)

 Ɣ2𝑢(𝐿, 𝑡) + 𝛽2𝑢𝑥(𝐿, 𝑡) = 𝑔2(𝑡) (1.3)

The solution of (1.1) with (1.2) and (1.3) is to find 𝑢(𝑥, 𝑡), satisfying the boundary

conditions as follows [1].

1) If Ɣ𝑖 ≠ 0 and 𝛽𝑖 = 0, then equation (1.3) gives Dirichlet boundary condition

2) If Ɣ𝑖 = 0 and 𝛽𝑖 ≠ 0, then equation (1.3) gives Neumann boundary condition

3) If Ɣ1 ≠ 0 and 𝛽1 = 0 and Ɣ2 = 0 and 𝛽2 ≠ 0 or If Ɣ1 = 0 and 𝛽1 ≠ 0 and

Ɣ2 ≠ 0 and 𝛽2 = 0 equation (1.3) gives mixed boundary conditions.

2

The solution of the one dimensional diffusion equation using several finite difference

methods with Dirichlet and Neumann type boundary conditions is the core of study

in this thesis.

The derivation of each finite difference scheme for Dirichlet and Neumann type

boundary conditions are discussed in chapter 2.

In Chapter 3, we presented local truncation error, consistency, stability and

convergence of finite difference scheme.

In Chapter 4, we presented the numerical result from solving two module problems.

Concluding remarks are given each module problem.

In Chapter 5, general conclusion from work are presented

3

Chapter 2

THE FINITE DIFFERENCE METHOD

In this Chapter we focus on finite difference methods (FDMs), which are widely

used and are the most straight forward numerical approach for solving PDE’s. These

methods are derived from the truncated Taylor’s series where a given PDE and

boundary and initial conditions are replaced by a set of algebraic equations that are

then solved by several well-known numerical techniques. We analyzed different

schemes for first and second order derivatives then applied them to discretize

diffusion equation with initial and boundary conditions.

2.1 Taylor Series and Difference Approximations for Derivative

terms in PDE’s

Let us consider in case of the function 𝑢(𝑥, 𝑡) of two independent variables 𝑥 and 𝑡.

We first partition the spatial interval [0, 𝐿] and temporal interval [0, 𝑇] into

respective finite grids as follows.

𝑥𝑖 = 𝑖∆𝑥 𝑖 = 0,1, … . . 𝑁 where
𝐿

𝑁
= ∆𝑥. (2.1.1)

𝑡𝑗 = 𝑗∆𝑡 𝑗 = 0,1, . . … ,𝑀 where
𝑇

𝑀
= ∆𝑡. (2.1.2)

4

The numerical solution to the PDE’s is an approximation to the exact solution that is

obtained using a discrete representation to the PDE at the grid point 𝑥𝑖 in the discrete

spatial mesh at every time level 𝑡𝑗 (see Fig 2.1) [7].

 Figure 2.1: The finite difference grid in the solution region

Let us denote the numerical solution of 𝑢(𝑥, 𝑡) such that

 𝑢𝑖,𝑗 = 𝑢(𝑥𝑖, 𝑡𝑖) (2.1.3)

Consider the Taylor series for 𝑢𝑖+1,𝑗 , 𝑢𝑖−1,𝑗 and 𝑢𝑖,𝑗+1 respectively [2].

𝑢𝑖+1,𝑗 = 𝑢𝑖,𝑗 + ∆𝑥
𝜕𝑢𝑖,𝑗

𝜕𝑥
 +

(∆𝑥)2

2

𝜕2𝑢𝑖,𝑗

𝜕𝑥2
+ 𝑂((∆x)3) (2.1.4)

𝑢𝑖−1,𝑗 = 𝑢𝑖,𝑗 − ∆𝑥
𝜕𝑢𝑖,𝑗

𝜕𝑥
 +

(∆𝑥)2

2

𝜕2𝑢𝑖,𝑗

𝜕𝑥2
+ 𝑂((∆x)3) (2.1.5)

𝑢𝑖,𝑗+1 = 𝑢𝑖,𝑗 + ∆𝑡
𝜕𝑢𝑖,𝑗

𝜕𝑡
+

(∆𝑡)2

2

𝜕2𝑢𝑖,𝑗

𝜕𝑡2
+ 𝑂((∆x)3) (2.1.6)

𝑖, 𝑗 + 1

∆t

∆𝒙

∆𝑥

𝑖, 𝑗 𝑖 − 1, 𝑗 𝑖 − 1, 𝑗

𝑖, 𝑗 − 1

5

If we only consider 𝑂(∆𝑥) terms in equation (2.1.4) and (2.1.5) then we arrive

at the forward and backward difference approximation for 𝑢𝑥 respectively.

(
𝜕𝑢

𝜕𝑥
)
𝑖𝑗

=
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑥
+ 𝑂(∆𝑥) (2.1.7)

(
𝜕𝑢

𝜕𝑥
)
𝑖𝑗

=
𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

∆𝑥
+ 𝑂(∆𝑥) (2.1.8)

If we only consider 𝑂(∆𝑡) terms in equation (2.1.6) then we arrive at the forward

difference approximation for 𝑢𝑡 .

(
𝜕𝑢

𝜕𝑡
)
𝑖𝑗

=
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
+ 𝑂(∆𝑡) (2.1.9)

We can also derive a higher order approximation for 𝑢𝑥 by subtracting (2.1.5)

from (2.1.4), then we obtain at the central difference in space approximation for

𝑢𝑥.

(
𝜕𝑢

𝜕𝑥
)
𝑖𝑗

=
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑥
+ 𝑂((∆x)2). (2.110)

We can also perform similar approach to obtain an approximation for the

second derivative 𝑢𝑥𝑥. To achieve the central difference for the second

derivative in space, add Eq. (2.1.4) and Eq. (2.1.5), solve expansion for
𝜕2𝑢

𝜕𝑥2
 and

the result is written by

(
𝜕2𝑢

𝜕𝑥2
) =

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

(∆𝑥)2
+ 𝑂((∆x)2) (2.1.11)

6

2.1.1 Explicit Method (FTCS)

The explicit finite difference method based on forward difference approximation of

first order derivative.

(
𝜕𝑢

𝜕𝑡
)
𝑖𝑗

=
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
, (2.1.12)

also based on the central difference approximation to second order derivative.

(
𝜕2𝑢

𝜕𝑥2
)

𝑖,𝑗

=
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
 ,

and substituting these in Equation (1.1) results

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
= 𝛼

𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
 . (2.1.13)

In explicit finite difference method, the temperature at time 𝑗 + 1 depends on the

temperature at time 𝑗, shown as in Figure (2.2). Solving 𝑢𝑖,𝑗+1 in Eq. (2.1.13we get.

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 =
𝛼∆𝑡

∆𝑥2
(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗) , (2.1.14)

 where 𝑟 =
𝛼∆𝑡

(∆𝑥)2

𝑢𝑖,𝑗+1 = 𝑢𝑖,𝑗 + 𝑟(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗) (2.1.15)

 Therefore

𝑢𝑖,𝑗+1 = 𝑟𝑢𝑖+1,𝑗 + (1 − 2𝑟)𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 . (2.1.16)

Eq. (2.1.16) is called explicit finite difference or Forward Time Center Space

(FTCS) approximation to the heat equation given in (1.1) [5].

7

Figure 2.2: Represent point scheme for FTCS

Furthermore we can rewrite Eq. (2.1.16) in matrix vector form as;

[

𝑢1,𝑗+1

𝑢2,𝑗+1

.

.

.

.

.

.
𝑢𝑁−1,𝑗+1]

=

[

1 − 2𝑟 𝑟 0 .

𝑟 1 − 2𝑟 𝑟 .
 . .
 . .
 .

 . .
 𝑟 1 − 2𝑟 𝑟
. . . 𝑟 1 − 2𝑟]

[

𝑢1,𝑗 + 𝑟𝑢0,𝑗

𝑢2,𝑗

.

.

.

.

.

.
𝑢𝑁−1, + 𝑟𝑢𝑁,𝑗]

 (2.1.17)

2.1.2 Implicit Method (BTCS)

We can derive the implicit method by substituting forward difference approximation

(2.1.9) in left hand side of (1.1) and central difference approximation at time (𝑗 + 1)

in the right hand side of (1.1) [5].

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
 = 𝛼

𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

(∆𝑥)2
 (2.1.18)

𝑖, 𝑗 + 1

𝑖, 𝑗 𝑖 − 1, 𝑗 𝑖 + 1, 𝑗

∆𝑥

∆𝑡

𝑥

𝑡

8

Now arrange Eq. (2.1.18) to get

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 =
𝛼∆𝑡

(∆𝑥)2
(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1), (2.1.19)

where 𝑟 =
𝛼∆𝑡

(∆𝑥)2
 then (2.1.19) is given by;

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 = 𝑟(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1) . (2.1.20)

Therefore

 −𝑟𝑢𝑖−1,𝑗+1 + (1 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑢𝑖,𝑗 𝑖 = 1,2,3,… . . , 𝑁 − 1 (2.1.21)

The equation (2.1.21) is known as Backward Time, Centered Space (BTCS) or

Implicit Method. In implicit method there are more terms in level above than those in

level below is shown in Figure (2.3). Consequently, the equation cannot be

reorganized to gain easy algebraic formula similar to the explicit method to

determine 𝑢𝑖,𝑗+1 [6]. Although this is a disadvantage of implicit method, it has the

advantage of being unconditionally stable [3].

Figure 2.3: Represents point scheme for BTCS

𝑖 − 1,
𝑗 + 1

𝑖, 𝑗 + 1 𝑖 + 1,
𝑗 + 1

𝑖, 𝑗 ∆𝑡

∆𝑥

𝑡

𝑥

9

Equation (2.1.21) gives us a set of linear equations at every spatial point 𝑢𝑖,𝑗, and

they will be solved correctly through the use of matrix method [5],

where 1 ≤ 𝑖 ≤ 𝑁 − 1 and 𝑢0,𝑗 , 𝑢𝑁,𝑗 are fixed because they are boundary conditions;

If 𝑖 = 1

(1 + 2𝑟)𝑢1,𝑗+1 − 𝑟𝑢2,𝑗+1 = 𝑢1,𝑗 + 𝑟𝑢0,𝑗 , (2.1.22𝑎)

1 < 𝑖 < 𝑁 − 1

−𝑟𝑢𝑁−1,𝑗+1 + (1 + 2𝑟)𝑢𝑁,𝑗+1 − 𝑟𝑢𝑁+1,𝑗+1 = 𝑢𝑁,𝑗 (2.1.22𝑏)

𝑖 = 𝑁 − 1

−𝑟𝑢𝑁−2,𝑗+1 + (1 − 2𝑟)𝑢𝑁−1,𝑗+1 = 𝑢𝑁−1,𝑗 + 𝑟𝑢𝑁,𝑗 (2.1.22𝑐)

We have a set of linear equations. The unknowns are on the left hand side of the

equation and they give us a tri-diagonal matrix to solve equation

(2.1.22𝑎 − 2.1.22𝑐). The tridiagonal matrix will be in this form [3].

10

[

(1 + 2𝑟) −𝑟 0 0 . .

−𝑟 (1 + 2𝑟 −𝑟 .
0 . .
0 . .
. .
. . .
. .
. .
. . .
. −𝑟 (1 + 2𝑟) −𝑟
. . . . −𝑟 (1 + 2𝑟)]

[

𝑢1,𝑗+1

𝑢2,𝑗+1

.

.

.

.

.

.

.

.
𝑢𝑁−1,𝑗+1]

=

[

𝑢1,𝑗 + 𝑟𝑢0,𝑗

𝑢2,𝑗

.

.

.

.

.

.

.

.
𝑢𝑁−1,𝑗 + 𝑟𝑢𝑁,𝑗]

 (2.1.23)

2.1.3 Crank Nicolson Method

Crank Nicolson method is a popular method to use for parabolic equations since it is

second order accurate and unconditionally stable. This method is implicit, but

different from simple implicit (BTCS) method explained in the former Section, as in

this method the right hand is chosen at time 𝑗 and at time (𝑗 + 1) is shown in Figure

(2.4) [7].

11

(
𝜕u

𝜕𝑡
)
𝑖,𝑗

=
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
 (2.1.24)

(
𝜕2u

𝜕𝑥2
)

𝑖,𝑗

=
𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

(∆𝑥)2
 (2.1.25)

(
𝜕2u

𝜕𝑥2
)

𝑖,𝑗+1

=
𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

(∆𝑥)2
 (2.1.26)

Consider the heat equation (1.1) at midpoint (𝑥𝑖, 𝑡𝑗+1

2

) and instead of (
 𝜕2𝑢

𝜕𝑥2) put

average of central difference (𝑖, 𝑗 +
1

 2
) [3].

(
𝜕𝑢

𝜕𝑡
)
𝑖,𝑗+

1
2

= (
𝜕2𝑢

𝜕𝑥2
)

𝑖,𝑗+
1
2

 (2.1.27)

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
= 𝛼

1

2
[
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2
+

𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

(∆𝑥)2
] (2.1.28)

𝑖 − 1 𝑖 𝑖 + 1

∆𝑡

∆𝑥

𝑡

𝑥

𝑗 + 1

𝑗

Figure 2.4: Represent point scheme for Crank Nicolson Method

mkkksndksndksandcskjkkkkkMMMMNicolson

12

Therefore

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 =
𝛼∆𝑡

2(∆𝑥)2
[𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1] (2.1.29)

where 𝑟 =
𝛼∆𝑡

(∆𝑥)2
 then (2.1.19) it will be;

(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) = 𝑟[𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1] (2.1.30)

Separate 𝑗 on one side and (𝑗 + 1) on the another side of equation (2.1.30) giving

−𝑟𝑢𝑖−1,𝑗+1 + (2 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1

= 𝑟𝑢𝑖−1,𝑗 + (2 − 2𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖+1,𝑗 , (2.1.31)

where 𝑖 = 1,2,3, …… . . , 𝑁 − 1.

Generally the right hand side of equation (2.1.31) contains three known values and

left hand contains three unknowns, Implicit method generate a set of (N-1) linear

equation, which should be solved at each time level. The set of equations generate a

tridiagonal matrix and can be solved by Thomas algorithm [3].

13

The Crank-Nicholson method can be written in a matrix vector form is as follows.

[

rr

rrr

rrr

rr

22.....

22.

...

...

..0

.22

.....22









]

[

𝑢1,𝑗+1

.

.

.

.

.

.

.
𝑢𝑁−1,𝑗+1]

+

[

−𝑟𝑢0,𝑗+1

0
.
.
.
.
.
.

−𝑟𝑢𝑁,𝑗+1]

=

[

rr

rrr

rrr

rr

220....

22.

...

...

..0

.22

.....22









]

[

𝑢1,𝑗

.

.

.

.

.

.

.
𝑢𝑁−1,𝑗]

+

[

𝑟𝑢0,𝑗

𝑜
.
.
.
.
.
.

𝑟𝑢𝑁,𝑗]

 (2.1.32)

2.1.4 The Method of Weighted Averages

In this method we use two finite difference approximation to
𝜕2𝑢

 𝜕2𝑥
 in Eq, (1.1), first

one by three points in level below 𝑡𝑗, the other one uses three pointe on level above

𝑡𝑗+1. The left hand use forward difference approximation is used for the first

derivative
𝜕𝑢

𝜕𝑡
 [5].

𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗

∆𝑡
= 𝛼 [𝜃 (

𝜕2𝑢

𝜕𝑥2
)

𝑖,𝑗+1

+ (1 − 𝜃) (
𝜕2𝑢

𝜕𝑥2
)

𝑖,𝑗

] . (2.1.33)

Substitute (
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗+1

 , (
𝜕2𝑢

𝜕𝑥2
)
𝑖,𝑗

 and rearranging, the equation (2.1.33), gives

𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗

∆𝑡
=

𝛼

(∆𝑥)2
[𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1)

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)] (2.1.34)

14

𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗 =
𝛼∆𝑡

(∆𝑥)2
[𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1)

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)] , (2.1.35)

taking 𝑟 =
𝛼∆𝑡

(∆𝑥)2
 and then (2.1.35) takes the form

𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗 = 𝑟[𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1)

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)] (2.1.36)

The formula (2.1.36) as known as weighted average or 𝜃 −method is shown in

Figure (2.5). Where 𝜃 is non-negative weights 0 ≤ 𝜃 ≤ 1. If 𝜃 = 0,1,
1

2
 from

equation (2.1.36) we obtain Explicit, Implicit and Crank Nicolson method

respectively. The equation (2.1.36) is stable for any
1

2
≤ 𝜃 ≤ 1, but for 0 ≤ 𝜃 <

1

2
 to

be stable 𝑟 ≤
1

 2
 (1 − 2𝜃)−1 [3].

Figure 2.5: Represent point scheme for weighted average approximation

𝑖 − 𝑖 𝑖 + 1

𝑗 + 1

𝑗

∆𝑡

∆𝑥

𝑥

𝑡

15

To system of equation in (2.1.36) where 𝑢 at time level 𝑗 is known and we want to

find 𝑢 at time level 𝑗 + 1 is

−𝑟𝜃𝑢𝑖−1,𝑗+1 + (1 + 2𝑟𝜃)𝑢𝑖,𝑗+1 − 𝑟𝜃𝑢𝑖+1,𝑗+1 = 𝑟(1 − 𝜃)𝑢𝑖−1,𝑗 +

[1 − 2𝑟(1 − 𝜃)]𝑢𝑖,𝑗 + 𝑟(1 − 𝜃)𝑢𝑖+1,𝑗 𝑖 = 1,2,3, …… . , 𝑁 − 1 . (2.1.37)

Here 𝑢0,𝑗+1 and 𝑢𝑁,𝑗+1 as being known the Eq, (2.1.37) generate a set of (𝑛 − 1)

linear equations which the coefficient matrix is tridiagonal [5]. Which can be solved

by Thomas Algorithm [3]. It is suitable to write (2.1.37) in vector form, so let

𝑢𝑗 = [𝑢1,𝑗, 𝑢2,𝑗, ………… . . , 𝑢𝑁−1,𝑗]
𝑇
 .

Than we can write Eq. (2.1.37) as;

[I − 𝑟𝜃𝐶]𝑢𝑗+1 = [I + 𝑟(1 − 𝜃)𝐶]𝑢𝑗 + 𝑟𝑓𝑛 , (2.1.38)

where

𝐶 =

[

.

21.....

121.

...

...

...

.121

.....12









]

 , 𝑓𝑛 =

[

𝜃𝑢0,𝑗+1 + (1 − 𝜃)𝑢0,𝑗

0
.
.
.
.
.
0

𝜃𝑢𝑁,𝑗+1 + (1 − 𝜃)𝑢𝑁,𝑗+1]

 (2.1.39)

16

2.2 Neumann Boundary Condition

In previous section we have considered the problems with Dirichlet boundary

conditions. Now we consider problems with Neumann boundary condition. From Eq.

(1.3), if Ɣ = 0 and 𝛽 ≠ 0 we have.

𝑢𝑥(0, 𝑡) = 𝑔1(𝑡) , 𝑢𝑥(𝐿, 𝑡) = 𝑔2(𝑡) (2.2.1)

Which has Neumann condition at 𝑥 = 0 , 𝑥 = 𝐿.

It is possible to use forward or backward difference to represent Neumann boundary

condition at left and right end of the domain, but it is generally preferable to use

central difference formula by introducing the fictitious temperature 𝑢𝑖−1,𝑗 at the

external grid point 𝑥 = (𝑖 − 1)∆𝑥 and as shown in Figure (2.5). The boundary

condition at 𝑖 − 1 is represented by Figure (2.6) [3].

(𝑢𝑥)0,𝑗 =
𝑢1,𝑗 − 𝑢−1,𝑗

2∆𝑥
 (2.2.2)

 Figure 2.5: Introduce fictitious temperature

𝑖 − 1 𝑖 𝑖 + 1 −1 0 1

 0 𝐿 𝑥

Type equation here.

𝑡

17

Also introduce 𝑢𝑖+1 at the end of the rod at the external grid point 𝑥 = (𝑖 + 1)∆𝑥.

The boundary condition at 𝑖 + 1 can be represent by [3].

(𝑢𝑥)𝑖,𝑗 =
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑥
 (2.2.3)

The temperatures 𝑢−1,𝑗 and 𝑢𝑖+1,𝑗 are unknown and this leads to more equations. It is

possible to eliminated 𝑢−1,𝑗 and 𝑢𝑖+1,𝑗 between these equations. These methods are

applied to find boundary condition in following schemes [3].

2.3.1 Explicit Method with Neumann Boundary

Consider explicit method representation of Eq.(2.1.16)

𝑢𝑖,𝑗+1 = 𝑟𝑢𝑖+1,𝑗 + (1 − 2𝑟)𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 ,

at 𝑥 = 0 gives us

𝑢0,𝑗+1 = 𝑢0,𝑗 + 𝑟(𝑢−1,𝑗 − 2𝑢0,𝑗 + 𝑢1,𝑗) . (2.2.4)

Applying central difference for the boundary at 𝑥 = 0 than we obtain,

(𝑢𝑥)0,𝑗 =
𝑢1,𝑗 − 𝑢−1,𝑗

2∆𝑥
 (2.2.5)

Substitute into (2.2.1) we get an approximation of the Neumann condition at (0, 𝑗∆𝑡)

as

𝑢−1,𝑗 = 𝑢1,𝑗 − 2∆𝑥𝑔1(𝑗∆𝑡) . (2.2.6)

Use Eq, (2.2.6) to discretize explicit method (2.2.4) resulting

𝑢0,𝑗+1 = (1 − 2𝑟)𝑢0,𝑗 + 2𝑟𝑢1,𝑗 − 2𝑟∆𝑥𝑔1(𝑗∆𝑡) (2.2.7)

18

Now, consider explicit method at 𝑥 = 𝐿 = 𝑁∆𝑥

𝑢𝑁,𝑗+1 = 𝑢𝑁,𝑗 + 𝑟(𝑢𝑁−1,𝑗 − 2𝑢𝑁,𝑗 + 𝑢𝑁+1,𝑗) . (2.2.8)

We apply the following central difference formula for right boundary condition at

𝑥 = 𝐿,

(𝑢𝑥)𝑁,𝑗 =
𝑢𝑁+1,𝑗 − 𝑢𝑁−1,𝑗

2∆𝑥
 . (2.2.9)

Substitute into (2.2.1) we obtain an approximation of the Neumann condition at

((𝑁 + 1)∆𝑥, 𝑗∆𝑡) as

𝑢𝑁+1,𝑗 = 𝑢𝑁−1,𝑗 + 2∆𝑥𝑔2(𝑗∆𝑡) . (2.2.10)

Use Eq(2.2.10) to discretize explicit method (2.2.8) than gives as

𝑢𝑁,𝑗+1 = 2𝑟𝑢𝑁−1 + (1 − 2𝑟)𝑢𝑁,𝑗 + 2𝑟∆𝑥𝑔2(𝑗∆𝑡) . (2.2.11)

Matrix form as (2.2.11) can be written in

[

𝑢0,𝑗+1

𝑢1,𝑗+1

.

.

.

.

.
𝑢𝑁−1,𝑗+1

𝑢𝑁,𝑗+1]

=

[

rr

rrr

rrr

rr

212.....

21.

...

...

..0

.21

....0221









]

[

𝑢0,𝑗

𝑢1,𝑗

.

.

.

.

.
𝑢𝑁−1,𝑗

𝑢𝑁,𝑗]

+

[

−2𝑟∆𝑥𝑔1(𝑗∆𝑡)

0
.
.
.
.
.
.

2𝑟∆𝑥𝑔2(𝑗∆𝑡)]

 (2.2.12)

19

2.3.2 Implicit Method with Neumann Boundary

Consider implicit method represented as the following;

−𝑟𝑢𝑖−1,𝑗+1 + (1 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑢𝑖,𝑗 , (2.2.13)

at 𝑥 = 0 gives us

−𝑟𝑢−1,𝑗+1 + (1 + 2𝑟)𝑢0,𝐽+1 − 𝑟𝑢1,𝑗+1 = 𝑢0,𝑗 . (2.2.14)

Applying central difference for the boundary at 𝑥 = 0 than we obtain

(𝑢𝑥)0,𝑗+1 =
𝑢1,𝑗+1 − 𝑢−1,𝑗+1

2∆𝑥
 , (2.2.15)

substitute into (2.2.1) we obtain an approximation of the Neumann condition at

(0, 𝑗∆𝑡) as

𝑢−1,𝑗+1 = 𝑢1,𝑗+1 − 2∆𝑥𝑔1(𝑗∆𝑡) . (2.2.16)

Use Eq(2.2.16) to discretize explicit method (2.2.14) than gives as

(1 + 2𝑟)𝑢0,𝑗+1 − 2𝑟𝑢1,𝑗+1 + 2𝑟∆𝑥𝑔1(𝑗∆𝑡) = 𝑢0,𝑗 . (2.2.17)

Now, consider implicit method at 𝑥 = 𝐿

𝑢𝑁,𝑗+1 − 𝑟(𝑢𝑁−1,𝑗+1 − 2𝑢𝑁,𝑗 + 𝑢𝑁+1,𝑗+1) = 𝑢𝑁,𝑗 . (2.2.18)

We apply central difference for right boundary condition at 𝑥 = 𝐿 we get

𝑢𝑁,𝑗+1 =
𝑢𝑁+1,𝑗+1 − 𝑢𝑁−1,𝑗+1

2∆𝑥
 (2.2.19)

20

Substitute into (2.2.1) we obtain an approximation of the Neumann condition at

((𝑁 + 1)∆𝑥, (𝑗 + 1)∆𝑡) as

𝑢𝑁+1,𝑗+1 = 𝑢𝑁−1,𝑗+1 + 2∆𝑥𝑔2((𝑗 + 1)∆𝑡) . (2.2.20)

Use Eq(2.2.20) to discretize implicit method (2.2.18) than gives as

−2𝑟𝑢𝑁−1,𝑗+1 + (1 + 2𝑟)𝑢𝑁,𝑗+1 − 2𝑟∆𝑥𝑔2((𝑗 + 1)∆𝑡) = 𝑢𝑁,𝑗 . (2.2.21)

We can write in matrix form

[

rr

rrr

rrr

rr

212.....

21.

...

...

...

.21

......221









]

[

𝑢0,𝑗+1

𝑢1,𝐽+1

.

.

.

.

.

.
𝑢𝑁−1,𝑗+1

𝑢𝑁,𝑗+1]

=

[

𝑢0,𝑗

𝑢1,𝑗

.

.

.

.

.

.
𝑢𝑁−1,𝑗

𝑢𝑁,𝑗]

+

[

2𝑟∆𝑥𝑔1((𝑗 + 1)∆𝑡)

0
.
.
.
.
.
.
0

2𝑟∆𝑥𝑔2((𝑗 + 1)∆𝑡)]

 (2.2.22)

21

2.3.3 Crank Nicolson Method with Neumann Boundary

Consider Crank Nicolson method represent as follow

−𝑟𝑢𝑖−1,𝑗+1 + (2 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 =

𝑟𝑢𝑖−1,𝑗 + (2 − 2𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖+1,𝑗 , (2.2.23)

at 𝑥 = 0 gives as

−𝑟𝑢−1,𝑗+1 + (2 + 2𝑟)𝑢0,𝑗+1 − 𝑟𝑢1,𝑗+1 = 𝑟𝑢−1,𝑗 + (2 − 2𝑟)𝑢0,𝑗 + 𝑟𝑢1,𝑗 . (2.2.24)

Applying central difference for the boundary at 𝑥 = 0 at time level 𝑗 + 1 and 𝑗 than

we obtain

𝑢1,𝑗 − 𝑢−1,𝑗

2∆𝑥
= (𝑢𝑥)0,𝑗 ,

𝑢1,𝑗+1 − 𝑢−1,𝑗+1

2∆𝑥
= (𝑢𝑥)0,𝑗+1 , (2.2.25)

substitute into (2.2.1) we obtain an approximation (0, 𝑗∆𝑡) as

𝑢−1,𝑗 = 𝑢1,𝑗 − 2∆𝑥𝑔1(𝑗∆𝑡) , 𝑢−1,𝑗+1 = 𝑢1,𝑗+1 − 2∆𝑥𝑔1((𝑗 + 1)∆𝑡) . (2.2.26)

Use Eq(2.2.26) to discretize Crank Nicolson method (2.2.24) than gives as

 (2 + 2𝑟)𝑢0,𝑗+1 − 2𝑟𝑢1,𝑗+1 + 2𝑟∆𝑥𝑔1((𝑗 + 1)∆𝑡)

= (2 − 2𝑟)𝑢0,𝑗 + 2𝑟𝑢1,𝑗 − 2𝑟∆𝑥𝑔1(𝑗∆𝑡) , (2.2.27)

at 𝑥 = 𝐿 gives as

−𝑟𝑢𝑁−1,𝑗+1 + (2 + 2𝑟)𝑢𝑁,𝑗+1 − 𝑟𝑢𝑁+1,𝑗+1 =

𝑟𝑢𝑁−1,𝑗 + (2 − 2𝑟)𝑢𝑁,𝑗 + 𝑟𝑢𝑁+1,𝑗 (2.2.28)

22

Now, we apply central difference for right boundary condition at 𝑥 = 𝐿 to find left

side

 (𝑢𝑥)𝑁,𝑗 =
𝑢𝑁+1,𝑗 − 𝑢𝑁−1,𝑗

2∆𝑥
 , (𝑢𝑥)𝑁,𝑗+1 =

𝑢𝑁+1,𝑗+1 − 𝑢𝑁−1,𝑗+1

2∆𝑥
 (2.2.29)

Substitute into (2.2.1) we obtain an approximation of the Neumann condition at

((𝑁 + 1)∆𝑥, 𝑗∆𝑡) as

𝑢𝑁+1,𝑗 = 𝑢𝑁−1,𝑗 + 2∆𝑔2(𝑗∆𝑡) , 𝑢𝑁+1,𝑗+1 = 𝑢𝑁−1,𝑗+1 + 2∆𝑥𝑔2((𝑗 + 1)∆𝑡) (2.2.30)

Use Eq(2.2.30) to discretize Crank Nicolson method (2.2.28) than gives as

−2𝑟𝑢𝑁−1,𝑗+1 + (2 + 2𝑟)𝑢𝑁,𝑗+1 − 2𝑟∆𝑥𝑔2((𝑗 + 1)∆𝑡) =

2𝑟𝑢𝑖−1,𝑗 + (2 − 2𝑟)𝑢𝑖,𝑗 + 2𝑟∆𝑥𝑔2(𝑗∆𝑡) (2.2.31)

23

We can write in tire-diagonal matrix form

[

rr

rrr

rrr

rr

222.....

22.

...

...

...

.22

.....222









]

[

𝑢0,𝑗+1

𝑢1,𝑗+1

.

.

.

.

.
𝑢𝑁−1,𝑗+1

𝑢𝑁,𝑗+1]

+

[

2𝑟∆𝑥𝑔1((𝑗 + 1)∆𝑡)
0
.
.
.
.
.
.

−2𝑟∆𝑥𝑔2((𝑗 + 1)∆𝑡)]

=

[

rr

rrr

rrr

rr

222.....

22.

...

...

...

.22

.....222









]

[

𝑢0,𝑗

𝑢1,𝑗

.

.

.

.

.
𝑢𝑁−1,𝑗

𝑢𝑁,𝑗]

+

[

−2𝑟∆𝑥𝑔1(𝑗∆𝑡)

0
.
.
.
.
.
.

2𝑟∆𝑥𝑔2(𝑗∆𝑡)]

 (2.2.32)

2.3.4 Weighted Average Approximation with Neumann Boundary

Consider weighted average method at 𝑥 = 0

−𝑟𝜃𝑢−1,𝑗+1 + (1 + 2𝑟𝜃)𝑢0,𝑗+1 − 𝑟𝜃𝑢1,𝑗+1 = 𝑟(1 − 𝜃)𝑢−1,𝑗 +

[1 − 2𝑟(1 − 𝜃)]𝑢0,𝑗 + 𝑟(1 − 𝜃)𝑢1,𝑗 . (2.2.33)

24

Applying central difference for the boundary at 𝑥 = 0 at time level 𝑗 + 1 and 𝑗 than

we obtain (2.2.25). Substitute into (2.2.1) we obtain an approximation of the

Neumann condition at (0, 𝑗∆𝑡) as

𝑢−1,𝑗+1 = 𝑢1,𝑗+1 − 2∆𝑥𝑔1((𝑗 + 1)∆𝑡) , 𝑢−1,𝑗 = 𝑢1,𝑗 − 2∆𝑥𝑔1(𝑗∆𝑡) . (2.2.34)

Use equation (2.2.34) to discretize Weight average method (2.2.33) than gives as

(1 + 2𝑟𝜃)𝑢0,𝑗+1 − 2𝑟𝜃𝑢1,𝑗+1 + 2𝑟∆𝑥𝑔1((𝑗 + 1)∆𝑡) = [1 − 2𝑟(1 − 𝜃)]𝑢0,𝑗 +

2𝑟(1 − 𝜃)𝑢1,𝑗 − 2𝑟(1 − 𝜃)∆𝑥𝑔1(𝑗∆𝑡) . (2.2.35)

Now, consider weighted average at 𝑥 = 𝐿 give as

−𝑟𝜃𝑢𝑁−1,𝑗+1 + (1 + 2𝑟𝜃)𝑢𝑁,𝑗+1 − 𝑟𝜃𝑢𝑁+1,𝑗+1 = 𝑟(1 − 𝜃)𝑢𝑁−1,𝑗 +

[1 − 2𝑟(1 − 𝜃)]𝑢𝑁,𝑗 + 𝑟(1 − 𝜃)𝑢𝑁+1,𝑗 . (2.2.36)

Apply central difference for right boundary condition at 𝑥 = 𝐿 as given in (2.2.29).

Substitute into (2.2.1) we obtain an approximation of the Neumann condition at

((𝑁 + 1)∆𝑥, 𝑗∆𝑡) as

𝑢𝑁+1,𝑗+1 = 𝑢𝑁−1,𝑗+1 + 2∆𝑥𝑔2((𝑗 + 1)∆𝑡) , 𝑢𝑖+1,𝑗 = 𝑢𝑖−1,𝑗 + 2∆𝑥𝑔2((𝑗∆𝑡) (2.2.37)

Use Eq(2.2.37) to discretize weighted average method (2.2.36) than gives as

−2𝑟𝜃𝑢𝑁−1,𝑗+1 + (1 + 2𝑟𝜃)𝑢𝑁,𝑗+1 − 2𝑟𝜃∆𝑥𝑔2((𝑗 + 1)∆𝑡) = 2𝑟(1 − 𝜃)𝑢𝑁−1,𝑗 +

[1 − 2𝑟(1 − 𝜃)]𝑢𝑁,𝑗 + 2𝑟(1 − 𝜃)∆𝑥𝑔2((𝑗∆𝑡) (2.2.38)

25

We can write in the matrix tridiagonal form

[I − 𝑟𝜃𝐶]𝑢𝑗+1 = [I + 𝑟(1 − 𝜃)𝐶]𝑢𝑗 + 2𝑟𝑓𝑛, (2.2.39)

where

𝑢 = [𝑢0, 𝑢1, …………… , 𝑢𝑁−1, 𝑢𝑁]𝑇,

and

𝐶 =

[

22.....

121.

...

...

...

.121

.....22









]

 , 𝑓𝑛 =

[

−(1 − 𝜃)∆𝑥𝑔1(𝑗∆𝑡) − 𝜃∆𝑥𝑔1((𝑗 + 1)∆𝑡)

0
.
.
.
.
.
.

(1 − 𝜃)∆𝑥𝑔2(𝑗∆𝑡) + 𝜃∆𝑥𝑔2((𝑗 + 1)∆𝑡)]

26

Chapter 3

 LOCAL TRUNCTION ERROR, CONSISTENCY AND

STABILITY OF DIFFERENCE SCHEMES

3.1 Local Truncation Error

Local truncation error represents the difference between an exact differential

equation and its finite difference representation at a point in space and time. Local

truncation error provides a basis for comparing local accuracies of various difference

schemes. In particular, if the partial differential equation satisfied by the exact

solution 𝑈 is written 𝐹(𝑈) and if 𝐹(𝑢) is the equation satisfied by the discrete

approximation 𝑢 then truncation error at the (𝑖, 𝑗)th mesh point is 𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) [4].

3.2 Local Truncation Error for Diffusion Equation

We analyze the local truncation error for diffusion equation,

𝜕𝑈

 𝜕𝑡
=

𝜕2𝑈

𝜕𝑥2
 (3.2.1)

at the mesh point (𝑖, 𝑗) for three classical schemes and Weighted Average scheme as

follows.

3.2.1 Local Truncation Error for Explicit Method (FTCS)

𝐹𝑖,𝑗(𝑢) =
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
−

𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖1,𝑗

(∆𝑥)2
 , (3.2.2)

substituting 𝑈 for 𝑢 we obtain

𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) =
𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

∆𝑡
−

𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗

(∆𝑥)2
 (3.2.3)

27

Use Taylor’s expansion for 𝑈𝑖+1,𝑗, 𝑈𝑖−1,𝑗 and 𝑈𝑖,𝑗+1 ,we have the following.

 𝑈𝑖+1,𝑗 = 𝑈𝑖,𝑗 + ∆𝑥 (
𝜕𝑈

𝜕𝑥
)
𝑖,𝑗

+
(∆𝑥)2

2
(
𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
(∆𝑥)3

6
(
𝜕3𝑈

𝜕𝑥3
)

𝑖,𝑗

 +
(∆𝑥)4

24
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ ⋯ (3.2.4)

 𝑈𝑖−1,𝑗 = 𝑈𝑖,𝑗 − ∆𝑥 (
𝜕𝑈

𝜕𝑥
)
𝑖,𝑗

+
(∆𝑥)2

2
(
𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

−
(∆𝑥)3

6
(
𝜕3𝑈

𝜕𝑥3
)

𝑖,𝑗

+
(∆𝑥)4

24
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+. . . (3.2.5)

 𝑈𝑖,𝑗+1 = 𝑈𝑖,𝑗 + ∆𝑡 (
𝜕𝑈

𝜕𝑡
)
𝑖,𝑗

+
(∆𝑡)2

2
(
𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

+
(∆𝑡)3

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

+
(∆𝑡)4

24
(
𝜕4𝑈

𝜕𝑡4
)

𝑖,𝑗

+ ⋯ . (3.2.6)

Substituting equations (3.2.4 − 3.2.6) in equation (3.2.3) then give

 𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) = (
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
1

 2
∆𝑡 (

𝜕2𝑈

𝜕𝑡
)

𝑖,𝑗

 −
1

 12
(∆𝑥2) (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ 𝑂((∆𝑡)2) + 𝑂((∆𝑥)4), (3.2.7)

where 𝑈(𝑥𝑖,𝑡𝑗) is the solution of the differential equation.

(
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

= 0 (3.2.8)

Therefore the main part of the local truncation error is

1

 2
∆𝑡 (

𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

−
1

 12
(∆𝑥)2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

 (3.2.9)

28

Hence

𝑇𝑖,𝑗 = 𝑂(∆𝑡) + 𝑂((∆𝑥)2) . (3.2.10)

Thus the explicit solution to equation (3.2.1) is 𝑂(∆𝑡) accurate in time and

𝑂((∆𝑥))2 accurate in space.

3.2.2 Local Truncation Error for Implicit Method (FTCS)

𝐹𝑖,𝑗(𝑢) =
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
−

𝑢𝑖−1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1

(∆𝑥)2
 , (3.2.11)

substituting 𝑈 for 𝑢 we obtain

𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑢) =
𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

∆𝑡
−

𝑈𝑖−1,𝑗+1 − 2𝑈𝑖,𝑗+1 + 𝑈𝑖+1,𝑗+1

(∆𝑥)2
 . (3.2.12)

Use Taylor’s expansion for 𝑈𝑖−1,𝑗+1, 𝑈𝑖+1,𝑗+1 , we have the following

𝑈𝑖+1,𝑗+1 = 𝑈𝑖,𝑗 + ∆𝑥 (
𝜕𝑈

𝜕𝑥
)
𝑖,𝑗

+ ∆𝑡 (
𝜕𝑈

𝜕𝑡
)
𝑖,𝑗

+
(∆𝑥)2

2
(
𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
(∆𝑡)2

2
(
𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

∆𝑥∆𝑡 (
𝜕2𝑈

𝜕𝑥𝜕𝑡
)

𝑖,𝑗

+
(∆𝑥)3

6
(
𝜕3𝑈

𝜕𝑥3
)

𝑖,𝑗

+
(∆𝑡)3

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

+
(∆𝑥)2

2
∆𝑡 (

𝜕3𝑈

𝜕𝑥2𝜕𝑡
)

𝑖,𝑗

+∆𝑥
(∆𝑡)2

2
(

𝜕3𝑈

𝜕𝑥𝜕𝑡2
)

𝑖,𝑗

+
(∆𝑥)4

24
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+
(∆𝑡)4

24
(
𝜕4𝑈

𝜕𝑡4
)

𝑖,𝑗

+
(∆𝑥)2(∆𝑡)2

4
(

𝜕4𝑈

𝜕𝑥2𝜕𝑡2
)

𝑖,𝑗

+
(∆𝑥)3

6
∆𝑡 (

𝜕4𝑈

𝜕𝑥3𝜕𝑡
)

𝑖,𝑗

+ ∆𝑥
(∆𝑡)3

6
(

𝜕4𝑈

𝜕𝑥𝜕𝑡3
)

𝑖,𝑗

+ ⋯ . (3.2.13)

29

𝑈𝑖−1,𝑗+1 = 𝑈𝑖,𝑗 − ∆𝑥 (
𝜕𝑈

𝜕𝑥
)
𝑖,𝑗

+ ∆𝑡 (
𝜕𝑈

𝜕𝑡
)
𝑖,𝑗

+
(∆𝑥)2

2
(
𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
(∆𝑡)2

2
(
𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

−∆𝑥∆𝑡 (
𝜕2𝑈

𝜕𝑥𝜕𝑡
)

𝑖,𝑗

−
(∆𝑥)3

6
(
𝜕3𝑈

𝜕𝑥3
)

𝑖,𝑗

+
(∆𝑡)3

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

+
(∆𝑥)2

2
∆𝑡 (

𝜕3𝑈

𝜕𝑥2𝜕𝑡
)

𝑖,𝑗

−∆𝑥
(∆𝑡)2

2
(

𝜕3𝑈

𝜕𝑥𝜕𝑡2
)

𝑖,𝑗

+
(∆𝑥)4

24
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+
(∆𝑡)4

24
(
𝜕4𝑈

𝜕𝑡4
)

𝑖,𝑗

+
(∆𝑥)2(∆𝑡)2

4
(

𝜕4𝑈

𝜕𝑥2𝜕𝑡2
)

𝑖,𝑗

−
(∆𝑥)3

6
∆𝑡 (

𝜕4𝑈

𝜕𝑥3𝜕𝑡
)

𝑖,𝑗

− ∆𝑥
(∆𝑡)3

6
(

𝜕4𝑈

𝜕𝑥𝜕𝑡3
)

𝑖,𝑗

+ ⋯ . (3.2.14)

Substituting equations (3.2.13), (3.2.14) and (3.2.6) in (3.2.12) then gives.

𝑇𝑖,𝑗 = (
𝜕𝑈

 𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
1

2
∆𝑡 (

𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

−
1

12
∆𝑥2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

 +𝑂((∆𝑡)2) + 𝑂((∆𝑥)4) , (3.2.15)

where 𝑈 is the solution of the differential equation.

(
𝜕𝑈

 𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

= 0 . (3.2.16)

From equation (3.2.15) the principal part of the local truncation error for implicit

scheme is

1

2
∆𝑡 (

𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

−
1

12
(∆𝑥)2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

 . (3.2.17)

30

Hence

𝑇𝑖,𝑗 = 𝑂(∆𝑡) + 𝑂((∆𝑥)2) (3.2.18)

Thus the implicit solution to equation (3.2.1) is 𝑂(∆𝑡) accurate in time and

𝑂((∆𝑥)2)accurate in space.

3.2.3 Local Truncation Error for Crank Nicolson

 Consider the crank Nicolson method

𝐹𝑖,𝑗(𝑢) =
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
−

1

2
[
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(∆𝑥)2

 +
𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

(∆𝑥)2
] , (3.2.19)

 substituting 𝑈 for 𝑢 we obtain

𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) =
𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

∆𝑡
−

1

2
[
𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗

(∆𝑥)2

 +
𝑈𝑖+1,𝑗+1 − 2𝑈𝑖,𝑗+1 + 𝑈𝑖−1,𝑗+1

(∆𝑥)2
] . (3.2.20)

Substituting equation(3.2.4 − 3.2.6), (3.2.13)and (3.2.14) in (3.2.20) then gives

𝑇𝑖,𝑗 = (
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
∆𝑡

2

𝜕

𝜕𝑡
(
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
(∆𝑡)2

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

−
(∆𝑥)2

12
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ 𝑂((∆𝑡)3) + 𝑂((∆𝑥)3) , (3.2.21)

where 𝑈 is the solution of the differential equation.

(
𝜕𝑈

 𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

= 0 . (3.2.22)

31

From equation (3.2.21) the principal part of the local truncation error for Crank-

Nicolson scheme is

(∆𝑡)2

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

−
(∆𝑥)2

12
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

 (3.2.23)

Hence

𝑇𝑖,𝑗 = 𝑂((∆𝑡)2) + 𝑂((∆𝑥)2). (3.2.24)

Thus the Crank-Nicolson solution to equation (3.2.1) is 𝑂((∆𝑥)2) accurate in space

and 𝑂((∆𝑡)2) accurate in time.

3.2.4 Local Truncation Error for Weighted Average

𝐹𝑖,𝑗(𝑢) =
𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗

∆𝑡
−

1

(∆𝑥)2
 [𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1)

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)] , (3.2.25)

substituting 𝑈 for 𝑢 we obtain

𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) =
𝑈𝑖,𝑗+1 − 𝑈𝑖.𝑗

∆𝑡
−

1

(∆𝑥)2
 [𝜃(𝑈𝑖+1,𝑗+1 − 2𝑈𝑖,𝑗+1 + 𝑈𝑖−1,𝑗+1)

 +(1 − 𝜃)(𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗)] . (3.2.26)

Substituting equation (3.2.4 − 3.2.6), (3.2.13) and (3.2.14) in (3.2.26) than gives

𝑇𝑖,𝑗 = (
𝜕𝑈

 𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+ ∆𝑡
𝜕

𝜕𝑡
(
1

2

𝜕𝑈

𝜕𝑡
− 𝜃

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

−
(∆𝑥)2

12
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+
(∆𝑡)2

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

+
(∆𝑡)3

24
(
𝜕4𝑈

𝜕𝑡4
)

𝑖,𝑗

− 𝜃
(∆𝑡)2

2
(

𝜕4𝑈

𝜕𝑥2𝜕𝑡2
)

𝑖,𝑗

 , (3.2.27)

32

Where 𝑈 is the solution of differential equation

(
𝜕𝑈

 𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

= 0 . (3.2.28)

If 𝜃 =
1

2
 the equation (3.2.27) gives us Crank Nicolson scheme, which is second

order accurate in both ∆𝑡 and ∆𝑥. Another choice to 𝜃 = 0,1 gives us 𝑂(∆𝑡) accurate

in time and 𝑂((∆𝑥)2)accurate in space.

3.3 Consistency

The notion of consistency addresses the problem of whether the finite difference

approximation is really representing the partial differential equation. We say that a

finite difference approximation is consistent with a differential equation if the finite

difference equations converge to the original equation as the time and space grids are

refined. Hence, if the truncation error goes to zero as time and space grids are refined

we conclude that the scheme is consistent [4].

3.3.1 Consistency of Explicit Method

For the explicit solution to the diffusion equation, the truncation error is,

 𝑇𝑖,𝑗 = 𝐹𝑖,𝑗(𝑈) = (
𝜕𝑈

𝜕𝑡
+

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
1

 2
∆𝑡 (

𝜕2𝑈

𝜕𝑡
)

𝑖,𝑗

 −
1

 12
(∆𝑥)2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ 𝑂((∆𝑡)2) + 𝑂((∆𝑥)4) (3.3.1)

Thus as ∆𝑥 → 0 and ∆𝑡 → 0 then 𝑇𝑖,𝑗 = 0, hence the explicit method is consistent

with partial differential equation (3.2.1).

33

3.3.2 Consistency of Implicit Method

For the implicit solution to the diffusion equation, the truncation error is,

𝑇𝑖,𝑗 = (
𝜕𝑈

 𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
1

2
∆𝑡 (

𝜕2𝑈

𝜕𝑡2
)

𝑖,𝑗

−
1

12
∆𝑥2 (

𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

 +𝑂((∆𝑡)2) + 𝑂((∆𝑥)4) (3.3.2)

Thus as ∆𝑥 → 0 and ∆𝑡 → 0 then 𝑇𝑖,𝑗 = 0, hence the implicit method is consistent

with partial differential equation (3.2.1)

3.3.3 Consistency of Crank Nicolson Method

For the Crank Nicolson solution to the diffusion equation, the truncation error is,

𝑇𝑖,𝑗 = (
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
∆𝑡

2

𝜕

𝜕𝑡
(
𝜕𝑈

𝜕𝑡
−

𝜕2𝑈

𝜕𝑥2
)

𝑖,𝑗

+
∆𝑡2

6
(
𝜕3𝑈

𝜕𝑡3
)

𝑖,𝑗

−
∆𝑥2

12
(
𝜕4𝑈

𝜕𝑥4
)

𝑖,𝑗

+ 𝑂(∆𝑡)3) + 𝑂((∆𝑥)3) (3.3.3)

Thus as ∆𝑥 → 0 and ∆𝑡 → 0 then 𝑇𝑖,𝑗 = 0, hence the Crank Nicolson method is

consistent with partial differential equation (3.2.1).

3.4 Stability and Convergence of Finite Difference Schemes

3.4.1 Stability and Convergence

The stability of a numerical scheme is associated with propagation of numerical

error. A finite difference scheme is stable if the error stays constant or decrees as the

iterative process goes on. On contrary, if the error grows with time, the scheme is

said to be unstable

34

Definition 3.4.1.1 [4]

A finite difference scheme is stable if the scheme do not allows the growth of error in

the solution with different time level.

A numerical scheme is convergent if the computed solution of the discretized

equation leads to the exact solution of the differential equation as the time and grid

spacing lead to zero.

This will have definition as shown below. The computed solution 𝑢𝑖,𝑗 must approach

the exact solution 𝑈 of the differential equation at any point 𝑥𝑖 = 𝑖∆𝑥 and 𝑡𝑗 = 𝑗∆𝑡

when ∆𝑥 and ∆𝑡 lead to zero while keeping 𝑥𝑖 and 𝑡𝑗 constant. In other hand, the

error

𝜀𝑖,𝑗 = 𝑢𝑖,𝑗 − 𝑈𝑖,𝑗 (3.4.1)

Satisfying the following convergence condition

lim
∆𝑡,∆𝑥→0

|𝜀𝑖,𝑗| → 0 at fixed 𝑥𝑖 = 𝑖∆𝑥 and 𝑡𝑗 = 𝑗∆𝑡 (3.4.2)

Theorem 3.4.1.1 (Lax theorem) [4]

For a well-posed initial and boundary value problem, if a finite difference scheme is

consistent with the partial differential equation, then the stability is the necessary and

sufficient condition for convergence that is

 Consistency + stability ↔ convergence

35

3.4.2 Von Neumann Stability Analysis

There are many approaches to analyze whether a finite difference scheme is stable or

unstable. In this thesis, we will consider the Von Neumann stability analysis for

presented finite difference schemes.

The Von Neumann stability analysis is most commonly used, but it is restricted to

linear initial value problems with constant coefficients. For more sophisticated

problems including variable coefficients, nonlinearities and complicated boundary

conditions, this method is useful to determine necessary conditions for stability. The

only class of problems for which Von Neumann analysis provides also sufficient

conditions is the class of initial value problems with periodic boundary conditions.

The basic idea of this analysis is given by defining the discrete Fourier transform of

𝑢 as follows [1,3].

The discrete Fourier transform of 𝑢 ∈ ℓ2 is the function 𝑢̃ ∈ 𝐿2 [−𝜋, 𝜋] defined by

𝑢̃(𝜉) =
1

√2𝜋
∑ 𝑒−𝑖𝑚𝜉𝑢𝑚 for 𝜉 ∈ [−𝜋, 𝜋] (3.4.3)

∞

𝑚=−∞

The transform can be inverted by

𝑢2 =
1

√2𝜋
∫ 𝑒−𝑖𝑚𝜉𝑢̃(𝜉)𝑑𝜉 , (3.4.4)

𝜋

−𝜋

and then Parselval’s relation is given as given

‖𝑢̃‖2 = ‖𝑢‖2 . (3.4.5)

36

Consider the difference scheme with discrete Fourier transform and Parselval’s

identity that gives the inequality as follows.

‖𝑢𝑛+1‖2 ≤ 𝐾𝑒𝛽(𝑛+1)𝑘‖𝑢0‖2 (3.4.6)

But since, we can find 𝐾 and 𝛽 to satisfy

⃦𝑢̃𝑛+1 ⃦2 ≤ 𝐾𝑒𝛽(𝑛+1)𝑘 ⃦𝑢̃0 ⃦2 ,

⃦𝑢̃𝑛+1 ⃦2 ≤ 𝜌(𝜉) ⃦𝑢̃0 ⃦2 , (3.4.7)

where ⃦𝑢̃0 ⃦2 is the initial condition. Then the difference scheme is stable in

transform space 𝐿2, if

𝜌(𝜉) ≤ 1 . (3.4.8)

Where 𝜌(𝜉) is the amplification factor for the difference scheme.

Now, we take the discrete Fourier transform without writing all of the summation, let

define the operator 𝑓: ℓ2 → 𝐿2 ([−𝜋, 𝜋]) as the discrete Fourier transform

𝑓(𝑢) =
1

√2𝜋
∑ 𝑒−𝑖𝑚𝜉

∞

𝑚=−∞

𝑢𝑚 (3.4.9)

37

Where 𝑓 is linear and preserves the norm. If we define the shift operators as

𝑆 ± 𝑢 = {𝓋𝑘} where 𝓋𝑘 = 𝓋𝑘±1 , 𝑘 = 0,±1,…, (3.4.10)

then

𝑓(𝑆 ± 𝑢) = 𝑒±𝑖𝜉𝑓(𝑢)

= 𝑒±𝑖𝜉𝑢̃(𝜉) . (3.4.11)

This result will make stability analysis much easier.

3.4.2.1 Stability of Explicit Method

Consider the equation of explicit scheme

𝑢𝑖,𝑗+1 = 𝑟𝑢𝑖+1,𝑗 + (1 − 2𝑟)𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 (3.4.12)

Apply Von Neumann analysis on(3.4.12) , to get

𝑢̃𝑗+1 = 𝑟𝑒𝑖𝜉𝑢̃𝑗 + (1 − 2𝑟)𝑢̃𝑗 + 𝑟𝑒−𝑖𝜉𝑢̃𝑗

= [𝑟 cos 𝜉 + 𝑖 sin 𝜉 + 𝑟 cos 𝜉 − 𝑖 sin 𝜉 + 1 − 2𝑟]𝑢̃𝑗

𝑢̃𝑗+1 = (1 − 2𝑟(1 − cos 𝜉))𝑢̃𝑗

𝑢̃𝑗+1 = (1 − 4𝑟sin2
𝜉

2
) 𝑢̃𝑗

Then,

𝑢̃𝑗+1 = 𝜌(𝜉)𝑢̃𝑗 (3.4.13)

The amplification factor of (3.4.11) is

𝜌(𝜉) = 1 − 4𝑟sin2
𝜉

2
 (3.4.14)

38

For stability must satisfy |𝜌(𝜉)| ≤ 1. That is

−1 ≤ 1 − 4sin2
𝜉

2
≤ 1 ,

−2 ≤ −4𝑟sin2
𝜉

2
≤ 0 ,

1

2
≥ 𝑟 sin

𝜉

2
≥ 0 ,

0 ≤ 𝑟sin2
𝜉

2
≤

1

2
 .

Hence the explicit scheme is conditionally stable and stability criteria is 𝑟 ≤
1

2

3.4.2.2 Stability of Implicit Scheme

Consider the equation of implicit scheme.

−𝑟𝑢𝑖−1,𝑗+1 + (1 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑢𝑖,𝑗 . (4.2.15)

Apply Von Neumann stability analysis on(4.2.15), therefore.

−𝑟𝑒−𝑖𝜉𝑢̃𝑗+1 + (1 + 2𝑟)𝑢̃𝑗+1 − 𝑟𝑒𝑖𝜉𝑢̃𝑗+1 = 𝑢̃𝑗 ,

(−𝑟 cos 𝜉 − 𝑖 sin 𝜉 + 1 + 2𝑟 − 𝑟 cos 𝜉 − 𝑖 sin 𝜉)𝑢̃𝑗+1 = 𝑢̃𝑗 ,

[1 + 2𝑟(1 − cos 𝜉)]𝑢̃𝑗+1 = 𝑢̃𝑗 ,

[1 + 4𝑟 sin2
𝜉

2
] 𝑢̃𝑗+1 = 𝑢̃𝑗 ,

𝑢̃𝑗+1 =
1

1 + 4𝑟 sin2 𝜉
2

𝑢̃𝑗 = 𝜌(𝜉)𝑢̃𝑗 , (4.2.16)

39

Where amplification factor of (4.2.15) is

𝜌(𝜉) =
1

1 + 4𝑟 sin2 𝜉
2

 . (4.2.17)

Scheme is stable if |𝜌(𝜉)| ≤ 1. That is

−1 ≤
1

1 + 4𝑟 sin2 𝜉
2

≤ 1 (4.2.18)

−2 ≥ 4𝑟 𝑠𝑖𝑛2
𝜉

2
≥ 0 . (4.2.19)

From above inequality (4.2.19) scheme is stable for all positive value of 𝑟. that is,

implicit scheme is unconditionally stable.

3.4.2.3 Stability of Crank Nicolson Scheme

Consider the equation of Crank Nicolson scheme

−𝑟𝑢𝑖−1,𝑗+1 + (2 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1

= 𝑟𝑢𝑖−1,𝑗 + (2 − 2𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖+1,𝑗 . (4.2.20)

Apply Von Neumann analysis on (4.2.20), to achieve

−𝑟𝑒−𝑖𝜉𝑢̃𝑗+1 + (2 + 2𝑟)𝑢̃𝑗+1 − 𝑟𝑒𝑖𝜉𝑢̃𝑗+1 = 𝑟𝑒−𝑖𝜉𝑢̃𝑗 + (2 − 2𝑟)𝑢̃𝑗 + 𝑟𝑒𝑖𝜉𝑢̃𝑗

(2 + 2𝑟 − 2𝑟 cos 𝜉)𝑢̃𝑗+1 = (2 − 2𝑟 + 2𝑟 cos 𝜉)𝑢̃𝑗

𝑢̃𝑗+1 =
(2 − 2𝑟 + 2𝑟 cos 𝜉)

(2 + 2𝑟 − 2𝑟 cos 𝜉)
𝑢̃𝑗

𝑢̃𝑗+1 = (
1 − 4𝑟 sin2 𝜉

2

1 + 4𝑟 sin2 𝜉
2

) = 𝜌(𝜉)𝑢̃𝑗 . (4.2.21)

40

The amplification factor of (4.2.20) is

𝜌(𝜉) = (
1 − 4𝑟 sin2 𝜉

2

1 + 4𝑟 sin2 𝜉
2

) . (4.2.22)

Scheme is stable if |𝜌(𝜉)| ≤ 1. That is

−1 ≤
1 − 4𝑟 sin2 𝜉

2

1 + 4𝑟 sin2 𝜉
2

≤ 1 . (4.2.23)

From above inequality (4.2.22) scheme is stable for all value of 𝑟. Hence Crank Nicolson is

unconditionally stable.

3.4.2.4 Stability of Weighted Average Scheme

Consider the equation of weighted average scheme

𝑢𝑖,𝑗+1 − 𝑢𝑖.𝑗 = 𝑟[𝜃(𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1)

+(1 − 𝜃)(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗)] . (4.2.24)

Apply Von Neumann stability analysis on(4.2.24), therefore

(1 − 2𝑟𝜃(cos 𝜉 − 1))𝑢̃𝑗+1 = (1 + 2𝑟(1 − 𝜃)(cos 𝜉 − 1)𝑢̃𝑗

𝑢̃𝑗+1 =
(1 + 2𝑟(1 − 𝜃)(cos 𝜉 − 1))𝑢̃𝑗

(1 − 2𝑟𝜃(cos 𝜉 − 1))
 .

Remember that cos 𝜉 = 1 − 2𝑠𝑖𝑛2 𝜉

2
 therefor cos 𝜉 − 1 = −2𝑠𝑖𝑛2 𝜉

 2
 and we obtain

𝑢̃𝑗+1 = (
1 − 4𝑟(1 − 𝜃)sin2 𝜉

2

1 + 4𝑟𝜃 sin2 𝜉
2

) 𝑢̃𝑗 = 𝜌(𝜉)𝑢̃𝑗 (4.2.25)

41

The amplification factor of (4.2.24) is

𝜌(𝜉) =
1 − 4𝑟(1 − 𝜃)sin2 𝜉

2

1 + 4𝑟𝜃 sin2 𝜉
2

 (4.2.26)

Scheme is stable if |𝜌(𝜉)| ≤ 1. Since 𝜃𝝐[0,1] than 4𝑟𝜃𝑠𝑖𝑛2 𝜉

2
 ≥ 0 we have

𝜌(𝜉) =
1 + 4𝑟𝜃𝑠𝑖𝑛2 𝜉

2 − 4𝑟𝑠𝑖𝑛2 𝜉
2

1 + 4𝜃𝑠𝑖𝑛2 𝜉
2

 ≤ 1 ,

we finally need

1 + 4𝑟𝜃𝑠𝑖𝑛2 𝜉
2 − 4𝑟𝑠𝑖𝑛2 𝜉

2

1 + 4𝜃𝑠𝑖𝑛2 𝜉
2

≥ −1

∴ 1 − 4𝑟(1 − 𝜃)𝑠𝑖𝑛2
𝜉

2
≥ −1 − 4𝑟𝜃𝑠𝑖𝑛2

𝜉

2

∴ 1 ≥ 2𝑟(1 − 2𝜃)𝑠𝑖𝑛2
𝜉

2

∴ 1 ≥ 2𝑟(1 − 2𝜃) . (4.2.27)

From above inequality (4.2.27) is satisfied for all positive 𝑟 if 𝜃 ≥
1

2
 in this case

weighted average scheme is unconditionally stable. But if 𝜃 <
1

2
 we require

𝑟 ≤
1

2(1 − 2𝜃)

42

Chapter 4

NUMERICAL RESULTS

In this Chapter we present the numerical results from solving two model problems

using finite difference schemes described in Chapter 2. In our computations we used

various values of 𝑟 = 0.4 , 0.5 , 1 with fixed ∆𝑥 = 0.05. In order to check accuracy

of 𝑢 using discussed finite difference schemes the following error calculation is used;

𝜀 = ‖𝑈𝑖𝑗 − 𝑢𝑖𝑗‖∞
 ,

where 𝑢𝑖𝑗 is the solution calculate by the numerical methods at the node 𝑖 in the 𝑗th

time level and 𝑈𝑖𝑗 is the exact solution at the node 𝑖 in the 𝑗th time level.

43

Problem 1 (Dirichlet type of boundary condition)

𝑢𝑡 = 𝑢𝑥𝑥 0 < 𝑥 < 1 , 0 < 𝑡 ≤ 1

with initial condition

𝑢(𝑥, 0) = sin 𝜋𝑥 0 ≤ 𝑥 ≤ 1

and boundary conditions

𝑢(0, 𝑡) = 0 0 < 𝑡 ≤ 1

𝑢(1, 𝑡) = 0 0 < 𝑡 ≤ 1

where

𝑢𝑒𝑥𝑎𝑐𝑡 = 𝑢(𝑥, 𝑦) = 𝑒−𝜋2𝑡 sin 𝜋𝑥

44

(a)

(b)

 (c)

Figure 4.1: Exact and approximate solution of 𝑢(𝑥, 𝑡) using three different numerical

schemes of time level 𝑡 = 1 with different values of

(a) 𝑟 = 0.4 (b) 𝑟 = 0.5 (c) 𝑟 = 1

45

 (a)

 (b)

 (c)

Figure 4.2: Maximum error vs. time for three different schemes with

(a) 𝑟 = 0.4 (b) 𝑟 = 0.5 (c) 𝑟 = 1 respectively

46

(a) (b)

(c) (d)

Figure 4.3: Exact and numerical solution of three different schemes with 𝑟 = 0.5 and

∆𝑥 = 0.05

47

Problem 2 (Neumann type of boundary conditions)

 𝑢𝑡 = 𝑢𝑥𝑥 0 < 𝑥 < 1 , 0 < 𝑡 < 1

with initial condition

 𝑢(𝑥, 0) = cos 𝜋𝑥 0 ≤ 𝑥 ≤ 1

and boundary conditions

𝑢𝑥(0, 𝑡) = 0 0 < 𝑡 ≤ 1

 𝑢𝑥(1, 𝑡) = 0 0 < 𝑡 ≤ 1

where

𝑢𝑒𝑥𝑎𝑐𝑡 = 𝑢(𝑥, 𝑦 = 𝑒−𝜋2𝑡 cos 𝜋𝑥

48

(a)

(b)

 (c)

Figure 4.4: Exact and approximate solution of 𝑢(𝑥, 𝑡) using three different numerical

schemes of time level 𝑡 = 1 with different values of

(a) 𝑟 = 0.4 (b) 𝑟 = 0.5 (c) 𝑟 = 1

49

 (a)

 (b)

(c)

Figure 4.5: Maximum error vs. time for three different schemes with

(a) 𝑟 = 0.4 (b) 𝑟 = 0.5 (c) 𝑟 = 1 respectively

50

(a) (b)

 (c) (d)

Figure 4.6: Exact and numerical solution of three different schemes with 𝑟 = 0.5 and

∆𝑥 = 0.05

51

Based on the considered comparison factors to evaluate the performance of the three

finite difference schemes according to the stability criteria, we observed from the

numerical results that these schemes work well and each scheme produced

reasonable results for problem 1 and problem 2. Figures (4.1 and 4.4) illustrates

exact and numerical solution of the three different schemes at time level 𝑡 = 1 and

Figure (4.3 and 4.6) illustrates exact and approximation solutions of three different

schemes for whole domain.

The other factors for comparison worth to consider are the maximum error reduction

for each time level. Figures (4.2 and 4.5) illustrate the maximum error reduction to

solve problem 1 and problem 2 respectively. Using 𝑟 = 0.4 , 0.5 , 1.we observed

from both Figures that Crank Nicolson scheme is most accurate than other schemes.

52

Chapter 5

CONCLUSION

In this thesis, FTCS, BTCS and Crank Nicolson scheme were applied to the one

dimensional diffusion equation. We observed from numerical computation that these

methods worked well according to the stability criteria and each scheme produced

reasonable results for evaluating approximation of 𝑢. Each of the finite difference

methods considered its own advantages and disadvantages. Explicit method is very

easy to calculate numerically but has low accuracy must use small ∆𝑡 and unstable

for 𝑟 > 0.5. Implicit and Crank Nicolson methods are unconditionally stable,

computer time required at each step is higher. On the other hand Crank Nicolson

method is more accurate, and faster than Implicit and Explicit methods according to

the order of truncation error.Therefore difficult to judgment of the best scheme

according to their own advantages and disadvantages.

53

REFERENCES

[1] Berntaz, A. R. (2010). Fourier Series and Numirecal Method for Partial

Difference Equation . New Jersey: Johan Wiley & Sons, Inc.

[2] Causon, D. M., & Mingham, C. G. (2010). Introductory Finite Difference

Methods for PDEs. Ventus Pablishing Aps.

[3] Smith, G. D. (1985). Numerical Solution of Partial Differential Equation.

Clarendon press: Oxford .

[4] Thomas, J. W. (1995). Numerical Partial Differential Equation: Finite Difference

Method . Springer.

[5] Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential

equation. new york: cambirdge universty.

[6] Noye, J. (1984). Finite Difference Tachniques for Partial Differntial Equation .

North Holland: B.V.

[7] Steven C. C., & Raymond, P. C. (2010). Numerical Methods for Engineers. New

York: McGraw.Hill.

