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ABSTRACT

In this thesis the multiplicative Runge-Kutta Method is developed employing the idea

of the ordinary Runge-Kutta Method to multiplicative calculus. The multiplicative

Runge-Kutta Methods for the orders 2,3, and 4 are developed and discussed. The

developed algorithms are applied to examples where the solutions of the Ordinary

Differential Equations are known. This gives the opportunity to check the relative error

of the calculation reliably. The results in the multiplicative case are also compared with

the results from the ordinary Runge-Kutta Methods of the corresponding order. We

can see that the Multiplicative Runge-Kutta Method is advantageous to the ordinary

Runge-Kutta method of the same order if the solution is of exponential nature. Finally

for completeness the multiplicative Finite Difference method is also presented.

Keywords: Multiplicative Calculus, Runge-Kutta-Method, Ordinary Differential Equa-

tions, Numerical Solution
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ÖZ

Bu tezde, Runge-Kutta metodu temel alınarak çarpımsal analiz kurallarına gore 2 , 3 ve

4. dereceden çarpımsal Runge-Kutta yöntemleri bulunmuş ve incelenmiştir. Bulunan

yöntemler çözümleri bilinen adi diferansiyel denklemlere örnek olarak uygulanmıştır.

Böylece hesaplamalardaki hata oranlarının güvenilir bir şekilde kontrol edilmesi sağlan-

mıştır. Çarpımsal Runge-Kutta metodundan elde edilen sonuçlar ayni dereceden bili-

nen Runge-Kutta metodu sonuçlarıyla karşılaştırıldı. Bu sonuçlara göre, cözümü ek-

sponensiyel olan denklemlerde çarpımsal Runge-Kutta metodunu kullanmanın ayni

dereceden bilinen Runge-Kutta metoduna göre daha avantajli olduğu görülmüştür. Son

olarak da çarpımsal Finite Difference metodu anlatılmıştır.

Anahtar Kelimeler: Çarpımsal Analiz, Runge-Kutta-Yöntemi, Adi Diferensiyel Den-

klemler, Sayısal Çözümler
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Chapter 1

INTRODUCTION

Differential and integral calculus was created independently by Isaac Newton and Got-

tfried Wilhelm Leibnitz. After that Leonard Euler redirect calculus by giving a central

place to the concept of function, and thus found analysis. Differentiation and integra-

tion are the basic operations in calculus and analysis. Actually, they are the infinites-

imal versions of the subtraction and addition on numbers, respectively. From 1967

to 1970 Michael Grossman and Robert Katz indicated in their work [4] that infinitely

many calculi can be generated independently. Later on Grossman introduced the so-

called Bigeometric calculus [3], where he defined a new kind of derivative and integral,

moving the roles of subtraction and addition to division and multiplication, and thus

established a new calculus, called multiplicative calculus. The theoretical background

of Multiplicative Calculus was given by Bashirov et al in [2]. Multiplicative calcu-

lus is based on multiplication and division. Sometimes, it is called an alternative or

non-Newtonian calculus as well. As multiplicative calculus is the taylor-made calcu-

lus for growth related problems, that are modeled in science and engineering using the

exponential function. It is more than self-evident to use mutiplicative calculus also

for numerical approximations. Aniszewska developed in [1] the Multiplicative Runge

Kutta Method using a different definition of the derivative

πf(x)

πx
= lim

ε→0

(
f(1 + ε)x)

f(x)

)1/ε

without the notion of a complete theory, especially without a multiplicative Taylor

theorem. In contrast to Aniszewska [1] we will develop the multiplicative Runge-

Kutta method on the basis of the complete theory of [2]. Apart from the multiplicative
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Runge-Kutta Method, also the multiplicative finite difference method was invented

by Riza et al in [6], and the multiplicative Adams Bashforth-Moulton methods where

developed by Mısırlı and Gürefe [5].

In the first part of this thesis the parts of Multiplicative Calculus that are needed for the

understanding of the later chapters are reviewed, i. e. we will give the definitions of

the derivatives, Taylor Series and the Chain Rule in multiplicative sense. After that we

will define another kind of calculus which is Volterra Calculus which can be expressed

easily in terms of multiplicative calculus and give the definition of the derivative in

terms of Volterra calculus. Then in chapter 3 the Ordinary Runge-Kutta methods of

order 2,3, and 4 are reviewed and using the basic ideas developed by Runge and Kutta

the derivations of the methods will be given in this chapter explicitely. After complet-

ing the basic knowledge needed for the development of the multiplicative Runge-Kutta

method, the ideas developed in the previous chapters for the ordinary case will be com-

bined to develop the multiplicative Runge Kutta methods of the orders 2, 3, and 4. In

the next chapter, some examples will be solved by using the ordinary Runge-Kutta

methods and the multiplicative Runge-Kutta methods. Then by using the results ob-

tained from these examples we will compare the two methods to see which method

gives the best solutions. Finally, in the last chapter multiplicative Finite Difference

methods will be reviewed as a different approach.
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Chapter 2

MULTIPLICATIVE CALCULUS

2.1 Multiplicative Derivatives

The multiplicative derivative can be defined by the formula

lim
h−→0

(
f(x+ h)

f(x)

)1/h

(2.1)

which shows us the number of times that f(x) changes at the time moment x. By

comparing the given definition of multiplicative derivative with the definition of the

ordinary derivative, which is given as,

f ′(x) = lim
h−→0

f(x+ h)− f(x)
h

(2.2)

it can be observed that the difference f(x + h) − f(x), in the ordinary derivative, is

replaced by f(x+h)
f(x)

in the multiplicative derivative and the division by h is replaced by

the reciprocal power 1
h

.

The limit (2.1) is called the multiplicative derivative or, *derivative of f at x and it

can be denoted by f ∗(x). If f ∗(x) exists for all x from some open set A ⊆ R then

the function f ∗ : A → R is well-defined. The function f ∗ is called the *derivative of

f : A → R. The symbol d∗f
dt

can also be used for the multiplicative derivative. The

*derivative of f ∗(x) is called the second *derivative of f(x) and it can be denoted by

f ∗∗(x). By using the same idea, the nth *derivative of f(x) can also be defined, which

is denoted by f ∗(n)(x) for n = 0, 1, ... where f ∗(0)(x) = f .

If f(x) is a positive function on A and its derivative at x exists, then we may calculate

3



f ∗(x) = lim
h−→0

f(x+ h)

f(x)

1/h

= lim
h−→0

(1 +
f(x+ h)− f(x)

f(x)
)

f(x)
f(x+h)−f(x)

· f(x+h)−f(x)
h

· 1
f(x)

= e
f ′(x)
f(x) = e(ln ◦f)

′
(x)

where (ln ◦f)(x) = ln f(x). If, the second derivative of f(x) exists, then by substitut-

ing f ∗(x), we obtain

f ∗∗(x) = e(ln ◦f)
(n)(x) = e(ln ◦f)

′′
(x).

Since f ′′(x) exists (ln ◦f)′′(x) also exists. Repetition of the procedure n times, gives

us that, if f(x) is a positive function and its nth derivative exists, then f ∗(n)(x) also

exists and

f ∗(n)(x) = e(ln ◦f)
(n)(x), n = 0, 1, ... (2.3)

The case n = 0 is also included in the formula (2.3) since

f(x) = e(ln ◦f)(x).

Thus we may conclude that, the function f : A → R is *differentiable at x or on A if

it is positive at x and differentiable on A.

By deriving a similar formula to Newton’s binomial formula we can express f (n) in

terms of f ∗(n). By using the n− th multiplicative derivative of f , we have

(ln ◦f ∗(n))(x) = (ln ◦f)(n)(x) = ((ln ◦f)(k))(n−k)(x) = (ln ◦f ∗(k))(n−k)(x)

Thus by using

f
′
(x) = f(x)(ln ◦f ∗)(x),

we can calculate the second derivative in terms of the multiplicative derivative as,

f
′′
(x) = f

′
(x)(ln ◦f ∗)(x) + f(x)(ln ◦f ∗∗)(x),

and by using the second derivative, we can calculate the third derivative in terms of the

multiplicative derivative as,

f
′′′
(x) = f

′′
(x)(ln ◦f ∗)(x) + 2f

′
(x)(ln ◦f ∗∗)(x) + f(x)(ln ◦f ∗∗∗)(x),

4



By repeating this procedure n times, we obtain the formula for n − th derivative as

follows:

f (n)(x) =
n−1∑
k=0

(n− 1)!

k!(n− k − 1)!
f (k)(x)(ln ◦f ∗(n−k))(x) (2.4)

For the constant function f(x) = c > 0 on the interval (a, b), where a < b, we have

f ∗(x) = e(ln c)
′

= e0 = 1, x ∈ (a, b).

If f ∗(x)=1 for every x ∈ (a, b), then by using the first multiplicative derivative

f ∗(x) = e(ln ◦f)
′
(x) = 1,

it can be easily seen that f(x)=const.> 0 where x ∈ (a, b). Thus we see that the neutral

element 0 of addition appears instead of the neutral element 1 of multiplication.

Here are some rules of *differentiation:

(cf)∗(x) = f ∗(x) (2.5)

(fg)∗(x) = f ∗(x)g∗(x) (2.6)

(
f

g
)∗(x) =

f ∗(x)

g∗(x)
(2.7)

(fh)∗(x) = f ∗(x)h(x) · f(x)h′(x) (2.8)

(f ◦ h)∗(x) = f ∗(h(x))h
′(x) (2.9)

where c is a positive constant, f and g are *differentiable, h is differentiable. Equation

(2.6) can be proved as follows:

(fg)∗(x) = e(ln ◦(fg))
′
(x) = e(ln ◦f)

′
(x)+(ln ◦g)′ (x)

= e(ln ◦f)
′
(x) · e(ln ◦g)

′
(x) = f ∗(x)g∗(x)

While on the other hand, the rules for sum and difference are complicated. Here is the

rule for sum:

(f + g)∗(x) = f ∗(x)
f(x)

f(x)+g(x) · g∗(x)
g(x)

f(x)+g(x)

In the next step we can consider the differential equations involving *derivatives. The

multiplicative differential equation which contains the *derivative of y can be shown

as follows:

y∗(x) = f(x, y(x)) (2.10)

5



Theorem 1 (Multiplicative Taylor’s Theorem for One Variable). Let A be an open

interval and let f : A → R be n + 1 times *differentiable on A. Then for any x,

x+ h ∈ A, there exists a number θ ∈ (0, 1) such that

f(x+ h) =
n∏

m=0

(f ∗(m)(x))
hm

m! · (f ∗(n+1)(x+ θh))
hn+1

(n+1)!

The partial *derivative of f(x) can be defined, considering y fixed, and it is denoted

by f ∗x . The partial *derivative of f in y can be defined in a similar way and denote it

by f ∗y . We can also define higher order partial *derivatives of f .

The two results, generalizing the equation (2.9) of *differentiation and Multiplicative

Taylor’s Theorem for One Variable are as follows.

Theorem 2 ( Multiplicative Chain Rule). Let f be a function of two variables y and

z with continuous partial *derivatives. If y and z are differentiable functions on (a, b)

such that f(y(x), z(x)) is defined for every x ∈ (a, b), then

d∗f(y(x), z(x))

dx
= f ∗y (y(x), z(x))

y′(x)f ∗z (y(x), z(x))
z′(x)

Theorem 3 ( Multiplicative Taylor’s Theorem for Two Variables). Let A be an open

subset of R2 . Assume that the function f : A → R has all partial *derivatives of

order n + 1 on A. Then for every (x, y), (x + h, y + k) ∈ A so that the line segment

connecting these two points belongs to A, there exists a number θ ∈ (0, 1) such that,

f(x+ h, y + k) =
n∏

m=0

m∏
i=0

f
∗(m)

xiym−i(x, y)
hikm−i

i!(m−i)! ·
n+1∏
i=0

f
∗(n+1)

xiyn+1−i(x+ θh, y + θk)
hikn+1−i

i!(n+1−i)!

2.2 Volterra Calculus

2.2.1 Volterra Differential Equations

Volterracalculus is another kind of multiplicative calculus, having multiplication as

its main operation, which was created by Vito Volterra. Volterra calculus was intro-

duced to define the derivative of dimensional functions that could not be done using

the derivative in the Newtonian sense. It seems to be evident that multiplicative and

Volterra differential calculus can be used more effectively as a mathematical tool in-

stead of ordinary differential calculus for the mathematical representation of many
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problems in science and engineering that can be easily represented in these calculi. As

we said a new kind of derivative was defined within this calculus, where the definition

of this kind of derivative can be given as follows:

Definition 4. Let f be a positive function over the open interval (a, b). If the limit

fπ(x) =
dπf(x)

dx
= lim

h→0

(
f((1 + h)x)

f(x)

) 1
h

(2.11)

exists, then f is said to be Volterra type differentiable at x ∈ (a, b).

The relationship between the ordinary and the Volterra derivative can be given as

fπ(x) = exp(x(ln ◦f)′(x)). (2.12)

Thus by using the definition of the multiplicative derivative, the Volterra derivative can

be written in terms of multiplicative derivative as follows:

fπ(x) =
dπf(x)

dx
= (f ∗(x))x. (2.13)

Representing a higher order Volterra derivative in terms of the ordinary derivative is

complicated. Since the relationship between the Volterra derivative and the multi-

plicative derivative seems to be easier, representing the Volterra derivatives in terms of

the multiplicative derivatives is much more easier than representation of the Volterra

derivative in terms of the ordinary derivatives.

2.,3. and 4. order Volterra derivatives can be given in terms of the multiplicative

derivatives as

fππ(x) = (f ∗∗(x))x
2

(f ∗)x, (2.14)

fπ(3)(x) = (f ∗(3)(x))x
3

(f ∗∗(x))3x
2

(f ∗)x, (2.15)

fπ(4)(x) = (f ∗(4)(x))x
4

(f ∗(3)(x))6x
3

(f ∗∗(x))7x
2

(f ∗)x. (2.16)

We may also consider the differential equations involving π-derivatives. The Volterra

differential equation containing the π-derivative of y can be given as

yπ(x) = f(x, y(x)) (2.17)

where f is a positive function defined in some subset G of R+ × R+.
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Chapter 3

RUNGE KUTTA METHODS

In numerical analysis, the Runge-Kutta methods are important family of implicit and

explicit iterative methods for the approximation of solutions of ordinary differential

equations. In the following we will follow the ideas of [7] to review the ordinary

Runge-Kutta methods. These techniques were developed around 1900 by the German

mathematicians C. Runge and M.W. Kutta. These methods are used to find the solu-

tions of the ordinary differential equations of the form:

dy

dx
= f(x, y), y(x0) = y0 (3.1)

Since f(x, y(x)) is just the slope y′(x) of the desired exact solution y(x) of (3.1), one

has for h 6= 0 approximately

y(x+ h)− y(x)
h

≈ f(x, y(x)) (3.2)

or

y(x+ h) ≈ y(x) + hf(x, y(x)) (3.3)

Thus by using the initial condition y(x0) = y0, the solution of the equation (3.1) takes

the form

yn+1 = yn + hf(xn, yn) (3.4)

We know that the Taylor series has desirable features, particularly in its ability to keep

the errors small, but it also has the disadvantage of requiring the evaluation of the

higher derivatives of the function f(x, y). In the Taylor series method, each of these

higher order derivatives is evaluated at the point xi in order to evaluate y(xi+1). The

Runge-Kutta approach is to aim for the desirable features of the Taylor series method,
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but with the replacement of the requirement for the evaluation of higher order deriva-

tives with the requirement to evaluate f(x, y) at some points within the step xi to xi+1.

Since it is not initially known at which points in the interval these evaluations should

be done, it is possible to choose these points in such a way that the result is consistent

with the Taylor series solution to some particular, which we shall call the order of the

Runge-Kutta method.

Let us derive the 2. order Runge-Kutta method for the solution of the differential

equation (3.1). Our starting point is the Taylor series expansion for y(x + h), which

has the form

y(x+ h) = y(x) + hf(x, y) +
h2

2
y′′(x) +

h3

3!
y′′′(x) + · · ·+ hp

p!
y(p)(x+ θh). (3.5)

For the derivation of the 2. order Runge-Kutta method we should consider the second

order Taylor series formula. Thus we need to evaluate y′′(x). Since we have y′(x) =

f(x, y), for y′′(x) we take the partial derivatives of f(x, y) with respect to x and y, and

get

y′′(x) = fx(x, y) + fy(x, y)y
′(x) (3.6)

Again since we know that y′(x) = f(x, y), instead of y′(x) we can write f(x, y) and

get:

y′′(x) = fx(x, y) + fy(x, y)f(x, y) (3.7)

Then by substituting y′′(x), the 2. order Taylor series takes the form:

y(x+ h) = y(x) + hf(x, y) +
h2

2
(fx(x, y) + fy(x, y)f(x, y)) +O(h3). (3.8)

The Runge-Kutta method assumes that the correct value of the slope over the step can

be written as a linear combination of the function f(x, y) evaluated at certain points in

the step. In the method of order 2 this results in writing the iteration step in the form:

y(x+ h) = y(x) + Ahf0 +Bhf1 (3.9)

where

f0 = f(x, y) (3.10)

f1 = f(x+ Ph, y +Qhf0) (3.11)

9



We still need to determine the constants A,B, P and Q, where we can do this by

comparing the Runge-Kutta formula with the second order Taylor series given above.

In order to do this we must find the Taylor series expansion for f1, which can be written

as:

f1 = f(x, y) + fx(x, y)Ph+ fy(x, y)Qhf0 +O(h2) (3.12)

By substituting the Taylor expansion (3.12) of f1 into the Runge-Kutta formula for

y(x+ h) we obtain:

y(x+h) = y(x)+ (A+B)hf(x, y)+Bh2Pfx(x, y)+Bh
2Qfy(x, y)f(x, y)+O(h

3)

(3.13)

Now we can compare the two Taylor series expansions (3.8) and (3.13) to find relations

for the constants A,B, P and Q.

A+B = 1, BP =
1

2
, BQ =

1

2
(3.14)

We thus have three conditions on the four constants such that the direct Taylor series

and the Runge-Kutta formula will agree to second order in h.

Since we have three conditions for the constants A,B, P and Q, we have more than

one choice. If we choose A = 0, we have B = 1 and P = Q = 1
2
, which leads to the

2. order Runge-Kutta method:

y(x+ h) = y(x) + hf1 (3.15)

where

f0 = f(x, y) (3.16)

f1 = f

(
x+

h

2
, y +

h

2
f0

)
(3.17)

Runge-Kutta methods of order 3 and order 4 can be derived by using the same con-

structions. For the Runge-Kutta method of order 3 we need to consider the 3. order

Taylor series expansion which has the form:

y(x+ h) = y(x) + hf(x, y) +
h2

2
y′′(x) +

h3

3!
y′′′(x) +O(h4). (3.18)
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Thus we need to find y′′(x) and y′′′(x) for the expansion. Since y′′(x) was calculated

before we just calculate y′′′(x) which will take the form:

y′′′(x) = fxx(x, y) + 2fxy(x, y)f(x, y) + fyy(x, y)f(x, y)
2+

+ fy(x, y)y
′′(x) (3.19)

Then by substituting these derivatives into the 3. order Taylor series expansion we get:

y(x+ h) = y(x) + hf(x, y) +
h2

2
(fx(x, y) + fy(x, y)f(x, y))+

+
h3

3!
(fxx(x, y) + 2fxy(x, y)f(x, y) + fyy(x, y)f(x, y)

2 + fy(x, y)y
′′(x)) (3.20)

For the Runge-Kutta method of order 3 we can make the ansatz:

y(x+ h) = y(x) + Ahf0 +Bhf1 + Chf2 (3.21)

where

f0 = f(x, y) (3.22)

f1 = f(x+ P1h, y +Q1hf0) (3.23)

f2 = f(x+ P2h, y +Q2hf0 +Q3hf1) (3.24)

Then we need to find the Taylor series expansions for f1 and f2, substitute into y(x+h)

function for the Runge-Kutta method and get the Taylor series expansion for y(x +

h). After that by comparing the 3. order Taylor series expansion with the Taylor

series expansion for y(x+ h) of the Runge-Kutta Method, we may find the values for

the constants A,B,C, P1, P2, Q1, Q2 and Q3.Thus we get the 3. order Runge-Kutta

method as:

y(x+ h) = y(x) +
h

6
(f0 + 4f1 + f2) (3.25)

where

f0 = f(x, y) (3.26)

f1 = f(x+
h

2
, y +

h

2
f0) (3.27)

f2 = hf(x+ h, y − hf0 + 2hf1) (3.28)
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Also for the 4. order Runge-Kutta method we do the same constructions. The only

difference is that we need to use the 4. order Taylor series expansion which has the

form:

y(x+ h) = y(x) + hf(x, y) +
h2

2
y′′(x) +

h3

3!
y′′′(x) +

h4

4!
y(4)(x) +O(h5). (3.29)

Since y′′(x) and y′′′(x) were calculated before, it remains only to calculate y(4)(x).

y(4)(x) = fxxx(x, y) + 3fxxy(x, y)f(x, y) + 3fxyy(x, y)f(x, y)
2+

+ fyyy(x, y)f(x, y)
3 + 3fxy(x, y)y

′′(x)+

+ 3fyy(x, y)f(x, y)y
′′(x) + fy(x, y)(x, y)y

′′′(x) (3.30)

After substituting the derivatives into the 4. order Taylor series expansion we get:

y(x+ h) = y(x) + hf(x, y) +
h2

2
(fx(x, y) + fy(x, y)f(x, y))+

+
h3

3!
(fxx(x, y) + 2fxy(x, y)f(x, y) + fyy(x, y)f(x, y)

2 + fy(x, y)y
′′(x))+

+
h4

4!
(fxxx(x, y) + 3fxxy(x, y)f(x, y) + 3fxyy(x, y)f(x, y)

2 + fyyy(x, y)f(x, y)
3+

+ 3fxy(x, y)y
′′(x) + 3fyy(x, y)f(x, y)y

′′(x) + fy(x, y)(x, y)y
′′′(x)) (3.31)

Then we make the following ansatz for the Runge-Kutta method of order 4 :

y(x+ h) = y(x) + Ahf0 +Bhf1 + Chf2 +Dhf3 (3.32)

where

f0 = f(x, y) (3.33)

f1 = f(x+ P1h, y +Q1hf0) (3.34)

f2 = f(x+ P2h, y +Q2hf0 +Q3hf1) (3.35)

f3 = f(x+ P3h, y +Q4hf0 +Q5hf1 +Q6hf2) (3.36)

Then we need to find the Taylor series expansions for f1, f2 and f3, substitute into

y(x+ h) function for the Runge-Kutta method and get the Taylor series expansion for

y(x+h). After that by comparing the 4. order Taylor series expansion with the Taylor
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series expansion for y(x + h) of the Runge-Kutta Method of order 4, we can find the

values for the constantsA,B,C,D, P1, P2, P3, Q1, Q2, Q3, Q4, Q5 andQ6.Thus we get

the 4. order Runge-Kutta method as:

y(x+ h) = y(x) +
h

6
(f0 + 2f1 + 2f2 + f3) (3.37)

where

f0 = f(x, y) (3.38)

f1 = f(x+
h

2
, y +

h

2
f0) (3.39)

f2 = f(x+
h

2
, y +

h

2
f1) (3.40)

f3 = f(x+ h, y + hf2) (3.41)
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Chapter 4

MULTIPLICATIVE RUNGE KUTTA METHODS

4.1 Multiplicative Runge Kutta Method of order 2

In the followingwe will derive the multiplicative Runge Kutta Method of order 2 for

the solution of the multiplicative differential equation:

y∗(x) = f(x, y) (4.1)

Analogously to the ordinary Runge Kutta Method our starting point is the Taylor ex-

pansion for y(x + h). In this case we will use the multiplicative Taylor expansion as

given in Theorem 2 of [2] for the first two terms

y(x+ h) = y(x) · (y∗(x))h · (y∗∗(x))h
2/2 · . . . (4.2)

using the multiplicative differential equation (4.1) we can substitute y∗(x) by f(x, y)

and get:

y(x+ h) = y(x) · (f(x, y))h · (y∗∗(x))h
2/2 · . . . (4.3)

Since y∗(x) = f(x, y) we can write y∗∗(x) as:

y∗∗(x) = (y∗(x))∗ = (f(x, y))∗ . (4.4)

Keeping in mind that y(x) is a function in the variable x we have to apply the multi-

plicative chain rule as denoted in Theorem 3 in [2] to get f(x, y(x))∗.

d∗

dx∗
f(x, y) = f ∗x(x, y)f

∗
y (x, y)

y′(x) (4.5)

inserting the result of equation(4.5) into (4.4) gives

y∗∗(x) = (y∗(x))∗ = f ∗x(x, y)f
∗
y (x, y)

y′(x). (4.6)
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Inserting y∗∗(x) into the multiplicative Taylor expansion, which is equation (4.3) we

get:

y(x+ h) = y(x) · (f(x, y))h ·
(
f ∗x(x, y)f

∗
y (x, y)

y′(x)
)h2/2

· . . . (4.7)

where f ∗x(x, y) and f ∗y (x, y) denote the multiplicative partial derivatives with respect

to x and y. In analogy to the ordinary Runge Kutta Method we make now the ansatz:

y(x+ h) = y(x) · fah0 · f bh1 (4.8)

with

f0 = f(x, y) (4.9)

f1 = f(x+ ph, y · f qh0 ) (4.10)

Again by using the multiplicative Taylor Series we need to find the Taylor expansion

for f1. Thus f1 becomes:

f1 = f(x, y) · f ∗x(x, y)ph · f ∗y (x, y)(yf
q
0h)
′ph (4.11)

Then by inserting f0 and the multiplicative Taylor expansion of f1 into the function

y(x+ h) of the Runge-Kutta method we get

y(x+ h) = y(x) · (f(x, y))ah · (f(x, y) · f ∗x(x, y)ph · f ∗y (x, y)(yf
q
0h)
′ph)bh (4.12)

After that we need to rearrange the terms with respect to orders of h and get the Taylor

expansion for y(x+ h) in the Runge-Kutta method:

y(x + h) = y(x) · (f(x, y))(a+b)h · f ∗x(x, y)bph
2 · f ∗y (x, y)bpf

qh
0 y′h2 · . . . (4.13)

Thus the comparison of the two Taylor series expansions which are the equations (4.7)

and (4.13) gives:

a+ b = 1 (4.14)

bp =
1

2
(4.15)

bpf q0h =
1

2
(4.16)
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Therefore we get q = 0. If we select p = 1 we get a = 1
2

and b = 1
2
. Thus the 2. order

multiplicative Runge-Kutta method takes the form:

y(x+ h) = y(x) · f
h
2
0 · f

h
2
1 (4.17)

where

f0 = f(x, y) (4.18)

f1 = f(x+ h, y) (4.19)

4.2 Multiplicative Runge Kutta Method of order 3

In the following wewill the derive the multiplicative Runge Kutta Method of order 3

for the solution of the multiplicative differential equation:

y∗(x) = f(x, y) (4.20)

Analogously to the ordinary Runge Kutta Method our starting point is the Taylor ex-

pansion for y(x + h). In this case we will use the multiplicative Taylor expansion as

given in Theorem 2 of [2] for the first four terms

y(x+ h) = y(x) · (y∗(x))h · (y∗∗(x))h
2/2 · (y∗∗∗(x))h3/3! · . . . (4.21)

using the multiplicative differential equation (4.20) we can substitude y∗(x) by f(x, y)

and get:

y(x+ h) = y(x) · (f(x, y))h · (y∗∗(x))h2/2 · (y∗∗∗(x))h3/3! · . . . (4.22)

Since y∗(x) = f(x, y) we can write y∗∗(x) and y∗∗∗(x) as:

y∗∗(x) = (y∗(x))∗ = (f(x, y))∗ (4.23)

y∗∗∗(x) = (y∗(x))∗∗ = (f(x, y))∗∗ (4.24)
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Keeping in mind that y(x) is a function in the variable x we have to apply the multi-

plicative chain rule as denoted in Theorem 3 in [2] to get f(x, y(x))∗∗ and f(x, y(x))∗∗∗.

d∗

dx
f(x, y) = f ∗x(x, y) · f ∗y (x, y)y

′(x) (4.25)

d∗∗

dx
f(x, y) =

d∗

dx

(
d∗

dx
f(x, y)

)
=

d∗

dx

(
f ∗x(x, y) · f ∗y (x, y)y

′(x)
)

= f ∗xx(x, y) · f ∗xy(x, y)y
′(x) · f ∗yx(x, y)y

′(x) ·

f ∗yy(x, y)
y′(x)2 · f ∗y (x, y)y

′′(x) (4.26)

The partial multiplicative derivatives are commutative. This can be shown easily by

applying the partial multiplicative derivative in different orders and compare them.

f ∗xy(x, y) = ∂∗y(∂
∗
xf(x, y)) = ∂∗y exp

{
fx(x, y)

f(x, y)

}
= exp

{
∂y ln exp

{
fx(x, y)

f(x, y)

}}
=

= exp

{
∂y

{
fx(x, y)

f(x, y)

}}
= exp

{
fxy(x, y)f(x, y)− fy(x, y)fx(x, y)

f(x, y)2

}
(4.27)

f ∗yx(x, y) = ∂∗x(∂
∗
yf(x, y)) = ∂∗x exp

{
fy(x, y)

f(x, y)

}
= exp

{
∂x ln exp

{
fy(x, y)

f(x, y)

}}
=

= exp

{
∂x

{
fy(x, y)

f(x, y)

}}
= exp

{
fyx(x, y)f(x, y)− fx(x, y)fy(x, y)

f(x, y)2

}
(4.28)

With the property that the partial derivatives are commutative in newtonian calculus

we can see by comparing the equations (4.27) and (4.28) that also the multiplicative

partial differentiation is commutative. So equation (4.26), which defines the second

multiplicative derivative, simplifies then to:

d∗∗

dx
f(x, y) = f ∗xx(x, y) · f ∗xy(x, y)2y

′(x) · f ∗yy(x, y)y
′(x)2 · f ∗y (x, y)y

′′(x) (4.29)

Inserting the result of equation (4.5) and (4.29) into (4.22) gives the third order multi-

plicative Taylor series expansion as:

y(x+h) = y(x) · (f(x, y))h · (f ∗x(x, y) ·f ∗y (x, y)y
′(x))h

2/2 · (f ∗xx(x, y) ·f ∗xy(x, y)2y
′(x)·

· f ∗yy(x, y)y
′(x)2 · f ∗y (x, y)y

′′(x))h
3/3! · . . . (4.30)

17



In analogy to the ordinary Runge Kutta Method we make now the ansatz:

y(x+ h) = y(x) · fah0 · f bh1 · f ch2 (4.31)

with

f0 = f(x, y) (4.32)

f1 = f(x+ ph, y · f qh0 ) (4.33)

f2 = f(x+ p1h, y · f q1h0 · f q2h1 ) (4.34)

Then by using the multiplicative Taylor Series we can find the Taylor expansions for

f1 and f2 as

f1 = f(x, y) · f ∗x(x, y)ph · f ∗y (x, y)(yf
q
0h)
′ph (4.35)

and

f2 = f(x, y)·f ∗x(x, y)p1h·f ∗y (x, y)(yf
q1h
0 f

q2h
1 )′p1h·f ∗xx(x, y)((p1h)

2)/2·f ∗xy(x, y)(p1h)
2(yf

q1h
0 f

q2h
1 )′ ·

· f ∗yy(x, y)(p1h)
2(yf

q1h
0 f

q2h
1 )′2/2 · f ∗y (x, y)(p1h)

2(yf
q1h
0 f

q2h
1 )′′/2 (4.36)

Then by inserting the multiplicative Taylor series expansions for f0, f1 and f2, which

are the equations (4.9) , (4.35) and (4.36), into the equation (4.31) we get the Taylor

series expansion for the 3. order Runge-Kutta method function y(x+ h) as:

y(x+h) = y(x)·(f(x, y))ah·(f(x, y)·f ∗x(x, y)ph·f ∗y (x, y)(yf
qh
0 )′ph)bh·(f(x, y)·f ∗x(x, y)p1h·

· f ∗y (x, y)(yf
q1h
0 f

q2h
1 )′p1h · f ∗xx(x, y)((p1h)

2)/2 · f ∗xy(x, y)(p1h)
2(yf

q1h
0 f

q2h
1 )′·

· f ∗yy(x, y)(p1h)
2(yf

q1h
0 f

q2h
1 )′2/2 · f ∗y (x, y)(p1h)

2(yf
q1h
0 f

q2h
1 )′′/2)ch (4.37)

After rearranging the terms with respect to orders of h we get:

y(x+h) = y(x) · (f(x, y))(a+b+c)h ·f ∗x(x, y)(pb+cp1)h
2 ·f ∗y (x, y)(pbf

qh
0 +cp1f

q1h
0 f

q2h
1 )h2y′·

·f ∗xx(x, y)cp1h
3/2·f ∗xy(x, y)cp

2
1f

q1h
0 f

q2h
1 h3y′·f ∗yy(x, y)cp

2
1f

2q1h
0 f

2q2h
1 h3(y′)2/2·f ∗y (x, y)cp

2
1f

q1h
0 f

q2h
1 h3y′′/2

(4.38)
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Thus by comparing the 3. order multiplicative Taylor series expansion with the Taylor

series expansion of the 3. order Runge-Kutta method we get the equalities:

a+ b+ c = 1 (4.39)

bp+ cp1 =
1

2
(4.40)

bpf qh0 + cp1f
q1h
0 f q2h1 =

1

2
(4.41)

cp21 =
1

3
(4.42)

cp21f
q1h
0 f q2h1 =

1

3
(4.43)

cp21f
2q1h
0 f 2q2h

1 =
1

3
(4.44)

cp21f
q1h
0 f q2h1 =

1

3
(4.45)

Therefore we get q = 0. If we select p = 1
2

and p1 = 1 we get q1 = −q2 ln f1ln f0
, q2 = 1 ,

a = 1
3

, b = 1
3

and c = 1
3
. Thus the 3. order Runge-Kutta method takes the form:

y(x+ h) = y(x) · f
h
3
0 · f

h
3
1 · f

h
3
2 (4.46)

with

f0 = f(x, y) (4.47)

f1 = f(x+
h

2
, y) (4.48)

f2 = f(x+ h, y · f
− ln f1

ln f0
h

0 · fh1 ) (4.49)

4.3 Multiplicative Runge Kutta Method of order 4

In the following wewill the derive the multiplicative Runge Kutta Method of order 4

for the solution of the multiplicative differential equation:

y∗(x) = f(x, y) (4.50)

Analogously to the ordinary Runge Kutta Method our starting point is the Taylor ex-

pansion for y(x + h). In this case we will use the multiplicative Taylor expansion as

given in Theorem 2 of [2] for the first five terms

y(x+ h) = y(x) · (y∗(x))h · (y∗∗(x))h
2/2 · (y∗∗∗(x))h3/3! · y∗(4)(x)h4/4! · . . . (4.51)
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using the multiplicative differential equation (4.50) we can substitude y∗(x) by f(x, y)

and get:

y(x+ h) = y(x) · (f(x, y))h · (y∗∗(x))h2/2! · (y∗∗∗(x))h3/3! · y∗(4)(x)h4/4! · . . . (4.52)

Since y∗(x) = f(x, y) we can write y∗∗(x) , y∗∗∗(x) , y∗(4)(x) as:

y∗∗(x) = (y∗(x))∗ = (f(x, y))∗ (4.53)

y∗∗∗(x) = (y∗(x))∗∗ = (f(x, y))∗∗ (4.54)

y∗(4)(x) = (y∗(x))∗∗∗ = (f(x, y))∗∗∗ (4.55)

Keeping in mind that y(x) is a function in the variable x we have to apply the multi-

plicative chain rule as denoted in Theorem 3 in [2] to get f(x, y(x))∗∗ , f(x, y(x))∗∗∗

and f(x, y(x))∗(4).

d∗

dx
f(x, y) = f ∗x(x, y) · f ∗y (x, y)y

′(x) (4.56)

d∗∗

dx
f(x, y) = f ∗xx(x, y) · f ∗xy(x, y)2y

′(x) · f ∗yy(x, y)y
′(x)2 · f ∗y (x, y)y

′′(x) (4.57)

d∗∗∗

dx
f(x, y) = f ∗xxx(x, y) · f ∗xxy(x, y)3y

′(x) · f ∗xyy(x, y)3y
′(x)2 · f ∗yyy(x, y)y

′(x)3 ·

·f ∗xy(x, y)3y
′′(x) · f ∗yy(x, y)3y

′(x)y′′(x) · f ∗y (x, y)y
′′′(x) (4.58)

Inserting the results of those second, third and forth multiplicative derivatives into

(4.52) gives us the 4. order multiplicative Taylor series expansion as follows:

y(x+h) = y(x) ·(f(x, y))h ·(f ∗x(x, y) ·(f ∗y (x, y)y
′(x))h

2/2! ·(f ∗xx(x, y) ·f ∗xy(x, y)2y
′(x)·

· f ∗yy(x, y)y
′(x)2 · f ∗y (x, y)y

′′(x))h
3/3! · (f ∗xxx(x, y) · f ∗xxy(x, y)3y

′(x) · f ∗xyy(x, y)3y
′(x)2·

· f ∗yyy(x, y)y
′(x)3 · f ∗xy(x, y)3y

′′(x) · f ∗yy(x, y)3y
′(x)y′′(x) · f ∗y (x, y)y

′′′(x))h
4/4! · . . . (4.59)

In analogy to the ordinary Runge Kutta method we now make the ansatz:

y(x+ h) = y(x) · fah0 · f bh1 · f ch2 · fdh3 (4.60)
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with

f0 = f(x, y) (4.61)

f1 = f(x+ ph, y · f qh0 ) (4.62)

f2 = f(x+ p1h, y · f q1h0 · f q2h1 ) (4.63)

f3 = f(x+ p2h, y · f q3h0 · f q4h1 · f q5h2 ) (4.64)

By using the multiplicative Taylor Series we can find the Taylor expansions for f1 , f2

and f3 as

f1 = f(x, y) · f ∗x(x, y)ph · f ∗y (x, y)(yf
q
0h)
′ph (4.65)

f2 = f(x, y) · f ∗x(x, y)p1h · f ∗y (x, y)(yf
q1h
0 f

q2h
1 )′p1h·

· f ∗xx(x, y)((p1h)
2)/2 · f ∗xy(x, y)(p1h)

2(yf
q1h
0 f

q2h
1 )′ ·

· f ∗yy(x, y)(p1h)
2(yf

q1h
0 f

q2h
1 )′2/2 · f ∗y (x, y)(p1h)

2(yf
q1h
0 f

q2h
1 )′′/2 (4.66)

f3 = f(x, y) · f ∗x(x, y)p2h · f ∗y (x, y)(yf
q3h
0 f

q4h
1 f

q5h
2 )′p2h · f ∗xx(x, y)((p2h)

2)/2·

·f ∗xy(x, y)(p2h)
2(yf

q3h
0 f

q4h
1 f

q5h
2 )′ ·f ∗yy(x, y)(p2h)

2(yf
q3h
0 f

q4h
1 f

q5h
2 )′2/2·f ∗y (x, y)(p2h)

2(yf
q3h
0 f

q4h
1 f

q5h
2 )′′/2·

· f ∗xxx(x, y)(p2h)
3/6 · f ∗xxy(x, y)(p2h)

3(yf
q3h
0 f

q4h
1 f

q5h
2 )′/2 · f ∗xyy(x, y)(p2h)

3(yf
q3h
0 f

q4h
1 f

q5h
2 )′2/2·

· f ∗yyy(x, y)(p2h)
3(yf

q3h
0 f

q4h
1 f

q5h
2 )′3/6 · f ∗xy(x, y)(p2h)

3(yf
q3h
0 f

q4h
1 f

q5h
2 )′′/2·

· f ∗yy(x, y)(p2h)
3(yf

q3h
0 f

q4h
1 f

q5h
2 )′(yf

q3h
0 f

q4h
1 f

q5h
2 )′′/2 · f ∗y (x, y)(p2h)

3(yf
q3h
0 f

q4h
1 f

q5h
2 )′′′/6 (4.67)

Then by inserting the results of the equations (4.61) , (4.65) , (4.66) and (4.67) into the

function y(x + h) in the 4. order Runge-Kutta method, which is the equation (4.60),

we get the Taylor series expansion for y(x+ h) as:
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y(x+ h) = y(x) · (f(x, y))ah · (f(x, y) · f ∗x(x, y)ph · f ∗y (x, y)(yf
q
0h)
′ph)bh·

· (f(x, y) · f ∗x(x, y)p1h · f ∗y (x, y)(yf
q1h
0 f

q2h
1 )′p1h · f ∗xx(x, y)((p1h)

2)/2·

· f ∗xy(x, y)(p1h)
2(yf

q1h
0 f

q2h
1 )′ · f ∗yy(x, y)(p1h)

2(yf
q1h
0 f

q2h
1 )′2/2 · f ∗y (x, y)(p1h)

2(yf
q1h
0 f

q2h
1 )′′/2)ch

· ·(f(x, y) · f ∗x(x, y)p2h · f ∗y (x, y)(yf
q3h
0 f

q4h
1 f

q5h
2 )′p2h · f ∗xx(x, y)((p2h)

2)/2·

·f ∗xy(x, y)(p2h)
2(yf

q3h
0 f

q4h
1 f

q5h
2 )′·f ∗yy(x, y)(p2h)

2(yf
q3h
0 f

q4h
1 f

q5h
2 )′2/2·f ∗y (x, y)(p2h)

2(yf
q3h
0 f

q4h
1 f

q5h
2 )′′/2·

· f ∗xxx(x, y)(p2h)
3/6 · f ∗xxy(x, y)(p2h)

3(yf
q3h
0 f

q4h
1 f

q5h
2 )′/2 · f ∗xyy(x, y)(p2h)

3(yf
q3h
0 f

q4h
1 f

q5h
2 )′2/2·

· f ∗yyy(x, y)(p2h)
3(yf

q3h
0 f

q4h
1 f

q5h
2 )′3/6 · f ∗xy(x, y)(p2h)

3(yf
q3h
0 f

q4h
1 f

q5h
2 )′′/2·

· f ∗yy(x, y)(p2h)
3(yf

q3h
0 f

q4h
1 f

q5h
2 )′(yf

q3h
0 f

q4h
1 f

q5h
2 )′′/2 · f ∗y (x, y)(p2h)

3(yf
q3h
0 f

q4h
1 f

q5h
2 )′′′/6)dh

(4.68)

After rearranging the terms with respect to the orders of h we get:

y(x+h) = y(x)·f(x, y)(a+b+c+d)h·f ∗x(x, y)(pb+p1c+p2d)h
2·f ∗y (x, y)(pbf

q
0h+p1cf

q1h
0 f

q2h
1 )y′(x)h2·

· f ∗xx(x, y)((p
2
1c+p

2
2d)h

3)/2 · f ∗xy(x, y)(p
2
1cf

q1h
0 f

q2h
1 +p22df

q3h
0 f

q4h
1 f

q5h
2 )y′(x)h3·

·f ∗yy(x, y)((p
2
1cf

2q1h
0 f

2q2h
1 +p22df

2q3h
0 f

2q4h
1 f

2q5h
2 )y′(x)2h3)/2·f ∗y (x, y)((p

2
1cf

q1h
0 f

q2h
1 +p22df

q3h
0 f

q4h
1 f

q5h
2 )y′′(x)h3)/2·

·f ∗xxx(x, y)(p
3
2dh

4)/6·f ∗xxy(x, y)(p
3
2df

q3h
0 f

q4h
1 f

q5h
2 y′(x)h4)/2·f ∗xyy(x, y)(p

3
2df

2q3h
0 f

2q4h
1 f

2q5h
2 y′(x)2h4)/2·

· f ∗yyy(x, y)(p
3
2df

3q3h
0 f

3q4h
1 f

3q5h
2 y′(x)3h4/6 · f ∗xy(x, y)(p

3
2df

q3h
0 f

q4h
1 f

q5h
2 y′′(x)h4)/2·

· f ∗yy(x, y)(p
3
2df

2q3h
0 f

2q4h
1 f

2q5h
2 y′(x)y′′(x)h4)/2 · f ∗y (x, y)(p

3
2df

q3h
0 f

q4h
1 f

q5h
2 y′′′(x)h4)/6) (4.69)

Then we need to compare the two Taylor series expansions for y(x + h), which are

(4.59) and (4.69), in order to find the constants. After those comparisons we get the
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following equalities:

a+ b+ c+ d = 1 (4.70)

pb+ p1c+ p2d =
1

2
(4.71)

pbf qh0 + p1cf
q1h
0 f q2h1 =

1

2
(4.72)

p21c+ p22d =
1

3
(4.73)

p21cf
q1h
0 f q2h1 + p22df

q3h
0 f q4h1 f q5h2 =

1

3
(4.74)

p21cf
2q1h
0 f 2q2h

1 + p22df
2q3h
0 f 2q4h

1 f 2q5h
2 =

1

3
(4.75)

p21cf
q1h
0 f q2h1 + p22df

q3h
0 f q4h1 f q5h2 =

1

3
(4.76)

p32d =
1

4
(4.77)

p32df
q3h
0 f q4h1 f q5h2 =

1

4
(4.78)

p32df
2q3h
0 f 2q4h

1 f 2q5h
2 =

1

4
(4.79)

p32df
3q3h
0 f 3q4h

1 f 3q5h
2 =

1

4
(4.80)

p32df
q3h
0 f q4h1 f q5h2 =

1

4
(4.81)

p32df
2q3h
0 f 2q4h

1 f 2q5h
2 =

1

4
(4.82)

p32df
q3h
0 f q4h1 f q5h2 =

1

4
(4.83)

Therefore we get q = 0. If we select p = 1
4
, p1 = 1

2
, p2 = 1 , q1 = 0 , q2 = 0 ,

q3 = 0 , q4 = 0 , q5 = 0 we get a = 1
12

, b = 1
3
, c = 1

3
and d = 1

4
. Thus the 4. order

Runge-Kutta method takes the form:

y(x+ h) = y(x) · f
h
12
0 · f

h
3
1 · f

h
3
2 · f

h
4
3 (4.84)

with

f0 = f(x, y) (4.85)

f1 = f(x+
h

4
, y) (4.86)

f2 = f(x+
h

2
, y) (4.87)

f3 = f(x+ h, y) (4.88)
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Chapter 5

COMPARISON OF MULTIPLICATIVE AND

ORDINARY RUNGE-KUTTA METHODS

5.1 Comparison of the solutions for y∗ = ex and y′ = xy

Let us consider the followingfirst order multiplicative differential equation:

y∗(x) = ex (5.1)

with the initial condition y(0) = 1.

The analytic solution of this multiplicative differential equation is

y(x) = e
x2

2 (5.2)

The corresponding ordinary differential equation to the multiplicative differential equa-

tion (5.1) is

y′(x) = xy (5.3)

with the initial condition y(0) = 1 and has the exact solution

y′(x) = e
x2

2 (5.4)

Firstly we will solve the multiplicative differential equation by using the 2. order mul-

tiplicative Runge Kutta method and the 3. order multiplicative Runge Kutta method.

Thus we can compare these two methods. After that we will solve the corresponding

differential equation with the 3. order ordinary Runge Kutta method in order to com-

pare the multiplicative Runge Kutta method with the ordinary Runge Kutta method.

Now let us solve the multiplicative differential equation by using the 2. order multi-

plicative Runge Kutta method.
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Solution of the multiplicative differential equation for n = 20;

x y(x) yapp(x) relativeError

0.5 1.1331484530668263 1.1331484530668259 4.44089× 10−16

1 1.6487212707001282 1.648721270700128 1.11022× 10−16

1.5 3.080216848918031 3.080216848918032 2.22045× 10−16

Table 5.1: Second order Multiplicative Runge-Kutta method for y∗ = ex for n = 20

Then let us solve the multiplicative differential equation by using the 3. order multi-

plicative Runge Kutta method.

Solution of the multiplicative differential equation for n = 20;

x y(x) yapp(x) relativeError

0.5 1.1331484530668263 1.1331484530668252 9.99201× 10−16

1 1.6487212707001282 1.6487212707001269 7.77156× 10−16

1.5 3.080216848918031 3.0802168489180297 4.44089× 10−16

Table 5.2: Third order Multiplicative Runge-Kutta method for y∗ = ex for n = 20

We will solve the equation (5.3) by using both the 3. order Runge-Kutta method and

the equation (5.1) by using the 3. order multiplicative Runge-Kutta method. Then we

will compare the two methods.

The solution of the multiplicative differential equation (5.1) and the solution of the

ordinary differential equation (5.3) for the stepsize n = 5 can be approximated as

shown in the tables below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 5;
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x y(x) yapp(x) relativeError

0.4 1.0832870676749586 1.0832870676749584 1.11022× 10−16

1.2 2.054433210643888 2.054433210643888 0

2 7.38905609893065 7.389056098930651 2.22045× 10−16

Table 5.3: Third order Multiplicative Runge-Kutta method for y∗ = ex for n = 5

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.1: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 5

Solution of the ordinary differential equation for n = 5;
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x y(x) yapp(x) relativeError

0.4 1.0832870676749586 1.0842666666666667 0.000904284

1.2 2.054433210643888 2.056653084150746 0.00108053

2 7.38905609893065 7.333859624050335 0.00747003

Table 5.4: Third order Ordinary Runge-Kutta method for y′ = x · y for n = 5

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.2: Graphs of Ordinary Runge Kutta Method and the exact function for n = 5

The solution of the multiplicative differential equation (5.1) and the solution of the

ordinary differential equation (5.3) for the stepsize n = 20 can be approximated as

shown in the tables below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 20;
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x y(x) yapp(x) relativeError

0.5 1.1331484530668263 1.1331484530668252 9.99201× 10−16

1 1.6487212707001282 1.6487212707001269 7.77156× 10−16

1.5 3.080216848918031 3.0802168489180297 4.44089× 10−16

Table 5.5: Third order Multiplicative Runge-Kutta method for y∗ = ex for n = 20

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.3: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 20

Solution of the ordinary differential equation for n = 20;
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x y(x) yapp(x) relativeError

0.5 1.1331484530668263 1.133170632741277 0.0000195735

1 1.6487212707001282 1.648770678050206 0.0000299671

1.5 3.080216848918031 3.0802067308712733 3.28485× 10−6

Table 5.6: Third order Ordinary Runge-Kutta method for y′ = x · y for n = 20

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.4: Graphs of Ordinary Runge Kutta Method and the exact function for n = 20

From the tables above and the graphs below we can see the solutions and the error

terms of the Multiplicative Runge Kutta Method and the Ordinary Runge Kutta Method

respectively. It can be easily seen that the error terms for the Multiplicative Runge

Kutta method are much more smaller than the Ordinary Runge Kutta method. Thus

we see that the multiplicative Runge-Kutta method gives us better solutions than the

ordinary Runge-Kutta method.
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Figure 5.5: Error of Multiplicative Runge Kutta Method for the multiplicative Differ-

ential Equation y∗ = ex for n = 20
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Figure 5.6: Error of Ordinary Runge Kutta Method for the ordinary Differential Equa-

tion y′ = y · x for n = 20

We will solve the equation (5.3) by using both the 4. order Runge-Kutta method and

the equation (5.1) by using the 4. order multiplicative Runge-Kutta method. Then we

will compare the two methods.

The solution of the multiplicative differential equation (5.1) and the solution of the

ordinary differential equation (5.3) for the stepsize n = 5 can be approximated as

shown in the tables below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 5;
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x y(x) yapp(x) relativeError

0.4 1.0832870676749586 1.0832870676749584 1.11022× 10−16

1.2 2.054433210643888 2.054433210643888 0

2 7.38905609893065 7.389056098930652 4.44089× 10−16

Table 5.7: Fourth order Multiplicative Runge-Kutta method for y∗ = ex for n = 5

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.7: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 5

Solution of the ordinary differential equation for n = 5;
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x y(x) yapp(x) relativeError

0.4 1.0832870676749586 1.0832853333333334 1.601× 10−6

1.2 2.054433210643888 2.0542093568120414 0.000108961

2 7.38905609893065 7.378697008955188 0.00140195

Table 5.8: Fourth order Ordinary Runge-Kutta method for y′ = x · y for n = 5

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.8: Graphs of Ordinary Runge Kutta Method and the exact function for n = 5

The solution of the multiplicative differential equation (5.1) and the solution of the

ordinary differential equation (5.3) for the stepsize n = 20 can be approximated as

shown in the tables below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 20;
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x y(x) yapp(x) relativeError

0.5 1.1331484530668263 1.133148453066826 2.22045× 10−16

1 1.6487212707001282 1.648721270700127 6.66134× 10−16

1.5 3.080216848918031 3.0802168489180306 2.22045× 10−16

Table 5.9: Fourth order Multiplicative Runge-Kutta method for y∗ = ex for n = 20

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.9: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 20

Solution of the ordinary differential equation for n = 20;
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x y(x) yapp(x) relativeError

0.5 1.1331484530668263 1.1331484461175372 6.13273× 10−9

1 1.6487212707001282 1.6487210070533964 1.5991× 10−7

1.5 3.080216848918031 3.080212170663906 1.51881× 10−6

Table 5.10: Fourth order Ordinary Runge-Kutta method for y′ = x · y for n = 20

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.10: Graphs of Ordinary Runge Kutta Method and the exact function for n =

20

From the tables above and the graphs below we can see the solutions and the error

terms of the Multiplicative Runge Kutta Method and the Ordinary Runge Kutta Method

respectively. It can be easily seen that the error terms for the Multiplicative Runge

Kutta method are much more smaller than the Ordinary Runge Kutta method. Thus

we see that the multiplicative Runge-Kutta method gives us better solutions than the

ordinary Runge-Kutta method.
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Figure 5.11: Error of Multiplicative Runge Kutta Method for the multiplicative Differ-

ential Equation y∗ = ex for n = 20
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Figure 5.12: Error of Ordinary Runge Kutta Method for the ordinary Differential Equa-

tion y′ = y · x for n = 20

5.2 Comparison of the solutions for y∗(x) = x and y′ = y lnx

Let us consider thefollowing first order multiplicative differential equation:

y∗(x) = x (5.5)

with the initial condition y(1) = 1
e
.

The analytic solution of this multiplicative differential equation is

y(x) = e−x+x lnx (5.6)
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The corresponding ordinary differential equation to the multiplicative differential equa-

tion (5.5) is

y′(x) = y · lnx (5.7)

with the with the initial condition y(1) = 1
e

and has the exact solution

y(x) = e−x+x lnx (5.8)

We will solve the equation (5.7) by using both the 3. order Runge-Kutta method and

the equation (5.5) by using the 3. order multiplicative Runge-Kutta method. Then we

will compare the two methods.

The solution of the multiplicative differential equation (5.5) and the ordinary differen-

tial equation (5.7) for the stepsize n = 5 can be approximated as shown in the table

below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 5;

x y(x) yapp(x) relativeError

1.2 0.3748556982078111 0.37475184543817724 0.000277047

1.6 0.428273104098778 0.4280060496647132 0.000623561

2 0.5413411329464507 0.5408909831593566 0.000831546

Table 5.11: Third order Multiplicative Runge-Kutta method for y∗ = x for n = 5

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.13: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 5

Solution of the ordinary differential equation for n = 5;

x y(x) yapp(x) relativeError

1.2 0.3748556982078111 0.3748754427165159 0.0000526723

1.6 0.428273104098778 0.4283203482273432 0.000110313

2 0.5413411329464507 0.5414096914455724 0.000126646

Table 5.12: Third order Ordinary Runge-Kutta method for y′ = y · lnx for n = 5

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the multiplicative Runge

Kutta method.
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Figure 5.14: Graphs of ordinary Runge Kutta Method and the exact function for n = 5

The solution of the multiplicative differential equation (5.5) and the solution of the

ordinary differential equation (5.7) for the stepsize n = 20 can be approximated as

shown in the tables below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 20;

x y(x) yapp(x) relativeError

1.2 0.3748556982078111 0.37484919138006406 0.0000173582

1.5 0.40991627894186006 0.4099020478612443 0.000034717

1.8 0.4761682584008 0.4761462166507683 0.0000462898

Table 5.13: Third order Multiplicative Runge-Kutta method for y∗ = x for n = 20

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.15: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 20

Solution of the ordinary differential equation for n = 20;

x y(x) yapp(x) relativeError

1.2 0.37485569820781106 0.3748560197578324 8.57797× 10−7

1.5 0.40991627894186006 0.4099169684952071 1.68218× 10−6

1.8 0.4761682584008 0.47616927139158094 2.12738× 10−6

Table 5.14: Third order Ordinary Runge-Kutta method for y′ = y · lnx for n = 20

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.16: Graphs of ordinary Runge Kutta Method and the exact function for n = 20

From the tables above and the graphs below we can see the solutions and the error

terms of the Multiplicative Runge Kutta Method and the Ordinary Runge Kutta Method

respectively. It can be easily seen that the error terms for the Multiplicative Runge

Kutta method are bigger than the Ordinary Runge Kutta method. Thus we can say

that the ordinary Runge-Kutta method gives us better solutions than the multiplicative

Runge-Kutta method.
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Figure 5.17: Error of Multiplicative Runge Kutta Method for the multiplicative Differ-

ential Equation y∗ = x for n = 20
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Figure 5.18: Error of Ordinary Runge Kutta Method for the ordinary Differential Equa-

tion y′ = y · lnx for n = 20

We will solve the equation (5.7) by using both the 4. order Runge-Kutta method and

the equation (5.5) by using the 4. order multiplicative Runge-Kutta method. Then we

will compare the two methods.

The solution of the multiplicative differential equation (5.5) and the ordinary differen-

tial equation (5.7) for the stepsize n = 5 can be approximated as shown in the table

below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 5;

x y(x) yapp(x) relativeError

1.2 0.37485569820781106 0.37483204529157416 0.0000630987

1.6 0.42827310409877 0.42821161528361407 0.000143574

2 0.5413411329464507 0.5412368065244385 0.000192718

Table 5.15: Fourth order Multiplicative Runge-Kutta method for y∗ = x for n = 5

The graph below shows the solutions of the multiplicative Runge Kutta method and

41



the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.19: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 5

Solution of the ordinary differential equation for n = 5;

x y(x) yapp(x) relativeError

1.2 0.37485569820781106 0.37485550990836036 5.02325× 10−7

1.6 0.428273104098778 0.4282726718524416 1.00928× 10−6

2 0.5413411329464507 0.5413402321041269 1.66409× 10−6

Table 5.16: Fourth order Ordinary Runge-Kutta method for y′ = y · lnx for n = 5

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the multiplicative Runge

Kutta method.

42



1.2 1.4 1.6 1.8 2.0

0.45

0.50

Figure 5.20: Graphs of ordinary Runge Kutta Method and the exact function for n = 5

The solution of the multiplicative differential equation (5.5) and the solution of the

ordinary differential equation (5.7) for the stepsize n = 20 can be approximated as

shown in the tables below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 20;

x y(x) yapp(x) relativeError

1.2 0.37485569820781106 0.37485410855784085 4.2407× 10−6

1.5 0.40991627894186006 0.4099127948624892 8.49949× 10−6

1.8 0.4761682584008 0.47616285449291723 0.0000113487

Table 5.17: Fourth order Multiplicative Runge-Kutta method for y∗ = x for n = 20

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.21: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 20

Solution of the ordinary differential equation for n = 20;

x y(x) yapp(x) relativeError

1.2 0.37485569820781106 0.3748556975066363 1.87052× 10−9

1.5 0.40991627894186006 0.4099162776195715 3.22575× 10−9

1.8 0.4761682584008 0.47616825630261755 4.40639× 10−9

Table 5.18: Fourth order Ordinary Runge-Kutta method for y′ = y · lnx for n = 20

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.22: Graphs of ordinary Runge Kutta Method and the exact function for n = 20

From the tables above and the graphs below we can see the solutions and the error terms

of the Multiplicative Runge Kutta Method and the Ordinary Runge Kutta Method re-

spectively. From the tables we can see that the error terms for the Multiplicative Runge

Kutta method are bigger than the error termsof the Ordinary Runge Kutta method.

Thus we may say that for these differential equations the ordinary Runge-Kutta method

gives us better solutions than the multiplicative Runge-Kutta method.

1.2 1.4 1.6 1.8 2.0

2. ´ 10-6

4. ´ 10-6

6. ´ 10-6

8. ´ 10-6

0.00001

0.000012

Figure 5.23: Error of Multiplicative Runge Kutta Method for the multiplicative Differ-

ential Equation y∗ = x for n = 20
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Figure 5.24: Error of Ordinary Runge Kutta Method for the ordinary Differential Equa-

tion y′ = y · lnx for n = 20

5.3 Comparison of the solutions of y∗(x) = ee
x and y′(x) = y · ex

Let us consider thefollowing first order multiplicative differential equation:

y∗(x) = ee
x

(5.9)

with the initial condition y(1) = ee.

The analytic solution of this multiplicative differential equation is

y(x) = ee
x

(5.10)

The corresponding ordinary differential equation to the multiplicative differential equa-

tion (5.9) is

y′(x) = y · ex (5.11)

with the with the initial condition y(1) = ee and has the exact solution

y(x) = ee
x

(5.12)

We will solve the equation (5.11) by using both the 3. order Runge-Kutta method and

the equation (5.9) by using the 3. order multiplicative Runge-Kutta method. Then we

will compare the two methods.
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The solutions of the multiplicative differential equation (5.9) and the ordinary differen-

tial equation (5.11) for the stepsize n = 5 can be approximated as shown in the tables

below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 5;

x y(x) yapp(x) relativeError

1.2 27.66358487147661 27.69133311043913 0.00100306

1.6 141.6037160767467 142.13185001915915 0.00372966

2 1618.1779919126539 1630.8177152360943 0.00781108

Table 5.19: Third order Multiplicative Runge-Kutta method for y∗ = ee
x for n = 5

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.25: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 5

Solution of the ordinary differential equation for n = 5;
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x y(x) yapp(x) relativeError

1.2 27.66358487147661 27.576062817833574 0.0031638

1.6 141.6037160767467 138.40303324232684 0.0226031

2 1618.1779919126539 1469.4957622022841 0.0918825

Table 5.20: Third order Ordinary Runge-Kutta method for y′ = y · ex for n = 5

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.26: Graphs of ordinary Runge Kutta Method and the exact function for n = 5

The solutions of the multiplicative differential equation (5.9) and the ordinary differ-

ential equation (5.11) for the stepsize n = 20 can be approximated as shown in the

tables below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 20;

48



x y(x) yapp(x) relativeError

1.2 27.66358487147661 27.665319133748163 0.0000626912

1.5 88.38383317988601 88.40006923569248 0.000183699

1.8 423.96354146031155 424.11068505523303 0.000347067

Table 5.21: Third order Multiplicative Runge-Kutta method for y∗ = ee
x for n = 20

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.27: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 20

Solution of the ordinary differential equation for n = 20;

49



x y(x) yapp(x) relativeError

1.2 27.663584871476584 27.661661133964927 0.0000695404

1.5 88.38383317988601 88.35158860087355 0.000364824

1.8 423.96354146031155 423.4046262192472 0.00131831

Table 5.22: Third order Ordinary Runge-Kutta method for y′ = y · ex for n = 20

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.28: Graphs of ordinary Runge Kutta Method and the exact function for n = 20

From the tables above and the graphs below we can see the solutions and the error

terms of the Multiplicative Runge Kutta Method and the Ordinary Runge Kutta Method

respectively. We can see that the error terms for the Multiplicative Runge Kutta method

are smaller than the error terms of the ordinary Runge Kutta method, but they do not

differ too much. Thus we see that the multiplicative Runge-Kutta method gives us

nearly the same solutions with the ordinary Runge-Kutta method.
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Figure 5.29: Error of Multiplicative Runge Kutta Method for the multiplicative Differ-

ential Equation y∗ = ee
x for n = 20
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Figure 5.30: Error of Ordinary Runge Kutta Method for the ordinary Differential Equa-

tion y′ = y · ex for n = 20

We will solve the equation (5.11) by using both the 4. order Runge-Kutta method and

the equation (5.9) by using the 4. order multiplicative Runge-Kutta method. Then we

will compare the two methods.

The solutions of the multiplicative differential equation (5.9) and the ordinary differen-

tial equation (5.11) for the stepsize n = 5 can be approximated as shown in the tables

below. We can summarize the results in tabular form as follows:
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Solution of the multiplicative differential equation for n = 5;

x y(x) yapp(x) relativeError

1.2 27.663584871476584 27.670868503135402 0.000263293

1.6 141.6037160767467 141.74220684986398 0.000978017

2 1618.1779919126539 1621.4875022572264 0.00204521

Table 5.23: Fourth order Multiplicative Runge-Kutta method for y∗ = ee
x for n = 5

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.31: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 5

Solution of the ordinary differential equation for n = 5;
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x y(x) yapp(x) relativeError

1.2 27.663584871476584 27.651967340911646 0.000419958

1.6 141.6037160767467 141.06227795051333 0.00382362

2 1618.1779919126539 1583.5193053670557 0.0214183

Table 5.24: Fourth order Ordinary Runge-Kutta method for y′ = y · ex for n = 5

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.32: Graphs of ordinary Runge Kutta Method and the exact function for n = 5

The solutions of the multiplicative differential equation (5.9) and the ordinary differ-

ential equation (5.11) for the stepsize n = 20 can be approximated as shown in the

tables below. We can summarize the results in tabular form as follows:

Solution of the multiplicative differential equation for n = 20;
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x y(x) yapp(x) relativeError

1.2 27.663584871476584 27.664023856314973 0.0000158687

1.5 88.38383317988601 88.38794274302002 0.0000464968

1.8 423.96354146031155 424.000783202918 0.0000878419

Table 5.25: Fourth order Multiplicative Runge-Kutta method for y∗ = ee
x for n = 20

The graph below shows the solutions of the multiplicative Runge Kutta method and

the exact function, where the dotted graph represents the solutions of the multiplicative

Runge Kutta method.
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Figure 5.33: Graphs of multiplicative Runge Kutta Method and the exact function for

n = 20

Solution of the ordinary differential equation for n = 20;
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x y(x) yapp(x) relativeError

1.2 27.663584871476584 27.663519449581884 2.36491× 10−6

1.5 88.38383317988601 88.38252069967844 0.0000148498

1.8 423.96354146031155 423.93491979511384 0.0000675097

Table 5.26: Fourth order Ordinary Runge-Kutta method for y′ = y · ex for n = 20

The graph below shows the solutions of the ordinary Runge Kutta method and the exact

function, where the dotted graph represents the solutions of the ordinary Runge Kutta

method.
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Figure 5.34: Graphs of ordinary Runge Kutta Method and the exact function for n = 20

From the tables above and the graphs below we can see the solutions and the error

terms of the multiplicative Runge Kutta Method and the ordinary Runge Kutta Method

respectively. It can be easily seen that for n = 5 the error terms for the Multiplica-

tive Runge Kutta method are better than the error terms of the ordinary Runge Kutta

method. For n = 20 the error terms are nearly the same. Thus we see that the solu-

tions of the multiplicative Runge-Kutta method are the same with the solutions of the

ordinary Runge-Kutta method.
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Figure 5.35: Error of Multiplicative Runge Kutta Method for the multiplicative Differ-

ential Equation y∗ = ee
x for n = 20
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Figure 5.36: Error of Ordinary Runge Kutta Method for the ordinary Differential Equa-

tion y′ = y · ex for n = 20
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Chapter 6

MULTIPLICATIVE FINITE DIFFERENCE

METHODS

The starting point for the multiplicative finite difference method is the multiplicative

Taylor Theorem. Multiplicative Taylor theorem can be given as follows:

Theorem 5 (Multiplicative Taylor Theorem). Let f be a (n+1)-times *differentiable

function on (a,b). Assume that x0 ∈ [a, b]. Then, for every x ∈ [a, b], x 6= x0, there

exists a point x1 between x and x0 such that

f(x) = f(x0)
n∏
k=1

(f ∗(k)(x0))
(x−x0)

k

(k)! (f ∗(n+1)(x1))
(x−x0)

(n+1)
(n+1)! (6.1)

By using the equation (6.1), the multiplicative Taylor expansion of f(x + h) can be

found as follows:

f(x+ h) =
∞∏
n=0

[f ∗(n)(x)]
hn

n! (6.2)

By using the equation (6.2), the first few terms of forward and backward expansion

with h will be:

f(x± h) = f(x) · [f ∗(x)]±h · [f ∗∗(x)]
h2

2! · [f ∗∗∗(x)]±
h3

3! · [f ∗(4)(x)]
h4

4! · . . . (6.3)

In order to find the first order multiplicative derivative we need to divide the forward

expansion to the backward expansion and then reorder the terms. Thus the first order

multiplicative derivative will be:

f ∗(x) =

(
f(x+ h)

f(x− h)

) 1
2h

·
∞∏
n=1

(f ∗(2n+1)(x))−
h2n

(2n+ 1)!
(6.4)
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The second order multiplicative derivative will be found by multiplying the forward

expansion with the backward expansion, which is given as follows:

f ∗∗(x) =

(
f(x+ h)f(x− h)

f(x)2

) 1
h2

·
∞∏
n=1

(f ∗(2n+2)(x))−
2h2n

(2n+ 2)!
(6.5)

By deleting the remainder terms from the first order and the second order multiplicative

derivative formulas, we can obtain the multiplicative finite difference method for the

second order multiplicative differential equation in the form:

f ∗∗(x) = g(x, f, f ∗), f(a) = α, f(b) = β (6.6)

Suppose that we have an interval [a, b], and it is partitioned by the points a = x0, x1, x2,

. . . , xn+1 = b. The points need not to be equally spaced, for simplicity we assume that

they are equally spaced such that

xi = a+ ih, 0 ≤ i ≤ n+ 1, h =
b− a
n+ 1

(6.7)

Equation (6.6) in discrete case will be:[
fi+1fi−1
f 2
i

] 1
h2

= g

(
xi, fi,

(
fi+1

fi−1

) 1
2h

)
f0 = α

fn+1 = β.

In order to simplify the method we can take the natural logarithm and get:

1

h2
[ki+1 + ki−1 − 2ki] = φ

(
xi, ki,

1

2h
(ki+1 − ki−1)

)
k0 = lnα

kn+1 = ln β.

where

ki = ln fi and φ

(
xi, ki,

1

2h
(ki+1 − ki−1)

)
= ln

[
g

(
xi, fi,

(
fi+1

fi−1

) 1
2h

)]
(6.8)

6.1 Error Analysis for the Multiplicative Finite Difference Method

Let us assume that themain contribution to the error comes from the lowest order mul-

tiplicative derivative in the error term, then the error term of the first multiplicative
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derivative can be approximated as follows:

E(f ∗(x)) ≈
(
|f ∗(3)(x)|∗

)−h2

3! (6.9)

where | · |∗ represents the multiplicative absolute value function which can be given as

|x|∗ =


x for x ≥ 1

1
x

for x < 1

(6.10)

Analogously the error term of the second order multiplicative derivative can be ap-

proximated by applying the same idea, such that

E(f ∗∗(x)) ≈
(
|f ∗(4)(x)|∗

)−h2

12 (6.11)

As we discussed before f(x) is a positive function. Since we know that the exponential

function is a positive function, by using the relation between the multiplicative deriva-

tive and the ordinary derivative (2.3), and recalling that the invariant function under the

multiplicative derivative is exp(exp(x)), we can make the ansatz f(x) = exp(y(x)),

where y(x) is a real-valued function. Thus the multiplicative derivatives of f can be

written in terms of ordinary derivatives of y as:

f ∗(n)(x) = exp {(ln ◦ exp(y(x)))n(x)} = exp {y(x)n(x)} (6.12)

Thus the error terms for the first and second order multiplicative derivatives can be

simplified as:

E(f ∗(x)) ≈ (f ∗(3)(x))−
h2

3! = exp
{
−h

2

3!
y(3)(x)

}
(6.13)

E(f ∗∗(x)) ≈ (f ∗(4)(x))−
h2

12 = exp
{
−h

2

12
y(4)(x)

}
(6.14)

According to those error terms, we can say that if y(x) is a polynomial of degree n,

for n < 3 we get an exact approximation for the first multiplicative derivative and for

n < 4 we get an exact approximation for the second multiplicative derivative.
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Chapter 7

MATHEMATICA PROGRAMS FOR RUNGE

KUTTA METHODS

7.1 Ordinary Runge Kutta Order 2

Runge!a0_, b0_, Α_, m0_" :"
Module#$a " a0, b " b0, j, m " m0%,
h "

b # a

m
;

Y " X " Table!0, $m $ 1%";
X&1' " a;
Y&1' " Α;
For# j " 1, j % m, j$$,

k1 " N(h f(X&j', Y&j'));
k2 " N#h f#X&j' $ h

2
, Y&j' $ k1

2
**;

Y&j$1' " N(Y&j' $ k2);
X&j$1' " N!a $ h j"; *;

Return!Transpose!$X, Y%"" *
f!x_, y_" " x & y;
Print!"Find numerical solutions to the D.E."";
Print!"y’ " ", f!x, y" ";+n " 20;, +pts1 " Runge!0, 2, 1, n";, +Y1 " Y;,+Print!"The Runge#Kutta solution for y’ " ", f!x, y"";,+Print!"Using n " ", n $ 1, " points."";, +Print!pts1";, +Print!""";,+Print!"The final value is y+20, " ", yn$1, " " ", Y&n $ 1'";,

Figure 7.1: 2. order Ordinary Runge Kutta Method Program
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7.2 Ordinary Runge Kutta Order 3

Runge!a0_, b0_, Α_, m0_" :"
Module#$a " a0, b " b0, j, m " m0%,
h "

b # a

m
;

Y " X " Table!0, $m $ 1%";
X&1' " a;
Y&1' " Α;
For# j " 1, j % m, j$$,

k1 " N( h f(X&j', Y&j'));
k2 " N#h f#X&j' $ h

2
, Y&j' $ k1

2
**;

k3 " N(h f(X&j' $ h, Y&j' # k1 $ 2 k2));
Y&j$1' " N#Y&j' $ 1

6
+k1 $ 4 k2 $ k3,*;

X&j$1' " N!a $ h j"; *;
Return!Transpose!$X, Y%"" *

f!x_, y_" " x & y;
Print!"Find numerical solutions to the D.E."";
Print!"y’ " ", f!x, y" ";+n " 20;, +pts1 " Runge!0, 2, 1, n";, +Y1 " Y;,+Print!"The Runge#Kutta solution for y’ " ", f!x, y"";,+Print!"Using n " ", n $ 1, " points."";, +Print!pts1";, +Print!""";,+Print!"The final value is y+20, " ", yn$1, " " ", Y&n $ 1'";,

Figure 7.2: 3. order Ordinary Runge Kutta Method Program
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7.3 Ordinary Runge Kutta Order 4

Runge!a0_, b0_, Α_, m0_" :"
Module#$a " a0, b " b0, j, m " m0%,
h "

b # a

m
;

Y " X " Table!0, $m $ 1%";
X&1' " a;
Y&1' " Α;
For# j " 1, j % m, j$$,

k1 " N( h f(X&j', Y&j'));
k2 " N#h f#X&j' $ h

2
, Y&j' $ k1

2
**;

k3 " N#h f#X&j' $ h

2
, Y&j' $ k2

2
**;

k4 " N(h f(X&j' $ h, Y&j' $ k3));
Y&j$1' " N#Y&j' $ 1

6
+k1 $ 2 k2 $ 2 k3 $ k4,*;

X&j$1' " N! a $ h j"; *;
Return!Transpose!$X, Y%"" *

f!x_, y_" " x & y;
Print!"Find numerical solutions to the D.E."";
Print!"y’ " ", f!x, y" ";+n " 20;, +pts1 " Runge!0, 2, 1, n";, +Y1 " Y;,+Print!"The Runge#Kutta solution for y’ " ", f!x, y"";,+Print!"Using n " ", n $ 1, " points."";, +Print!pts1";, +Print!""";,+Print!"The final value is y+20, " ", yn$1, " " ", Y&n $ 1'";,

Figure 7.3: 4. order Ordinary Runge Kutta Method Program
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7.4 Multiplicative Runge Kutta Order 2

Runge!a0_, b0_, Α_, m0_" :"
Module#$a " a0, b " b0, k " Α, m " m0%,
h "

b # a

m
;

Y " X " Table!0, $m $ 1%";
X!!1"" " a;
Y!!1"" " k;
For& j " 1, j % m, j$$,

Y!!j$1"" " Y!!j"" & f&X!!j"", Y!!j""'h(2 & f&X!!j"" $ h, Y!!j""'h(2;
X!!j$1"" " a $ h j;';

Return!Transpose!$X, Y%"" )
f!x_, y_" " 'x;
Print!"Find numerical solutions to the D.E."";
Print!"y& " ", f!x, y" ";*n " 20;+ *pts1 " Runge!0.0, 2.0, 1.0, n";+*Y1 " Y;+*Print!"The Runge#Kutta solution for y& " ", f!x, y"";+*Print!"Using n " ", n $ 1, " points."";+ *Print!pts1";+ *Print!""";+*Print!"The final value is y*20+ " ", yn$1, " " ", Y!!n $ 1""";+

Figure 7.4: 2. order Multiplicative Runge Kutta Method Program

63



7.5 Multiplicative Runge Kutta Order 3

Runge!a0_, b0_, Α_, m0_" :"
Module#$a " a0, b " b0, k " Α, m " m0%,
h "

b # a

m
;

Y " X " Table!0, $m $ 1%";
X!!1"" " a;
Y!!1"" " k;

For# j " 1, j % m, j$$,

k1 " N!f! X!!j"", Y!!j"""";
k2 " N# f#X!!j"" $ h

2
, Y!!j""&&;

k3 " N#f#X!!j"" $ h, Y!!j"" & k1 #Log!k2"Log!k1" h
& k2h&&;

Y!!j $ 1"" " N#Y!!j"" ' k1 h

3 & k2
h

3 & k3
h

3 &;
X!!j $ 1"" " N!a $ h j";&;

Return!Transpose!$X, Y%"" &
f!x_, y_" " Exp!x";
Print!"Find numerical solutions to the D.E."";
Print!"y' " ", f!x, y" ";'n " 20;( 'pts1 " Runge!0.0, 2.0, 1.0, n";('Y1 " Y;('Print!"The Runge#Kutta solution for y' " ", f!x, y"";('Print!"Using n " ", n $ 1, " points."";( 'Print!pts1";( 'Print!""";('Print!"The final value is y'20( " ", yn$1, " " ", Y!!n $ 1""";(

Figure 7.5: 3. order Multiplicative Runge Kutta Method Program
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7.6 Runge Kutta Order 4

Runge!a0_, b0_, Α_, m0_" :"
Module#$a " a0, b " b0, k " Α, m " m0%,
h "

b # a

m
;

Y " X " Table!0, $m $ 1%";
X!!1"" " a;
Y!!1"" " k;

For# j " 1, j % m, j$$,

k1 " N!f! X!!j"", Y!!j"""";
k2 " N#f#X!!j"" $ h

4
, Y!!j""&&;

k3 " N#f#X!!j"" $ h

2
, Y!!j""&&;

k4 " N!f!X!!j"" $ h, Y!!j"""";
Y!!j $ 1"" " N#Y!!j"" & k1 h

12 & k2
h

3 & k3
h

3 & k4
h

4 &;
X!!j $ 1"" " N!a $ h j";&;

Return!Transpose!$X, Y%"" &
f!x_, y_" " 'x;
Print!"Find numerical solutions to the D.E."";
Print!"y( " ", f!x, y" ";'n " 20;( 'pts1 " Runge!0, 2.0, 1, n";('Y1 " Y;('Print!"The Runge#Kutta solution for y( " ", f!x, y"";('Print!"Using n " ", n $ 1, " points."";( 'Print!pts1";( 'Print!""";('Print!"The final value is y'20( " ", yn$1, " " ", Y!!n $ 1""";(

Figure 7.6: 4. order Multiplicative Runge Kutta Method Program
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CONCLUSION

In this thesis, we have discussed a new kind of calculus which is called the Multiplica-

tive Calculus. The definition of the derivative is given in terms of the multiplicative

calculus and by using the new definition of the derivative multiplicative Taylor series

and the multiplicative chain rule are defined. After that by combining these definitions

Multiplicative Runge-Kutta methods of order 2,3, and 4 are developed. Also Ordinary

Runge-Kutta methods are discussed. Thus by using both the ordinary Runge-Kutta

methods and the multiplicative Runge-Kutta methods some differential equations are

solved. Thus we had the chance to compare these two methods. At the end we see that

the multiplicative Runge-Kutta methods gives better results than the ordinary Runge-

Kutta methods if the solutions of the differential equations are of exponential nature.
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