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ABSTRACT 

Recently digital imaging devices are used in many applications and they often suffer 

from some degradation, such as noise, blurring, aliasing effects, and more due to 

environment limitations. Captured images are mostly not of favorable quality and 

need to be enhanced by software. One of the significant reasons of the performance 

degradations for most methods is the presence of noise. Noise removal, therefore, is 

one of the most important tools for many applications. In this thesis, we focus on this 

issue as one of the main important problem of image processing. 

We discuss about the various sources of noise corrupting image and illustrate the 

statistical behavior of noise and discuss about how to eliminate the effects of the 

noise from our images.  

The classic kernel regression (KR) is a statistical framework that enables us to regard 

a variety of image restoration problems as regression, and it has a few beneficial 

properties instead of other regression methods. We have modified the classic kernel 

regression (KR) with steering matrices which are estimated by the singular value 

decomposition of the second derivatives of pixels that we apply, which makes our  

method relying not only the spatial properties (the sample location and density), but 

also the photometric properties of these samples (i.e., pixel value). Thus, the 

effective size and shape of the regression kernel are adapted locally to the underlying 

image structure. 
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Steering kernel regression (SKR) method has been shown to provide excellent 

denoising result. Steering kernels adapt to the local pixel intensity statistics and 

geometry. SKR employs the gradient for finding the structure of local region by 

applying the first order structure tensor, but in this work we propose to use an 

adaptive kernel, which is based on the second derivative of pixels and find the 

structure tensor of hessian matrix (which related to the second derivative) for each 

pixel to make the structure tensor more robust in the face of noise to maintain the 

image details. Since edges in an image have significant profile, we apply second 

derivative because gradient produces thick edges while second order derivative 

(Laplacian) produces finer edges also magnitude of gradient can be used to detect 

presence of edge at point, but sign of second derivative can be used to determine 

whether edge pixel itself lies on the dark or bright side of edges. The motivation 

behind structure tensor is a fact that image contains directional structure such as 

edges and the motivation behind second derivative is to obtain finer edges.  

Quantitative and perceptual evaluations from simulations have been shown that 

proposed framework indicates an average PSNR improvement compared to other 

framework, and compared with the conventional SKR method an average 0.3 dB 

PSNR increase is obtained. Comparisons show the superiority of this method over 

other descriptors.  

 

 Keywords: Denoising, kernel function, kernel regression, Steering matrix, Taylor 

series, structure tensor. 
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ÖZ 

Görüntü alma aygıtları birçok uygulamada sıkça kullanılmaktadır. Bu aygıtlar 

aracılığı ile elde edilen gürültü, görüntüler, bulandırma, frekans örtüşmesi ve daha 

birçok etken tarafından olumsuz yönde etkilenmektedirler. Bu nedenle elde edilen 

görüntülerin tasarlanacak algoritmalar tarafından iyileştirilmesi gerekmektedir. En 

önemli olumsuz etken ise, gürültüdür.  

 

Gürültünün temizlenmesi çoğu uygulama için büyük önem arzetmektedir. Bu tezde 

görüntülerde gürültü temizleme konusu incelenecektir. Görüntüleri kötüleştiren 

değişik gürültü çeşitleri tartışıldıktan sonra klasik temizleme yöntemleri sunulacaktır. 

  

Istatistiksel bir çerçeve olan klasik çekirdek regresyon birçok görüntü işleme 

uygulaması için önemli bir enstrümandır. Bu tezde klasik çekirdek regresyon 

yöntemini yönlü çekirdek regresyon için uyarlanmıştır. Yön matrisleri ikinci türev 

kullanılarak tekil değer çözümlemesi ile hesaplanmıştır. Önerilen yöntem  hem 

piksellerin hem koordinatlarını hemde şiddetlerini dikkate almaktadır. Bu şekilde 

regresyon çekirdeği yerel olarak görüntünün yapısına uyarlanmaktadır. Yönlü 

çekirdek regresyon yönteminin gürültü temizlemede çok başarılı sonuçlar verdiği 

gösterilmiştir.  

 

Yön çekirdekleri  pixel  geometri ve değerlerine uyarlanmıştır. Klasik yönlü çekirdek 

regresyonun birinci türevi kullanmaktadır. Bu çalışmada ise piksellerin ikinci türevi 

kullanılmış ve Hession matrisi aracılığı ile pikselin yapısal niteliği gürültüye karşı 

daha sağlam hale getirilmiştir.Bu yöntemle detay bilgiler, kenarlar daha iyi ifade 
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edilmiştir. Kenar bölgelerde birinci türev daha kalın bir profil yaratmakta, ikinci 

türev ise daha ince bir profil vermektedir. Birinci türevinbüyüklüğü kenar bölgesi 

olup olmadığını ifade etmektedir. İkinci türevin işareti kenar pikselinin parlak veya 

koyu bölgede olup olmadığını da vermektedir.  

 

Sayısal kıyaslamalar önerilen yöntemin klasik yönlü çekirdek regresyona kıyasla 

ortalama 0.3 dB iyileştirme sağladığı yönündedir. Görsel kıyaslamalar da 

iyileştirmeyi doğrular niteliktedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anahtar kelimeler: Gürültünün temizlenmesi, çekirdek regresyon, gergi yapısı, 

taylor serısi, yönledırme matrısi. 
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Chapter 1 

1. INTRODUCTION 

1.1 Introduction 

Image denoising is the algorithm to find a clean image, given a noisy one. Usually, it 

is supposed that the noisy image is the sum of an underlying clean image and a noise 

component shown in Figure 1.1. Hence image denoising is a decomposition problem: 

The task is to decompose a noisy image into a clean image and a noise component. 

 There are several ways of such decompositions. One is interested in finding an 

acceptable clean image, given a noisy one. The notion of acceptable image is not 

clearly described, but the idea is that the denoised (cleaned) image must be similar to 

the original clean image. The notion of acceptable image therefore, involves prior 

knowledge, without prior information, image denoising would be impossible. 

              
                 (a) Noisy               =                 (b) Clean           +           (c) Noise 

Figure ‎1.1: A noisy image is the summation of noise and clean image. 

In this figure (a) is the noisy image, (b) is the clean image and (c) is the noise that 

added to the image. 
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Typical images are corrupted with noise modeled with either a Gaussian, exponential 

or salt and pepper distributions. The other noise is a speckle noise, which is 

multiplicative in nature. The presence of noise in an image is either in an additive or 

multiplicative form. 

An additive noise follows the rule:  

                                                                                                                        

When the multiplicative noise satisfies: 

                                                                                                                        

where        is the original image,        denotes the noise introduced into the 

image to produce the corrupted image        , and (    ) represents the pixel 

location. The above image algebra is done at pixel level. 

The sources and types of noise are related to the physical measurement. Noise 

usually comes from a source that is different from the one to be measured such as 

read-out noise in digital cameras, but sometimes it is because of the measurement 

process itself like photon shot noise [1].  

Sometimes, noise might be because of the mathematical manipulation of an image, 

as is the case in image deconvolution or image compression. Often, a measurement is 

corrupted by several sources of noise, and it is usually difficult to determine fully all 

of them. Always, noise is the undesirable part of the image. Ideally, one seeks to 

decrease noise by manipulating the signal acquisition process, but when such a 

modification is impossible, denoising algorithms are required. 
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1.2 Various Types of Noises 

1.2.1 Gaussian Noise 

 Gaussian noise is coherently distributed over the signal [1]. This describes that each 

pixel in the noisy image is the sum of the true pixel value and a random Gaussian 

distributed noise value. As the name demonstrates, this type of noise has a Gaussian 

distribution, which has a bell shaped probability distribution, Figure 1.2 exhibit the 

Gaussian noise with different variances. As the name indicates, this type of noise has 

a Gaussian distribution, which has a bell shaped probability distribution function 

given by: 

                                                               
 

     
                                                   

where   represents the gray level,   is the mean or average of the function, and σ is 

the standard deviation of the noise. 

 
    (a) (Mean=0, variance 0.05)                                      (b) (Mean=1.5, variance 10) 

Figure ‎1.2: (a) and (b) are two different Gaussian noises 

1.2.2 Speckle Noise 

 This noise called as a multiplicative noise. This type of noise passes in almost all 

coherent imaging tactics such as laser, acoustics and SAR (Synthetic Aperture 

Radar) imagery. The source of this noise is attributed to random interference among 
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the coherent returns. Fully developed speckle noise has the characteristic of 

multiplicative noise [2]. Speckle noise follows a gamma distribution and is given as: 

                                                          
    

        
    

 
                                               

where variance is     and   is the gray level. 

We show an image with speckle noise (variance 0.05) in Figure 1.3. 

 

 

 

 

 

 

  

                                                         Figure ‎1.3: Speckle noise 

Figure ‎1.3: Speckle noise 

1.2.3 Rician Noise 

Magnetic resonance images are usually contorted by Rician noise [3]. In MRI data, 

each pixel consists of a complex number. For viewing MRI data, the absolute value 

of each complex number is appropriated. If the real and imaginary parts of these 

complex numbers are Gaussian-distributed and independent (with the same 

variance), the absolute value is Rician-distributed. Similarly to the Poisson 

distribution, the Rician distribution can be well approximated with a Gaussian 

distribution, for higher mean values. The Rician Noise Generator block generates 

Rician distributed noise. The Rician probability density function is given by: 
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where σ is the standard deviation of the Gaussian distribution that underlies the 

Rician distribution noise and    =   
 +  

 , where    and    are the mean values 

of two independent Gaussian components. 

1.2.4 Other Kinds of Noise 

 The types of noise possibly corrupting images are too numerous to list in this work. 

Other types of noise are salt and pepper, speckle noise, Brownian noise and so on. 

We are mostly interested in digital images, but images taken with analog cameras are 

also affected by noise, such as film grain. Physical degradation of old photographs 

such as daguerreotypes also causes a variety of artifacts, such as scratches. In this 

work we use additive WGN with different standard deviations. 

1.3 Evaluating Denoising Results: 

1.3.1 PSNR 

 The most commonly used metric for image quality determination is the peak signal 

to noise ratio (    ), which is a full-reference metric and calculated between two 

images    and    as follows: 

                                                        
   

           
                                              

where,      refers to the root mean-square error between the main image and the 

reconstructed image and     equal to maximum possible pixel value of the images 

(255 for 8-bit images). 

                                                 
 

  
       

    
  

 

   

 

   

                                                

      refers to the root mean square error between the main image and the 

reconstructed image (         PSNR is possibly the simplest of all image quality 

metrics. however, higher dB values tend to correlate with higher visual similarity 
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between the two images x and y. Although, higher dB values do not all along 

indicate higher visual similarity, which is why expansive task has been put into 

detecting alternative metrics. 

  
(a) Clean image                                            (b) PSNR: 14.16 dB 

Figure ‎1.4: Test image Lena. Corrupted with additive white Gaussian (AWG) 

standard deviation of noise = 50, PSNR shows the quality of image and this case is 

very low for noisy image. (a) Clean image (b) Noisy image 

1.3.2 Other Image Quality Assessment:  

Some image quality assessment aim to exploit known characteristics of the human 

visual system. The structural similarity index (SSIM) [4] is a comprehensive 

reference image quality assessment which divides the performance of similarity 

measurement into three factors: (a) luminance, (b) contrast, and (c) structure. Among 

other substances, the SSIM takes into account that the human visual system is 

sensitive to relative differences in luminance, rather than to absolute changes in 

luminance. The SSIM is a measure that is smaller or equal to 1. The measure is equal 

to 1 unique if the two images being compared are identical. 

Other full-reference image quality assessments involve the information-content 

weighted PSNR (IW-PSNR [6]), information fidelity criterion (IFC [8]) and the 

visual image information (VIF [7]).Variants of the SSIM involve a multi-scale 

extension (MS-SSIM [5]) and the information-content weighted SSIM (IW-SSIM 
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[6]). No-reference image quality assessments involve DIIVINE [9], CBIQ [10]. 

Some other types of these measurements that we use rarely are LBIQ [11], BLIINDS 

[12], BRISQUE [13], and BIQI [14]. Many techniques can be used to capture 

deviations from the probable information of natural images, where these differences 

can be measured in various techniques. The PSNR is still the de facto standard in 

image denoising, however the SSIM is also sometimes utilized. 

1.4 Thesis Description 

In this thesis we mainly concentrate on the denoising problem as we have illustrated 

above with some kinds of noise and some filtering algorithms. One type of filtering 

is local filtering that we modifying in chapter three. The main contribution of this 

thesis is to describe and propose the kernel regression framework as an effective tool 

even for irregularly spaced samples. Kernel regression is known as a nonparametric 

approach that requires minimal assumptions, and hence the framework is one of the 

suitable approaches to the regression problem. 

We modified the SKR method by using the Hessian matrix instead of gradient matrix 

and finding the structure tensor of the Hessian that makes the contours more accurate 

at the edges compared to the structure tensor of the gradient matrix.  

The content of this thesis have been organized as follow. We discuss classic kernel 

regression in Chapter 2 and we expand it to our proposed adaptive kernel regression 

in Chapter 3. Chapter 4 provides details about simulation and the results are 

compared, with the state of the art algorithms. Chapter 5 pertains to conclusion of the 

thesis and future work. 
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Chapter 2 

2. FILTERING AND KERNEL REGRESSION APPROACH 

2.1 Mean Filter 

Mean filter [1] behaves on an image by smoothing it which decreases the intensity 

variation between neighborhood pixels. The mean filter is nothing but an efficient 

sliding window spatial filter that swaps the center value in the window with the 

average of all the neighboring pixels values involving it. By performing this, it 

replaces pixels, which are unrepresentative of their surroundings. It is applied with a 

convolution mask, which grants a result that is a weighted sum of the values of a 

pixel and its neighbors. 

It is also identified a linear filter, the mask or kernel is a square. Often a 3×3 square 

kernel is utilized. If the coefficients of the mask sum up to one, then the average 

brightness of the image is not changed. If the coefficients sum to zero, the average 

brightness is lost, and it returns a dark image. The mean or average filter behaves on 

the shift-multiply-sum principle.                                                         

                                                         

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

 
 
 
 
   

                              Figure ‎2.1: A constant weight 3×3 filter mask 
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Measuring the perspicuous convolution of an image with this kernel carries out the 

mean filtering process. It is consequential when the noise in the image is of 

impulsive type. 

2.2 Median Filter 

A median filter belongs to the class of nonlinear filters opposite the mean filter. The 

median filter likewise follows the moving window principle analogous to the mean 

filter. A 3×3, 5×5, or 7×7 kernel of pixels is scanned over pixel matrix of the entire 

image. The median of the pixels values in the window is measured, and then center 

pixel of the window is replaced with the quantized median. Median filtering is done 

by, first classifying all the pixel values from the surrounding neighborhood into 

numerical order and then swapping the pixel being considered with the middle pixel 

value. Note that the median value must be written to a separate array or buffer so that 

the outcomes are not distorted as the process is performed. We show the 

methodology as: 

 

                                                      

1 1 2 5 4

3 3 2 1 3

4 4 5 1 0

5 1 1 2 3

0 0 2 1 3

 
 
 
 
 
 
 
    

Figure ‎2.2: A 3×3 Median filter with median value equal to three. 

The median is more robust compared to the mean. Hence, a single very 

unrepresentative pixel in a neighborhood will not affect the median value 

significantly. Since the median value must actually be the value of one of the pixels 

in the neighborhood, the median filter does not create new unreal pixel values when 

the filter straddles an edge [15]. 
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2.3 Nonparametric Kernel Regression in 1-D 

We have two methods for image processing, classical parametric method that relies 

on a particular model of signal and compute the parameters of the model in the 

presence of noise, and other one is totally in contrast to the parametric methods,     

non –parametric methods relies on just data to dictate the structure of the model, in 

which case this explicit model is called a regression function [16]. This method is 

used frequently for pattern detection and discrimination problems [17].  

There are many concepts that are related to general framework indicated under 

diverse names such as bilateral filter, normalized convolution [18][19], edge-directed 

interpolation [20],  and moving least-squares [21].  

At first we threat the 1-D case where the measured data is given by: 

                                                                                              

where      is the (unknown) regression function, y
i
 is noisy sample, xiis position of 

samples, p is number of samples in local analysis window and    is independent and 

identically distributed (IID) zero mean noise value.       describes the intensity of 

the pixel of location    in a non-parametric manner. This regression function depends 

on the pixel intensities of neighboring pixels around a uniform or nonuniform grid. 

This kernel regression provides point wise estimation with minimal assumptions 

about global signal or noise models. It should be mentioned that we estimate the 

regression function      by using Taylor series in local window and finding the 

polynomial bases of regression function at that window, we find the actual clean 

signal and the n-th derivatives of the signal of location   . 
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2.4  Mathematical Estimation for finding Kernel Regression 

 Because the specific form of      (may remain unspecified), we assume that it is 

locally smooth to some order N, then to find the value of the function at any point x 

given the data, we can rely on a generic local expansion of the function near this 

point. Particularly, if the position of interest x is near sample at    then we have      

N-term Taylor series: 

                       
 

  
                

 

  
                 2.2   

                                                                                     

where   =    ,   =      and   is the n-th derivative of the function, now if we use 

the Taylor series as local representation of the regression function, by estimating the 

parameter     can yield the desired estimate of the regression function based on the 

data. Indeed the local approximation can be built upon bases other than polynomials 

[3]. The parameters            will provide localized n-th derivatives of the 

regression function. 

Because of the local approximation, we estimate the parameters            from 

the data by giving the nearby samples higher weight than samples placed farther 

away. By using a least-squares theory we can capture this idea and we can find 

           by optimization problem: (2.4) 

                          
  

                             
 

   

            
 

 
  

      

 
                                                                  

We defined the kernel function K (·) in order to penalize the distance away from the 

local position where the approximation is centered, h is smoothing parameter also 
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called bandwidth controls the strength of this penalty. We can choose such functions:  

such as Gaussian, exponential, or other forms [3] as our kernel. 

If we choose N=0, local linear filter is obtained, which is known as the         

Nadaraya-Watson Estimator (NWE) [22]. The form of this estimator is given below: 

                                                   
          

     

          
   

                                                         

where 

                                                     
 

 
  

    

 
                                                          

where h is a smoothing parameter for our kernel (K). This is the simplest filter for 

kernel regression method. As we increase the order, our local approximation become 

so complex, although increasing the order has effect that mentioned at [3][12]. 

 In general, lower order approximates, such as NWE, consequence in smoother 

signals (large bias and small variance) as there are fewer degrees of freedom. On the 

other hand over-fitting occurs in regressions using higher orders of approximation, 

approaching in small bias and large estimation variance.  

2.5 Nonparametric Kernel Regression In 2-D 

Analogous to the 1-D case in (2.1), the data model in 2-D is measured by: 

                                                                                 
                      

where    is noisy sample at a sampling position    , (       ) are spatial coordinates, 

z(·) is regression function that we want to estimate,    is IID zero mean noise, p 

number of pixels that allocated in an arbitrary window around position x of interest 

as shown in Figure 2.3. 
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                                         (a)                                              (b) 

Figure ‎2.3: Data model for 2-D kernel regression [23], (a) a regularly sampled data 

set and (b) a horizontal cross section of the equivalent kernels of orders N = 0, 1, 2 

 Local representation of the regression function with Taylor series (up to N order) is 

given by: 

                          
 

 
                                         )  

                      
 

 
                                            

where   and   are gradient (2×1) and Hessian (2×2) operators, respectively, and 

vec(·) is the vectorization operator, which lexicographically orders a matrix into a 

column-stack vector. Denoting vech(·) as the half-vectorization operator of the 

“lower triangular” part of a symmetric matrix like equation below: 

                               

         

         

         

                        
                             

And supposing the symmetry of the Hessian matrix, the local representation in (2.9) 

is simplified to: 

                       
          

                                              

Comparison of (2.11) and (2.9) suggests that    is the pixel value of interest, and the 

vectors    and    are the first and second derivatives, respectively. 
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As in the case of univariate data, the    ’s are calculated from the following 

optimization problem:  

   
  

           
          

                    
 

   

                                                                                       

with 

                                       
 

      
                                                      

where k is the 2-D kernel function, H is the 2×2 smoothing matrix, We can rewrite 

(2.15) as weighted least squares optimization problem: 

                                                                                                      ) 

where 

                             
  

           
         

    

                                    

  

 
 
 
 
                               

                               
    
                                

 
 
 

 

with “diag” defining a diagonal matrix. Using the notation above, the optimization 

(2.17) provides the weighted least square estimator as: 

                                                                                                                           ) 

With equation (2.18) we can find the estimate of the image (    which is the desired 

and the n-the derivatives of z(·)(desired image or denoise image), just by 
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premultiplied equation (2.18) with column vectors           depend on the purpose of 

estimation. where    is a column vector with the first element equal to one, and the 

rest equal to zero and    is a column vector with the second element equal to one, 

and the rest equal to zero. 

This kernel function is bounded to be only a function of the spatial locations    and  

 , this formulation where only locator is used to find the kernel is known as 

(classical, or not data-adaptive) kernel regression in the nonparametric statistics 

literature.  

In order to estimate the similarity of two pixels, in general, we can naturally employ 

both the spatial distance (Δx) and the gray level distance (Δz). The simplest way to 

incorporate the two distances is the Euclidean distance between points. However, a 

much more consequential way to combine the two distances (Δ’s) is to define a 

“signal-induced" distance [23] which basically stands for a distance between the 

points calculated along the shortest path on the signal manifold (geodesic distance). 

where a geodesic is a path of shortest distance between two points. 

 

In Figure 2.4 we show all kinds of distances that we mentioned before, z axis shows 

the gray-level distance and x axis shows the spatial distance. 

It is also noteworthy that, classic kernel regression works based on the spatial 

distance, bilateral and non-local means filter work based on the Euclidean distance 

and Steering kernel regression works base on the geodesic distance, this thesis our 

kernel also uses geodesic distance. 
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Figure ‎2.4: Showing the different distances between two pixels [26] 

Classic kernel regression estimates the pixel      by the combination of neighboring 

samples with linear weights, thus, the effective size and shape of the regression 

kernel are not adapted locally to image feature such as edges, Figure 2.5 shows the 

effect of this kernel. 

 

 
Figure ‎2.5: Applying the classic kernel regression to a local edge [26] 
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Chapter 3 

3.   PROPOSED SKR ALGORITHM VIA LOCAL LAPLACIAN 

This proposed algorithm has three main parts: calculating the local Laplacian for 

each pixel in local window, creating the steering matrices with local Laplacian that 

we measured in part one and finding the structure tensor for each pixel, and creating 

the steering kernel from that steering matrix and after that we do iteration to suppress 

the effect of noise.  

At each iteration we decrease the noise up to give the minimum MSE and then finish  

the iteration. The preference of this method compared to similar algorithms is to 

create the sharper image denoising which makes sharper edges and less blurred 

image . This chapter will cover each of these steps and algorithm behind them. This 

chapter starts with a short preface about finding adaptive kernels. 

3.1 Locally Data-Adaptive Kernels 

In the previous chapter we discussed about classic kernel regression which is based 

on the spatial distance between pixels, however, data-adaptive kernel regression 

relies not only on the spatial aspects (the sample ground and density), but also the 

photometric aspects of these samples (i.e., pixel values). Thus, the consequential size 

and form of the regression kernel are changed locally to image features.  

Figure 3.1 shows a desired property of such a regression kernel when kernel is placed 

at the edges.  
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Figure ‎3.1: Kernel spread in a uniformly sampled data set. (a) Kernels in the classic 

method (b) Data-adapted kernels. 

From Figure 3.1 we understand that by using classic kernel regression the contours 

have same shapes all over the image, but local adaptive kernel converts the contour 

shapes similar to the underlying image. 

Therefore, the data-adaptive kernel suppresses noise while preserving local image 

structures. Locally Data-Adaptive Kernels (LARK) is structured similarly to (2.15) 

as an optimization problem given as below: 

               
  

           
          

                         
 

   
  

                                                                                              

where the        depends on the spatial sample coordinates   ’s and density as well 

as the photometric values    of the data. If we want to compare with classic kernel, 

adaptive kernel penalize, the spatial and photometric distance away from the local 

position where the approximation is centered. 
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3.2 Some Kinds of Locally Adaptive Filter 

3.2.1 Bilateral Filter 

The Bilateral filter proposed by Tomasi and Manduchi [24] [25] is ordinary choice of 

the adaptive kernel is used to suppress additive noise from images.  

 This adaptive kernel is to use separate terms for penalizing the spatial “distance” 

between the pixel position of interest x and its neighboring pixel positions {   }, and 

the photometric “distance” between the pixel of interest y and its neighbors {   }. 

                                        
          

                                               

where k is the Gaussian kernel function and    is the spatial smoothing scalar and 

  is the photometric smoothing scalar. The kernel functions are expressed as: 

                 
       

 

         
    

     
           

    
         

 
          

              
       

 

         
    

     
           

    
         

 
           

It is clear in the Figure 3.2 the photometric kernel (b) capture local structure of image 

consequentially with applying the    
       to the local patches and get high 

weight to the similar pixel intensity and low weight to the different pixel intensity 

between the pixel of interest y and its neighbors {  } and spatial distance kernel 

   
       panelizing the spatial distance between the pixel position of interest x 

and its neighboring pixel positions {  }. 
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 × = 

      *   

             (a)                 (b) Pixel similarity     (c) Spatial similarity    (d) Bilateral kernel 

Figure ‎3.2: Applying Bilateral kernels in separate way. (a) Sample image                

(b) Photometric kernel (c) Spatial distance kernel (d) Bilateral kernel 

 In this case if we have strong noise then our result is not Satisfactory, modified 

version of bilateral filter is Susan filter [25] proposed by Michel Elad which excludes 

the center pixel from the estimates. 

3.2.2 Non-Local Means (NL-Means) Filter 

NL-means filter [26] [27], presented by Buades.et.al, is based on the natural 

redundancy of data in images. It is because of the fact that every small window in a 

natural image has many similar windows in the same image. The exclusivity of this 

filter is that the similarity of pixels has been more robust to noise by using a region 

comparison, rather than pixel comparison and also that matching patterns are not 

restricted to be local. That is, the pixels far away from the pixel being filtered are not 

penalized. 

                                           
          

                                      

where     is related to the patches instead of the pixels. And makes more smoothing 

effect compared by Bilateral filter. 

It is clear from Figure3.3 the photometric kernel (b), captures the local structure of 

the image consequentially by applying the    
       to the image and get high 

weight to similar patches intensity and low weight to different patch intensity 

between the pixel of interest { } and its neighbors and pixel {  } and its neighbors 
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and spatial distance kernel    
       panelizing the spatial distance between the 

pixel position of interest { } and its neighboring pixel positions {   }. 

     

 

 × = 

 

 

       (a)                 (b) Patch similarity    (c) Spatial similarity       (d) NLM kernel 

Figure ‎3.3: Applying NLM kernels in separate way. (a) Sample image                     

(b) Photometric kernel (c) Spatial distance kernel (d) NLM kernel 

3.3 Proposed Steering Kernel 

The filtering mechanism that we design next takes the data-adaptive idea one step 

further, based upon the introductory nonparametric framework. In particular, we 

observe that the result of calculating the photometric kernel,    
(    ) in (3.2) is to 

indirectly measure a function of the local gradient estimated between neighboring 

pixels and to use this estimate to weight the respective computations. H. Takeda [41] 

use gradient to find the first order structure tensor to estimate the steering kernel 

parameter but in this framework we use hessian matrix to find second order tensor to 

estimate the steering kernel parameter.  

We use the second order classic kernel regression method for estimate of the image 

gradient of each pixel. Next, this estimate is used to approximate the dominant 

orientation of the local gradients in the image [28]. In a second filtering stage, this 

orientation details is then used to adaptively “steer” the local kernel, resulting in 

elongated contours expand along the directions of the local edge shape. 
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The SKR kernel function takes the form: 

                                                 
                                                          

where   
     ’s are present the data-dependent complete (2×2) matrices which is 

called steering matrix or structure tensor. We indicate them as: 

                                                            
            

                                                                

where again   and    are the global smoothing parameter and the local agglomeration 

parameter, respectively, and    is (symmetric) steering matrix based on variations in 

the local gray-values. 

Actually    capture the both spatial and photometric distance for regression function 

and it makes the shape to steer at local window. The distance that involves 

photometric and spatial distance together is called geodesic distance. Now, if we 

select a Gaussian kernel, i.e. plugging the steering matrix (3.5) into Gaussian kernel 

function (2.16), the steering kernel is mathematically represented as: 

                           
            

        

      
      

                 

     
                    

For finding the unknown pixel   , the SKR (steering kernel) function takes all the 

steering matrices (  
     ) of the neighboring pixels (  ) around the position of 

interest x into account, and so, the steering kernel is not simply elliptic but it grants 

us weights that fit the local image structures more flexibly. 

In the proposed method instead of using gradient for finding the structure of the local 

edges we use Laplacian to create the second order structure tensor for each pixel to 

finding    for each pixel. In this case we got the more accurate weights and the 

steering matrix become more flexible to shape of the edges and details.  
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An estimate of this second order structure tensor may be obtained as follows: 

                                                                 
                                                                            

where    is a stack of Laplacian vectors in a local analysis window. 

                       
  

              

  

                                                       

        and         are second derivatives along   (vertical) and    (horizontal) 

directions. The dominant local orientation of the Laplacians is then related to the 

eigenvectors of this estimated matrix. 

For having a more convenient form of the steering matrix (second order structure 

tensor), our steering matrix can be decomposed into three components related to 

eigenvalue decomposition as follows: 

                                                               
      

                                                              

where    
 is the rotation matrix ,    is the elongation matrix and    is scaling 

parameter. 

                                                 
  

          

           
                                                           

                                                                

   

 
 

  

                                                                

  
Figure ‎3.4: Effects of three components on the size of the regression kernel. 
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Figure 3.4 is a schematic representation showing the effects of the steering matrix 

and its elements on the size and shape of the KR footprint. 

The Hessian matrix as derived from the second order Taylor series expansion can be 

used to describe the second structure tensor around a point. For giving more 

information about the structure tensor and comparison of the different order tensor 

we refer to R.D.Kriz [44] and [45] which compare the effect of order structure 

tensor. 

The second structure tensor matrix (metric tensor) given by three parameters  

   ,     and    which are scaling, elongation and rotation parameters, respectively. 

Following the work in [28], the dominant orientation of the local Laplacian field is 

the singular vector related to the smallest (nonzero) singular value of the local 

Laplacian matrix   . 

              
  

              

  

         
     

   
   

                                   

where       
  is the compacted singular value decomposition of     , and    is a 

diagonal (2×2) matrix outlining the energy in the dominant directions. Then, the 

second column of the (2×2) orthogonal matrix     ,    = [   ,    ]T , describes the 

dominant orientation angle    as: 

                                                             
   

   
                                                                

The singular vector related to the smallest nonzero singular value    of    forms the 

dominant orientation of the local Laplacian field. 
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The elongation parameter    can be scaled due to the power of the dominant 

Laplacian direction as shown below: 

                                                           
     

     
                                                                      

where      is a regularization parameter [32] for the kernel elongation, which dampens 

the effect of the noise and limits the ratio from becoming degenerate.  

At the end we defined the scaling parameter by: 

                                                           
        

 
                                                              

where λ ′′ is again a “regularization” parameter, which dampens the effect of the 

noise and preserves    from becoming zero, M is the number of samples in the local 

analysis window, and    is the structure sensitivity parameter.  

This parameter changes size of the contours in kernels, depend on the area, in texture 

areas it become small and in smooth region it become big. We use these references 

for calculating this parameter [28] [29] [30]. 

The regularization parameters λ ′ and λ ′′ are used to prohibit the shape of the kernel 

from becoming infinitely narrow and long. In practice, it suffices to keep these 

numbers reasonably small, and, therefore, in all experiments in this proposed 

method, we fixed their values equal to λ ′ = 1.0 and λ ′′ = 0.01, respectively. 

The structure sensitivity   (typically 0 ≤   ≤ 0.5) controls how strongly the size of 

the kernel is affected by the local structure. The product of the singular values 

indicates the amount of energy of the local signal structure: the larger the product, 

the stronger and the more complex the local structure is. A large   is preferable 

when the given signal carries severe noise. 
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  Each pixel in this framework has the specific structure tensor which is based on the 

elongation, rotation and scaling parameters. In Table 3.1 we want to compare these 

parameters by using the first order structure tensor and second order structure tensor 

for the specific pixels in our image. We select four random pixels in Lena image and 

define               as pixel position where (       ) are spatial coordinates. Note 

that the above numbers related to first order structure tensor and the below numbers 

related to second order structure tensor in each block of this table and all of these 

parameters is computed at the first iteration of both SKR (first order structure tensor) 

and proposed (second order structure tensor) methods. 

Table 3.1: Quantitative comparison of the different structure tensor parameters 

Pixel 

position(  ) 
Scaling(   

) Rotation(   
  Elongation(   

  

(126,175) 
1.54 

1.71 

0.71 

0.72 

16.11 

23.35 

(50,3) 
1.25 

1.79 

0.69 

.0.68 

13.98 

24.60 

(38,75) 3.20 

3.82 

0.05 

0.06 

14.76 

21.99 

(250,55) 
1.57 

1.95 

0.94 

0.93 

13.81 

23.04 

 

With respect to the Table 3.1 we realize that by using the second order structure 

tensor, the elongation     
  has increased significantly and due to this, the kernel 

becomes stretched. The scaling parameter (   
) has increased and result in attenuate 

the kernels shape. On the other hand comparing the rotation parameter (   
  we 

understand that the orientation of the kernel become stable. As an indeed estimate 

Figure 3.4 and Table 3.1 suggest that using the second order structure tensor does the 

image structure more accurately.   
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When we find the second order structure tensor (    for each pixel, we can built the 

adaptive steering kernel with equation (3.8) by applying the equation (2.18) for 

finding polynomial matrix (b) and using    
      instead of     at diag (k), we can 

find the estimate of the image (    wich is desire for us and the n-the derivatives of  

   (·), just by premultiplied equation (2.18) with column vectors           depend on 

the desired estimation. 

Figure 3.5 shows the Block diagram representation of the proposed method, part (a) 

is Initialization step to find direct Laplacian and use it for finding the second order 

structure tensor from the second derivative of x direction and y direction in hessian 

matrix, part (b) is the Iteration to decrease the noise [31], in this block diagram L is 

the number of iteration and    (.) is the output denoise image and y is the noisy image. 

                                                                                                          

Y      
   

   
   

    
   

  

   Noisy data      (1) 

    

                                                          (a) 

 

    
   

   
     

                           
     

                                                
     

                     

                                                                                                                             

              

 

                                                                  (b) 

Figure ‎3.5: Block diagram representation of the proposed method. 

Initial 

Laplacian Est. 

Smoothing 

matrix Est. 

SKR with 

Laplacian 

Smoothing 

matrix Est. 

 

SKR with 

Laplacian 
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The difference between this framework and SKR is the order of the structure tensor, 

SKR uses first order structure tensor that makes the edges smooth and be more 

intensity to the noise in local patches, but by using the second order tensor, these 

effects are decreased. A good choice for    (structure tensor) will effectively spread 

the kernel function along the local edges, as shown in Figure 3.1 (b). We will see the 

effects of these changes at next part in objective and subjective comparison between 

this framework to other algorithms.  
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Chapter 4 

4. SIMULATIONS AND RESULTS  

In this chapter, we demonstrate the proposed algorithm result over the sample images 

by using Matlab platform. In this work we use three spatial filters to compare 

quantitatively and visually these filters. We use bilateral, non local means, SKR 

method to compare whit our proposed method. 

 

To show the quantitative performance PSNR measurement is used. We add white 

Gaussian noise with different standard deviation to compare our result. Note that in 

all experiments in this thesis we used Gaussian type kernel functions [33]. 

 

As the test set, we used some of the standard gray-scale images commonly known as: 

Barbara, Boat, Cameraman, Parrot, Stream, House, Lena, peppers and Man      

(Figure 4.1). In this work we use Lena, Boat, Stream and parrot images for our 

experiments. 
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Figure ‎4.1: The standard testing images used in the experiment. 

We first carried out an experiment to determine the convergence properties of the 

algorithm. Table 4.1 and Figure 4.2 present result of this experiment. We see that 

increasing the number of iterations make decreasing the variance of the 

approximation, it also caused improved bias (which known as blurriness). Therefore, 

in some iteration, a minimum MSE is captured. An example of the characteristic 

performance of (MSE) at the different number of iterations are shown in Table 4.1 

and related chart.  
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Table 4.1: Experimental performance on Lena, Boat, Stream, Parrot images and 

given MSE at each iteration of the proposed algorithm 

 

iteration 

MSE 

δ=25 

MSE 

δ=25 

MSE 

δ=25 

MSE 

δ=25 

 

Num\ Pic 

 

Lena 

 

Boat 

 

Stream 

 

Parrot 

 

1 

 

618.01 

 

610.95 

 

603.02 

 

567.1 

 

2 

 

393.06 

 

411.74 

 

454.23 

 

378.74 

 

3 

 

245.89 

 

274.03 

 

338.92 

 

261.59 

 

4 

 

123.98 

 

199.63 

 

270.18 

 

199.97 

 

5 

 

124.55 

 

155.91 

 

229.07 

 

163.89 

 

6 

 

95.78 

 

127.49 

 

203.76 

 

140.67 

 

7 

 

76.16 

 

108.30 

 

188.16 

 

125.25 

 

8 

 

62.78 

 

95.47 

 

178.95 

 

115.03 

 

9 

 

53.95 

 

87.29 

 

174.17 

 

108.75 

 

10 

 

48.49 

 

82.59 

 

172.53 

 

105.42 

 

11 

 

42.42 

 

80.52 

 

173.16 

 

104.26 

12 47.87 83.84 174.73 105.83 

13 49.87 85.62 176.62 107.76 

14 52.76 87.62 178.67 109.19 

15 57.76 89.76 182.86 111.67 

16 62.76 93.78 187.63 116.76 

17 73.47 110.57 200.57 128.85 
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Figure ‎4.2: Experimental performance on Lena, Boat, Stream, Parrot images and 

given MSE at each iteration of the proposed algorithm, X axis shows the number of 

iteration and Y axis shows the MSE value. 

 
(a) Input image         (b) 4iterations          (c) 10 iteration          (d) 17 iteration 

  (MSE = 625)             (MSE = 123)             (MSE = 48)               (MSE =73) 

Figure ‎4.3: An example of the behavior of mean square error of the iterative 

Proposed method and its estimated images at the different number of iterations. 

These experiments which have shown in the Table 4.1 illustrate that the MSE value 

decreases and at a certain number of iterations, the MSE hits bottoms, then, MSE 

start increasing and it leads to decreasing the PSNR which is not our desire. 
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In Figures 4.4 to 4.8, we show the results obtained with all four denoising algorithms 

(Bilateral filter [24] [25], Non-local Means [39], SKR filter [41] and Proposed 

method) on images Lena, Boat, Stream and Parrot with three differences (δ). 

We summarize our work by creating the table that involves five kinds of denoising 

algorithms and 3 different standard deviations. 

 

Comparisons show the superiority of this method to others especially in preserving   

the sharpness of edge regions and decreasing the artifacts in the smooth regions of 

the filtered image. 
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(a) Clean image                                                         (b) Noisy image 

                                                                                           δ=30   PSNR=18.23 

                          

(c) Bilateral filter, PSNR= 24.13 dB              (d) Non-local Means, PSNR=25.03 dB                

                          

 (e) SKR filter, PSNR=25.90 dB                      (f) Proposed method, PSNR= 26.03 dB  

Figure ‎4.4: Visual and quantitative comparison of Parrot image with δ=30  

(a) original parrot image, (b) Noise-ridden image δ=30 (c) Bilateral filter (3.2) [25], 

(d) Non-local Means (3.3) [26] [27], (e) Iterative SKR filter with number of iteration 

(N) =12 [41], (f) Proposed method with (N=12) 
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                (a) Clean image                                  (b) Noisy image (δ=25), PSNR=20.17 

                    

(c) Bilateral filter, PSNR= 29.03 dB                (d) Non-local Means, PSNR=30.12 dB 

                     

   (e) SKR filter, PSNR=31.33dB                       (f) Proposed method, PSNR=31.53dB 

Figure ‎4.5: Visual and quantitative comparison of Lena image with δ=25 

(a)Clean Lena image, (b) Noise-ridden image δ=25 (c) Bilateral filter (3.2) [25],  

(d) Non- Local Means (3.3) [26] [27], (e) Iterative SKR filter with number of 

iteration (N) =12 [41], (f) Proposed method with (N=12) 
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                 (a) Clean image                              (b) Noisy image (δ=15), PSNR=24.62 

                     

(c) Bilateral filter, PSNR= 27.89 dB                 (d) Non-local Means, PSNR=29.73dB 

                        

    (e) SKR filter, PSNR= 31.27dB                  (f) Proposed method, PSNR= 31.527dB 

Figure ‎4.6: Visual and quantitative comparison of Boat image with δ=15 

(a)Clean boat image, (b) Noise-ridden image δ=15 (c) Bilateral filter (3.2) [25],  

(d) Non-local Means (3.3) [26] [27], (e) Iterative SKR filter with number of iteration 

(N) =12 [41], (f) Proposed method with (N=12) 
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(a) Clean image                                  (b) Noisy image (δ=25), PSNR= 20.17 

                           

(c) Bilateral filter, PSNR= 23.09dB                  (d) Non-local Means, PSNR=24.18dB 

                                  
(e) SKR filter, PSNR=25.49dB                      (f) Proposed method, PSNR= 25.76dB 

Figure ‎4.7: Visual and quantitative comparison of Stream image with δ=25 

(a) Clean stream image, (b) Noisy image δ=25 (c) Bilateral filter (3.2) [25],  

(d) Non-local Means (3.3) [26] [27], (e) Iterative SKR filter with number of iteration 

(N) =12 [41], (f) Proposed method with (N=12) 
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             (a) Clean image                                                    (b) Noisy image 

          

(b) Bilateral filter                                   (d) Iterative SKR filter (N =12) 

 

                                              (e)  Proposed method (N=12) 

Figure ‎4.8: An example of WGN removal with the Lena enlarged selected regions (a) 

Clean, (b) Noisy, (c) Bilateral, (d) Iterative SKR and (e) Proposed images shown in 

(Figure 4.5) 
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Figure 4.4 (a) shows the parrot noise-ridden image with δ=30. As it is observable all 

of the edges become sharper in (f) which is the result by proposed algorithm 

compared to (c) Bilateral, (d) Non-local Means, but compare to SKR method strong 

edges and high different intensity become shaper in (f). 

In Figure 4.5 and Figure 4.6 we compare denoising method for two well-known 

bench mark images, Lena and boat. The experiments show our result is more visually 

pleasing when compared to (c), (d) and (e) which introduce artifacts in the smooth 

regions of the filtered image. The proposed method approach strongly reduces these 

artifacts. 

Figure 4.7 has many texture area and it makes subjective evaluations become 

challenging, but the proposed filter is found to be the best in filtering smooth and 

complex regions with quite little distortion and giving the best visual quality among 

all filters compared here. 

Figure 4.8 shows the enlarged selected regions of the respective images shown in 

Figure 4.5, in this case artifacts in the smooth regions of filter (c) and (d) is shown 

better and density of these artifacts are higher than compare to our proposed kernel. 

These comparisons prove that using the second order structure tensor in addition to 

performing the process more accurate to finding the edges, introduce less artifacts in 

the smooth regions of the filtered image.  
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Table 4.2 shows the denoising performance of some popular methods (Bilateral [24] 

[42], NLM [26], SKR[41], BM3D[43]) under WGN corruption, compared to 

proposed algorithm. Results noted are average PSNR with different standard 

deviations (δ), δ =15 (top), δ = 25 (middle) & δ = 50 (bottom) over 4 different 

images. 

 

Table 4.2: Denoising performance of 5 different methods 

  methods 

 

 

image 

Bilateral 

PSNR(dB) 

NLM 

PSNR(dB) 

SKR 

(12iteration) 

PSNR(dB) 

BM3D 

PSNR(dB) 

Proposed 

method 

(12iteration) 

PSNR(dB) 

Barbara 

29.87 

25.15 

22.77 

31.63 

27.97 

24.13 

32.41 

29.93 

25.96 

33.09 

30.67 

26.65 

32.72 

30.11 

26.18 

Lena 

30.68 

29.03 

25.53 

32.43 

30.12 

24.41 

33.54 

31.33 

27.94 

33.90 

31.92 

28.49 

33.71 

31.53 

28.09 

bout 

27.89 

25.43 

22.76 

29.73 

27.86 

23.15 

31.27 

29.38 

25.47 

32.11 

30.12 

26.13 

31.52 

29.61 

25.71 

House 

32.26 

30.49 

25.18 

33.17 

31.16 

26.97 

34.53 

32.51 

28.71 

34.89 

32.89 

29.25 

34.65 

32.76 

28.99 

 

The summarized of the result are observable in table. Comparing the PSNR that 

reached from this table, we can see that our proposed algorithm is operating better 

than SKR [41] with an average PSNR increase of around 0.3 dB over different 

standard deviations and images. Although the performance in the proposed algorithm 

have been improved to the SKR method but with comparing to the BM3D [43] 

algorithm we can understand this proposed algorithm is improvable.  
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Chapter 5 

5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This work is concerned with the design of a filter for the denoising algorithm. 

Introducing the SKR structure and its properties lead to present the new steering 

matrix that hold on the Laplacian of pixels. The SKR filter is motivated by Hiroyuki 

Takeda work for improving the shape of the kernel in spatial domain. In this work 

we complemented Takeda’s approach with a new method of designing. 

Considering the requirements of steering kernel regression such as gradient in X and 

Y axis and tensor structure, a new design of SKR filter via Laplacian in X and Y 

direction gives new tensor structure that adapt more complexity to the underlying 

image. This method result in sharper denoised images and increases PSNR by two or 

three percent depending on our sample image and standard deviation of the noise. 

We can use this method for other purposes of image processing such as interpolation, 

super resolution and deblurring. 

 

In order to enhance the operation of the kernel regression, we proposed a data-

adaptive alternative to the classic kernel regression approach, where we discover the 

optimal filter coefficients from not only the spatial distances between the pixel of 

interest and its neighbors but also the photometric distances (differences in pixel 
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intensity). This approach smoothed pixels along the local orientation structure. We 

generalized the bilateral filter [24] [25] by the non local mean filter [39], and 

proposed this algorithm and its iterative implementation which improves the filtering 

performance further. We showed the effectiveness of the proposed iterative 

algorithm for denoising.  

5.2 Future work 

In the future, the most important part of work which needs more investigation would 

be the model selection for choosing the kernel which penalized the spatial distance 

and photometric distance for neighboring pixels. In our work we used Gaussian 

kernel function but there are numerous choices for the kernel function K (xi −x) such 

as Epanechnikov, Biweight and triangle. By using the different kernel we approach 

the different result and optimizing this result would be finding the best choice for 

selecting the kernel. Table 5-1 shows the different choice of kernel.  

 

One other important issue that can be worked on it in future is a possibility of 

improving the performance of kernel regression by the choice of the distance metric. 

The distance metrics are classified into two types: non-adaptive and adaptive. 

Minkowski, Manhattan, and Euclidean (  ,   and   -norm, respectively) are classified 

as non-adaptive distance metrics.  

These metrics are definitely most consequential when their choice matches the 

statistical distribution of the data being treated. For example, when the data are 

corrupted by white Gaussian noise, Euclidean distance is an appropriate choice.  
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It should be noted that, in our method approach, we compute the weight values based 

on the distances between pixels measured by a data-adaptive metric. 

Table 5.1: Different choice of kernels 

 

 

 

 

 

 

 

 

 

 

 

 

name Kernel functions 

 

Epanechnikov  

 

Quartic     

(biweight) 

 

 

Triweight  

 

Gaussian  

http://en.wikipedia.org/wiki/Normal_distribution
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