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ABSTRACT

When an indeterminate frame is acted on by external loads and couples internal
stresses in the members and displacements at the joints will be produced. Calculation
of the stresses in the members and joint displacements are needed in structural
design. The two main methods for the analysis of frames are the classical force
method and the displacement method. A third method called the Integrated Force
Method (IFM) has been developed for analysis of structural mechanics problems.
This method treats all independent internal forces as unknown variables that can be
calculated by simultaneously coupling both equilibrium equations and compatibility
conditions. The advantage of the Integrated Force Method is that compatibility
conditions are generated by algebraic operations on the nodal equilibrium equations.
These algebraic operations are Null Space of the equilibrium matrix and the Singular
Value Decomposition of the equilibrium matrix. These algebraic operations are
easily carried out by computer algebra systems like Mathematica7. An extension of
the Integrated Force Method is the Dual Integrated Force Method (IFMD). The
primary unknowns in the Dual Integrated Force Method are the joint displacements.
To obtain the joint displacements the structure global stiffness matrix is generated by
using the equilibrium matrix and the unconnected stiffness matrix of the structure.
The advantage of the Dual Integrated Force Method is that the global stiffness matrix
is generated easily by computer algebra systems like Mathematica7 by simple matrix

multiplication commands.

iii



In this thesis two analysis packages for analysis of indeterminate rigid frames by
Integrated Force Method (IFM) have been developed. These packages are: Integrated
Force Method via Null Space, Integrated Force Method via Singular Value
Decomposition. One additional analysis package using Dual Integrated Force
Method have been developed. All three analysis packages have been coded using

Mathematica?.

In all three analysis packages all the calculation steps are presented, explained and
they can be edited according to the needs of the user. The user can see the program
code and its corresponding output at each calculation step. All of these specific

characteristics make the analysis packages useful and practical.

Many problems have been analyzed by these packages and all the results have been

compared with the results obtained from Mastan2 v3.2. All the results fully agree.

Keywords: Frame Analysis, Integrated Force Method (IFM), Dual Integrated Force

Method (IFMD), Compeatibility conditions.
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0z

Hiperstatik cerceveler, ylikler ve momentlere maruz kalinca elemanlarda i¢ kesit
zorlamalar1 ve diigim noktalarinda deplasmanlar olusur. Cerceve tasarimi igin
elemanlardaki i¢ kesit zorlamalar1 ve diiglim noktalarindaki deplasmanlara
gereksinim vardir. Cer¢eve analizinde iki ana yontem klasik kuvvet ve deplasman
yontemleridir. Uciincii bir metod olarak Bilesik Kuvvet Metodu (IFM)
gelistirilmistir. Bu yontemde serbest i¢ kuvvetler ana bilinmeyenler olarak kabul
edilir ve denge denklemlerini uygunluk sartlar ile birlestirerek hesaplanir. Bilesik
Kuvvet Metodunun avantaji uygunluk sartlarinin denge denklemlerine cebirsel
operasyonlar yapilarak elde edilmesidir. Bu cebirsel operasyonlar denge matrisine
Null Space veya Singular Value Decomposition yontemleri uygulanmasidir. Bu
cebirsel yontemler bilgisayar cebirsel sistemlerince, Mathematica7 gibi, kolayca
yapilabilir. Cift Bilesik Kuvvet Metodu (IFMD), Bilesik Kuvvet Metodunun bir
uzantis1 olarak gelistirilmistir. Cift Bilesik Kuvvet Metodunda ana bilinmeyenler
diigim noktalarindaki deplasmanlardir. Diigiim noktalarindaki deplasmanlari
hesaplamak icin ¢ercevenin global rijitlik matrisi bulunmalidir. Global rijitlik matrisi
ise yalmzca denge matrisi ve cercevenin bilesmemis global rijitlik matrisi
kullanilarak elde edilir. Cift Bilesik Kuvvet Metodunun avantaji ¢ergevenin global
rijitlik matrisi bilgisayar cebirsel sistemlerince, Mathematica7 gibi, basit matris

carpimlar1 kullanilarak elde edilmesidir.

Bu tezde Bilesik Kuvvet Metodunu kullanarak iki analiz paketi gelistirilmistir. Bu iki

analiz paketi siras1 ile Null Space ve Singular Value Decomposition yontemlerini



kullanarak uygunluk matrislerini elde eder. Bir ilave analiz paketi de Cift Bilesik
Kuvvet Metodunu kullanarak gelistirilmistir. Her ii¢ analiz paketi de Mathematica7
proglamlama dilini kullanarak yazilmistir. Ug¢ analiz paketinde hesaplama adimlari
takdim edilmis ve anlatilmistir. Hesaplamalar kullanicinin ihtiyaglarina gore
degistirilebir. Kullanicilar programlarin tiim yazilimlarini gorebilir ve her hesaplama
basamaginda cevaplar ekrana yansitilir. Tim bu 6zellikler bu {i¢ analiz paketlenin

kullanigh ve pratik oldugunu gosterir.

Uc¢ analiz paketinde hesaplama adimlar1 takdim edilmis ve anlatilmistir.
Hesaplamalar kullanicinin ihtiyaglarina gore degistirilebir. Kullanicilar programlarin
tiim yazilimlarimi gorebilir ve her hesaplama basamaginda cevaplar ekrana yansitilir.

Tim bu 6zellikler bu ii¢ analiz paketlenin kullanish ve pratik oldugunu gosterir.

Bu ii¢ analiz paketini kullanarak bir¢cok problem analiz edilmis ve sonuglar Mastan2
v3.2 analiz programinin sonuglari ile karslagtirilmistir. Tiim sonuglar birbirleri ile

tamamen uyusma icerisidedir.

Anahtar kelimeler: Cerceve analizi, Bilesik Kuvvet Metodu, Cift Bilesik Kuvvet

Metodu, Ugunluk sartlari.
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Chapter 1

INTRODUCTION

1.1 Introduction

When a structure is built, it should be in equilibrium. According to Newton’s law all
the particles (elements and joints) must be in equilibrium. For making sure of
equilibrium the external loads and internal must be in balance. The equations of
equilibrium of structure establish the relation between independent element forces
and applied forces at the global degrees of freedom. Finding these equations in small
structures is very easy but in large scale structures is manually very difficult and time

consuming [1].

On type of structure is frame. A frame is made of straight or linear members.
Indeterminate frame is obtained by extra restraints at the support of determinate
frame or by increasing the number of frame members. A frame member carries the
three independent internal forces: Axial Forces, Shear Force and a Bending Moment.
Nodes of a frame have three displacements: translation, transverse displacement and
rotation. A frame can be formulated by combining the action of the bar and beam
members. The analysis of frame structure is considerably more difficult than that of
beam or truss. The complexity is greater because of more algebraic equations

required [2].



Two main methods for structural analysis of frame are:

e Stiffness method

e Force method
Stiffness method uses displacements as primary unknowns and force method uses
forces as primary unknowns. An alternative formulation, termed the Integrated Force

Method has been developed to analyze problems in structural mechanics [4].

In the Integrated Force Method (IFM) all independent forces, not just the redundants,
are treated as unknown quantities that can be calculated by simultaneously coupling
both equilibrium equations and compatibility conditions together [4]. The usage of
all independent forces provides in the solution process provides a great advantage
over the classical force method where only the redundant are solved for by using the
compatibility equations. Selection of redundants and hence the generation of the
compatibility equations in the classical force method require lengthy calculation
processes using matrix algebra techniques. In the Integrated Force Method, on the
other hand, the process of selection of redundants is not required and independent
internal forces for the structural design process is determined for all the members is
obtained in only one solution process. Thus the Integrated Force Method provides
considerable advantage in the design of large scale structures like in the aeronautical
industry and in the design of steel structures. IFM’s advantages [3] over the Stiffness
Method (SM) have been documented, including accurate stress results, a well-
conditional system for finite element discrete analysis, fast convergence to correct
solutions, and elegancy initial deformation problems. The Integrated Force Method

has also been extended to nonlinear structural analysis [19] and optimization [21].



Generation of the compatibility conditions for the Integrated Force Method has been
made easier by making use of the algebraic methods of Null Space and Singular
Value Decomposition [12], [14], [15]. When applied to the equilibrium matrix the
Null Space and Singular Value Decomposition yield directly the compatibility
matrix. After generating the unconnected flexibility matrix the Null Space or
Singular Value Decomposition is multiplied with the unconnected flexibility matrix
to yield the compatibility conditions of the Integrated Force Method. The Null Space
and Singular Value Decomposition are obtained by simple programming using
computer algebra system Mathematica7. Therefore in the analysis of skeletal
structures it is very advantageous to use the Integrated Force Method and generate

the compatibility matrix via Null Space or via Singular Value Decomposition.

An extension of the Integrated Force Method is the Dual Integrated Force Method,
IFMD, which is essentially a displacement method. In IFMD, only the equilibrium
matrix and the unconnected stiffness matrix of the structure are used to generate the
global stiffness matrix of the structure. Thus there is no need to write lengthy and
complex computer programs to generate global stiffness matrix of the structure. The
global stiffness matrix of the structure in IFMD is obtained by simple programming
using computer algebra system Mathematica7. Therefore in the analysis of skeletal

structures it is very advantageous to use the Dual Integrated Force Method
1.2 The Research Problem

The main purpose of this thesis is to write structural analysis packages to analyze
coplanar rigid frames with Integrated Force Method via null space, Integrated Force
Method via singular value decomposition and Dual Integrated Force Method. These

programs are easy to use and useful for students, instructors, engineers and



researchers to analyze the frame and better understand the procedure of above
methods. The three packages are generated by computer codes automatically with
Mathematica7 software. Various problems have been analyzed by these three
methods and the results have been compared by Mastan2 v3.2. The results obtained
by using the IFM and IFMD in full agreement with results obtained from Mastan2

v3.2.

This thesis also explains the theory for these three methods step by step. These
explanations include the generation of the:

e cquilibrium equations

e unconnected flexibility matrix

e compatibility conditions

e main IFM matrix

e nodal displacements

e member end forces

e support reactions
Also the axial force diagram, shear force diagram and bending moment diagram for

each element are drawn.
1.3 Thesis Limitations

These programs do not include thermal, triangular, trapezoidal loading and support

settlements.
1.4 Thesis organization

Chapter 2 presents background information about equilibrium equations, integrated

force method via null space, integrated force method via singular value



decomposition, and dual integrated force. This chapter also discusses theory of these

three methods and explain their usage for the analysis of rigid frames.

Chapter 3 presents about the research problem, reason of research, desired

characteristic of the program and show the solution approaches for each method.

Chapter 4 presents the way to assemble the equilibrium equations automatically. It

gives algorithm to generate the equilibrium equations automatically.

Chapter 5 introduces the algorithms for following methods:
e Integrated force method via null space.
¢ Integrated force method via singular value decomposition.
e Dual integrated force method.
The aims of this chapter are:
Use algorithms to write computer codes, to be able to compare these methods and to

be able to compare the matrix plot of the matrices obtained in these methods.

In Chapter 6 three illustrative examples are solved to present more details of the
three methods and the results obtained by using the three packages are compared

with results obtained by using Mastan2 v3.2.

Chapter 7 gives conclusions.



Chapter 2

BACKGROUND INFORMATION

2.1 Introduction

A novel formulation termed the "integrated force method" (IFM) has been developed
for analyzing structures. In this method all the internal forces are taken as
independent variables, and the system equilibrium equations (EE's) are integrated
with the global compatibility conditions (CC's) to form the governing set of
equations. In IFM no choices of redundant load systems have to be made, in contrast
to the standard force method (SFM). This property of IFM allows the generation of
the governing equation to be automated straightforwardly, as it is in the popular
stiffness method (SM). Overall this new version of the force method produces more

exact results than the stiffness method for comparable computational cost.
2.2 A Brief Review of Integrated Force Method

A discrete or discredited structure for analysis can be designated as structure (n,m)
where "structure" denotes type of structure (truss, frame, plate, shell, or their
combination discredited by finite elements) and n, m are force and displacement
degrees of freedoms (fof, dof), respectively. The structure (n, m) has m equilibrium

equations and » = (n-m) compatibility conditions. The m equilibrium equations

[B] {F} = {P} 2.1

and the » compatibility conditions



[CI[GI{F} = {oR} 2.2
are coupled to obtain the governing equations of the IFM as

The basic equation of the integrated force method is:

[[E:Bc]]] )= {53} 23
Or
[S]{F} = [P] 2.4
Where, matrix [B] is equilibrium equations matrix, [C][G] is compatibility
conditions, vector {F} is internal forces, vector {P} is external mechanical loads and
vector {OR} is initial deformation. The matrix [S] is the governing equations of the
IFM. The column matrix {P*} contains applied loads as well as initial deformations,

zeros will be added if there are no initial deformations [6].

According to reference [3], the procedure of analysis of a structure with Integrated
Force Method is as follows:

1. Generate the Equilibrium Equations [B].

2. Generate the unconnected flexibility matrix [G].

3. Generate the Compatibility Matrix [C].

4. Generate the Compatibility Conditions [CC] = [C] [G].

5. Generate the IFM load vector {P}*of dimension 7.

6. Couple compatibility conditions with equilibrium equations and find [S].

7. Solve for unknown internal forces {F}.
In the integrated force method, the forces are primary unknowns, and displacements
{X} do not appear in this system of equation, but if it is needed it can be back

calculated. In the integrated force method the displacements are calculated as:

X} = [DIGI[F] )



Where, {X} is n component nodal displacement vector and [J] is n rows of INEE (n

1s number of equations or number of unrestrained degree of freedom).

According to Reference [3, 5].the compatibility conditions are obtained by
eliminating displacements from deformations displacements (DDR) of the structure,
therefore the compatibility conditions can be derived in two steps:
e Derive deformation displacements relation (DDR).
e Eliminating the displacement from the deformation displacement
relationships.
The deformations displacements relations are derived on an energy bases. The

internal energy IE which is sorted in structure is:

IE=> {F} " {B} 2.6

The deformations (Bi, B2,... Pm) are elongation in frame analysis correspond to the

internal element forces (Fy, Fy, ...,Fy), respectively.

Moreover, the work done W, by the external loads in structure is:
_1 T
W= 1{P} {X} 27
The n displacements of unrestrained joints (X;, X5... , Xn) correspond to n external

loads (Py, Py, ..., Py), respectively.

According to the work-energy theorem:

IE

I
=

2.8
Therefore, using Equations 2.6, and 2.7

~ BB =2 P} Xy 2.9



In Equation 2.9, there are m internal forces and deformation with n external forces
and displacements, and by substituting governing equilibrium Equation 2.3 into
Equation 2.9.
T T _
(F} (4B}~ [B]" (X)) =0 510
And since the internal forces {F}, is not null vector, therefore, deformation

displacement relation will be obtain as:

{B} = [B]" {X}
2.11
Equation 2.11 expresses m deformations in terms of n displacements and according
to References [3, 5], by eliminating the displacements from the deformation
displacement relation (Equation 2.10), to obtain » = m — n compatibility condition as:
[C] {B} = {0} 2.12

The compatibility condition has » = m — n rows with m columns and it is full row

rank.
2.3 A Brief Review of Dual Integrated Force Method

Like the IFM, the dual method also has two sets of equations. The first set is used to
calculate displacement, while the second set back calculates forces. The primal and
dual methods produce identical solutions for force, and displacement, Patnaik [3, 4

and 9]. The IFMD governing equations are:

[K] {X} = {P} 2.13
{F} =[G]"'[B]" {X} - [G]"'{B}° 214

Where
[K]=[B][G]" [B]" 215

According to Reference [9] the procedure of analysis of a structure with Dual
Integrated Force Method is as follows:

1. Generate the Equilibrium Equations [B].



2. Generate the unconnected flexibility matrix [G].
3. Generate the [G]™.

4. Generate the Stiffness Matrix [K].

5. Generate the load vector {P}of dimension n.

6. Solve for unknown displacements {X}.

7. Solve for unknown internal forces {F}.
2.4 State of the Art in the Integrated Force Method

e The main approaches to the integrated force method are:
Nonlinear analysis using the integrated force method [19] IFM method is
used for analyzing nonlinear structures. General formulation of nonlinear
structural analysis is given. Typically highly nonlinear bench-mark problems
are considered. The characteristic matrices of the elements used in these

problems are developed and later these structures are analyzed.

e Generation of the equilibrium matrix and the compatibility matrix
automatically [18], [14], [15]. The compatibility matrix is obtained by using
algebraic methods. In both of the References [14] and [15] the Nullspace and
the Singular Value Decomposition of the equilibrium matrix is carried out to
determine the compatibility matrix [CC].

2.4.1 Using Null Space to Obtain Compatibility Conditions

According to Reference [3], the null space of equilibrium equations is used to obtain
compatibility condition. According to reference [5] for generating the compatibility
conditions null space of the equilibrium equations should be coupled with

unconnected flexibility matrix. Unconnected flexibility matrix [G] is a symmetric

10



matrix which is a block diagonal matrix. For generating the unconnected flexibility

matrix first the member flexibility matrix [g] should be obtained.

L
[E 0 0]
|y » o
&= 3El  2EI 2.16
L2 L
0 5 =

Where, L is the length of member, I moment of inertia of member, A is area of
member and E is modulus of elasticity. Then, placed each member flexibility matrix

in the diagonal blocks of unconnected flexibility matrix [G].

'[i 0 0
AE
L3 L2
0 3 25 0
2
o 2 1]
2El  EI
ﬁ 0 0
L3 L2
6] = io % EJ
- L2 L
0 & =
2.17
L
[E 0 0]
L3 L2
0 0 3 25
L2 L
0 & =
Or
gl 0
G 0 g2 0
. 2.18
0 gn

11



According to reference [2, 3, 4, 5] compatibility conditions obtained with combining

the unconnected flexibility matrix (G) with null space of the equilibrium equations.

[CCI=[G] [C] 2.19

Where, matrix [C] is Compatibility Matrix obtained form null of equilibrium
equations.

According to reference [2, 3, 4, 5] the compatibility conditions be coupled with
equilibrium equations to solve for unknown internal forces.

2.4.2 Using Singular Value Decomposition to Obtain Compatibility Conditions
According to references [7, 8], there is another alternative to find the compatibility

condition by using the singular value decomposition of the matrix [M] which is:

[M] = [1] - [B] " ((B] ") P 2.20

Where, [I] is the identify matrix and the number of its rows and its columns are equal
to the number of elements. The matrix [B] © is transpose of equilibrium equations,
and ([B]") "™ is the Moore-Penrose pseudo inverse of [B] * as:

((B] "™ =(B][B]")" [B] 2.21

Singular value decomposition is applied to matrix [M] to obtain:

[M] = [M,] [Ms] [M,] 2.22

Where, [M,] and [M,] matrices are orthogonal matrix and number of its rows and its

column are equal to number of frame elements, and the matrix [Mg] is

A 0
Mol = [ o 223

Where, it is square and number of its rows and columns are equal to the number of

frame elements and:

12



A =diag (A1, A2..Ap)

2.24
And p is degree of indeterminacy and
>
AM=A= >A,>0 595
According to Reference [7] it follows that:
[C]]
M] = [My [
M1 =Ml o 2.26
[CC] =[C] [G] 2.27

Where, [CC] is compatibility condition matrix and will be computed by Equations

2.26 and 2.27.

The compatibility condition [CC] which is obtained by using singular value
decomposition of ([B] P P™ matrix, and also obtained from null space of
equilibrium equation may not be banded whilst for small structure it will not cause
any problems for large structure it may be numerical expensive.

2.5 Equilibrium Equations

2.5.1 Basic System

This chapter started discussion with a two dimensional frame, it has 2 elements and 3
nodes, as shown in Figure 2.1 this frame is describes in global reference system X-Y-

Z. This example is taken from reference [1].

13
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Figure 1: Two dimensional frame, definition of local reference axes

To obtain the equilibrium equations should be isolated joints from this model by
imaginary cuts at the member ends and obtain 5 free bodies: 3 joints free bodies and
2 elements free bodies. So, three pair forces revealed at every cuts. A pair of forces
parallels two to the element axis, a pair of forces normal to the element axis and pair
of moments. It is important to decide on a consistent sign-conventional at the starting
of this analysis. For this reason selecting a local X-Y-Z coordinate system for each
element is necessary. To do this, should be started, numbering the two nodes of each
element with (i) and (j).for start node of element put (i) and for end node of element
put (j). start from node (i) and end with node (j) and decide to the x-axis in the
positive local system for each element is oriented from node (i) to node (j). In local
coordinate system node (i) for element 1 is node 1 and node (i) for element 2 is 3 and
the forces at the element side of each cut is positive and the moment is positive when

acting counterclockwise [1].

14



2.5.2 Formulation of Equilibrium Equations
The nodes and element free bodies as well as the forces at the cuts are shown in
figure 2. The element end forces at this figure are denoted by q, this Figure is the

complete set of element end forces in the local reference system.

g "
q® ﬁ G >
3 lj \' | > > q .,
(1)
qs

Ja
2)
qs qé(z)
2
5
| <Ns 6< §,
/ 1 4
2
2
A Y ) 2)
L 9 qQ2 <—qu
&
> ) 7 e W

X !

Figure 2: Element and joints free bodies

8 N

TR

The components of the q vector are numbered as follow: Start from element node (1),
the first degree of freedom in local X (first component), then the degree of freedom
in local Y (second component), then the degree of freedom about local Z (third

component) and then move with the same order to node (j) of the element.

From the equilibrium of the element free body should be concluded that the

components of the complete end force vector q are not independent. Their

15



dependence is provided by the equations of equilibrium of the element free body [1].
It can write the following three equations of equilibrium:

1. Sum of the forces in the local X-axis.

2. Sum of the forces in the local Y-axis.

3. Sum of the moments about end node (i) of the element.

In the absence of element loads these three equations yield:

q1=-G 2.28
d2=-d 2.29
13 --ae-dsk 230

Where, L is the element length. These dependence relations suggest that the end

forces q4, gs, q ¢.can be selected as basic forces Q ;. Q2. Q3. This choice is illustrated in

Figure 3.
q ®
2
N Z % /rE
qi b
d L |-
Q2
_\Qs + QoL Q4
Qi *_€
l Q

Q2

Figure 3: Element and joints free bodies

The relation between complete end force vector q and basic force vector Q can be

derived directly from figure 3.
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q1=-Q 2.31

@=-Q2 2.32
$=-Q:-Q2 L 2.33
Ja= Q1 2.34
5= Q2 2.35
q6= Q3 2.36
or, in matrix form
(aly
2
33 -1 0 0
q4 0O -1 0
q=1{q5" = 0 -L -1
6 1 0 0 2.37
37 0 1. 0
q8 L0 0 1-
\q9/

this relation can reduced the complete set of element end forces to the basic set. The

equilibrium equations that are remain to be satisfied at the joint free bodies [1].

To this end first all free dofs and then restrained dofs are numbered. To each global
dof corresponds an equilibrium equation of generalized forces in global reference
system. This example has three equations of equilibrium at the free global degrees of

freedom:

Pi= i~ qs” 238
Py= qs® + qu .
Py= s +qs" 2.40

17



Where, a superscript in parentheses denotes the element, a subscript denotes the

member end force and Pris applied force at the free global dofs.

This example has three equilibrium equations and six unknown forces. It is
therefore, the equilibrium equations matrix is not square so it is impossible to solve
this system of equations for given applied forces Py at the free degree of freedom,

namely [1].

This system is called statically indeterminate. The degree of static indeterminacy is
the difference between the number of columns and number of rows of the
equilibrium matrix of the structure at the free dofs. .This implies that the degree of
static indeterminacy is the difference between number of basic element forces and

available equations of equilibrium at the free dofs [1].
2.6 Previous Work Done

Schottler R. has developed Java applets for analysis of trusses, beams and frames in
reference [10]. The java programs known as applets are embedded in HTML
document. They provide good examples of application of objected- oriented

programming and development of software for graphical user interface.

Moh’d M. D. has developed a computer program in order to analyze two dimensional
frame in Reference [11]. The nodal equilibrium equations, the force displacement
relations and geometric compatibility relations are automatically generated by a
FORTRAN computer program. In this work the mixed formulation and stiffness
formulation are used. The computer program developed is capable of handling
temperature and imperfections effects, support settlements and flexible support

effects.

18



Sensoy S. has developed a computer program for two dimensional structural analysis
by applying the Gauss-Jordan elimination procedure on the equilibrium equations,
according to various pivot selection strategies. In this work, Integrated Force Method
and Conventional Flexibility Method formulations are revised so that support
reactions are also included among the unknowns. These formulations are further

revised by including all the member end forces among the unknowns.

Under M. has developed a computer program for two dimensional frame analysis in
Reference [13]. In this work rigid-joined frames are analyzed by neglecting the axial
Deformations. This analysis is done by using Modified Mixed formulation, Modified

Stiffness Formulations and Modified Flexibility Formulation.

Esmaeili R. has developed a computer program for indeterminate beam in Reference
[15]. This work analyzed indeterminate beam problems with four different methods.
These methods are included as Displacement Method, Integrated Force Method, LU
Decomposition Method and Live Load Pattern Method. These methods can help

users to understand better the theories and compared the methods with together.

Khosravi M. S. has developed a computer program for usage of equilibrium
equations in truss analysis. This work has done by six deferent methods. These
methods are sorted as three parts displacements method, classical force method and
integrated force method. Each part has two approaches these approaches are:
Two approaches in Displacement Method are:

e Stiffness method

e Dual integrated force method

19



Two approaches in Classical Force Method are:
e C(lassical force method via QR decomposition
e C(lassical force method via LU decomposition
Two approaches in Integrated Force Method are:
e Integrated force method via null space.

e Integrated force method via singular value decomposition.

20



Chapter 3

PROBLEM STATEMENT AND SOLUTION

APPROACH

3.1 Introduction

In this chapter the research problem and its characteristics are presented.

3.2 The Problem

This thesis intends to develop an algorithm that will enable the analysis of a planar
rigid frame using the Integrated Force Method (IFM) and the Dual Integrated Force
Method. The resulting computer code will yield,

® The independent member forces
® Member end forces

® Reactions at the supports

¢ Nodal displacements

¢ The Axial Force, Shear Force, and Bending Moment Diagrams
Programming will be done by using the computer algebra system Mathematica 7.
3.3 The Reason of Research
There are many computer programs about analysis of frame with stiffness method
and classical force method but there are no computer programs about analysis of
frame with integrated force method. On the other hand, most of these programs only

show the results of frame analysis like: nodal displacements, member end forces,

21



support reactions and axial force, shear force, bending moment diagrams and

neglected to show all procedure of methods.

3.4 The Desired Characteristics of the Programs for IFM and IFMD

3.4.1 The Desired Characteristics of the Programs for IFM
In the survey of the state of the art, it is found that in the existing documents by
Patnaik [2, 3, 4 and 9] the compatibility conditions are obtained by the following
procedure:

e Generating the deformation displacement relations.

¢ and then eliminating the displacements.

e obtain the compatibility conditions.
In this thesis an alternative algebraic approach will be followed. After generating the
equilibrium equations the following two algebraic techniques will be used.

e Nullspace of the equilibrium matrix combined with the unconnected

flexibility matrix.
e Singular Value Decomposition of the equilibrium matrix combined with the
unconnected flexibility matrix.

3.4.2 The Desired Characteristics of the Programs for IFMD
In the existing documents and computer software the main emphasis is to generate
the global stiffness matrix, however in the Dual Integrated Force Method the global
stiffness matrix is generated by using the easily generated equilibrium matrix and the
matrix manipulation capabilities of the computer algebra system Mathematica 7.
Using these programming capabilities the global stiffness matrix is generated in only
one programming line. Therefore the usage of Mathematica 7 gives us programming

advantage and computer usage time.
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3.4.3 Other Attributes of the Proposed Analysis Packages for IFM and IFMD

a) Easy to Use:

There is no need to read any manual or documentation for first time users. The
programs are easy to operate and learn.

b) Simple:

Compared to existing commercial structural analysis packages, the programs
developed have few option and parameters which makes running of programs easy.
¢) Transparent Theory:

The theory in the methods is displayed within the programs therefore it is easy to
understand them and easy follow their procedures.

d) Chasing Variables:

If the user is suspicious of any results, he or she can pursue the value of any variable
during the calculation procedure to find the source of probable mistake.

e) Flexible:

At each step of calculations the program code, which is doing process, is shown. For
beginners this helps to learn more about programming techniques. Advanced users
can change, or add parts to program code to change its utility.

f) Educational:

The programs are like tutorials. The theories, Integrated Force Method via Null
Space, Integrated Force Method via Singular Value Decomposition and Dual
Integrated Force Method, are introduced to the user working with the packages. At

each step sufficient are presented.
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g) Accessible:
There is no need to spend long hours searching the internet to find packages that
have these desired characteristics. The packages are unrestricted and available for

students, instructors and engineers.
3.5 An Overview of Solution Approach for IFM and SVD

In this section the solution approach for IFM is outlined in Figure 4:
e Generate the equilibrium equations [B].
e Assemble the unconnected flexibility matrix [G].
e Find compatibility conditions, [CC], by using the algebraic techniques
Nullspace and Singular Value Decomposition.
e Solve for independent member forces.
¢ Find nodal displacements.
¢ Find the member end forces.
¢ Find support reaction.

e Plot Axial Force, Shear Force and Bending Moment Diagrams.
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Equilibrium
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Solve For
Displacements

Solve For
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Figure 4: Overview of Integrated Force Method
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3.6 An Overview of Solution Approach for IFMD

In this section the solution approach for IFM is outlined in Figure 5:
e Generate the equilibrium equations [B].
e Assemble the unconnected flexibility matrix [G].
e Find the inverse of unconnected flexibility matrix [G] to obtain the global
stiffness matrix.
e (Generate the Global Stiffness Matrix [K].
e Solve for nodal displacements [X].
¢ Find independent member forces.
¢ Find the member end forces.
¢ Find support reaction.

e Plot Axial Force, Shear Force and Bending Moment Diagrams.
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Figure 5: Overview of Dual Integrated Force Method

3.7 Mathematica Software as a Tool

To achieve the desired characteristics of the structural analysis package, the

computer algebra system, Mathematica [16], is used.

27



The main reason for selecting Mathematica software is the following properties of it:
e User can do interactive calculation using notebooks.
e User can get started just like using calculator.
® User can chose from over a thousand built-in functions.
e User can do numerical calculation to any precision
e User can do symbolic calculation to get formulas.
e User can lists to present collections of things.
e User can create 2D and 3D graphics.
e User can solve equation symbolically or numerically.
e User can do integrals and derivatives.
e User can manipulate vectors and matrices.

e [User can define his or her own functions.
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Chapter 4

AUTOMATICALL ASSEMBELY OF EQUILIBRIUM

EQUATIONS

4.1 Formulation of Equilibrium Equations

This section discusses a systematic way to setting up the equilibrium equations at the
free degrees of freedom of the frame model. This way will help to write computer
code to assemble the equilibrium equations automatically. To illustrate the technique,
consider inclined plane frame with two elements and three nodes as shown in Figure

6. This example is from chapter two of (CE 220/ Filip C. Filippou), Reference [1].

10 m

6 m 8 m

d— »
Ll ]

v

Figure 6: frame example with inclined members
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According to section 2.5 the numbering of global degrees of freedom (dof) is done.

Only free degrees of freedom (dof) exist at node number 3.

Figure 7: Numbering of global dofs

In order to write the equilibrium equations (B), free body diagram of node 3 is

separated, as depicted in Figure 8.

@

&
d (ﬁ/‘\i) q2
q (1) l l _@g q 3(2)
‘ ' @)
CIG(I)

qi1

< %(2)
—
q' T A0 S
! T> .
q2 QS(Z)

Figure 8: Node and element free bodies

Where superscript shows the number of element and subscripts shows the number of

forces for each element. In Figure 8 the element end forces are oriented in the global
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reference system and denoted by q'. The number of element forces corresponds to

the global degrees of freedom numbering.

Therefore the length and direction cosines of elements are calculated with equations

4.1.
_ —— —
L=y (g —xi)2+ (yj — yi) 41 (a)
_xj—xi
cosa = —— 4.1 (b)
sing = 222 4.1 (c)

According to section two, member equilibrium matrix calculated for each element.
This matrix transformed the basic frame force to element equilibrium equations in

local coordinate system.

-1 0 0
0O -1 o0
10 -L -1
b= 1 0 0 4.2
0 1. 0
L0 0 1 -

Where, L is length of member.

According to reference [1], to convert internal forces from local coordinate system to

global coordinate system in each element, a transforming matrix t, is used:

rcoso. —sina 0 0 0 07
sin. cosa 0 0 0 0
¢ = 0 0 1 0 0 0
0 0 0 cosa —sina O 4.3
0 0 0 sina coso. O
0 0 0 0 0 1-
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In additions, to form element equilibrium equations in global system, b, are required

which:
cosaa —sina O 0 0 Ogr—1 O 0 —cosa  sina 0
[sina cosa O 0 0 O] 0O -1 0 ] [—sina —cosaa 0 ]
be = 0 0 1 0 0 ojfo -L -1 _ 0 —-L -1
& 0 0 0 cosa —sina O] 1 0 0 cosa. —sina 0
0 0 0 sina cosa O}l 0 1 0 sina cosa 0
0 0 0 0 0 1L 0 0 1 0 0 1

Note that the global numbering of degrees of freedom which is depicted in figure 6 is
used in the row numbers of bg .therefore equilibrium equations can be assembled
directly by transferring each entry form bg to overall equilibrium equations. This is

carried out according to global degree of freedom as.

According to section 2.5.1, equilibrium equations only written for free degrees of
freedom, it means the equilibrium matrix is not square and reaction forces are
omitted. Therefore, two elements and 3 free degrees of freedom, the above system of
equations is:

1
f2
3

sino. —cosa 0 —cosp —sinf O f4 p

coso. sino 0 sinf  —cosf O] f5 =[l

0 0 1 0 -L2 =11 |fé

7

f8

O]

Now the equilibrium equations are generated.
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4.2 Algorithm for Automatic Assembly of Equilibrium Equations

This section explains how to computer codes to generated equilibrium equations

automatically.

In order to generate equilibrium equations following procedure is used:

Stepl: Get x and y coordinate to start node and end node according to member
incidence.

Step2: Use equation 4.1 to find the length and cosine direction of members.

Step3: Use equations 4.2 to find member equilibrium matrix (b) for each element.
Step4: Use equation 4.3 to convert internal member end forces from local
coordinate to global coordinate.

Step5: use equation 4.4 to create member equilibrium matrix in global
coordinate system (bg) for each element.

Step6: Find the number of free degrees of freedom.

Step7: Establish (3m) X (3j-restrained degrees of freedom) zero matrix. (m: number

of elements, j: number of nodes).

O e O (3m) x (3j-restrained degrees of freedom)

Step8: Place each member equilibrium matrix in global coordinate (bg) in to the

columns of the zero matrix.
Example:

The following steps are done for the frame which is shown in Figure 4.
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Stepl:
x and y coordinate for element 1 are:

_353—351_8—0_06
cosa = 1 - 10 — %

. y3I—yl 6-0
= = 20_8
sina 1 10

x and y coordinate for element 2 are:

x2—x3_14—6

2~ 128 062

cosfy =

y2—y3 -2-8

L1 128 078

sinf =

Step2:

Length of member 1 is:

L1=4y (x3—x1)2+(y3—-y1)2 =4 (6-0)2+(8-0)2 =10

Length of member 2 is:

L1=y (x2—x3)2+(y2—-y3)2 =, (14—-6)2+(-2-8)2 =128
Step3:

Member equilibrium matrix for element 1 is:

—1 0 0 -
0 -1 0
1o -10 -1
b1 = 1 0 0
0 1. 0

L0 0 1

Member equilibrium matrix for element 2 is:

-1 0 0
0 -1 0
lo -128 -1
b2=14 0 0
0 1. 0

L0 0 11
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Step4:

Transformation matrix for element 1 is:

o 00 oo

0.6 —08 0 O 0
08 06 0 O 0
1 = 0 0 1 0 0
0 0 0 0.6 -0.8
0 0 0 08 0.6
L0 0 0 O 0
Transformation matrix for element 2 is:
r0.62 0.78 0 0 0
—-0.78 062 0 0 0
2 = 0 0 1 0 0
N 0 0 0 062 0.78
0 0 0 -—-0.78 0.62
0 0 0 0 0

Step5:

Member equilibrium matrix in global coordinate for element 1 is:

—06 08 0
—08 —06 0
o -10 -1
b91=106 —08 0
08 06 0

0 0 1

Member equilibrium matrix in global coordinate for element 2 is:

—-0.62 -0.78 0
0.78 —-0.62 0

| o -128 -1
bgz2=1062 078 0
078 062 0

0 0 1
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Step6:

This example has totally nine degrees of freedom, six of them are restraint and of
three of them are free.

Number of free degrees of freedom = {0, 0,0, 1, 2, 3,0, 0, 0}

Step7:

Zero matrix for this structure

—
o O O
o O O
o O O
o O O
oS O O
o O O
_—

Step8:

in final step equilibrium equations matrix is ready

06 08 0 078 -062 O

[0.8 -06 0 -062 -0.78 O]
0 0 1 0 -12.8 -1
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Chapter 5

RIGID FRAME ANALYSIS PACKAGES

5.1 Introduction

Three packages are developed for the analysis of coplanar indeterminate rigid
frames. Each package uses different theory which has been introduced using

chapter2.

These frame analysis packages are:
Packagel: Integrated Force Method via Null space.
Package?: Integrated Force Method via singular value decomposition.

Package3: Dual integrated force method.

Solving the same problem with Packages I and 2 will present different approaches
for finding the compatibility conditions, and using Package 3 will present students
and practicing engineers an efficient analysis for rigid frames. In academic
environment students may learn more about advantages or disadvantages of the force

and displacement methods.

For each method the frame of Figure 9 will be used as illustrative example. The
frame has 28 elements and 20 nodes. The moment of inertia for each element is
0.0005 m* the area for each element is 0.002 m” and the modulus of elasticity is

2x10® kN/m?. This frame has four horizontal applied joint loads at node 5,9,13 and
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17. The value of these applied joint loads are same and they are equal to 150 kN. The
members 17, 18,19,20,21,22,23,24,25,26,27,28 under the action of uniform
distributed loads. Nine of these members (17, 18, 19, 20, 21, 22, 23, 24, 25) have 20
kN/m load and three of them (26, 27, 28) have 15kN/m load. This example will be
solved with Packagesl, 2 and 3. Researchers can learn more about advantages and

disadvantages of these three methods.

The structures of the matrices generated for this frame will be demonstrated by using
their matrix plot. Each matrix plot displays the nonzero entries of matrices in color,

according to the values of the nonzero entries the matrix plot colors change.

15 kN/m
LU\ S S S S T S A S S T N
17 26 18 27 19 28

13 14 15 16
20 kN/m

HEEEEEEEEEN
24 25 1

15 6

3m

ISORNG } b4 4 4
23

13

N

11 2

3m
20 kN/m

1okNGY 4 4 b b bbb bbby

5 17 6 18 7 19 8

3m

am 9 10 11 12
20 kN/m
AN !
| 20 21 22 1

1 2 3 4
T A\\\\\\\N THTN A\\\\
4dm 4m 4dm
< rPt——mmmmp «¢ >

Figure 9: 28 Elements Frame
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The packages consist of three main common phases:

e Data Input Phase
e (Calculation Phase
e Reporting Phase

5.2 Data Input Phase

The phase defines the problem. Data input phase is designed to assist in the
illustration of general input of frame (number of node and elements), geometry of
frame (member incidence, coordinate of joints and freedom of joints), properties of
elements and material (moment of inertia, area and modulus of elasticity) and
loading case (joint load and fixed end load). A diagram of input phase skeleton is

shown in Figure 10.
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Properties and

Number of Area

General Material Input
Input
Modulus of
Elasticity Moment of
Number of Inertia
Nodes
| { / |

Elements >

Input Data
Member Joint Applied
Incidence Load
ry
Coordinate Fixed End
of Joints Freedom of Forces
Joints
Geometry
Input Loads
Input

Figure 10: Input Phase Skeleton Diagram

5.2.1 User Interface of the Data Input Phase
The user interface of data input phase consists of four sections:
e General Data Input
e Geometry Data Input
e Properties and Material Data Input
e Loads Data Input
Once the user complete these four sections, data input phase is completed and the
program can be run and user may go directly to last phase to see the results

immediately.

40



5.2.1.1 General Data Input Phase
In this step of procedure the user can give the number of elements and number of
nodes as shown in Figure 11. Different colors are used to assist in finding these

variables. The user can change white color text.

4 20f17

GENERAL DATA INPUT

id GIVE NUMBER OF ELEMENTS

m=28;

14 GIVE NUMBER OF NODES

noden = 20 ;

< | >

Figure 11: General Input Phase

5.2.1.2 Geometry Data Input Phase

In this step of procedure the user can give information to specify geometry of the
frame and support conditions. This step has three parts (member incidence,
coordinate of joints and freedom of joints). Part one is member incidence, this part
includes mx3 matrix (m is equal to number of members). This matrix has three
columns, first column shows the number of each member which are starting from 1
up to number of members. Second and third columns show the number of starting

node and end node for each element respectively (Figure 12).
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Figure 12: Geometry Input Phase (member incidence)

Part 2 is coordinate of joints, which includes nx3 matrix. The first column of this
matrix shows the number of each join. Second and third columns show the

coordinate of each joint according to x and y direction respectively (Figure 13).
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Figure 13: Geometry Input Phase (coordinate of joints)

Part 3 is freedom of joints, which includes nx4 matrix. First column of this matrix
shows the number of joints, second, third and fourth columns show the condition of
supports and degrees of freedom to be free or restrained in each node (Figure 14).
According to section two each node of frame has three degrees of freedom. For
recognizing the degree of at the supports user can use either 1 or 0 numbers to

demonstrate (0 for free and 1 is for restrained).
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Figure 14: Geometry Input Phase (freedom of joints)

5.2.1.3 Properties Data Input Phase

In this step user can give necessary properties and material to program. These
properties are included as: Moment of Inertia and Area. User should give these two
properties for each element. Material is included as: Modulus of Elasticity. Figure 15

shows the properties and materials which are necessary for frame analysis.
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PROPERTIES AND MATERIAL INPUT

L4 INPUT THE MOMENTD OF INTERIA OF MEMBERS

Ii = Table[0.0005, {k, 1, m}];

A4 INPUT THE AREA OF MEMBERS

a= Table[0.002, {k, 1, m}]:

L4 INPUT THE MODULUS OF ELASTICITY

Ee = 2.x10%;

Figure 15: shows all necessary properties input.

5.2.1.4 Loading Data Input Phase

In this step user can define fixed end force, point horizontal load, point vertical load
and external moments applied to the frame, by changing the value of four loading
variables. Point horizontal load, point vertical load and external moment are applied

at joint and fixed end force applied at member.

This step has two parts. Part one includes nx4 matrix (n is number of nodes) with
four columns. Column one shows the number of joints, column two shows applied
point horizontal load at each node, column three shows applied point vertical load at

each joint and column four shows applied external moment at each node (Figure 16).

Part two is a vector applied fixed end force for each element (Figure 17).
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Figure 16: Loading Input Phase (Joint Load)
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LOAD DATA INPUT

3 GIVE FORCE APPLIED AT THE JOINTS

{4 GIVE THE FIXED END FORCE

0={0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0,0.,0.,0.,20.,20.,20.,20.,20.,
20.,20.,20., 20., 20., 12., 12., 12.};

Figure 17: Loading Input Phase (Fixed End Force)
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5.2.1.5 Subroutine For shape of Frame

The subroutines for graphical shape of frame are included as:
Frame Figure: creates a graphic of the frame.

Fixed Support: creates a graphic of affixed support.

Simple Support: creates a graphic of simple support.

Roller Support: creates a graphic roller support.

Element Numbering: create the number of each element.

Node Numbering: create the number of each node.

M4

GRAPHICAL SHAPE

L CMPUTER CODES

Al SHAPE OF FRAME

Show|[sawgraphl, sawgraph?, AspectRatio + Automatic, PlotRange + All, ImageSize < 350]

Figure 18: Shape of Frame



5.3 Calculation Phase

In this phase it was tried to make calculations similar to hand calculation procedures
as far as possible. In this way, user can see each step of calculations like the way
students do in exam papers, moreover, user can see its corresponding program code
together with calculation phase consist of several steps depending on theory applied.
5.3.1 Integrated Force Method via Null Space

In integrated force method, according to Reference [3, 4] the null space of the
equilibrium equations and the unconnected flexibility matrix is used to find the
compatibility condition. Then the equilibrium equations are coupled with
compatibility conditions to obtain a square matrix [4]. Finally the square matrix is

used to solve independent forces.

Applying this method to the frame shown in Figure 9 and the procedure of integrated
force method is demonstrated in Figure 19. In addition Matrix Plot of the
Equilibrium Equations, Unconnected Flexibility Matrix, Compatibility Conditions,
Coupled the Equilibrium Equations and Compatibility Conditions are shown in

Figure 20.

48



Generate [B] Element flexibility matrix
— L 0 0 -
AE
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3El 2EI
C 11 0 L L
[C] = null space i 5El EL.

Compute [CC] in [FM

Generate [G]

[CC] = [CI[G]

Couple [B] and [CC]

Solve for Forces [F]

[S] [F] = [P*] Modify Applied Load [P*]

Figure 19: Algorithm of integrated force method via null space
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Equilibrium Equations [B] s4x4s

Unconnected Flexibility Matrix [G] g4xss

Compatibility Conditions [CC] g4x36

Coupled Equilibrium Equations with

Compatibility Conditions matrix [S] saxga

Figure 20: The matrix plot of the matrices generated with integrated force method
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5.3.2 Integrated Force Method via Singular Value Decomposition

An alternative procedure for finding the compatibility conditions in the integrated
force method is outlined in chapter two. After generating the equilibrium equations,
Matrix ([B] T)P™ is calculated by Equation 2.21. Then the matrix [M] is obtained by
equation 2.20. Later, the singular value decomposition (SVD) of the matrix [M]
carried out to obtain matrices [M,], [My] and [Ms]. The compatibility conditions are
obtained by using Equations 2.24 and 2.26. The procedure of Integrated Force
Method via Singular Value Decomposition and applying this method to the frame are
shown in Figures 21 and 9 respectively, The Matrix Plots of the Equilibrium
Equations, Unconnected Flexibility Matrix are same as Figure 20.The [CC] matrix
displayed in Figure 19 and 20 look almost similar but the numerical values of the

compatibility conditions are different.
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Generate [B]

apinv = ([B] [B1 Y'[B]
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Solve for Forces {F}

ecliri e

Generate [G]
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Modify Applied Load [P*]

Figure 21: Algorithm of Integrated Force Method via Singular Value Decomposition




5.3.3 Dual Integrated Force Method
The procedure and equations of this method is shown in Figure 22. Equilibrium

equations and unconnected flexibility matrix are generated.

According to Equation 2.15, the global stiffness matrix [K] is calculated. The
inverse of the flexibility matrix is used to obtain the global stiffness matrix. In the
next step the displacements vector is obtained by Equation 2.13.In the final step the

independent forces are calculated from Equations 2.14.

In this method since the node and element numbering is the same, the Matrix Plots of
the equilibrium equations, unconnected flexibility matrix, will remain unchanged.

The Matrix Plot of the global stiffness matrix [K] is shown in Figure 23.
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Generate [B]

Global Stiffness Matrix

[K]=[B][G]"[B]" Generate [G]

Invert [G] to obtain the
unconnected stiffness

Solve for Displacements

[K][X]=[P] Modity Applied Load [P]

Figure 22: Algorithm of Dual Integrated Force Method

Figure 23: The matrix plot of the Global Stiffness Matrix [K] 4gx4s, generated with
Dual Integrated Force Method
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5.4 Reporting Phase
In the reporting results phase the aim is to give the necessary information briefly and

partially.

Reporting Phase Skeleton diagram shows in Figure 24.

Nodal Displacements Support Reactions

Axial Force Diagram
for each member

Member End Forces

Reporting Phase

Axial Force Function Shear Force

for each member Diagram for each
member
Shear Force Function
for each member
Bending Moment
A

- - Diagram for each
Bending Moment Function

for each member

member

Figure 24: Reporting Results Phase, Skeleton Diagram
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5.4.1 User Interface of the Reporting Input Phase.
The user interface of reporting phase consists of nine sections:
e Display the Nodal Displacements for each node.
e Display the Member End Forces for each element in local and global
coordinate.
e Display Support Reactions results.
e Display Axial Force Function for each element.
e Display Shear Force Function for each element.
e Display Bending Moment Function for each element.
e Plot Axial Force Diagram for each element
e Plot Shear Force Diagram for each element
¢ Plot Bending Moment Diagram for each element
5.4.1.1 Display the Nodal Displacements for each node.
In this section, nodal displacements will be shown for each node. The three
displacements for each node are reported as:
1) Displacement in the global X-direction.

2) Displacement in the global Y-direction.

3) Rotation in the global Z-direction.
The nodal displacements for the first six nodes of the example frame of Figure

5.1 are displayed in Figure 25.
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CALCULATE DISPLACEMENTS
]
.

Do[
Print['node ", i, " ', "displacements =", " ", MatrixForm[Disp[[i]]]].
{i, 1, noden}]

0.
v node 1 displacements = [O]
0.
0.
node 2 displacements = [O]
0.
0.
node 3 displacements = [O]
0.
0.
node 4 displacements = [O]
0.
0.00702284
node 5 displacements = [0.000886046
-0.00243852
0.00832278
node 6 displacements = [—0.00149552
-0.00171342
{ 0.00591557 \ v

TS -

Figure 25: Reporting Results Phase, section 1, nodal displacements of node 1, 2, 3, 4,
5and 6

5.4.1.2 Display the Member End Forces for each element in Local and

Global coordinate.

In this section, Member End Forces for each element in local and global coordinate
will be presented (Figure 26). The member end forces in local coordinate for the first

three elements of the example frame of Figure 9 is displayed in Figure 26.
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CALCULATE MEMBER END FORCE
!

Do|
Print["member ", i, " ", "endforces", " ', MatrixForm|[endfrcs[[i]]]].

{i. 1, m}]

>
v

-118.13%
145.558
305.621
118.1359
-14%.558
143.053

1%%.403
166.784
183.062
-15%.403
-166.784
307.29%1
295,
162.543
183,63
-295.
-162.543
294,

42577

ama

v member 1 endforces

member 2 endforces

member 3 endforces

L)
E

Figure 26: Reporting Results Phase, section 2, member end forces of member 1,2,3
in local coordinate

5.4.1.3 Display Support Reactions results.
In this section support reaction will be presented. The support reaction in global
coordinate system for the supports of the example frame of Figure 9 is displayed in

Figure 27.
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v reaction x= -149.558

reaction y= -118.139
moment z= 305.6Z1
member 1 react x 1
member 1 react v 1
member 1 react z 1
reaction x= -166.784
reaction y= 155.403
moment z= 307.281
member 2 react x® 2
member 2 react v 2
member 2 react z 2
reaction x= -162.543
reaction y= 2%5.
moment z= 2%4.
member 3 react 3
member 3 react ¥ 3
member 3 react z 3
reaction x= -121.114
reaction y= 439,737
moment z= Z46.638
member 4 react x4
member 4 react ¥y 4

member 4 react z 4 =
5% -

Figure 27: Reporting Results Phase, section 3, support reactions

5.4.1.4 Plot the Resulting Diagram for each element.
In this section the Axial Force, Shear Force and Bending Moment diagrams will be
showed for users. Also the Axial Force, Shear Force and Bending Moment functions

will be presented for user (Figure 28).
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Figure 28: Reporting Results Phase, section 4, axial force, shear force and bending
moment diagrams of member 1 and member 17 respectively.
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5.5 Summary

In this chapter three analysis packages for indeterminate rigid frame has been
introduced and in chapter 6 four illustrative examples are solved to help
understanding more. The frame analysis packages were programmed by using

Mathematica version 7.

The three packages and version 7 of Mathematica are provided on a CD which is

placed at the back cover of this thesis.
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Chapter 6

ILUSTRATIVE EXAMPLES

6.1 Introduction

In this chapter four examples are presented in order to illustrative the usage of

analysis packages and the results are compared with Mastan2 V3.2.
6.2 Example for Integrated Force Method via Null Space (IFM)

Example 1: a frame is subjected for this example has 30 elements and 25 nodes.
Nodes (6, 10, 13, 17, 20 and 24) are subjected to 100 kN shear joint load and nodes
(8, 15, 22) are subjected to 20 kN/m moment. The example is analyzed by integrated
force method via null space. The problem is solved for nodal displacements, member
end forces in local coordinate, support reactions, the axial force diagram, shear force

diagram and the bending moment diagram.

The moment of inertia and area of each member is:
1=5x10" m*

A=2x10" m’

The modulus of elasticity is:

E=2x10% kN/m?
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Figure 29: Example 1
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To solve this problem first the Integrated Force Method Analysis Packages has been

run and also the result from Mastan2 v3.2 is presented to compare the results.

The analysis procedure consists of the following phases:

a) Input Phase

1.

2.

3.

4.

General Input
Geometry Input
Properties and Materials Input

Load Data input

b) Calculation Phase

1.

2.

8.

9.

Generating Equilibrium Equations and showing Matrix Plot of this matrix
Generating Unconnected Flexibility Matrix and showing Matrix Plot of
this Matrix

Obtaining Compatibility Matrix from Null Space.

Computing the Compatibility Conditions and showing Matrix Plot of this
Matrix.

Coupling the Compatibility Conditions with the Equilibrium Equations

and showing Matrix Plot of this Matrix

. Forming Joint Load Vector

Forming the Fixed End Forces Vector
Combining Joint Load Vector with Fixed End Forces Vector

Solving Independent Forces

c) Reporting Results Phase

1.

2.

3.

Displaying Nodal Displacements
Displaying Member End Forces in Local Coordinate

Displaying Support Reactions
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4. Showing Diagrams of Axial Force, Shear Force and Bending Moment

Diagrams.

4« <« » »
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GENERAL DATA INPUT

id GIVE NUMBER OF ELEMENTS
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Figure 30: Input Phase, Step 1, General Data Input
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Figure 31: Input Phase, Step 2, Geometry Data Input (Member Incidence)
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Figure 32: Input Phase, Step 2, Geometry Data Input (Coordinate of Joints)
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Figure 33: Input Phase, Step 2, Geometry Data Input (Freedom of Joints)
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PROPERTIES AND MATERIALDATA INPUT
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|a= Table[0.002, {k, 1, m}]~ |
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Figure 34: Input Phase, Step 3, Properties and Materials Input
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Figure 35: Input Phase, Step 4, Load Data Input (Joint Load) k
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Figure 36: Input Phase, Step 4, Load Data Input (Fixed End Forces)
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Figure 38: Element and Node Numbering
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Figure 39: Calculation Phase, Step1, Matrix Plot of Equilibrium Equations [B] s3x90

Figure 40: Calculation Phase, Step2, Matrix Plot of Unconnected Flexibility Matrix
[G] 90x90
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Figure 41 : Calculation Phase, Step4, Matrix Plot of Compatibility Conditions [C]

90x27

Figure 42: Calculation Phase, Step5, Matrix Plot of Coupled Equilibrium Equations
with Compatibility Conditions [S] 9«90
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Figure 44: Reporting Results Phase, stepl, Nodal Displacements of each node
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Figure 45: Reporting Results Phase, step2, Member End Forces in Local Coordinate
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Figure 46: Reporting Results Phase, step2, Member End Forces in Local Coordinate
(continued)
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Figure 47: Reporting Results Phase, step2, Member End Forces in Local Coordinate
(continued)
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Figure 48: Reporting Results Phase, step2, Member End Forces in Local Coordinate
(continued)
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Figure 49: Reporting Results Phase, step2, Member End Forces in Local Coordinate
(continued)
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Figure 50: Reporting Results Phase, step3, Support Reactions
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Figure 51: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 1, 2

80



AFD...... memher 3
AFD...... nemher 4

Axial Force Function N= 150.054

dxial Force Function N= 160.953

u

B

.....

FD. ..., memher 3

T nenher 4

SiEer PEEEEE s =8 Al shear Function V= 10,7873

n

EMD...... memher 3 BEMD...... nenher 4
Moment Function M= 5.47765 - 8.14002x% Moment Function M= -11.5645+ 10.7878x

Vs X

S S S A b ek ek e o ok o

Figure 52: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 3, 4
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Figure 53: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 5, 6
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Figure 54: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 7, 8
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Figure 55: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 9, 10
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Figure 56: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of memberl11, 12
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Figure 57: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member13, 14
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Figure 58: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member15, 16
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Figure 59: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of memberl7, 18
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Figure 60: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member19, 20
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Figure 61: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member21, 22
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Figure 62: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member23, 24
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Figure 63: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member25, 26
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Figure 64: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member27, 28
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Figure 65: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member29, 30
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Eﬁﬁﬁ#####ﬁﬁﬁ#####ﬁﬁﬁ#####ﬁﬁﬁ##

esults of Structural Analysis

EEEEEEE RS RS REE RS

Feneral Information:
Btructure Analyzed as: FPlanar Frame
Analysis Type: Firstc-Order Elastic

Enalytical Pesults:

i) Displacements at Step # 1, Applied Load Ratio = 1.0000

Deflections
Node ®-disp T-disp Z-disp

1 0.0000e+000 0.0000e+000 0.0000e+000
z 0.0000e+000 0.0000e+000 0.0000e+000
3 0.0000e+000 0.0000e+000 0.0000e+000
4 0.0000=+000 0.0000=e+000 0.0000e+000
5 -L.El1Z0=-00% -1.0%36=-003 0.0000e+000
& -3.E431=-00% -1.5414=-003 0.0000e+000
7 -3.742%92-006 -1.073%=-003 0.0000e+000
2 -1l.E4582-00% -1.0Z15=-003 0.0000s+000
2 -1.5153=-00% -1.Z071=e-003 0.0000s+000
10 9.878%2-00% -l.6Z2492-003 0.0000s+000
11 3.45E1=-00F% -1.1ZE54=-003 0.0000=+000
12 -5.3093=-00% -1.8139=-003 0.0000=+000
1z -4_00&4=-005 -E.E363=-003 0.0000=+000
14 -Z.7035=-00% -1.8045=-003 0.0000=+000
1k -3.6041=-00% -1.8237=-003 0.0000e+000
1&g -4 E5047=-005% -EZ.005%8=-003 0.0000e+000
17 -E.8072=-00% -E.3755=-003 0.0000e+000
1z -1.105%8=-00% -1.8718=-003 0.0000e+000
13 1. E2436=-004 -E.16762-003 0.0000e+000
Z0 3.E5E3Ee-00% -E.7441=-003 0.0000e+000
£l -L.3E97=-00% -E.1770=e-003 0.0000e+000
EE -L.4805=-00% -E.0362=-003 0.0000e+000
23 -L.g31Z=-00% -Z.41e0=2-003 0.0000s+000
£4 -1.L5Z30e-004 -Z.9Z062-003 0.0000s+000
Z5 -Z.4828=-004 -Z.E394=2-003 0.0000s+000

Figure 66: Final results of Example 1 from Mastan2 v 3.2
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Botations (radians)

Node H-rot T-rot
1 0._0000e+000 0_0000e+000
z 0._0000e+000 0_0000e+000
3 0._0000e+000 0_0000e+000
d 0._0000e+000 0_0000e+000
5 0._0000e+000 0_0000e+000
& 0._0000e+000 0_0000e+000
7 0._0000e+000 0_0000e+000
g 0._0000e+000 0_0000e+000
] 0._0000e+000 0_0000e+000
10 0._0000e+000 0_0000e+000
11 0. 0000e+000 0_0000e+000
1z 0. 0000e+000 0_0000e+000
13 0. 0000e+000 0_0000e+000
14 0. 0000e+000 0_0000e+000
1E 0. 0000e+000 0_0000e+000
18 0. 0000e+000 0_0000e+000
17 0. 0000e+000 0_0000e+000
12 0. 0000e+000 0_0000e+000
13 0. 0000e+000 0_0000e+000
20 0. 0000e+000 0_0000e+000
21 0. 0000e+000 0_0000e+000
22 0. 0000e+000 0_0000e+000
23 0._0000e+000 0_0000e+000
24 0._0000e+000 0_0000e+000
25 0._0000e+000 0_0000e+000
ii} Element Results

Internal End Forces
Element MNode

1 1 1.
E -1
z z 1
7 -1
2 2 1
9 -1
4 4 1
11 -1
E E 9
1z -9,
& 7 9
14 -9,
7 9
16 -1.
2 11 9.
1z -9,

1.

Z-rokt
0_0000e+000
0_0000e+000
0_0000e+000
0_0000e+000

-1_ZzE5%e-004
E_ElZ3e-00&
1. Z61lle-004

-1._035Ze-004

-1.1159%7e-004
Z.4015e-005
1.38E5Ze-004

-1_0&1l6e-004
9. 7718e-008
8. 1Z74e-005

-1_Z589%0e-004

-7 .361%e-005
2.78E50e-005
1. Z9ZZe-004

-Z_7863e-004
1. 6&01le-005
1.98Z0e-004

-1_38E5%e-004

-Z_02Z30e-004
23.7E7Ee-005
2.1686e-004

at Step # 1, Applied Load Patio =

1. 0000

(Note: Refers to local coordinates)

Fx T F
4581e+002 -l 0gZ2ze+001 o.oooo
.4E581le+002 1. 0sE2e+001 o.oooo
.4318=+00z2 7.9748=+000 o.oooo
.4318=+00z2 -7_.9745=+000 o.oooo
.B09E=+00z -8._1400=+000 o.oooo
.B09E=+00z 2.1400=+000 o.oooo
E00Ee+00z l.0788=+001 o.oooo
E00Ee+00z -l_0788=+001 o.oooo
604824001 -1_Els0e+001 o.oooo
c048e+001 1.5lg0=+001 o.oooo
T4l Ee+001 1.30587=+001 o.oooo
74l5e+001 -1_2057=+001 o.oooo
070ze+002 -1_z2700=+001 o.oooo
070ze+002 1.3700=e+001 o.oooo
SE17e+001 1.5202=+001 o.oooo
S9E17e+001 -1_E20ze+001 0.0000

=

e+000
e+000
e+000
e+000
e+000
e+000
e+000
e+000
e+000
e+000
e+000
e+000
e+000
e+000
e+000
e+000

Figure 67: Final results of Example 1 from Mastan2 v 3.2 (continued)
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E] 12 4_7153=+001 -1_77ege+t001 0. 0000=e+000
12 -4_7159=+001 1.77e6e+001 0.0000=+000
10 14 4. 9663=+001 1.74e4=+001 0.0000e+000
£l -4 95e8e+001 -1l.7dede+001 0. 0000e+000
11 1le L.41583=+001 -1_88%c=+001 0.0000=+000
23 -5_4lL8e+001 1.88%:=+001 0.0000e+000
1 1= 4.9018=+001 1.5813%e=+001 0.0000e+000
ZE -4_9015e+001 -1.591537=+001 0. 0000=e+000
132 L -4 _L5377e+000 4.97c3=+001 0.0000=+000
& 4. 5377e+000 -4_97c3e+001 0.0000e+000
14 ) -4 E377e+000 -E.0z37et+001 0. 0000e+000
7 4. 5377=+000 L.0Z237=+001 0.0000=+000
15 7 L.4505e-001 -4_470ee+000 0.0000e+000
=] -E.4E505e-001 4. 470e=+000 0. 0000e+000
1le =] L.4508=-001 -4_d4708=+000 0. 0000=e+000
=] -5 4L505e-001 4.4706=+000 0.0000=+000
17 9 -&.0l4te+4000 4.94c22+001 0.0000=+000
10 L.0l48=+000 -4_39483e=+001 0.0000=+000
12 10 -5 0l4te+000 -5 0537=+001 0.0000=+000
11 L.0l145=+000 L.0537=+001 0.0000e+000
15 1z -Z.60588e+000 4. 8883=+001 0. 0000e+000
132 Z.6058=+000 -4_8838%=+001 0.0000=+000
z0 132 -Z_e058e+000 -5.1111e+001 0.0000e+000
14 Z.e058=+000 £.1lllle+001 0.0000e+000
Zl 14 1.801&=+000 -3_2635e+000 0.0000=+000
15 -1_801ze+000 3.3635=+000 0.0000=+000
2 15 1.801Z=4+000 -3.3635e+000 0.0000e+000
1& -1l.801lzZe+000 3.3635e+000 0. 0000e+000
23 1le -3_.3949=4000 4.9497=+001 0.0000=+000
17 2.3%4%=4000 -4._9437=+001 0.0000e+000
Z4 17 =3.3849e+000 =& . 0E0Ze+00l 0.0000e+000
12 Z.394%=4+000 L.0503=e+001 0. 0000=e+000
Z5 12 1.7766e+001 4.715%=+001 0.0000=+000
z0 -1.77eee+001 -4.71E5%=+001 0.0000=+000
g Z0 1.7766e+001 -E.E8d41le+001 0. 0000e+000
Zl -1_77ece+001 L.z2841=+001 0.0000=+000
27 zZl 2.015Ze-001 -3.17Z5%=+000 0.0000e+000
EZ -2.01l8Ze-001 2.17E2%=+000 0. 0000e+000
za ZE 2.015Ee=-001 -3.172%=+000 0.0000=+000
23 -3.0l5ze-001 3.17E%=+000 0.0000=+000
28 22 1.9127=4+001 L.o92t=4001 0.0000=+000
Zd -1.515%7=+001 -5 0%35=+001 0.0000=+000
20 Z4 1.912%7=+001 -4_9015=+001 0.0000=+000
25 -1_91%7=+001 4.9015=+001 0.0000=+000

Figure 68: Final results of Example 1 from Mastan2 v 3.2 (continued)
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Internal End Moments (HNote: Refers to local coordinates)
Element Node Mx My M= E

1 1 0.0000e+000 0. 0000e+000 -1.184%e+001 0.0000e+000
L 0.0000=+000 0_000o0e+000 -z.00z0e4+001 0._0000e+000
Z Z 0.0000e+000 0_00ooe+000 7_7581e4000 0._0000e+000
7 0.0000e+000 0_00oode+000 1_6l&cet001 0._0000e+000
3 3 0.0000=+000 0_000o0e+000 -2.4777e4+000 0._0000e+000
3 0.0000e+000 0_00ooe+000 =1.5342e+001 0._0000e+000
4 4 0.0000e+000 0_00oode+000 1_1564e+001 0._0000e+000
11 0.0000=+000 0_000de+000 E_073%=4001 0._0000e+000
L L 0.0000=+000 0_00ooe+000 -Z.3Z88e4001 0._0000e+000
1z 0.0000=+000 0_00oode+000 -Z2.2193et+001 0._0000e+000
g 7 0.0000e+000 0. 0000e+000 2.108le1001 0.0000e+000
14 0.0000=+000 0_000o0e+000 1_20%1e=+001 0._0000e+000
7 3 0.0000e+000 0_00ooe+000 -Z.1828e+001 0._0000e+000
16 0.0000e+000 0_00oode+000 -1.%32Z71et001 0._0000e+000
o] 11 0.0000=+000 0_000de+000 E_d40lze+4001 0._0000e+000
18 0.0000=+000 0_00ooe+000 Z_3333e4001 0._0000e+000
3 1z 0.0000=+000 0_00oode+000 —-Z.0300e+001 0._0000e+000
15 0.0000=+000 0_000de+000 -3.23%8e4001 0._0000e+000
10 14 0.0000=+000 0_00ooe+000 Z_2Z3%e4001 0._0000e+000
Z1 0.0000=+000 0_00oode+000 3.0034e+001 0._0000e+000
11 1& 0.0000e+000 0. 0000e+000 -Z2.4054e+001 0.0000e+000
E3 0.0000=+000 0_000o0e+000 -3.E633e4+001 0._0000e+000
1z 18 0.0000e+000 0_00ooe+000 Z_2bd4le+001 0._0000e+000
£5 0.0000e+000 0_00oode+000 3_5050e+001 0._0000e+000
1z L 0.0000=+000 0_000de+000 4_3307=+4001 0._0000e+000
& 0.0000=+000 0_00ooe+000 L_gZleet00l 0._0000e+000
14 3 0.0000=+000 0_00oode+000 -5.6Z18et+001 0._0000e+000
7 0.0000e+000 0. 0000e+000 -4.4Z57e+001 0.0000e+000
1kt 7 0.0000=+000 0_000o0e+000 7_01l0%=+000 0._0000e+000
2 0.0000e+000 0_00ooe+000 =1.535Ze+001 0._0000e+000
1& = 0.0000e+000 0. 0000e+000 —-4.0473e+000 0.0000e+000
9 0.0000=+000 0_000o0e+000 -4_8335e4+000 0._0000e+000
17 3 0.0000e+000 0_00ooe+000 4_Zegde+001 0._0000e+000
10 0.0000e+000 0_00oode+000 S_BZeZet00l1 0._0000e+000
1= 10 0.0000=+000 0_000de+000 -L.&6Z62e+001 0._0000e+000
11 0.0000=+000 0_00ooe+000 -4_42812e4+001 0._0000e+000
15 1z 0.0000=+000 0_00oode+000 4_3032e+001 0._0000e+000
13 0.0000e+000 0. 0000e+000 L.4686e1001 0.0000e+000
E0 13 0.0000=+000 0_000o0e+000 -L.4686e4+001 0._0000e+000
14 0.0000e+000 0_00ooe+000 -4 _7L3get+00l 0._0000e+000
21 14 0.0000e+000 0_00oode+000 7.1454e+000 0._0000e+000
15 0.0000=+000 0_000de+000 -1.3872e4+001 0._0000e+000
22 15 0.0000=+000 0_00ooe+000 -&.1Z77e4+000 0._0000e+000
16 0.0000=+000 0_00oode+000 -5.9323e-001 0._0000e+000

Figure 69: Final results of Example 1 from Mastan2 v 3.2 (continued)
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£3 la 0.0000e+000 0. 0000e+000 4.39Z24e+001 0.0000e+000
17 0.0000e+000 0.0000e+000 E.5071let001 0.0000e+000
Z4 17 0.0000e+000 0.0000e+000 -5 5071e+001 0.0000e+000
12 0.0000e+000 0.0000=+000 -4._E934e+001 0.0000e+000
Z5 13 0.0000e+000 0.0000e+000 3.E398e4001 0.0000e+000
Z0 0.0000e+000 0.0000e+000 6.19Z1et001 0.0000e+000
Z6 Z0 0.0000e+000 0.0000e+000 -6.19Z1e+001 0.0000e+000
El 0.0000=+000 0.0000=+000 -4_376let+00l 0.0000=+000
Z7 Z1 0.0000e+000 0.0000e+000 1.3667e+001 0.0000e+000
ZZ 0.0000e+000 0.0000e+000 -Z.001ze+001 0.0000e+000
8 ZZ 0.0000e+000 0.0000e+000 1. Z59Ze-002 0.0000e+000
23 0.0000e+000 0.0000e+000 -6.3584e+000 0.0000e+000
Z9 23 0.0000e+000 0.0000e+000 3.8991e4001 0.0000e+000
Zd 0.0000e+000 0.0000e+000 6. Z373e4+001 0.0000e+000
20 Zd 0.0000e+000 0.0000=+000 -&.Z97%=+001 0.0000e+000
Z5 0.0000e+000 0.0000e+000 -3.5050e+001 0.0000e+000

{iii) Reactions at Step # 1, Applied Load Ratio = 1.0000

Forces
Node Bx By Bz
1 1.0622e+001 1.4531le+002 FEREE
E =-7_.9746=+000 1.4318=+002 FREE
3 g.1400=+000 1. 6095=+002 FREE
4 -1.07858=+001 1.5005=e+00Z FREE
Moments
Node Mx Juird M=
1 FREE FREE -1.1547e+001
z FIEE FIEE 7.7581le+000
3 FREE FREE -8_4777e+000
4 FREE FREE 1.1564=+001

pRiddbi bttt bi bt biidbddd s
End of Results of Structural Analysis
EREddibsdrsi b ia st b s ettt

Figure 70: Final results of Example 1 from Mastan2 v 3.2 (continued)

6.2.1 Comparison Results:
The results obtained from Integrated Force Method Analysis Package and Mastan2 v
3.2 [17] are compared and all the diagrams and the numerical results are agree fully

as shown in Figures ( 66, 67, 68, 69, 70).
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6.3 Example for Dual Integrated Force Method (IFMD)

Example 2: This Example is from the book, Structural Analysis, Reference [20]. A
rigid frame as shown in Figure71 is analyzed with Dual Integrated Force Method.
The problem is solved for nodal displacements, member end forces in local

coordinate, support reactions, axial force, shear force and bending moment diagrams.

I=1 m* A=1.5x10"% m? E=2x10% kN/m
20 kN/m
BRI
A
3 3 4 4 4;
1 2 4 m
1 2 v
TN TR
) 12 m A 12m g

Figure 71: Example 2

To solve this problem first the Dual Integrated Force Method Analysis Package has

been run and also the result from Mastan2 v3.2 is presented to compare the results.

The analysis procedure consists of the following phases:
a) Input Phase
1. General Input
2. Geometry Input
3. Properties and Materials Input

4. Load Data input
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b) Calculation Phase

1. Generating Equilibrium Equations and showing Matrix Plot of this
matrix

2. Generating Unconnected Flexibility Matrix and showing Matrix Plot
of this matrix

3. Inverting Unconnected Flexibility Matrix

4. Generating Global Stiffness Matrix and Showing Matrix Plot of this
matrix

5. Forming Joint Load Vector

6. Forming the Fixed End Forces Vector

7. Combining Joint Load Vector with Fixed End Forces Vector

8. Solving Displacements

Reporting Results Phase

1. Displaying Nodal Displacements

2. Displaying Member End Forces in Local Coordinate

3. Displaying Support Reactions

4. Showing Diagrams of Axial Force, Shear Force and Bending Moment

Diagrames.
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4 4 » ¥ Zof17

H

GENERAL DATA INPUT

i3 GIVE NUMBER OF ELEMENTS

3
1
[y

id GIVE NUMBER OF NODES

| noden = 5 ; |

Figure 72: Input Phase, Step 1, General Input

WA 3of17

GEOMETRY DATA INPUT

\d GIVE MEMBERS INCIDENCE

14 GIVE COORDINATE OF JOINTS

W R R
W R
G ke W

12.
cord =
12.
24,

ok W R
=
]

\d GIVE FREEDOMS OF JOINTS

freet =

@ WM
o oR M
HooRH
oo oK

Figure 73: Input Phase, Step 2, Geometry Input
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a4 4of 17

PROPERTIES AND MATERIAL DATA INPUT

\4d INPUT THE MOMENTD OF INTERIA OF MEMBERS

Ii =Table[1, {k, 1, m}];

\d INPUT THE AREA OF MEMBERS

a= Table[0.00015, {k, 1, m}];

\d INPUT THE MODULUS OF ELASTICITY

Ee= 2.x10%;

Figure 74: Input Phase, Step 3, Properties and Materials Input

M4 5017

53]

LOADS DATA INPUT

\d GIVE FORCE APPLIED AT THE JOINTS

applfres =

oo e W M
oo o o oo
oo oo oo
=TT~ R =~

\d GIVE THE FIXED END FORCE

a={0.,0.,20.,20.}; |

Figure 75: Input Phase, Step 4, Load Data Input
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A » Bof17

GRAPHICAL SHAPE

(3 CMPUTER CODES

\d SHAPE OF FRAME

Show[sawgraphl, sawgraph2, AspectRatio - Automatic, PlotRange - All,

ImageSize - 350]

I

Figure 76: Shape of Frame

Figure 77: Element and Node Numbering
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M4y 7af17

EQULIBRIUM EQUATIONS

L3 CMPUTER CODES
A8 EQUILIBRIUM EQUATIONS

Print|["EE = ", MatrixForm[5]] |

0. -1. 0. 0 0. 0. -1. 0. 0 ] 0. 0.
1. 0. 0.0 0. 0 0. -1. 0 0 0. 0.
0. 0. 1. 0 0. 0 0. -1z2. -1. 0. 0. 0.
EE = (0. 0. 0. 0. -1. 0 1. 0. 0. -1. 0. 0.
0. 0. 0.1 0. 0 0. i 0. 0 -1. 0.
0. 0. 0.0 0. 1 0. 0. 1. 0 -12. -1
0. 0. 0.0 0. 0 0. 0. 0. 0 0. 1

Dimensions|S§ |

7,12}

Figure 78: Calculation Phase, Step1, Generate Equilibrium Equations

Figure 79: Calculation Phase, Step1, Matrix Plot of Equilibrium Equations [B] ;5«10
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A 8of17
(0" Db AN _MCLS o AU R e ]

UNCONNECTED FLEXIBILTY MATRIX

Ll COMPUTE CODES

FLEZIBILTY MATRIZ

Prink[UQ = " HatwixFom[F]]
0.000133333 0. 0. 0. i i 0. 0. 0. i 0. 0y

i 1.06667x 107 4.x10% 0. 0 i 0. 0. 0. i 0. 0.

i 4.x10%  2.x107 0. 0. 0. 0. 0. 0. i 0. 0.

i 0. 0. 0.000133333 0. 0. 0. 0. 0. i 0. 0.

i 0. 0. 0 1.06667x107 4. %107 0. 0. 0. i 0. 0.
B i 0. 0. 0 4.x10% zoxl0t oL 0. 0. 0. 0. .

0. 0. 0. 0 0. 0. 0.0004 0. 0. 0. 0. 0.

i 0. 0. 0. 0. 0. 0. 2.88x10% 2.6x107 0 0. 0.

i 0. 0. 0 0. 0. 0. 36x107 e.xl0t 0 0. 0.

i 0. 0. 0 0. 0. 0. 0. 0. 0.0004 0. 0.

i 0. 0. 0 0. 0. 0. 0. 0. 0. 2.88x10°F 3.6x107

i 0. 0. 0 0. 0. 0. 0. 0. 0. 3.6x107 6.x107

Dimensions [F]

flz, 12}

Figure 80: Calculation Phase, Step2, Generate Unconnected Flexibility Matrix

Figure 81: Calculation Phase, Step2, Matrix Plot of Unconnected Flexibility Matrix
[G] 15x15
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(KA 9of
R VI ¢ 5470 TR ¢ o7 o o0 o Wl

GOBAL STIFNESS MATRIX

Print["E = ", HatrixFom[E]]

K= . Tnverse[F]. Transpose[]; ‘

3.75025 x 107 0. 7.5x10° - 2500, 0. 0. 0.
0. 1.39639x10°  8.33333x 10 0. -1.38889x10° 8.33333x 10° 0.
7.5x100  8.33333x10°  2.66667x10° 0. -8.33333x10° 3.33333x 107 0
K= | _zs00. 0. 0. 37505 10° 0. 7.5x10° 0.
0. -1.38689x10° -5.33333x10° 0. 278528100 3.72529x 107! 5.33333x 10°
0. 8.33233x10°  3.33333x10"  7.5x100  3.72529x107 3.33333x10° 3.33333x10°
0. 0. 0. 0. 5.33333x10° 3.33333x107 6.66667x107
Dimengiens [K]
tRP

Figure 82: Calculation Phase, Step3, 4, Invert Unconnected Flexibility Matrix and
Generate Global Stiffness Matrix

Figure 83: Calculation Phase, Step4, Matrix Plot of Global Stiffness Matrix [K] 1«10
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M4 Y 100f 17

FORM THE JOINT LOAD VECTOR

L3 COMPUTER CODES

A4l JOINT LOAD VECTOR

Print[" P = ", MatrixForm[P]] |

el
1
o o o oo oo

Dimensions[P]

{7, 1}

Figure 84: Calculation Phase, Step5, Form Joint Load Vector

M4 11ef17

FORM THE FIXED FORCE

Print|["Ffixed = ", MatrixForm[Ffixed]] |

0.
120.
240
Ffixed = 0.
240.
0.
-240.

>
v

Dimensions[Ffixed]

{7, 1}

Figure 85: Calculation Phase, Step6, Form Fixed End Forces
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&= o4k 12af 17

i CALCULATE THE DEGREE OF INDETERMINAC

di = 3xm+rest - 3 xnoden

A4 CREATE THE FINAL LOADS

| U‘

initial = Table[0., {sr, 1, di}, {sc, 1, 1}]:
Pfinal =P - Ffixed;
Print["final load = ", MatrixForm|[Pfinal]]

0.
-1z0.
-240.
final load = 0.
-240.
0.
240.
Dimensions|[Pfinal]

7. 1}

Figure 86: Calculation Phase, Step 7,Combined Joint Load Vector with Fixed End
Forces

M4 130l

\d FIND THE DISPLACEMENTS

dsiplacements = LinearSolve[K, Pfinal];

Print["displacemetns = ", MatrixForm|dsiplacements]]

-0.00004555597

-0.00263799

0.0000247763

displacemetns = | -0.000154775
-0.0019528

0.0000773964
0.000209001

Dimensions|[dsiplacements|

{71}

Figure 87: Calculation Phase, Step8, Solve for Displacements
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CALCULATE DISPLACEMENTS

AN 140f 17

(3 COMPUTER CODES

Ll NODAL DISPLACEMENTS

Do|

Print['node ", i, "
{i,1,

vy node 1

node 2

node 3

node 4

node 5

Figure 88:

noden} |

displacements

displacements

displacements

displacements

displacements

", "displacements =",

E]
E]

-0.0000455587
-0.0026379%
0.0000247763
-0.000154775
-0.0015523
0.0000773564

L T e Y e R e T e Y e

0
0.]
0.000205001

", MatrixForm[Disp[[i]]]]/

Reporting Results Phase, stepl, Nodal Displacements of each node
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15.7845%
-0.263035
-1235.34
-15.7845
0.263035
V1238025 )

14.64¢6

0.645578
-3868.52
-14.64¢6
-0.645578
V3871012 )

(0.263035 ¢
15.7845%
-1238.25
-0.263035
220,215
Lo35.7101 )

[-0.386535%
-205.5&5
-3506.83
0.386535
445.56%
| 0 /

vy member 1 endforces

member 2 endforces

member 3 endforces

member 4 endforces

Figure 89: Reporting Results Phase, step2, Member End Forces in Local Coordinate
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reaction x= 0.263039
reaction y= 19.7849
moment z= -1239.34
member 1 react x 1
mempber 1 react v 1
member 1 react z 1
reaction x= -0.649978
reaction y= 14.646
moment z= -3868.52
member 2 react x 2
member 2 react yooo2
member 2 react z 2
reaction x= 0.386939
reaction y= 445.569
member 4 react x5

member 4 react v 5

Figure 90: Reporting Results Phase, step3, Support Reactions
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¥ AFD...... nember 1
Axial Force Function N= 19,7549 AFD. ... nember 2

Axial Force Function N= 14.646

aFD.. ..., nember 1 TR
Shear Function V= -0,26303% SFDL ... nemher 2
i shear Function VW= 0.649978

EMD...... nember 1
BMD...... nember 2
Moment Punction M= 1239,.34-0.263039x
Moment Function M= 3868.52 +0.649978 x
k¥ .

FEEEEFTEELRELTEFTLERZT T LR EXTRELES bbbk kbt

Figure 91: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of memberl, 2
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AFD . vuias Lepber 3
hwial Force Function N= 0.263039

AFD. ... nepher 4
drial Force Function N= -0.386939

u

a4

4,

) nemher 3 SFD. . ... wemher 4
shear Fanction V= 19,7849 - 20, x Shear Punction V= -205.569 - 20, x
EMD...... Lepher 3 EMD...... newher 4

Noment Function M= 1236.29+19.7849% - 10, &' Noment Rumction M= 390,83 - 205.569% - 10, x*

n
m

1 1
1 4 % 1 a a L

EE L EEL L L L AL LR LT L FTEEETTET R LT LR LR LR R LT LTS

Figure 92: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member3, 4

6.3.1 Comparison Results:
The results obtained from Dual Integrated Force Method Package Analysis and
Mastan2 v 3.2 [17] are compared and all the diagrams and numerical results are

agree fully as shown in Figures (93 and 94)
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EEHEF AN AR F AR Y
es1lts of Struactural Analwsis
2255025802553 5 55355535533 F ]

Ceneral Imnformation:
Etcructure Analyzed as: Plarnar Frame
Analysis Type: Firstc—Order Elastic

prnalytical BPesults:

[ 4= A Di=splacements at Step # 1, Lpplied Load Ratio = 1._0000
Deflections
MNode H—di=p T—di=p Z2—di=p
1 O.o00d0=+000 O.0000=+000 O.0000=+000
=z O.0000=+000 O.0000=+000 O.0000=+000
= —4_ 95&0=—00EK —Z._.&220=—003= O.0000=+000
4 —1.E54728=—004 —1l.39E5E8=—00Z O.0000=+000
£ O.0000=+000 O.0000=+000 O.0000=+000
Potation=s (radian=)
Mode H-—rot T-—rot Z2—rot
1 O.o00d0=+000 O.0000=+000 O.0000=+000
z O.o00d0=+000 O.0000=+000 O.0000=+000
= O.o00d0=+000 O.0000=+000 Z.4775=—00E5
1 O.o00d0=+000 O.0000=+000 7.7 E28se—00E5
£ O.0000=+000 O.0000=+000 Z.0300=—004

Figure 93: Final results of Example 2 from Mastan2 v 3.2 (Displacements)

(idl Element PResults at Step # 1, Applied Load RBatio = 1.0000

Internal End Forces (Hote: PBefers to local coordinates)

Element MNode Fx Fv F=
1 1 1.3725e=+001 —Z._.6304e-001 0. 0o000e+000
] =1l.3785e+001 £.8304e-001 0. 0000e+000
Z Z l.464dce+001 &.4592=-001 0. 0000=+000
4 —l.4&4ce+001 —&.4592=-001 0. 0000=+000
2 ) Z.5204e-001 1l.39728=+001 0. 0000=+000
4 —Z._.6304e-001 Z_EZ0zZe+00z2 0. 0o000e+000
4 4 -3 .86%4e=-001 —Z._.0557=+002 0. 0o000e+000
£ 3.86%4e-001 4_4L5E57e+002 0. 0o000e+000

Internal End Moments (Note: Refers to local coordinates)

Elcement
1

z

2

4

({iii) Reactions at Step # 1,

Forces
Mode

1

z

&

Moment =
MNode

1

z

MNode

o e D)l W

M
o_0o00e+000
o_0o00e+000
o_0o00e+000
O.0000=+000
O.0000=+000
O.0000=+000
0.0000e+4+000
o_0o00e+000

25 4

Z_E304e-001

—&_4298=-001

2_86%4e-001

M
FREE
FREE

Hr
O_ooode+000
O_ooode+000
O_ooode+000
0000024000
0000024000
0000024000
0_0000e+000
O_ooode+000

Applied Load Ratio

ool

1_3728e+001
1. 464ée+001
4_4LE57e+00Z

Hy
FEEE
FEEE

BEEEd 555355833 5553358333535 85 335553
Ernd of Result=s of Structural Analysis
BEEEd 555355833 5553358333535 85 335553

M=
-1_E23293e+003
1. 23232e+003
—Z_862Le+003
3.8711l=+003
-1.2383=+003
Z.5710=+001
-3_890&88e+003
-1._2120=-01Z

1.0000
B=
FREE

FREE
FREE

M=

—1.z293e+0032
—Z.28685e+003

E
o_o000e+000
o_o000e+000
o_o000e+000
0. 0000=+000
0. 0000=+000
0. 0000=+000
0. 0000e+000
o_o000e+000

Figure 94: Final results of Example 2 from Mastan2 v 3.2 (Element Results and

Reactions)
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6.4 Example for Integrated Force Method via Singular Value

Decompositions (SVD)

Example 3: A rigid frame is subjected for this example has 7 elements and 7 nodes.
Nodes 4 and 6 have subjected to 50 kN and 75 kN axial point load respectively.
Node 5 is subjected to 6 kN/m bending moment and element 7 has subjected to 12
kN/m fixed end force. This example is analyzed by Integrated Force Method via
Singular Value Decomposition. This problem is solved for nodal displacements,
member end forces in local coordinate, support reactions, axial force, shear force and

bending moment diagrams.

[=4x10" m*

A=2x10" m?

E=2x10% kN/m
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12 kN/m

PSEN VLV

7

3m

6 kN/m
50 kN A

v
</
»d
L |

A
v
A

4

4m 4m
Figure 95: Example 3

The analysis procedure consists of the following phases:

a) Input Phase
1. General Input
2. Geometry Input
3. Properties and Materials Input
4. Load Data input
b) Calculation Phase
1. Generating Equilibrium Equations and showing Matrix Plot of this matrix.
2. Generating Unconnected Flexibility Matrix and showing Matrix Plot of this
matrix.

3. Creating Singular Value Decomposition.
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4. Obtaining Compatibility Matrix form Singular Value Decomposition.

5. Computing the Compatibility Conditions and showing Matrix Plot of this
matrix.

6. Coupling the Compatibility Conditions with the Equilibrium Equations and
showing Matrix Plot of this matrix.

7. Forming Joint Load Vector.

8. Forming the Fixed End Forces Vector.

9. Combining Joint Load Vector with Fixed End Forces Vector.

10. Solving Independent Forces.

¢) Reporting Results Phase

1. Displaying Nodal Displacements

2. Displaying Member End Forces in Local Coordinate

3. Displaying Support Reactions

4. Showing Axial Force, Shear Force and Bending Moment Diagrams.

GENERALDATA INPUT

Y
a
v
>
™

4 GIVE NUMBER OF ELEMENTS

m="7;

i3 GIVE NUMBER OF NODES

noden = 7 ;

Figure 96: Input Phase, Step 1, General Data Input
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LR 30f19

id GIVE MEMBERS INCIDENCE

ine =

oo W N R
[ S = PN R
b B B T R TV R

\d GIVE COORDINATE OF JOINTS

cord =

ES - JE B R B
= == N -
L R e e ]

\d GIVE FREEDOMS OF JOINTS

freet =

=N o Lo W R
SO0 0O MM
cCoooHRR
co o0 ORR

sl

I
5% -

Figure 97: Input Phase, Step 2, Geometry Data Input

HAr

PROPERTIES AND MATERIAL DATA INPUT

\d INPUT THE MOMENTD OF INTERIA OF MEMBERS

Ii = Table[0.0004, {k, 1, m}]; |

\d INPUT THE AREA OF MEMBERS

a = Table[0.002, {k, 1, m}]; |

A4 INPUT THE MODULUS OF ELASTICITY

Ee = 2.x10%; |

Figure 98: Input Phase, Step 3, Properties and Materials Input
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M4 5i

VI ¢ s ¢ TONDEMEINNNNNSSY . ¢ 0 o ol e iV o TR
LOADS DATA INPUT

v

v

GIVE FORCE APPLIED AT THE JOINTS

(=T =T = = I = = ]
|
L= =T~ T = R = = ]

1

2

3
applfres = |4 50.

5

L]

7

GIVE THE FIXED END FORCE

©={0.,0.,0.,0.,0.,0.,12.}; |

Figure 99: Input Phase, Step 4, Load Data Input
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M4 Gof 19

GRAPHICAL SHAPE

3 CMPUTER CODES

id SHAPE OF FRAME

Show [sawgraphl, sawgraph2, AspectRatio - Automatic, PlotRange = All,
ImageSize -» 350]

Figure 100: Shape of Frame

é 7 7

6
5
4 4 5

2
1 3
1 2 2

T T

Figure 101: Element and Node Numbering
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mme =

Figure 102: Calculation Phase, Step1, Matrix Plot of Equilibrium Equations [B] 21x14

E .

Figure 103: Calculation Phase, Step2, Matrix Plot of Unconnected Flexibility Matrix
[G] 21221
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Figure 104: Calculation Phase, Step5, Matrix Plot of Compatibility Conditions [C]

21x7

Figure 105: Calculation Phase, Step6, Matrix Plot of Coupled Equilibrium Equations
with Compatibility Conditions [S] 21x21
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AN 160F 19

CALCULATE DISPLACEMENTS

(3 COMPUTER CODES

L8l NODAL DISPLACEMENTS

Do|
Print["node ", i, " ", "displacements =", " ", MatrixForm[Disp[[i]]]].
{i, 1, noden}]
0.
ynode 1 displacements O.]
0.
0.
node displacements O.]
0.
0.00762171 =
node displacements 0.
0.000954002
0.00704z61
node displacements 0.000667954]
-0.00153308
0.00684936
node displacements —0.000992374]
-0.00124623
0.011%277
node displacements 0.000730361]
-0.00118045
0.0114675
node displacements —0.00141478]
-0.000955475

5%

o

a

Figure 106: Reporting Results Phase, stepl, Nodal Displacements of each node
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(-fA6.7354 "
59,6487
145,955
A6, 7954
- 59,6487

. 88.6317

(99,2374
65.3533
155,631
-99,2374
-65.3533

, 105,732

¢ 11,0012 -
-11.0012
62,232
-11.0012
11,0012
S
¢ 19,3252
- 58,4745
122,686
-19.3252
58. 4745
|-111.212

(-8.32088
28.9719
J4.0544
d. 320845
-25.9719

. SZ.86l2

( 56.3209
da. 0231
6l.6621
- 56,3209
-46. 0281

6. 4223

(46,0281
-8.32058
-52.8612
-46. 0281
S6.3209

=76, 4223

member 1 endforces

nenber 2 endforces

nember 3 endforces

nenher 4 endforces

nember 5 endforces

member & endforces

nember 7 endforces

Figure 107: Reporting Results Phase, step2, Member End Forces in Local Coordinate
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reaction ®= -59.6467
reaction y= -66.7554
moment z= 14%.555
member 1 react x 1
member 1 react v 1
member 1 react z 1
reaction x= -65.3533
reaction v= 99.2374
moment z= 155.631
member 2 react ® 2
member 2 react v 2
member 2 react z 2
reaction yv= 15.558
member 3 react v 3

Figure 108: Reporting Results Phase, step3, Support Reactions
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s NIDG G0 oo g menber 1

ixial Force Function N= -66.7954 B0 005 w0 TETIEE B
. Axial Force Function N= 99.2374
AR RE L
s 000 menber 1 Pt
SFD. ... nenher 2

ahear Function W= 59,6467

L3

Shear Function V= 85,3533

[ Ty menber 1
EMD...... nemher &
Moment Function M= -149.9554 59,6467 x
Moment Function M= -155.631 +65.3533x

\ 1 |

bbb ek b ke e
Ee o b e o e o o e o o

Figure 109: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 1, 2
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AFD ..o uas wember 3
Axial Force FPunction N= 11.0012 LFD

1 1 1 I 1

SFD...... member 3
Shear Function V= -11.0012 A nemher 4

Shear Panetion V= -58. 4745

=1

<l

E 1

=i

1 1 1 1 1

EMD...... nember 3 EMD...... Lenber 4

Moment Function M= -11.0012x
Moment Function M= 122.686- 58,4740 %

bbb bbbk b e e b b ko

e e e e o i e o e o e e e o

Figure 110: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 3, 4
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AFD...... nenher & AFD...... nenber 6

Axial Force Punction N= -5.32088 Awial Force Function N= 56.3209

SFD. ... nenher & L3 TR uemher 6

Shear Function W= 25.97189 Shear Function V= 46.0281

EMD...... newher 5 EMD...... menber 6

Monent Function M- -34.0544+325.9719x Moment Function M= -61.6621 + 46. 0281 x

e o e b e e
e e e e ko e e e

Figure 111: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 5, 6
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AFD . s newher 7
Iwial Force Function N= 46,0281

1 1 1 1 4

SFD..uus wewher 7
Shear Function V= -8.32088-12. %

1S

-1k

1 1 1 1 4

EMD...... nenber 7
Moment Function M= 52,8612 - 8.32088% - 6. :-:i

=
] | \

e e e e e e e e e e e e e

Figure 112: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 7
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6.4.1 Comparison of Results
The results obtained from Integrated Force Method via Singular Value
Decomposition Analysis Package and Mastan2 v 3.2 [17] are compared and all the

diagrams agree fully and the numerical results agree up (Figures 114, 115, 116).

AR HREEE
ezsults of Btructural Analysis
bdd 232300308 20 0828 308 33333 24

Feneral Information:
Structure Analyzed as: Planar Frame

Analysis Type: First-0rder Elastic

Enalytical Pesults:

i) Displacements at Step # 1, Applied Load Ratio = 1.0000
Leflections
Hode H-disp T-disp Z2-di=sp
1 0.0000=+000 0.0000=+000 0.0000=+000
Z 0.0000=+000 0.0000=+000 0.0000=+000
a2 T.6E17e-003 0.0000e+000 0.0o000=+000
4 T.04E6e-003 G.6735e-004 0.0o000e+000
= . 58494=-003 -9 _9E37e-004 0.0000=+000
& 1.1%E8e-002 7.3036e-004 0.0000=+000
7 l.1l4e7=-002 -l.4l42=-003 0.0000=+000

Dotations (radians)

Node H-rot T-rot Z-rokt
1 0. 0000e+000 0._0000e+000 0. 00dde+000
z 0. 0000e+000 0._0000e+000 0_0odde+000
3 0. 0000e+000 0._0000e+000 S_Ed400e-004
4 0. 0000e+000 0. 0000e+000 -1l.E5331le-003
5 0._0000e+000 0._0000e+000 -1_ZdEZe-003
3 0._0000e+000 0._0000e+000 -1.1808e-003
7 0. 0000e+000 0._0000e+000 -9_69438e-004

Figure 113: Final results of Example 3 from Mastan2 v 3.2 (Displacements)
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(iiy Element Besults at Step # 1, Applied Load Ratioc = 1.0000

Internal End Forces (Mote: Befers to local coordinates)

Element MNode Fx Fv Fz
1 1 -&.E87952+001 L£_9E647e+001 0.0000e+000
4 G &795e+001 -5.9647e+001 0.0000e+000
E E 9_9237e+001 &_E3E3e+001 0.0000e+000
3 -9_.9237e+001 -5, 5E353e+001 0.0000e+000
2 L 1_1001le+001 -1.1001=+001 0.0000e+000
3 -1.1001=+001 1_100le+001 0.0000e+000
4 4 1_93ZLe+001 -L.8475=4+001 0.0000e+000
13 -1.93E5=+001 L. 8475e+001 0.0000e+000
3 4 -8.320%=+000 £_897F=+001 0.0000e+000
& g_3z0%e+000 -Z.897Ze+001 0.0000e+000
& 3 L g32Ele+00l 4_&0E2=+001 0.0000e+000
7 -E.83Fle+001 -4_&0Z2=+001 0.0000e+000
7 & 4_&0E2=+001 -8.320%=+000 0.0000e+000
7 -4_&0Z2=+001 L_B3EZle+001 0.0000e+000

Internal End Moments (Note: PFefers to local coordinates)

Element MNode Mx Juirs Uz B
1 1 0.0000e+000 0.0000e+000 1.499E5=+002 0.0000e+000
4 0.0000e+000 0.0000e+000 g.8632e+001 0.0000e+000
Z Z 0.0000e+000 0.0000e+000 1_EEE3e+002 0.0000e+000
& 0.0000e+000 0.0000e+000 l.0578e+002 0.0000e+000
3 3 0. 0000e+000 0. 0000e+000 -G, E£232e+001 0.0000e+000
3 0.0000e+000 0.0000e+000 £.1316e-014 0.0000e+000
4 4 0. 0000e+000 0. 0000e+000 -l.2269%=+002 0.0000e+000
I3 0.0000e+000 0.0000e+000 -1.11Z1e=+002 0.0000e+000
3 4 0_0o000e+000 0_0o000e+000 3.4054e+001 0.0000e+000
& 0.0000e+000 0.0000e+000 E_EZ26le+001 0.0000e+000
& 3 0._0000e+000 0._0000e+000 g6.1a6Ee+001 0.0000e+000
7 0.0000e+000 0.0000e+000 ?.642Ze+001 0.0000e+000
7 & 0._0000e+000 0._0000e+000 -E.E86le+001 0.0000e+000
7 0.0000e+000 0.0000e+000 -7.64772+001 0.0000e+000

Figure 114: Final results of Example 3 from Mastan2 v 3.2 (Element Results)

{iii) Reactions at Step # 1, Applied Load Ratio = 1.0000
Forces
Node Bx By Bz
1 -5 9647e+001 -6.6755=+001 FEEE
z -&.5353e+001 9.9E37e+001 FEEE
3 FEEE 1.EEEGet00l FEEE
Noment.s
Node Mx Ny Nz
1 FEEE FREE 1_433Ee+002
z FEEE FREE 1_EEE3et00Z

nd of Results of Structural lnalysis
FERE SN S E AN ESEF AN NN E

Eﬁﬁﬁﬁ###ﬂﬂﬁﬁﬁﬁﬁﬁ###ﬂﬂﬁﬁﬁﬁﬁﬁ###ﬂﬁﬁﬁﬁﬁﬁ

Figure 115: Final results of Example 3 from Mastan2 v 3.2 (Reactions)
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6.5 Example for Integrated Force Method via Null Space (IFM)

Example 4: A frame is subjected for this example has taken form a master thesis of
completed at EMU (reference [12]). This example has 3 elements and 4 nodes. Node
3 is subjected to 1 kN shear joint load and node 4 are subjected to 0.5 kN/m axial
joint load. The example is analyzed by integrated force method via null space. The
problem is solved for nodal displacements, member end forces in local coordinate,
support reactions, the axial force diagram, shear force diagram and the bending

moment diagram.

I=1 m A =1000 m? E = 1 kKN/m?
A . 0.5 kN
Im
3
1 kN 4
v
A 3 5
Im
1
1 2
v TR
) Im o 1m g

Figure 116: Example 4

To solve this problem first the Integrated Force Method Analysis Packages has been

run and also the result from Mastan2 v3.2 is presented to compare the results.
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The analysis procedure consists of the following phases:

a)

1.

Input Phase

General Input

Geometry Input

Properties and Materials Input

Load Data input

Calculation Phase

Generating Equilibrium Equations and showing Matrix Plot of this matrix
Generating Unconnected Flexibility Matrix and showing Matrix Plot of this
Matrix

Obtaining Compatibility Matrix from Null Space.

Computing the Compatibility Conditions and showing Matrix Plot of this
Matrix.

Coupling the Compatibility Conditions with the Equilibrium Equations and
showing Matrix Plot of this Matrix

Forming Joint Load Vector

Forming the Fixed End Forces Vector

Combining Joint Load Vector with Fixed End Forces Vector

Solving Independent Forces

Reporting Results Phase

. Displaying Nodal Displacements

Displaying Member End Forces in Local Coordinate
Displaying Support Reactions
Showing Diagrams of Axial Force, Shear Force and Bending Moment

Diagrams.

134



4 2cf 19

GENERAL DATA INPUT

id GIVE NUMBER OF ELEMENTS

|m=3; |

id GIVE NUMBER OF NODES

| noden = 4; |

Figure 117: Input Phase, Step 1, General Input Phase

4 3of19

id GIVE MEMBERS INCIDENCE

id GIVE COORDINATE OF JOINTS

cord =

[N I

B o NOo
NKHoOo

id GIVE FREEDOMS OF JOINTS

freet =

W
oo R R
oo R R

oo R R
—_—

Figure 118: Input Phase, Step 2, Geometry Data Input
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4 » M 4of 19

PROPERTIES AND MATERIAL INPUT

i3 INPUT THE MOMENTD OF INTERIA OF MEMBERS

Ii = Table[1l, {k, 1, m}]; |

i3 INPUT THE AREA OF MEMBERS

|a= Table[1000, {k, 1, m}] |

i3 INPUT THE MODULUS OF ELASTICITY

|Ee= 1; |

Figure 119: Input Phase, Step 3, Properties and Materials Input

M4 M Sof 19

ERES I ¢ saT s TeNDERITNNNNSSY < 00 e
LOADS DATA INPUT
¥ GIVE FORCE APPLIED AT THE JOINTS

applfres =

o
QO r OO
O O 0o

BW N e
Q

4 GIVE THE FIXED END FORCE

Figure 120: Input Phase, Step 4, Load Data Input
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€4 6of19

GRAPHICAL SHAPE

3 CMPUTER CODES

L4 SHAPE OF FRAME

Show[sawgraphl, sawgraph2, AspectRatio - Automatic, PlotRange - All,
ImageSize - 350]

Figure 121: Shape of Frame

M4 r of 19

EQULIBRIUM EQUATIONS

L CMPUTER CODES

4 EQUILIBRIUM EQUATIONS

Print["E = ", MatrixForm[s5]]
0. -1. 0. 0. 0. 0. -0.707107 0.707107 O.
1. 0. 0. 0. 0. 0. -0.707107 -0.707107 O.
B = o. 0. 1. 0. 0. 0. 0. -1.41421 -1.
0. 0. 0. -0.447214 -0.85%4427%7 0. 0.707107 -0.707107 O.
0. 0. 0. 0.8%4427 -0.447z14 0. 0.707107 0.707107 0.
o. 0. 0. 0. -Z2.23607 -1. 0. 0. 1.

Dimensions[s]

16, 3%

Figure 122: Calculation Phase, Stepl, Equilibrium Equations
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4 M 7of 18

EQULIBRIUM EQUATIONS

L3 CMPUTER CODES

L EQUILIBRIUM EQUATIONS

A8 MATRIX PLOT

MatrixPlot[S, FrameTicks » None, Mesh > True, MaxPlotPoints - Infinity, ImageSize > 450]

Figure 123: Calculation Phase, Stepl, Matrix Plot of Equilibrium Equations [B] ¢x9

4 gof19
UNCONNECTED FLEXIBILTY MATRIX
(3 COMPUTER CODES
A8l FLEXIBILTY MATRIX
Print['¢ = ", MatrixForm|[F]] |
0.001 0. 0. 0. 0. 0. 0. 0. 0.
0 0.333323 0.5 0. 0. 0. 0. 0. 0.
0 0.5 1. 0. 0. 0. 0. 0. 0.
0 0. 0. 0.00223607 0. 0. 0. 0. 0.
G = 0. 0. 0. 0. 3.72678 2.5 0. 0. 0.
0. 0. 0. 0. 2.5 2.23607 0. 0. 0.
0 0. 0. 0. 0. 0. 0.00141421 0. 0.
0 0. 0. 0. 0. 0. 0. 0.942809% 1.
0 0. 0. 0. 0. 0. 0. 1. 1.41421

Dimensions|[F]

{9 %}

Figure 124: Calculation Phase, Step2, Unconnected Flexibility Matrix
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[ 4 » ¥ 3of19

UNCONNECTED FLEXIBILTY MATRIX

L COMPUTER CODES

L@ FLEXIBILTY MATRIX

Al MATRIX PLOT

MatrixPlot|[F, FrameTicks —+ Hone, Mesh - True, MaxPlotPoints - Infinity, ImageSize > 450]

Figure 125: Calculation Phase, Step2, Matrix Plot of Unconnected Flexibility Matrix
[G] o9

oAb 9ef1

Ll NULL SPACE OF EQUILIBRIUM EQUATIONS

lsp = Mullipace[];
Peint["0 = ", HatrikBem[nlsp]]
0.368361 -0,187697 0.319643 -0.245532 0.332617 -0.604776 0.393192 0.127749 0.138978

0.199234 0.260861 0.633237 -0.294661 -0.144221 0.43569 -0.043377 0.323336 0.173202J
-0.16152 -0,324122 0.196037 0.307308 0.208725 0.234935 0.100835 -0.357542 0.701679

[=

DIimensions [nlsp)

kIR

Figure 126: Calculation Phase, Step3, Compatibility Matrix
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DTN o U TV, - o ad e

(g COMPATIBILITY CONDITIONS

Al COMPATIBILITY CONDITIONS

ee=nlsp F;
Prant["00 = ", HatrixFom[cc]]
{0.000368361 0.0972557 0.225794 -0,000549025 -0.272349 -0.520778 0.000556058 0.259421 0.324294]
i &

0.000199234 0.403002 0.783727 -0.00065932% 0.701743 0.747544 -0.0000616272 0.479932 0.570251
-0.00018152 -0.0000219 0.0339764 0.000687161 1.36526  1.04719  0.000142602 0.364584 0.634781

Dimensions[aa]

# %

Figure 127: Calculation Phase, Step4, Compatibility Matrix

M4 100f 19

[d COMPATIEILITY CONDITIONS

Ll COMPATIBILITY CONDITIONS

Al MATRIX PLOT

MatrixPlot[cc, FrameTicks — Hone, Mesh + True, MaxPlotPoints + Infinity, ImageSize » 450]

Figure 128: Calculation Phase, Step4, Matrix Plot of Compatibility Conditions [CC]

3x9
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NN » so e TOTDERIIRGY . o o O o e

COUPLE THE EQUILIBRIUM EQUATIONS WITH COMPATIBILITY CONDITIONS

COUPLE THE EQUILIERIUM EQUATIONS WITH COMPATIEILITY CONDITIONS

ifm = Join[§, =e]; ‘

Print["¢ = ", HatrixFom[ifn]]
0. -1. a. a. 0. a. -0.707107 0.707107 0.

1. 0 0. 0. 0. 0. -0,707107  -0.707107 0.

0. 0 i, 0. 0. 0. 0. -1.41421 -1.

0. 0 a. -0.447214  -0.894427 a. 0.707107 -0.707107 0.

g e 0. 0. 0. 0.694427  -0.447214 0. 0.707107 0.707107 0.
0. 0. 1} 1} -2.23607 -1 0 1} 1

0.000368361 0.0972557 0.225794 -0.000543025 -0.272349 -0.520778 0.000556055  0.259421 0.324294
0.000199234  0.403602  0.763727 -0.000659328 0.701745 0.7475844 -0.0000616272 0.479832 0.570261
-0.00016152 -0.0100219 0.0338784 0.000687161 1.38526  1.04719  0.000142602  0.364584 0.634761

Dimensions [1fn]

{9. 9}

Figure 129: Calculation Phase, Step5, Coupled Equilibrium Equations with
Compatibility Conditions

M4k 110f 19

COUPLE THE EQUILIERIUM EQUATIONS WITH COMPATIBILITY CONDITIONS
-
.

MatrixPlot[ifm, FrameTicks - Hone, Mesh - True, MaxPlotPoints - Infinity, ImageSize - 450]

Figure 130: Calculation Phase, StepS, Matrix Plot of Coupled Equilibrium Equations
with Compatibility Conditions [S] 9«9
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Ll
FORM THE JOINT LOAD VECTOR

>
v

JOINT LOAD VECTOR

| Print["Joint Loads = ", MatrixForm[P]] |
0.
1.
Joint Loads = B
0.5
0.
0.

Dimensions|[P]

{é, 13

Figure 131: Calculation Phase, Step6, Form Joint Load Vector

4 1530f18

FORM THE FIXED FORCE

(3 COMPUTER CODES

-

Print["Fixed End Forces = ", MatrixForm|[Ffixed]] |

Fixed End Forces =

o oo o oo

Dimensions [Ffixed]

{&, 1}

Figure 132: Calculation Phase, Step7, Form Fixed End Forces
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\d CALCULATE THE DEGREE OF INDETERMINACY

di = 3xm + rest - 3 xnoden ‘

L4 CREATE THE FINAL LOADS

| m

initial = Table[0., {sr, 1, di}, {sc, 1, 1}];
Pact = Join[P, initial];

Fact = Join[Ffixed, initial];

Pfinal = Pact - Fact;

Print[" P"= ", MatrixForm[Pfinal]]

o
)
I
coooooloro

Dimensions[Pfinal]

2 1%

Figure 133: Calculation Phase, Step 8, Combined Joint Load Vector with Fixed End
Forces

4 r 150f 19

A4 FIND THE INDEPENDENT FORCES

indFres = LinearSolve[ifm, Pfinal];

Print[" F = ", MatrixForm[indFrocs]]

1.4030¢
-0.252694
0.100328
-0.471108

7 = -0.040542
0.041508¢6
0.46365
0.106326
-0.0500405

Dimensions|[indFrcs]|

{3, 1}

Figure 134: Calculation Phase, Step 9, Solve for Independent Forces
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160f 1t

CALCULATE DISPLACEMENTS

L COMPUTER CODES

Al NODAL DISPLACEMENTS

Dol

Print|['"node ", i, " ", "displacements =",

v v, MatrixForm[Disp[[i]]]].
{i, 1, noden}]

0.
v node 1 displacements = {OJ
0.
0.
node 2 displacements = [OJ
@5
0.03240676
node 3 displacements = {0.00140306
-0.0260155
0.0250505
node 4 displacements = [0.0113475]
0.005538%

Figure 135: Reporting Results Phase, stepl, Nodal Displacements of each node

4 4 » ¥ 170f 19
RTINS ¢ sa” s TONESI NS <. 00002020 o e o oindV TSRS TN
~

CALCULATE MEMBER END FORCE

>
L4 MEMBER END FORCES IN LOCAL COORINATES
Dol

Print['member ", i, "

, "endforces', " ', MatrixForm[endfres[[i]]]].
{i, 1, m}]

-1.403086
0.252694
0.1523&7

v member 1 endforces 1. 40306
-0.2526594
0.100328
0.471108
0.040542
0.0500405

member 2 endforces _0.471108
-0.040%42
0.0415086
-0.46369
-0.108326
-0.100328

member 3 endforces 0. 46360
0.106326
—-0.0500405

Figure 136: Reporting Results Phase, step2, Member End Forces in Local Coordinafé
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reaction x= -0.252694
reaction y= -1.40306
moment z= 0.1523467
member 1 react x 1
member 1 react v 1
member 1 react z 1
reaction x= -0.247306
reaction y= 0.403062
moment z= 0.0415086
member 2 react x 2
member 2 react yoo2

member 2 react z 2

Figure 137: Reporting Results Phase, step3, Support Reactions
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AFD...... nenber 2

Ixial Force Function N= -1.40308 )
Axigl Force Function H= 0.471108

[E]

wa

wwwwww

SFD. . memher 1
Shear Punction W= 0.252694

SFD...... nenber 2
shear Function V= 0.040942

BMD...... neuber 2
Moment Function M= -0.152367 +0.232004x Nowent Function M= -0.0415086 + 0.040942 %

LE]

(K]

[

FEEEEEEFTEELE LR T LT LT R LTS
FTEEEEEE LA b r b r Lk R LT LT AL

Figure 138: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 1, 2
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AFD...... member 3
Axial Force Punction HN= -0.45369

SFD...... member 3
Shear Function W= -0.l0832Z6

EMD...... member 3
Moment Function M= 0.1003235 - 0.106326 X

e o o o o o o e o e e e e e gk o o o o

Figure 139: Reporting Results Phase, step4, Axial Force, Shear Force and Bending
Moment Diagrams of member 3
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B e E R0 F 223 E 525533
Pe=sult=s of Structural Analysis
SRR EES

General Information:
Structure Analyzed a=s: Planar Frame
hnaly=sis=s Type: Firstc-0Order Elastic
Analytical BResults:
[ Displacements at Step # 1, Applied Load RBatio = 1.0004

Deflections

Node H-di=p T—-dis=sp E2-di=sp
1 O._0000e+000 O._000de+000 0. 0000e+000
2 O._0000e+000 O._000de+000 0. 0000e+000
3 3.4068=-002 1.4031e-003 0. 0000e+000
E! Z.E0EBle-00Z 1.134%e-00Z2 0. 0000e+000

Botations (radians)

Node H-rot T—-rot E2—rot
1 O.0000e+000 O._0000e+000 o.ooade+000
Z O.0000e+000 O._0000e+000 o.ooade+000
3 O._0000e+000 O._000de+000 -Z_&601%e-002
4 O._0000e+000 O._000de+000 9 _E838%e-003

Figure 140: Final results of Example 4 from Mastan2 v 3.2 (Displacements)

fidig Element PBesults at Step # 1,

Applied Load Batio = 10000

Internal End Forces [(Note: PBefers to local coordinates)

Element MNode Fx Fv Fz
1 1 -1.4021=+000 Z.EZg2e-001 0O._.0000e+000
3 1.4031=+000 —-Z_E5EZ6%9e-001 O._.0000e+000
z 4 4_711le-001 4_0947e-002 O._000de+000
Z -4_711lle-001 -4 _034Z=-00Z O.0000e+000
2 2 -4 _53&9=-001 -1.0&23=-001 0O._.0000e+000
4 4_6369=-001 1.0633e-001 O._.0000e+000
Internal End Moments (Mote: BRefers to local coordinates)
Element Node Mx M M= E
1 1 0. 0000e+000 0. 0000e+000 1_E237e-001 0. 0000
3 0. 0000e+000 0. 0000e+000 1.0033=e-001 0. 0000
Z 4 0. 00d0e+000 0. 00d0e+000 L. 0040e-00Z 0. 0000
2 o.ooode+000 o.ooode+000 4_1E502e=-002 0. 0000
3 3 0. 0000e+000 0. 0000e+000 -1.0033e-001 0. 0000
4 0. 0000e+000 0. 0000e+000 -5.0040=-002 0. 0000

{iii) Beactions at Step # 1, Applied Load RBatio = 1.0000

Forces
Node Bx B b=
1 —Z.EZ69=-001 —-1l.4031=+000 FREE
z -Z.4731e-001 4_030&=e-001 FREE
Moments=s
Node Mx M+ M=
1 FREE FREE 1.E523%7e-001
Z FREE FREE 4_ 1E09=-00Z2

SEESSHHFEE S GHIEA S HISHEH S HSIHHEHH 5
End of Results of Structural Analysis
EEE SRS SRS F IR R S
Figure 141: Final results of Example 4 from Mastan2 v 3.2 (Element Results and

Reactions)
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6.5.1 Comparison Results:

The results obtained from Integrated Force Method Analysis Package and Mastan2 v
3.2 [17] and the result obtained from reference [12] are compared and all the
diagrams and the numerical results are agree fully.

6.6 Summary

In this chapter four examples have been presented in order to illustrate the usage of

Analysis Packages and the results are compared with Mastan2 v 3.2 [17] results.
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Chapter 7

CONCLUSION

7.1 Conclusion

Coplanar rigid frames have been analyzed using the Integrated Force Method, where,
the process of selection of redundants is not required and independent internal forces
for the structural design process is determined for all the members in only one
solution process. Thus the Integrated Force Method provides considerable advantage
in the design of large scale structures like in the aeronautical industry and in the
design of steel structures. IFM’s advantages [3] over the Stiffness Method (SM) have
been documented, including accurate stress results, a well-conditional system for
finite element discrete analysis, fast convergence to correct solutions The Integrated
Force Method can also be extended to nonlinear structural analysis [19] and

optimization problems [21].

The second method used to analyze coplanar rigid frames is the Dual Integrated
Force Method, IFMD, which is essentially a displacement method. In IFMD, only
the equilibrium matrix and the unconnected stiffness matrix of the structure are used
to generate the global stiffness matrix of the structure. Thus there is no need to write
lengthy and complex computer programs to generate global stiffness matrix of the
structure. The global stiffness matrix of the structure in IFMD is obtained by simple

programming using computer algebra system Mathematica7. Therefore in the
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analysis of skeletal structures it is very advantageous to use the Dual Integrated

Force Method.

In this thesis three analysis packages for indeterminate rigid frame have been
developed. The two main methods used are

1) Integrated Force Method

2) Dual Integrated Force Method
Two of the packages use the IFM and the compatibility matrices were obtained by
using the Null space of the equilibrium matrix, and Singular Value Decomposition of
the equilibrium matrix. The third package employed the Dual Integrated Force
Method. Various problems have been analyzed by these three packages and the
results have been compared with the results form Mastan2 v3.2. [17] .all the results

are fully agree.
7.2 Summary of Contributions

Three analysis packages have been developed and strategy of this development
produced the following specific characteristics:

1) Easy to use: there is no need to read any manual.

2) Simple: analysis packages are easy to run.

3) Transparent Theory: the theory is explained at each step.

4) Chasing Variables: Step by Step calculations make it easy to follow the

values of variables.
5) Flexible: It is possible to change its utility.
6) Educational: It is an opportunity for students to learn at their own pace.

7) Accessible: It is available for students, instructors, researchers and engineers
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without any restriction.

7.4 Future Research

For future work the following items are recommended:

a. Develop analysis for space frames and space trusses.

b. Develop analysis considering nonlinear theories.

c. Make programs running on the web pages and make more accessible.

d. Include support settlements, initial deformations and temperature
differentials.

e. Incorporate different types of distributed loading into the analysis
packages.

f. Investigation of the conditioning of the main IFM matrix. As the
number of members gets larger the condition number of the IFM

matrix may worsen leading to inaccurate results.
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Computer Codes
This chapter presents the Mathematica Computer Codes to generated the methods
which

were explained in chapter 2.

a) Computer Codes for Integrated Force Method are included as follows:

lines = {}; lemgth = {};
Do[
nodel = inc[[1, 2]]:
node? = inc[[i, 3]11;
px = cord[[nodel, 2]]:
p¥ = cord[[nodel, 3]1]:
gqx = cord[ [node?, 2]]:
q¥ = cord[[node?, 3]1]:
len = Sqrt[{gx - px} "2 + {4y - p¥) "2];
sawline = Line [{{px, p¥}, {ux, av}}]:
lines = AppendTo[lines, sawline]:
length = AppendTo[length, len];
{1, 1, m}l:
sawyraphl = Graphics[{AhsoluteThickness[3], lines}]:
GrSt = Max[length] 7 40;
Fixedl[x , v ]:={
Table[Line[{{x + (Hsh - 2} xGrSt, v - 2+6GrSt}, {x + Hsh»GrSt, v - 0.5 «GrSt1)], {Hsh, -4, 411,
Line[{{x -4 +GrSt, v - 0.5 +6rSt), {x +1«6rSt, v - .5+6Grst11]
IE
Fixed2[x , ¥ ] :={
Table[Line [{{x + (Hsh - 2} *GrSt, v + 2+GrSt}, {x + Hsh+GrSt, v + 0.5 «GrSt1}], {Hsh, -4, 4}],
Line[{{x -4 +GrSt, v+ 1+0r5t}, {x+4+6r5t, v+ .5+Gr5t}}]
IH
simplei[x , v ]:=1{
Line[{{x - 2~GrSt, v - 3.9~06rSt}, {x, v}, {x+ 2+6r5t, v-3.9+0r5t}, {x- 2#6r5t, v - 3.9+6rSE}}],
Table[Line[{{x + (Hsh - 1) #Gr5St, ¥ - 4.5 #Gr5tY, {x + Hsh+Gr5t, ¥ - 3.5+G6r5t3}], {Hsh, -3, 3}],
Line[{{x - 3+6GrSt, v - 3.5 +6r5t), {x + 3+«6rSt, v - 3.5+6r5t1}]

3

Figure 142: Computer Codes for Graphical Shape of Frame
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Simple2[x , ¥ ] :={
Line[{{x-2+GrSt, v+ 3.9«0x5t}, {x, v}, {x+2+6rSt, v+ 3.5+6rSt)Y, {x-2+GxSt, v+ 3.5+6Gr5E}}],
Table[Line[{{x + (Hsh - 1) »GxSt, ¥ +4.5«Gr5t}, {x + Hsh+Gr5t, v+ 3.9«06xr5t}}], {Hsh, -3, 3}]1,
Line[{{x -3»GrSt, v+ 3.9«0r5t}, {x+ I»0r5t, v+ 3.90r58)}]
IH
Rollerif[x , ¥ ] :={
Line[{{x - 2+Gr5t, v - 3.9«6r5t}, {x, v}, {x+2+6rSt, v-3.5+Gr5St}, {x- 2+6GrSt, v-3.5+6Gr5E1}],
Table[Cirvcle[{x + Hsh«Gr5t, v -4 +6r5t}, .9 «GrSt], {Hsh, -1, 1}]1,
Line[{{x -3+GrSt, v -4.9+«Gr5t}, {x+ 3+Gr5t, v -4.5+«G6r5t}}]
i
Roller2[x , ¥ ] :={
Line[{{x-2+GrSt, v+ 3.9«0x5t}, {x, v}, {x+2+6rSt, v+ 3.5+6rSt)Y, {x-2+GxSt, v+ 3.5+6Gr5E}}],
Table[Circle[{x + Hsh«»Gr5t, ¥ + 4+ Gr5t}, .9 «Gr5t], {Hsh, -1, 1}],
Line[{{x -3»GrS5t, v +4.9«0r5t}, {x+ I»0r5t, v +4.95«06r5t})}]
IH
sawsuport = {};
Do[
If[
freet[[1, 2]] == 1 A freet[[i, 3]] == 1 A freet[[i, 4]] - 1 Acord[[i, 3]] == Min[cord[[#11, 3]1]].,
sawsuport = AppendTo[sawsuport , Fixedl[cord[[i, 2]], cord[[1, 31111
I
If[
freet[[i, 2]] == 1 A freet[[i, 3]1] = 1 A freet[[i, 4]1] -- 1 Acoxrd[[i, 3]] -- Max[cord[[A11, 3]1]].
zawsuport = AppendTo[zav=uport , Fixed? [cord[[1i, 2]1]. cord[[i, 31111
1:
If[
freet[[i, 2]] == 0 A freet[[i, 3]1] == 1 A freet[[i, 4]] == 1 Acoxrd[[i, 3]] == Min[cord[[A11, 3]]].
zawsuport = hppendTo[sawsuport , Simplel[cord[[i, 2]1], cord[[i, 31111

Figure 143: Computer Codes for Graphical Shape of Frame (continued)
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freet[[i, 2]1] -- 1 A freet[[i, 311 =- 0 A freet[[i, 411 - 1 Acord[[i, 3]1] -
sawsuport = AppendTo[sawsuport , Simplel[cord[[i, 2]1], cord[[i, 31111

1:

£[

freet[[i, 211 == 1 Afreet[[i, 31] == L A freet[[i, 411 == 0 Acord[[i, 31] -
sawsuport = AppendTo[sawsuport, Simplel[cord[[i, 2]1], cord[[i, 31111

1:

If[

freet[[i, 211 == 0 A freet[[i, 311 == L A freet[[i, 411 == 1 Acord[[i, 31] ==

sawsuport = AppendTo[=awsuport , Simple2[cord[[1, 2]], cord[[1, 31111
1:
£f[
freet[[i, 211 == 1 A freet[[i, 31] == 0 A freet[[i,; 4]1] == 1 Acord[[i, 3]1] ==
sawsuport = AppendTo[=awsuport , Simple2[cord[[1, 2]], cord[[1, 31111
1:
If[
freet[[i, 2] == 1 A freet[[i, 3]1] == L A freet[[i, 4]1] == 0 Acord[[i, 3]1] --
sawsuport = AppendTo[sawsuport, Simple? [cord[[1, 2]], cord[[1, 31111
1:
If[
freet[[i, 2]1] == 1 A freet[[i, 3]1] == 0 A freet[[i, 4]1] == 0 Acord[[i, 3]1] --
sawsuport = AppendTo[sawsuport, Roller1[cord[[i, 2]], cord[[1, 31111
1:
[
freet[[i, 211 == 0 A freet[[i, 3]1] == L A freet[[i, 4]] == 0 Acord[[i, 3]1] --
sawsuport = AppendTo[=zavwsuport , Roller1[cord[[1i, 2]1], cord[[1i, 31111
1:

Hin[cord[[A11, 3]111,

Min[cord[[Al1l, 3111-

Max[cord[[A11, 3111,

Max[cord[[Al1l, 3111-

Max[cord[[Al11l, 3111-

Min[cord[[A11l, 3111-

Min[cord[[All, 3111-

Figure 144: Computer Codes for Graphical Shape of Frame (continued)
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If[

freet[[1, 2]1] =- 0 A freet[[1, 3]1] == 0 A Ereet[[1i, 4]1] = 1 Acord[[i, 3]1] =-

sawsuport = AppendTo[sawsuport, Rollerl[cord[[1i, 2]1], cord[[i, 3111]
1:
If[

freet[[i, 2]] :: L A freet[[i, 3]1] == 0 A freet[[i, 4]] == 0 Acord[[i, 3]1] --

sawsuport = AppendTo[sawsuport, Roller?[cord[[1, 2]1], cord[[i, 3]111]
I:

freet[[1, 2]] == 0 A freet[[i, 3]1] == 1 A freet[[i, 4]1] == 0 Acord[[i, 3]1] --

sawsuport = fppendTo[sawsuport , Roller2[cord[[1, 211, cord[[i, 31111
I:
If[

freet[[1, 2]] == 0 A freet[[i, 3]1] == O A freet[[i, 4]] == 1 Acord[[i, 3]1] --

sawsuport = AppendTo[sawsuport, Roller?[cord[[1, 2]1], cord[[i, 3]111]

1.
{i, 1, noden}]:

sawnyraph? = Graphics[{AbsoluteThicknes=s[1], REBColox [0, 0, 1], sawsuport}];

Grno = Max[length] 7 300;

Min[cord[[R11, 3111,

Max[cord[[A11, 3111,

Max[cord[[A11, 3111,

Max[cord[[A11, 3111,

Show[=awyraphl, sawyraph?, hspectBatio — hutomatic, PlotRange — All, ImageSize — 350]

Figure 145: Computer Codes for Graphical Shape of Frame (continued)

160




Show[sawyraphl, sawyraph?, AspectRatio — futomatic, PlotRange - Al1l, ImageSize — 350]

elnumbering = {};
Do[

nodel = inc[[i, 2]]:

node? = inc[[i, 3]1];

px = cord[[nodel, 2]1;

pY = cord[[nodel, 311:

i = cord[[node2, 21];

iy = cord[[node2, 3]1];

elnum = Text [ToString[i], {{Fpx+qx) f4 + 12+0Crno, (3py+uay) f4 + 1 v Grno}];
elnmbering = AppendTo [elnumbering, elnum]

1,1, m}

Ii

savyraphd = Graphics[{RGBColox [0, 0, 1], elnumbering}]:
Grnod = Max[length] f 200;

nodenumbering = { }:

Do[
nodenum = Text [ToString[p], {{cord[[p, 211} + 8 +Grnod, cord[[p, 31] + 10 «Grnod}];
nodenumbering = AppendTo [nodenumbering, nodenum]
« {0, 1, noden}];

savyraphd = Graphics[{AbsoluteThickness[8], R6BColor[1, 0, 1], nodenumbering}]:

Show[sawyraphl, sawyraph?, sawmraph3, sawmyraphd, AspectRatio — futomatic, FlotRange - A11, ImageSize — 350]

Figure 146: Computer Codes for Graphical Shape of Frame (continued)
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OEf [General:z:spell]

Lmem = {}:

bogmem = {};

bmem = {}:

tmem = {};

Dfmem = { };

Fimem = { };

meme = {};

OEf [General:z:spell]
Du[

minch = inc[[i, 2]1];
mince = inc[[i, 3]1]:
dtabl = {3rminch - 2, 3rminch - 1, 3 rminch,

Jremince -2, 3omince -1, 3rvmince};
¥d = cord[[mince, 2]] - cord[[minch, 2]]:
¥ = cord[[mince, 3]] - cord[[minch, 3]1]:
If[freet[[minch, 2]] == 1, ReplacePart[dtahl, 0, 1]];
If[freet[[minch, 3]] -- 1, ReplacePart [dtabhl, 0, 2]1]:
If[freet[[minch, 4]] == 1, ReplacePart [dtabl, 0, 3]1]:
If[freet[[mince, 2]] == 1, ReplacePart[dtahl, 0, 4]]:
If[freet[[mince, 3]] == 1, ReplacePart[dtahl, 0, 5]1];
If[freet[[mince, 4]] == 1, ReplacePart[dtahl, 0, 6]1]:
Lm = Sgrt [xd® + ya®];

CC =

35 =

5|2 5|

& = AircCo=[CC];
TppendTo[mem? . 8] ;

Figure 147: Computer Codes for generating Equilibrium Equations [B]
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“1.| 0 | O

0 |-1. | 0

0 |-Lm|-1
b=\97T9 10 |

0 |[1. |0

0 | 0 |1.

CC|-SS (0. |0.| 0. |0
Ss|cC (0. 0. | 0. |0
e (O[T oo 0. |
“|0. 0. |0.|cC|-55 0. |
0. | 0. |0. 55| CC |0
0.|0. |0.0. 0. |1

hg:t.h:

AppendTo[bmem, h]:
AppendTo[Lmem, Lm];
AppendTo[tmem, t];
AppendTo [bomem , ba]:

0.
W[[i]]+Llm
z.
W [4]]+Lne
12.
0.
W[[i]]+Lm
z.

0f =

_ w[[i]]+lmd
1z

Ff = t.0f:
IppendTo[Ffmen, F£];
AppendTo[0Dfmem, 0£];
Cfi, 1, m}]:

Figure 148: Computer Codes for generating Equilibrium Equations (continued)
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rest = 0;

Do[If[freet[[1i, 2]1] == 1, rest = rest + 1];

If[freet[[1i, 3]1] == 1, rest = rest + 1]:
If[freet[[1, 4]] == 1, rest = rest + 1],
{i, 1, noden}]

dof = Table[jj, {37, 1, 3vnoden}]:

Clear[kk]

kk = 0;

Do[
cjl=3»i-2;
cj2 = 3w%i-1;
cj3F=3«i;
If[freet[[i, 2]] == 1, dof[[3»i - 2]] = 0];:
If[freet[[i, 2]]1 == 0, kk =Kk + 1]:
If[freet[[i, 2]] == 0, dof[[3»i - 2]] = kk]:
If[freet[[i, 311 == 1, dof[[3»i - 1]1] = 0];
If[freet[[i, 3]] -0, kk = kk + 1]:
If[freet[[i, 311 == 0, dof[[3 i - 1]1] = kK];
If[freet[[i, 4]] == 1, dof[[3#i]] = 0]:
If[freet[[i, 4]]1 == 0, kk =kk + 1];
If[freet[[i, 471 -0, dof[[3+i]] = kk],

Figure 149: Computer Codes for generating Equilibrium Equations (continued)
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S =Table[D., {sr, 1, Jxnoden -rest}, {sc, 1, 3~m}]:
mi = 0;
Dol

nodel =inc[[i, 2]1]:

node? =inc[[i, 3]1]:

kl = 3 xnodel - 2;

k2 = 3rxnodel - 1;

k3 = 3rnodel;

mi = mi +1;
cl=3+~mi-2;

c2 =3F+mi-1;
c3=3J~mi;

ki = 3xnode? - 2;
k5 = 3rxnode? - 1;
kb = 3 vnode?;
kcl = dof[[k1]1]:
kc? = dof[[k2]]:
kc3i = dof[[k3]1]:
kcd = dof[[k4]1]:
kch = dof[[k5]1]:
kot = dof[[k6]]:

Figure 150: Computer Codes for generating Equilibrium Equations (continued)

If[kcl # 0, S[[kcl, c11] = 5[[kcl, c11] + bgmem[[i110[1, 1111;
If[kcl £ 0, S[[kcl, c2]] =5[[kcl, c2]] + bgmem[[1]][[1, 2111
If[kcl =0, S[[kcl, c3]1] =5[[kcl, c3]1] + bgmem[[1]1]1L[1, 3111
If[kc2 0, S[[kc2, c1]] =5[[kc2, c1]] + bgmem[[1]][[2, 1111
If[kc2 £ 0, S[[kc2, c2]] = 5[[kc2, c21] + bamem[[11100[2, 2111:
If[kc? £ 0, S[[kc2, c31] = S[[kc2, c31] + bamem[[i110[2, 3111;
If[kc3 0, S[[kc3, c1]] =5[[kc3, c1]] + bgmem[[1]][[3, 1111
If[kc3 0, S[[kc3, c2]] =5[[kc3, c2]] + bgmem[[1]1]L[3, 2111
If[kc3 0, S[[kc3, c3]] =5[[kc3, c3]1] + bgmem[[1]1]L[3, 3111
Tflked =0, 51Tkecd, £1]] =5[ked, £1]] + gmem[Ti31114, 1713;
If[kcd =0, S[[kcd, c21] = S[[kcd, c21] + bomen[[Li11[[4, 2111;
Tf[kcd 0, S[[kcd, c3]] =5[[kcd, c3]] + bgmem[[i]]1[[4, 3111
TE[kch =0, S[[kch, c1]] = 5[[kch, c1]] + bgmem[[i]1]1[[5, 1111
TE[kch =0, S[[kch, c2]] = 5[[kc, c2]] + bgmem[[1]1]1[[5, 2111
TE[kch =0, S[[kch, c3]] =S5[[kch, c3]1] + bgmem[[1]1]1 L[5, 3111
If[kct # 0, S[[kct, c1]1] = S[[kcé, c11] + bymem[[1]11[[6. 111]1:
If[kct = 0, S[[kct, c2]1] = 5[[kct, c21] + bomem[[1110[6, 2111:
Tf[kct =0, S[[kct, c3]] = 5[[kct, c3]] + bgmem[[1]11[[6, 3111~
fi, 1, m}];
Print["EE = ", MatrixForm[5]]
MatrixPlot[5, FrameTicks — Hone, Mesh — True, MaxPlotPoints — Infinity, ImageSize — 450]

Figure 151: Computer Codes for generating Equilibrium Equations (continued)
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F =Tablel[D., f=x, 1, F3~rm}, f=c, 1, T ~m}]:

mi = 0;

Dn[
nodel = inc[[i, 21]1:

node? =inc[[i, 311:

El = Fwmodeld — 2;

kK2 = 3 »noded - 1;

k¥ = 3 »muodeld;

mi = md + 1;

Ccl =3F»~mid — 2}

Cc2 = F-md — 17

3 = T omd;

kKt = 3 rmuode2 — 2;

K3 = 3 rmode2 — 1;

kK6 = 3 rmuode2;

kcl =dof[[k1]1]1:
kCc? = dof[[k2]1]:
kCcF =dof[[kK3]1]1:
kcd = dof[[k42]1]1:
kCch = dof[[kK5]1]:
kot = dof[[k6]1]:
LamnEamn i
Flexl = —[[1]] H
alfl[i]1] = Ee
Lmem [ [ 3
Flex? = < (11> H
F. =Ee=Ti[[i]1]
Lanemn i
Flex3 = < (11 H
Ee«<Ti[[il1]
Lamem [ [ 2
flexd — { CLZ11>

2. «Ee«Ti[[i]1] .

Figure 152: Computer Codes for generating Unconnected Flexibility Matrix [G]
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flexl I} 0
fm = 0 flex? |flexd |:
I} flexd |flex3

F[[c1, c1]] =F[[cl, c1]] + fm[[1, 1]]:
F[[cz, c2]] =F[[cZ, c2]] + fm[[2, 2]]:
F[[c3, c3]1]1 = F[[c3, c3]1]1 + tm[[3, 3]1];
F[[c?,c2+1]] =F[[c?, c?2 +1]] + Em[[2, 3]]:
F[[c3, c3-1]1] =F[[c3, c3-1]] + Em[[3, 2]]:
(1,1, m:
Print["G = ", MatrixForm[F]]
HatrixPlot[F, FrameTicks — Hone, Mesh — True, MaxPlotPoints — Infinity, ImageSize — 450]

Figure 153: Computer Codes for generating Unconnected Flexibility Matrix
(continued)

nlsp = HullSpace[5];
Print["null space = ", MatrixForm[nlsp]l]

Figure 154: Computer Codes for generating Compatibility Matrix [C]

cC = nlsp.F;
Print["cc = ", MatrixForm[cc]]
MatrixPlot [cc, FrameTicks — Hone, Mesh — True, MaxPlotPoints — Infinity, ImageSize — 450]

Figure 155: Computer Codes for generating Compatibility Conditions [CC]

ifm = Join[S, cc]:
Print["ifm = ", MatrixForm[ifm]]
MatrixPlot[ifm, FrameTicks — Hone, Mesh — True, MaxPlotPoints — Infinity, ImageSize — 450]

Figure 156: Computer Codes for Coupling [B] and [CC]
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Ffixed = Table[0., {sr, 1, 3 vrnoden -rest}, {sc, 1, 1}]:

mi = 0;

Do[

nodel = inc[[i, 2]1];

node? = inc[[i, 311;

k1l = 3»nodel - 2;

k2 = 3»xnodel - 1;

k3 = 3 »nodel;

mi=mi+ 1;

cl=3»mi-2;

c2=3»mi-1;

cI=3F~mi;

k4 = 3»node? - 2;

kS = 3»node? - 1;

k6 = 3»node?;

kcl = dof[[k1]]:

kc? = dof[[k2]];

kc3 = dof[[k3]1];

kcd = dof[[k4]1];

kch = dof[[k5]];

kct = dof[[k6]];

If[kcl # 0, Ffixed[[kcl, 1]] = Ffixed[[kcl, 1]] + FEmem[[i]]1[[1, 1]1]1]:
If[kc? 0, Ffixed[[kc?, 1]] = Fiixed[[kc2?, 1]] + FEimem[[i]1]1[[2, 1]11]:
If[kc3 =0, Ffixed[[kc3, 1]] = Ffixed[[kc3, 1]] + FEmem[[i]1]1[[3, 1]11]:
If[kcd # 0, Ffixed[[kcd, 1]] = Ffixed[[kcd, 1]] + Fimem[[i]1]1[[4. 1]11]:
If[kch = 0, Ffixed[[kchH, 1]] = Ffixed[[kc5, 1]] + FEmem[[i]1]1[[5, 1]11]:
If[kct # 0, Ffixed[[kcé, 1]] = Fiixed[[kcé, 1]] + FEimem[[i]1]1[[6, 1]11]:

,
{i,1, m}]
Print["Ffixed - ", MatrixForm[Ffixed]]

Figure 157: Computer Codes for Forming the Fixed End Forces
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P= Tahle[l]. s f=2r, 1, 3+«noden - rest}, f=c, 1, 1}]:
Do[kl=3+1i-2;

k2 =3+1-1;

k3 =3+1;

kcl = dof[[k1]];

kc? = dof[[k2]];

kci = dof[[k3]1];

Tf[kcl £ 0, P[[kcl, 1]] = P[[kcl, 1]] +applircs[[i, 2]1]1]:
Tf[kc2 =0, P[[kc2, 1]] = P[[kc2, 1]] + applfrcs[[i. 3111:
ITf[kc3 =0, P[[kc3, 1]] = P[[kc3, 1]] + applfrcs[[i, 4111
{i, 1, noden}]

Print[" P = ", MatrixForm[P]]

Figure 158: Computer Codes for Forming the Point Joint Load

di = 3xm +rest - 3 xnoden

Figure 159: Computer Codes for finding Degree of Indeterminacy

initial = Table[D., {=r, 1, di}, {=sc, 1, 1}]1;
Pact = Join[P, initial];

Fact - Join[Ffixed, initial];

Pfinal - Pact - Fact:

Print["final load - ", MatrixForm[Pfinal]]

Figure 160: Computer Codes for combining Point Joint Load and Fixed End Forces

indfrcs = LinearSolve[ifm, Pfinal];
Print ["independent forces = ", MatrixForm[indFrcs]]

Figure 161: Computer Codes for Solving Internal Forces [F]
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invIFH = Inverse[ifm]:
tinvIFM = Transpose [invIFM];
jd = Take[tinvIFH, 3 »noden - rest]:
tdis = Jd.F.indFrcs;
freet?2 = Tabhle[{0}, {i; 1, Frnoden}];
Do[

freet2[[3i -2, 1]] = freet[[1, 2]1];

freet2[[3i-1, 1]] = freet[[1i, 3]1];

freet2[[3i, 1]] = freet[[i, 4]1]:

41, 1, noden}]
Widis = Table[0., {i, 1, 3+noden}]:
Do[

{k=10;

Do[
Tf[freet?2[[j, 111 -0, {k=k+ 1, Tf[k=-i, Wdi=s[[j]] = tdi=s[[i]1]1]}]
43,1, 3«noden}]:

}

41, 1, 3+xnoden - rest}]
dizpla = Partition[Flatten[UWdi=s], 3]:

Disp = { };
Disp = { };
Du[
displa[[i, 1]]
Dis = | displa[[i, 2]1] ]:

fppendTo[Disp, Dis],
i, 1, nuden}]:
Do[
Print["node ", i, " ', "displacements =", " ', MatrixForm[Disp[[i]111]1.
fi, 1, noden}]

Figure 162: Computer Codes for Solving Nodal Displacements
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mend = 0;
endfrcs = {};
Du[
mend = mend + 1;
cml = 3vmend - 2;
cm? = 3xmend - 1;
cmd = 3 » mend;
indFres[[cmd, 1]]

endfrc = hmem[[1i]]. | indFrcs[[cm2, 1]] | + 0fmem[[1]]:
indFrcs[[cm3, 11]

ppendTo[endfrcs, endfrc],
ti, 1, m]:
rmend = 0;
glhendfrcs = {};
Du[
rmend = rmend + 1;
cml = 3 xrmend - 2;
cm? = 3xrmend - 1;
cm3 = 3 »rmend;

indFrcs[[cml, 11]
glhendfrc = bgmem[[1]]. [indFrc:s[[mz, 111 | + Fomem[[1i]1]:
indFres[[cm3,; 1]]

fppendTo [glbhendfrcs, glbendfrc],

i, 1, my:
Do[
Print["member ", i, " ", '"endforces"," ", MatrixForm[endfrcs[[1]]11].
{i, 1, m}]
Do[
Print["member ", i, " ", "glhendforces"," ", MatrixForm[glbendfrcs[[i]1]11].
{i, 1, m}]

Figure 163: Computer Codes for finding Member End Forces
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rmand = 0;
Do[

k2
k3 = 3vmodel;

Tl = rmmd + 1}

Ccl=3w«xrmmi - 2;
C2 = Fw«rmmd - 1;
c3 = Jwrmmi;

k1 = 3 vmode? - 2
k5 = 3vmode? - 1
kb = 3 vmode?;
kol =dof[[k1]1]:
kc? = dof[[k211:
ko3 = dof[[k311:
kcd = dof[[k4]1]1:
kc = dof[[k3]]:
kco = dof[[ke]]:

nodel = inc[[i, 211;
node? = inc[[i, 311:
k1= 3+model - 2;
3wnodel - 1;

Figure 164: Computer Codes for finding Reactions

If[kcl - 0, Print["reaction x=
If[kc2 == 0, Print["reaction y=
If[kc3 --

If[kcd == 0, Print["reaction x=
If[kch -z 0, Print["reaction ¥-
If[kcl :- 0, Print["member ", i,
If[kc? -- 0, Print["member ", i,
If[kc3 == 0, Print["member ", i,
If[kcd == 0, Print["member ", i,
If[kcT == 0, Print["member ", i,
If[kch == 0, Print["member ", i,
{i, 1, m}]

", glbendfres[[1]1]1[[1, 11111¢
", glbendfres[[1]110[2, 11111:

 Print["moment z= ", glbhendfres[[1]1]L0[3, 1111]:

", ylbendfrcs[[i110[4, 11111+
", glbendfres[[i11005, 11111:

react
react
react
react
react

react

X

0
0
0
0
0
If[kch == 0, Print["moment z= ", glbhendfrcs[[1]1]1L[6, 11111:
0
0
0
0
0
0

", nodel]]:
", nodel1]]:
", nodel]]:
", node2]];
", node2]]:
", node2]],

Figure 165: Computer Codes for finding Reactions (continued)
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vrfunc = {};

mnfunc = {}:

mexpl = { };

ndf = Flatten[endfrcs];
endfrcsT = Partition[ndf, 6];
Do [q1 - endfrosT[[i, 111;

nn = gl1;

vr=-o[[i]]=x+ endfrcsT[[1, 2]];
axx = endfresT[[i, 1]1]:

AppendTo [vriunc, vr];

*
mn = -e[[i]] = ? +endfrcsT[[i, 2]] =x -endfrcsT[[i, 3]1]:

AppendTo[mnfunc, mm];

mexp = Exponent [mm, x];

AppendTo[mexpL., mexp]:

axx = Plot[nn, {x, 0, Lmem[[i]]}, ImageSize — 250, Filling — fodis, PlotStyle - Directive[Blue, Thick], Frame — True,
GridLines — Automatic, GridLinesStyle — Directive [Orange, Dashed] , Background — Lighter[Yellow]]:

If[mem?[[i]] # 0., axor = Rotate [axx, memd[[1]11]]:

Print ["AFD...... member ", 1i]:

Print["fxial Force Function H= ", Chop[nn]];

Lf[memB[[1]] = 0., Print [axom]]:

If[mem@[[i]] == 0., Print[axx]];

sh = Plot[vv, {x, 0, Lmem[[1]]}, ImageSize - 250, Filling - Jods, PlotStyle — Directive[Blue, Thick], Frame — True,
Gridlines — hutomatic, GridlinesStyle — Directive [0range, Dashed], Background — Lighter[Yellow]];

Figure 166: Computer Codes for Plotting Diagrams

[f[memB[[i]] # 0., shr = Rotate[sh, mem3[[1]111];

Print["SFD...... member ", 1i];

Print ["Shear Function V=", Chop[vr]]:

If[memd[[i]] #0., Print[shr]]:

If[mem@[[i]] == 0., Print[sh]]:

mh = Plot[mm, {x, 0, Lmem[[i]]}, ImayeSize — 250, Filling - fxis, PlotStyle — Directive [Blue, Thick], Frame — True
Gridlines — Automatic, GridLinesStyle — Directive[Orange, Dashed], Backyround - Lighter[Yellow]]:

If[memd@[[i]] # 0., mhr = Rotate[mh, mem?[[i]111];

Print["EBMD...... member ', 1i];

Print ["Homent Function M= ", Chop[mm]];

Tf[mem@[[i]] # 0., Print[mhr]]:

If[mem@[[i]] == 0., Print[mh]];

Print["seresnrrennrrennrrennrrenne’ ]2

Print[" ",
(1,1,

Figure 167: Computer Codes for Plotting Diagrams (continued)
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b) Computer Codes for Singular Value Decomposition Method:

apiny = {(Inverze[ (5. Transpoze[5])]1).5;
sa = IdentityMatrix[3 xm] - {Transpose[5].apinv);
{fu, w, r} = SingularValueDecomposition[=sal:

Print[" u = " MatrixForm[u]]
Print[" w = " MatrixForm[w]]
Print[" v = " MatrixForm[v]]

Figure 168: Computer Codes for finding Singular Value Decomposition

2?2 = Chop|[Inver=se[u].=a];
{row, col} = Dimension=s[5];
¢l = Take[c?2, col —row, col];

cc = ol F;

Print|["coc = ", MatrixForm|[cocc] ]

Figure 169: Computer Codes for finding Compatibility Conditions [CC]

The computer codes for other steps are similar as Integrated Force Method via Null

Space.
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¢) Computer Codes for Dual Integrated Force Method:

K = 5. Inverse[F].Transpose[5]:
Print["E = ", MatrixForm[K]]
MatrixPlot [K, FrameTicks — Hone, Mesh — True, MaxPlotPoints — Infinity, ImageSize — 450]

Figure 170: Computer Codes for finding Global Stiffness Matrix [K]

dsiplacements = LinearSolve[K, Pfinal];
Print["displacemetns = ", MatrixForm[dsiplacements]]

Figure 171: Computer Codes for finding Displacements

The computer codes for other steps are similar as Integrated Force Method via Null

Space and Integrated Force Method via Singular Value Decomposition.
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