

M188: A New Preprocessor for Better Compression

of Text and Transcription Files

Mete Eray Şenergin

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Electrical and Electronic Engineering

Eastern Mediterranean University

November 2014

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Electrical and Electronic Engineering.

 Prof. Dr. Hasan Demirel

 Chair, Department of

 Electrical and Electronic Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Electrical and

Electronic Engineering.

 Assoc. Prof. Dr. Erhan A. İnce

 Supervisor

 Examining Committee

1. Prof. Dr. Hasan Demirel

2. Prof. Dr. Hüseyin Özkaramanlı

3. Assoc. Prof. Dr. Erhan A. İnce

iii

ABSTRACT

Compression of natural language text files is worthwhile for communities such as

Project Gutenberg in terms of their storage space and even for text messaging

applications' bandwidth efficiency. Thus, there has been extensive research on

preprocessing techniques. The thesis proposes a new word-based preprocessor

named METEHAN188 (M188). The proposed method provides better compression

of text and transcription files when concatenated with some well known data

compression algorithms. M188 and state-of-the-art preprocessors; starNT, WRT,

ETDC, SCDC and RPBC are compared while concatenated with PPMD and

PPMonstr. M188 differs from the other methods; it has larger dictionary which

provides coverage of more words, the disadvantage is that it slows down the process;

it has longer alphabet which gives M188 the opportunity of assigning shorter

codewords; it does not code space and punctuation characters which speeds up M188

also output a more predictable scheme. During experiments, Wall Street Journal,

Calgary, Canterbury, Large, Gutenberg and Pizza & Chili corpora are used. For the

files in Calgary corpus the experimental results yield that M188 can overcome all

other preprocessing techniques in terms of compression effectiveness. For the files

selected from the project Gutenberg and Canterbury corpora WRT+PPMonstr has

1.22% gain in over M188+PPMonstr on the average. The results showed that best

two preprocessors for compression effectiveness are M188 and WRT and for timing

performance ETDC and SCDC are the fastest preprocessors.

Keywords: LIPT, StarNT, WRT, Universal Preprocessor, PPMonstr, M188, ETDC,

SCDC, RPBC, PPM, Data Compression.

iv

ÖZ

Gutenberg projesi gibi toplulukların veri depolama alanlarını ve hatta metin

mesajlaşma uygulamalarının bant genişliğini kazanımı için metin sıkıştırma kayda

değer bir uygulamadır, araştırmalar önişlemcilerin kayda değer kazanç sağladığını

göstermiştir. İş bu tez, metin dosyaları için sıkıştırılma oranını en iyileştirmeye

yönelik yeni bir önişlemciyi önermektedir. Bu önişlemciyi Metehan 188 ya da M188

olarak adlandırmış bulunuyorum. M188 ile LIPT, StarNT, WRT, ETDC, SCDC,

RPBC önişlemcileri PPMonstr ve PPMD sıkıştırma algoritmalarına önişlem yapacak

şekilde kullanılmış daha sonrasında zaman ve sıkıştırma başarımı açısından

kıyaslanmıştır. Diğer metotlara göre; M188 daha büyük bir sözlüğe sahiptir bu da

kodlama kapsamını genişletmiştir; ayrıca, M188 kodlarını daha uzun bir alfabeden

yararlanarak yaratmaktadır, bu sayede daha kısa kodlar atayabilmektedir. Son olarak

M188 boşluk ve noktalama işaretlerini kodlamamaktadır bu da zamanlamada kazanç

sağlamakta olup sıkıştırma algoritmalarına daha tahmin edilebilir bir yapı

sağlamaktadır. Deneylerde; Wall Street Journal, Calgary, Canterbury, Large,

Gutenberg ve Pizza & Chili metin derlemelerinden alınan dosyalar kullanılmıştır.

Calgary dosyalarında M188 diğer tüm önişlemcilerden daha iyi sıkıştırma

sağlamıştır. Gutenberg ve Canterbury dosyalarında ise WRT+PPMonstr ikilisi

M188+PPMonstr 'ye göre yüzde 1.22 daha iyi sıkıştırma başarımı sağlamıştır. Sonuç

olarak sıkıştırma başarımları en iyi olan iki algoritma M188 ve WRT olarak

belirlenmiştir. En hızlı iki algoritma ise ETDC ve SCDC olarak belirlenmiştir.

Anahtar Kelimeler: LIPT, StarNT, WRT, Evrensel Önişlemci, PPMonstr, M188,

ETDC, SCDC, RPBC, PPM, Veri Sıkıştırma.

v

 To my beloved wife Meltem.

vi

ACKNOWLEDGEMENT

I would like to thank Assoc. Prof. Dr. Erhan A. İnce for his utterly supportive

guidance in the declaration of this study and for his time. Also, I would like to thank

my family respectively N. Sibel Şenergin (my mother) for giving me the idea of

Radix system in this study, Meltem Şenergin (my wife) for her refutations on my

initial design and İ. Giray Şenergin (my dad) for making me believe that the problem

is not about the compiler or the computer, it was about the code. Special thanks to

Dr. Antonio Farina, Dr. Miguel A. Martinez-Prieto, Dr. Gonzalo Navarro and Dr.

Susana Ladra Gonzales for their kind cooperation with us.

vii

TABLE OF CONTENTS

ABSTRACT ..iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGEMENT .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

1 INTRODUCTION .. 1

1.1 Statistical Methods ... 2

1.1.1 Prediction by Partial Matching Family ... 3

1.2 Dictionary Based Methods ... 4

1.2.1 Lempel Ziv Family .. 5

1.3 Others ... 5

1.3.1 Bzip2 ... 5

1.3.2 PAQ Project .. 6

2 PREPROCESSING TECHNIQUES ... 8

2.1 Preprocessors Derived from the Star-Transform ... 8

2.1.1 Length Index Preserving Transformation (LIPT) ... 8

2.1.2 Star New Transformation (StarNT) .. 9

2.1.3 Word Replacement Transformation (WRT) ... 10

2.2 Semi-Static Word Based Byte Oriented Preprocessors ... 12

2.2.1 End Tagged Dense Coding (ETDC) ... 12

2.2.2 (s,c) - Dense Coding (SCDC) .. 13

2.2.3 Restricted Prefix Byte Coding (RPBC) ... 13

viii

3 THE PROPOSED PREPROCESSOR: M188 ... 15

3.1 M188 Encoder .. 17

3.1.1 Capital Conversion .. 17

3.1.2 End of Line Coding ... 18

3.1.3 Search Methodology ... 19

3.1.4 Unknown Words ... 20

3.1.5 Radix-188 Numbering ... 20

3.2 M188 Decoder.. 21

3.3 M188 Demonstration by Encoding and Decoding a Quote 22

4 PERFORMANCE EVALUATION .. 25

4.1 Stand-alone Compression Effectiveness of M188 ... 29

4.2 Preprocessors Concatenated with PPMD and PPMonstr 30

4.2.1 Preprocessed PPMD and PPMonstr on set 1 ... 30

4.2.2 Preprocessed PPMD and PPMonstr on set 2 ... 34

4.3 Best Four Preprocessors Concatenated with PPMonstr on set 3 37

4.4 Timing Performance of M188 .. 38

5 CONCLUSION AND FUTURE WORK.. 40

5.1 Conclusions .. 40

5.2 Future Work ... 40

REFERENCES ... 41

ix

LIST OF TABLES

Table 1: Corpora and source codes used in experiments ... 26

Table 2: File, size, corpora and sets for experiments ... 27

Table 3: Distribution of character types in the sample files....................................... 28

Table 4: Stand alone compression effectiveness of M188 vs DCAs on set 1 29

Table 5: Comparison of preprocessors in concatenation with PPMD on set 1 32

Table 6: Comparison of preprocessors in concatenation with PPMonstr on set 1 32

Table 7: Comparison of preprocessors in concatenation with PPMD on set 2 35

Table 8: Comparison of preprocessors in concatenation with PPMonstr on set 2 35

x

LIST OF FIGURES

Figure 1: The alphabet of M188... 15

Figure 2: Probability distribution function of number of space characters on a line . 19

Figure 3: Dictionary line numbers of the words in the quote 22

Figure 4: Codewords of the words in the quote ... 23

Figure 5: The quote, its M188 encoding and decoding .. 23

Figure 6: The quote, its M188 encoding and decoding with exposed flags 24

Figure 7: Stand alone compression effectiveness of M188 vs. DCAs on set 1 30

Figure 8: Comparison of preprocessors in concatenation with PPMD on set 1......... 33

Figure 9: Comparison of preprocessors in concatenation with PPMonstr on set 1 ... 34

Figure 10: Comparison of preprocessors in concatenation with PPMD on set 2....... 36

Figure 11: Comparison of preprocessors in concatenation with PPMonstr on set 2 . 36

Figure 12: Best four methods concatenated with PPMonstr on set 3 37

Figure 13: Timing performances of the algorithms ... 39

1

Chapter 1

INTRODUCTION

Since the beginning of time information sharing has been a need of various societies

inhabiting our planet. Among the earliest ways of communication text was

appropriated most. Today, there are numerous visual multimedia alternatives

however for majority of the people text is still the preferred way of communicating.

With the computer era the text is digitized and standardized e.g. ASCII. This has

allowed us to optimize the space and time efficiency of this textual information flow.

Communication systems which are not memoryless needs to store the data and the

actual physical memory needed for storage can be quite costly based on the size of

the data. Also quick retrieval of information stored on a far-away server should not

take too long. Hence source compression has become an important research area.

The main principle of source (data) compression is to represent the source signal

with minimum redundancy such that the number of bytes one needs for storage will

be smaller than the size of the original data. Data compression algorithms can be

classified in two groups: (i) Lossless and (ii) Lossy compressors.

Lossless data compression guarantees identical reconstruction of the original data

(referred to as raw text throughout this thesis) and lossy data compression on the

other hand aims to keep the information not the exact data. A well known technique

for lossy compression is the SMS language. In SMS language receiving party can

2

understand the message even the words are not typed properly. Such as; the word

'before' is encoded as 'B4', the word 'your' is encoded as 'ur'. So, there is a loss of the

original data but the information can be extracted.

The algorithms which are employed to compress the data are called as data

compression algorithms (DCA). The aim of this thesis is to propose a new source

coding algorithm that provides gain in compression to the lossless DCAs, when it is

used as a frontend processor (preprocessor). The idea behind preprocessing is to

change the representation of the data in a form that redundancy is more visible for

the DCAs. In order to give details on preprocessors DCAs should be mentioned first.

There are numerous lossless DCAs in the literature and all DCAs process the data in

blocks; the block can be a bit sequence, byte or a string of characters (word).

Huffman DCA uses characters (bytes) as the symbols to be compressed according to

the probability distribution of the source symbols. On the other hand, word based

DCAs takes the words as the symbols to be processed. So, DCAs have different

methodologies among themselves and those methods can be categorized as

i) statistical methods and ii) dictionary based methods.

1.1 Statistical Methods

Statistical compression methods are known to employ variable-length codes and are

based on a model. The model is used by the compression algorithm to map input data

to bit sequences in such a way that probable (frequently encountered) data will

produce shorter outputs in comparison to improbable data. The quality of

compression is based on the model adopted. Static, semi-static and adaptive models

are among the well known models. A static model is a fixed model that is known by

both the compressor and the de-compressor and does not depend on the data that is

3

being compressed. A semi-static model on the other hand is a fixed model that is

constructed from the data to be compressed and must be included as part of the

compressed data. An adaptive model changes during the compression. At a given

point in compression, the model is a function of the previously compressed part of

the data. Since that part of the data is available to the de-compressor there is no need

to store the model. Huffman coding [1], adaptive Huffman coding [2], arithmetic

coding (AC) [3], Prediction by Partial Matching (PPM) [4] and PAQ [5] , Plain

Huffman (PH)[6], Tagged Huffman (TH)[6], End-Tagged Dense Codes (ETDC)[7],

(s; c)-Dense Coding [8] and Restricted Prefix Byte Coding ([9],[11]), are examples

of statistical methods. Processing for statistical two pass techniques are as follows: in

the first pass these algorithms gather statistics about the list of source symbols

(vocabulary) and construct a model of the text and in the second pass each symbol is

substituted by a codeword. It has been stated in [12] that Dense Codes offer some

advantages over byte-oriented Huffman encoding based compression methods. Some

of their advantages are that they can be build faster, require about the same search

time as Tagged Huffman and can achieve better compression rates.

1.1.1 Prediction by Partial Matching Family

Prediction by Partial Matching (PPM) ([4], [28]), is an adaptive statistical data

compression technique which uses context modeling and prediction. The context is

defined as the finite sequence of symbols preceding the current symbol. The length

of the sequence is also known as the order of the context. PPM makes use of these

previous symbols in the uncompressed symbol stream to predict the next symbol in

the stream. [4], was then developed into PPMC [28] by Alistair Moffat. PPMC [28],

is a hybrid combination of Methods A and B described in [4]. Performance of these

compression methods is based on the escape probabilities (the probability of new

4

symbols occurring in the context). There are many versions of the PPM since the

calculation of the escape probabilities is done in an ad-hoc manner. PPMD+ [29],

PPMd [30], PPM* [31] and Monstereous PPMII.J (PPMonstr) [32] are some other

variants of the prediction by partial matching algorithm. Compressors like Durilca

and Durilca Light [33] are based on Shakarin's PPMd [30] and PPMonstr [32].

mPPM described in [34], is a two stage compressor. The first stage maps words into

two byte codewords using a limited length dictionary, and in the second stage

conventional PPM is used to encode codewords or new words. DMC [25], is a

lossless compression algorithm developed by Cormack and Horspool [25]. It uses

predictive arithmetic coding, similar to PPM, except that the input is predicted one

bit at a time rather than one byte at a time.

1.2 Dictionary Based Methods

Dictionary based DCAs gets the strings as their symbols. The dictionary can be static

or dynamic. For static dictionaries, the dictionary is generated with the help of

training corpora which is better if gigantic in size and each word in the corpora takes

place in the dictionary only at once, those words can be ordered by their frequency,

their length or lexicographically. Then the codeword assignment is done according to

the dictionary. Each word has its unique codeword according to its position in the

dictionary. Static dictionary has a disadvantage of optimum codeword assignment.

Since, the probability distribution of the source symbols may not be related with the

probability distribution of the words in the training corpora. For optimum codeword

assignment the dictionary can be compiled from the source (data) itself and this is

called as dynamic dictionary. However, a dynamic dictionary must be a part of the

encoded data. Thus overhead is the disadvantage of using dynamic dictionary.

Dynamic dictionary based methods are pretty effective for files containing small

5

variety of words. Examples for dictionary based methods include LZ77, LZ78, LZW

([13],[14]) and DEFLATE [15]. Length Index Preserving Transformation (LIPT)

([17]-[18]), Star New Transform (StarNT) [19], Word Replacement Transformation

(WRT) [21] and Improved Word Replacement Transform (IWRT) [22] are examples

of preprocessing techniques that make use of a static dictionary.

1.2.1 Lempel Ziv Family

LZ77 discussed in [13] was introduced during 1977 by Abraham Lempel and Jakob

Ziv. It is based on a rule for parsing strings of symbols from a finite alphabet into

sub-strings that are shorter in length. Lempel Ziv Welch (LZW) is a variation on the

LZ77 due to the introduction of a dictionary and variable-rate coding. LZW was

widely used till after 1986. Afterwards, the more efficient DEFLATE algorithm

replaced it. DEFLATE algorithm which combines LZ77 and a Huffman coder was

first proposed by Phil Katz.

1.3 Others

Other data compression algorithms that do not directly classify in the former two

groups include run-length encoders (RLE) [23], Burrows-Wheeler transformation

[24], Dynamic Markov Compression (DMC) [25] and Bzip2 [26].

1.3.1 Bzip2

The Bzip2 compressor by Julian Seward [26], is based on the Burrows-Wheeler

Transform (BWT). Previous work [27], has reported that when an input file is

transformed by BWT the output file would be slightly larger in size than the source.

However, it has also been shown that the BWT would sort the file in such a way that

the output would have many redundant bytes and become highly suitable for

effective compression. Bzip2 compressor would apply four different transformations

back to back. These are BWT, a global structure transformation (GST), run length

6

encoding (RLE) and the entropy coding (EC) stages. A typical representative of the

GST is the Move-to-Front (MTF) transformation and for EC Huffman or Arithmetic

coding can be employed.

1.3.2 PAQ Project

The PAQ Project ([50],[52]) is an open source project which gave numerous versions

from numerous contributors and it is quite successful on many benchmarks. The

reason, PAQ is not classified under statistical methods or not under dictionary based

methods is because PAQ has both properties in some versions. It uses context mixing

and has similarities with PPM. As PPM PAQ also has predictor part with an

arithmetic coder as the main mechanism. But the difference is about mixing the

contexts, which is about allowing contexts to be arbitrary functions of the history

[49]. The model used is context mixing model. In this thesis the latest version PAQ8l

which is developed by M. Mahoney in 2007 is used to compress M188's EOL flags

since PAQ8l has the best compression rates on many benchmarks.

The organization of the thesis is as follows: Chapter 2 provides a brief summary of

some well-known preprocessing techniques, namely LIPT, StarNT, WRT, ETDC,

SCDC and RPBC. Chapter 3 introduces the encoding and decoding processes for

M188 in details with a detailed example. Chapter 4 summarizes experimental results

obtained by using text files from four corpora Calgary [35], Gutenberg [42],

Canterbury [43], Large [51], Pizza and Chili [44] and the Wall Street Journal (WSJ)

archive obtained from TREC-project [45]. The experiments can be divided into four

sets as follows; set one is Calgary files; set two is files from Gutenberg, Large and

Canterbury; set three contains comparatively big files depicted from Gutenberg,

Pizza Chili and the Wall Street Journal and the fourth set is timing set which contains

files from Calgary corpus details will be provided in Chapter 4. Firstly, the

7

compression achieved by M188 in stand-alone mode is compared against some well

known compressors (AC, LZW , Gzip, 7z, Repair coupled with a minimum

redundancy Huffman coder, Bzip2, PPMD, PPMonstr, PAQ8). Secondly, M188 and

other preprocessors are used prior to PPMD and PPMonstr and bpc values for files

selected from Calgary, Gutenberg, and Canterbury corpora are provided. Thirdly,

M188 and WRT are compared with word-based byte-oriented preprocessors such as

ETDC, SCDC and RPBC. Source files used were selected from Gutenberg corpora,

Pizza and Chili corpora and the Wall Street Journal archive. Chapter 4 also provides

comparative bar graphs for the time complexity of the M188 encoder/decoder pair

and other pre and post-processors. Finally, Chapter 5 delivers a discussion and

concludes the thesis.

8

Chapter 2

PREPROCESSING TECHNIQUES

A preprocessing algorithm tries to exploit different properties of textual data by

applying a reversible transformation to the source before it is passed on to a standard

DCA. The main aim is to make the redundancy more visible to the post-compressor

so that the overall compression rate can be improved. Preprocessing techniques using

a static dictionary would replace words in a given text file by a character encoding

that represents a pointer to encoded word in the dictionary. Semi-static techniques on

the other hand do not assume any data distribution and learn it during a first pass in

which the model is built. After the creation of the model, text can be encoded by

replacing each symbol with a fixed codeword assigned in accordance with the model.

The sub-sections below summarize details of some well-known preprocessing

algorithms. Namely: LIPT, StarNt, WRT, ETDC, SCDC and RPBC.

2.1 Preprocessors Derived from the Star-Transform

Star Transform [16], has been proposed by M. R. Nelson in 2002. The main idea

behind this transformation is to define a unique signature for each word by replacing

the letters of the word by a special character (*) and to use a minimum number of

characters to identify each specified word. Subsections 1-3 below are examples of

algorithms that have been derived from the basic star-transform.

2.1.1 Length Index Preserving Transformation (LIPT)

Word based preprocessing techniques are known to make use of an English language

dictionary. The dictionary is needed for two reasons: firstly it is used to replace

9

frequently occurring words by corresponding character encoding, secondly it is used

at the receiver for decoding the codeword in the compressed file. Given a compiled

dictionary, the LIPT algorithm [17], would first create many disjoint dictionaries

based on word lengths. All words of length i would be placed in dictionary Di and

then sorted according to the frequency of the word in the corpus being compressed.

The algorithm will then carry out mapping to encode words in each disjoint

dictionary Di. A word in position k in dictionary Di is denoted as Di [k]. Based on k

value the encoded word can be written as *clen, *clen[c], *clen[c][c] or *clen[c][c][c]

where clen denotes a character from the alphabet [a-z, A-Z] and c cycles through

[a-z, A-Z]. If k = 0, the encoding is clen. For k > 0, encoding can assume three

different forms based on the range of values k can assume as in formula (1) below.

 (1)

For example, when LIPT is encoding the 4th word of length 6 in dictionary D, the

codeword will be *fd. For decoding, LIPT uses the length block indicator that comes

after the '*' symbol to locate the length block in dictionary D. The characters that

come after the length block indicator are used to compute an offset from the

beginning of the length block previously chosen. The word at this location in the

original dictionary would be the decoded word.

2.1.2 Star New Transformation (StarNT)

Realizing that more than 82% of the words in the English texts had lengths which are

greater than three characters Mukherjee, Sun and Zhang concluded that if they re-

 1 < k < 52 *clen c

 53< k < 2756 *clen c c

2756< k < 140608 *clen c c c

10

code each English word with a representation that is less than three symbols, a

certain pre-compression could be achieved. This was the starting point before they

proposed a new star transformation called StarNT [19]. This transform differs from

the earlier versions of star family of transforms [20] with respect to the usage of '*'.

In earlier transformations the '*' denoted the beginning of a codeword but in starNT it

implies that the following word does not exist in the dictionary. This change was

adopted in order to minimize the encoding/decoding time of the backend compressor.

'~' appended to the transformed word implies that the first letter of the word is capital

and when ' ‘ ' is appended this would mean that all the letters of the word are capital.

For encoding the starNT uses a dictionary where the first 312 words (the most

frequently occurring words in English) appear at the top in decreasing order of their

frequencies and the remaining words are sorted according to their lengths. For

encoding letters [a ... z, A ... Z] are used. The first 26 words in dictionary are

assigned 'a', 'b', ..., 'z' as their code words. The next 26 words are assigned 'A', 'B', ...,

'Z'. The 53rd word is assigned 'aa' and 54th 'ab' etc. Using this approach the

transform dictionary can support a total of 143,364 entries.

2.1.3 Word Replacement Transformation (WRT)

The word replacement transform (WRT) ([21], [37]) has been proposed by

Grabowski and is a variation of the starNT with some improvements like capital

conversion, word ordering in the dictionary, q-gram replacement and end of line

(EOL) coding. The idea behind WRT is the following. If a word from the source file

exists in the static dictionary then since the codewords are shorter than words the

encoded file would be smaller than the source itself. The position of the word in the

external dictionary determines which codeword to use while encoding. Since WRT is

the method M188 is competing it is necessary to give further details about its

11

process. Firstly, the capital conversion is a well known technique for preprocessing

and it is quite obvious from its name capital conversion (CC). CC is converting

uppercase letters in a word into lowercase letters with adding a one-byte flag f for

decoding part to know about this conversion. Actually, there are at least two different

one-byte flags, f1 is for first-upper words and f2 is for all-upper words. Hence, there is

no need of flag for all-lower words. StarNT has capital conversion but in WRT it is

improved as follows; the word 'Capital' is a word first-upper case so, it is converted

into to 'capitalf1' in StarNT. Then, Skibinski realized that, when the flag is appended

in front of the word instead of end of the word as 'f1capital' gives better results on

context modeling DCAs by providing longer contexts. Even better results can be

obtained when a space is added between the word and the flag [21]. M188 also uses

the CC method as 'f1_capital' with a space between the flag and the word. Secondly,

WRT uses three sub alphabets of lengths 43, 43 and 42 respectively so, it can store

up to 79,550 words. Thirdly, q-gram replacement which is another widely used

technique that WRT has adopted. It is based on partial encoding of unknown words.

For example, if the word 'whatchamacallit' is encountered and it is not existing inside

WRT's dictionary. Then; up to four letters which means q=4, WRT can encode any

substring which exists the dictionary eg. 'what' is a substring of the word

'whatchamacallit' so, it can be encoded as '$chamacallit'. Which '$' is the codeword

of the word 'what'. WRT also has an improved dictionary. The dictionary of StarNT

is also replaced with Aspell’s English dictionary level 65 and the ordering is no just

based on the frequency as in StarNT. The dictionary is first sorted according to the

frequency which is measured with the help of a 3GB size training corpora taken from

the Gutenberg Project then, it is sorted in small groups in lexicographical order of

suffixes. The last method is end of line coding (EOL) which is replacing the end of

12

line characters with space characters. The end of line characters can be thought as

artificial and by replacing them with space characters DCAs can process larger

blocks. WRT at this point chose to replace end of line characters only which are

surrounded by lowercase letters, those end of line characters are replaced by space

characters. In order decoding part to recover those end of lines, there are binary flags

are written and compressed with an arithmetic coder.

2.2 Semi-Static Word Based Byte Oriented Preprocessors

Semi-static word-based byte-oriented preprocessors are known to deliver

compression ratios of 30-35 %. Using bytes instead of bits may slightly worsen the

compression ratio however both the encoding and decoding processes will speed up.

Byte-oriented preprocessors also provide the flexibility to carry out direct pattern

search on the compressed text since they are self-synchronized codes. Subsections

below provide details about the End-Tagged Dense Coding, (s; c)-Dense Coding and

Restricted Prefix Byte Coding (RPBC) techniques.

2.2.1 End Tagged Dense Coding (ETDC)

End-Tagged Dense Coding (ETDC) [7] is a word-based byte-oriented compression

method. To compute the codeword of each source word, ETDC uses a semi-static

model that is simply the vocabulary (list of source symbols) ordered by frequency.

One byte codewords are given to the first 128 words in the vocabulary. Words in

positions 128 to 128 + 128
2
 - 1 are sequentially assigned two-byte codewords and

the three byte codewords are given to the remaining words. ETDC has been inspired

from the Tagged Huffman code [10], and has been obtained through a very simple

change. Rather than marking the beginning of each codeword the most important bit

of every byte has been used to mark their end. Hence whenever a given byte is the

last byte of a codeword the highest bit is set to 1 otherwise it must be set to 0. In

13

ETDC the flag bit is enough to ensure that the code is a prefix code regardless of the

contents of the other 7 bits. Therefore there is no need to use Huffman coding over

the remaining 7 bits.

2.2.2 (s, c) - Dense Coding (SCDC)

(s, c)-Dense Coding [8] is a more sophisticated variant of word-based byte-oriented

text compressors. End-Tagged Dense Codes use 128 target symbols for the bytes that

do not end a codeword (continuers), and the other 128 target symbols for the last

byte of the codeword (stoppers). An (s, c)-Dense Code on the other hand adapts the

number of stoppers and continuers to the word frequency distribution of the text, so

that s values are used as stoppers and c = 256 - s values as continuers. SCDC assigns

the one-byte codewords from 0 to s-1 to the first s words of the vocabulary. Words in

positions s to s + sc - 1 are sequentially given two-byte codewords. Three-byte

codewords are for words from s+sc to s + sc + sc
2
 -1 The encoding and decoding

algorithms are the same as those of ETDC. One only needs to change the 128 value

of stoppers and continuers by s and c respectively.

2.2.3 Restricted Prefix Byte Coding (RPBC)

Restricted Prefix Byte Coding (RPBC) technique was first proposed in [9]. Unlike

the (s, c) - dense codes which use an infinite tuple of numbers, the RPBC uses a

finite tuple where the numbers in the tuple refer to the initial digit ranges in the

radix-R code. It can be said that the code is restricted since v1 + v2 + v3 + v4 ≤ R.

Under RPBC the first byte of each codeword is used to describe the length of the

codeword and additional bytes use the remaining code space. While using RPBC

codeword lengths are not as variable as in an unrestricted radix-256 Huffman code,

however the loss in compression effectiveness compared to a Huffman code is less.

For encoding with a 4-tuple (v1, v2, v3, v4) the code has v1 one-byte codewords, Rv2

14

two-byte codewords, R
2
v3 three-byte codewords and R

3
v4 four-byte codes. It is

required that v1+ Rv2 + R
2
v3 + R

3
v4 ≤ n, where n represents the cardinality of the

source alphabet.

15

Chapter 3

THE PROPOSED PREPROCESSOR: M188

This section provides details about the proposed preprocessor, M188. This new

preprocessor uses 1-3 bytes long codewords while encoding text documents. The

codewords are composed of characters drawn on the basis of a radix-188 numbering

system from a 188 characters long alphabet which has been provided in Fig. 1.

Figure 1: The alphabet of M188

The value 188 was obtained as follows: Realizing that most of the space and

punctuation characters are each 1-byte and the smallest codeword length is also 1-

byte for M188, it is quite rational to leave the space and punctuation characters as

they are in the encoding process. From the 256 characters extended ASCII set, this

16

would leave only 191 which classify otherwise. Anticipating that some words that is

needed to encode may not be in the dictionary; the 127th ASCII character was

reserved for encoding of such words. Also, for the capital conversion process there

are two more flags are reserved, which are 143rd and 144th ASCII characters for

flagging the first-upper words and all-upper words respectively. Which all CC flags

are chosen from unseen characters so those will be denoted as unknown word flag

fuw, first-uppercase flag ffu and all-uppercase flag fau throughout the text, hence a

total of 188 characters would remain. With three bytes and the extended character

set, it is possible to represent up to 6,644,671 different words. M188 dictionary

(M188DICT) contains 168,797 words and is 1.49MB in size. M188DICT has been

compiled by using; Webster’s Unabridged dictionary, some text files from the

Project Gutenberg, a name dictionary, various computer transcriptions and various

internet sources. The sources used in the compiling of this dictionary sums up to

46.24MB. The dictionary has been created as follows: The compiled text file is

scanned sequentially all uppercase characters are converted into lowercase and words

are ordered based on their occurrence frequencies. The dictionary is then created by

sorting the frequencies in descending order and writing one copy of each word in a

text file at the position dictated by this ordering. Besides the regular words,

M188DICT also contains some characters or short abbreviations. These characters

and abbreviations come about due to the use of various computer transcription files

while compiling the dictionary. It can be thought a dictionary larger than 1.49MB is

possible nevertheless, locating the position of a particular word in a larger dictionary

would require more time such an action would lead to a slowdown in the encoding

process. The basic order of processing for M188 preprocessor can be summarized as

follows: (i) Encoding represents punctuation marks and separators as they are,

17

applies capital conversion with flags ffu, fau (ii) Unknown words are escaped with fuw,

and represented in plain form. (iii) Words in the dictionary are given a codeword

depending on their position in M188DICT using a radix-188 number. M188 encoder

uses one byte for the encoding of the first 188 words, the following 188
2
-188=35,156

words are presented by two bytes and 3 bytes are used for what remains.

Though not implemented in this study, it is possible to re-design M188DICT to

include words from other languages so that it will be capable to encode non-English

text files. However, expanding the dictionary this way would mean slower encoding

speed.

3.1 M188 Encoder

The encoder for the M188 preprocessor does not replace the space and punctuation

characters by codewords and would only administer word encoding. Justification for

this is that; the smallest codeword M188 would assign is 1-byte, space and

punctuation characters also require 1-byte and for PPM family those are easy to

predict. M188 encoding process should be discoursed in details. Capital conversion,

end of line coding, search methodology, unknown words and of course the radix-188

numbering system should be mentioned. Therefore, the following subsections would

give details.

3.1.1 Capital Conversion

The encoder for M188 starts by scanning the input file character wise and every time

a word is encountered (which means after some alphanumerical character(s), a non

alphanumerical character is encountered), first thing is categorization of the word's

uppercase class. If the word contains uppercase letter(s) those are taken as lowercase

letters into the string. If this uppercase letter is only at word's zero index flag for

18

first-uppercase words ffu plus a space is written into the encoded file instantly. Else,

if the word is made up of all-uppercase characters then flag for all- uppercase fau plus

a space is written into the encoded file instantly. When the space between the flag

and the unknown word is put it gave even better results as stated by Skibinski [21].

The only other case is the word containing only lowercase letters which mostly likely

occurs, directly passes through the search phase. In flagged cases the word passes to

the search phase in all-lowercased form, right after the flag specified is put.

3.1.2 End of Line Coding

Although end of line coding (EOL) is an optional function of M188 it provides better

results on files which have significant space distribution on its lines. M188's EOL

technique differs from WRT's in such manner; WRT replaces end of line characters

which are surrounded by lowercase and uses binary flags then compresses those flags

with an arithmetic coder; M188 replaces (with space character) end of line characters

which has 0, 8, 9, 10, 11, 12, 14 and 15 space characters at the same line also flags

are ASCII characters; space (32), tab (9) and most frequent 5 letters in English 'e', 't',

'a', 'o', 'i' [48] and compressed with PAQ8l [52]. This technique is based on the

analysis of the probability distribution function of number of space characters on a

line (see Figure 2) for the Corpora used. When all the end of line characters were

replaced by space characters the DCAs gives their best performance (excluding flags

file) so, the strategy should be replacing as many as end of line characters but with

the optimum size of flag overhead. Then it can be seen from the Figure 2 that those

values 0,8-15, covers the majority of the end of lines signed with 8 predictable flags

on a separate stream.

19

Figure 2: Probability distribution function of number of space characters on a line

The files in the figure above gave better results with EOL coding since, most of their

end of line characters are covered. However, as it was stated before some files which

have less significant distribution of number of spaces on a line did not gave better

results. So, EOL coding is left as optional in M188.

3.1.3 Search Methodology

The searching methodology is designed for M188DICT. It is build up from about

half million lines of code, it narrows the searching zone by three phases. After the

word's case categorization is made or the case flag is written. The string which is in

all-lowercase form passes to a switch which selects the word's length hence, there

left only same length words in the scope and this is the first phase the search. After

eliminating all other words which are shorter or longer than the word we are

searching, the word's first letter passes to another switch; then the case fit is found as

the second phase. End of second phase there are words which are in the same length

and starts with the same letter in the scope. On the third phase, the word's last letter

pass to the third switch then case is found thus the scope is reduced to the list of

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

p
ro

b
ab

ili
ty

number of spaces on a line

big english50MB wealthnations 1musk10 alice29

20

words; which have the same length, same first letter and the same last letter with the

word is searched. After this phase the search process continues with the linear search

of a short list. It can be thought; ternary search, binary search or any well-known

search method could be applied. However, M188DICT is not ordered alphabetically

or lexicographically it is not the best condition for those well-known search methods,

the search method designated has the best performance in comparison with ternary

search and binary search.

3.1.4 Unknown Words

The search result can end in two different states; first state is 'the word is found in the

dictionary' or second state is 'the word is an unknown word'. If the state is unknown

word then unknown word flag fuw is put in the encoded file instantly. Then the word

is written in all-lowercase form since the case flag was put before. The flag fuw M188

uses is the 127th ASCII character (DEL). So, the other state should be well

explained, if the word is found in M188DICT. Next subsection gives detail of this

state.

3.1.5 Radix-188 Numbering

If the word search is successful then its position in M188DICT is known so, the

codeword can be written into the encoded file. Radix-188 numbering system is

simply represents the position found which is an integer number between [1, 168797]

in one to three byte long strings which are made up of the character drawn from the

M188's alphabet as in Figure 1. The arithmetic is very simple, if the value is in the

range 1-187 then one character of the ordered extended alphabet (see Figure 1) that

corresponds to this word’s position in the dictionary. For example, the word 'was'

which happens to be in the 14th position in the dictionary will be encoded as ' Ž '. If

the word's position is in the range 188-35,343 then two characters from the alphabet

21

will be used to encode the particular word. For example, 'world' which is at the 459th

position will be encoded as 'L‚' which 'L' is at the position 83 (see Figure 1) and ',' is

at position 2 (83*188
0
 + 2*188

1
). Similarly if the position is between 35,344 and

6,644,671 then three characters would be the codeword. The arithmetic is given in

the formula (2).

 (2)

Where is the code letters' index in the alphabet and is the code letter and

is the codeword which is a function of position found in the dictionary.

3.2 M188 Decoder

M188 decoding process is robust and it is actually nothing but a simple table look-up

there is no searching of any kind of data in this process. Data again read byte wise

sequentially. If there is no flag of capital conversion (fau or ffu) is not read then the

codeword is converted to the line number of the word by using the formula (4).

 (3)

Simply by putting the line number as an index to the data structure, the word is

captured. If there were CC flags read necessary modifications are done according to

capital conversion flags after word is captured. Then the captured word is written

into the decoded file. Note that, spaces after CC flags are ignored. If fuw is read the

characters read are put as they are (if no capital conversion is necessary) until a non

alphanumerical character is read. If there is no flag read, simply the codeword is get,

22

line number is calculated from the formula (3) if the character is a space or a

punctuation (space after fau and ffu is excluded) put into the decoded file as it is.

M188 decoding process does not require computationally complex operations such

as encoder's nested switches of order 3. Hence, there is not much work done on

M188 decoder for the sake of timing performance enhancement. Timing performance

is enhanced only with embedded dictionary into the executable consequently there is

no need to read/load the dictionary in the decoding process.

3.3 M188 Demonstration by Encoding and Decoding a Quote

The quote is one of the famous Albert Einstein quotes which is 'Once you stop

learning, you start dying. - Albert Einstein.'. This quote contains 3 first-uppercase

words 6 all-lowercase words, 4 punctuation characters, 9 space characters and 1

unknown word. M188 encoder reads the quote in the Raw_Text file character by

character so, in this case the first input read is 'O' which stimulates the flags fau and

ffu thus 'o' is copied into the search string. Then, the second input read is 'n' copied

into the search string therefore CC flag is determined as the first-uppercase flag ffu

and it is instantly written (with a space appended to its end) into the Encoded_Text

file. Reading process continues with 'c', 'e'. Afterwards, a space character is

encountered so, end of string character is put into the search string (which means a

word is captured) and this string passes to the search switches containing the word

'once', this word is found in the M188DICT at 375th position as showed in Figure 3.

Figure 3: Dictionary line numbers of the words in the quote

23

Then its codeword as in the Figure 4 is written into the Encoded_Text file. The space

character which has ended the string is put into the Encoded_Text file as is.

Figure 4: Codewords of the words in the quote

The process is completely same until the word 'einstein' is captured. This word is not

existing inside M188DICT so fuw is put then the word is printed into Encoded_Text

file as is. In Figure 5 original screenshots of the Raw_Text, Encoded_Text,

Decoded_Text files are presented. Decoding process can be traced with the help of

figures provided.

Figure 5: The quote, its M188 encoding and decoding

In order to expose the unseen flag character Figure 6 is created which the red

characters are the flags and the space after the CC flags are denoted by '_' character

in red.

24

Figure 6: The quote, its M188 encoding and decoding with exposed flags

25

Chapter 4

PERFORMANCE EVALUATION

In this chapter the focal point is to compare the compression effectiveness provided

by preprocessors to the well established DCAs in terms of bit per character values

(bpc). Also, timing performance of those algorithms are compared. Bpc value yields

the compression ratio such as, a non-compressed extended ASCII character has bpc

of 8 since each character is has a 1 byte ASCII value. In a compressed file which has

non-compressed size of 100 bytes and compressed file size is 20 bytes then the bpc

value of the compressed file is 1.6 referring to formula (4).

 (4)

This chapter presents all the experiments carried out; the tools in those experiments

can be classified into three groups as; the corpora, preprocessing algorithms and data

compression algorithms. All three groups' elements and their references are provided

in Table 1. The corpora used in four different combinations which are called as the

experiment sets defined in Table 2; the sets 1, 2 and 3 are categorized according to

the corpus they belong to and their size. The set 1 is covers files from the Calgary

corpus. In set two there are larger files and their source is other than the Calgary

corpus. Third set which is the last set for compression experiments is derived from

gradually larger files up to 200 MB. The timing set is selected from the Calgary

corpus containing more files than set 1. All details of experiment set are provided in

Table 2.

26

Table 1: Corpora and source codes used in experiments

Data Compression Algorithms (DCAs)

Gzip

p7zip

re-pair

mrhc

Bzip2

PPMD

PPMonstr

PAQ8

mPPM

http://www.Gzip.org

http://www.7-zip.org

http://www.cbrc.jp/ rwan/software/restore.html

http://ww2.cs.mu.oz.au/ alistair/mr coder/shuff-1.1.tar.gz

Bzip2 under 7zip

http://compression.ru/ds/

http://compression.ru/ds/

http://mattmahoney.net/dc/PAQ8l.zip

http://www.infor.uva.es/ jadiego/download.php

Corpora

Calgary

Gutenberg

Canterbury

Pizza and Chili

Large

http://corpus.canterbury.ac.nz/descriptions/

http://www.promo.net/pg/

http://corpus.canterbury.ac.nz/descriptions/

http://pizzachili.dcc.uchile.d/texts/nlang/

http://corpus.canterbury.ac.nz/descriptions/#large

Preprocessing Algorithms

StarNT

M188

WRT4.6

ETDC

SCDC

https://code.google.com/p/starnt/source/

http://students.emu.edu.tr/071384/M188_source.zip

 http://pskibinski.pl/research/WRT/WRT46.zip

http://vios.dc.fi.udc.es/codes/files/ETDC.tar.gz

http://vios.dc.fi.udc.es/codes/files/SCDC.tar.gz

27

Table 2: File, size, corpora and sets for experiments

File Size (bytes) Corpus Experiment set: (1,2,3,Timing)

big

dickens

english200MB

english50MB

warpeace

wealthnations

wsj100

1musk10

alice29

anne11

asyoulik

bible

lcet10

bib

book1

book2

news

paper1

paper2

progc

progl

progp

paper3

paper4

paper5

paper6

trans

6,617,121

31,457,485
†

213,802,643
†

53,436,448
†

4,434,670

2,227,424

100,037,639

1,349,139

152,089

587,051

125,179

4,047,392

426,754

111,261

768,771
†

610,856

377,109

53,161

82,199

39,611

71,646

49,379

46,526

13,286

11,954

38,105

93,695

Gutenberg

Gutenberg

Pizza and Chili

Pizza and Chili

Gutenberg

Gutenberg

The Wall Street Journal

Gutenberg

Canterbury

Gutenberg

Canterbury

Large

Canterbury

Calgary

Calgary

Calgary

Calgary

Calgary

Calgary

Calgary

Calgary

Calgary

Calgary

Calgary

Calgary

Calgary

Calgary

3

3

3

3

3

3

3

2

2

2

2

2

2

1 & Timing

1 & Timing

1 & Timing

1 & Timing

1 & Timing

1 & Timing

1 & Timing

1 & Timing

1 & Timing

Timing

Timing

Timing

Timing

Timing

†Sizes may differ from the source since, some ASCII control characters are removed.

28

Table 3: Distribution of character types in the sample files

File Punctuations (%) Spaces (%) Remaining (%)

Bib

book1

book2

news

paper1

paper2

progc

progl

progp

1musk10

alice29

anne11

asyoulik

bible

dickens

lcet10

9.70

4.51

6.11

9.83

8.82

4.31

16.11

20.28

14.73

4.67

5.59

4.00

4.01

3.02

4.26

4.28

17.99

18.49

16.93

17.61

16.65

16.92

24.37

23.59

28.31

18.68

21.89

19.39

21.07

19.68

18.84

17.83

72.31

76.99

76.97

72.56

74.53

78.77

59.51

56.13

56.96

76.65

72.51

76.61

74.92

77.30

76.90

77.89

The Table 3 gives percentages of different character types in some of the files used,

thus one can observe that spaces and punctuation characters are having

approximately 25% of the data. This table can be used in justification of the

preprocessing algorithms' performance comparison reminding that M188 does not

encode those characters and gives the best results in the files which has more space

and punctuation characters, details on the results are given in next the sections.

29

4.1 Stand-alone Compression Effectiveness of M188

The experiment has studied the stand-alone compression effectiveness of the

proposed M188 preprocessor and experiment set 1 is used. Comparisons are made

between Huffman coder, Arithmetic coder, LZW, Gzip, 7z, Bzip2, PPMD-o4,

PPMonstr, PAQ8, Repair and M188; Table 4 provides the bpc results and for visual

easiness of evaluation Figure 7 provides the bar graph of those results.

Table 4: Stand alone compression effectiveness of M188 vs DCAs on set 1

File Huffman

bpc

[40]

Artihmetic

bpc

[40]

M188

bpc

LZW

bpc

[40]

Gzip

-9

bpc

7z

bpc

Repair

+ mhrc

bpc

Bzip2

bpc

PPMD

-o4

bpc

PPMonstr

bpc

PAQ8

-8

bpc

bib

book1

book2

news

paper1

paper2

progc

progl

progp

5.31

4.57

4.84

5.25

5.17

4.73

5.44

4.91

5.06

5.23

4.55

4.78

5.19

4.98

4.63

5.11

4.76

4.89

6.41

4.25

4.13

4.96

4.37

3.93

5.39

5.52

6.04

3.87

4.07

4.54

4.94

4.69

4.05

4.94

3.96

3.77

2.51

3.25

2.70

3.06

2.79

2.89

2.68

1.80

1.81

2.20

2.72

2.22

2.52

2.61

2.66

2.55

1.68

1.69

2.27

2.70

2.33

2.70

2.75

2.68

2.78

1.94

1.86

1.97

2.42

2.06

2.52

2.49

2.44

2.53

1.74

1.74

1.90

2.30

2.01

2.41

2.34

2.31

2.39

1.73

1.73

1.64

2.12

1.72

2.06

2.10

2.10

2.07

1.32

1.33

1.50

2.00

1.59

1.90

1.97

1.99

1.92

1.19

1.15

Average

bpc
5.03 4.90 5.0 4.31 2.61 2.32 2.45 2.21 2.12 1.83 1.69

Results of Gzip are obtained in high compression (Gzip -9) and the grammar based

compressor Repair has been concatenated with a minimum redundancy Huffman

coder [39]. The average bpc for M188 encoding is 5.0. It is noted that when M188

preprocessor is used in stand-alone mode it provides respective gain of 1% over

Huffman and it cannot compete with the other DCAs. Table 4 proves that

preprocessing performance is not proportional to stand-alone compression. It is

30

observed that worsen the stand alone performance may enhance the preprocessing

performance according to the numerous trials had implemented for M188.

Figure 7: Stand alone compression effectiveness of M188 vs. DCAs on set 1

4.2 Preprocessors Concatenated with PPMD and PPMonstr

This section consists of three subsections each of those studies different experiment

sets and provides the results for concatenation of preprocessors with PPMD and

PPMonstr. The experimental presentation flow of this thesis is from general to

specific by eliminating the worst resultant algorithms from the next experiment, the

best resultants are kept for the final. First experiment is studied on the experiment set

1 with all preprocessors considered in the thesis.

4.2.1 Preprocessed PPMD and PPMonstr on set 1

Tables 5 and 6 provide compression effectiveness of LIPT, StarNT, WRT, M188,

ETDC, SCDC and RPBC preprocessors when they are used prior to post-processors

0

1

2

3

4

5

6

7

bib book1 book2 news paper1 paper2 progc progl progp

b
p

c

Huffman bpc [40] Artihmetic bpc [40] M188 bpc

LZW bpc [40] Gzip -9 bpc 7z bpc

Repair + mhrc bpc Bzip2 bpc Ppmd -o4 bpc

Ppmonstr bpc Paq8 -8 bpc

31

such as PPMD and PPMonstr. These experiments consider only a subset of the

Calgary corpus [35] which is set 1. Note that column five of the Table 5 also

provides results for the Universal Processor of Abel and Teahan [36] concatenated

with (PPMD+)[29]. The Universal preprocessor does not require an external

dictionary and is known to work for all languages that are Latin based. [36] reports

that, the Universal preprocessor makes use of techniques like capital letter and

capitalized word conversion, end of line (EOL) coding, word replacement by tokens,

replacement of the most frequent bigrams and trigrams and alphabet reordering. Last

column of Table 5 has been reserved for compression results with mPPM [34]. Since

mPPM first maps words into two byte codewords and then encodes the codewords

using conventional PPM (two stage compressor), it is appropriate to compare it in

this table with results obtained from other preprocessors concatenated with PPMD. A

quick look at Table 5 shows that M188+PPMD, WRT+PPMD and StarNT+PPMD

are the three best performing methods among the ones considered. Bpc for

M188+PPMD is 1.89, for WRT+PPMD it is 1.92 and for StarNT+PPMD it is 1.93.

Table 6 provides bpc values of M188+PPMonstr, LIPT+PPMonstr,

StarNT+PPMonstr, WRT+PPMonstr, ETDC+PPMonstr and SCDC+PPMonstr.

Experimental results point out that M188+PPMonstr, WRT+PPMonstr and

StarNT+PPMonstr provide better compression in comparison with the others. Their

respective bpc values are 1.60, 1.66 and 1.80. Thus, M188+PPMonstr has respective

gains of 3.61% and 11.11 % over WRT+PPMonstr and StarNT+PPMonstr.

32

Table 5: Comparison of preprocessors in concatenation with PPMD on set 1

File Size

(bytes)

LIPT

+

PPMD

order

5 bpc

StarNT

+

PPMD

order 5

bpc

Universal

+

(PPMD+)

bpc

[29]

WRT4.6

+

PPMD

order 4

bpc

M188

+

PPMD

order

4 bpc

ETDC

+

PPMD

order

4 bpc

SCDC

+

PPMD

order

4 bpc

RPBC

+

PPMD

order

4 bpc

mPPM

bpc

bib

book1

book2

news

paper1

paper2

progc

progl

progp

111,261

768,771

610,856

377,109

53,161

82,199

39,611

71,646

49,379

1.83

2.23

1.91

2.31

2.21

2.17

2.30

1.61

1.68

1.62

2.24

1.85

2.16

2.10

2.07

2.17

1.51

1.64

1.85

2.20

1.91

2.34

2.28

2.23

2.32

1.62

1.66

1.69

2.10

1.81

2.23

2.03

2.03

2.25

1.55

1.67

1.75

2.09

1.81

2.13

2.02

1.97

2.11

1.49

1.63

2.33

2.57

2.16

2.82

2.86

2.66

3.04

1.83

1.86

2.32

2.56

2.15

2.81

2.83

2.63

2.99

1.80

1.83

2.30

2.55

2.14

2.78

2.81

2.62

2.98

1.80

1.82

1.90

2.23

1.92

2.40

2.46

2.28

2.58

1.68

1.69

Average bpc 2.03 1.93 2.05 1.93 1.89 2.46 2.44 2.42 2.13

Table 6: Comparison of preprocessors in concatenation with PPMonstr on set 1

File Size

(bytes)

LIPT

+

PPMonstr

bpc

StarNT

+

PPMonstr

bpc

WRT4.6

+

PPMonstr

bpc

M188

+

PPMonstr

bpc

ETDC

+

PPMonstr

bpc

SCDC

+

PPMonstr

bpc

RPBC

+

PPMonstr

bpc

bib

book1

book2

news

paper1

paper2

progc

progl

progp

111,261

768,771

610,856

377,109

53,161

82,199

39,611

71,646

49,379

1.81

2.19

1.91

2.14

2.08

2.28

2.24

1.59

1.64

1.63

2.07

1.72

2.05

2.00

1.97

2.04

1.33

1.41

1.46

1.90

1.58

1.91

1.80

1.82

1.94

1.23

1.27

1.35

1.90

1.60

1.78

1.80

1.78

1.82

1.18

1.23

2.04

2.34

1.94

2.48

2.59

2.44

2.72

1.61

1.59

2.04

2.34

1.94

2.47

2.57

2.42

2.69

1.59

1.56

2.03

2.33

1.93

2.46

2.57

2.42

2.68

1.59

1.56

Average bpc 1.99 1.80 1.66 1.60 2.20 2.18 2.17

33

Figures 8 and 9 provide bar graphs for the data presented in Tables 5 and 6. The

figures respectively show which preprocessors would excel while compressing the

different source files. It can be seen from Figure 8 that when the post-processor is

PPMD, M188 attains lower bpc values while compressing files 'news', 'paper1',

'paper2', 'progc', 'progl', 'progp' and 'book2'. WRT provides better gain for 'bib' only.

Figure 8: Comparison of preprocessors in concatenation with PPMD on set 1

With PPMonstr as the post-processor (see Figure 9), M188 gets lower bpc values for

'bib', 'news', 'paper1', 'paper2', 'progc', 'progl', 'progp'. WRT provides better gain for

'book2' only.

0

0.5

1

1.5

2

2.5

3

3.5

bib book1 book2 news paper1 paper2 progc progl progp

 b
p

c

Lipt+Ppmd order 5 Starnt+Ppmd order 5 Universal+(Ppmd+)[29]

WRT4.6+Ppmd order 4 M188+Ppmd order 4 ETDC+Ppmd order 4

SCDC+Ppmd order 4 RPBC+Ppmd order 4 mPPM

34

Figure 9: Comparison of preprocessors in concatenation with PPMonstr on set 1

4.2.2 Preprocessed PPMD and PPMonstr on set 2

A new set of experiment were carried out using text files from Gutenberg [42] and

Canterbury [43] corpora where different preprocessors have been concatenated with

PPMD and PPMonstr. During experiments PPMD with order-4 and PPMonstr with

order-8 and memory limit of 256MB was assumed. bpc results while using PPMD

and PPMonstr as post-compressor have respectively been provided in Tables 7 and 8.

For both experiments WRT concatenated with the DCA would provide the best

compression results on the average. For example when the post-processor is PPMD

the average bpc values for WRT, M188 and StarNT are respectively 1.83, 1.84 and

1.89. Similarly, when the postprocessor is PPMonstr, the respective average bpc

values are 1.62, 1.64 and 1.75. Thus M188+PPMonstr provide 6.29% gain over

StarNT+PPMonstr and WRT+PPMonstr has 1.22% gain over M188+PPMonstr. In

[21], it is stated that while compiling the dictionary of WRT a training corpus of

3 GB has been taken from the Project Gutenberg. This explains the lower bpc values

0

0.5

1

1.5

2

2.5

3

bib book1 book2 news paper1 paper2 progc progl progp

b
p

c

Lipt+Ppmonstr Starnt+Ppmonstr WRT4.6+Ppmonstr M188+Ppmonstr

ETDC+Ppmonstr SCDC+Ppmonstr RPBC+Ppmonstr

35

when WRT is using the Aspell's dictionary. Since, better training would lead to

lower bpc values. Results are also available on the bar graphs Figure 10 and 11.

Table 7: Comparison of preprocessors in concatenation with PPMD on set 2

File Size (bytes) LIPT

+

PPMD

order 4

bpc [18]

StarNT

+

PPMD

order 4

bpc

WRT4.6

+

PPMD

order 4

bpc

M188

+

PPMD

order 4

bpc

ETDC

+

PPMD

order 4

bpc

SCDC

+

PPMD

order 4

bpc

RPBC

+

PPMD

order 4

bpc

1musk10

anne11

alice29

asyoulik

lect10

bible

1,349,139

587,051

152,089

125,179

426,754

4,047,392

1.85

2.04

2.06

2.35

1.86

1.57

1.82

2.01

2.00

2.24

1.78

1.47

1.72

1.91

1.90

2.24

1.72

1.46

1.78

1.96

1.91

2.18

1.70

1.48

2.03

2.27

2.37

2.77

2.07

1.52

2.03

2.26

2.35

2.75

2.06

1.52

2.02

2.25

2.34

2.74

2.05

1.52

Average bpc 1.96 1.89 1.83 1.84 2.17 2.16 2.15

Table 8: Comparison of preprocessors in concatenation with PPMonstr on set 2

File Size

(bytes)

LIPT

+

PPMonstr

bpc

StarNT

+

PPMon

str bpc

WRT4.6

+

PPMonstr

bpc

M188

+

PPMonstr

bpc

ETDC

+

PPMonstr

bpc

SCDC

+

PPMonstr

bpc

RPBC

+

PPMonstr

bpc

1musk10

anne11

alice29

asyoulik

lect10

bible

1,349,139

587,051

152,089

125,179

426,754

4,047,392

1.83

1.98

1.99

2.21

1.77

1.58

1.70

1.88

1.87

2.12

1.68

1.32

1.56

1.71

1.70

1.98

1.52

1.25

1.63

1.79

1.74

1.94

1.53

1.27

1.84

2.09

2.19

2.53

1.88

1.34

1.83

2.08

2.17

2.51

1.88

1.33

1.83

2.08

2.17

2.51

1.87

1.33

Average bpc 1.89 1.75 1.62 1.64 1.98 1.97 1.96

36

Figure 10: Comparison of preprocessors in concatenation with PPMD on set 2

Figure 11: Comparison of preprocessors in concatenation with PPMonstr on set 2

0

0.5

1

1.5

2

2.5

3

1musk10 anne11 alice29 asyoulik lect10 bible

b
p

c

Lipt+Ppmd order 4 [18] Starnt+Ppmd order 4 WRT4.6+Ppmd order 4

M188+Ppmd order 4 ETDC+Ppmd order 4 SCDC+Ppmd order 4

RPBC+Ppmd order 4

0

0.5

1

1.5

2

2.5

3

1musk10 anne11 alice29 asyoulik lect10 bible

b
p

c

Lipt+Ppmonstr Starnt+Ppmonstr WRT4.6+Ppmonstr M188+Ppmonstr

ETDC+Ppmonstr SCDC+Ppmonstr RPBC+Ppmonstr

37

4.3 Best Four Preprocessors Concatenated with PPMonstr on set 3

In this section the dictionary based WRT and M188 are compared against the word-

based byte-oriented semi-static methods such as SCDC and RPBC. In this

experiment, set 3 which contains seven medium-to-large size text files has been used.

The first four files which were taken from the Project Gutenberg had names:

wealthnations, warpeace, big and dickens and they were respectively 2.12, 4.23, 6.3

and 30MB in size. The files named english50 and english200 were taken from Pizza

and Chili corpus. These files had previously been created by concatenation of

English text files selected from etext02 - etext05 of Gutenberg Project, wsj100 text

file that is 100MB in size was taken from the TREC Project archives and this is the

only text file not related to the Project Gutenberg . Figure 12 provides a comparative

bar graph that shows the bpc values achieved by the algorithms considered when

they are concatenated with PPMonstr (PPMD was not considered since earlier

experiments showed that concatenating preprocessors with PPMonstr would provide

lower bpc values).

Figure 12: Best four methods concatenated with PPMonstr on set 3

1
.3

0

1
.3

1
 1

.6
0

1
.6

0

1
.2

6

1
.3

3

1
.4

3

1
.2

5

1
.2

9
 1

.5
4

1
.5

6

1
.2

6

1
.3

2

1
.4

0

1
.4

5

1
.4

0

1
.7

6

1
.6

8

1
.3

3

1
.3

7

1
.4

9

1
.4

5

1
.4

0

1
.7

6

1
.6

9

1
.3

4

1
.3

7

1
.5

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

b
p

c

M188+Ppmonstr Wrt4.6+Ppmonstr Scdc+Ppmonstr Rpbc+Ppmonstr

38

For the set 3 files in Figure 12, the average bpc values for SCDC, RPBC, M188 and

WRT were respectively 1.50, 1.50, 1.40 and 1.37. Results clearly show that both

WRT and M188 achieve higher average gains than the byte-oriented semi-static

methods: SCDC and RPBC. For the 100MB wsj100 text file which is not from the

Gutenberg Project Library the bpc difference between WRT and M188 is 0.01, and

this corresponds to 140KB. For the 50MB english50 text file M188 and WRT have

same bpc values. It is also noted that as the file size became larger the difference

between dictionary based and semi-static methods would become less significant.

However, since most of the time the files one would like to exchange are smaller

than 200MB, it is fair to say that for small to moderately large files the dictionary

based methods would overcome the semi-static byte-oriented methods.

4.4 Timing Performance of M188

In this section the experiments were carried out along with the timing set which

contains Calgary corpus files (Table I of [46]). The results shown in the Figure 13

are ensemble average values of the time measurements of 10 runs for each file. The

experiments were carried out on a 2.5 GHz Intel core i5 CPU supported by 3GB of

RAM. Encoding times depicted in Figure 13 point out that M188 can encode faster

than WRT, RPBC, PPMD -o4, PPMonstr, Bzip2 and of course PAQ8l. M188 and

all pre or post-processors are much slower than the semi-static byte-oriented

preprocessors, namely: ETDC and SCDC. Similarly Figure 13 shows that M188

decodes faster than PPMonstr and PPMD-o4 and is 0.005 seconds slower than both

Bzip2 and WRT. ETDC and SCDC are very fast in comparison to all the other

algorithms, particularly in decoding.

39

Figure 13: Timing performances of the algorithms

0.035

0.030

0.002

0.003

0.003

0.030

0.040

0.200

0.027

0.040

0.010

0.014

0.074

0.030

0.040

0.210

0 0.05 0.1 0.15 0.2 0.25

M188

WRT4.6

ETDC

SCDC

RPBC

BZIP2

PPMD-o4

PPMonstr

Average encoding time (sec) Average decoding time (sec)

40

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

A new source coding algorithm named Metehan188 is proposed which can be used

as a preprocessor for well-known backend compressors. The proposed M188

algorithm has simple logic and compression gains attained in concatenation with

different post-processing algorithms indicate that M188 is either better or just as

effective as the selected state-of-the-art preprocessors. In different experimental

setups M188 and WRT can achieve higher compression when compared to the semi-

static word-based byte-oriented methods: namely ETDC, SCDC and RPBC. While

using the Calgary corpus M188 outperforms all the other preprocessors when

concatenated with PPMD or PPMonstr. In experiments using the Project Gutenberg

text files bpc values for M188 are slightly higher than those of WRT but M188

overcomes the remaining algorithms. In the experiment where WRT and M188 have

been compared with the semi-static byte-oriented preprocessors using medium to

large size text files, both M188 and WRT have provided higher average gains.

Among themselves WRT overcomes M188 for Project Gutenberg related files.

5.2 Future Work

This thesis proves that there is room for improvement of M188 such as; enhancing

EOL analysis, alphabet re-ordering and dictionary re-ordering can carry M188 as the

state-of-the-art preprocessing technique.

41

REFERENCES

[1] Huffman, D. A., "A method for the construction of minimum-redundancy codes",

In Proceedings of the Institute of Radio Engineers, Sept 1952, pp.1098-1101.

[2] Gallager, R. G., "Variations on a Theme by Huffman", IEEE Transactions on

Information Theory, Nov 1978, Vol.24, No.6, pp. 668-674.

[3] Rissanen, J., and Langdon, G. G., "Arithmetic coding", IBM Journal of Research

and Development, 1979, (28), pp.149-162.

[4] Cleary, J. G., and Witten, I. H., "Data compression using adaptive coding and

partial string matching", IEEE Transactions on Communications, Apr 1984,

32(4), pp. 396-402.

[5] Mahoney, M, "The PAQ6 data compression program". Retrieved on: September,

2014 . Available: http://www.cs.fit.edu/ mmahoney/compression/paq6v2.exe

[6] Moura, E., Navarro, G., Ziviani, N., and Baeza-Yates, R., "Fast and flexible word

searching on compressed text", ACM Transactions on Information Systems, 2000,

18(2), pp. 113-139.

[7] Brisaboa, N., Iglesias, E., Navarro, G., and Parama, J.,"An efficient compression

code for text databases", 25th European Conference on IR Research, ECIR 2003,

LNCS 2633, pages 468481.

42

[8] Brisaboa, N., Farina, A., Navarro, G., and Parama, J., "Leightweight natural

language text compression", Information Retrieval, 10(1), 2007, pp. 1-33.

[9] Culpepper, J.S., Moffat, A., "Enhanced byte codes with restricted prefix

properties", Proc. of 12th Int. Symp. on String Processing and Information

Retrieval, LNCS 3772, Springer-Verlang, 2005, pp. 1-12.

[10] Silva de Mura, E., Navarro, G., Ziviani, N., and Baeza-Yates, R., "Fast and

Flexible Word Searching on Compressed Text", ACM Transactions on

Information Systems, 18(2): 113-139,2000.

[11] Brisaboa, N., Farina, A., Ladra, S., and Navarro, G., "Implicit Indexing of

Natural Language Text by Reorganizing Bytecodes", Information Retrieval,

15(6), pp. 527-557, 2012.

[12] Brisaboa, N., Farina, A., Navarro, G., and Parama, J. R., "New adaptive

compressors for natural language text", Software Practice and Experience, 2008,

pp. 1-23.

[13] Ziv, J., and Lempel, A., "A universal algorithm for sequential data

compression", IEEE Transactions on Information Theory, May 1977, IT-23(3),

pp. 337-343.

[14] Welch, T.A., "A Technique for High-Performance Data Compression,"

Computer, June 1984, vol.17, no.6, pp.8,19.

43

[15] Deutsch, P., "Deflate compressed data format specification, version 1.3",

Network Working Group, 1996.

[16] Nelson, M. R., "Star Encoding", Dr. Dobb's Journal, August 2002.

[17] Awan, F. S., Zhang, N., Motgi, N., Iqbal, R. T., and Mukherjee, A., "LIPT: A

reversible lossless text transform to improve compression performance", Data

Compression Conference, Mar 2001, pp. 481-494.

[18] Awan, F., and Mukherjee, A., "LIPT: A lossless text transform to improve

compression", Proc. of Int. Conf. on Information Technology: Coding and

Computing, Apr 2001, pp. 452-460.

[19] Sun, W., Mukherjee, A., and Zhang, N., "A dictionary-based multi corpora text

compression system", Proc. of Data Compression Conference, Mar 2003, pp. 1-

11.

[20] Radescu, R., "Star-derived transforms in lossless text compression", Int. Symp.

on Signals, Circuits and Systems, Jul 2009, pp. 1-6.

[21] Skibinski, P., Grabowski, S., and Deorowicz, S., "Revisiting dictionary based

compression", Software: Practice and Experience, Dec 2005, Vol. 35, Issue 15,

pp. 1455-1476.

44

[22] Rexline, S. J., and Robert, L., "IWRT: Improved Word Replacement

Transformation in Dictionary Based Lossless Text Compression", European

Journal of Scientific Research, ISSN 1450-216x, Sept 2012, Vol. 86, No. 2, pp.

193-201.

[23] S. W. Golomb, "Run-length encoding", IEEE Trans. on Information

Theory,1966,12(3),pp. 337-343.

[24] Burrows, M., and Wheeler, D. J., "A Block-sorting Lossless Data Compression

Algorithm", Digital Systems Research Center, Research Report 124, 1994.

[25] Cormack, G. V., and Horspool, R.N., "Data compression using dynamic

Markow modelling", The Computer Journal, Dec 1987, 30(6), pp. 541-550.

[26] Seward, J., "On the performance of BWT sorting algorithms", Data

Compression Conference, Mar 2000, pp. 173 182.

[27] Effros, M., Visweswariah, K., Kulkarni, S.R., and Verdu, S., "Universal

Lossless Source Coding with the Burrows Wheeler Transform", IEEE

Transactions on Information Theory, Vol.48, No. 5, pp. 1061-1081, May 2002.

[28] Moffat, A., "Implementing the PPM data compression scheme", IEEE

Transactions on Communications, Vol. 38, No. 11, pp. 1917-1921 ,Nov 1990.

45

[29] Teahan, W., "Probability Estimation for PPM", Proc. of the New Zealand

Computer Science Research Students' Conference, University of Waikato, New

Zealand, 1995.

[30] Shkarin, D., "PPMD Compressor Ver. J.", Retrieved on: September, 2014, .

Available: http://compression.ru/ds/.

[31] Teahan, E. J., and Witten, I. H., "Unbounded length contexts for PPM", Data

Compression Conference, Mar 1995, pp. 52-61.

[32] Shkarin, D., "Monstrous PPMII compressor based on PPMD var. I.", Retrieved

on: September, 2014, Available: http://compression.ru/ds/, 2004.

[33] Shkarin, D.,"The Durilca and Durilca Light 0.4a programs", Retrieved on:

September, 2014, Available: http://www.compression.ru/ds/durilca.rar

[34] Adiego, J., Martinez-Prieto, M. A., and Fuente de la P., "High Performance

Word-Codeword Mapping Algorithm on PPM", Data Compression Conference,

2009, pp. 23-32.

[35] Bell, T. "Calgary corpus", Retrieved on: January, 2012. Available:

http://www.data-compression.info/Corpora/CalgaryCorpus/.

[36] Abel, J., and Teahan, W., "Universal Text Preprocessing for Data

Compression", IEEE Transactions On Computers, May 2005, Vol. 54, No. 5,

pp.497-507.

46

[37] Batista, L., and Alexandre, L. A., "Text pre-processing for lossless

compression", Data Compression Conference, Mar 2008, pp. 506-516.

[38] Brisaboa, N.R., Farina, A., Navarro, G., and Parama, J.R., "Improving

semistatic compression via phrase-based modelling", Information Processing &

Management, Elsevier Science, Vol. 47, Iss: 4, July 2011, pp. 545-559.

[39] Turpin, A., and Moffat, A., "On the Implementation of Minimum-Redundancy

Prefix Codes", IEEE Transactions on Communications, 45(10), pp. 1200-1207,

Oct 1997.

[40] Robert, L. and Nadarajan, R., "Simple lossless preprocessing algorithm for text

compression", IET Software, Aug 2009, Vol. 3, Iss. 1, pp. 37-45.

[41] Atkinson, "Spell Checking Oriented Word Lists (SCOWL) Revision 5", 2002,

Retrieved on: September, 2014. Available: http://wordlist.sourceforge.net

[42] Project Gutenberg, 19712012, Retrieved on: February, 2013. Available:

http://www.promo.net/pg/.

[43] Bell, T., and Powell, M., "The Canterbury Text compression corpora", Retrieved

on: January, 2012. Available: http://corpus.canterbury.ac.nz/descriptions/.

[44] Ferragina, P., and Navarro, G., "Pizza and Chili Corpus Compressed Indexes

and their Testbeds", Retrieved on: September, 2014. Available:

http://pizzachili.dcc.uchile.d/texts/nlang/.

47

[45] Text REtreival Conference, "Text Research Collection Volume 1 and Volume

2", Retrieved on: September, 2014. Available: http://trec.nist.gov/data.html.

[46] Sun, W., Zhang, N., and Mukherjee, A., "Dictionary-based fast transform for

text compression", Proc. of Int. Conf. on Information Technology: Computers

and Communications, Apr 2003, pp. 176-182.

[47] Teahan, W. J., and Cleary, J. G., "The entropy of English using PPM-based

models", Data Compression Conference, Mar 1996, pp. 53-62.

[48] Letter frequency. (2014, October 19). In Wikipedia, The Free Encyclopedia.

from http://en.wikipedia.org/w/index.php?title=Letter_frequency&oldid=630284

810

[49] Mahoney, M. V., "Adaptive weighing of context models for lossless data

compression.", Technical Report, CS-2005-16, 2005.

[50] PAQ. (2014, June 27). In Wikipedia, The Free Encyclopedia. Retrieved 20:27,

October 27, 2014, from http://en.wikipedia.org/w/index.php?title=PAQ

[51] Bell, T., "The large compression corpora", Retrieved on: February, 2013.

Available: http://corpus.canterbury.ac.nz/descriptions/#large.

[52] Mahoney, M. V., "Data Compression Programs", Retrieved on: September,

2014. Available: http://mattmahoney.net/dc/PAQ8l.zip.

http://en.wikipedia.org/w/index.php?title=Letter_frequency&oldid=630284810
http://en.wikipedia.org/w/index.php?title=Letter_frequency&oldid=630284810
http://en.wikipedia.org/w/index.php?title=PAQ&oldid=614619391

