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ABSTRACT

In this thesis we studied fractional order derivative and integral. In Chapter1, a brief

history on the foundation of fractional derivative and integration has been given. In the

second chapter, some definitions and theorems have been provided. Also some needed

special functions such as Gamma, Beta, Mittag-Leffler and Wright function have taken

place in this chapter.

Properties of fractional derivative and integral are discussed in Chapter 3. We started

to this chapter by the discussion of the Abel integral equation and it’s application. In

the first section of Chapter 3, fractional integral in the space of integrable functions and

related properties has been given. The second section is devoted to basic definitions

and properties of fractional derivative and integral. Definition of fractional integral and

derivative of complex order take place in the third section together with some related

theorems. Fourth section contains fractional integrals of some elementary functions. In

the last section of Chapter 3, we discussed fractional differentiation and integration as

reciprocal operations.

Keywords: Fractional Equation, Fractional Derivative, Fractional Integral.
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ÖZ

Bu tez üç bölümden oluşmaktadır. Birinci bölüm giriş kısmına ayrılmıştır. Kesirli türev

ve integralin nasıl meydana getirildiğinden bahsedilmiştir.

İkinci bölümde bazı fonksiyon tanımlarına yer verilmiştir. Ayrıca tezde kullanılacak

olan bazı özel fonksiyonlar verilmiştir. Bu özel fonksiyonlar Gama fonksiyonu, Beta

fonksiyonu, Mittang Leffler fonksiyonu ve Wright Fonksiyonu’dur.

Üçüncü bölümde genel olarak kesirli türev ve integrale giriş yapılmiştir , bazı özel

fonksiyonlarla ilişkilendirildi ve bunların özelliklerine yer verildi. Bu bölümü inceliye-

lim. Öncelikle Abel integral denklemi açıklanmiş , özel fonksiyonlarla işlemler yapılmiştir.

Birinci kısımda integrallenebilir fonksiyonlar uzayında kesirli integeralin çözülebilirliği

bazı teoremlerle ispatlanarak açıklanmıştır. İkinci kısımda kesirli türev ve integralin

tanımları verilmiş ayrıca kesirli türev ve inegralin bazı basit özelliklerinden bahsedilmiştir.

Üçüncü kısımda kompleks mertebeden, kesirli türev ve integral alındı ve bunlarla il-

gili teoremler ispatlanarak açıklanmiştir. Dördüncü kısımda bazı temel fonksiyonlarin

kesirli integrali alınmiş ve bunlarla ilgili işlemler yapılıp istenilen temel fonksiyonlara

ulaşılmiştir. Beşinci kısımda, kesirli türev ve integral karşılıklı operatör alınarak bir

takım tanımlara yer verilmiş ve teoremlerle ispatlanarak açıklanmiştir. Son olarak ise,

yarıgrup tanımları verilmiş, operatörlerin yarı gruplarla ilişkisi incelenmiş ve bazı uzay-

larla da ilişkilendirilip ispatlar yapılmiştir.

Anahtar Kelimeler:Kesirli Denklemler, Kesirli Türev, Kesirli İntegral.

iv



DEDICATION

My beloved mother and father for giving me the love and understanding

that without their persistent encouragement, I would not have been able to com-

plete this research.

v



ACKNOWLEDGEMENT

I must thank my supervisor, Assoc. Prof. Dr. Hüseyin Aktuğlu, for his precious advice,
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Chapter 1

PRELIMINARIES

In this thesis we focus on fractional integrals and derivatives. We begin with a brief

historical development of the theory of fractional integral and derivative.

In 1965, L’hopital wrote a letter to Leibnitz and asked the solution of the following

equation when n = 1
2 ;

f (x) = x
Dn

Dxn

Leibnitz’s response was "An apperent paradox, from which one day useful consequences

will be drown". So the story of fractional calculus has started with the question of

L’hopital.

After, L’hopital and Leibnitz and many other mathematicans like Fourier, Euler, Laplace,

etc. have studied to answer L’hopital’s questions. Each used their own notation and

methotology and they found many concepts of a non-integer order integral or derivative.

The main part of mathematical theory of fractional calculus was developed in 20th cen-

tury. But engineers and scientists started using these theories 100 years later. Recently,

the theory of fractional differential equation gain popularity among researchers and dif-
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ferent studies involving solutions of linear or non-linear fractional differential equations,

solutions of boundary value problems etc. been published.
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Chapter 2

NOTATION AND BACKGROUND MATERIAL

2.1 Spaces of Integrable, Absolutely Continuous and Continuous
Function

In this section we give some required definitions and properties that will be needed to

study fractional integrals and derivatives.

Definition 1 Let a and b be two real numbers then

a) [a,b] := {x ∈ R : a ≤ x ≤ b} is called the closed interval.

b) (a,b) := {x ∈ R : a < x < b} is called the open interval.

c) (a,b] := {x ∈ R : a < x ≤ b} and [a,b) := {x ∈ R : a ≤ x < b} are called half open in-

tervals.

d) [a,∞) := {x ∈ R : a < x ≤ b} (−∞,b] := {x ∈ R : a < x ≤ b} are called closed infinite

intervals.

e) (a,∞) := {x ∈ R : a < x ≤ b} (−∞,b) := {x ∈ R : a < x ≤ b} are called open infinite in-

tervals.

Definition 2 Let Λ be a subset of real numbers then C (Λ) is the set of all continuous

functions on Λ.

Definition 3 Let Λ be a finite interval and h (x) be a function defined on Λ. We say that

the function h(x) satisfies Hölder condition of order λ if

|h (x1)−h (x2)| ≤ A |x1− x2|λ (2.1)

3



for all pairs of points x1, x2 of Λ where A is a constant. In this case the number λ is

called the Hölder exponent.

Definition 4 For a finite interval Λ, the space of all complex valued functions, which

satisfy the Hölder condition of order λ is denoted by Hλ = Hλ (Λ) i.e

Hλ (Λ) =
{
h : |h (x1)−h (x2)| ≤ A |x1− x2|λ , x1, x2 ∈ Λ

}
.

For λ = 1, H1 is known as Lipschitz space.

Remark 5 It is clear that Hλ (Λ) ⊂C (Λ).

Remark 6 For Hλ, we are only interested in the case 0 < λ ≤ 1, because otherwise only

constant functions will be contained in Hλ.

Definition 7 The space hλ := hλ (Λ) is defined by

hλ := hλ (Λ) :=
{

h :
h (x)−h (x1)
|x− x1|

→ 0 as x→ x1

}

for all x1 ∈ Λ.

Remark 8 It is easy to see that hλ ⊂ Hλ.

In the following we will provide a space wider than H1, which is known as the space of

absolutely continuous functions.

Definition 9 A function h is called absolutely continuous on an interval Λ, if for all

ϵ > 0, ∃δ > 0 such that for any finite set of pairwise disjoint subintervals [ak,bk] ⊂ Λ,

(k = 1,2, ...,n), such that,
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n∑
k=1

(bk −ak) < δ

the following inequality holds:
n∑

k=1

|h (bk)−h (ak)| < ϵ.

The space of all absolutely continuous functions is denoted by AC (Λ). In other words

AC (Λ) := {h : h is absolutely continuous} .

Remark 10 ([3],[4]) It is easy to see that the space of primitives of Lebesgue summable

functions is equivalent to AC (Λ), that is;

h (x) ∈ AC (Λ)⇔ h (x) = c+

b∫
a

ψ (t)dt, (2.2)

where

b∫
a

|ψ (t)|dt <∞.

Remark 11 The space H1(Λ) is included in AC (Λ).

The following example shows that the inverse implication does not hold in general.

Example 12 Let c be a point in Λ then consider the function h(x) = (x− c)γ ∈ AC (Λ).

The equation (2.1) does not hold at x = c, therefore (x−a)γ < H1(Λ) for 0 < γ < 1.

Definition 13 Let Λ be an interval then for each n ∈ N, one can define the following

space,

ACn (Λ) :=
{
f : f (n−1) ∈ AC(Λ) and it has continuous derivatives of order n−1 on Λ

}
.

Remark 14 It is obvious that AC′ (Λ) = AC (Λ).

For the case Λ is R or half line. Then to define Hλ (Λ) for Λ = R or Λ is half line we

need to explain the Hölder property at infinity. This explanation is given below.
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Definition 15 Let Λ be R or half line then Hλ (Λ) is the space of functions;

(i) satisfying equation (2.1) for any finite subinterval of Λ.

(ii) satisfying the functions h(x) Hölder property in the neighborhood of infinite

|h (x1)−h (x2)| ≤ A
∣∣∣∣∣ 1
x1
− 1

x2

∣∣∣∣∣λ . (2.3)

(i.e. for all x1,x2 ∈ Λ, with sufficiently large absolute values)

Definition 16 The set of all Lebesgue measurable functions h (x) satisfying,

∫
Λ

|h (x)|p dx <∞, 1 ≤ p <∞

is denoted by Lp = Lp ([a,b]).

We shall consider the space Lp as a norm space with its usual norm which is given below.

Definition 17 ([4])The following definition gives a norm on Lp (Λ),

∥h∥Lp(Λ) =


∫
Λ

|h (x)|p dx


1
p

. (2.4)

Remark 18 ([3]) In the case p =∞ , the space L∞ (Λ) is defined as the set of all mea-

surable functions with a finite norm,

∥h∥L∞(Λ) = esssup
x∈Λ

|h (x)| (2.5)

For the following parts we will assume 1 ≤ p ≤ ∞. Two equivalent functions in Lp (Λ)

(functions which are same except on a set with measure zero) will be considered the
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same element in Lp (Λ). Therefore,

∥h∥p = ∥h∥Lp = ∥h∥Lp(Λ) . (2.6)

Now we shall introduce some properties of the space Lp(Λ), which will be used in the

rest of the thesis. Such properties can be found in any functional analysis text book.

Definition 19 ([1])(Minkowski Inequality) Let h and g be any two elements of Lp (Λ)

then,
∥h+g∥Lp(Λ) ≤ ∥h∥Lp(Λ)+ ∥g∥Lp(Λ) . (2.7)

Definition 20 ([1])( Hölder inequality) Let h and g be any two elements of Lp (Λ) and

Lq (Λ) respectively then,

∫
Λ

|h (x)g (x)|dx ≤ ∥h∥Lp(Λ) ∥g∥Lq(Λ) (2.8)

where

1
p
+

1
q
= 1. (2.9)

Remark 21 Hölder inequality can be generalized as follows:

∫
Λ

|h1 (x) ...hm (x)|dx ≤ ∥h∥Lp1 (Λ) ...∥h∥Lpm (Λ) , (2.10)

where

hk (x) ∈ Lpk (Λ) , k = 1,2, ...,m, and
∞∑

k=1

1
pk
= 1.

7



Remark 22 Let Λ be a finite interval, then using Hölder inequality one can write the

following,

Lp1 (Λ) ⊂ Lp2 (Λ) , (2.11)

and ∥h∥Lp2(Λ) ≤ ∥h∥Lp1 (Λ)

where p1 > p2 ≥ 1.

Theorem 23 ([4])(Fubini’s Theorem) Assume that Λ1 = [a,b], Λ2 = [c,d] where −∞ ≤

a < b ≤ ∞, −∞ ≤ c < d ≤ ∞, for a measurable function h(x,y) defined on Λ1 ×Λ2, and

at least one of the following integrals

∫
Λ1

dx
∫
Λ2

h (x,y)dy,

∫
Λ2

dy
∫
Λ1

h (x,y)dx,

and

"
Λ1×Λ2

h (x,y)dxdy

are absolutely convergent, then they are all equal.

Remark 24 The following particular case of the Fubini’s Theorem is known as the
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Dirichlet formula,

b∫
a

dx

x∫
a

h (x,y)dy =

b∫
a

dy

b∫
y

h (x,y)dx (2.12)

where one of the integrals is absolutely convergent.

Remark 25 We also have the following inequality,


∫
Λ1

dx

∣∣∣∣∣∣∣∣∣
∫
Λ2

h (x,y)dy

∣∣∣∣∣∣∣∣∣
p

1
p

≤
∫
Λ2

dy


∫
Λ1

|h (x,y)|p dx


1
p

(2.13)

which is known as the generalized Minkowski inequality.

Lemma 26 ([4]) Let h (x) ∈ Lp (Λ), 1 ≤ p <∞ then we have:

∫
Λ

|h (x+ t)−h (x)|p dx→ 0 (2.14)

as t→ 0. We say that the function h(x) is continued by zero for x+ t < Λ.

Theorem 27 ([4])(Lebesgue dominated convergence) Assume h (x, t) and H(x) satisfies

condition

|h (x, t)| ≤ H (x)

where H (x) does not depend on the parameter t and H (x) ∈ L1 (Λ). If

lim
t→0

h (x, t)

exists for almost all x, then
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lim
t→0

∫
Λ

h (x, t)dx =
∫
Λ

lim
t→0

h (x, t)dx.

2.2 Some Special Function In Fractional Calculus

In this section, we introduce and discuss Gamma and Beta functions and their properties.

Those functions plays an important role in the theory of fractional derivative and integral.

One of the basic special functions in analysis is n!. For non-integer values, or even

complex numbers, which is called Euler’s Gamma function and denoted by Γ(z). Gamma

function is simply said to be the extension of factorial for real numbers.

Definition 28 ([3]) The gamma function Γ(z) is defined as,

Γ (z) =

∞∫
0

e−ssz−1ds,z ∈ R (2.15)

and is convergent on the plane Re(z) > 0.

Lemma 29 For any z ∈ C with Re(z) > 0,

Γ (z+1) = zΓ (z) . (2.16)

Proof. This property can be easily proved by integration by parts.

Γ (z+1) =

∞∫
0

e−sszds =
[
−e−ssz

]∞
0
+ s

∞∫
0

e−ssz−1ds = zΓ (z) .

It’s clear that Γ (1) = 1 and using (2.16) for z = 1,2,3, ..., we have;
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Γ (2) = 1.Γ (1) = 1 = 1!

Γ (3) = 2.Γ (2) = 2.1! = 2!

Γ (4) = 3.Γ (3) = 3.2! = 3!

...

Γ (n+1) = n.Γ (n) = n. (n−1) = n!

An other important special function which plays basic role in the theory of fractional

calculus is the the Beta function which is defined as follows:

B(p,q) =

1∫
0

tp−1 (1− t)q−1 dt, Re p > 0, Req > 0 (2.17)

It is well known that, Gamma and Beta functions are related to each other. In order to

show the relation between Beta and Gamma fuction we will use Laplace transformation:

hp,q(x) =

x∫
0

tp−1 (1− t)q−1 dt. (2.18)

If we take x = 1 in (2.18) gives hp,q(1) = B(p,q).

Since the laplace transform of convolution of two functions is equal to the multiplication

of their Laplace transformation, we get:

Hp,q(s) =
Γ (p)

sp
Γ (q)

sq =
Γ (p)Γ (q)

sp+q (2.19)

where Hp,q(s) is laplace transform of hp,q(x). Since Γ (p)Γ (q) is constant, taking inverse

Laplace transformation of the right-hand side of (2.19) we can get the original function
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hp,q(x). From the uniqueness of the Laplace transformations, we have:

hp,q(x) =
Γ (p)Γ (q)
Γ (p+q)

xp+q−1. (2.20)

If x = 1, we will get one of the most important properties of Beta function:

B(p,q) =
Γ (p)Γ (q)
Γ (p+q)

(2.21)

By the above definition it is obvious that,

B(p,q) = B(q, p). (2.22)

The Mittag-Leffler function is defined by,

Eµ (x) =
∞∑

k=0

xk

Γ (µk+1)
(µ > 0) . (2.23)

The more general form which is given by Prabhakar ([2]) of Mittag-Leffler function is

given by,

Eµ,ν (z) =
∞∑

k=0

zk

Γ (µk+ ν)
(µ > 0, ν > 0) . (2.24)

Taking µ = 1 and ν = 1 in (2.24) gives,

E1,1 (z) =
∞∑

k=0

zk

Γ (k+1)
=

∞∑
k=0

zk

k!
= ez
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which is the well known exponential function. Similarly for µ = 1 and ν = 2 in (2.24) we

have,

E1,2 (z) =
∞∑

k=0

zk

Γ (k+2)
=

∞∑
k=0

zk

(k+1)!
=

∞
1
z

∑
k=0

zk+1

(k+1)!
=

ez−1

z
.

 ∞∑
k=0

zk

k!
= 1+

∞∑
k=1

zk

k!
= ez



E1,3 (z) =
∞∑

k=0

zk

Γ (k+3)!
=

∞∑
k=0

zk

(k+2)!
=

1
z2

∞∑
k=0

zk+2

(k+1)!
=

ez−1− z
z2 .

More generally,

E1,n (z) =
1

zn−1

ez−
n−2∑
k=0

zk

k!

 (2.25)

where n is a natural number.

The Wright function which is an extension of both Bessel and exponential functions, is

denoted by W and defined as;

W(z;µ;ν) =
∞∑

k=0

zk

k!Γ (µk+ ν)
.

Using (2.24) for some valus µ and ν we can get that,

W(z;0;1) = ez,

and

W
(
−z;−1

2
,−1

2

)
=

1
√
π

exp
(
−z2

4

)
. (2.26)
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Chapter 3

FRACTIONAL INTEGRALS AND DERIVATIVES

This chapter is devoted to the theory of fractional integral and fractional derivatives. We

shall start from Abel’s integral equation which plays an important role in the definition of

fractional integral and derivatives. After giving the idea and mathematical background of

the theory of fractional integral and derivatives, we also consider some basic properties

of fractional integral and derivatives. Recall that, Abel’s equation is the integral equation

given below for 0 < γ < 1.

1
Γ (γ)

x∫
0

ψ (t)

(x− t)1−γ dt = h(x), x > 0. (3.1)

Now apply the following process on (3.1) which is also used in ([4]). Firstly, changing

x→ t and t→ p in (3.1) we get:

1
Γ (γ)

t∫
0

ψ (p)

(t− p)1−γ dp = h(t).

Then multiplying both sides of the equation by Γ (γ) (x− t)−γ and integrating we get that,

x∫
a

dt
(x− t)γ

t∫
a

ψ (p)

(t− p)1−γ dp = Γ (γ)

x∫
a

h (t)
(x− t)γ

dt. (3.2)

Using Dirichlet formula in (3.2), we have:

x∫
a

ψ (p)dp

x∫
p

dt

(x− t)γ (t− p)1−γ = Γ (γ)

x∫
a

h (t)
(x− t)γ

dt . (3.3)
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Taking t = p+υ(x− p) in

x∫
p

dt

(x− t)γ (t− p)1−γ

and using the fact that,

1
(x− t)γ (t− p)1−γ =

1
(x− p−υ (x− p))γ (p+υ (x− p)− p)1−γ

=
1[

x (1−υ)− p (1−υ)
]γ [υ (x− p)

]1−γ

=
1[

(x− p) (1−υ)
]γ [υ (x− p)

]1−γ

=
1

(x− p)γ (1−υ)γ (υ)1−γ (x− p)1−γ

=
1

(x− p) (1−υ)γ (υ)1−γ

we get that,

x∫
p

(x− t)−γ (t− p)γ−1 dt =

1∫
0

dυ

(1−υ)γ (υ)1−γ . (3.4)

Using the definition of Beta function on the right-hand side of (3.4) gives,

x∫
p

(x− t)−γ (t− p)γ−1 dt =

1∫
0

(1−υ)−γ υγ−1dυ

= B (γ,1−γ)

= Γ (γ)Γ (1−γ) . (3.5)

Substitute (3.5) and (3.4) into (3.3), we get:

x∫
a

ψ (p)dp

x∫
p

1
(x− t)γ (t− p)1−γ dt = Γ (γ)

x∫
a

h(t)
(x− t)γ

dt

15



or

x∫
a

ψ (p)dp =
1

Γ (1−γ)

x∫
a

(x− t)−γ h (t)dt. (3.6)

Now if we differentiate both sides, we can get that,

ψ (x) =
1

Γ (1−γ)
d
dx

x∫
a

h (t)
(x− t)γ

dt. (3.7)

This means that if the equation given in (3.1) has a solution then it has the form given

in (3.7). Moreover this solution is unique. In (3.1) we have assumed that 0 < γ < 1.

The case γ = 1, is clear and the case γ > 1 can be reduced to the case 0 < γ < 1 by

differentiating both sides of (3.1).

It should be mentioned that if we use the Abel equation,

1
Γ (γ)

b∫
x

ψ (t)

(t− x)1−γ dt = h (x) , x ≤ b (3.8)

and apply the same steps then we obtain the solution,

ψ (x) = − 1
Γ (1−γ)

d
dx

b∫
x

h(t)
(t− x)γ

dt. (3.9)

Example 30 Solve the equation

1
Γ (γ)

x∫
a

ψ (t)

(x− t)1−γ dt = 1, where 0 < γ < 1.

Let by (3.7)
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ψ (x) =
1

Γ (1−γ)
d
dx

x∫
a

1(x− t)−γ dt.

Taking x− t = u,

ψ (x) =
1

Γ (1−γ)
d
dx

x1−γ

1−γ

=
1

Γ (1−γ)
1

1−γ
d
dx

x1−γ

=
1

Γ (1−γ)
x−γ.

Example 31 Solve the equation

1
Γ (γ)

x∫
a

ψ (t)

(x− t)1−γ dt = tβ, where β > 0.

Let from (3.7)

ψ (x) =
1

Γ (1−γ)
d
dx

x∫
a

tβ (x− t)−γ dt

=
1

Γ (1−γ)
d
dx

x−γ
x∫
a

tβ
(
1− t

x

)−γ
dt.

Taking u = t
x

ψ (x) =
1

Γ (1−γ)
d
dx

x−γ
1∫
0

(xu)β (1−u)−γ xdu

=
1

Γ (1−γ)
d
dx

xβ−γ+1

1∫
0

uβ (1−u)−γ du

=
1

Γ (1−γ)
d
dx

xβ−γ+1B (β+1, −γ+1)

=
1

Γ (1−γ)
Γ (β+1)Γ (1−γ)
Γ (β−γ+2)

d
dx

xβ−γ+1 =
Γ (β+1)
Γ (β−γ+1)

xβ−γ.
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3.1 Fractional Integral in The Space Of Integrable Functions

In this section we shall investigate conditions on h(t) ∈ L1(a,b) under which the Abel

equation given in (3.1) has a solution.

Definition 32 For 0 < γ < 1, the function h1−γ(x) is defined by,

h1−γ(x) =
1

Γ (1−γ)

x∫
a

h (t)
(x− t)γ

dt. (3.10)

Lemma 33 h (t) ∈ L1(a,b) implies that h1−γ(x) ∈ L1(a,b).

Proof. Assume that h (t) is any element of L1(a,b) we have to show that h1−γ(x) ∈

L1(a,b). Now consider the integral

b∫
a

∣∣∣h1−γ(x)
∣∣∣dx =

1
Γ (1−γ)

b∫
a

∣∣∣∣∣∣∣∣
x∫
a

ψ (t) (x− t)−γ dt

∣∣∣∣∣∣∣∣dx

≤ 1
Γ (1−γ)

b∫
a

x∫
a

|ψ (t)| (x− t)−γ dtdx

=
1

Γ (1−γ)

b∫
a

|ψ (t)|dt

b∫
t

(x− t)−γ dx (3.11)

On the other hand, the second integral on right hand side is

b∫
t

(x− t)−γ dx =

 (x− t)−
γ+1

(−γ+1)

b

t

=
(b− t)1−γ

1−γ . (3.12)

Substituting (3.12) in (3.11) we have,

b∫
a

∣∣∣h1−γ(x)
∣∣∣dx ≤ 1

Γ (1−γ) (1−γ)

b∫
a

|ψ (t)| (b− t)1−γ dt
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We have;

b∫
a

∣∣∣h1−γ(x)
∣∣∣dx ≤ 1

Γ (2−γ)

b∫
a

|ψ (t)| (b− t)1−γ dt . (3.13)

Since (b− t)1−γ is bounded on [a,b] we have h1−γ ∈ L1 (a.b).

Theorem 34 ([4],[3])The equation (3.1) defined on γ ∈ (0,1) is solvable in L1 (a,b) if

and only if

h1−γ (x) ∈ AC ([a,b]) and h1−γ (a) = 0 (3.14)

In this case, the equation (3.14) has a unique solution in the form of (3.7).

Proof. Assume that the equation (3.1) is solvable in L1 (a,b). Applying the same steps

as in previous section we can obtained that

x∫
a

ψ (p)dp = h1−γ (x) . (3.15)

As a consequence of (3.7) and (2.2), we have,

h1−γ (x) ∈ AC ([a,b]) and h1−γ (a) = 0.

Conversely assume that h1−γ (x) ∈ AC ([a,b]). Then

h
′
1−γ (x) =

d
dx

h1−γ(x) ∈ L1 (a,b)
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Therefore (3.7) exists a.e and belongs to L1 (a,b). We must show that (3.7) is a solution

of (3.1). By substituting (3.7) in (3.1) we get,

1
Γ (γ)

x∫
a

d
dxh1−γ (x)

(x− t)1−γ dt = g(x),

or

1
Γ (γ)

x∫
a

h′1−γ (t)

(x− t)1−γ dt = g(x). (3.16)

Now, it suffices to show that g(x) = h(x). Since (3.16) is an equation similar to (3.1) with

respect to h
′
1−γ (x) , using (3.7) we have,

h
′
1−γ (x) =

1
Γ (1−γ)

d
dx

x∫
a

g (x)
(x− t)γ

dt = g
′
1−γ (x)

or equivalently,

h
′
1−γ (x) = g

′
1−γ (x) .

Functions h1−γ (x) and g1−γ (x) are elements of AC ([a,b]). The first one by hypothesis

and the second one by virtue of (3.6) with g(t) on the right hand side. Hence,

h1−γ (x)−g1−γ (x)

is a constant function. On the other hand, h1−γ (0) = 0 and g1−γ (0) = 0, since (3.16) is

solvable. Hence,

h1−γ (x)−g1−γ (x) = 0.
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So

x∫
a

h(t)−g(t)
(x− t)γ

dt = 0.

This is an equation of the form (3.1). Since the solution is unique from (3.7), we get

h(x)−g(x) = 0 or equivalently h(x) = g(x).

Lemma 35 ([4]) If h(x) is an absolutely continuous function on [a,b], then h1−γ (x) is

also an absolutely continuous function on [a,b] and

h1−γ (x) =
1

Γ (2−γ)

h (a) (x−a)1−γ+

x∫
a

h
′
(t) (x− t)1−γ dt

 .

Proof. From (2.2) we have:

h(t) = h (a)+

t∫
a

h
′
(p)dp. (3.17)

Now substitute (3.17) into (3.10) to get,

h1−γ =
1

Γ (1−γ)

x∫
a


h (a)+

t∫
a

h′(p)

(x− t)γ

dt

=
1

Γ (1−γ)


x∫
a

h (a)
(x− t)γ

dt+

x∫
a

t∫
a

h
′
(p)

(x− t)γ
dt

 . (3.18)
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For the first integral apply the change variable, we get;

1
Γ (1−γ)

h (a)

−
0∫

x−a

1
uγ

du

 = 1
Γ (1−γ)

h (a)
[
−u−γ+1

1−γ

]0

x−a

=
1

Γ (1−γ)
h (a)

[
(x−a)1−γ

1−γ

]
=

1
(1−γ)Γ (1−γ)

h (a) (x−a)1−γ

=
1

Γ (2−γ)
h (a) (x−a)1−γ .

Substiting this in (3.18) gives,

h1−γ (x) =
1

Γ (2−γ)
h (a) (x−a)1−γ+

x∫
a

1
(x− t)γ

dt

t∫
a

h
′
(p)dp. (3.19)

Then first term is absolutely continuous function because

(x−a)1−γ = (1−γ)

x∫
a

(t−a)−γ dt,

then we change the variable u = t−a, to obtain,

x−a∫
0

u−γdu =
[

u−γ+1

−γ+1

]x−a

0
=

(x−a)1−γ

1−γ .

The second term is also a primitive of summable function and it is absolutely continuous,

x∫
a

1
(x− t)γ

dt

t∫
a

h
′
(p)dp =

x∫
a


t∫
a

h
′
(p)

(t− p)γ
dp

dt. (3.20)

Abel’s solution is unique.
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Corollary 36 ([4]): If h (x) ∈ AC ([a,b]), the Abel’s equation (3.1) with 0 < γ < 1 is

solvable in L1 (a,b) and its solution (3.7) may be written in the form

ψ (x) =
1

Γ (1−γ)

h(0)xγ+

x∫
a

h′ (s) (x− s)γ ds

 . (3.21)

Proof. Using Lemma (3.0.34), (3.19) and (3.20), the solvability conditions (3.14) are

satisfied. Using the fact that,

ψ (x) =
d
dx

h1−γ (x)

and differentiating (3.35) we can obtain (3.21).

Corollary 37 Similar to Theorem 3.0.33, we can show that (3.8) is solvable in L1 (a,b)

if and only if h̃1−γ (x) ∈ AC ([a,b]) and h̃1−γ(b) = 0, where,

h̃1−γ (x) =
1

Γ (1−γ)

b∫
x

h (t)
(t− x)γ

dt, 0 < γ < 1.

Proof. The proof can be done in a way paralle to the proof of above corollary. The

solution (3.9) of (3.8) where h (x) is absolutely continuous on [a,b] , may be written as,

ψ (t) =
1

Γ (1−γ)

h(b) (b− t)−γ+

b∫
t

h′ (s) (s− t)−γ ds

 . (3.22)
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3.2 Basic Definitions and Properties of Fractional Integral and
Derivatives

Lemma 38 We shall start with the formula for n-fold integrals ;

x1∫
a

x2∫
a

...

xn∫
a

ψ (xn)dxn...dx2dx1 =
1

(n−1)!

x∫
a

ψ (t) (x− t)n−1 dt. (3.23)

Proof. We shall prove by induction, for n = 1, obviously

x∫
a

ψ (x1)dx1 =

x∫
a

ψ (x)dx.

Assume that (3.23) is true for n−1, that is

x1∫
a

x2∫
a

x3∫
a

...

xn−1∫
a

ψ (xn)dxn...dx3dx2 =
1

(n−2)!

x1∫
a

(x1− t)n−2ψ (t)dt.

Integrating both sides from a to x, to get:

x∫
a

x1∫
a

x2∫
a

...

xn−1∫
a

ψ (xn)dxn...dx2dx1 =
1

(n−2)!

x∫
a


x1∫
a

(x1− t)n−2ψ (t)dt


=

1
(n−2)!

x∫
a

ψ (t)


x∫
t

(x1− t)n−2 dx1

dt

=
1

(n−1)!

x∫
a

ψ (t) (x− t)n−1 dt .

(3.23) may be written as,

(Iγa+ψ) =
1
Γ (γ)

x∫
a

ψ (t) (x− t)n−1 dt.
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On the other hand using Γ(n) = (n−1)!, we get the desired result.

Now, we are ready to give Riemann-Liouville fractional integral see also ([4],[3]).

Definition 39 ([2],[3],[4]) Let ψ (x) ∈ L1 (a,b) then the left-sided and right-sided Rie-

mann Liouville fractional integrals of order γ are defined respectively as follows,

(Iγa+ψ) (x) =
1
Γ (γ)

x∫
a

ψ (t)

(x− t)1−γ dt x > a (3.24)

(Iγb−ψ) (x) =
1
Γ (γ)

b∫
x

ψ (t)

(t− x)1−γ dt x < b (3.25)

where γ > 0.

Lemma 40 Let Q be the reflection operator with (Qψ) (x) = ψ (a+b− x) then

QIγa+ = Iγb−Q and QIγb− = Iγa+Q . (3.26)

Proof. Take any ψ ∈ L1 (a,b). We want to show that Q
(
Iγa+ψ

)
(x) = Iγb− (Qψ) (x) .

Q
(
Iγa+ψ

)
(x) =

1
Γ (γ)

a+b−x∫
a

ψ (t)

(t−a−b+ x)1−γ dt.
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Now take t = a+b−u, we get,

Q
(
Iγa+ψ

)
(x) =

1
Γ (γ)

a+b−x∫
a

ψ (t)

(t−a−b+ x)1−γ dt

=
−1
Γ (γ)

x∫
b

ψ (a+b−u)

(−u+ x)1−γ du

=
1
Γ (γ)

b∫
x

Q (ψ) (u)

(x−u)1−γ du

= Iγb− (Qψ) (x) .

In a parallel way, one can prove that

Q
(
Iγb−ψ

)
(x) =

1
Γ (γ)

b∫
a+b−x

ψ (t)

(t−a−b+ x)1−γ dt.

Taking t = a+b−u we have,

Q
(
Iγb−ψ

)
(x) =

−1
Γ (γ)

a∫
x

ψ (a+b−u)

(x−u)1−γ du

=
1
Γ (γ)

x∫
a

ψ (a+b−u)

(x−u)1−γ du

= Iγa+Q (ψ) (x).

Therefore

QIγb− = Iγa+Q .

Lemma 41 ([4]) For any pair of functions ψ,φ ∈ L1 (a,b) , we have,

b∫
a

ψ (x)
(
Iγa+φ

)
(x)dx =

b∫
a

φ (x)
(
Iγb−ψ

)
(x)dx . (3.27)
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Proof. Let ψ,φ ∈ L1 (a,b) then,

b∫
a

ψ (x)
(
Iγa+φ

)
(x)dx =

1
Γ (γ)

b∫
a

ψ (x)

x∫
a

φ (x)

(x− t)1−γ dtdx

By using Dirichlet formula we get;

b∫
a

ψ (x)
(
Iγa+φ

)
(x)dx =

1
Γ (γ)

b∫
a


b∫
t

ψ (x)

(x− t)1−γ dx

φ (t)dt

=

b∫
a

φ (t)
(
Iγb−ψ

)
(t)dt.

Changing variable t by x we get the result which satisfies (3.27).

Remark 42 The equation (3.27) is valid for any pair of functions ψ (x) ∈ Lp, φ (x) ∈ Lq;

where,

i) 1
p +

1
q ≤ 1+γ,

ii) 1
p +

1
q = γ+1, if p , 1 and q , 1.

Lemma 43 ([3],[4]) Let ψ (t) ∈C (a,b) , then

Iγa+Iβa+ψ = Iγ+βa+ ψ, Iγb−Iβb−ψ = Iγ+βb− ψ, where γ > 0,β > 0. (3.28)

Proof. Now let ψ (t) ∈C (a,b) then,

Iγa+Iβa+ψ =
1

Γ (γ)Γ (β)

x∫
a


t∫
a

ψ (υ)

(x−υ)1−βdυ

 dt

(x− t)1−γ .
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Using the Dirichlet formula we have,

=
1

Γ (γ)Γ (β)

x∫
υ

1
(x− t)1−γ dt

x∫
a

ψ (υ)

(t−υ)1−βdυ (3.29)

=
1

Γ (γ)Γ (β)

x∫
a

ψ (υ)dυ

x∫
υ

1
(t−υ)1−β (x− t)1−γ dt.

In the the second integral, take t = υ+ p (x−υ), we have:

x∫
υ

1
(t−υ)1−β (x− t)1−γ dt =

x∫
υ

1
(υ+ p (x−υ)−υ)1−β (x−υ− p (x−υ))1−γ (x−υ)dp

=

x∫
υ

(x−υ)[
p (x−υ)

]1−β (x−υ)1−γ (1− p)1−γ dp

=

x∫
υ

(x−υ)

(x−υ)2−β−γ p1−β (1− p)1−γ dp

=

x∫
υ

1
(x−υ)1−β−γ p1−β (1− p)1−γ dp

=
1

(x−υ)1−γ−β

x∫
υ

1

p1−β (1− p)1−γ dp

=
1

(x−υ)1−γ−βB (γ,β) . (3.30)

Writing (3.30) in (3.29) we have,

Iγa+Iβa+ψ =
1

Γ (γ)Γ (β)

x∫
a

ψ (υ)
1

(x−υ)1−γ−βB (γ,β)dυ

=
Γ (γ)Γ (β)
Γ (γ+β)

1
Γ (γ)Γ (β)

x∫
a

ψ (υ)

(x−υ)1−γ−βdυ

=
1

Γ (γ+β)

x∫
a

ψ (υ)

(x−υ)1−γ−βdυ.

proving (3.28).
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The equations in (3.28) are called "a semigroup property of fractional integration". It is

natural to show that fractional differentiation is an operation inverse to fractional inte-

gration. For this consider the definition below:

Remark 44 Equation (3.28) holds almost all ψ (t) ∈ L1 (a,b) when γ+β ≥ 1.

Definition 45 ([3],[4],[2]) The left and right-handed Riemann-Liouville fractional deriva-

tives of order γ, for a functions h(x) on interval [a,b] are defined as follows:

(
Dγ

a+h
)
(x) =

1
Γ (1−γ)

d
dx

x∫
a

h (t)
(x− t)γ

dt (3.31)

(
Dγ

b−h
)
(x) = − 1

Γ (1−γ)
d
dx

b∫
x

h (t)
(t− x)γ

dt. (3.32)

In the next lemma, we will provide a sufficient condition for the existence of fractional

derivatives.

Lemma 46 ([4]) Let h (x) be an absolutely continuous function on [a,b] then Dγ
a+h and

Dγ
b−h exist almost everywhere for γ ∈ (0,1). Moreover Dγ

a+h , Dγ
b−h ∈ Lυ (a,b) for 1 ≤

υ < 1
γ , and

Dγ
a+h =

1
Γ (1−γ)

 h (a)
(x−a)γ

+

x∫
a

h
′(t)

(x− t)γ
dt

 (3.33)
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Dγ
b−h =

1
Γ (1−γ)

 h (b)
(b− x)γ

−
b∫
x

h
′(t)

(t− x)γ
dt

 . (3.34)

Proof. Using conditions given in the statement of the Lemma and the definition of

fractional derivative we get,

(
Dγ

a+h
)
(x) =

1
Γ (1−γ)

d
dx

x∫
a

h (t)
(x− t)γ

dt

=
1

Γ (1−γ)
d
dx

x∫
a

h (a)+

t∫
a

h
′
(u)du

 (x− t)−γ dt

=
1

Γ (1−γ)
d
dx

h (a)

x∫
a

(x− t)−γ dt+

x∫
a

t∫
a

h
′
(u)

(x− t)γ
dudt


=

1
Γ (1−γ)

 h (a)
(x−a)γ

+
d
dx

x∫
a

t∫
a

h
′
(u)

(x− t)γ
dudt


=

1
Γ (1−γ)

d
dx

x∫
a

h (a)+

t∫
a

h
′
(u)du

 (x− t)−γ dt

=
1

Γ (1−γ)
d
dx

h (a)

x∫
a

(x− t)−γ dt+

x∫
a

t∫
a

h
′
(u)

(x− t)γ
dudt


=

1
Γ (1−γ)

 h (a)
(x−a)γ

+
d
dx

x∫
a

t∫
a

h
′
(u)

(x− t)γ
dudt

 .
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We use the Dirichlet formula in second term and we get:

(
Dγ

a+h
)
(x) =

1
Γ (1−γ)

 h (a)
(x−a)γ

+
d
dx


x∫
a

h
′
(u)du

x∫
u

(x− t)−γ dt




=
1

Γ (1−γ)

 h (a)
(x−a)γ

+
d
dx


x∫
a

h
′
(u)du

(x−u)
−γ+1

−γ+1



=
1

Γ (1−γ)

 h (a)
(x−a)γ

+

x∫
a

h
′
(u)du

d
dx

(x−u)
−γ+1

−γ+1


=
1

Γ (1−γ)

 h (a)
(x−a)γ

+

x∫
a

h
′
(u)

(x−u)γ
du

 .

Example 47 ([4]) Consider the function h (x) = (x−a)−η , 0 < η < 1, then

(
Dγ

a+h
)
(x) =

1
Γ (1−γ)

d
dx

x∫
a

h (t)
(x− t)γ

dt

=
1

Γ (1−γ)
d
dx

x∫
a

(x− t)−η

(x− t)γ
dt

=
1

Γ (1−γ)
d
dx

x∫
a

(x− t)−η−γ dt. (3.35)

Changing the variable t by a+ p (x−a) in (3.35) we have,

x∫
a

(x− t)−η−γ dt = (x−a)1−η−γ
1∫
0

(1− p)−γ p−ηdp.
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Substitute into (3.35) we have,

(
Dγ

a+h
)
(x) =

1
Γ (1−γ)

d
dx

1∫
0

p−η (x−a)1−η

(x−a)γ (1− p)γ
dp (3.36)

=
1

Γ (1−γ)
d
dx

[
(x−a)1−η−γ] 1∫

0

(1− p)−γ p−ηdp

=
1

Γ (1−γ)
(1−η−γ) (x−a)1−η−γ−1 Γ (1−γ)Γ (1−η)

Γ (2−γ−η)

=
Γ (1−η)
Γ (1−γ−η)

1
(x−a)η+γ

.

Example 48 ([4]) Consider the function

h(x) =
1

(x−a)1−γ

where 0 < γ < 1, then

(
Dγ

a+h
)
(x) =

1
Γ (1−γ)

d
dx

x∫
a

(x−a)γ−1 (x− t)−γ dt

=
1

Γ (1−γ)
d
dx

(x−a)γ−1

x∫
a

(x− t)−γ dt

=
1

Γ (1−γ)
d
dx

(x−a)γ−1
[
− (x− t)−γ+1

−γ+1

]x

a

= 0.

We have

(
Dγ

a+h
)
(x) ≡ 0 where h(x) =

1
(x−a)1−γ . (3.37)
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Now let us assume that γ ≥ 1. In such cases we will use the notation
[
γ
]

to represent the

integer part of a number γ and {γ} to represent the fractional part of γ. It is obvious that

for any real number γ, 0 ≤ {γ} < 1 and

γ =
[
γ
]
+ {γ} . (3.38)

Definition 49 If γ is an integer then

Dγ
a+ =

(
d
dx

)γ
(3.39)

and

Dγ
b− =

(
− d

dx

)γ
.

Definition 50 If γ is not an integer then

Dγ
a+h =

(
d
dx

)[γ]
D{γ}a+h (3.40)

=

(
d
dx

)[γ]+1

I1−{γ}
a+ h

=
1

Γ (n−γ)

(
d
dx

)n x∫
a

h(t)
(x− t)γ−n+1 dt, where n =

[
γ
]
+1 .
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and

Dγ
b−h =

(
− d

dx

)[γ]
D{γ}b−h (3.41)

=

(
− d

dx

)[γ]+1

I1−{γ}
b− h

=
(−1)n

Γ (n−γ)

(
d
dx

)n b∫
x

h(t)
(t− x)γ−n+1 dt,

where n =
[
γ
]
+1.

Remark 51 Using definitions we see that,

Dγ
a+h = I−γa+h = (Iγa+)−1h

and

Dγ
b−h = I−γb−h = (Iγb−)−1h.

Remark 52 The fractional derivatives formula (3.31) an (3.32), are exist if

x∫
a

h(t)

(x− t) {γ}
∈ AC

[γ]
([a,b])

or equivalently

h(x) ∈ AC
[γ]

([a,b]) .

Lemma 53 If h (x) = (x−a)γ−k, k = 1,2, ...,
[
γ
]
+1 then

(
Dγ

a+h
)
(x) ≡ 0.
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Proof. It is not difficult to verify that (3.36) is true for any γ > 0 and similarly for (3.37).

Recall that,

Dγ
a+ (x−a)γ−k =

1
Γ (n−γ)

(
d
dx

)n x∫
a

(t−a)γ−k

(x− k)γ−n+1 dt, n =
[
γ
]
+1.

Changing t by a+ p(x−a) we have:

Dγ
a+ (x−a)γ−k =

1
Γ (n−γ)

(
d
dx

)n 1∫
0

pγ−k (x−a)γ−k+1

(x−a)γ−n+1 (1− p)γ−n+1
dp

=
1

Γ (n−γ)

(
d
dx

)n
(x−a)n−k

1∫
0

pγ−k (1− p)γ−n+1 dp


≡ 0.

n =
[
γ
]
+1,n− k < n,k = 1,2, . . .

3.3 Fractional Integrals and Derivatives of Complex Order

In this section we focus on fractional integral and derivatives of complex order. Recall

that, for a complex number γ = γ0+ iθ, If γ0 = 0 then γ = iθ is called purely imaginary

complex number.

Definition 54 ([3],[4]) Let γ = iθ then the formula

(
Dγ

a+h
)
(x) =

1
Γ (1−γ)

d
dx

x∫
a

h(t)
(x− t)γ

dt.

below make sense. Thus, replace γ by iθ we have,

(
Diθ

a+h
)
(x) =

1
Γ (1− iθ)

d
dx

x∫
a

h(t) (x− t)iθ dt . (3.42)
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The formula given in (3.24) does not work for the fractional integral of purely imaginary

order since the integral is divergent for γ = iθ. Therefore, in this case we need a different

definition which is given below.

Definition 55 ([3],[4]) Let γ = iθ, then

Iiθ
a+h =

d
dx

I1+iθ
a+ h

=
1

Γ (1+ iθ)
d
dx

x∫
a

h (t) (x− t)iθ dt, x > a (3.43)

and

Iiθ
b−h =

1
Γ (1+ iθ)

d
dx

b∫
x

(t− x)iθ h(t)dt. (3.44)

In order to extend above definition to all complex number we need to define the identity

operator, D0
a+ψ.

Definition 56 The identity operation, D0
a+, acts on ψ as follows;

D0
a+ψ = I0

a+ψ = ψ (3.45)

and in (3.42), take γ = 0

(
D0

a+ψ
)
(x) =

1
Γ (1)

d
dx

x∫
a

ψ (t)dt =
1
Γ (1)

d
dx

x∫
a

ψ (t)dt =
(
I0
a+ψ

)
.
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Lemma 57 ([4]) Let h(x) be an absolutely continuous function on [a,b] then Diθ
a+h exists

for all x and it may be represented in the form

Dγ
a+h =

1
Γ (1−γ)

h(a) (x−a)−γ+

x∫
a

h
′
(t) (x− t)−γ dt


(3.33) with γ = iθ.

Proof. Assume, h(x) ∈ AC [a,b] then h1−γ (x) ∈ AC ([a,b]) where

h(t) = h(a)+

t∫
a

h
′
(p)dp (3.46)

and

h1−γ (x) =
1

Γ (1− iθ)

x∫
a

h(t) (x− t)−iθ dt. (3.47)
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Now use (3.46) in (3.47) we have,

h1−γ (x) =
1

Γ (1− iθ)

x∫
a

h(a)+

t∫
a

h
′
(p)dp

 (x− t)−iθ dt

=
1

Γ (1− iθ)

h(a)

x∫
a

(x− t)−iθ dt+

x∫
a

t∫
a

h
′
(p) (x− t)−iθ dpdt


=

1
Γ (1− iθ)

h(a)

x∫
a

(x− t)−iθ dt+

x∫
a

(x− t)−iθ dt

t∫
a

h
′
(p)dp


=

1
Γ (1− iθ)

h(a)
(x−a)1−iθ

(1− iθ)
+

x∫
a

h
′
(p)dp

x∫
p

(x− t)−iθ dt


=

1
Γ (1− iθ)

h(a)
(x−a)1−iθ

(1− iθ)
+

x∫
a

h
′
(p)

(x− p)1−iθ

(1− iθ)
dp


=

1
Γ (2− iθ)

h(a) (x−a)1−iθ +

x∫
a

h
′
(p) (x− p)1−iθ dp

 .
But,

h
′
1−γ (x) = ψ (x)

=
1

Γ (2− iθ)

h(a) (1− iθ) (x−a)−iθ +

x∫
a

h
′
(t) (1− iθ) (x− p)−iθ dp


=

1
Γ (1− iθ)

h(a) (x−a)−iθ +

x∫
a

h
′
(t) (x− t)−iθ dp


which is (3.33) where γ = iθ.

Lemma 58 ([4]) The space ACn [a,b] consists of those and only those functions h(x),

which are represented in the form:

h(x) =
1

(n−1)!

x∫
a

(x− t)n−1ψ (t)dt+
n−1∑
k=0

ck (x−a)k
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where ψ (t) ∈ L1 (a,b) and ck is constant.

Proof. Assume that ψ (t) = h(n)(t) and ck =
h(k)(a)

k! then

h(n−1) (x) = c+

x∫
a

ψ (t)dt

= c+

x∫
a

h(n) (t)dt

which implies that

x∫
a

h(n−1) (x)dx = c (x−a)+

x∫
a

x∫
a

h(n) (t)dt

= c (x−a)+

x∫
a

x∫
a

ψ (t)dt.

On the other hand,

h(n−2) (x)−h(n−2) (a) = c(x−a)+

x∫
a

x∫
a

ψ (t)dt.

Continuing in this way we obtain that,

h(x) =
n−1∑
k=0

(x−a)k ck +

x∫
a

(x− t)n−1

(n−1)!
ψ (t)dt.

Theorem 59 ([4]) Let Reγ ≥ 0 and h(x) ∈ ACn [a,b] , n =
[
Reγ

]
+ 1. Then Dγ

a+h exists

almost everywhere and may be represented in the form.
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Dγ
a+h =

n−1∑
k=0

h(k)(a)
Γ (1+ k−γ)

(x−a)k−γ+
1

Γ (n−γ)

x∫
a

h(n) (t)

(x− t)γ−n+1 dt. (3.48)

Lemma 60 ([4]) Let ψ (t) ∈ L1 (a,b) . The homogenous Abel integral equation Iγa+ψ ≡ 0

has only trivial solution ψ (x) ≡ 0 for any γ with Reγ > 0.

Proof. Let m =
[
Reγ

]
, and let Reγ , 1,2, ... . Differentiating m times the equality

Iγa+ψ = 0, we have,

Iγ−m
a+ ψ = 0.

It is obvious that, 0 < Re(γ−m) < 1, so ψ in view of Theorem3.0.33, which is valid for

complex exponent. If γ = m− iθ, differentiating (m−1) times, the result Iγa+ψ = 0 and

x∫
a

ψ (t) (x− t)−iθ dt = 0.

If θ = 0, clearly ψ (x) = 0 , a.e.

If θ , 0, then replace x to t, t to s multiply both sides by 1
(x−t)1+iθ and integrate both

sides over [a, x−ε], to get

x−ε∫
a


t∫
a

(t− s)−iθψ (s)

 1
(x− t)1+iθ dt = 0

x−ε∫
a

ψ (s)


x−ε∫

s

(t− s)−iθ (x− t)−1−iθ dt

ds = 0.
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Change the variable, ε = t−s
x−s ,

x−ε∫
a

ψ (s)

1− ε
x−s∫
a

εiθ (1−ε)−1−iθ dεds = 0. (3.49)

Since ψ (s) ∈ L1, the passage to the limit is possible under the first integral sign if the inner

integral converges as ε→ 0. To show this, we need some facts, for the imaginary order

Beta function. It is known that the Beta function is defined by (2.17).(2.17) make sense

when Re p = 0 or Req = 0(p , 0,q , 0). In this case, it is understood to be conditionally

convergent.In particular, there exists the limit

B(p, iθ) = lim
ε→0

1−ε∫
0

tp−1 (1− t)iθ−1 dt, Re p > 0, θ , 0 (3.50)

which coincides with the analytic continuation of B (p,q) with respect to the values

Req = 0,q , 0. The inner integral in (3.49) converges as ε→ 0. So letting ε→ 0 in

(3.49), we have by (3.50) that

B (1− iθ, iθ)

s∫
a

ψ (s)ds = 0

ψ (s) = 0 a.e which completes the proof.

3.4 Fractional Integrals of Some Elementary Functions

In this section we shall evaluate fractional integral of some well known functions.

Lemma 61 Consider the power function

ψ (x) = (x−a)β−1
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and assume that Reβ > 0, then

Iγa+ψ = (x−a)
β+γ−1 Γ (β)
Γ (β+γ)

(3.51)

where aϵC.

Proof. Let we use (3.24) and taking t = a+ (x−a) p,

Iγa+ψ (x) =
1
Γ (γ)

x∫
a

(x−a)
β−1

(x− t)1−γ dt

=
(x−a)

β+γ−1

Γ (γ)

1∫
0

p
β−1

(1− p)γ−1

= (x−a)
β+γ−1 Γ (β)
Γ (β+γ)

aϵC.

Lemma 62 Consider the power function

ψ (x) = (b− x)β−1

and assume that Reβ > 0, then

Iγb−ψ = (b− x)
β+γ−1 Γ (β)
Γ (β+γ)

. (3.52)
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Proof. Let we use (3.25) and taking t = a+ (b− x) p,

Iγb−ψ (x) =
1
Γ (γ)

b∫
x

(b− x)
β−1

(t− x)1−γ dt

=
(b− x)

β+γ−1

Γ (γ)

1∫
0

p
β−1

(1− p)γ−1

= (b− x)
β+γ−1 Γ (β)
Γ (β+γ)

.

Lemma 63 Consider the function

Iγa+

[
(x−a)β−1

(b− x)γ+β

]
=

1
(b−a)γ

Γ (β)
Γ (β+γ)

(x−a)γ+β−1

(b− x)β
, a < x < b.

Proof. We use, (3.24) we get:

Iγa+ψ =
1
Γ (γ)

x∫
a

(x−a)
β−1

(b− x)
γ−1

(x− t)1−γ dt

Changing to variable; t = a+ p(x−a), we have:

Iγa+ψ =
1
Γ (γ)

(x−a)
β+γ−1

1∫
0

p
β−1

(1− p)
γ−1 (

1−
( x−a
b−a

)
p
)γ−1

dp

=
(x−a)

β+γ−1

Γ (γ)
B (β,γ)2 F1

(
1−γ,β,γ+β;

x−a
b−a

)

Iγa+ψ = (b− x)
γ−1 Γ (β)
Γ (β+γ)

(x−a)
β+γ−1

2F1

(
1−γ,β,γ+β;

x−a
b−a

)
. (3.53)

43



Useful particular:

Iγa+

[
(x−a)β−1

(b− x)γ+β

]
=

1
(b−a)γ

Γ (β)
Γ (β+γ)

(x−a)γ+β−1

(b− x)β
a < x < b . (3.54)

3.5 Fractional Integration and Differentiation as Reciprocal
Operations

As we know differentiation and integration has the following property

(
d
dx

) x∫
a

ψ (t)dt = ψ(x)

but in general

x∫
a

ψ′ (t)dt , ψ (x)

because of the constant value ψ (a). Similarly

(
d
dx

)n

In
a+ψ ≡ ψ,

but

In
a+ψ

(n) , ψ.

Therefore we can state

Dγ
a+Iγa+ψ = ψ, (3.55)
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but in general Iγa+Dγ
a+ψ is not equal to ψ (x).

Definition 64 ([4]) Let Iγa+
(
Lp

)
, Reγ > 0, denote the space of functions h(x), which can

be represented by the left-sided fractional integral of order γ of a summable function i.e.

h ∈ Iγa+
(
Lp

)

means

h = Iγa+ψ, for some ψ ∈ Lp (a,b) ,1 ≤ p ≤∞.

Theorem 65 ([4])In order to have, h(x) ∈ Iγa+ (L1) , Reγ > 0, it is neccessary and suffi-

cient that

hn−γ (x) = In−γ
a+ h ∈ ACn ([a,b]) (3.56)

where n =
[
Reγ

]
+1 and that

h(k)
n−γ (a) = 0, k = 1,2, ...,n−1. (3.57)

Proof. Let h = Iγa+ (ψ) and ψ ∈ L1 (a,b). Because of the semigroup property we have

In−γ
a+ h = Iγa+ (ψ), where ψ ∈ L1 (a,b) and In−γ

a+ h ∈ ACn ([a,b]). Therefore we get (3.56)

and then (3.57) is satisfied. Conversly, let (3.56) and (3.57) be satisfied, we can write

hn−γ (x) = In
a+h where ψ ∈ L1 (a,b). Consequently, by semigroup property;

In−γ
a+ h = In

a+ψ = In−γIγψ.
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Hence

In−γ
a+

[
h− Iγa+ψ

]
= 0.

Since Re(n−γ) > 0, by Lemma 3.0.59 we have that h− Iγa+ψ = 0 a.e therefore the proof

is completed.

Definition 66 Let Reγ > 0, a function h(x) ∈ L1 (a,b) is said to have a summable frac-

tional derivative Dγ
a+h, if In−γ

a+ h ∈ ACn ([a,b]), n =
[
Reγ

]
+1.

Remark 67 If In−γ
a+ h is n times differentiable at every point i.e Dγ

a+h =
(

d
dx

)n
In−γ
a+ h exist

then h (x) has a summable fractional derivatives.

Theorem 68 ([4]) Let Reγ > 0. Then the equality

Dγ
a+Iγa+ψ = ψ (x) (3.58)

is valid for any summable function ψ (x) while

Iγa+Dγ
a+h = h (x) (3.59)

is satisfied for

h (x) ∈ Iγa+ (L1) . (3.60)

If we assume that instead of (3.60) a function h(x) ∈ L1 (a,b) has a summable derivative
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Dγ
a+h then (3.59) is not true in general and is to be replaced by the result

Iγa+Dγ
a+h = h (x)−

n−1∑
k=0

(x−a)γ−k−1

Γ (γ− k)
h(n−k−1)

n−γ (a) , (3.61)

where n =
[
Reγ

]
+1 and hn−γ (x) = In−γ

a+ h. In particular we have:

Iγa+Dγ
a+h = h (x)−

h1−γ (x)
Γ (γ)

(x−a)γ−1 , (3.62)

for 0 < Reγ < 1.

Proof. By the definitions we have,

Dγ
a+Iγa+ψ =

1
Γ (γ)Γ (n−γ)

(
d
dx

)n x∫
a


t∫
a

ψ (p)

(t− p)1−γ dp

 dt

(x− t)γ−n+1 .

Interchanging the order of integration and evaluating the inner integral we get:

Dγ
a+Iγa+ψ =

1
Γ (n)

(
d
dx

)n x∫
a

ψ (p) (x− p)n−1 .

Therefore (3.58) follows by (3.1) and (2.17). To prove (3.59); with the assumption (3.60)

immediately follows from (3.58).

Corollary 69 ([4]) Assume that h (x) have a summable derivative Dγ+n
a+ h in the sense of

the above definition. Then,

h (x) =
n−1∑
j=−n

(
Dγ+ j

a+ h
)
(a)

Γ (γ+ j+1)
(x−a)γ+ j+Rn (x) , (Reγ > 0) (3.63)

is valid for where Rn (x) =
(
Iγ+n
a+ Dγ+n

a+ h
)
(x) .
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Corollary 70 ([4]) Assume that h (x) ∈ Iγb−
(
Lp

)
, g (x) ∈ Iγa+

(
Lq

)
; 1

p +
1
q ≤ 1+γ, then

b∫
a

h (x)
(
Dγ

a+g
)
(x)dx =

b∫
a

g (x)
(
Dγ

b−h
)
(x)dx (0 < Reγ < 1) . (3.64)

Simple sufficiency conditions for functionsh(x),g(x) to satisfy (3.64) is that h(x),g(x)

should be continuous and
(
Dγ

a+g
)
(x) and

(
Dγ

b−h
)
(x) exists at every point x ∈ [a,b] and

they are also continuous.

In the following part section we will use the notations of (??) to represent fractional

integral and fractional derivatives. Consedering Iγa+ = Dγ
a+ for Reγ < 0.

Theorem 71 ([4]) Assume that Reβ > 0, Re(γ+β) > 0 and ψ (x) ∈ L1 (a,b) then,

Iγa+Iβa+ψ = Iγ+βa+ ψ. (3.65)

Proof. In the case Re(γ) > 0 and Re(β) > 0, the semigroup property (3.65) is already

established in (3.28). Let’s consider the case Re(γ) = 0, Reβ > 0, letting γ = iθ. Then,

Iiθ
a+Iβa+ψ =

1
Γ (β)Γ (1+ iθ)

d
dx

x∫
a

ψ (s)ds

x∫
s

(x− t)iθ (t− s)β−1 dt

=
B (1+ iθ,β)
Γ (β)Γ (1+ iθ)

d
dx

x∫
a

ψ (s) (t− s)iθ+β ds

=
1

Γ (1+ iθ+β)
d
dx

x∫
a

ψ (s) (t− s)iθ+β ds
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=
d
dx

Iiθ+β+1
a+ ψ. (3.66)

Since Re(1+ iθ+β) = Re(β)+1 > 1, and (3.65) is already proved in the case Re(γ) > 0,

Re(β) > 0, we have;

Iiθ+β+1
a+ ψ = I1

a+

(
Iiθ+β
a+ ψ

)
=

x∫
a

(
Iiθ+β
a+ ψ

)
(t)dt

so by (3.66) we get,

Iiθ
a+Iβa+ψ =

d
dx


x∫
a

(
Iiθ+β
a+ ψ

)
(t)dt


= Iiθ+β

a+ ψ

which is (3.65), when γ = iθ. It remains to consider the case Re(γ) < 0, then use (3.65)

Iγa+Iβa+ψ = D−γa+I−γ+β+γa+ ψ (3.67)

= D−γa+I−γa+ Iβ+γa+ ψ

from (3.65), because Re(−γ) > 0, Re(γ+β) > 0. By (3.58), since

Iγa+Iβa+ψ = Iγ+βa+ ψ

which is (3.65).

Theorem 72 ([4]) Assume that Reγ < 0, Re(γ+β) < 0 and ψ (x) ∈ I−γ−βa+ (L1), then,

Iγa+Iβa+ψ = Iγ+βa+ ψ.
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Proof. Now consider the case Re(β) < 0, Re(γ) > 0. Since ψ (x) ∈ I−βa+ (L1), we have

ψ = I−βa+φ,

where φ ∈ L1 (a,b). Thus

Iγ+βa+ ψ = Iγ+βa+ I−βa+φ.

Since Re(γ+β−β) > 0, by the case1 that

Iγ+βa+ ψ = Iγ+β−βa+ φ

= Iγa+φ

= Iγa+D−βa+ψ

= Iγa+Iβa+ψ.

Theorem 73 Assume that Reγ < 0, Re(γ+β) < 0 and ψ (x) ∈ I−γ−βa+ (L1) then,

Iγa+Iβa+ψ = Iγ+βa+ ψ.

Proof. Let Re(γ) < 0, Re(γ+β) < 0. By the assumption ψ (x) ∈ I−γ−βa+ (L1), then

ψ (x) = I−γ−βa+ φ, φ ∈ L1 (a,b)
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By case1,

Iγa+Iβa+ψ = Iγa+Iβa+I−γ−βa+ φ

= Iγa+Iβ−γ−βa+ φ

= Iγa+I−γa+φ

= D−γa+I−γa+φ.

So, by (3.58),

Iγa+Iβa+ψ = φ = Iγ+βa+ ψ.

Finally, note that the cases γ = 0, β = 0 are trivial, while the case γ+β = 0 coincides with

(3.58) and (3.59), which completes the proof.

Remark 74 The cases γ = 0, β = 0 and γ+β = 0 being also admissible for real γ and β.

Remark 75 Theorem does not incluede the fallowing cases

i) Reβ = 0,Reγ > 0,

ii)Re(γ+β) = 0,Reβ > 0,

iii)Reγ = 0,Reβ < 0.

Theorem 76 Assume that

i) Reβ = 0,Reγ > 0 and there exists a summable derivative D−βa+ψ of purely imaginary

order.

ii) Re(γ+β)= 0,Reβ > 0 and there exists a summable derivative D−β−γa+ ψ of purely imag-
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inary order.

iii) Reγ = 0,Reβ < 0,and there exists a summable derivative D−βa+ψ and D−β−γa+ ψ,

then

Iγa+Iβa+ψ = φ = Iγ+βa+ ψ

holds.

Theorem 77 Assume that Reγ < 0, Re(γ+β) < 0 and ψ(x) has a summable fractional

derivative then

Iγa+Iβa+ψ = Iγ+βa+ ψ−
n−1∑
k=0

ψ(n−k−1)
n+β

Γ (γ− k)
(x−a)γ−k−1 , (3.68)

where n =
[−Reβ

]
+1 and ψn+β (x) = In+β

a+ ψ.

Definition 78 ([4]) Let X be a Banach space and Tγ be a linear bounded operator in X

for γ ≥ 0, a one parameter family of Tγ is called a semigroup if

TγTβ = Tγ+β, γ ≥ 0,β ≥ 0 (3.69)

and

T0ψ = ψ, ψ ∈ X.
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Definition 79 A semigroup is called strongly continuous if for any ψ ∈ X,

lim
γ→γ0

∥∥∥Tγψ−Tγ0ψ
∥∥∥

x = 0, 0 ≤ γ0 <∞. (3.70)

Definition 80 A semigroup is called continuous in uniform topology if the limit above

(3.70) exists in the operator topology in other words if

lim
∥∥∥Tγ−Tγ0

∥∥∥ = 0

when γ→ γ0.

Lemma 81 If the semigroup mentioned in (3.69) is strongly continuous for γ = 0 then it

is strongly continuous for all γ ≥ 0.

Lemma 82 The operator Iγa+ and Iγb− are bounded in Lp (a,b) .

Proof. By using simple operations and the generalized Minkowski inequality one can

show that

∥∥∥Iγa+ψ
∥∥∥

Lp(a,b) ≤
(b−a)Reγ

Reγ |Γ (γ)| ∥ψ∥Lp(a,b) , Reγ > 0, (3.71)

∥∥∥Iγb−ψ
∥∥∥

Lp(a,b) ≤
(b−a)Reγ

Reγ |Γ (γ)| ∥ψ∥Lp(a,b) , Reγ > 0. (3.72)
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Indeed,

∥∥∥Iγa+ψ (x)
∥∥∥

Lp(a,b) =

∥∥∥∥∥∥∥∥ 1
Γ (γ)

x∫
a

ψ (t)

(x− t)1−γ dt

∥∥∥∥∥∥∥∥
Lp(a,b)

=


b∫
a

∣∣∣∣∣∣∣∣ 1
Γ (γ)

x∫
a

ψ (t)

(x− t)1−γ dt

∣∣∣∣∣∣∣∣
p

dx


1
p

=
1
|Γ (γ)|


b∫
a

dx

∣∣∣∣∣∣∣∣
x∫
a

ψ (t)

(x− t)1−γ dt

∣∣∣∣∣∣∣∣
p

1
p

we use generalized Minkowski inequality in (2.13),

≤ 1
|Γ (γ)|

b∫
a


b∫
t

∣∣∣∣∣∣ ψ (t)

(x− t)1−γ dt

∣∣∣∣∣∣p dx


1
p

dt

=
1
|Γ (γ)|

b∫
a

|ψ (t)|


b∫
t

(x− t)(γ−1)p dx


1
p

dt

=
1
|Γ (γ)|

b∫
a

|ψ (t)|
{

(b− t)(γ−1)p+1

(γ−1) p+1

} 1
p

dt

=
1

|Γ (γ)| [(γ−1) p+1
] 1

p

b∫
a

|ψ (t)| (b− t)(γ−1)+ 1
p dt

and use Hölder’s inequality in (2.8) and (2.9) gives

≤ 1

|Γ (γ)| [(γ−1) p+1
] 1

p


b∫
a

|ψ (t)|p dt


1
p


b∫
a

(b− t)(γ−1)q+ q
p dt


1
q

=
∥ψ∥Lp(a,b)

|Γ (γ)| [(γ−1) p+1
] 1

p

(b−a)(γ−1)q+ q
p+1

(γ−1)q+ p
q +1


1
q

=
(b−a)γ ∥ψ∥Lp(a,b)

|Γ (γ)| [(γ−1) p+1
] 1

p (γq)
1
q

=
(b−a)Reγ

Reγ |Γ (γ)| ∥ψ∥Lp(a,b) .
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Theorem 83 ([4]) Operators of fractional integration form a semigroup in Lp (a,b), p ≥

1, which is continuous in uniform topology for γ > 0 and strongly continuous for all

γ ≥ 0.

Proof. It is obvious that

TγTβ = Tγ+β, γ ≥ 0,β ≥ 0.

Now we have to show the continutiy of the semigroup . For γ0 > 0, we have:

Iγ0
a+ψ− Iγa+ψ

=

[
1
Γ
(
γ0

) − 1
Γ (γ)

] x∫
a

ψ (t)

(x− t)1−γ0
dt+

1
Γ (γ)

x∫
a

[
(x− t)γ0−1− (x− t)γ−1

]
ψ (t)dt

= Aψ+Bψ.

On the other hand we have:

∥Aψ∥Lp
≤

∣∣∣∣∣∣1− Γ
(
γ0

)
Γ (γ)

∣∣∣∣∣∣ (b−a)γ0

γ0Γ
(
γ0

) ∥ψ∥Lp
. (3.73)

Let ψ (x) to be zero outside [a,b]. Then,

|Bψ| =

∣∣∣∣∣∣∣∣ 1
Γ (γ)

x∫
a

[
(x− t)γ0−1− (x− t)γ−1

]
ψ (t)dt

∣∣∣∣∣∣∣∣
≤ 1
Γ (γ)

∣∣∣∣∣∣∣∣
x∫
a

[
(x− t)γ0−1− (x− t)γ−1

]
ψ (t)dt

∣∣∣∣∣∣∣∣
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taking t = x− t,

≤ 1
Γ (γ)

∣∣∣∣∣∣∣∣∣−
0∫

x−a

[
(x− (x− t))γ0−1− (x− (x− t))γ−1

]
ψ (x− t)dt

∣∣∣∣∣∣∣∣∣
=

1
Γ (γ)

∣∣∣∣∣∣∣∣∣
x−a∫

0

[
tγ0−1− tγ−1

]
ψ (x− t)dt

∣∣∣∣∣∣∣∣∣
≤ 1
Γ (γ)

b−a∫
0

∣∣∣tγ0−1− tγ−1
∣∣∣ψ (x− t)dt

=
1
Γ (γ)

b−a∫
0

tγ0−1
∣∣∣∣∣∣1− tγ−1

tγ0−1

∣∣∣∣∣∣ψ (x− t)dt

=
1
Γ (γ)

b−a∫
0

tγ0−1
∣∣∣1− tγ−γ0

∣∣∣ψ (x− t)dt

=
1
Γ (γ)

b−a∫
0

∣∣∣1− tγ−γ0
∣∣∣

t1−γ0
|ψ (x− t)dt| .

Applying Minkowski’s inequality

∥Bψ∥Lp
≤ 1
Γ (γ)

b−a∫
0

∣∣∣1− tγ−γ0
∣∣∣

t1−γ0
dt


b∫
a

|ψ (x− t)|p dx


1
p

≤ 1
Γ (γ)

b−a∫
0

∣∣∣1− tγ−γ0
∣∣∣

t1−γ0
dt ∥ψ∥Lp

. (3.74)

Combining the inequalities (3.73) and (3.74), we have;

∥∥∥∥(Iγa+− Iγ0
a+

)
ψ
∥∥∥∥

∥ψ∥ ≤
∣∣∣∣∣∣1− Γ

(
γ0

)
Γ (γ)

∣∣∣∣∣∣ (b−a)γ0

Γ
(
γ0+1

) + 1
Γ (γ)

b−a∫
0

∣∣∣1− tγ−γ0
∣∣∣

t1−γ0
dt.
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Taking limit as γ→ γ0 in the integral in right hand side of above inequality and also

having in mind that for γ > 0, Γ (γ) is continuous and nonzero, we have the following

result

lim
γ→γ0

∥∥∥Iγa+− Iγ0
a+

∥∥∥ = 0.

If γ0 = 0 then

lim
γ→0

∥∥∥Iγa+ψ−ψ
∥∥∥

Lp
= 0.

Consider,

Iγa+ψ =
1
Γ (γ)

x∫
a

(x− t)γ−1ψ (t)dt

and replacing t by x− t, gives

=
1
Γ (γ)

x−a∫
0

tγ−1ψ (x− t)dt.
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On the other hand,

Iγa+ψ−ψ =
1
Γ (γ)

x−a∫
0

tγ−1ψ (x− t)dt−ψ (x)

=
1
Γ (γ)

x−a∫
0

ψ (x− t)−ψ (x)
t1−γ

dt+
1
Γ (γ)

x−a∫
0

ψ (x)
t1−γ

dt−ψ (x)

=
1
Γ (γ)

x−a∫
0

ψ (x− t)−ψ (x)
t1−γ

dt+
1
Γ (γ)

ψ (x)
[
tγ

γ

]x−a

0
−ψ (x)

=
1
Γ (γ)

x−a∫
0

ψ (x− t)−ψ (x)
t1−γ

dt+
1

γΓ (γ)
ψ (x) (x−a)γ−ψ (x)

=
1
Γ (γ)

x−a∫
0

ψ (x− t)−ψ (x)
t1−γ

dt+
ψ (x) (x−a)γ

Γ (γ+1)
−ψ (x)

=
γ

Γ (γ+1)

x−a∫
0

ψ (x− t)−ψ (x)
t1−γ

dt+ψ (x)
[

(x−a)γ

Γ (γ+1)
−1

]
= Uψ+Vψ.

So

∥∥∥Iγa+ψ−ψ
∥∥∥

Lp
≤ ∥Uψ∥Lp

+ ∥Vψ∥Lp
.

It is clear that,

∥Vψ∥pLp
≤

b∫
a

|ψ (x)|p
∣∣∣∣∣ (x−a)γ

Γ (γ+1)
−1

∣∣∣∣∣p dx.

Appliying Lebesgue Dominated Convergence Theorem,we have

lim
γ→0+

∥Vψ∥Lp
= 0.
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Furthermore, we approximate ψ(x) by a polynomial P(x) in Lp-space, then

∥Uψ∥Lp
≤ ∥U (ψ−P)∥Lp

+ ∥UP∥Lp . (3.75)

Using Minkowski’s inequality on the first term ψ (x) = 0 outside [a,b], we get;

Uψ =
γ

Γ (γ+1)

x−a∫
0

ψ (x− t)−ψ (x)
t1−γ

dt

U (ψ−P) =
γ

Γ (γ+1)

x−a∫
0

(ψ−P) (x− t)− (ψ−P) (x)
t1−γ

dt

=
γ

Γ (γ+1)

x−a∫
0

(ψ−P) (x)− (ψ−P) (t)− (ψ−P) (x)
t1−γ

dt

= − γ

Γ (γ+1)

x−a∫
0

(ψ−P) (t) tγ−1dt

∥U (ψ−P)∥Lp
=

∥∥∥∥∥∥∥∥∥
γ

Γ (γ+1)

x−a∫
0

(ψ−P) (x− t)− (ψ−P) (x)
t1−γ

dt

∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥
γ

Γ (γ+1)


x−a∫

0

(ψ−P) (x− t)
t1−γ

dt−
x−a∫

0

(ψ−P) (x)
t1−γ

dt


∥∥∥∥∥∥∥∥∥

≤


∥∥∥∥∥∥∥∥∥

1
Γ (γ)

x−a∫
0

(ψ−P) (x− t) tγ−1dt

∥∥∥∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥∥∥∥
1
Γ (γ)

x−a∫
0

(ψ−P) (x) tγ−1dt

∥∥∥∥∥∥∥∥∥
Lp


=

∥∥∥Iγa+ (ψ−P)
∥∥∥

Lp
+

∥∥∥∥∥∥∥∥∥
1
Γ (γ)

x−a∫
0

(ψ−P) (x− t) tγ−1dt

∥∥∥∥∥∥∥∥∥
Lp

=
∥∥∥Iγa+ (ψ−P)

∥∥∥
Lp
+

∥∥∥Iγa+ (ψ−P)
∥∥∥

Lp

≤ (b−a)γ

Γ (γ)γ
∥(ψ−P)∥Lp

+
(b−a)γ

Γ (γ)γ
∥(ψ−P)∥Lp
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∥U (ψ−P)∥Lp
≤ 2(b−a)γ

Γ (γ+1)
∥(ψ−P)∥Lp

< constϵ.

The second term in (3.75);

|UP| =

∣∣∣∣∣∣∣∣∣
γ

Γ (γ+1)

x−a∫
0

P (x− t)−P (x)
t1−γ

dt

∣∣∣∣∣∣∣∣∣ ≤
γ

Γ (γ+1)

b−a∫
0

tγ
P (x− t)−P (x)

t
dt,

and we have;

|UP| ≤ γ

Γ (γ+1)

b−a∫
0

tγmax
∣∣∣∣P′ (t)∣∣∣∣dt →

γ→0
0.

Therefore proof is complete.

Definition 84 ([4]) A Lebesgue point x0 of a function ψ (x) ∈ L1 (a,b) is a point which

satisfies the following equation

lim
t→0

1
t

t∫
0

[
ψ (x0− s)−ψ (x0)

]
ds = 0. (3.76)

Remark 85 For the function ψ (x) ∈ L1 (a,b) almost all points x0 ∈ [a,b] are Lebesgue

point.

Theorem 86 ([4]) Let ψ (x) ∈ L1 (a,b) then for any Lebesgue point of a function ψ (x),

lim
a→0

(
Iγa+ψ

)
(x) = ψ (x) . (3.77)

Proof. For a Lebesgue point x0 of a function ψ (x) we will have the following notation
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Ψ (t) =

x0∫
x0−t

ψ (s)ds =

t∫
0

ψ (x0− s)ds. (3.78)

Taking s = x0− s, we have

Ψ (t) =

x0∫
x0−t

ψ (s)ds =

t∫
0

ψ (x0− s)ds

and use the second inequality in (3.78), we have:

Ψ (t)
t
−ψ (x0) =

1
t

t∫
0

ψ (x0− s)ds−ψ (x0)

=
1
t

t∫
0

ψ (x0− s)ds− 1
t

t∫
0

ψ (x0)ds

=
1
t

t∫
0

[
ψ (x0− s)−ψ (x0)

]
ds.

We get:

Ψ (t)
t
−ψ (x0) =

1
t

t∫
0

[
ψ (x0− s)−ψ (x0)

]
ds→ 0

Thus we can write Ψ (t) as

Ψ (t) = t
[
ψ (x0)+b (t)

]
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where b (t) is a bounded function such that 0 < t < τ = τ (ϵ). Therefore;

Iγa+ψ =
1
Γ (γ)

x0−a∫
0

tγ−1ψ (x0− t)dt

=
1
Γ (γ)

x0−a∫
0

tγ−1dΨ

taking u = tγ−1, v = Ψ (t) and using integration by parts,

Iγa+ψ =
1
Γ (γ)

[tγ−1Ψ (t)
]x0−a

0
−

x0−a∫
0

(γ−1) tγ−2Ψ (t)dt


=

1
Γ (γ)

(x0−a)γ−1Ψ (x0−a)−
[
tγ−1Ψ (t)

]
0
−

x0−a∫
0

(γ−1) tγ−2Ψ (t)dt


=

Ψ (x0−a)

Γ (γ) (x0−a)1−γ −
1
Γ (γ)

Ψ (t)
t1−γ

|t=0 +
1−γ
Γ (γ)

x0−a∫
0

Ψ (t)
t2−γ

dt

=
1−γ
Γ (γ)

x0−a∫
0

tγ−1b (t)dt+
Ψ (x0−a)

Γ (γ) (x0−a)1−γ

+
1−γ
Γ (γ)

ψ (x0)

x0−a∫
0

tγ−1dt+
1−γ
Γ (γ)

τ∫
0

tγ−1b (t)dt.

So;

(
Iγa+ψ

)
(x0)−ψ (x0) =

Ψ (x0−a)

Γ (γ) (x0−a)1−γ +ψ (x0)
[

1−γ
γΓ (γ)

(x0−a)γ−1
]

+
1−γ
Γ (γ)

τ∫
0

tγ−1b (t)dt+
1−γ
Γ (γ)

x0−a∫
0

tγ−1b (t)dt.
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By interchanging the limit and integral sign we get:

lim
γ→0+

∣∣∣∣(Iγa+ψ) (x0)−ψ (x0)
∣∣∣∣ ≤ |ψ (x0)| lim

γ→0+

[
1−γ
Γ (γ+1)

(x0−a)γ−1
]

+ lim
γ→0+

1−γ
Γ (γ)

∣∣∣∣∣∣∣∣∣
τ∫
0

tγ−1b (t)dt

∣∣∣∣∣∣∣∣∣
≤ lim

γ→0+

1−γ
Γ (γ+1)

τγϵ = ϵ.

The equation (3.77) is obtained since ϵ is arbitrary.

63



Chapter 4

CONCLUSION

As a result, we can take derivative and integral easily with integer but if we try to take

fractional we will have some problem. Furthermore I tired some methods and operations

for solving this problem. I solved some equation, theorem etc. with some special func-

tions and properties.

The main problem is 0 < t < 1 and it may main purpose for making this research.
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