
i

Multi-objective Artificial Bee Colony for Multi-

objective Quadratic Assignment Problem

Seyedreza Kazemirazi

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

July 2013

Gazimağusa, North Cyprus

ii

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master of

Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammed Salamah

 Chair, Department of Computer

 Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Ahmet Ünveren

 Supervisor

 Examining Committee

1. Asst. Prof. Dr. Adnan Acan

2. Asst. Prof. Dr. Cem Ergün

3. Asst. Prof. Dr. Ahmet Ünveren ---------------- -

iii

ABSTRACT

Optimization problems are interesting applications in engineering and they are mostly

interdisciplinary in nature. This is due to their applications to real life problems. In some

real life problems one objective function should be optimized and the aim is detecting

the best solution from all possible solutions. These problems are known as Single-

objective Optimization Problems (SO). In some other real life problems there is more

than one objective function so called Multi-objective Optimization (MO) Problems. In

MO Problems the objectives are mostly contradicting with each other. Hence, the aim is

finding a class of fittest solutions regarding to all objective functions. Solutions to MO

Problems appear in the form of a Pareto-front. The Quadratic Assignment Problem

(QAP) is to allocate a set of facilities to a set of locations. There are two issues to

consider in QAP. The first is the interaction between facilities which is indicated with a

matrix called a flow matrix and the second is the distance between facilities indicated by

a distance matrix. There is a new QAP model so called multi-objective Quadratic

Assignment Problem (mQAP). In mQAP there are multiple flow matrices but still only

one distance matrix. The desired goal of QAP is to assign the facilities to the locations

so that, the summation of products between facilities becomes minimal. It follows that,

the QAP is a Single-objective Optimization (SO) Problem and the mQAP is a Multi-

objective Optimization (MO) Problem. The Artificial Bee Colony (ABC) Algorithm is

inspired from honey bees. The ABC is an algorithm basically created to solve the SO

Problems. It is a collection of family agents of honey bees that work together to get the

job done. There are three kinds of bees and each is responsible for a different job. In this

iv

thesis ABC and MOABC have been used for the solution of QAP and mQAP

respectively. ABC and MOABC are modified for the solution of QAP and mQAP by

using some different crossover and mutation techniques with Tabu Search method. The

performance of different updating methods on ABC and MOABC Algorithms is

analyzed.

Keywords: Single-objective Optimization (SO), Multi-objective Optimization (MO),

Artificial Bee Colony Optimization (ABC), Quadratic Assignment Problem (QAP)

v

ÖZ

En iyileme problemleri mühendislikte ilginç uygulamalar olmalarına rağmen, doğal

olarak farklı disiplinler arası kullanılan problemlerdir. Bunun sebeplerinden biri gerçek

yaşam problemlerine uygulanmasıdır. Bazı gerçek yaşam problemlerinde sadece bir

amaç fonksiyonu en iyilenmek istenmektedir. Buradaki amaç mevcut problem

çözümlerinden en iyisine ulaşmaktır. Bu tip problemlere tek-amaçlı (TA) en iyileme

problemleri denilmektedir. Bazı gerçek yaşam problemleri birden çok amaçlı

olabilmektedir bunlara çok-amaçlı (ÇA) en iyileme problemleri denilmektedir. ÇA

problemlerinde hedefleri çoğunlukla birbiriyle çelişmektedir. Bundan dolayı tüm amaç

fonksiyonlarını kullanarak tek çözüm yerine en iyi olan çözümlerden oluşan bir çözüm

sınıfı oluşturmaktadır. Bu sınıfa pareto-ön denmektedir. Karesel atama problemi (KAP)

bir dizi aracı bir dizi lokasyona verilen lokasyonlar arası uzaklıklar ve araçlar arası akış

bilgileri kullanılarak atama yapma problemi olarak tanımlanır. Ayrıca çoklu karesel

atama problemlerinde mevcut olup birden çok akış bilgisi kullanılarak yapılan KAP

problemleridir. Yapay arı kolonisi (YAK) algoritması gerçek bal arılarından ilham

alınarak tek-amaçlı problemleri çözmek için tasarlanmışlardır. YAK algoritması

popülasyon tabanlı bir arama algoritması olup sürü zekasına dayalı metasezgisel

yöntemlerden birisidir. Algoritma gerçek bal arılarının yiyecek arama davranışlarını

modellemeye dayanmaktadır. Bu çalışmada YAK ve MYAK, KAP ve MYAK

algoritlamarında KAP ve MKAP problemlerinin çözümü için farklı çaprazlama ve

mutasyon teknikleri ile birlikte tabu arama algoritması kullanarak performansları

incelenmiştir.

vi

Anahtar Kelimeler: Tek-amaçlı en iyileme, çok-amaçlı en iyileme, yapay arı kolonisi

en iyileme, karasal atama problemi.

vii

Dedicated to my parents with love

viii

ACKNOWLEDGMENTS

I would like to say my most profound appreciation to my dear supervisor, Asst. Prof. Dr.

Ahmet Ünveren. His knowledge and experience has been a golden key in my research.

He did not only teach me how to research, he also taught me how to work as efficiently

as possible.

I owe special gratitude to Asst. Prof. Dr. Adnan Acan. I have learned many aspects of

research and topics related to the field of my study from him in his lectures and

meetings. The meetings he supervised during my Master’s degree together with Dr.

Ünveren, were of enormous help for me in gaining knowledge about my field. Also, I

desire to express my gratitude to all the other members of the Computer Engineering

Department, especially Assoc. Prof. Dr. Ekrem Varoğlu for his special encouragement.

He has taught me how to work under time pressure.

I am equally greatly indebted to my lovable parents for their valuable support in all parts

of life. I also owe especial thank to my brothers, sisters and other immediate relatives for

their stable persuasion.

Last, but not least, I am grateful for all backing from my friends, especially, my great

friend Ms. Gunilla Andersson. Her friendship has been and still is a great encouragement

to me and has helped me to always aim for high quality work in my academic research.

To all the persons I have mentioned I can only say thank you and in appreciation of their

support try to do the best as possible in the future.

ix

TABLE OF CONTENTS

ABSTRACT…………………………………………………...…….……………..……iii

ÖZ………………………………………………….………….…..……………...……....v

DEDICATION……………………………………………….………..…………...…...vii

ACKNOWLEDGEMENTS………………………….…………….……….….....……viii

LIST OF TABLE……………………………………………………………………….xii

LIST OF FIGURE……………………………………………………………………...xiii

1 INTRODUCTION…………………………………………………...………....………1

1.1 Optimization Problems………………………………...………...…..………….1

1.1.1 Multi-objective Optimization Problems……………..……....………3

1.1.2 Pareto-based Algorithms………………..……………..…..………...4

1.2 Memetic Algorithm (MA)………………………………………...…..………...8

1.3 Artificial Bee Colony (ABC) Algorithm……………………………..…………9

1.4 Quadratic Assignment Problem…………………….…….…..……..……...…10

2 THE INSPIRED ALGORITHM FROM HONEY BEE……..……………..…….…..14

2.1 Introduction………………………………………….….……...….……….....14

2.2 Behavior of Real Honey Bees………………………………………………...15

2.2.1 Food Sources………………...……………………………...…..........15

2.2.2 Employed Foragers………………....…………………………….......16

2.2.3 Dancing…………………………………………….…...…………….17

2.2.4 Unemployed Foragers…………………………………….….....…….17

2.3 Inspired Artificial Bee Colony (ABC) Algorithm……………………............17

x

2.4 Multi-objective Artificial Bee Colony (MOABC) Algorithm………..………20

2.4.1 Calculating Fitness Function in Multi-objective ABC Algorithm…...21

2.5 Main Steps in Multi-objective Artificial Bee Colony Optimization ……........21

2.6 Important Goals in Multi-objective Artificial Bee Colony Optimization….…22

2.6.1 Generational Distance……………………….………...……………...23

2.6.2 Spread Degree (SD)……………………….…………...………..........23

3 QUADRATIC ASSIGNMENT PROBLEM (QAP)…. …………………...…………24

3.1 Single-objective Quadratic Assignment Problem (QAP)……………...…......24

3.2 Multi-objective Quadratic Assignment Problem (mQAP)……….......……….28

4 PROPOSED ARTIFICIAL BEE COLONY ALGORITHM FOR QAP...…..……….29

4.1 Introduction……………………………….………………………...…….......29

4.2 Proposed Artificial Bee Colony (ABC) Algorithm…..………………...……..31

 4.2.1 Initialization………...…………………...………………………….....34

 4.2.2 Employed Phase…………………...……...…………………………..34

 4.2.3 Onlooker Phase……………...……………...…....................................35

 4.2.4 Crossover Phase…………...…………...……………………………...35

5 ARTIFICIAL MULTI-OBJECTIVE BEE COLONY FOR mQAP………………….37

5.1 Introduction…………………………………….……………………...….......37

5.2 Mutation Operators.……...………………………...…………………………38

5.2.1 Shift Mutation…………………………………..………….……........39

5.2.2 Swap Mutation…………………………………..………….…...........39

5.4.3 Neighbour Interchange Mutation………………………………..........40

5.4.4 Mixed Mutation………………………………...…………………….40

xi

5.3 Robust Tabu Search (RTS)……………………………………...……………41

5.4 MOABC Algorithm with Different Variations……..…………...……………42

6 EXPERIMENTAL RESULTS....………………………………………....…………..45

6.1 Results for Artificial Bee Colony Algorithm……..…..…...….…………........45

6.2 Results for Multi-objective Artificial Bee Colony Algorithm……..……........47

7 CONCLUSION……...…………………………………………………….………….53

REFERENCE………….…………...…………………………………..…..…………...54

APPENDIX……………………………………………………………………………..60

xii

LIST OF TABLES

Table 1: Results of ABC, MABC and CABC Algorithms.……………………………..46

Table 2: Standard Deviations, Best and Worst Results for Instances……….........….…46

Table 3: Position and Abbreviation of Modified MOABC Algorithms in Figures…..…47

Table 4: Benchmarks and Their Associated Pareto Fronts in Figures…………...……..48

Table 5: Comparison of Obtained Results of Modified MOABC through Metrics..…...49

xiii

LIST OF FIGURES

Figure 1: Non-dominated Solutions for Minimization Type of MO Problems…………..5

Figure 2: Pareto-optimal Front and Dominated Solutions………..………...………..…..7

Figure 3: Created Pareto Front by EC Algorithms…..…...…..…………...……………...8

Figure 4: Campus with some Facilities…….…………………..…………..…………...11

Figure 5: Flow and Distance Matrices…………………………....………………..……11

Figure 6: Possible Way of Allocating the Resources…………...………………..…..…12

Figure 7: Employed and Unemployed Bees in Search Area……..……………...…..….16

Figure 8: Figure of Waggle Dance……………………..…………………………..…...17

Figure 9: Assigning 6 Facilities in 6 Locations………………………………………....25

Figure 10: Permutation for Figure 9…………….…………………………..…………..25

Figure 11: Placement of Three Facilities to Three Locations……………..……...….....26

Figure 12: Flow and Distance Matrices………………..……………..…………………26

Figure 13: New Placement of Facilities to Locations…………………….………….....27

Figure 14: Calculating the Shipping Cost with New Assignment of Facilities……........27

Figure 15: Possible Way of Swapping the Facilities………...…………..………...……27

Figure 16: Archive Memory which Contains the Fittest Solutions so far….…..……….29

Figure 17: Standard Form of Crossover Done on Two Parents……………….……......30

Figure 18: Proposed Artificial Bee Colony Algorithm for QAP……...……………..….33

Figure 19: Proposed Crossover Operator……………..………….….……………...…..35

Figure 20: General Form of Mutation……………….…………………………….……38

Figure 21: Shift Mutation…………………..…………………………………………...39

xiv

Figure 22: Swap Mutation……………………..………………………………………..39

Figure 23: Neighbour Interchange Mutation………………………..…………………..40

Figure 24: Crowding Distance……………..……………………..…………..…………42

Figure 25: Multi-objective ABC Combined with RTS…………………..……………..44

Figure 29: Pareto Front for KC20-2fl-1uni…………………………..……...………….50

Figure 32: Pareto Front for KC30-3fl-1uni…………………………..………...…...…..51

Figure 35: Pareto Front for KC50-2fl-1uni…………………...……..………………….52

Figure 26: Pareto Front for KC10-2fl-1uni.……………...……………..………………60

Figure 27: Pareto Front for KC10-2fl-2uni………………...………..………………….60

Figure 28: Pareto Front for KC10-2fl-3uni………………..……...…………………….61

Figure 29: Pareto Front for KC20-2fl-1uni…………………….……………………….61

Figure 30: Pareto Front for KC20-2fl-2uni…………..……………...………………….62

Figure 31: Pareto Front for KC20-2fl-3uni……………..………...…………………….62

Figure 32: Pareto Front for KC30-3fl-1uni……………..………...…………………….63

Figure 33: Pareto Front for KC30-3fl-2uni……………..………...…………………….63

Figure 34: Pareto Front for KC30-3fl-3uni……………..………...…………………….64

Figure 35: Pareto Front for KC50-2fl-1uni…………………….……………………….64

Figure 36: Pareto Front for KC50-2fl-2uni…………..……………...………………….65

Figure 37: Pareto Front for KC50-2fl-3uni……………..………...…………………….65

Figure 38: Pareto Front for KC75-3fl-1uni……………..………...…………………….66

Figure 39: Pareto Front for KC75-3fl-2uni……………..………...…………………….66

Figure 40: Pareto Front for KC10-2fl-1rl……………..………...………………………67

Figure 41: Pareto Front for KC10-2fl-2rl……………..………...………………………67

xv

Figure 42: Pareto Front for KC10-2fl-3rl……………..………...………………………68

Figure 43: Pareto Front for KC10-2fl-4rl……………..………...………………………68

Figure 44: Pareto Front for KC10-2fl-5rl……………..………...………………………69

Figure 45: Pareto Front for KC20-2fl-1rl……………..………...………………………69

Figure 46: Pareto Front for KC20-2fl-2rl……………..………...………………………70

Figure 47: Pareto Front for KC20-2fl-3rl……………..………...………………………70

Figure 48: Pareto Front for KC20-2fl-4rl……………..………...………………………71

Figure 49: Pareto Front for KC20-2fl-5rl……………..………...………………………71

Figure 50: Pareto Front for KC30-3fl-1rl……………..………...………………………72

Figure 51: Pareto Front for KC30-3fl-2rl……………..………...………………………72

Figure 52: Pareto Front for KC30-3fl-3rl……………..………...………………………73

Figure 53: Pareto Front for KC50-2fl-1rl……………..………...………………………73

Figure 54: Pareto Front for KC50-2fl-2rl……………..………...………………………74

Figure 55: Pareto Front for KC50-2fl-3rl……………..………...………………………74

1

Chapter 1

INTRODUCTION

1.1 Optimization Problems

The purpose of this study is to solve the Quadratic Assignment Problem (QAP) (famous

problem in optimal sequential allocation) (Koopmans and Beckmann, 1957) by using

Artificial Bee Colony (ABC) Algorithm (D. Karaboga, 2005). Optimization problems

vary in number of objectives and variable dimension. In a specific case, it is possible to

divide optimization problems into two categories. In the first case, the target is to find

the single best objective value (Single-objective form) for the given problem. In the next

case, the objective is to find points of compromise among two or more satisfactory

objective values (Multi-objective form) that should attain simultaneously. Considering

the type of objective function in optimization problems, the goal may be to find the

maximum value or minimum values of the objective functions.

Optimization problems can be represented mathematically in continual or differentiable

function. To deal with these kind of problems there were some single point algorithm,

such as gradient decent algorithm (Morse, P. M. and Feshbach, H., 1953), to find

the closest local minimum of a function. This algorithm moves from a current point in a

direction referring to the negative of the gradient. These sorts of algorithms are able to

find solutions very quickly but with a high probability of being stuck at local optima.

2

In the late 60s and earlier 70s scientists have worked on such algorithms known as

Evolutionary Computation (EC) Algorithms (MIT Press, 1993). EC Algorithms are

suitable approximation algorithms to deal with optimization problems because of their

specific features. These kinds of algorithms are population based and are able to produce

a series of solutions in each run instead of a single solution.

Two main subclasses in EC are Evolutionary Algorithms (EAs) (Ashlock, D., 2006) and

Swarm Intelligence (SI) Algorithms (presented in the field of cellular robotic systems)

(Beni, G., Wang, J., 1989). The EAs are inspired by biological evolution and SI

Algorithms are usually inspired from nature. Both EAs and SI Algorithms are known as

population-based optimization algorithms. So far, a variety of EAs and SI Algorithms

are proposed and their aiming that, individuals cooperate and compete with each other

and tend to achieve better and better solutions in the search space. For example, in

Particle Swarm Optimization (PSO) Algorithm (Kennedy, J. and Eberhart, R. C.), a

particle is simulated according to behavior of birds flocks, and each individual is

represented by a position and a velocity. All particles (individuals) aim to get a position

through the search space to satisfy the objectives and constraints of the corresponding

particle.

In EC Algorithms, individuals (solutions) aim to improve their fitness through a

sequence of generations. Regularly, in each iteration (cycle) some updating mechanisms

work on the individuals to create new ones. This process (updating mechanism) can be

different from one population to the next one or even from one iteration to the other

ones. The goal behind the iterations is to converge the solutions’ fitness to the best form

3

as soon and as much as possible. EAs and SI Algorithms are also called meta-heuristics

algorithms, stochastic and approximation methods.

1.1.1 Multi-objective Optimization Problems

More generally, an optimization problem includes finding the best available values in

domain space. It also includes a variety of different types of objective functions. In

many cases there are more than one objective functions that should be minimized or

maximized simultaneously. These sort of problems are called Multi-objective

Optimization (MO) Problems (Coello, 1999). In addition, there are some constraints that

should be considered by the problem solver. In some cases, the constraints are equally

important and in others there may be some priority in handling the constraints.

As a simple example, suppose you need to attend an important meeting and you have to

go to another city or country to do so. Here, you are free to choose the vehicle to do it.

According to your situation (budget-wise or time-wise) you should purchase a ticket and

satisfy all restrictions (constraints) as much as possible. Should you choose the cheapest

ticket or the shortest time? Due to their contradictory nature, these two objectives cannot

be linked. Also, their relative importance may vary. There may be a business emergency

requiring you go quickly. However, maybe you are on a very tight budget. These are

some constraints you have to take into consideration and weigh up as you make your

decision, at the same time as you try to avoid any perturbation in your plan to meet the

need.

4

Over the past near decades various meta-heuristic algorithms have been designed for the

solution of MO Problems. For example: Aggregative (K.E. Parsopoulos, M. N. Vrahatis,

2002), Pareto-based (C. Lin and Y. Wang, 2007), Sub- population (Maurice C., and

James K., 2002), Lexicographic (Carlos A. Coello Coello, et al, 2002) and Hybrid

(Zhang, X.-H., et al, 2005) methods have been proposed. The Aggregative methods are

designed to work on a single objective. Therefore, the idea behind these algorithms is to

map all objectives into one objective. The Pareto-based approaches collect all good

(non-dominated) solutions during the iterations. A limited archive keeps these good

solutions and it is updated through the execution of algorithms. The Subpopulation

approaches divide the population of solution into some sub-populations (the number of

sub-populations depends on the number of objectives) and each sub-population

optimizes one objective function. Then, all sub-populations combine their solutions, by

taking some solutions from each sub-population, to get a trade-off between all

objectives. The notion behind the Lexicographic algorithms is that all objectives should

be ranked based on the priority of objectives. These algorithms aim to further improve

those objectives that are more important. The hybrid approaches attempt to cover the

drawbacks by combining two or more algorithms. Thus, they will have extra power and

are able to handle the problems by carrying more advantages with merging some

algorithms.

1.1.2 Pareto-based Algorithms

Pareto is the name of an Italian economist (Vilfredo Pareto in year 1848–1923), who

used the concept of Pareto efficiency or Pareto optimality in his studies. Pareto

5

optimality was defined as a state of economic sequence allocation of resources, and this

concept has found a place in engineering applications.

Pareto-optimal (PO) set, in which Pareto optimality is defined in terms of a dominance

relation between two solutions is given as follows: given two solutions U and V, U≠V, U

is said to dominate V if U is not worse than V in all objectives and U strictly is better

than V for at least one objective (Adnan Acan and Ahmet Ünveren, 2005). The solution

which dominates other solution (s) and where there is no any other solution to dominate

it is called a non-dominated solution. A population of non-dominated solutions creates

the Pareto-optimal set (Figure 1). In the PO set, all solutions are considered equally

important.

According to the above definition for dominated and non-dominated solutions, Figure 1

clearly divides the area for dominated and non-dominated solution. As seen in Figure 1,

solution U strictly dominates solution . This is because solution U is better than

solution in objectives and . However, solution U is better than solution only in

objective but in comparison with objective solution is better than solution U. In

this case, solution U cannot dominate solution and both are non-dominated solutions.

In Figure 1, non-dominated solutions are shown with squares and form the PO front.

𝑼

f2

f1

Pareto

𝑽𝟐

𝑽𝟏

Figure 1: Non-dominate Solutions for a Minimization Type of MO Problems

f2(v) > f2(u)

f1(v) < f1(u)

6

One main purpose in MO solvers is to extract all non-dominated solutions and preserve

them as much as possible. For keeping the non-dominated solutions a limited archive is

maintained and the idea is to save and update all non-dominated solutions found so far.

In Pareto-based methods, intensification around the Pareto-optimal front and

diversification through the objective space are two main goals. More equally, other

guidelines highlight the importance of preserving the non-dominated solutions and work

on these as a set of promising solutions. This seems to produce a better result than

working on randomly created solutions. Therefore, between all the previously mentioned

methods, the Pareto-based approach is very interesting and many researchers have

tackled this approach (Greenwald B., 1986).

A general form of minimization problems in multi-objective optimization with

constraints (Sanaz Mostaghim and J¨urgen Teich, 2005) can be defined as follows:

 () (() () ()) (1)

 u () (() () ()) (2)

 S

Here, objective functions are shown by () (() () ()) and m indicates

the number of objectives. Generally, the objectives are not commensurable with each

other. On the other hand, the minimization should be done considering all objectives at

the same time. Hence, it is expected that each solution optimizes all objectives of one

given problem. Thus, due to conflicting objectives, it is not possible for solutions to

obtain the best values in all objectives simultaneously. In other words, it is expected that

7

if a solution has the best value(s) with regard to one objective, it has worse value(s) in

other objective(s). Hence, the result should be a trade-off taking all objectives.

According to the explanation in the previous section about the dominance relation,

considering two solutions and , it can be explained as follows:

Here, is a decision vector and it can dominate another decision vector if

both following constraints are met for at least one objective i= 1, …, m.

1: is not worst than with respect to all objectives, i.e.:

 () () (3)

2: is strictly better than , at least in one objective, i.e.:

 () () (4)

Finally, a decision vector called Pareto-optimal front (Figure 2) if there exists no

other decision vector to dominate it (K. Deb, et al, 2000).

Figure 2: Pareto-optimal Front and Dominated Solutions

8

Since EC Algorithms are population-based approaches, a series of fittest solutions can

be provided per a run by these algorithms (Figure 3). Hence, they are capable to create

one Pareto front in each run and through the iteration get closer to Pareto-optimal set and

also spread the solutions through the objective space.

1.2 Memetic Algorithms (MA)

Memetic Algorithms (MAs) appeared in the late 80s (Moscato, P., 1989). The main goal

in MAs is to cover the inability of heuristics and meta-heuristics to deal with

optimization problems. The general idea behind MAs is to have extra power in their

search mechanism in all aspects. To this point, MAs are a blending of more than one

algorithm to get extra power. Initially, MAs were introduced as stochastic global

searches for solving specific problems. However, lately they have been used for local

search. For example, a mixture of an evolutionary algorithm, like Genetic Algorithm

together with a local searcher can be named a MA. This has been suggested by

Simulating Annealing (SA) Algorithm (Kirkpatrick, S., Gelatt Jr., C., and Vecchi) or

Tabu Search (TS) (Glover, F., and Laguna, M.), etc. In this kind of MAs individuals

improve along with a collaboration of mechanisms (in both local and global aspects).

Figure 3: Created Pareto Front by EC Algorithms

9

Earlier the MAs were not recognized as different algorithms because they appeared to be

partially equal to EAs. It was therefore hard for scientists to accept this approach as a

new mechanism. However, nowadays the MA has become a popular algorithm even in

handling hard real problems. In MA the emphasis is on extracting all available

knowledge which most probably has not been completely realized in simple EAs. This

process of extracting can be done with combining heuristics, local search algorithms,

special updating mechanisms, approximation, exact method, etc. It should be mentioned

that MA has been known by different names such as Hybrid EAs, Lamarckian EAs, etc.

1.3 Artificial Bee Colony (ABC) Algorithm

Lately, Artificial Bee Colony (ABC) Algorithm as a kind of SI approach is proposed for

optimization problems (D. Karaboga, 2005). In general, it is simulated by the process of

finding flowers for extract (sources) by the real honey bees in nature. In detail, the ABC

Algorithm is simulated based on their specific characteristics such as food foragers,

special dance (waggle dance), selection mechanism, routing, social decision, etc. The

idea behind the honey bees foraging has attracted special interest form scientists broadly

in solving hard optimization problems. This approach includes: self-organizing, dynamic

decision in labor to forage and reaching maximum efficiency. The division of labor is

leaded out by different sorts of bees. There are four essential properties in ABC that

govern the bees namely positive feedback, negative feedback, fluctuation and social

interaction done with waggle dance, food source exhausted, random selection and group

decision respectively. Accordingly, the proposed ABC algorithm by Karaboga is able to

solve combinatorial optimization problems such as traveling salesman, job shop,

10

scheduling and resource allocation. The ABC Algorithm has focused on balancing the

exploration and exploitation in search space in defined problems. The exploration is

done in the primary phase of search and the exploitation in a later phase of search in

optimization problems. However, ABC has good enough power in some parts and

weakness in some other. This study has focused on removing the imperfections as much

as possible.

The ABC Algorithm was essentially designed to resolve the single objective

optimization problems but after a while scientists introduced variations of ABC.

Recently a Multi-objective ABC Optimization (MOBCO) Algorithm has been suggested

to handle the MO Problems (R. Hedayatzadeh, et al, 2010).

Since the MOABC Algorithm is a kind of SI Algorithm, it is population based and able

to produce a series of solutions in each run. Hence, it is a promising algorithm in that it

creates a simple Pareto front per a run and is capable of going quickly and get closer

toward to the Pareto-optimum front. The MOABC Algorithm with a collective

intelligence behavior of honey bees enables the approach to easily deal with MO

Problems in cases where the SO Algorithms are not effective solvers.

1.4 Quadratic Assignment Problem (QAP)

Quadratic Assignment Problem (QAP) is an interesting famous combinatorial

optimization problem (Koopmans and Beckmann, 1957) and has attracted research by

many scientists. It is used to model different real life problems in different areas such as

facilities location, parallel and distributed computing and combinatorial data analysis

11

(Loiola et al., 2005). As a simple example for QAP, consider a construction of a campus

(Figure 4).

Some buildings with facilities would need to be built in some predefined locations. The

point is that the distance between structures should be the least for staff, teachers and

students who want to walk between them during the day. Ordinarily, the number of

facilities is the same as the number of locations. Hence, each facility should be placed in

only one location.

In QAP there are two matrices entitled flow matrix and distance matrix (Figure 5). The

flow matrix keeps the relation between facilities and the distance matrix keeps the

distance between facilities.

 [

] [

]

Figure 4: a Campus with Some Facilities

Figure 5: Flow and Distance Matrices

12

According to the flow matrix in Figure 5, the desired allocation of facilities to

predefined location can be done as it comes in Figure 6.

Here, the facilities have shown with the numbered circles behind each. The distance

between the locations is also mentioned with the numbered flows.

Since, the subject is to allocate all facilities to the available locations aiming of

minimizing the summation of the distances multiplied by the related flows, facilities

with more relation with each other should be located closer to each other. For example,

facility number 1 has a high amount of relation with facility number 2 and clearly to

have a shipping cost as low as possible, these facilities should be allocated near each

other. Also the amount of relation between facilities number 2 and 3 is not high as other

and therefore these two facilities are considered far away to each other.

Knowles and Corn (Knowles, J. D. and Corne, D.W., 2002), proposed a variation of

QAP so called Multi-objective Quadratic Assignment Problem (mQAP). They have

presented the mQAP as having multiple flow matrices but still only one distance matrix.

Figure 6: Possible Way to Allocating the Resources

13

In mQAP, all objectives are a simple standard QAP individually and they use their own

flow matrix. Therefore, assigning well-located facilities with respect to only one

objective (with regard to one flow matrix) may lead these facilities to have a poor

placement with respect to other objective(s). Hence, having a trade-off between all

objectives is a definite need.

In the rest of this study the emphasis is to show and discuss in more detail the topics in

this introductory chapter. Chapter 2 compromises an introduction of the Bee Colony in

nature and discusses the defined algorithm based on this procedure. Chapter 3 is focused

on our case study of the Quadratic Assignment Problem (QAP). It highlights two sides

of this problem, namely the problem of a single objective QAP and the problem of

multi-objective QAP (mQAP). Chapters 4 and 5 have been devoted to the new

algorithms and ideas for single and multi-objective ABC Algorithms. The results of our

research are set out in chapter 6. This chapter contains comparative results of our work

with some other algorithms and clearly compares the results with respect to some

standard metrics. Finally, chapter 7 is dedicated to conclusions and a summary of all

research which is done in this area.

14

Chapter 2

 INSPIRED ARTIFICIAL BEE COLONY ALGORITHM

FROM HONEY BEES

2.1 Introduction

Artificial Bee Colony (ABC) Algorithm has been extracted from the honey bees’

working process and the model according to which they arrange themselves (T.D.,

Seeley). Then, Dušan Teodorović advanced the algorithm further by introducing the

Artificial Bee Colony Optimization (ABCO) Algorithm in 2005 (Teodorovic and Orco,

2005). Recently, ABC algorithm is used broadly under scientists’ consideration more

and more. Dervis Karaboga in 2005 improved the ABC Algorithm by using it especially

in numerical optimization (D. Karaboga, 2005) for solving hard optimization problems.

The Multi-objective Artificial Bee Colony Optimization (MOABC) Algorithm is an

extension of the original ABC Algorithm aiming at finding a set of optimal solutions for

Multi-objective Optimization Problems (Malcolm and Chwee, 2009). The MOABC

Algorithm can find multiple Pareto-optimal solutions in a single run (Figure 3).

The first half part of this chapter is devoted to the honey bees’ foraging routine with

regard to how the plenty of jobs is divided between the different bees. The second half is

dedicated to the optimization algorithm inspired from this process.

15

2.2 Behavior of Real Honey Bees

Karlvon Frisch is a famous Austrian ethologist who received the Nobel Prize. He has

been focused on investigation of the sensory perceptions of the honey bees in his works.

He found that there are some variety of information in their waggle dance

communications and special odor. Through this information, honey bees are able to have

a self-organization and are easily capable to find out food sources with high amount of

nectar. To have a self-organization, some components are necessary such as: food

sources, employed and unemployed foragers and a specific dance. These components

have been observed inside and outside the hive. The following is considered to explain

these components in detail.

2.2.1 Food Sources

The main goals in ABC are food sources (flowers) (A and B in Figure 7). The bee can

extend itself so far and in different directions to draw out a food source. Principally,

flowers with more nectar are visited by more bees, while flowers with less nectar attract

fewer bees. Furthermore, each food has different identification with respect to its

coordinate, distance from hive, etc. The sort of bees is separated into three distinct

species and each is in charge for its specific job.

16

2.2.2 Employed Foragers

Employed foragers (EF1 and EF2 in Figure 7) are linked with food sources which are

already exploited. They take sufficient information about the food source like

profitability, coordination, etc. Then they return to their hives and share the information

with all the other bees. This information is transferred by the waggle dance.

Figure 7: Employed and Unemployed Bees in Search Area

[Chunfan Xu, Haibin Duan]

17

2.2.3 Dancing

In each hive there is a section so called dancing space where employed bees transfer

their information about food source through the waggle dance. This type of bees’ dance

is in the shape of an eight (8) figure. It includes crawl, turn and moving around. There

are angles, axis and weight in directions. This angular dance shows the food direction

with respect to the sun as shown in Figure 8.

2.2.4 Unemployed Foragers

Unemployed forager bees (UF in Figure 7) are those that are looking for in the hives to

get the information about the food source through the employed forager waggles’ dance.

With this information they are able to find the related food source and exploit it. The

selection process is according to the profitability of food sources. Obviously food

sources with high amount of nectar will attract more bees. Unemployed foragers are

divided to two types of bees such as scouts (S in Figure 7) and onlookers (R in Figure 7).

2.3 Inspired Artificial Bee Colony (ABC) Algorithm

The behavior of real honey bees adapted to the optimization problem solution by

defining ABC Algorithm. The ABC Algorithm is divided to four phases namely:

initialization, employed, onlooker, and scout phases. Firstly, the initialization phase

Figure 8: Figure of Waggle Dance [Chunfan Xu, Haibin Duan]

18

creates a population of solutions so called , randomly. Then, solutions are sent to a

loop to improve through some updating mechanisms. The loop includes employed,

onlooker, and scout phases. In employed and onlooker phases, the solutions are

disturbed to create new solution (and) and get better solutions than the current one.

Also, the scout phase is considered to create a new random solution () instead of

abandoned solution which did not have a satisfactory improvement. Here, there is a

pseudo code for ABC Algorithm. Note that, in this algorithm, in each phase some

equations are used which are referenced and they are explained in the next page.

Main Steps in ABC Algorithm

01: Initialize the population of solution , randomly by Eq. 5;

02: Evaluate the population (calculate the fitness of each solution); 02: Initialize a set of solutions () randomly. Each solution can be generated by Eq.6;

03: Cycle=1;

04: Repeat:

05: Employed Phase:

06: Generate candidate solution from by Eq. 6;

07: Evaluate solution ;

08: Replace instead of if its fitness is better; otherwise keep ;

09: Calculate probability values for all solutions so far by Eq. 7;

10: Onlooker Phase:

11: Generate candidate solutions from by Eq. 8;

12: Evaluate solution ;

13: Replace instead of if its fitness is better; otherwise keep ;

14: Scout Phase:

15: If there is an abandoned solution, produce a new solution by Eq. 9;

16: Maintain the best solution attained as yet;

17: Cycle=Cycle+1;

18: Until a termination condition is met.

19

The equations mentioned in the above pseudo code are explained below:

 ()() ()

Solutions created at the first stage may appear to have a possible violation which

happens when a feasible solution violates the default boundary constraint. To this point,

 and are used in Eq. 5 to prevent this violation. It is noticeable that, in the

initialization phase, scout (foragers) bees are responsible to find the unseen food

sources. Because of this, creating the solution is completely random.

 () ()

Here, k ϵ * + and is the total number of food sources which is the same as

X’ index. Also, j ϵ * + and n shows the dimension of the problem. Note that, all

mentioned variables are randomly selected. Implicitly, k must be different from i. The

 is a random number between the range [-1, 1].

At the end of employed phase, based on solutions’ fitness, a probability () value is

assigned to each solution which is a proportion of solutions’ goodness. In this case,

solution with the highest fitness in the population gets the highest probability.

 ()

∑ ()

 ()

Here, () is the fitness value of solution and is the total number of food sources.

Note that, the number of food sources is the same as the number of employed and

unemployed (onlooker) bees.

 () ()

All variables are the same as Eq. 6 and the only difference in this phase is in selection

mechanism. In employed phase, the modification is done on all solutions in population

20

respectively; however, here the selection is based on the computed probability in the

employed phase. Hence, the highest amount of probability has more chance to be

selected.

 ()() ()

To prevent of any perturbation, in the variable a lower and upper bounds are

considered by and respectively. When a food source could not get

optimized in a few cycles, a scout bee will do this random search on the problem space

to find a new food source.

2.4 Multi-objective Artificial Bee Colony Algorithm

In the Multi-objective Artificial Bee Colony (MOABC) Algorithm, same as the Single-

objective ABC, food sources represent possible solutions. For example, solution =

(=1, 2,…, N) in which, = (,) the so called decision variable

in which D shows the dimension of the problem. The goodness of the solution ,

measured by more than one fitness functional and it can be shown by fitness value set

Q= { (), () ()} where, m is the number of objectives. The number of

food source is equal to the number of employed bees. Hence, each food source will

attract only one employed bee. The idea behind MOABC is to preserve a set of solution

instead of a single solution. It also required to converge to the Pareto-optimal front and

maintains a good distribution of solutions through it. For this reason, in dealing with the

real value problem, both non-dominate ranks (Omar Al Jadaan et al, 2008) and crowding

distance (Carlo R. et al, 2005) are two important issues which may use in MOABC

Algorithm for calculating the fitness function. However, these techniques are not used in

21

the MOABC for the solution of mQAP in calculating the fitness function. Only

crowding distance is that used in the last part of MOABC for eliminating the crowding

solutions (more detailed information is given in chapter 5).

2.4.1 Calculating Fitness Function in Multi-objective ABC Algorithm

In MOABC Algorithm for the solution of real value problems, for calculating the

 (), both Crowding Distance (CD) and the amount of dominated solutions (non-

dominate ranks) by solution are required. The related equation can be defined as

following:

 ()=

 () ()
 (10)

Here, () is the number of solutions dominated by , and d() is the Crowding

Distance of .

It is noticeable that, this study did note use this equation for measuring the fitness

function in mQAP. The calculating of fitness function in mQAP requires some other

techniques which are explained further.

2.5 Main Steps in Multi-objective ABC Algorithm

In the MOABC Algorithm, still there are four phases namely: initialization, employed,

onlooker, and scout phases. The MOABC is a Pareto based algorithm with an external

archive to store non-dominated solutions. For preserving the latest solutions found so far

and the solutions in the archive, solutions should be checked if they dominate each other

or not.

22

To this point, created solutions in the initialization phase, are saved in set to use in the

main loop of the algorithm. Also, created solutions in the employed, onlooker, and scout

phases are sent to set . Then, set is created by combining the set and . Lastly,

next generation is selected from this combination and modification is done on this set.

The MOABC’s pseudo code is given below.

01: Cycle=0, set ;

02: Initialize parameters;

03: Initialize the initial random solutions by using Eq. 5 and add them to the set ;

04: Calculating the fitness functions for new solutions;

05: Chose non-dominated solution from and send them to archive;

06: Repeat,

07: Employed Phase,

08: Create new solution from by using Eq. 6;

09: Calculating the fitness functions for new solutions;

10: Add the new solution to the set ;

11: Onlooker Phase,

12: Select a solution , and generate a new solution by using Eq. 8;

13: Calculating the fitness functions for new solutions;

14: Add the new solution to the set ;

15: Scout Phase,

16: For abandon solution, generate a new random solution by using Eq. 9;

17: Add the new solution to the set ;

18: Update the non-dominated solution in archive by the solutions in ;

19: Create the set from the union of set and set ;

20: Cycle=Cycle+1;

21: Until the stopping criteria are met.

2.6 Most Important Goals in Multi-objective ABC Algorithm

Divergence and convergence through the Pareto-optimal front are two goals in Multi-

objective Optimization and also the main concern of the MOABC Algorithm. These two

goals can be controlled by Generational Distance and Spread degree as they are

explained below.

23

2.6.1 Generational Distance (GD)

Generational Distance (GD) measures the closeness of a particular solution and its

closest solution in the Pareto-optimal set. The GD’s formula is considered in the

following:

√∑

 (11)

Here, counts the Euclidean Distance of each solution with its closest point in the

Pareto-optimal set. Obviously, if the GD is zero there is no distance between current

solutions and the Pareto-optimal solution set and all points are in the best situation.

2.6.2 Spread Degree (SD)

The SD is the measurement for deploying a scale of solutions in Pareto-optimal region.

Having a set of solutions with a sufficient SD through the Pareto-optimal region is a goal

in MOABC Algorithm. The equation below shows the SD expression:

∑ ()∑ () ̅

∑ ()
 ̅

 (12)

Where, ’s= (=1, 2, …, m) contains m excessive solutions in the area of the Pareto-

optimal front. The () measures the Euclidean Distance in the objective space

among the and the closest point in Finally () calculates the Euclidean

Distance among the solution and the closest point to it in .

 ̅ ∑ ()

 (13)

The value of SD becomes zero if all solutions in S are well done distributed among the

objective space and it includes the solutions in ’s space.

24

Chapter 3

QUADRATIC ASSIGNMENT PROBLEM (QAP)

3.1 Single-objective Quadratic Assignment Problem (QAP)

Quadratic Assignment Problem (QAP) is one of the challenging classical combinatorial

optimization problems. QAP was presented by Koopman and Beckman in 1957

(Koopmans and Beckmann, 1957). It is a model for many practical problems like

backboard wiring, campus and hospital layout, and scheduling (Adnan Acan and Ahmet

Ünveren, 2005).

To have an instance of QAP, the full list of distances among available locations ()

and material flow among facilities () and should be visible. There are N facilities and

each of them can be interchanged with each other. On the other hand, there are N

locations each of them can be provided for only one facility. Hence, the QAP can be

modeled as follows:

There are a set of N facilities and a set of N locations. For eachpair of locations, a

distance () is specified and for each pair of facilities a flow () is specified. The

problem is to assign all facilities to different locations with the goal of minimizing the

sum of the distances multiplied by the corresponding flows [Koopman and Beckman,

1957]. Formally, let and be two N*N matrices and let be the set of permutation

of {1, 2, …, N}.

25

Then, the QAP can be defined as follows:

 () [∑∑ () ()

] ()

Over all permutations ϵ [Koopman and Beckman, 1957].

Figure 9 and Figure 10 shows a map that 6 different facilities located on 6 different

locations.

Here, is a permutation that gives formal definition of Figure 9.

According to the allocation in Figure 10, facility 5 has been assigned to location 4,

facility 6 to location 1 and so on. The fitness function (f) of this example can be

calculated as follows:

 [∑ ∑ () ()

]

6 2 3 5 4 1
1 2 3 4 5 6

Figure 9: Assigning 6 Facilities to 6 Locations

Facilities

Locations

Figure 10: Permutation for Figure 9

26

Suppose the following example, for three facilities and three locations.

The goal is to find a placement of facilities to location to get the fitness value as low as

possible with respect to distance and flow matrices (Figure 12).

A possible assignment of facilities to locations can be considered as follow:

1  A, 2  B, 3  C, i.e. x1A = 1, x2B = 1, x3C = 1, all other xij = 0.

Total cost: 0*0 + 1*1 + 2*1 + 1*2 + 0*0 + 1*2 + 3*3 + 1*1 + 0*0 = 17.

The solution is not desired whereof, the facility number 1 and 3 (with a high value of

material flow) are allocated to locations A and C (which have the most distance among

them). To improve the solution a new assignment is considerd as follow:

1  C, 2  A and 3  B, i.e. x1C = 1, x2A = 1, x3B = 1.

A

B C

Figure 11: Placement of Three Facilities to Three Locations

Figure 12: Flow and Distance Matrices



















013

101

210

C

B

A

D

CBA



















013

202

110

3

2

1

321

F

27

Hence, the distance matrix should be resorted as follow:

Such that row and columns appear the following sequence:

1  C, 2  A and 3  B, i.e C, A, B

Shipping cost= 0*0 + 3*1 + 1*1 + 2*2 + 0*0 + 2*1 + 1*3 + 1*1 + 0*0 = 14.

2

 3



1

 Figure 13: New placement of Facilities to Locations

Multiply,

Figure 14: Calculating the Shipping Cost for New Assignment of Facilities

Figure 15: Possible Way of Swapping Facilities



















013

101

210

C

B

A

D

CBA



















011

102

130

B

A

C

D

BAC



















013

202

110

3

2

1

321

F



















011

102

130

B

A

C

D

BAC



















011

102

130

B

A

C

D

BAC



















013

101

210

C

B

A

D

CBA



















130

011

102

C

B

A

D

BAC

28

3.2 Multi-objective Quadratic Assignment Problem (mQAP)

Knowles and Corn (Knowles, J.D. and Corne, D.W, 2002), have proposed a variation of

QAP so called Multi-objective Quadratic Assignment Problem (mQAP). The mQAP has

multiple flow matrices and still only one distance matrix. In mQAP all objectives are a

simple standard QAP individually and each one uses its own flow matrix. Hence,

placing well-located facilities with respect to one of the flow matrices (considering one

objective) may lead facilities to have a poor placement in relation to other objective(s).

Given a distance matrix D=() for n locations, and m flow matrices

*
 + , where, k=1, …, m and the mQAP is to minimize the following objective

functions simultaneously:

 () * () () ()+ (15)

 () ∑ ∑ () ()

 (16)

Where, n is the number of facilities, m is the number of objectives (flows), is a

permutation of members from 1, …, n, is the set of all permutations, () is a vector

of m objective function (), is the distance between locations i and j, and () ()

is the flow between facilities () and ().

In the case of conflicting objectives, there is no solution which is optimal for all

objective functions (), =1, …, m. Instead, the optimal solution to the mQAP

in (Eq. 14) is often designed as like the trade-off solution in terms of Pareto Optimality

which is described in section 1.1.2.

29

Chapter 4

PROPOSE ARTIFICIAL BEE COLONY FOR QAP

4.1 Introduction

In the context of ABC Algorithm we succeed to propose a new ABC. In new modified

ABC Algorithm, both Employed and Onlooker phases are the same as the standard ABC

Algorithm. With the difference that a limited archive added (Adnan Acan, Ahmet

Ünveren, 2005) to keep the fittest last solutions. Moreover this algorithm eliminates

Scout phase and instead adds a new phase namely Crossover phase. The new phase is

located after the Onlooker phase. In each iteration the best solutions send to archive and

then these solutions sort in descending order. It means that the best solution so far has

the highest order in archive and so on. Then crossover phase starts from the top solutions

in archive and combine solutions pairwise to bottom respectively (Figure 16).

Accordingly, the two solutions (parents) with the closest fitness value will create the

new individual (offspring).

First Best Solution

so far
Crossover’s Candidate

Crossover’s Candidate

Figure16: Archive which Contains Fittest Solutions so far

30

The crossover operator has different forms in the number of parents that it selects to

combine and the number of offspring that it creates after combination. Furthermore, this

operator is used different in different form of solutions. For example, the crossover that

done in binary form of solutions can not directly use in permutation form of solutions. It

should consider together with some constraints to create the legal form of solutions,

otherwise the created solutions will be a contrary form of solution.

In one of the standard form of crossover operator (Figure 17), for making the offspring,

firstly, two solutions (parents) are selected then, two different random points are created

and according to these points the middle of parents are changed with each other but, the

both sides of parents do not touch and shift to offspring unchanged. Here, after each

combination two offspring are created.

The crossover operator for combining two permutation form of solutions is different

with the one for real or binary solutions. In QAP, the solution is a permutation form or in

another words it is an order of assigning the numbers (facilities’ number) to some

Parent 1

Parent 2

Offspring 1

 0 1 1 1 0 1 0 1

 1 0 0 0 1 1 0 0

 1 0 1 1 0 1 0 0 Offspring 2

 0 1 0 0 1 1 0 1

Figure 17: Standard Form of Crossover Done on

Two Parents

31

locations. In this form, each solution contains some digits (the number of digits depends

on the dimension of the problem) and each digit repeats once. The point is, the

solution(s) created from the current solution(s) should be a new acceptable solution in

regard to all constraints. To this point, some criteria should be considered to meet the

demand in each perturbation.

The new sophisticated crossover is utilized to avoid the perturbation. This mechanism

does on the solutions in the archive and then the suitable combination of solutions is

selected. These solutions are compared with the previous solutions and then replacement

takes place if better fitness is achieved. The required constraints for getting the legal

solutions after each perturbation by the new crossover are considered as well.

4.2 Proposed Artificial Bee Colony with its Algorithm and Flowchart

The modified ABC Algorithm has an archive memory to maintain the fittest solutions so

far. In each cycle, the subsequent population is elected from a linkage of current

population together with the solutions in the archive. Hence, in this case, each cycle

starts with partially better solutions than the former cycle. Size of archive is considered

as the same as the size of population. Furthermore, in modified ABC a new crossover is

proposed. It considered as for improving the exploitation in ABC. The crossover is used

to perform on the solutions in archive. The power of this exploitation is not expected in

many crossovers which the operation has been done completely random. The proposed

algorithm is used as a solution of Quadratic Assignment Problem (QAP) and its pseudo

code and related flowchart are given in the next two pages respectively.

32

Suppose the total number of bees is SN, the number of iterations is Max-cycle, EM

keeps the SN number of best solutions in each iteration, and GB keeps the global best

solution so far. Considering these definitions, the pseudo code and the flowchart for the

proposed Artificial Bee Colony for the QAP is given below:

(1) Initialization:
(1.1) Find the SN/2 random number (* +) of feasible solution
 as an initial population.
(1.2) Evaluate the population.
(1.3) Select the best solution and keep it in GB.
(1.4) send half best solutions to EM.

Cycle=1;
While (Cycle<Max-cycle)
(2) Employed bee phase:

For i=1 to SN/2,
(2.1) Do modification over all solutions , for i=1 to SN/2.
(2.2) Evaluate the population.
(2.3) If the fitness of solution is better than previous one then replace it,
 otherwise =previous solution.

End;
(2.4) Send half best solutions to EM.
(2.5) Do rank mechanism on EM and save half solutions of archive.
(2.6) remove half worst solutions.

(2.7) Evaluate the probability of solutions’ goodness

∑

.

(2.8) Keep the best solution so far in GB.
(3): Onlooker bee phase:

(3.1) Do SN/2 number modification on population (selection is based on).
(3.2) Evaluate the fitness.
(3.3) If the fitness of new solution is better than current then replace it with the
 current, otherwise keep the current solution.

(4): Crossover phase:
(4.1) Do crossover on all solutions in EM.
(4.2) Evaluate the fitness of new solutions and keep the promising ones.
(4.3) Compare the best solution so far with GB and keep the best in GB.

Cycle=Cycle+1
End while;

33

Initialize FN solutions
FN= Solutions = Half bees’ swarm
EM= Archive

Evaluate solutions

GB= Best solution so far
EM= Half best solutions so far

Termination

condition meet

STOP!

Yes

No

Modify the all the solutions one by one

Evaluate the new solution and accept it if

it has better fitness

Rank on archive and eliminate half worse

solutions

GB takes the best solutions so far

Select solution for modification based on

the probability

Replacement takes place if the new

solution has better fitness

Send the half best solutions to archive

GB takes the best solution so far

Rank the solutions in archive and

eliminate half worse solutions and sort the

remaining in descending order

Choose solutions two by two from archive

for crossover operation

Send the new fittest solutions to archive

Create new population by choosing FN

solution of archive

Modify the solution

Calculate the solutions’ probability

By using Greedy selection,
send half best solutions to archive

Figure 18: Proposed Artificial Bee Colony Algorithm for QAP

34

4.2.1 Initialization

In initialization phase each solution (bee) considered as a new randomly initial solution

 * + that is a sequential allocation of facilities to locations (a

permutation form). Then the fitness is evaluated by multiplying the (flow) matrix

with the (distance) matrix based on each permutation. The initialization phase is

continued for FN times. FN is equal to the half of SN (the bees’ population). The best

solution is taken from this step and GB keeps it. Also the Extent Memory (EA) keeps the

half best solutions in this phase.

4.2.2 Employed Phase

Employed phase changes the solutions with shift mutation (section 5.2.1). Then a

comparison between new solution and previous ones takes place in which, whenever a

better solution attains the replacement occurs. This selection is done with Greedy

Selection (GS) (Goran Dimic, Nicholas D. Sidiropoulos, 2005) mechanism. Also the best

solution in * + is compared with GB and if it finds a better solution,

the GB will take it. In minimization problems, the solution with lower fitness value is

counted as better solution and in maximization problems the solution with higher fitness

value. Furthermore, the EA contains the half best solutions from the Initialization phase

and takes half best solutions from the Employed phase. Then all the solutions move to

the next phase with a considered related probability based on their fitness among all

solution in the population. Clearly the highest fitness in the population gets higher

probability of selection.

35

4.2. 3 Onlooker Phase

In this phase the selection mechanism is based on the probability achieved in Employed

phase and it is accomplished with the Roulette Wheel Selection (RWS) (R.Sivaraj et al.,

2011) Method. Then the Neighbor Change (section 5.2.3) mutation, changes the

solutions and immediately the replacement takes place if the new solution becomes

better than the old one. Considering that the size of EA is earmarked same as the size of

SN and in this phase EA is full with keeping half best solution from Employed and half

from Onlooker phase. Due to restricted capacity of EA the Rank Mechanism is used for

selecting half best solutions. Finally, the best solution is compared with GB and EA

keeps half of the best solutions in this phase.

4.2.4 Crossover Phase

Considering the mentioned information about the crossover operator, the new crossover

is designed to select two parents and create one offspring. Here, the individual’ elements

which are the same value and position in both parents are transferred to offspring with

keeping the element and its position in the solution. Finally, if still there is/are some

element(s) in offspring (it means that there were some elements in parents which had not

the same value and position) it/they create randomly with respect to all constraints

(Figure 19).

Figure 19: Proposed Crossover Operator

 2 8 6 1 7 5 4 3

3 8 6 4 7 5 1 2

4 8 6 2 7 5 3 1

Parent 1

Parent 2

Offspring

36

With this approach, in the last cycles, it is expected to have the solutions with partially

rightful sequence of allocation or in another word having offspring with more proper

elements.

After creating each new solution (offspring), the next step is to measure it and if its

fitness is better than the parents’ one, then, it should send to archive. At the end of each

cycle, if the archive has more solutions than its predefined size (the size is considered

same as the population size), then the next population will choose from the archive by

ranking the solutions and taking the population size of solutions. Since, the new fittest

solutions build the new population it is expectable to have convergence to the optimum

solution step by step.

Since obtaining the appropriate solutions is not often expected from the scout phase and

experience has shown it has not enough effect, so, this study eliminates this phase.

Instead the shift mutation is used to avoid sticking at the local optima and having

diversity in search space.

Note that, the experimental results of proposed ABC for the solution of QAP are

analyzed in chapter 6.

37

Chapter 5

 ARTIFICIAL MULTI-OBJECTIVE BEE COLONY

(MOABC) ALGORITHM FOR mQAP

5.1 Introduction

The mutation operator (R. Storn, K. Price, 2010) is a genetic operator that alters the

solution in one or more elements compare with the initial state. This operator is able to

change the solution good enough and get the better result compare with the previous

solution. Hence, the Multi-objective Artificial Bee Colony (MOABC) Algorithm can

arrive at a better situation by using the mutation operator. In MOABC we have used a

variety of mutation during the evolution search by defined mutation rate. This rate is

considered low; otherwise, the search will turn to a random search.

Tabu Search (TS) Algorithm (Glover F, 1986) also is a powerful neighbor search

method. The main idea behind the TS is to avoid of visiting some solutions in each

iteration. It has been done with considering a tabu list in which the solutions with worse

history are kept and the algorithm does not allow to visit these solutions until some

criteria change their position as eligible solutions and then, they leave the tabu list

immediately. The new version of TS Algorithm is Robust Tabu Search (RTS) Algorithm

(Taillard, E., 1991) and it also is used in MOABC Algorithm. In RTS Algorithm there

are some modifications to enable the RTS to be useful for multi-objective Quadratic

Assignment Problem (mQAP).

38

With considering the efficiency and complexity in MOABC Algorithm, by combining

the RTS Algorithm and using the different kind of mutations, we have tried to propose a

powerful algorithm with high efficiency and low complexity as much as possible.

The Crowding Distance, Fitness function, Employed and Unemployed Bees are used in

MOABC Algorithm and they are explained in chapter two. However, the mutation kinds

and the Tabu Search are explained in this chapter in more detail.

5.2 Mutation Operator

The MOABC Algorithm, after the initialization phase with considering the three phases

(Employed, Onlooker and Crossover phases) repeats these kinds of operations

continuously to create new individuals from the current ones. Here, a well-known

operator so called mutation is used to alter some gene(s) in an individual (parent) to

create a new individual (offspring). Figure 20 shows a general form of mutation operator

which can be used for QAPs’ solution.

Figure 20 shows that, with perturbing one parent, one offspring is created. The idea is to

swap two elements with each other (elements 3 and 8 in this Figure 20).

There are varieties of mutations that this study has used some, such as: Shift Mutation,

Swap Mutation, Neighbour Interchange Mutation and Mixed Mutation. These kinds of

mutation are explained in detail below.

5 8 3 4 7 1 6 2

5 8 1 4 7 3 6 2

Parent

Offspring

Figure 20: General Form of Mutation

39

5.2.1 Shift Mutation

Commonly, in shift mutation two random integer numbers are created. The range of

these two numbers is between one and dimension amount. One of these number save in

a temporary memory. Then all elements between these two number shift forward or

backward. The direction of shifting depends on the number maintained in the temporary

memory. If the bigger digit saved in archive, the direction is forward and vice versa.

Lastly, the element of the saved number in the temporary memory will assigned instead

of the last shifted element. Figure 21 shows this process.

5.2.2 Swap Mutation

In this case two random integer numbers between one and dimension amount are created

and then the elements of these two positions in solutions swaps (change with each other)

immediately. Figure 22 shows the operation.

5 8 3 4 7 1 6 2

5 8 1 4 7 3 6 2

5 8 3 4 7 1 6 2

5 8 1 3 4 7 6 2

1

2

Figure 21: Shift Mutation

Figure 22: Swap Mutation

40

5.2.3 Neighbour Interchange Mutation

Here, just one random integer number between one and dimension amount is created and

the element of this number will swap with the next element in forward cases or with the

previous one in backward case immediately. The direction of swapping is determined by

created random number in the range of [0, 1]. If the number is less than 0.5 the direction

is in forward case, otherwise, in backward case. Figure 23 shows this operation:

5.2.4 Mixed Mutation

This case attempts to have a mixture of mutations in algorithm. To this point in each

cycle different kind of mutation (mutations which are considered above) takes place.

Selection of mutation is random completely. It means that each cycle modify solutions

with respect to different random selected mutation.

5.3 Robust Tabu Search (RTS)

Tabu Search (TS) is one of the earliest algorithms for optimization problems. TS

algorithm was proposed by Glover (Glover F, 1986) and then formalized (Fred Glover,

1989) and (Fred Glover, 1990) and further enhanced with more detail by Glover &

Laguna (Glover & Laguna, 1997), as a local search method in optimization. Suppose S is

5 8 3 4 7 1 6 2

5 8 4 3 7 1 6 2

Figure 23: Neighbour Interchange Mutation

41

a collection of solutions () of a hard problem to solve with objective (fitness)

function ; as well as, suppose be a vicinity subordinate which

defines for each s ∈ S a set N(s) ⊆ S - a set of neighboring solutions of S. Each solution

 ∈ N(s) can be attained from S by move operation (Alfonsas M., 2005). Neighbor

solutions are constructed to exploit if there is a better adjacent solution that can be

reached from the current solution. If so, the current solution will swap with this solution.

Among the period of extracting the solutions a tabu list is to record a subset of the

moves in a neighborhood as forbidden. The size of the tabu list is an important issue in

TS. If it is considered too small then a cycling will occur, whereas if it is too large, it

will restrict the search to promising regions (Alfonsas M. 2005). Therefore it should

update after a while. TS has an important exception named aspiration criteria, which

contains some conditions that permit the approach to override the run if required. These

criteria will be met when a tabu move has a favorable situation or sufficient attraction.

Robust Tabu Search (RTS) (Taillard, E, 1991) is a variation of standard TS and here

with considering more constraints we have used it for Quadratic Assignment Problem

(QAP). The RTS has two main differences compare with the standard form of TS.

Firstly, RTS has random variables in tenure the tabu elements instead of a static value.

Secondly, the RTS Algorithm features a long-term diversification method which favors

moves that have not been performed in a long time. If a move would assign to facilities

to locations that both have not been assigned to for a long number of iterations, then the

move is performed regardless of quality. If there are multiple of these moves in one

iteration the best one is performed. The proposed algorithm for the solution of mQAP

will be given in the following sections.

42

Note that, theoretically, the number of PO solutions can be infinite. Since, the ultimate

purpose of a Multi-objective Optimization (MO) Algorithm is to provide a set of

solutions to choose by user from, it is necessary to limit the size of this set to be usable

by the user (S. Bandyopadhyay, et al, 2008). In the last part of MOABC Algorithm it is

checked, if the number of obtained solutions is more than the predefined number, by

using the Crowding Distance (CD) (Carlo R. et al, 2005) some solutions are eliminated

to maintain the diversity and have a variety of solutions instead of focusing in some

parts of search space. To calculate the CD there are some techniques, one shown in

Figure 24 in which, solutions are shown with points. For computation, ordering the non-

dominated solutions in archive in ascending order with respect to each objective

function is required.

5.4 MOABC Algorithm with Different Variation

In this study, different updating mechanisms are applied in MOABC Algorithm to

improve the performance of this algorithm for the solution of mQAP. To this point, we

have used different sorts of mutation operators such as: shift, swap, and neighbor

interchange mutations. On the other hand, the Robust Tabu Search (RTS), which is the

Figure 24: Crowding Distance

43

powerful local search, was used to improve further the solutions. Consequently, it is

realized that, adding the shift mutation and RTS to MOABC Algorithm, can be the

desirable modification to get closer to the goal.

Figure 25 shows a flowchart of MOABC Algorithm. Here, in the initialization phase, a

population of N number of solutions is created randomly and keeps these solutions.

Then, these solutions are evaluated and non-dominated solutions are kept in an External

Archive (EA). From this point, the population is modified in employed, onlooker, and

RTS phases to get better solutions. Solutions created by employed and onlooker phase

are sent to the set . Also, solutions created by RTS are send to the set , if better

solutions are gained. After each phase, new solutions are evaluated and if they dominate

the current solutions in the mentioned sets and the current population, the replacements

takes place and non-dominated solutions are sent to EA and dominated solutions are

removed (update EA). Finally, new generation () is extracted from the combination

of and and the fittest solutions are taken. The last step uses crowding distance to

remove the crowded solutions from the set of non-dominated solutions and maintaining

a uniform set of solutions with respect to the diversity.

44

Produce new solutions 𝑿𝒊= {1, …, Ns} and send

them to 𝑺𝒕 and also initialize all other parameters

Store Non-dominate solutions in External Archive

(EA) by ranked the Non-dominated

Employed Bees produce new Solutions (𝑽𝒊) by

using 𝑿𝒊 and send them to set 𝑪𝒕

Stopping

Criteria

No

Evaluate solutions with respect to all Objectives

Extract Non-dominated and send to EA

Onlooker Bees produce new solution (𝑼𝒊) by

using 𝑿𝒊 and send them to set 𝑪𝒕

Extract Non-dominated and send to EA

Update EA

Update EA

Produce new solutions with Robust Tabu Search

and send them to 𝑺𝒕, if better solutions are achieved

Extract Non-dominated and send to EA

Update EA

STOP!

of solutions

in EM is more

than predefined

Use Crowding Distance to remove

crowding members

Yes

Yes

No

Robust Tabu Search

Phase

𝑺𝒕 𝟏by combining the 𝑺𝒕 and 𝑪𝒕 and generate the

next population from it

Figure 25: MOABC Algorithm Combined with RTS for mQAP

45

Chapter 6

EXPERIMENTAL RESULTS

6.1. Results for Proposed Artificial Bee Colony (ABC) Algorithm

In this study, we have improved the exploitation ability of the Single-objective Artificial

Bee Colony (ABC). Then, we solved the Quadratic Assignment problem (QAP)

problems available at QAPLIB as our benchmarks (http://www.seas.upenn.edu/qaplib/).

Also, for Multi-objective Quadratic Assignment Problem we considered all the instances

in http://www.cs.man.ac.uk/~jknowles/mQAP/. Finally, the results have been compared

with the results in mentioned sites and some other modified MOABC Algorithms.

The results of single-objective ABC have compared with MABC and Crossover ABC

(CABC) (proposed algorithm). In the MABC, by using an External Memory (EM), in

each cycle, only best results are gathered and without any perturbation are sent to the

next iteration and are used as starting points. Eventually, we have established that the

results of CABC are much better than the other two mentioned algorithms. The CABC

successfully gained the exact solutions in benchmarks like bur26e, bur26h in a little time

and small cycle, which is not expected of ABC. Also, for high dimensions the difference

between optimal solution and CABC is much less than other algorithms. The results of

ABC, MABC and CABC Algorithms are shown in table1. Equally, the Optimum results,

Standard Deviations (SD) obtained results by CABC, Best and Worst results for some

benchmarks are found in Table 2.

http://www.seas.upenn.edu/qaplib/
http://www.cs.man.ac.uk/~jknowles/mQAP/

46

Benchmark Optimum ABC MABC CABC

tai12a 224416 240972 224416 224416

tai15a 388214 417718 388214 388214

tai20a 703482 799284 720688 707178

tai25a 1167256 1319594 1207270 1187682

tai30a 1818146 2052574 1872120 1839112

tai35a 2422002 2759766 2514582 2469028

tai40a 3139370 3576762 3266370 3200988

tai50a 4938796 5171290 5144154 5055748

tai60a 7205962 7514246 7552688 7316578

tai80a 13499184 15200966 14160626 13796940

tai100a 21052466 23506604 22091632 21405442

tai150b 498896643 619614546 525594052 510964347

chr12a 9552 12156 9552 9552

chr15c 9504 18580 9780 9504

chr18a 11098 27120 13450 11098

chr20b 2298 4730 2688 2368

chr25a 3796 11012 4924 3946

bur26a 5426670 5552273 5427776 5426670

bur26e 5386879 5535955 5392187 5386879

bur26g 10117172 10366184 10118819 10117172

bur26h 7098658 7276495 7098905 7098658

Benchmark Optimum Best Worst SD

tai12a 224416 224416 224416 0

tai15a 388214 388214 388214 0

tai20a 703482 707178 714218 2693

tai25a 1167256 1173672 1204380 9111.58

tai30a 1818146 1843434 1875768 8636.73

tai35a 2422002 2466054 2520282 14831.48

tai40a 3139370 3214310 3265418 13176.82

tai50a 4938796 5059410 5144144 25788.74

tai60a 7205962 7416902 7482498 21092.23

tai80a 13499184 13975506 14105352 35592.49

tai100a 21052466 21405442 21620214 72655

tai150b 498896643 510655361 524042016 3554423.80

chr12a 9552 9552 9552 0

chr15c 9504 9504 9504 0

chr18a 11098 11098 12432 593.19

chr20b 2298 2412 2536 44.38

chr25a 3796 3946 4922 299

bur26a 5426670 5426670 5432449 2358.02

bur26e 5386879 5386879 5386879 0

bur26g 10117172 10117172 10118141 474.71

bur26h 7098658 7098658 7098658 0

Table 2: Standard Deviations, Best and Worst Results for Instances

Table 1: Results of ABC, MABC and CABC Algorithms

http://www.seas.upenn.edu/qaplib/soln.d/tai12a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai15a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai20a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai25a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai50a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai60a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai80a.sln
http://www.seas.upenn.edu/qaplib/soln.d/bur26a.sln
http://www.seas.upenn.edu/qaplib/soln.d/bur26e.sln
http://www.seas.upenn.edu/qaplib/soln.d/bur26g.sln
http://www.seas.upenn.edu/qaplib/soln.d/bur26h.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai12a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai15a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai20a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai25a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai50a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai60a.sln
http://www.seas.upenn.edu/qaplib/soln.d/tai80a.sln
http://www.seas.upenn.edu/qaplib/soln.d/bur26a.sln
http://www.seas.upenn.edu/qaplib/soln.d/bur26e.sln
http://www.seas.upenn.edu/qaplib/soln.d/bur26g.sln
http://www.seas.upenn.edu/qaplib/soln.d/bur26h.sln

47

6.2 Results for Proposed Multi-objective ABC Algorithm

 To illustrate the performance of the MOABC combined with Robust Tabu Search

(RTS), we have been considering the instances available in the Knowles’ dataset in

http://www.cs.man.ac.uk/~jknowles/mQAP/#suites. Then, we prepared four different sorts of

MOABC Algorithms with different updating methods. Finally, the results of modified

MOABC Algorithm are compared with the results of these four algorithms. It is

noticeable that, in the mentioned site, only 10-dimensional problems’ Optimum Pareto

fronts are provided and for the rest of problems (twenty, thirty, fifty, and seventy-five

dimensions) we have tried to provide them. For this purpose, all the obtained results

from the four mentioned algorithms above together with the results of modified

MOABC Algorithm, are gathered and fed them to the modified MOABC Algorithm and

run this algorithm for a two times cycle to get the best results in Pareto-optimum front as

much as possible. In the figure s, the number of non-dominated solutions obtained with

each algorithm is written in the Y-axis. Also, Title of the instances, their associated

Pareto front, types, number of locations and facilities are provided in Table 4. In the

Table 5, there are results of some metrics which are done on the obtained Pareto front by

modified MOABC. These metrics are: Error Ration (ER), Convergence Metric (CM),

Generational Distance (GD), Hyper Volume (I_HypVol), and Divergence Metric (DM).

MOABC Algorithms Abbreviation in Figure Pareto fronts’ Position in Figures

Optima Pareto Front Optimum Upper left

Neighbour interchange Ni-mutation Upper middle

Swap Mutation Sw-mutation Upper right

Robust Tabu Search RoTS Bottom Left

Mixed Mutation Mi-mutation Bottom middle

Shift Mutation Sh-mutation Bottom right

Table 3: Positions and Abbreviations of Modified MOABC Algorithms in Figures

http://www.cs.man.ac.uk/~jknowles/mQAP/#suites

48

Pareto Front Instance Name Instances Type Location No. Objective No.

 Figure 26 KC10-2fl-1uni Uniform Instances 10 2

 Figure 27 KC10-2fl-2uni Uniform Instances 10 2

 Figure 28 KC10-2fl-3uni Uniform Instances 10 2

 Figure 29 KC20-2fl-1uni Uniform Instances 20 2

 Figure 30 KC20-2fl-2uni Uniform Instances 20 2

Figure 31 KC20-2fl-3uni Uniform Instances 20 2

Figure 32 KC30-3fl-1uni Uniform Instances 30 3

Figure 33 KC30-3fl-2uni Uniform Instances 30 3

 Figure 34 KC30-3fl-3uni Uniform Instances 30 3

Figure 35 KC50_2fl_1uni Uniform Instances 50 2

Figure 36 KC50_2fl_2uni Uniform Instances 50 2

Figure 37 KC50_2fl_3uni Uniform Instances 50 2

 Figure 38 KC75_3fl_1uni Uniform Instances 75 3

Figure 39 KC75_3fl_2uni Uniform Instances 75 3

Figure 40 KC10-2fl-1rl Real Instances 10 2

Figure 41 KC10-2fl-2rl Real Instances 10 2

Figure 42 KC10-2fl-3rl Real Instances 10 3

Figure 43 KC10-2fl-4rl Real Instances 10 2

Figure 44 KC10-2fl-5rl Real Instances 10 2

 Figure 45 KC20-2fl-1rl Real Instances 20 2

Figure 46 KC20-2fl-2rl Real Instances 20 2

Figure 47 KC20-2fl-3rl Real Instances 20 2

Figure 48 KC20-2fl-4rl Real Instances 20 2

Figure 49 KC20-2fl-5rl Real Instances 20 2

Figure 50 KC30-3fl-1rl Real Instances 30 3

 Figure 51 KC30-3fl-2rl Real Instances 30 3

Figure 52 KC30-3fl-3rl Real Instances 30 3

Figure 53 KC50_2fl_1rl Real Instances 50 2

Figure 54 KC50_2fl_2rl Real Instances 50 2

Figure 55 KC50_2fl_3rl Real Instances 50 2

Table 4: Benchmarks and Their Associated Pareto Front in Figures

49

Table 5 clearly shows the success of modified MOABC Algorithm in divergence and

convergence aspects. It is shown the modified MOABC Algorithm has the exact results

in some dimensional problem such as KC10-2fl-1uni, KC10-2fl-2uni, etc. by having the

value zero in most metrics and one in DM. Furthermore, the results of other instances in

Instances Name ER CM GD I_HypVol DM

KC10-2fl-1uni 0 0 0 0.0293 1

KC10-2fl-2uni 0 0 0 0 1

KC10-2fl-3uni 0.8923 5.3708e+003 613.6236 0.0663 1

KC20-2fl-1uni 0.1452 165.5229 70.7021 0.1313 0.3913

KC20-2fl-2uni 0.6000 1.1480e+003 921.7815 0.3737 0.4286

KC20-2fl-3uni 0.0332 35.9622 15.3435 15.3435 0.3185

KC30-3fl-1uni 0.7121 6.9891e+003 1.1496e+003 0.0173 0.3210

KC30-3fl-2uni 0.9286 1.5259e+004 3.8563e+003 0.1241 0.4474

KC30-3fl-3uni 1 8.7634e+003 939.0832 0.0095 0.3359

KC50_2fl_1uni 0.9239 1.6305e+004 2.4274e+003 0.2891 0.2376

KC50_2fl_2uni 0.6667 1.0874e+004 7.5535e+003 0.0622 0.3077

KC50_2fl_3uni 0.7656 4.6964e+003 301.6019 0.0507 0.2003

KC75_3fl_1uni 0.6759 2.0409e+004 2.7342e+003 0.0365 0.2273

KC75_3fl_2uni 0.9000 4.1172e+004 1.2035e+004 0.2708 0.2273

KC10-2fl-1rl 0 0 0 0.3381 1

KC10-2fl-2rl 0 0 0 0.1117 1

KC10-2fl-3rl 0 0 0 0.3550 1

KC10-2fl-4rl 0 0 0 0.2500 1

KC10-2fl-5rl 0 0 0 0.6414 1

KC20-2fl-1rl 0.0215 1.6926e+003 1.4351e+003 0.0369 0.2553

KC20-2fl-2rl 0.2149 1.1570e+004 3.0547e+003 0.0451 0.1060

KC20-2fl-3rl 0.0135 3.1485e+003 1.9651e+003 0.0761 0.1398

KC20-2fl-4rl 0.2193 3.1149e+005 1.3672e+005 0.0502 0.0970

KC20-2fl-5rl 0.2885 1.0735e+005 2.1251e+004 0 0.1758

KC30-3fl-1rl 0.9080 1.9441e+005 1.8779e+004 0.0467 0.0690

KC30-3fl-2rl 0.9457 1.0368e+005 1.0758e+004 0.1386 0.0577

KC30-3fl-3rl 0.5068 8.0210e+004 1.0260e+004 0.0581 0.0461

KC50_2fl_1rl 0.7838 2.8054e+005 1.9293e+004 0.1404 0.0892

KC50_2fl_2rl 0.5475 1.6912e+005 1.6035e+004 0.0167 0.0863

KC50_2fl_3rl 0.6553 1.5697e+005 9.5020e+003 0.0040 0.0571

Table 5: Comparison of Obtained Results by Modified MOABC through Metrics

50

higher dimensional problems are also admirable. In following, because the trends of

instances are almost similar, only three figures are picked for more explanation below

and the rest of figures are available in Appendix.

In this figure, non-dominated solution sets provided by modified MOABC combined

with: Neighbour Interchange Mutation (Ni-mutation), Swap Mutation (Sw-mutation),

Robust Tabu Search (RoT), Mixed Mutation (Mi-mutation), and Shift Mutation (Sh-

mutation) are applied to KC20-2fl-1uni uniform instance with 20 locations are shown. In

this case, the non-dominated solutions found by RoTS is very close to the ones on the

Optimum (Pareto front), however, the superiority in the success of RoTS is better seen

by considering the number of non-dominated solutions. The number of solutions on the

provided Pareto front is 68, 62 for RoTS, 13 for Ni-mutation, 24 for Sw-mutation, 19 for

Mi-mutation, and 18 for Sh-mutation.

Figure 29: Pareto Front for KC20-2fl-1uni

51

Here, non-dominated solution sets provided by mentioned modified MOABC

Algorithms are applied to KC30-3fl-1uni uniform instance with 30 locations are shown

and 3 objectives (flow). Again it is clear that, non-dominated solutions found by RoTS

are very close to the Optimum ones (Pareto front) and the accomplishment of the RoTS

by considering the number of non-dominated solutions is more transparent. Where, the

number of provided solutions by Pareto front is 68, 66 for RoTS, 5 for Ni-mutation, 23

for Sw-mutation, 19 for Mi-mutation, and 9 for Sh-mutation.

As it is illustrated in all figures, apart the MOABC combined with RoTS, all other

modified MOABC do not have the similar performance to get closer to the Pareto-

optimal front. Also, the number of non-dominated solution obtained by all other

algorithms is not admirable compare with RoTS.

Figure 32: Pareto Front for KC30-3fl-1uni

52

Here, non-dominated solution sets provided by mentioned modified MOABC

Algorithms are applied to KC50-2fl-1uni uniform instance with 50 locations are shown

and 2 objectives (flow). Clearly, non-dominated solutions found by RoTS again are the

most closest to the Optimum ones (Pareto front) and the power of the RoTS by

considering the number of non-dominated solutions is more transparent. Where, the

number of provided solutions by Pareto front is 101, 92 for RoTS, 20 for Ni-mutation,

27 for Sw-mutation, 23 for Mi-mutation, and 25 for Sh-mutation.

The rest of figures attained by all modified MOABC Algorithms are illustrated in the

appendix. However, the performance in all algorithms is almost similar in all

benchmarks.

Figure 35: Pareto Front for KC50-2fl-1uni

53

Chapter 7

CONCLUSION

In this work, a modified Artificial Bee Colony (ABC) Algorithm for Quadratic

Assignment Problem (QAP) and a modified Multi-objective ABC (MOABC) Algorithm

for multi-objective QAP (mQAP) are presented. The proposed ABC Algorithm keeps

the best solutions of each iteration for next iteration, instead of choosing a form at

random. In this study we have eliminated the scout phase and used the shift mutation in

order to avoid sticking in local optima. In this algorithm we have also added a new

crossover operator to improve local search and exploitation ability of ABC Algorithm.

These changes substantially improved the ABC Algorithm in balancing the exploitation

and exploration power. By creating this modified ABC Algorithm we solved the QAP

and can more confidently reach good solutions in high dimensional problems. Even

reaching exact solutions in bur26e, bur26h dimensional problem and so on, which is

unexpected for a heuristic algorithm, is achieved by this algorithm.

In the proposed MOABC Algorithm, we have used the variation of Tabu Search (TS) so

called Robust Tabu Search (RoTS), together with the Shift Mutation operator. Doing

this, we have managed to create a powerful algorithm in all aspects as a multi-objective

problem solver. The mQAP has also been solved by using the MOABC Algorithm. The

results show that we have arrived at an efficient algorithm in that it is a powerful tool in

handling both convergence and divergence to the Pareto Optimum.

54

REFERENCES

Adnan Acan, Ahmet Ünveren. “Evolutionary multiobjective optimization with a

segment based external memory support for the multiobjective quadratic assignment

problem”. Congress on Evolutionary Computation. pp: 2723-2729. (2005).

Alexander Schrijver. "On the history of combinatorial optimization (till

1960), Handbook of Discrete Optimization, Elsevier, Amsterdam. pp: 1–68. (2005).

Alfonsas Misevivius. “A Tabu Search Algorithm for the Quadratic Assignment

Problem”. Springer Science, Computational Optimization and Applications, 30, 95–

111. pp: 96. (2005).

Ashlock, D. “Evolutionary Computation for Modeling and Optimization”.

Springer, ISBN 0-387-22196-4. (2006).

Beni, G., Wang, J. Swarm. “Intelligence in Cellular Robotic Systems”, Proceed.

NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, pp:

26–30. (1989).

Carlos A. Coello Coello, Gary B. Lamont and David A. Van Veldhuizen.

“Evolutionary Algorithms for Solving Multi-Objective Problems”. ISBN 978-0-387-

33254-3. (2002).

55

Carlo R. Raquel and Prospero C. Naval, Jr. “An Effective Use of Crowding Distance

in Multi-objective Particle Swarm Optimization”, GECCO 05, Washington DC,

USA. (2005).

C. Lin and Y. Wang. “A new evolutionary algorithm for multi-objective

optimization problems”. ICIC, vol.1, no.1. pp: 93-98. (2007).

Chunfan Xu, Haibin Duan, “Artificial bee colony (ABC) optimized edge potential

function (EPF) approach to target recognition for low-altitude aircraft”, Pattern

Recognition Letters 31, pp: 1759-1772. (2010).

Coello, C. A. C. “An updated survey of GA-based multi-objective optimization

techniques”. ACM Computing Surveys, vol. 32, no. 2. pp: 109-143. (1999).

D. Karaboga. “An Idea Based on Honey Bee Swarm for Numerical Optimization”.

in Technical report-tr06, Erciyes University. (2005).

Fred Glover. "Tabu Search - Part 1". ORSA Journal on Computing 1 (2). pp: 190-

206. (1989).

 Fred Glover. "Tabu Search - Part 2". ORSA Journal on Computing 2 (1). pp: 4-32.

(1990).

 Glover F. “Future paths for integer programming and links to artificial intelligence”.

Computers and Operations Research, 13. pp: 533-549. (1986).

56

Glover, F., and Laguna, M. “Tabu Search”. Kluwer Academic Publishers, Boston,

MA. (1997).

Goran Dimic Nicholas D. Sidiropoulos, “On Downlink Beamforming With Greedy

User Selection: Performance Analysis and a Simple New Algorithm”, IEEE

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 10, (2005).

Greenwald, Bruce; Stiglitz, Joseph E. "Externalities in economies with imperfect

information and incomplete markets". Quarterly Journal of Economics 101(2): 229-

264. Doi: 10.2307/1891114. JSTOR 1891114. (1986).

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. “A Fast Elitist Non-dominated

Sorting Genetic Algorithm for Multi-objective Optimization: NSGA II”. In Parallel

Problem Solving from Nature VI (PPSN VI). pp: 849-858. (2000).

K.E. Parsopoulos, M. N. Vrahatis. “Particle swarm optimization method in

multiobjective problems”. ACM New York, NY, USA. pp: 603-607. (2002).

Kennedy, J. and Eberhart, R. C. “Particle swarm optimization”. Proc. IEEE Int'l.

Conf. on Neural Networks, IV, 1942–1948. Piscataway, NJ: IEEE Service Center.

(1995).

Kirkpatrick, S., Gelatt Jr., C., and Vecchi, M. “Optimization by simulated

annealing”. Science 220, 4598, pp: 671-680. (1983).

http://en.wikipedia.org/wiki/JSTOR
http://www.jstor.org/stable/1891114

57

Knowles, J.D. and Corne, D.W. “Towards landscape analyses to inform the design

of a hybrid local search for the multiobjective quadratic assignment problem”.

(2002).

 Koopmans_Beckmann. “Assignment Problem and Location of Economic “. pp: 25.

(1957).

Loiola, M. E., Abreu, N., Boaventura-netto, P., Hahn, P., Qurerido, T. “A survey for

the quadratic assignment problem”. European Journal of Operational Research,

176. pp: 657-690. (2007).

Malcolm Yoke Hean Low and Chwee Seng Choo. “Application of Multi-Objective

Bee Colony Optimization Algorithm to Automated Red Teaming” 978-1-4244-5771-

7/09/$26.00 IEEE. (2009).

Maurice C. and James K. “The Particle Swarm-Explosion, Stability, and

Convergence in a Multidimensional Complex Space”. Transaction on Evolutionary

Computation, IEEE. Vol. 6, No. 1, February. pp: 58-72. (2002).

MIT Press. "Evolutionary Computation". Vol. 1, No1. (1993).

Morse, P. M. and Feshbach, H. "Asymptotic Series; Method of Steepest Descent".

§4.6 in Methods of Theoretical Physics, Part I. New York: McGraw-Hill. pp: 434-

443. (1953).

58

Moscato, P. “On evolution, search, optimization, genetic algorithms and martial arts:

Towards memetic algorithms”. Caltech Concurrent Computation Program, C3P

Report 826. (1989).

Omar Al Jadaan, Lakishmi Rajamani, C. R. Rao, “NON-DOMINATED RANKED

GENETIC ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION

PROBLEMS: NRGA”, Journal of Theoretical and Applied Information Technology,

(2008).

R. Hedayatzadeh, B. Hasanizadeh, R. Akbari, K. Ziarati. “A Multi-Objective

Artificial Bee Colony for Optimizing Multi-Objective Problems”. 3rd International

Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu,

China, (2010).

R. Sivaraj et al. “A REVIEW OF SELECTION METHODS IN GENETIC

ALGORITHM” International Journal of Engineering Science and Technology

(IJEST), ISSN : 0975-5462, Vol. 3. (2011).

R. Storn, K. Price. “Differential evolution – a simple and efficient heuristic for

global optimization over continuous spaces”, J. Global Optim. pp:23. (2010).

S. Bandyopadhyay, S. Saha, U. Maulik. “A Simulated Annealing-Based

Multiobjective Optimization Algorithm: AMOSA”. Vol: 12, NO.3. pp: 270. (2008).

59

Sanaz Mostaghim and J¨urgen Teich. “Quad-trees: A Data Structure for Storing

Pareto-sets in Multi-objective Evolutionary Algorithms with Elitism”. Evolutionary

Multi-objective Optimization. Springer, ISBN 1-85233-787-7. pp: 81-104. (2005).

Taillard, E. “Robust taboo search for the quadratic assignment problem”. Parallel

Computing 17. Pp: 443-455. (1991).

T.D. Seeley. “The Wisdom of the Hive: The Social Physiology of Honey Bee

Colonies”. ISBN-10: 0674953762. (1996).

Teodorovic, D., Orco, M.D. “Bee colony optimization – a cooperative learning

approach to complex transportation problems”. Advanced OR and AI Methods in

Transportation. (2005).

 Zhang, X.-H., Meng, H.-Y., Jiao, L.-C. “Intelligent Particle Swarm Optimization in

Multiobjective Optimization”. Proc. IEEE Congress on Evolutionary Computation

CEC. Vol. 1. It cites paper C2. pp: 714-719. (2005).

60

APPENDIX

Figure 26: Pareto Front for KC10-2fl-1uni

Figure 27: Pareto Front for KC10-2fl-2uni

61

Figure 28: Pareto Front for KC10-2fl-3uni

Figure 29: Pareto Front for KC20-2fl-1uni

62

Figure 30: Pareto Front for KC20-2fl-2uni

Figure 31: Pareto Front for KC20-2fl-3uni

63

Figure 32: Pareto Front for KC30-3fl-1uni

Figure 33: Pareto Front for KC30-3fl-2uni

64

Figure 34: Pareto Front for KC30-3fl-3uni

Figure 35: Pareto Front for KC50-2fl-1uni

65

Figure 36: Pareto Front for KC50-2fl-2uni

Figure 37: Pareto Front for KC50-2fl-3uni

66

Figure 38: Pareto Front for KC75-3fl-1uni

Figure 39: Pareto Front for KC75-3fl-2uni

67

Figure 40: Pareto Front for KC10-2fl-1rl

Figure 41: Pareto Front for KC10-2fl-2rl

68

Figure 42: Pareto Front for KC10-2fl-3rl

Figure 43: Pareto Front for KC10-2fl-4rl

69

Figure 44: Pareto Front for KC10-2fl-5rl

Figure 45: Pareto Front for KC20-2fl-1rl

70

Figure 46: Pareto Front for KC20-2fl-2rl

Figure 47: Pareto Front for KC20-2fl-3rl

71

Figure 48: Pareto Front for KC20-2fl-4rl

Figure 49: Pareto Front for KC20-2fl-5rl

72

Figure 50: Pareto Front for KC30-3fl-1rl

Figure 51: Pareto Front for KC30-3fl-2rl

73

Figure 52: Pareto Front for KC30-3fl-3rl

Figure 53: Pareto Front for KC50-2fl-1rl

74

Figure 54: Pareto Front for KC50-2fl-2rl

Figure 55: Pareto Front for KC50-2fl-3rl

