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ABSTRACT

In this thesis, our study on graphene is reported, an introductory background

on simulation techniques and graphene properties is given. Molecular dynamics

framework is used to study graphene at atomic level.

Namely, stochastic motion of noble gases in a periodic two-dimensional po-

tential produced by a graphene sheet is studied. We calculated the depth of the

potential well of the interaction between noble gases and the graphene sheet.

Langevin equation is solved numerically to explain the effects of the binding en-

ergy, coefficient of friction and the equilibrium distance on the motion of noble

gases on the graphene sheet.

Next, using the valence force field model of Perebeinos and Tersoff (2009 Phys.

Rev. B 79 241409(R)), different energy modes of suspended graphene subjected

to tensile or compressive strain are studied. Carrying out Monte Carlo simula-

tions we observed that:

i) only for small strains (|ε| / 0.02) the total energy is symmetrical in the strain,

while it behaves completely different beyond this threshold.

ii) the important energy contributions in stretching experiments are stretching,

angle bending, out-of-plane term and the term provides repulsion against π − π

misalignment.

iii) in compressing experiments the two latter terms increase rapidly and be-

yond the buckling transition stretching and bending energies are found to be

constant.

iv) from stretching-compressing simulations we calculated the Young modulus

at room temperature as 350 ± 3.15 N/m. It is found to be in good agreement

with experimental results (340±50 N/m) and with ab-initio results 322-353 N/m.
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v) molar heat capacity is estimated to be 24.64 J mol−1 K−1 which is comparable

with the Dulong-Petit value, i.e. 24.94 J mol−1 K−1 and is almost independent of

the strain.

vi) non-linear scaling properties were obtained from height-height correlations

at finite temperature.

viii) the used valence force field model results in a temperature independent

bending modulus for graphene.

Keywords: graphene sheet, stochastic motion, Noble gases, Langevin dynamics,

valence force field, thermomechanical properties, suspended graphene, tensile and

compressive strain.
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ÖZ

Grafen üzerine yaptığımız bu tez çalışması similasyon (taklit yöntemi) için

bir ön literatür ve grafen teknikleri içermektedir. Burada moleküler yöntemler

grafenin atomik incelenmesinde kullanılmıştır.

İlk önce grafen levhanın 2 - boyutlu potansiyelindeki asal (soy) bir gazın

stokastik (tahmini) hareketi incelenmiştir. Bu çerçevede asal gaz ile grafen levha

arasındaki potansiyelin derinliği hesap edilmiştir. Etkileşimin bağlanma enerjisi,

sürtünme katsayısı ve denge konumlarının tespiti için sayısal (numerik) Langevin

denklemi kullanılmıştır.

Daha sonra Perebeinos ve Tersoff’un [Phys.Rev. B79, 241409 (R) (2009)]

değerlik (valans) kuvvet alan yöntemi kullanarak asılı grafenin gerilme ve sıkışma

altındaki farklı enerji kipleri incelenmiştir. Monte Carlo yöntemi kullanarak

aşağıdaki sonuçlar elde edilmiştir:

i) Toplam enerji küçük gerilme (|ε| / 0.02) altında simetrik bir yapı sergile-

mekte, bunun ötesinde ise farklı görülmektedir.

ii) Enerjiye katkı sağlayan unsurlar, gerilme, açı - bükülmesi, düzlem sapması

ve düzensiz dizilimli π − π itişinden kaynaklanmaktadır.

iii) Sıkıştırma deneylerinde önceki iki etki hızla artmakta, bunun sonunda dolanıma

geçiş gerilimi ve bükülme enerjileri sabit kalmaktadır.

iv) Gerilme - sıkıştırma similasyonlarında, oda sıcaklığında Young modülü 350±

3.15 N/m olarak tesbit edilmiş bu ise deneysel (340± 50 N/m) ve asli aralık olan

322-353 N/m değerlerine uyum sağlamaktadır.

v) Molar ısı kapasitesi 24.64 J mol−1 K−1 olarak bulunmuş, ki bu Dulong - Pe-

tit değeri olan 24.94 J mol−1 K−1 e uygun olarak neredeyse gerilimden bağımsız

davranmaktadır.

v



vi) Kısıtlı sıcaklıkta Lineer olmayan ayar özellikleri yükseklik - yükseklik bağlantısından

elde edilmiştir. vii) Değerlik kuvvet alan modeli sıcaklıktan bağımsız bir bükülme

mödülü sergilemektedir.

Anahtar Kelimeler: Grafen levha, stokastik hareket, asal (soy) gazlar, Langevin

dinamiği, değerlik (valans) kuvvet alan modeli, termomekanik özellikler, gerilen

ve sıkıştırılan asılı grafen.
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Chapter 1

INTRODUCTION

In recent decades, carbon has attracted interest as a nano-material, due to

the diversity of its stable forms and their novel properties. In particular, the

graphene (discovered in 2004) has been subjected to many studies of its peculiar

properties to use in new devices at nanometer scale.

Graphene has opened huge possibilities in electronic device fabrication and has

shown much promise in replacing silicon-based electronics. It has made it possible

to understand properties at low-dimension. Including, the observation of integer

quantum Hall effect (even at room temperature), breakdown of adiabatic Born-

Oppenheimer approximation, realization of Klein paradox, possibilities of high Tc

superconductivity, metal-free magnetism, ballistic electronic propagation, charge-

carrier doping, chemical activities and high surface area (making graphene as the

material of the 21st century). The diverse structural and electronic features as

well as exciting applications have attracted theoretical and experimental scientists

to explore such low dimensional material [1].

Moreover, nanotechnology has been a major focus in science and technology

where most research in this area deals with chemical, physical and biological

issues or a combination of them. Nanotechnology is a multidisciplinary subject

ranging from physics, chemistry, biology and material science to mechanical and

electrical engineering.

The underlying theme of nanotechnology is to handle matter in nano-scale

where physical properties are size dependent. Therefore, ‘nanotechnology’ might

be referred to as the study of those small-scale objects which can be assembled to

create a novel device. Examples of nanotechnology in modern use are the present

nanostructures such as carbon nanotubes, buckyballs and graphene sheets that
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provide a possible new basis for the creation of many nano-devices due to their

conspicuous properties like their high strength, high flexibility and low weight.

Experience shows that deep understanding of material properties can result

in great improvement to products and promote the development of novel ones.

Therefore, it is essential to recognize that materials are inherently of a hierar-

chical multiscale character. Properties should not be considered as monolithic

quantities only at macroscopic levels, as historically taught. Rather, important

material properties can arise at a myriad of length scales ranging from atomic

to microscopic to mesoscopic to macroscopic. Study of nanoscience necessarily

draws from foundations in electronic structure and atomistic-scale phenomena,

which are the basic building blocks of materials. Scientists and engineers are in-

creasingly drawn together by this unifying theme to develop multiscale methods

to bridge the gaps between lowerscale and macroscopic theory [2].

Taking advantage of modern supercomputers and modeling techniques to pre-

dict properties of new nanomaterials such as mechanical, electrical, optical and

thermal properties is very crucial. Such computational studies can accelerate

developments in materials, manufacturing, electronics, medicine and healthcare,

energy, the environment and world security.

To date, many work has been undertaken on computational modeling at nano-

scale which can significantly reduce the time taken in the trial-and-error processes

leading to applications (and in turn, decreases the research cost). Rather than

employing large-scale laboratory facilities, computational modeling can utilize el-

ementary mechanical principles and classical mathematical modeling procedures

to investigate the mechanics of nanoscale systems. Computational simulation is

also recognized now as an essential element between theory and experimenta-

tion. These concepts comprise the foundations of a new multidisciplinary study

at the interface of science and engineering, which is referred to in the current

literature as multiscale, multi-physics modeling and simulation [2, 3]. Translat-

ing a scientific problem into computer application requires the participation of

all members of the science and technology community. Then it cause discussions
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between different scientific fields, utilization of high-performance computing, and

experiment-simulation cooperation [4].

In this work, we study the graphene interaction with gases and the graphene

sheet under strain. Molecular dynamics simulation is utilized to examine the

effect of graphene on the motion of some gas atoms and to investigate thermo-

mechanical properties of graphene sheet under strain.

This work is divided into five chapters. The scientific simulation methods,

involving the related potentials and numerical algorithm are presented in Chapter

2. Physical properties of graphene and its brief history are given in Chapter 3.

In Chapter 4, our study on stochastic motion of noble gases on a graphene sheet

is reported. Finally, Chapter 5 comprises our last work about thermomechanical

properties of graphene with the means of valence force field model.
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Chapter 2

SCIENTIFIC SIMULATION

2.1 Techniques

Mechanical property of a material depends on its atomistic structure and the

way it is configured. A comprehensive investigation of the evolution of atom-

istic configuration with time is crucial to understand the mechanisms of material

deformation. In nano-scale where direct experimental observation is difficult to

conduct. Therefore, numerical simulation techniques are used as very powerful

tools ubiquitously [2, 5, 6, 7, 8, 9, 10].

Molecular dynamics (MD), for example, enables us to study the atomic dy-

namic behavior at the atomic scale. The kinetic energy of the system can be

ignored when the temperature is at zero Kelvin. Atomistic analysis can be con-

ducted statistically by Monte Carlo (MC) methods, in which random process will

be investigated for deformation and failure.

Since the 1980s, MD methods have become widely accepted and improved

because of rapid computer developments and innovations in computational algo-

rithms. These developments show that MD has gradually become an effective

atomistic simulation method [5, 6, 7, 8, 9].

The idea of numerical simulation is to simulate an atomic system from atomic

interactions. These interactions can be determined for a certain atomic configu-

ration with interatomic potentials. Where the potentials can be obtained from

experience, experimental data or quantum mechanics. Based on the principle

of total potential energy, that energy can be minimized to explore the stable

structure of the system (static lattice calculation), the force on each atom can be

calculated to generate atom motion (MD), the energy required for a certain pro-
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cess can be associated with probabilities to statistically study the process (MC

method), the minimum energy path evolved from a given initial configuration to

the final configurations. Other properties of the system can also be calculated

from the total energy or analyzed through a simulated process. Since MD is a

commonly used method in multiscale analysis and has wide applications, it can

be used as an example to explain the simulation process.

After a configuration of atoms is constructed, the potentials are used to de-

termine the force on each atom. Then the atoms are allowed to move for a short

time ∆t with the initial velocities and calculated accelerations, following New-

ton’s second law of particle motion. Then the forces are calculated again with

the new atom positions and the step is repeated. There is a numerical process

with integration for a time step ∆t and cycling to update configurations for time

steps (h).

h is the number of loading steps to complete the designed simulation time t

(i.e., t = h∆t) and is usually about 104 − 107. To follow fast atomic vibrations

(of the order of (1 − 10)THz depend on area of simulation) the step-by-step

integration process requires very small time steps, typically of ∆t = 10−15s. This

numerical analysis is not only used for the analysis under given loading but can

also be used first for obtaining the equilibrium status and checking whether the

used potential functions are correct. The latter can be done, for instance, to

check whether the obtained lattice constant is consistent with the observed one.

Last step is for data processing which uses different softwares such as VMD, Jmol,

gnuplot, etc. to visualize the acquired configuration and to obtain other useful

information.

The MD simulation is not complicated. It is simply a cycling process that

finds interatomic forces, update the positions of atoms, and repeats to determine

the interatomic forces at the new positions. However, the obtained results can

be quite different for different users. The following three factors are essential to

get high accuracy for the simulation:
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• A realistic initial condition for both position and velocity vectors of the sim-

ulation system is absolutely important. Obtaining the equilibrium status

of the system before any loading or excitation is essential for getting reli-

able results. This is a prerequisite condition to carry on non-equilibrium

simulation such as system deformation under external loading. To reach

that equilibrium status, the system needs to undertake a relaxation process

under a certain thermodynamic ensemble such as the so-called “NPT” or

“NVE” ensemble (their explanations will mention later in this chapter).

• A rational design of the simulation model and its boundary condition.

• An accurate potential function to calculate the correct interatomic force.

2.2 Potentials

In classical molecular dynamics, the atomic structure (composition of elec-

trons and nucleus) is not considered and is replaced by a single mass point as

illustrated in Figure 2.1. However, the interatomic potential and forces have

their origin at the subatomic level and therefore the atomic structure must be

considered.

Suppose, N is the total number of the atoms in the simulation system. The

position of atom i (1, 2, . . . N) can be defined by the vector ri or by its com-

ponents xi, yi, and zi of that atom along the three axes x, y, and z. Figure 2.1

shows the vector rij which connects atom i with atom j. The first subscript rep-

resents the starting atom and the second indicates the ending atom. In numerical

simulation, the length of the vector rij, namely the scalar rij is frequently used

to describe the distance and relative position between atoms i and j.

the force Fi at atom i applied by other atoms in the simulation system can be

obtained through the derivatives of potential energy U of the system with respect

to its position vector ri:
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Figure 2.1: The definition of connecting vector (rij) between i and j atoms.

Fi = −∂U (r1, . . . , rN)

∂ri
(2.1)

Pair potentials are the simplest interatomic interactions, and are dependent

on the distance rij between two atoms. The total pair potential of a generic atom

i with other near atoms in the simulation system can be expressed as

Ui =

Ni∑
j>i

Vij (rij) =
1

2

Ni∑
j=1(j 6=i)

Vij (rij) (2.2)

where the factor 1/2 is introduced to avoid double counting. In fact, the pair

potential Vij is equally shared by both atom i and j, so atom i should only

account for a half.

The following is an example of the differential relationship between energy

and force via the pair potential energy between atom i and j

Ui =
1

2

Ni∑
j 6=i

Vij (|rij|) =
1

2

Ni∑
j 6=i

Vij (|rj − ri|) (2.3)

As seen in equation 2.1, if the potential energy Uis is known, the interaction

forces between atoms can be determined. Through integrations of Newton’s sec-

ond law and evolution of dynamical variables such as position vector, the velocity
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and acceleration of each atom in the system with time can be determined. There-

fore, the models for determination of the potential function U and its related force

field of the atomic system is the key for numerical simulation.

In equation 2.2, the summation symbol over a typical atom j (1, ..., Ni) covers

all atoms within its neighborhood sphere defined with atom i as the center and

rcut as the radius. The latter is also called cutoff radius indicating that if rij > rcut

the interatomic potential is too small and can be neglected. The total potential

energy UT of the atomic system can be expressed as the sum of pair potentials

of all atoms

UT =
1

2

N∑
i=1

Ni∑
j 6=i

Vij (rij) (2.4)

2.2.1 Lennard-Jones (LJ) Potential

There are a variety of physical models that describe the interatomic interac-

tion. One of the most famous functions for describing pairwise interactions is LJ

potential 2.5.

VLJ (rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (2.5)

where rij is the distance between atoms i and j, and the term 1/r12ij simulates

the repulsive force between two atoms whereas the 1/r6ij term describes the at-

tractive force between atoms simulating the van der Waals force. The 1/r12ij term

comes from the Pauli exclusion principle. It states that when the electron clouds

of two atoms begin to overlap, the energy of the system increases rapidly, because

two electrons cannot have the same quantum state. On the other hand, Van der

Waals force is weaker than repulsive force; therefore the corresponding exponent

is 6, much smaller than that of the repulsion term.

The two parameters, σ and ε, in LJ potential (equation 2.5) denotes the

collision diameter and the bond energy at the equilibrium position, respectively.

The collision diameter (σ) is the distance at which the potential V (r) is zero. At
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Figure 2.2: The LJ potential and its derivative force with the dimensionless dis-
tance.

the equilibrium position (r = r0), F (r) = 0 then r0 is called bond length. ε is

negative and is the minimum energy for an atomic pair. It represents the work

needed to move coupled atoms from the equilibrium position r0 to infinity. This

is the reason why ε is called bond or dissociation energy.

In Figure 2.2, the solid line represents dimensionless potential energy (V (r)/ε)

where the dotted line shows the dimensionless force (F (r)σ/ε); both with respect

to the dimensionless distance r/σ.

The unit of potential energy V (r) depends on ε and normally is in eV . The

equilibrium interatomic distance r0 is related to the collision diameter σ.

r0 = 21/6σ (2.6)

The interactive force between two atoms can be obtained from the derivative

of equation 2.5 with respect to rij as shown in equation 2.7.

9



Fij (rij) = −∂VLJ (rij)

∂rij
= 24

ε

σ

[(
σ

rij

)13

−
(
σ

rij

)7
]

(2.7)

In the almost one century since LJ potential was proposed, a vast amount of

data for parameters σ and ε has been introduced. But it is worth noting that

these values are obtained under specific conditions and their credibility depends

on the introduced conditions.

The LJ potential has two parameters, σ and ε. But the two parameters

available for mono-atoms. To obtain the values of σ and ε for LJ potential

between unlike chemical elements, the following averages (equations 2.8 and 2.9)

are given by Lorentz-Berthelot mixing rules for parameters σ1,2 and ε1,2 [5] as

σ1,2 =
1

2
(σ1 + σ2) , (2.8)

ε1,2 =
√
ε1ε2. (2.9)

2.2.2 Force Field

Calculating the electronic energy for a given nuclear configuration to obtain a

potential energy for a system is a major problem due to complexity of quantum

states. The force field method is one approach to bypass this problem. A force

field is constructed by writing the electronic energy as a parametric function

of the nuclear coordinates, and fitting the parameters to experimental data or

finding parameter from quantum computational method like ab-intio.

The main element in force field methods are atoms where electrons are not con-

sidered as individual particles. This means that instead of solving the Schrödinger

equation, bonding information must be provided explicitly. The dynamics of the

atoms is handled by classical mechanics whereas quantum mechanical aspects of

the nuclear motion are neglected.

Hereby, molecules are treated as a “ball-spring” model, where atoms have

different sizes and “elasticity” and bonds have different lengths and “rigidity”.
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Figure 2.3: The illustration of the fundamental energy terms in a typical force
field.

There are many different force fields, but we used valence force field to simulate

graphene under strain. The force field energy is written as a sum of energy

components:

Eff = Est + Ebe + Eout + Etors + Ecross + Enb + · · · (2.10)

Where each component describes one degrees of freedom or the energy re-

quired for distorting a molecule in a specific way. There are two types of energy

in force field, bond terms and non-bond terms. The first five terms on the right-

hand side of equation 2.10 are related to bond interactions between any two

connected atoms (Figure 2.3); where Est represents the energy for stretching a

bond between two atoms, Ebe is the energy required for bending an angle between

two bonds, Eout describes the out-of-plane energy, Etros is the torsional energy

for twisting about a bond, and Ecross represents coupling between the bonding

terms. Enb is related to the non-bonded atom-atom interactions and includes the

van der Waals energy and electrostatic energy. If there are other mechanisms

affecting energy then these may be included in Eff by adding appropriate terms

into the above expression.

Consider the idea of masses connected by springs for atoms in a simulation

system; by applying Hooke’s Law we can evaluate the energy required to stretch

and bend bonds from their equilibrium state. In the first approximation or in
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simple harmonic case, Est and Ebe are expressed as equations

Est =
Ks

2

N∑
i=1

Ni∑
j 6=i

(rij − r0)2 (2.11)

, Ebe = Kbe

N∑
i=1

Ni∑
j<k

(θijk − θ0)2, (2.12)

where N is the total number of bonds and Ni is the total number atoms within a

neighborhood sphere defined with atom i as the center and rcut as the cutoff ra-

dius. Ks and Kbe are the force constants for stretching and bending, respectively.

rij is the bond length between atom i and j, θijk is the angle between the atoms

i, j and k. Finally r0 and θ0 are equilibrium bond lengths and bond angles. Also

in [11], bond bending energy term is introduced as a cosine harmonic

Ebe = Kbe

N∑
i=1

Ni∑
j<k

(cos (θijk)− cos (θ0))
2. (2.13)

If the central C0 atom in the configuration shown in Figure 2.4 is sp2-hybridized,

there is a significant energy penalty associated with making the center pyramidal,

since the four atoms prefer to be localized in a plane. If the four atoms are exactly

in a plane, the sum of the three angles with C0 as the central atom should be

exactly 360◦. However, a quite large pulling center out-of-plane may be achieved

without seriously distorting any of these three angles. Taking the bond distances

to 1.5Å, and moving the central atom 0.2Å out of the plane, only reduces the

angle sum to 354.8◦ (i.e. almost a 1.7◦ decrease per angle). The corresponding

out-of-plane angle, α, is 7.7◦ for this case. Eout is written as a harmonic term in

the angle α (and zero for equilibrium state)

Eout = Koutα
2. (2.14)

The Ecross term includes any needed terms to cover coupling between other

bond terms. For chain molecules, an accurate description of their vibro-rotational
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Figure 2.4: The schematic definition of out-of-plane angle.

frequencies often requires the introduction of cross coupling terms. Consider, for

example a molecule such as H2O. It has an equilibrium angle of 104.5◦ and an O-

H distance of 0.958Å. If the angle is compressed to 90◦, say, and the optimal bond

length is determined by electronic structure calculations, the equilibrium distance

becomes 0.968Å (i.e. slightly longer). Similarly, if the angle is widened, the

lowest energy bond length becomes shorter than 0.958Å. This may qualitatively

be understood by noting that the hydrogen atoms come closer together if the

angle is reduced.

This leads to an increased repulsion between the hydrogen atoms, which can

be partly alleviated by making the bonds longer. If we just use the first five

terms in the force field energy, this coupling between bond distance and angle

will be missed. The coupling can be taken into account by including a term that

depends on both bond length and angle. Ecross may in general include a whole

series of terms that couple two (or more) of the bonded terms.
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2.3 Numerical Algorithm; Velocity Verlet

From a mathematical point of view, the differential equation of motion is

an initial value problem with boundary condition where it can be handled by

numerous time steps. Each step will have finite time difference ∆t instead of in-

finitesimal time dt used in the differential equation. The Taylor series expansions

for a position function can be used to derive explicit finite difference equations:

ri (t+ ∆t) = ri (t)+
∆t

1!

dri (t)

dt
+

∆t2

2!

d2ri (t)

dt2
+· · ·+ ∆t(n−1)

(n− 1)!

d(n−1)ri (t)

dt(n−1)
+Rn (∆tn) .

(2.15)

This expansion indicates that the value and derivatives, at time t and incre-

ment ∆t, are used to express the position function at time t + ∆t. The error is

the remaining part Rn of order of (∆t)n. The symbol n denotes the first n terms

where the highest derivative order is (n− 1). Rn will be dropped from equa-

tion 2.15 for numerical algorithm calculation. This means that error is expected

by replacing dt with ∆t. It, however, can be very small if ∆t is small and n is

large. In other word, the error order depends on the numerical algorithm and in

principle, the accuracy can be adequate.

The Velocity Verlet algorithm starts from the position ri (t) and velocity Vi (t)

at the current step. From equation 2.15 by n = 3 and with some substitution of

physical relations, one can obtain

ri (t+ ∆t) = ri (t) + Vi (t) ∆t+
1

2

(
Fi (t)

mi

)
∆t2 (2.16)

where Fi (t) is the force at the current time. The time step ∆t is very small and

acceleration is linear in this range. Then one can get the average acceleration

from the Fi (t) and Fi (t+ ∆t). This acceleration can be used to determine the

velocity at the next time step (t+ ∆t) as

Vi (t+ ∆t) = Vi (t) +
1

2mi

[Fi (t) + Fi (t+ ∆t)] ∆t. (2.17)
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The dropped remaining terms are in R3 (∆t3), thus the error is third order.

The integration process of Velocity Verlet algorithm in time rang of (t0, tf ) is

ri (t0) 7→ ri (t0 + ∆t) 7→ ri (t0 + 2∆t) 7→ · · · 7→ ri (t0 + h∆t) , (2.18)

where tf = t0 + h∆t. Velocity Verlet algorithm is commonly used in numerical

simulations because the position ri (t) and the velocity Vi (t) can be obtained at

the same time. In our study on graphene interaction with noble gases, we have

used this numerical algorithm to develop a Fortran code in which a subroutine is

used to calculate the force of Fi (t+ ∆t).

It is seen from equations 2.16 and 2.17 that solving the differential equation

of motion by means of Velocity Verlet algorithm requires both initial position

vectors and initial velocity vectors. Therefore, initial position and velocity must

be assigned to the system.

2.4 Periodic Boundary Conditions

The boundary conditions in atomistic modeling are very important. Because

of small size of atomistic models, usually at the nanoscale, a large percentage of

atoms are located at the boundary. These boundary atoms have completely dif-

ferent surrounding conditions and forces from the other atoms in material. Also,

boundary atoms may vaporize to vacuum if there is no other medium surrounding

the model, which may cause instability of the simulation system. This problem

can be handled by using periodic boundary conditions to eliminate boundary

effects.

Figure 2.5 shows a schematic of periodic boundary conditions (PBC) in a 2D

problem. The central basic cubic box is replicated throughout space to form an

infinite body. Take atom 1 in the center box for example; when it moves to box C,

its image in box G enters the center box from the other side. And all the images
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Figure 2.5: A two-dimensional periodic system [5].

of atom 1 move in the same way. By this means, the boundaries are eliminated.

PBC enables us to study the properties of materials through the simulation of

a small number of atoms. Usually if the treatment is appropriate, PBC with the

short-ranged interactions is a good approximation for the equilibrium properties

apart from phase transitions.

2.5 Statistical Ensembles

Depending on the needs of simulation tasks, the atomistic system can be taken

as different thermodynamic ensembles so a certain thermodynamic state can be

controlled for the system during the simulation process. There are three main

ensembles; NPT, NVE and NVT.

The NPT ensemble is an isobaric-isothermal ensemble, with the atom number

N, the system pressure P, and the temperature T of the system remain constant

throughout the simulation. To keep temperature constant, the simulation system

should be connected to a thermostat (or thermal bath) to provide or absorb heat

to maintain the desired constant temperature Tset, respectively. This can be

done using Nose-Hoover thermostat. To control the system pressure, a barostat

is used. Specifically, pressure is controlled using a piston, mimicking the volume

pressure relationship. The volume changes with time and, in turn, changes the
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instantaneous pressure so that the average pressure will converge approximately

to the required value.

The NVE thermodynamic ensemble is also called microcanonical ensemble

NVE. Where, the atom number N, the system volume V, and the total energy E

of the system remain constant throughout the simulation.

The NVT ensemble is called canonical ensemble NVT. where, the atom num-

ber N, the system volume V, and the temperature T of the system remain constant

throughout the simulation.

Moreover, Nose-Hoover thermostat is a way proposed for adjusting the system

temperature, where a friction force term is added and the acceleration becomes

d2ri (t)

dt2
=

Fi (t)

mi

− γ (t) Vi (t) . (2.19)

The force expressed by the last term is a frictional force which is proportional

to the atom velocity. If the system temperature is higher than the setting tem-

perature, the corresponding kinetic energy and velocity are also higher than the

setting ones. Thus more frictional force will be produced to reduce the accelera-

tion and, in turn, to reduce the velocity and the system temperature. Here, γ(t)

is the frictional coefficient which is controlled based on the temperature difference

between the system and the thermal bath as follows:

dγ (t)

dt
=
NfkB
Q

(T (t)− Tbath) (2.20)

where:

Q = NfkBTbathτ
2
T (2.21)

is the effective “mass” of the thermostat, τT is the thermostat relaxation time

constant (normally in the range 0.5 to 2 ps), Nf is the number of degrees of

freedom in the system and kB is the Boltzmann constant.
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2.6 Langevin Dynamics

Langevin dynamics is an approach for mathematical modeling of molecular

systems. It is characterized by the use of simplified models where stochastic

differential equations are used to omit some degrees of freedom with controlled

temperature by a thermostat. For a system of N particles with masses M and

coordinates x = x(t) that constitute a time-dependent random variable, the

displacement of a particle is governed by

dV = −M−1∇U(x)dt− γVdt+
√

2γkBTM
−1/2dW (2.22)

where U(x) is the interaction potential, and −∇U(x) is the force calculated from

the potential, γV is friction force due to the viscosity of the fluid, and the last

term is related to random force due to impacts of fluid particles. The random

numbers are delta-correlated with zero mean as

〈dW (t)〉 = 0, (2.23)

〈dWi(t)dWj(t
′)〉 = δij δ (t− t′) . (2.24)

Here, δ is the Dirac delta and 〈...〉ξ is an average on distribution of the realizations

of the random variable dW (t).

The equation 2.22 is the Langevin equation of motion for a Brownian particle.

When damping factor (γ) grows, particle spans the inertia all the way to the

diffusive (Brownian) regime. From fluctuation dissipation theorem, we have an

important result that relates the magnitude of friction (dissipation) with the

strength of the random noise or fluctuating force (g) as

g = 2γ kBTM
−1. (2.25)

The balance between γ and g (friction and fluctuation) in last two terms of
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equation 2.22 plays an important role. It can keep the system alive, otherwise

excessive friction can drive any system to a completely dead state. This balance

is necessary to have a thermal equilibrium state at long times.

2.6.1 Brownian Dynamics

Brownian dynamics is a simplified version of Langevin dynamics and corre-

sponds to the limit where there is no distinct direction for applied forces on parti-

cle and average acceleration is zero. The viscosity term dominates the inertial one

then we can ignore the acceleration term. This process is called “overdamped”

Langevin dynamics, or Langevin dynamics without inertia as

0 = −∇U(x)− γV (t) + frandom (t) . (2.26)

Where V(x) = − 1
γ
∇U(x) is the deterministic velocity, and η(t) = 1

γ
frandom (t) is

the stochastic velocity. The latter has zero mean and its deferent components at

different times are independent so its mean and covariance is

〈η (t)〉 = 0,

〈ηa (t) ηb (t′)〉 = 2D δa,b δ (t− t′) . (2.27)

Where the parameter D is related to diffusion of particles in the fluid. The co-

variance relation comes of this usual assumption that the probability distribution

for the noise in velocity is Gaussian with the variance, σ2, of 2D.

2.6.2 Ornstein-Uhlenbeck Process

In this process Brownian particle is not subjected to any external potential

then we can rewrite equation 2.22 as

dV = −1

τ
Vdt+

√
2kBT

Mτ
dW (2.28)
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where τ = 1/γ, is relaxation time. With some mathematical concern about

continuity and fast fluctuating function, we can obtain explicit formal solution

for equation 2.28 as

V (t) = V0e
−t/τ +

√
2kBT

Mτ

t∫
0

e−(t−t
′)/τdW (t′). (2.29)

With some mathematical manipulations and using equations 2.23 and 2.24,

we can acquire an important quantity that is the mean square displacement of

particle from starting point as

〈
(x (t)− x0)

2〉
ξ

= τ 2
(
1− e−t/τ

)2 [
V0

2 − kBT

M

]
+

2kBTτ

M

[
t− τ

(
1− e−t/τ

)]
.

(2.30)

In equilibrium the first term will be vanished that means
〈
V0

2
〉
eq

= kBT/M ,

from equitation theorem. Then we can find this important result by approxima-

tion as 〈〈
(x (t)− x0)

2〉
ξ

〉
eq

=


kBT
M
t2 t→ 0

2kBTτ
M

t t→∞
. (2.31)

The result for short time (t→ 0) is the free particle form x (t)− x0 = V0t,

however the result for long times can be understood in compression with the

diffusion result
〈〈

(x (t)− x0)2
〉〉

= 2Dt which gives Einstein result D = kBT
γ

. In

general form, if we define the mean square displacement of particle as 〈r2〉 ∝ Dtα

then α = 1 is diffusion, α > 1 is supper diffusion and α < 1 is subdiffusion.

2.6.3 Einstein Relation

Einstein predicted equation 2.32 that indicates Brownian motion of a particle

in a fluid at a thermodynamic temperature T is characterized by a diffusion

coefficient.

D = kBT/γ (2.32)
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where kB is Boltzmann’s constant and γ is the linear drag coefficient on the

particle (in the low-Reynolds regime applicable for small particles). Also, 1/γ

is called mobility that is the ratio of the particle’s drift velocity to an applied

force. Equation 2.32 is Einstein relation connecting the fluctuation of noise to

the dissipation in the medium.

2.7 Metropolis Monte Carlo Method

MC method uses a statistical method instead of the deterministic method

used in MD. This method can be used for both statics and dynamics problems

of atomistic systems.

What we need to do in the Monte Carlo method is to carry on routine sam-

pling experiments which involve the generation of random numbers followed by a

limited number of arithmetic and logic operations. The procedure of the so-called

Metropolis algorithm is simple:

1. Draw random numbers and calculate the system energy H(A) for configura-

tion A.

2. Evolve the system to B state by random numbers then calculate the new

system energy H(B) for configuration B.

3. Accept or reject the new configuration according to an energy criterion.

4. Repeat last two steps until a certain number of trials is reached.

As for the energy criterion, it is easy to see that if energy H(B) is less than

H(A), configurationB may be closer to the configuration with minimum potential

energy, thus configuration B should be accepted, and then goto the next step. In

the case where H(B) is larger than H(A) but not too much,there is a possibility

that the H(B) contribution will still be acceptable. To further accept or reject

this configuration, draw random number p within 0 ≤ p ≤ 1 and if the inequality

showed in equation 2.33 is valid then it is accepted otherwise, it is rejected.

p < e
−H(B)−H(A)

kBT (2.33)
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How to move from a previous to a new state is arbitrary, which makes this

method widely applicable. However, one should have additional knowledge of the

system behavior so it can be used easily for the generation of new stats. This

is quite different from MD where the trajectories or the deformation pattern of

each atom can be determined by establishing and solving the governing equations.

Here, only the knowledge to guide the motion of the system is needed. In the

original Metropolis method, one atom is chosen randomly to moved for generating

a new configuration.
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Chapter 3

GRAPHENE

3.1 Carbon

Carbon is a vital chemical element with fascinating properties. Where its

graphite form is soft enough to be used in pencils, its diamond form is among the

hardest materials. Carbon has been used from ancient times, in charcoal form

for bronze production or as soot for writing. Carbon based nanomaterials refer

to solid carbon materials with structural units on a nanometer scale in at least

one direction. These materials have a large surface to volume ratio reflected in

their unique and remarkable properties. The morphology of carbon nanomateri-

als ranges from fullerenes to carbon nanotubes, from graphene to nanocones or

nanodiamonds.

Atomic number of Carbon is 6, therefore carbon atom has six electrons witch

configuration of its electronic ground state is 1s22s22p2. The two electrons con-

tained in the 1s orbital are strongly bound electrons and are called core electrons.

The other four electrons which occupy the 2s22p2 orbitals, are weakly bound elec-

trons, and are called valence electrons. Two electrons are found in the 1s orbital

close to the nucleus. These two electrons, which spin in opposite directions, have

the lowest possible energy. Two electrons fill the 2s orbital and have opposite

spin. The last two electrons partially fill the 2p orbital and have parallel spin.

The 2s and the 2p electrons have different energy levels. The 2p electrons located

in the outer orbital are the only electrons available for bonding to other atoms.

These electrons are the valence electrons. In some carbon allotropes, four valence

electrons participate in bonding the carbon atoms [12].
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Figure 3.1: The sp2 hybridization of carbon.

3.1.1 sp2 Hybridization

The electron configuration of the carbon atom has to be changed from two

to four valence electrons in order to allow carbon atoms to combine themselves.

This modification implies mixing the orbitals and forming new hybrid atomic

orbitals (Figure 3.1). The process is called hybridization. For carbon, one 2s

electron is excited into the 2p orbital. The remaining 2s orbital is spherically

symmetrical while the formed three 2p orbitals are oriented along the three axes

perpendicular to each other. The way of combining these different orbitals gives

different carbon hybridization types.

When carbon is in its excited state, sp2 hybridization occurs. In this case,

two 2p orbitals and one 2s orbital participate in the hybridization process and

form three equivalent orbitals called sp2 hybrid orbitals. These identical orbitals

are in the same plane and their orientation is at 120◦ angle. Graphene structure

comes from sp2 hybridized carbon. The planar orientation of the sp2 orbitals is

available to form σ bonds with three other sp2 hybridized carbon atoms. The

unchanged 2p orbital of carbon is perpendicular to the plane containing the three

hybridized orbitals and is available to form π bonds (Figure 3.2).
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Figure 3.2: The illustration of σ and π bonds.

3.2 Carbon Allotropes

Allotropes are defined as structural modifications of an element. In other

word, allotropes are different forms of chemical elements. Carbon has three main

allotropes: carbyne, graphite and diamond. These three forms come from the

three types of carbon hybridization; sp, sp2, and sp3 respectively. Carbon nanos-

tructures, called Fullerenes, are a recently discovered forms of pure carbon and

take the form of a hollow sphere, ellipsoid, or tube. Depend on the surface

curvature of fullerene, hybridization falls between graphite (sp2) and diamond

(sp3) [13]. Amorphous carbon is a carbon material with a variety of very short-

range crystalline orders related to the graphite and diamond lattices. These

disordered structures are formed because carbon is able to exist in three hy-

bridizations.

3.2.1 Graphite

Graphite, the sp2 hybridized form of carbon, its Greek root means to draw

and to write. Graphite has a layered hexagonal planar structure. The hexagonal

layers are held parallel with each other by Van der Waals forces. In each layer,

the hexagonal lattice is formed by carbon atoms with separation of 0.142 nm,

and the distance between planes is 0.335 nm [14]. The chemical bonds within

the layers are covalent with sp2 hybridization. Two forms of graphite are known,

hexagonal and rhombohedral. Although these have graphene layers which stack

differently, they have similar physical properties. The thermodynamically sta-

ble form of graphite is hexagonal graphite with an ABAB stacking sequence of
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Figure 3.3: Graphite structure.

the graphene layers (Figure 3.3). The unit cell dimensions are a = 0.2456 nm

and c = 0.6708 nm [15]. Hexagonal graphite is thermodynamically stable below

approximately 2600 K and 6 GPa [16]. The rhombohedral graphite is thermody-

namically unstable with an ABCABC stacking sequence of the layers. The unit

cell constants are a = 0.2566 nm and c = 1.0062 nm [17]. This form has not

been isolated in pure form. It is always mixed with the hexagonal form in variable

amounts which can be increased up to 40% of rhombohedral content. Heating

to above 1600 K progressively transforms rhombohedral graphite to hexagonal

graphite, which shows that the hexagonal phase is thermodynamically more sta-

ble [18].

3.2.2 Nanostructures

Nanomaterial refers to material which has at least one nanoscale dimension.

Although most micro-scale materials have similar properties to their bulk mate-

rials, the properties of nanoscale materials are substantially different from their

corresponding bulk. The large surface to volume ratio and the nanometer size

of the materials determine the characteristics which do not exist in the corre-

sponding bulk materials, i.e. high surface energy, spatial confinement, reduced
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imperfections. As a result, the material properties differ significantly on the

nanometer scale. For example, the lattice constants are reduced, the photolu-

minescence process occurs [19, 20]. Carbon based nanomaterials cover various

types of nanostructured carbons. The most representative ones are nanodia-

monds, buckyballs, nanotubes and graphene.

By the late twentieth century, carbon science was widely considered to be

a mature discipline and unlikely to attract scientists’ major attention anymore.

However, this situation changed in 1985 by the synthesis of buckyball, C60, which

led to the synthesis of carbon nanotubes and which drew attention to carbon

science again [21].

3.2.2.1 Buckyball

Buckyballs or spherical fullerenes are a class of molecules composed entirely of

carbon. They are zero-dimensional molecules since all dimensions are limited to

nanoscale. Among the isolated stabile fullerenes are C60, C70, C76, C80, C84 and

the series extends to gigantic fullerenes with more than 100 carbon atoms [22].

However, the most stable and also most famous buckyball is C60. The Figure 3.4

shows the stricture of C60. Some other fullerenes and gigantic fullerenes are

presented in Figure 3.5 and Figure 3.6.

C60s have average diameter of 0.68nm. The arrangement of their 60 carbon

atoms resembles a football ball. Fullerenes are chemically stable, but they are

less dynamically stable than graphite. The sp2-hybridized carbon atoms must

be bent to form closed spheres in comparison to planar graphite in which the

atoms are at their minimum energy level. Fullerenes have been studied as a main

material in various applications. Some examples are solar cells, photodetectors,

field effect transistors, and additives in polymers.

3.2.2.2 Nanotube

carbon nanotubes (CNTs) are cylindrical fullerenes and similar to spherical

fullerenes, the sp2-hybridized carbon atoms must be bent to form cylindrical
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Figure 3.4: C60 stricture.

Figure 3.5: The stricture of C80 and C100 are shown in left and right sections
respectively.

structures.

CNTs have a close relation to graphite as their structure can be conceptualized

as a rolled-up monolayer of graphite. If only one layer forms the tube wall, the

tube type is single walled carbon nanotube (SWCNT). CNTs with multiple

rolled layers of graphite are called multi-walled carbon nanotubes (MWCNTs).

MWCNTs have more than one wall or concentric tubes and the inter-tube spacing

is 0.34nm, which corresponds to the interlayer distance of 0.35nm in graphite [23].

While the diameter of CNTs is in the range of several hundred nanometers down

to 0.3nm [24], the length can be up to several centimeters [25]. Since only one
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Figure 3.6: The left image represents C540 where the right one shows C720

direction is not limited to nanoscale, CNTs are 1D nanomaterials. Following the

concept of forming a carbon nanotube (CNT) by wrapping a one atom-thick layer

of graphite into a cylinder, the structure of a SWCNT can be represented by a

chiral vector Ch. The chiral vector Ch is defined by two integers (n, m) as well as

two base vectors a1 and a2 [26, 27]. The description of a specific SWCNT is given

by (n, m) indices when the graphite layer is bent in such a way that both ends

of the vector lie on top of each other. When indices are taken in consideration

as criteria, single walled carbon nanotubes (SWCNTs) are categorized as follows:

armchair tubes (n, n) when m = n, zig-zag tubes (n, 0) for m = 0,and chiral

tubes for any other (n, m). The pair of integer indices (n, m) determine the

diameter and the chiral angle of the tube. The chirality of SWCNTs is related

to their electrical properties. A tube is metallic when (m − n)/3 is an integer.

All other SWCNTs are semiconducting. This means that m and n determine the

diameter, the chirality, and the physical properties of SWCNTs [28] (Figures 3.7

and 3.8). Generally, for (n, m) carbon nanotubes, the corresponding diameter,

denoted here by d, can be acquired from equation 3.1.

d =

√
3 a0
π

√
n2 + nm+m2 (3.1)

where a0 = 1.42Å is carbon-carbon bond length.
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Using atomic force spectroscopy, CNTs are shown high values of tensile strength

and Youngs modulus. Pressing on the tip of a nanotube causes bending with-

out damaging the tip. When the force is removed, the nanotube returns to its

original state. This property makes CNTs very useful as probe tips for high-

resolution scanning probe microscope [29, 30]. CNT arrays have a lower thermal

resistance which might serve as the interface material for thermal management

in high power microelectronic devices [31]. Recently, CNTs have been used to

support platinum in proton exchange membrane fuel cell electrodes [32, 33]. In

lithium ion batteries, CNTs are used as electrodes because they exhibit high re-

versible capacity [34]. There are several other areas of technology where carbon

nanotubes are already being used. These include composite materials, flat-panel

displays, and sensing devices [35, 36, 37, 38].

Figure 3.7: From left, the figure shows armchair, zigzag and chiral nanotubes
respectively.

Figure 3.8: Side view of tree types of nanotubes; Armchair, Zigzag and Chiral
from left to right
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3.3 History of Graphene

Graphene has been studied theoretically for many years [39]. It was believed

to be unstable, and presumed not to exist in the free state [40].

In the past it was predicted that strictly 2D crystals were thermodynamically

unstable and could not exist because a divergent contribution of thermal fluc-

tuations in low-dimensional crystals should lead to such large displacements of

atoms that they become comparable to interatomic distances and dislocations

should appear in 2D crystals [41] at any finite temperature. However, strong

interatomic bonds can ensure that thermal fluctuations cannot lead to the gen-

eration of dislocations [41] and 2D crystals are intrinsically stabilized by gentle

crumpling in the third dimension [42] which is reported from x-ray diffraction

experiments [43]. The fact that 2D atomic crystals do exist and are stable under

ambient conditions is amazing by itself.

Free standing graphene layers are difficult to be obtained, as they have the

tendency to roll and form scrolls with respect to its lower energy state [44]. The

first try to synthesize graphene was done by P.Boehm in 1962. In his report,

the existence of monolayer of reduced graphene oxide flakes has been demon-

strated [45]. The produced graphene had low quality due to incomplete removal

of various functional groups. Between 1990 and 2004, many efforts were made to

create very thin films of graphite by mechanical exfoliation [46] but nothing less

than several tens of layers were produced. In 2004, A. Geim and K. Novoselov

obtained single-atom thick graphene from bulk graphite by using a process called

micromechanical cleavage [47]. To date, different methods have been developed

to produce single-layer or few-layer graphene such as mechanical exfoliation [47],

oxidation of graphite [48], liquid-phase exfoliation [49, 50], by chemical vapor

deposition [51, 52], thermal decomposition of silicon carbide [53, 54], and cutting

open nanotubes [55].

Unfortunately, many challenges have to be addressed in graphene synthesis

for practical application since these methods suffer from limited controllability

31



Figure 3.9: 0D fullerene molecules, 1D carbon nanotubes, and 3D graphite can
all be thought of as being formed from 1D graphene sheets [56].

over the size, shape, edge, or location of graphene. The reason why graphenes

have drawn so much attention to scientists arises from their remarkable prop-

erties. Experimental results from electronic transport measurements show that

graphene has remarkably high electron mobility at room temperature [56]. A

single layer of graphene has a high Youngs modulus of more than 1TPa [57] and

is one of the stiffest known materials. It absorbs approximately 2.3% of white

light demonstrating a very high opacity for an atomic monolayer [58]. The ther-

mal conductivity of graphene was recently measured and exceeds the thermal

conductivity for carbon nanotubes or diamond [59]. Graphene research is still at

the very beginning and many experimental and theoretical results are expected

to elucidate the physical characteristics of this important material.

Graphenes represent the 2D carbon nanomaterials formed by one or several

monolayers of graphite. Similar to the graphite structure, the sp2-bonded car-

bon atoms are densely packed in a honeycomb crystal lattice with the bond

length of about 0.142nm. A single sheet is called a graphene sheet, while sev-

eral graphene sheets, stacked with an interplanar spacing of 0.335nm, are called

few-layer graphene. Graphene is the basic structural element of the other carbon

based nanomaterials, as it can be wrapped up to form 0D spherical fullerenes or

rolled to form 1D nanotubes (Figure 3.9) [56].
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3.4 Properties of Graphene

Graphene layer is sp2 hybridized honeycomb networks with strong in plane

σ and weaker π bonds to the substrate. These different bond strength makes

anisotropic elastic properties, where the sp2 layer is stiff in plane and soft out of

plane.

The covalent chemical bonds, sp2 bonds, between the carbon atoms in a

graphene sheet are among the strongest in nature. They are in fact even stronger

than the carbon bonds in diamond. This exceptional property of the sp2 bond

causes the exceptional stability of graphitic systems, where they can be stable

against extremely large thermal and electrical stresses which is very important

for electronic applications and especially for nanoelectronics.

Moreover, the low temperature electronic mobility of graphite is of the order

of 106 cm2/V s, exceeding silicon by about three orders of magnitude. The very

strong bonds, combined with the low mass of the carbon atom causes a very high

sound velocity resulting in a large thermal conductivity, which is advantageous for

graphitic electronics. The most important graphene properties actually emerge

from the unique band structure of this material as explained in detail below.

The electronic structure of graphene forms the foundation of its electronic

properties. Graphene is not a metal, but it is essentially a giant organic molecule

and technically a semi-metal. The electrons drive along π-bonds when they travel

from one atom to other, then the precise geometry of the carbon atoms is essential

for electron movement, that it is in contrast to metals. Also the electrons in

graphene interact with the lattice in such a way that they appear to be massless

while in metals, the electrons behave like free electrons.

A measurement of the mechanical properties of a single graphene layer, demon-

strated that graphene is the hardest material known with the elastic modulus of

1.0 TPa [57].
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Figure 3.10: The direct lattice structure of 2D graphene sheet.

3.5 Graphene Structure

Graphene is a 2D sheet of carbon atoms in which each carbon atom is bound

to its three neighbors to form a network then its crystalline structure is a flat

monolayer of carbon atoms tightly packed into a 2D honeycomb lattice. The

atomic orbitals of carbon atoms in graphene are sp2 hybridized, with the three

planar sp2 suborbitals for each carbon atom being used to make three very strong

planar σ bonds with other carbons atoms. This leads to forming planar hexagonal

carbon rings, for example, in graphene with two dimensional honeycomb lattice

of carbon atoms, all the 2pz orbitals are used to form π bonds, which create

delocalized electrons, and these are capable of moving freely. At low energy the

delocalized electrons behave like 2D relativistic free particles. This is one of the

reason behind graphene fantastic properties [60, 61, 62, 56, 63, 64, 65].

Graphene can be described by two sublattices (labeled A and B) while it does

not correspond to a Bravais lattice. There is not a set of lattice vectors that

their primitive translations cover all graphene sites. Technically, graphene can

be described by two triangular Bravais sublattices (A and B) with two sets of

lattice vectors (as and a’s) as shown in Figure 3.10.

The primitive unit cell in such system of two triangular sublattices A and B is

an equilateral parallelogram with two atoms (A and B) per unit cell (the dashed

lines in Figure 3.10). A and B sites are the nearest neighbors of each others. The
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Figure 3.11: A honeycomb lattice structure showing both armchair (along x di-
rection) and zigzag (along y direction) edges.

lattice vectors can be conveniently written as equations 3.2

a1 =
√

3 a0î,

a2 =
√
3
2
a0

(
î−
√

3 ĵ
)
,

r0 = 1
2
a0

(
−
√

3 î+ ĵ
) (3.2)

There are two edges boundaries commonly seen in graphene crystallites: the

armchair and the zigzag edges [56]. Figure 3.11 shows a honeycomb lattice that

has armchair edges along the x direction and zigzag edges along the y direction.

In many experimental and theoretical study [65, 66, 67, 68, 69] it has been shown

that the graphene edges as armchair or zigzag plays a crucial role in their physical

characteristics.

This crystallographic description of graphene is the basis for graphene elec-

tronic properties calculations. The individual electrons in graphene have both

electric charge and spin. The electric charge is affected by the electric potential

and electric field around the hexagonal carbon atoms lattice, and the spin of the

electron is more related to the magnetic properties.

3.6 Graphene Nanoribbons

graphene nanoribbons (GNRs) are narrow rectangles like thin band made

from graphene sheets and have widths on the order of nanometers up to tens of
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nanometers, but they have arbitrarily long length. Graphene ribbons were firstly

introduced as a theoretical model [67, 69, 68] to examine the edge and nanoscale

size effect in graphene. However, they and are currently being investigated for

their superior electrical, optical, mechanical, thermal, and quantum mechanical

properties [56]. GNRs are a relatively new class of quasi-1D nanomaterials that

can have metallic or semiconducting character.

There are two types of GNR, which are called armchair graphene nanoribbons

(acGNRs) and zigzag graphene nanoribbons (zzGNRs). The ideal GNRs with

infinite length in the x direction but finite width in the y direction, is an acGNR,

while, one with infinite width along the y but finite in the x direction is a zzGNR

as illustrated in Figure 3.12.

Some times, the GNRs are also labeled by the number of carbon atoms present

in one of the width edges of the acGNR and zzGNR respectively. Let Nac atoms

be in the lateral edge of acGNR and Nzz in the lateral edge of zzGNR, then the

nanoribbon can be conveniently denoted as Nac-acGNR and Nzz-zzGNR respec-

tively. The width of the GNRs can be acquired from the number of lateral atoms

from equations 3.3.

wac = Nac−1
2

√
3 a0,

wzz = 3Nzz−2
2

a0

(3.3)

where a0 = 1.42 Å. In Figure 3.12, the width of 10-acGNR along y direction is

11.07 Å, while the width of 10-zzGNR along x direction is 19.88 Å.

The electronic properties of GNRs are both width dependent and charity

dependent. The charity here means edge structures, armchair or zigzag edges.

Tight binding calculations predict that zigzag GNRs are metallic while armchairs

can behave either like metal or semiconductor, depending on their width. With

the width of between 2 and 3 nm, it is possible to produce nanoribbons with

band gaps similar to Ge or InN. If larger bang gap ribbons are needed (like band

gaps of Si, InP, or GaAs), their width must be reduced to 1-2 nm [70]. Indeed,

experimental results show that the energy gaps have inverse relation with GNR
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Figure 3.12: Left: Armchair GNR; Right: Zigzag GNR.

width [71].

In contrast to a large graphene sheet where electrons are free to move in a 2D

plane, the small width of GNRs can lead to quantum confinement of electrons

which restricts their motion to 1D along the length of the nanoribbons.

Fantastic properties of GNRs like their 2D structure, high electrical and ther-

mal conductivity, and low noise make them a possible candidate to replace copper

for integrated circuit interconnects. Some research is also being done to create

quantum dots from quantum confinement by changing the width of GNRs [72].

3.7 Producing Graphene

Graphene was experimentally fabricated in its free state in 2004 when individ-

ual graphene samples of a few microns in width were isolated by micromechan-

ical cleavage of highly oriented pyrolytic graphite (HOPG) [47]. By mechanical

exfoliation of bulk graphite, one can produce graphene up to sizes of 100 µm

(Figure 3.13), although graphene crystallites left on a substrate are extremely

rare [73]. Raman spectroscopy can be used to discern graphene crystals with a

few layers [74].

Two factors are important for future large-scale application of graphene as

follows. Easy synthesis of larger quantities and control of the charity, morphology,

37



Figure 3.13: TEM image of a suspended graphene membrane. Electron diffrac-
tion shows that it is a single crystal. A strongly folded region are
visible on the right [43].

and crystallinity of the edges of graphene nanoribbons, as their properties are

depending on their charity, their size and the atomic structure of their edges [75].

Nanoribbons with wide of less than 10nm are semiconductors, independent of

their edge structure [76].

Gram-scale production of graphene has been achieved [77] by reacting ethanol

and sodium to an intermediate solid that is then pyrolyzed, yielding a fused

array of graphene sheets that are dispersed by mild sonication. By a solution-

based method for large-scale production, uniform films of single and/or few-

layer chemically converted graphene can be produced over the entire area of a

silicon/SiO2 wafer [78]. Epitaxial graphene layers have been grown on single

crystal 4-inch silicon carbide wafers [53] and a number of additional chemical

methods are available for the production of graphene [79].

So far, a variety of methods have been reported for the synthesis of graphene

with one atom thick as following:

1. The earliest and simplest method was mechanical exfoliation of HOPG, which

is deposited on to a substrate like SiO2 [47, 73]. Although this method is low

cost, the graphene produced has the limited area and poor quality. It is a difficult

and time-consuming method to synthesize graphene in large scale [80].
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2. Chemical exfoliation from bulk graphite [81, 82]. In this method, strong

acids are used to oxidized graphite then it is cleaved by means of rapid thermal

expansion or ultrasonic dispersion, and subsequently the graphene oxide sheets

were reduced to graphene. A serious disadvantage of this technique is that the

oxidation process induces defects which would destroy the electronic properties

of graphene.

3. Epitaxial growth on an insulator surface like SiC [83]. The graphene ob-

tained showed poor uniformity and contained a multitude of domains.

4. chemical vapor deposition (CVD) on the surfaces of metals like Ni [51]. The

CVD method is reported for the bulk production of long, thin, and highly crys-

talline graphene ribbons (less than 20−30 µm in length), with widths from 20 to

300 nm and small thicknesses (2 to 40 layers) [84]. Moreover, N-doped graphene

was first synthesized by a CVD method with the presence of CH4 and NH3 [85].

As doping accompanies with the recombination of carbon atoms into graphene in

the CVD process, dopant atoms can be substitutionally doped into the graphene

lattice, which is hard to realize by other synthetic methods.

5. The bottom up synthesis of these nanostructures may be feasible as noted

by Hoheisel and collaborators [86].

3.8 Applications of Graphene

The experimental advances have increased the expectations for the use of

graphene in high-tech devices. In parallel there is an increased interest in the

physical properties of carbon nanostructures in general, due to their outstanding

mechanical and electronic properties.

Besides, many efforts have been dedicated to study the electronic properties

of graphene, because creating a gap could allow the use of graphene in field effect
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transistors. Many mechanisms have been proposed with that purpose: nano-

pattering, creating quantum dots, using multilayer, doping, covalent functional-

ization [87] and applying mechanical stress [88, 89]. Recently Gui [89] proposed

that graphene under a symmetrical strain distribution always leads to a zero

band-gap semiconductor, and the pseudo-gap decreases linearly with the strain

strength in the elastic linear regime. However, asymmetrical strain induces an

opening of band gaps at the Fermi level.

Several unique electronic properties associated with these 2D crystals have

been discovered [90]. In addition, it is known that carbon nanotubes have good

sensor properties [56]. Recently, graphenes as highly sensitive gas sensors were

also reported [91, 92, 93]. It was shown that the increase in graphene charge

carrier concentration induced by adsorbed gas molecules could be utilized to

make highly sensitive sensors, even with the possibility of detecting individual

molecules. The sensing property is based on the changes in the resistivity due to

molecules adsorbed on graphene sheet that act as donors or acceptors. The sen-

sitivity of NH3, CO, and H2O up to 1 ppb (particles per 109) was demonstrated,

and even the ultimate sensitivity of an individual molecule was suggested for

NO2. Furthermore, the preliminary works indicated that graphene have promis-

ing physical adsorption properties for hydrogen [94].

Apart from the interesting dependence of the electronic structure upon an

electric field, this is a promising material for future spintronic devices, since it

could work as a perfect spin filter.

In order to predict performance of zzGNR in future devices like gates, it is

important to know how its electronic properties depend on stress. Some works

related with the study of strain in graphene nanoribbons [95, 96] show that there

is no important variation of the electronic properties of zigzag nanoribbons upon

stress-strain effects, while Faccio et al [97] presented the first systematic deter-

mination of the Youngs modulus, Poissons ratio and calculated Shear modulus

for graphene nanoribbons.

The current intense interest in graphene is driven by the high crystal quality
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and ballistic transport at sub-micron distances as well as the behavior of quasi-

particles as massless Dirac fermions so that the electronic properties are governed

by quantum electrodynamics rather than the standard physics of metals based

on the (non-relativistic) Schrodinger equation [98, 73].

This discovery has triggered enormous amount of interest on graphene both in

fundamental and applied research. Graphene has shown promising applications as

ultra-sensitive gas sensors, transparent electrodes in liquid crystal display devices,

and large capacity electrodes in Li batteries [99].
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Chapter 4

THE GRAPHENE’S IMPACT ON MOTION OF LIGHT

ATOMS

Many phenomena in physical systems are described by the motion of Brownian

particle in periodic potentials [100, 101]. One dimensional periodic potentials are

the first studied case in the literature [102, 103]. The study of electrical conduc-

tivity of superionic solids and the effects of the surface of a crystals on the motion

of adatoms are some standard text book examples [102]. The value of the damp-

ing factor in the Langevin equation plays an important role which classifies the

motion as subdiffusive, diffusive and superdiffusive. Lacasta et al [104] studied

the stochastic motion in a two periodic sinusoidal and random two-dimensional

potential produced by general solid surfaces. They classified diffusive motions

based on the coefficient of friction and different initial conditions for the veloci-

ties.

One of the newly discovered honeycomb structures, which is a one atom-thick-

planar sheet made of carbon atoms (i.e. graphene), was discovered in 2004 [47].

This newly discovered material has various interesting electrical and mechanical

properties [56, 65, 105]. Applying a pressure difference across the membrane,

a monolayer graphene membrane is impermeable to standard gases including

helium [106]. This pressurized graphene membrane is the thinnest balloon in the

world. This nano balloon is stable under large pressure differences across the

membrane.

Transmission electron microscopy can visualize the images and dynamics of

light atoms deposited on a single-layer graphene sheet [107]. Suitable force fields

provide real inter-atomic interactions between the graphene sheet and external

inclusions. One of the well-known force fields is LJ pairwise potential which is

42



parameterized for different types of atomic and molecular systems. For example,

a LJ pair wise potential for C60-graphene interaction and C60-carbon nanotubes

interaction, which has provided theoretically viable and experimentally desirable

results, was introduced in Ref. [108]. Also several van der Waals parameters for

physical adsorption of C60 on the graphite and other substrates were formulated

using a continuum rigid body model for C60 and a continuum dielectric media

for the graphite by Girad et al [109]. An analytical study which has included

three main parts for the interaction between C60 and various substrates such as

graphite was presented by Gravil et al [110]. They showed that the adsorption

energy and the height of the molecule center above the surface are 968 meV and

6.55 Å, respectively. The equivalent results for showing the diffusive motion of

C60 on graphene were obtained by assuming LJ potential between carbon atoms

of graphene and C60 [111] using molecular dynamics simulation. In contrast,

alkali metal atoms form nanoclusters on the graphene sheet which is caused by

the deep potential well between alkali metals [112].

The aim of this study is to provide further insights into the stochastic motion

of noble gases on a graphene sheet. We show that depending on the atom type

on the monolayer graphene, different two dimensional periodic potential (2DPP)

is produced at a fix height. Close to the surface (<1Å) , the 2DPP has sharp

positive peaks where in closer inspection a honeycomb structure is revealed. Far

from the sheet, the 2DPP goes to a flat surface. We estimated the equilibrium

distance and the corresponding binding energies for noble gases (He, Ne, Ar and

Xe) on graphene. Furthermore, we show that the variation of the interaction

potential between the graphene sheet and external atoms along the z-direction,

although similar to the LJ function, cannot fully account for it. The effects of

the coefficient of friction and binding energies on the trajectories of the atoms

are also studied.

This Chapter is organized as follows. In section 4.1 we explain the atomistic

model and details of 2DPP. Section 4.2 contains discussion on the Langevin dy-

namics and the corresponding numerical solution with several limits for coefficient
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of friction and different noble gas atoms.

4.1 The periodic potential

Carbon atoms in graphene sheet are densely packed in a honeycomb crystal

lattice Fig. 4.1. The carbon-carbon bond length, a0, is 1.42 Å. Since a flat

honeycomb lattice is not a Bravais lattice, one should divide honeycomb lattice

into a couple of sublattices, say A-lattice and B-lattice. Therefore two sets of

primitive vectors can specify the A and B sites on a graphene sheet.

Figure 4.1: The honeycomb lattice is not a Bravais lattice. Two A and B lattices
are Bravais lattice separately. Dashed honeycomb is one of favorable
path for diffusion of the rare gas atoms.

Two-dimensional position vectors are written in A and B lattices as follows:

rA = p a1 + q a2, (4.1)

rB = p′ a′1 + q′ a′2, (4.2)

(4.3)

44



Where a1 and a2 are the primitive vectors in the A-lattice and a′1, a′2 are the

primitive vectors in the B-lattice. The magnitudes of all primitive vectors are

equal to
√

3 a0. In the above equations p(p′) and q(q′) are two integers which

count A-lattice (B-lattice) sites . On the other hand, one can write the primitive

and position vectors in the Cartesian coordinate system whose origin is assumed

to coincide with the origin of the primitive vectors in A-lattice:

a1 =
√

3 a0 î, (4.4)

a2 =

√
3

2
a0 î+

3

2
a0 ĵ, (4.5)

r0 =

√
3

2
a0 î+

1

2
a0 ĵ, (4.6)

Where two lattices are connected by vector r0. Any space point, p, in the

Cartesian coordinate system can be written as r = x î + y ĵ + z k̂. The distance

between A-lattice and B-lattice points and the space point, p, are given by

|r− rA| = ((x−
√

3 p a0 −
√

3

2
q a0)

2 + (y − 3

2
q a0)

2 + z2)1/2, (4.7)

|r− rB| = ((x−
√

3 p a0 −
√

3

2
q a0 −

√
3

2
a0)

2 + (y − 3

2
q a0 −

1

2
a0)

2 + z2)1/2.(4.8)

Note that here we put p = p′ and q = q′ for counting purposes. The LJ potential

provides both the general repulsive and attractive nature of the interaction be-

tween an uncharged noble gas deposited on the graphene sheet. The LJ potential

is the widely used potential in various simulations for two interacting uncharged

particles, i.e. U(r) = 4ε((σ/r)12 − (σ/r)6), where r is distance between two

atoms, ε is the depth of the potential well, and σ is the distance at which the

potential becomes zero. To model the interaction between two different types of

atoms such as carbon and argon, we adjust LJ parameters using the equations

ε =
√
ε1ε2 and σ = σ1+σ2

2
. In Table 4.1 we have listed our used parameters for
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Table 4.1: The adjusted parameters of the LJ potential for noble gases [113].

He Ne Ar Xe

ε(meV ) 0.878 3.079 10.23 19.4

σ(Å) 2.56 2.74 3.405 4.07

four noble gases [113]. For carbon atoms σ = 3.369 Å and ε = 2.63 meV [112].

The derivative of the LJ potential with respect to the position vector gives

the force between atoms. Total force acting on an atom over the graphene sheet

includes both contributions from A and B lattices. The distance between each

graphene atom and any guest atom should be included as well. Considering both

contributions, the potential function can be written as

U(r) =
∑
A

U(|r− rA|) +
∑
B

U(|r− rB|). (4.9)

Substituting both distances (Eq. (4.7) and Eq. (4.8)) in Eq. (4.9) helps to

rewrite the potential function for interaction between a monolayer graphene at

z = 0 and an atom located at (x, y, z > 0):

Up(r) =

p∑
−p

q∑
−q

4ε

[(
σ

|r− rA|

)12

−
(

σ

|r− rA|

)6
]

+

p∑
−p

q∑
−q

4ε

[(
σ

|r− rB|

)12

−
(

σ

|r− rB|

)6
]
. (4.10)

Note that the difference between the potential energy of p = q = ±16 and

p = q = ±17 is less than 10−4 meV. We used p = q = ±20 as a sufficient high

and low limits for summations in Eq. (4.10) (the same limits were used for p′ and

q′).

For bilayer graphene, we add another layer at z=-3.4 Å below the monolayer
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graphene with a shift equal to a0/2 in x components for all A and B sites of

monolayer graphene. The third layer is put at z=-6.8 Å with the same x and y

coordinates as used for the first layer. The LJ potential between bilayer (triple

layer) graphene and an atom at (x, y, z > 0), instead of two terms in Eq. (4.10),

is written with four (six) terms considering the above mentioned shifts.

Figure 4.2 shows the 2DPP energy surface scaled by KBT , U(r) at z=3.5 Å for

an Ar atom above monolayer graphene. The unit of length is a1. It is clear that

the potential barrier between two neighbor wells are smaller than KBT and goes

to zero for higher height.

Figure 4.2: The two-dimensional potential energy surface for an Ar atom above
monolayer graphene. Unit of length is a1 and energy unit is KBT .

Variation of 2DPP at the fix point in the x − y surface (V) versus z is also

interesting. The Figure 4.3 shows variation of the potential energy scaled by
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Table 4.2: Equilibrium distances, zmin, and the binding energies, D, of noble gases
on a monolayer graphene sheet.

He Ne Ar Xe

21/6σ(Å) 3.3275 3.4285 3.8018 4.1756

zmin(Å) 2.906 2.988 3.347 3.696

D/KBT -0.827 -1.554 -3.401 -5.576

KBT versus z at x=0.5a1 and y=-
√

3/6a1. The effects of different points is not

noticeable. As can be seen, elements with smaller ε (Xe) show deeper potential

(and vice versa) which produce stronger binding energy between the elements

and the monolayer graphene. The functionality of these profiles is not the same

as the LJ function. Moreover, the equilibrium distances are smaller than 21/6σ.

Therefore, the equilibrium distance between a carbon atom and a noble gas atom

is larger than the equilibrium distance between a sheet of carbon and a noble gas

atom. In Table 4.2, values for 21/6σ using σ = σ1+σ2
2

, the equilibrium distances

zmin and binding energies D are listed. Figure 4.4 shows the variation of the

potential energy along z axis, similar to Figure 4.3 except for bilayer graphene.

Figure 4.5 compares the potential energy along the z direction at x=0.5a1 and

y=-
√

3/6a1 for monolayer, bilayer, and triple-layer graphene for Ar and Xe atoms.

As can be seen from this Figure adding extra layers changes the potential energy

only slightly. The difference between monolayer and bilayer at minima is about

0.35 KBT . Indeed, the van der Waals interaction between uncharged noble gases

on the monolayer graphene and graphite (more than two layer) and consequently

the type of the motion of those atoms on those materials are more or less the

same. Therefore, in the next section we only focus on the monolayer graphene.

Note that by increasing the height, the potential energy surface goes to a flat

surface [111].
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Figure 4.3: Variation of the potential energy versus z for four noble gas atom on
the monolayer graphene at x=0.5a1 and y = −

√
3/6a1.

4.2 Langevin dynamics

In this section the surface diffusion of a particle with mass m (noble gas atom)

at a fix height z within the produced two-dimensional LJ potential by monolayer

graphene is studied. This motion occurs in the presence of thermal noise and

dependent dissipation. The Langevin equation which describes the stochastic

two-dimensional trajectory, r, is written as

..
r = −M−1∂U(x, y, z = const.)

∂r
− γ .

r +
√

2γKBTM
−1/2dW(t), (4.11)

Where the first two terms refer to the drift velocity, γ is the coefficient of

49



Figure 4.4: Variation of the potential energy versus z for four noble gas atom on
the bilayer graphene (middle) at x=0.5a1 and y = −

√
3/6a1.

friction, and the term, dW (t), is a collection of Gaussian Wiener processes with

the mean and variance given by

〈dW (t)〉 = 0, (4.12)

〈dWi(t) dWj(t
′)〉 = δijδ(t− t′). (4.13)

In the diffusive motion the mean square displacement (msd) is < r2(τ) >∼ Dτα,

where for normal diffusion α = 1 while in different time-dependent motion α

is either greater than one -superdiffusive motion- or less than one -subdiffusive

motion- [104]. The average 〈...〉 designates a time-average or an ensemble-average
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Figure 4.5: This figure shows the potential energy for Ar and Xe above monolayer,
bilayer and triple layer graphene.

over several trajectories. To calculate msd at increment τ , we averaged over N

position vectors points of a trajectory of the particle and used the following

relation

1

N − τ

N−τ∑
α=1

[r(t+ τ)− r(t)]2. (4.14)

To solve Eq. (4.11) numerically, we used a1 as the unit of length, and KBT

for the unit of energy, molecular mass of noble gasses i.e.; m as the unit of mass,

χ =
√

m
KBT

a1 for the time unit and η = (mχ)−1 for the unit of γ. Note that by

choosing mass of noble gasses as the unit of mass, two other units, i.e. χ and η,

become different for each element. For example γ =1.0 in the simulation for He in

real dimension is equal to a1√
4.0KBT

while for Xe it is equal to a1√
131.29KBT

. Therefore,
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the unit of γ for heavy atoms is smaller than the one for light atoms. For time

unit, heavy atoms have larger χ. We set time step equal to 0.5 fs. The initial

velocity randomly were chosen from (0,0.01) range and the initial position was set

at the origin. One can use different initial conditions for the velocities [104]. The

system has infinite size but technically one should care about the calculation of

the force exerted on the particle when it is far from the origin because of limiting

p and q (also for p′ and q′ ) in Eq. (4.10) to ±20. Due to the periodic nature of

2DPP, we found the equivalent coordinates for far-center particles within the first

primitive cells for both A-lattice and B-lattice and computed the force exerted

on the particle.

4.2.1 Effect of coefficient of friction and binding energy

We have solved the Langevin equations for the stochastic motion of Xe and

He atoms because they have the largest and the smallest ε, respectively. These

atoms have the maximum and minimum binding energy to the graphene sheet

too (see Figure 4.3). Here two coefficients of friction γ = 1, 10 are used. The

trajectory of Xe atom above the monolayer graphene at z=1.2 and z=1.4 for two γ

values are shown in Figures 4.6 and 4.7. Close to the surface, higher γ localizes the

motion inside the honeycombs having different sizes in comparison to the original

monolayer graphene honeycombs. Two of these larger honeycombs are shown in

the top panel of Figure 4.7 (see dashed black honeycomb in Figure 4.1 as well).

Each side of these honeycombs has unit length (=a1). As can be seen from this

figure, it is interesting to note that the atom moves to another honeycomb via the

valleys only. The motion with higher γ is diffusive which is characterized by small

steps in the top panel of Figure 4.7. Figure 4.6 shows trajectories correspond to

small friction, γ = 1, and clearly shows the preponderance of long tracks along

valleys direction between sites before turning to another (particularly for smaller

z). Far from the surface, the particle is more free and it is spread in x−y surface.

Despite the fact that these behaviors are common in the periodic two dimensional

potentials, they have not been observed in random potentials [104].
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The motion of He atom at a fixed height above the graphene is more free

with respect to the motion of Xe atom. Figure 4.8 shows the two dimensional

trajectory of a He atom above the graphene sheet at z = 1.2 for γ = 1, 10. We

observe that the motion is different from the case of Xe atom exhibited in the top

panels of figures 4.6 and 4.7. This is related to different LJ potential parameters

for these two elements. Due to smaller minima (see Figure 4.3) in He-graphene

interaction, it is expected that at z < 1.2 He localizes within honeycombs.

The evolution of msd for different γs is shown in Figure 4.9. After equilibration

of the system, we used equation (4.14) to calculate the msd. Here heights were

fixed at z=1.2. Irrespective of γ’s and the type of elements in early stages of time,

the motion is almost ballistic (α ∼= 2) but at very long times the motion becomes

diffusive and αs are close to unit. The smaller the γ values the more delay in

reaching the diffusive regime. Also for a specific γ value, the smaller binding

energy in He case shows a diffusive motion later with respect to the motion of Xe

atom. The unusual fluctuations in msd for Xe atom have occurred around 103

time steps which is equal to 0.5 ps. This is a typical time for going to a nearest

minimum well. At very long times one can calculate two diffusion constants using

D = <r2(τ)>
4t

which are in the order of 1 m2/s for He and around 0.1 m2/s for

Xe atom for large γ. Note that Figures 4.9 show the variation of < r2 > versus

simulation times step (not the real time) in loglog scale. We found the slopes

by using α = Log(∆y)/Log(∆x) relation, where ∆y and ∆x are the vertical and

horizontal sides of the triangles in the figure.
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Figure 4.6: Two dimensional trajectories of Xe atom on the monolayer graphene
with coefficients of friction equals γ = 1 at two different heights
according to the legends. Total time of simulations is 5 ns and the
unit of length is a1.
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Figure 4.7: Two dimensional trajectories of Xe atom on the monolayer graphene
with coefficients of friction equals γ = 10 at two different heights
according to the legends. Total time of simulations is 5 ns and the
unit of length is a1.
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Figure 4.8: Two dimensional trajectories of He atom on the monolayer graphene
at z=1.2 above the sheet with two different coefficients of friction
according to the legends. Total time of simulations is 5 ns and the
unit of length is a1.
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Figure 4.9: Mean square displacements for the motion of Xe atom (top) and He
atom (bottom) for four different coefficients of friction.
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Chapter 5

THERMOMECHANICAL PROPERTIES OF

GRAPHENE

Since the discovery of graphene in 2004, which is an almost two dimen-

sional crystalline material, its exceptional mechanical properties have been stud-

ied [57, 105, 43, 114, 115, 116]. Tensional strain in monolayer graphene affects

its electronic structure. For example strains larger than 15% changes graphene’s

band structure and leads to the opening of an electronic gap [117]. In recent

experiments the buckling strain of a graphene sheet that was positioned on top

of a substrate was found to be six orders of magnitude larger (i.e. 0.5 − 0.6%)

than for graphene suspended in air [115]. Furthermore, some experiments showed

that a compressed rectangular monolayer of graphene on a plastic beam with size

30×100 µm2 is buckled at about 0.7% strain [118].

Elasticity theory for a thin continuum plate and the empirical interatomic po-

tentials (EP) are two main theoretical approaches that have been used to study

various mechanical properties measured in compressing and stretching experi-

ments [114, 119, 120]. Continuum elasticity theory does not give the atomistic fea-

tures of graphene while the EPs, such as the Brenner potential (REBO) [121, 122]

and the LCBOPII potential [123], can properly account for the mechanical prop-

erties of graphene. Despite the several benefits of these EPs, some special atom-

istic features of graphene subjected to compressive or tensile strains could not be

explained. The different energy contributions in these potentials are mixed. For

example, in REBO all the many body effects are put in the bond order term and

the different important energy contributions are not separable.

It still remains unclear how large are the contributions of the different energy

terms in strained graphene. Using the recently introduced valence force field
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(VFF) model by Perebeinos and Tersoff [11] we show how the contribution of the

different energy modes in strained graphene can be separated and we calculate

their dependence on the value of strain.

The bending modulus of graphene at zero temperature was estimated using

several interatomic potentials, e.g., the first version of the Brenner potential [121]

yields 0.83 eV, the second generation of the Brenner potential [122] estimated it

to be 0.69 eV, adding the third nearest neighbors (the dihedral angle effect) in the

Brenner potential enhances it to 1.4 eV [124], using the LCBOPII potential and

continuum membrane theory the bending rigidity was found to be 0.82 eV [114,

123], Tersoff’s VFF model estimated it to be 2.1 eV, and from ab-initio energy

calculations it was found to be 1.5 eV [125] (note that ‘bending rigidity’ (‘bending

modulus’) is used for a membrane stiffness (an atomistic sheet)). Despite these

studies the temperature dependence of the bending modulus is poorly known. An

increasing behavior versus temperature for the bending rigidity was found [114]

by using Monte Carlo simulations with the LCBOPII potential and membrane

theory concepts. In contrast, Liu et al [126] found a decreasing bending rigidity

with temperature using the REBO. Here we show that the VFF model predicts

a temperature independent bending modulus.

In this study we employ VFF and carry out standard Monte Carlo simula-

tions in order to calculate and compare the different energy modes of a graphene

sheet that is subject to axial strains. The total energy is found to be differ-

ent for compressing and stretching when strains are applied larger than |2|%.

Two important terms, i.e. stretching and bending, vary differently depending on

the way that one stretches or compresses the system. We find that out-of-plane

and π−π terms have much larger contributions in compression experiments when

compared to stretching. Furthermore, we used this potential to calculate Young’s

modulus at room temperature from stretching-compressing simulations. We also

calculate the molar heat capacity. Our Monte Carlo simulations show that the

VFF potential yields a temperature independent bending modulus.

This chapter is organized as follows. Section 5.1 contains the essentials of the
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VFF model for graphene. The simulation method for strained graphene will be

presented in section 5.2. Different energy modes of strained graphene are studied

in section 5.3. In section 5.4 the molar heat capacity for non-strained suspended

graphene is calculated. Temperature effects on the bending modulus of graphene

with periodic boundary condition are presented in section 5.5 and the scaling

properties of graphene at finite temperature are investigated in section 5.6.

5.1 Elastic energy of graphene

There are two main classical approaches for the investigation of the elastic

energy of graphene: 1) the continuum approach based on elasticity theory, and

2) the atomistic description using accurate interatomic potentials.

The total energy of a deformed membrane consists of two important terms:

stretching and bending. For an almost flat and continuum membrane using

Monge representation the surface area element dA can be approximated by a

flat sheet area element in the x-y-plane, i.e. dA ≈ dxdy and the bending energy

is written as 1
2

∫
dxdyκ(∇2h)2. Where κ is the bending rigidity and h is the out-

of-plane deformation of the membrane at point (x, y). The stretching term for

an isotropic continuum material in the linear regime includes two independent

parameters: the shear modulus (µ) and the Lamé coefficient (λ) and is written

as 1
2

∫
dxdy[2µu2αβ + λu2αα]. Here uαβ = 1

2
[∂αuβ + ∂βuα + ∂αh∂βh] is the second

rank symmetric tensor with α, β = 1, 2 and uα(x, y) is the αth component of

the displacement vector. Neglecting the last term in the strain tensor makes the

stretching term linear and decouples the bending and stretching energy. There-

fore, for an isotropic and continuum material for small deformations and with

the assumption of a nearly flat membrane (|∇h|2 � 1), the strain energy (UT )

can be written as [127]

UT =
1

2

∫
dxdy[κ(∇2h)2 + 2µu2αβ + λu2αα]. (5.1)
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The integral is taken over the projected area of the membrane into the x-

y-plane. For isotropic materials and in the linear approximation the mentioned

parameters are related to the Young modulus (Y ) and Poisson’s ratio (ν) as

µ = Y/(2(1 + ν)) and λ = 2µν/(1 − 2ν). Equation (5.1) can be rewritten

in terms of the Fourier components of h and yields the scaling properties of

the sheet. Despite these benefits, this continuum model does not include self-

avoidance (the natural condition of true physical systems) and does not show

atomistic details of the membrane under different boundary conditions. All these

deficiencies originate from the continuity assumption. Assuming graphene as a

continuum plate limits the study to only bending and stretching modes.

Due to the hexagonal symmetry of the flat monolayer graphene lattice, it is

elastically isotropic which implies that the the bending modulus is independent

of the direction at least within the linear elastic regime [124]. However, the

graphene monolayer can exhibits anisotropic behavior in the nonlinear regime

where distortions are no longer infinitesimal. The larger stretches, the stronger

anisotropy and non-linearity effects. Cadelano et al [128] found that monolayer

graphene is isotropic in the linear regime, while it is anisotropic when nonlinear

features are taken into account.

The recently introduced VFF model in Ref. [11] is expected to be able to

describe both compression and stretching experiments by separating the contri-

bution of the various energy modes. This model includes explicitly the various

relevant energy terms which describe the change in the bond lengths, bond angles

and torsional effects. The total energy density is written as

ET =
1

NS0

(Est + Ebe + Eout + Ebo + Ep + Eco), (5.2)

where N is the number of atoms and S0 = 3
√
3

4
a20 is the surface area of the

unit cell of the honeycomb lattice. In the following we will discuss the different

terms in equation 5.2. Note that the energy reference is set to zero. Assuming
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a0 = 1.42 Å as the unit of length, the ‘stretching ’ and ‘bending ’ (bending of the

bond angle) terms are

Est =
1

2
Ks

∑
i,j

(δrij)
2 (5.3)

Ebe = Kbe

∑
i,j<k

(cos(θijk)− cos(θ0))
2 (5.4)

where δrij = rij−1 and θ0 = 2π/3. In equations 5.3 and 5.4, rij is the bond length

between atom ‘i’ and ‘j’, θijk is the angle between the nearest neighbor atoms ‘i’,

‘j’ and ‘k’ and θ0 is the equilibrium angle between three nearest neighbor atoms.

Est is the two-body stretching term responsible for bond stretching. Ebe is the

bending energy due to the bond angles. Here, all bond angles will be considered.

The above two terms results in a quasi-harmonic model [123]. Later, we will

find that these two terms become constant as function of strain when beyond the

buckling point in a compression experiment.

The stiffness against ‘out-of-plane’ vibration is provided by

Eout = Kout

∑
i,j<k<l

(
3−→rij · −→rik ×−→ril

rijrik + rijril + rikril
)2, (5.5)

where the summation is taken over the first neighbors of atoms ‘i’ and taking

care of not double counting. In equation 5.5, −→rij is the distance vector between

atom ‘i’ and ‘j’. Hence there are three different terms for each atom. Correlations

between bond lengths are provided by the ‘bond order ’ term

Ebo = Kbo

∑
i,j<k

δrijδrik, (5.6)

where for each bond length with central atom ‘i’ three different terms are consid-

ered.

The misalignment of the neighboring π orbital is given by the ‘π − π’ term

Ep =
1

2
Kp

∑
i,j

|−→πi ×−→πj |2, (5.7)
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Table 5.1: Parameters of the energy model are taken from Ref. [11]. The unit is
eV.

Ks Kbe Kout Kbo Kp Kcor

37.04 4.087 1.313 4.004 0.016102 4.581

where

−→πi = 3
−−→nijk +−→nikl +−→nilj

rijrik + rijril + rikril
. (5.8)

−−→nijk = −→rij×−→rik is a vector normal to the plane passing through the vectors −→rij and

−→rik. This kind of interaction plays an important role in the interlayer interaction

in graphitic structures. Note that the simple two body interaction gives only 2%

of the local density of state (LDA) result for the energy difference between AA

and AB stacked graphite [129].

The last term takes into account the coupling between bond stretching and

bond angle bending (bond length-bond angle cross coupling), i.e. the ‘correlation’

term

Ecor = Kcor

∑
i,j<k

δrij(cos(θijk)− cos(θ0)). (5.9)

The coefficients in the above equations (Ks, Kbe and so on) were recently

parameterized by Perebeinos and Tersoff [11] such that the phonon dispersion of

graphene was accurately described. These parameters are listed in Table 5.1.

5.2 Simulation method: strained graphene

In order to compress (stretch) graphene nanoribbons, we have carried out

several standard Monte Carlo simulations [114] of a suspended graphene sheet

at finite temperature. Equation (5.2) is used to calculate the total energy of

the system. Our sample is a rectangular graphene sheet with lx × ly dimensions

in x- and y-directions, respectively, containing N0=1600 atoms. The sheet is

strained along the armchair or the zig-zag direction. Strain is always applied
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Table 5.2: Young’s modulus of graphene in units of N/m.

Experimental 340±50 Ref. [57]

350±3.15 Present§

Classical (T=300 K) 355±21 Ref. [119]†

384 Ref. [130]‡

345±6.9 Ref. [125]
336 Ref. [131]

Ab-initio (T=0 K) 352.54 Ref. [132]
351.75 Ref. [133]

322 Ref. [97]

Tight-Binding 312 Ref. [128]

§ VFF model [11], † LCBOPII potential, ‡ Tersoff-Brenner potential.

along x. When graphene is strained along the armchair direction we named

it armchair graphene -AC- (lx=85.2 Å, ly=49.19 Å) and strained graphene along

zig-zag direction is named zig-zag graphene-ZZ- (lx=98.38 Å, ly=42.6 Å). Periodic

boundary conditions are applied along the lateral direction i.e. zigzag direction in

AC graphene and along the armchair direction for ZZ graphene. Our simulation

starts with a flat sheet, and we allow then the system to thermally equilibrate

such that the total energy no longer changes. Temperature is typically taken

T=300 K, except when otherwise indicated.

Figure 5.1(a) shows a snapshot of the relaxed unstrained ZZ graphene at

T=300 K (note that the supported ends are fixed). We found that the graphene

sheet is corrugated after relaxation which are the intrinsic thermal ripples in

graphene. Thus the used VFF is able to display true structural properties. These

ripples are vital in order to make suspended graphene stable and are, therefore,

crucial for the stability of a flat 2D crystal at finite temperature [114].

To simulate a suspended sheet we fixed two atomic rows at both longitudinal

ends. These boundary atoms are not included in the summations when calculat-
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Figure 5.1: The snapshot of a suspended graphene sheet at T=300 K using the
valence force model (Equation 5.2). Blue lines indicate the position
of fixed atoms in x − y plane. (a) Unstrained, (b) compressed ZZ
graphene, and (c) compressed AC graphene.
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ing the different energy contributions (in equations 5.2-5.9), i.e. N = N0−40. We

compress/stretch the system with a slow rate, i.e. in every million Monte Carlo

steps the longitudinal ends are reduced/elongated with about δ =0.02 Å such

that the system stays in thermal equilibrium. After obtaining the total desired

strain ε, we wait for an extra 4 million steps during which the system can re-

lax. For example, a strain (applied in x-direction) of ε = 1.2% is achieved after

29×106 Monte Carlo steps.

5.3 Different energy modes for strained graphene

Figures 5.1(b) and (c) show two snapshots of compressed ZZ and AC graphene,

respectively when ε=-2%. It is interesting that the rippled structure is different

in the two cases. This is due to the different out-of-plane and π − π interaction

terms around and beyond the buckling transition points, i.e. ε . −2.5%.

The variation of height, ∆̃h =
√
< h2 > − < h >2, in figure 5.1(a) after 10

million MC steps fluctuates around 0.2 Å which is comparable with those found

when using REBO [134]. In figures 5.1(b,c) for compressed nanoribbons of about

ε = -2.0 % ∆̃h is 0.5 Å after 54 million MC steps. The larger compressive strain

yields a larger height variance.

Figure 5.2 shows the variation of the total energy (equation (5.2)) with ap-

plied strain at T=300 K. The vertical dashed line separates compressive (left)

and tensile strain (right). Square (circular) symbols refer to AC (ZZ) graphene.

Notice that AC and ZZ strained graphene result in the same energy, although

their ripples structure (see figures 5.1(b,c)) can be rather different. Note that

the energy curve is no longer symmetric around ε = 0 beyond the colored rect-

angle where |ε| & 0.02. Inside this region the deformation is symmetric and

the harmonic approximation to the total energy works well as shown by the full

black (parabolic) curve in figure 5.2. The solid curve is a quadratic fit according

to ET = E0 + 1
2
Y ε2 for only positive strains, where the fitting parameter Y is

Young’s modulus and E0 is the energy of the graphene sheet in the absence of

66



Figure 5.2: Total energy of a graphene sheet subjected to stretching and com-
pression for AC and ZZ.

Figure 5.3: Contribution of the bending (Eq. 5.4) and the stretching (Eq. 5.3)
terms of the total energy for AC.
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Figure 5.4: Contribution of the other remaining terms given by Eqs. 5.5-5.9 for
AC.

strain. We found E0=0.232±0.002 N/m and Y=350.42±3.15 N/m for room tem-

perature. The calculated error bars are derived from the fitting procedure of our

numerical data. The best fit yielded the smallest deviation from the harmonic

behavior. Our result for the room temperature Young’s modulus is close to the ex-

perimental value (340±50 N/m) and is within the ab-initio results (335-353 N/m)

and is in agreement with those obtained from other classical force fields such

as (LCBOPII [119] and Tersoff-Brenner [130]) and Tight-Binding [128], see 5.2.

Note that Perebeinos and Tersoff estimated Y at zero temperature and found

1.024 N/m2 (343.04 N/m) [11]. Here we calculated Y at room temperature via

stretching-compression simulations. Different force fields are parameterized such

that they describe a set of chosen experimental data of particular experimental

effects. For example, the VFF model can not be used to study hydrogenation,

melting and defect formation in either graphene or carbon nanotubes sheets, while

the REBO has been set-up such that it can be used in those cases. The property
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that the energy can be separated into different energy modes and the simplicity

of coding the VFF potential are two important advantages of this model.

Notice that the total energy for AC (square symbols in figure 5.2) and ZZ (cir-

cular symbols in figure 5.2) graphene are almost the same which is in agreement

with the results of Ref. [128]. Graphene acts isotropically in the linear elastic

limit. Beyond the harmonic regime there is a small local maximum in the en-

ergy for compression which is related to the buckling of graphene. Notice that in

this regime there are small differences between ZZ and AC sheets. The buckling

threshold is about εb ' −2.5%. The buckling strains is smaller than those found

by using REBO [120], i.e. -0.86%. Notice that both the boundary conditions

and the employed interatomic potentials are responsible for the difference in the

buckling thresholds. The main difference is due to the different potential. The

VFF model is not a bond-order potential (REBO). As we mentioned in the intro-

duction the bending modulus predicted by REBO is about 0.69-0.83 eV which is

smaller than the one predicted by the VFF model (2.1 eV). Therefore, we expect

a larger buckling transition using REBO and a smaller one using VFF model

(considering the negative sign for compressive strains). Another important rea-

son for the different result is the calculations method. Here we used Monte Carlo

(time is meaningless) and in Ref.[120] we used Molecular dynamics simulations.

Figure 5.3 shows the contribution of the two important energy terms, i.e.

stretching and bending as given by equation 5.3 and equation 5.4, respectively,

for strained AC graphene. Notice that the stretching energy is larger than the

bending and that the rate of increase for stretching is different. In the compression

part (i.e the region to the left of the vertical dashed line), after the buckling points

these energies are almost constant. Thus increasing compression beyond the

buckling point does not change the bending and stretching energies. Figure 5.5

shows the contribution of the different energy terms (scaled by ET ) for three

values of the strain for both AC and ZZ graphene (e.g., the first set of bars to the

left refer to 100×Est/ET for each particular strain shown in the legends). From

figure 5.5, we conclude that the contribution of the energy terms (equation 5.4
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Figure 5.5: Contribution of the different energy terms to the total energy for three
typical values of the strain in AC (Top) and ZZ (Bottom) graphene.
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and equation 5.7) which are not determinable in the continuum elasticity energy

approach (equation (5.1)) are substantial and should be retained when describing

strained graphene at the atomistic scales

Figure 5.4 shows the variation of the other terms in the energy, equations

5.5-5.9), with strain. The energy for π-π repulsion and out-of-plane increase

(decrease) with compression (stretching) and they behave opposite to the other

terms. In compression experiments the sheets become strongly corrugated and

neighbor π orbitals become more misaligned. In other words the normal to the

adjacent surfaces, - −−→nijk- and -−→nijl- become more misaligned and results in an

increase of the total energy. Notice also that the bond order term is smaller and

negative in the compression part with respect to the stretching part. The cor-

relation between the bond lengths is always negative for the compression part.

We found that the relative contribution of the different energy modes for stretch-

ing and compression of AC and ZZ graphene are almost the same, compare fig-

ure 5.5(a) and figure 5.5(b). However as we see from figures 5.1(b,c) the structure

of the ripples depends on the direction of the applied strain. In the case of AC the

ripples are regular (sinusoidal shape) while they exhibit an irregular pattern in ZZ

graphene. Note that the buckling in plates is generally known to depend on the

plate geometric parameters [135, 120]. Notice that, the dependence of the ripple

structure of the graphene sheets on the sheet geometry has been demonstrated

experimentally in Ref. [115].

5.4 Molar heat capacity

Next, we simulated graphene at different temperatures. Figure 5.6 shows the

temperature dependence on the average total energy and of the six energy terms

for ε = 0. Notice that all energy terms vary linearly with T . The quantity CV =

NAS0
d〈ET 〉
dT

gives the potential energy contribution to the molar heat capacity of

the system at constant volume, where NA is Avogadro’s constant. We first relaxed

the volume of the system by performing a constant pressure-temperature (NPT)
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Figure 5.6: Temperature dependence of the various energy modes of a suspended
graphene sheet which is suspended along arm-chair direction.

Monte Carlo simulation (which removes possible boundary strains). Then we

fixed the boundaries to the found relaxed size and allowed for additional thermal

relaxation (i.e. constant volume-temperature Monte Carlo simulation or NVT).

During this new thermal relaxation no strain is applied ε = 0, thus, the calculated

heat capacity corresponds to constant volume molar heat capacity. Surprisingly,

we found that CV = 12.33 J mol−1 K−1 which is almost half of the Dulong-Petit

value, i.e. 3<=24.94 J mol−1 K−1. Notice that 〈ET 〉 is the average of the potential

energy of graphene which is taken over 4 million Monte Carlo steps. Assuming

that the average of the kinetic term equals the average potential energy (〈ET 〉)

according to the equipartition theorem (in the harmonic regime), we can write the

total energy 〈E〉 = 〈ET 〉+〈K〉 = 2〈ET 〉 and then the total heat capacity is found

to be 24.66±0.10 J mol−1 K−1. The obtained result is close to our previous result

obtained using REBO, i.e. 24.98±0.14 J mol−1 K−1 [136]. In Ref. [119] the heat

capacity at 300 K was found to be 24.2 J mol−1 K−1. We have performed many
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Figure 5.7: Variation of molar heat capacity at constant volume for graphene
subjected to compressive and tensile strains.

simulations at different temperatures for strained graphene and found always a

linear 〈ET 〉 − T curves. Figure 5.7 shows the variation of CV versus strain. It is

interesting to note that CV is slightly lower (∼ 1.0%) in compressed graphene as

compared to stretched graphene.

Furthermore, we performed several simulations using the same sample employing

the AIREBO potential within LAMMPS software. It is interesting to know that

AIREBO gives (in the range of 10 K-1000 K) CV =24.92 J mol−1 K−1 which was

found to be independent of temperature. Therefore, the VFF model, REBO and

AIREBO predicts temperature independent heat capacity.

On the other hand, we found that the VFF model, REBO and AIREBO, give

a linear increase in the carbon-carbon bond length (a) with temperature. The

resulting bond length thermal expansion coefficients for the VFF model, REBO

and AIREBO are α = 1
a0

da
dT

= (5.0 ± 0.07) × 10−6K−1, (5.0 ± 0.03) × 10−6K−1

and (7.0 ± 0.04) × 10−6K−1 respectively. The Gruneisen parameter is defined
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Figure 5.8: Temperature dependence of the bending modulus of graphene (a) and
variation of the nanotube curvature versus nanotube index, i.e m.

as γ = αB
CV ρ

where B is the two dimensional bulk modulus for graphene, i.e

B = 12.7 eVÅ−2 [119], and ρ is the mass density of graphene, i.e. ρ = 12.0/S0 =

7.6 × 10−4g m−2. Using our result for CV and α gives γ = 0.64 which is better

estimation for the Grüneisen parameter than the one found in Ref. [11], i.e. -0.2,

and is closer to the experimental result, i.e. 2.0 [137].

5.5 Temperature effect of the bending modulus

A common method for calculating the bending modulus of graphene is by

performing several simulations as function of the radius (R) of the curved tubes

and extrapolating the results to R → ∞ (see figure 5.8(b)). Hence, one can

calculate the elastic energy of carbon nanotubes as a function of the inverse square

of the radius, E = 1
2
κR−2. The coefficient κ in the elastic energy gives the bending

modulus of graphene. In order to study the effect of temperature on the bending
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modulus of graphene we have carried out several NPT Monte Carlo simulations

(constant pressure with periodic boundary condition) at different temperatures.

For each particular temperature we have 8 different tubes. In this part, our

systems are different armchair carbon nanotubes with radius R = 3m2 a0/2π

and initial length 10 nm. We used eight armchair carbon nanotubes with index

(m,m) for m= 5, 10, 15, 20, 25, 30, 35, 40. For each particular nanotube with

index m, we carried out several NPT Monte Carlo simulations with periodic

boundary condition along the nanotube axis and varying temperatures in the

range 10 to 1000 K. Calculating ET by using equation 5.2 for all nanotubes at

temperature T , we fitted 1
2
κR−2 to the data and found the bending modulus

(stiffness), κ, at T . From figure 5.8(a) we notice that κ is practically temperature

independent and is about 2.02 eV. Thus the present VFF model results in a

temperature independent bending modulus. Using membrane theory to calculate

the bending rigidity of graphene shows that different potentials lead to conflicting

temperature dependence for the bending rigidity; e.g., LCBOPII [114] yields

an increase of the bending rigidity with temperature while REBO predicts a

decreasing dependence [126].

5.6 Scaling properties

In the harmonic regime the power spectrum of the graphene solid membrane

can be obtained by calculating < |hq|2 > where hq is the Fourier transform

of the height of the atoms (h) and q is the norm of the wave vector −→q (=

(qx, qy) = 2π(nx

lx
, ny

ly
)) with integers nx and ny where lx and ly are the longitudinal

and lateral size of the graphene sample. It is important to note that in this

section we simulated a graphene sheet with initial size lx = 230.04 Å and ly =

221.35 Å (N=19440) using standard NPT Monte Carlo simulations with periodic

boundary conditions in both directions (the method is similar to that reported

in Refs. [4,10]). We estimated the spectral modes hq by fitting |hq|2 to a qα

function, from which we extract the power law α. Figure 5.9 shows the variation
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Figure 5.9: The absolute value of the square of the Fourier transform of atomic
heights of C-atoms (|hq|2) versus the absolute value of the wave vec-
tors of the graphene lattice.
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of |hq|2 (averaged over 500 Monte Carlo realizations where 5 neighboring points

were accumulated and averaged to a single point in order to make the curves

smoother) versus q for graphene at two temperatures 200 K and 700 K. The

dashed lines are power law fits. Notice that α 6= −4 which clearly indicates

that anharmonic effects are present in the used VFF potential. Moreover we see

that α decreases with decreasing temperature (α =-3.0 for T=700 K and α =-

3.557 for T=200 K) which hints that a more harmonic behavior is found at low

temperature when using the VFF potential. The latter temperature dependence

is in agreement with the REBO predictions [134]. Notice that the REBO is a

bond-order interatomic potential. The peaks in Figure 5.9 are related to first

Bragg-peak, 4π/3a0 = 2.94Å due to the discreteness of the graphene lattice. The

modulation amplitude in Figure 5.9 for T=200 K is about 0.5Å and for T=700

K is about 0.7Å which are temperature and size dependent quantities, the larger

the size the larger the amplitudes (here graphene has dimension 221× 230 Å2).
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Chapter 6

CONCLUSION

In our first work that published in Computational Materials Science 49(4):839

(2010), the stochastic motion of noble gases in a two dimensional periodic po-

tentials (2DPP) produced by a graphene membrane was studied. We calculated

the depth of the potential well of the interaction between noble gases and the

graphene sheet. The Langevin equation was solved with velocity Verlet algorithm

to find out the effects of the binding energy, damping factor and the equilibrium

distance to the motion of noble gases on the graphene sheet.

2DPP produced by the monolayer, bilayer and triple-layer of graphene were

studied. We showed that increasing the number of graphene layers changes in-

finitesimally the pairwise interaction between noble gases and the graphene sheet.

The binding energies were calculated in the range of meV and the equilibrium

distances were found to be less than 21/6σ. The effects of the coefficient of friction

and the type of the elements deposited over the graphene, on the trajectories of

the motion of noble gases on the graphene were investigated. We showed that

the Xe atom with smaller binding energy is trapped in the potential well at

high friction coefficients while the He atom with larger binding energy can freely

diffuse.

In our second project that published in Journal of Physics Condensed Matter

24(17): 175303 (2012), with using the valence force field model of Perebeinos

and Tersoff, different energy modes of suspended graphene subjected to tensile

or compressive strain were studied. By carrying out Monte Carlo simulations

some exciting results were found. The only for small strains (|ε| / 0.02) the

total energy is symmetrical in the strain, while it behaves completely different

beyond this threshold. The important energy contributions in stretching exper-
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iments are stretching, angle bending, out-of-plane term and the term provides

repulsion against π−π misalignment. In compressing experiments the two latter

terms increase rapidly and beyond the buckling transition stretching and bending

energies are found to be constant. From stretching-compressing simulations we

calculated the Young modulus at room temperature 350 ± 3.15 N/m, which is

in good agreement with experimental results (340± 50 N/m) and with ab-initio

results 322-353 N/m. Molar heat capacity is estimated to be 24.64 J mol−1 K−1

which is comparable with the Dulong-Petit value, i.e. 24.94 J mol−1 K−1 and is

almost independent of the strain. Non-linear scaling properties were obtained

from height-height correlations at finite temperature. The used valence force

field model results in a temperature independent bending modulus for graphene.

In this study, we showed that the recently proposed valence force field model

(VFF) [11] for graphene enables to compare the contribution of the different

energy terms when straining graphene. In a stretching experiment the main en-

ergy contributions are due to stretching and bending terms while for compressive

strains also other terms such as out-of-plane and π − π interaction terms play

an important role. We found that using such a classical approach gives accurate

values for the Young’s modulus at room temperature which are found to be as

accurate as those using ab-initio methods. The calculated Young’s modulus is

close to the experimental result. The total energy is quadratic in ε for strains

smaller than |2%|. The current VFF model predicts a temperature independence

bending modulus. The temperature dependence of the total strain energy yields

an acceptable value for the molar heat capacity of graphene which is almost inde-

pendent of the applied strain. The Grüneisen parameter is found to be positive

and about 0.64. These results can confirm that the present VFF model is an

accurate force fields for studying the thermo-mechanical properties of graphene.
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