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    Abstract - Multiobjective evolutionary optimization 
has been demonstrated to be an efficient method for 
some difficult multiobjective optimization problems; 
particularly the quadratic assignment problem which 
is a provably difficult NP-complete problem with a 
multitude of real-world applications. This paper 
introduces the use of a segment-based external 
memory in evolutionary multiobjective optimization. 
In principle, variable-size solution segments taken 
from a number of previously promising solutions are 
stored in an external memory whose elements are used 
in the construction of new solutions. In the 
construction of a solution, a solution segment is 
retrieved from the external memory and used in the 
construction of complete solutions through 
evolutionary recombination operators. The aim is to 
provide further intensification around promising 
solutions without weakening the exploration 
capabilities. Different instances of the multiobjective 
quadratic assignment problem are used for 
performance evaluations and, almost in all trials, the 
proposed external memory strategy provided 
significantly better results than the multiobjective 
genetic algorithm (MOGA). 

1 Introduction 

Multiobjective optimization (MOO) framework provides 
more realistic formulation of many real-life problems 
since a set of solutions, rather than a single solution, 
exhibiting different forms of concession among multiple 
and often conflicting objectives is provided as result of 
the optimization process. Such a set of solutions is 
commonly known as a Pareto-optimal set in which 
Pareto-optimality is defined in terms of a dominance 
relation between two solutions as follows: given two 
solutions u and v, u≠v, u is said to dominate v if u is not 
worse than v in all objectives and u strictly is better than v 
for at least one objective.  For example, for a 
maximization problem,  
 
 
 Max f(x)=(f1(x), f2(x),…,fK(x))    (1) 
  x=(x1,x2,…,xn) Є Rn 

 
solution vector u is better than solution vector v with 
respect to objective i, if fi(u) ≥  fi(v), and u is said to 
dominate v, denoted as vu f , if and only if 
 
 fi(u) ≥ fi(v)  for i=1,2,…,j-1,j+1,…K   (2) 
 fj(u) > fj(v)  for at least one 1≤ j ≤ K. 
 
A common difficulty with multi-objective optimization 
problems is the presence of a number of conflicting 
objectives and, in general, none of the feasible solutions 
allow simultaneous optimality for all objectives. Hence, 
any favorable Pareto-optimum provides a solution 
exhibiting a subjective compromise between the problem 
objectives.  In order to find such a solution, classical 
methods transform the multiobjective optimization 
problem into a single-objective one through different 
scalarization and objective combination methods that 
include serious drawbacks in terms of appropriate 
representation of the real-world problem and the resulting 
solution qualities [1]. 

 
In order to have better mathematical models for real-world 
problems and increase the efficiency of search within 
arbitrarily complex solution spaces through providing a set 
of solutions rather than a single solution, some advanced 
MOO techniques have been proposed in the last few years 
[2]. These techniques are generally based on some 
metaheuristics such as Simulated Annealing, Evolutionary 
Algorithms, Tabu Search, Particle Swarm Optimization, 
Artificial Immune Systems, Cultural Algorithms and Ant 
Colony Optimization algorithms. In this study, the use of 
an external memory implementation in evolutionary 
multiobjective optimization is introduced towards 
improving their search capability and solution quality.  For 
this purpose, a well-known evolutionary multiobjective 
GA, namely MOGA, is taken as the base search strategy 
and integrated with a gene segment-based external 
memory. The details of the proposed strategy are given in 
Section 4. 



2 Multiobjective Genetic Algorithms 

Studies on multiobjective GAs started with the pioneering 
work by Schaffer in 1984 [3] and, since then, there has 
been a number of different types of multiobjective genetic 
algorithms. A fundamental motivation behind these studies 
is due to the population-based search ability of GAs in 
which a population of individuals captures multiple Pareto-
optimal solutions in a single run.  
 
In most of the literature surveys and comparative studies, 
multiobjective GAs are divided into non-Pareto and 
Pareto-based approaches [4,5].  In the category of non-
Pareto GAs, the first multiobjective GA was VEGA 
(Vector Evaluating GA) by Schaffer [3]. Basically, it uses 
one population and associated selection metric for each 
individual objective function. This method generally 
results in a poor coverage of Pareto frontier. Later 
Fourman and Kurasawe introduced multiobjective GAs 
based on binary tournaments where one selected objective 
is used as the selection metric within a single population 
[6,7].  Different objective selection methods and diversity 
maintenance mechanisms are tried within these 
approaches, however, they tend to converge to a subset of 
the Pareto-frontier while they leave a large part of it 
unexplored [8]. 
 
The Pareto-based approaches are mainly motivated by a 
suggestion of a non-dominated GA by D. Goldberg [9]. 
According to this approach, first non-dominated 
individuals within the population are identified, they are 
given the rank 1, and removed from the population. Then, 
the non-dominated individuals within the reduced 
population are identified and given the rank 2, followed by 
their removal from the population. This procedure is 
repeated until the whole population is ranked. Srinivas and 
Deb [10] implemented non-dominated sorting GA 
(NSGA) based on Goldberg’s suggestions and sharing 
techniques between individuals with the same ranking. 
NSGA and an improved version of it NSGA-II [11] have 
been proved to be quite successful in maintaining diversity 
and exploring the Pareto-front in several benchmark 
numerical multiobjective optimization problems.  
 
Fonseca and Fleming introduced a multiobjective GA 
(MOGA) [12,13], in which each individual is ranked 
according to their degree of dominance defined in terms of 
the number of individuals that dominate a given individual. 
Accordingly, individuals on the Pareto-front are given rank 
1 since they are non-dominated. Both sharing and mating 
restrictions are employed to maintain population diversity. 
We have compared our proposed approach with MOGA in 
the solution of a provably difficult combinatorial 
optimization  problem and have demonstrated that the 
proposed approach beats  MOGA  for several problem 
instances. 
 
The strengthened Pareto evolutionary algorithm (SPEA) 
presented by  Zitzler and Thiele [14] uses two populations 

P and P’ such that copies of all non-dominated individuals 
are stored in P’. The fitness of the individuals in P’ is 
calculated based on how many individuals in P they 
dominate and fitness of solution in P is computed as a sum 
of the fitness values of individuals in P’ that dominate it. 
In addition, selection is performed using binary 
tournaments from both populations. In the niched Pareto 
GA (NPGA) of Horn et al. [15], individuals are selected 
using Pareto-domination tournaments where a subset of 
the population is used as a basis to form the tournament. 
Accordingly, if an individual in the subset dominates its 
contestant, it is selected to survive, else selection is based 
on the niche count of similar individuals. Both SPEA and 
NPGA are used for numerical multi-objective optimization 
problems and proved to be successful with respect to other 
Pareto-based approached. Comparative studies on 
multiobjective GAs can be found in [14]. 

3 Multi-Objective Quadratic Assignment 
Problem 

The quadratic assignment problem (QAP) is a model for 
many practical problems like backboard wiring, campus 
and hospital layout, and scheduling. Intuitively, QAP can 
best be described as the problem of assigning a set of 
facilities to a set of locations with given distances between 
the locations and given flows between facilities. The goal 
then is to place the facilities on locations in such a way that 
the sum-of-product of flows and distances is minimal [16]. 
More formally, given n facilities and n locations, two 

nn×  matrices ][ ijaA =  and ][ rsbB = , here ija is the 

distance between location i and location j and rsb is the 
flow between facility r and facility s. The QAP can be 
stated as follows: 
 

( ) 1 1

min
i j

n n

ijS n i j

J b aΨ Ψ ΨΨ∈
= =

= ∑∑  (3) 

 
 where S(n) is the set of all permutations (corresponding to 
the assignments) of the set of integers { }1,..., n , and iΨ  

gives the location of facility i in the current solution  
( )S nΨ∈ . Here the product 

i jijb aΨ Ψ describes the cost 

contribution of simultaneously assigning facility i to 
location iΨ  and facility j to location jΨ  [17]. 

 
The multi-objective QAP (mQAP) with multiple flow 
matrices naturally models any facility layout problem that 
is concerned with the flow of more than one type of items 
or agents. For example, in a hospital layout problem we 
may be concerned with simultaneously minimizing the 
flow/distance products of doctors on their rounds, of 
patients, of hospital visitors, and of pharmaceuticals and 
other equipment. The mQAP proposed by Knowles and 
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Corne [17] uses different flow matrices and keeps the same 
distance matrix. Given n facilities and n locations, a nn×  
matrix A, where ija  is the distance between locations i and 

j, and T number of  nn×  matrices tB , 1,...,t T= , 

where t
rsb  is the tht  flow between facilities r and s, the 

mQAP can be stated as follows: 
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where min refers to the notion of Pareto optimality [18]. 

4 The Proposed Segment-Based External 
Memory Strategy 

The basic inspiration behind the use of a gene-segment 
memory is to store some allelic values that result in non-
dominated solutions within the current population so that 
they can be reused in future generations for providing 
further intensification around non-dominated solutions. 
Storing gene-segments from non-dominated individuals 
of previous generations will give a chance to these 
individuals to take part in recombination operations over 
multiple future generations, which is obvoiusly an 
effective method of intensification around the set of non-
dominated solutions.  
 
Generation of a gene-segment from a given parent 
chromosome is illustrated in Figure 1. Simply, a randomly 
located and random-length gene-segment is selected from 
the parent chromosome and stored within the external 
memory. The stored parental objective function values are 
used in memory update procedures.  
 

 
g1 g2 … gN-1 gN f1 f2 … fK 

   |                                               |                                    | 
 
           
a) A parent chromosome 
 

… gi gi+1 … gm … f1 f2 … fK 
           |                                   |                                           | 

 
b) A gene segment and associated parental objective 

values stored in memory.  
 

      Figure 1. a) A parent chromosome and b) a randomly 
located random-length gene-segment stored in the 
external memory. 

Based on the above descriptions, an external memory of 
variable-size solution segments from a number of non-
dominated solutions of previous iterations is maintained. 
Initially the memory is empty and a number classical 
MOGA iterations is performed to fill in the memory. In 
this respect, after every iteration, the set of non-dominated 
solutions are determined and randomly positioned 
variable-size segments are cut from these individuals, one 
segment per solution, and stored in the memory. Each 
segment is also associated with a vector of objective 
function values that will be used in updating the memory. 
The memory size M is fixed and normal MOGA iterations 
are repeated until the memory is full. 
 
After the initial phase, MOGA algorithm works in 
conjunction with the implemented external memory as 
follows: in order to construct an offspring, one parent is 
selected from the current population based on the 
MOGA’s ranking methodology. Then, a solution segment 
is retrieved from the memory using a uniformly random 
selection strategy and inserted into the parent 
chromosome similar to a reciprocal translocation 
operation. The location of the segment within the selected 
parent is also determined randomly. This operation also 
plays the role of the crossover where the recombination is 
carried out between a non-dominated individual and a 
solution segment of a previously non-dominated solution. 
This procedure is followed by a mutation of the offspring 
with a very small probability. Based on these descriptions, 
the proposed external-memory based MOGA method can 
be put into an algorithmic form as described in Figure 2. 
 
In memory update procedure, first the set of non-
dominated solutions within the offspring population is 
determined. Then, each individual within this set is 
compared with the objective vectors of memory elements 
and in cases where a memory element is dominated by the 
newly developed solution; the memory element is 
replaced by a new one cut from the dominating solution. 
One randomly-positioned and random-length segment is 
cut from dominating individual within the new 
population.  The results that are obtained by the proposed 
MOGA strategy are listed in the following section. 

5 Results 

In all experiments, integer-valued chromosomes 
representing a permutation of facilities assigned to N 
locations are used for problem representations. The 
selection method used is the tournament selection with 
elitism. Uniform crossover is used for conventional 
MOGAs, whereas there is no crossover operator in the 
proposed approach since recombination is carried out by 
inserting selected gene segments into parent 
chromosomes. A mutation operator is used to modify 
those parent-only genes, while genes of the inserted 
sequences remain unmodified, and the mutation rate is 
0.06. Experiments are carried out using a population size 
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of 400 individuals for conventional MOGAs. For the 
proposed approach, the total number of individuals in the 
population and the gene- segments library is also taken as 
400, i.e. 200 individuals in each. This way, total number 
of individuals in conventional MOGAs and the proposed 
strategy are kept the same.  
 
 
Algorithm: MOGA integrated with an external memory 
 
1. Initialize the population. 
2. Evaluate the initial population 
3. Repeat 
3.1  Perform one MOGA generation 
3.2  Determine the set of non-dominated solutions.  
3.3  Cut one randomly located random-length gene 

segment form each non-dominated solution and 
insert into the external memory.  Also, store the 
length of the segment and the objective vector its 
parent. 

4. Until the memory is full. 
5. ITER=1 
6. Repeat 
6.1 Rank the individuals according to their degree of   

dominance. 
6.2 For i=1 to |Pop| 
6.3 Parent=Selection(Pop,Ranking) 
6.4 Gene_Segment= Select a memory element 

uniformly randomly.  
6.5      Offspring=Insert(Parent, Gene_Segment)  
6.6      Mutate Offspring. 
6.7 New_Pop(i)=Offspring. 
6.8 EndFor 
6.9 Evaluate the new population. 
6.10 Update memory using new population. 
6.11 ITER=ITER+1. 
6.12 Until (Termination Condition == TRUE) 
 
Figure 2. MOGA with an external solution-segment 
memory. 
 
 
The developed Algorithm was tested on eleven real-life 
like instances and fifteen uniform instances making a total 
of twenty six different mQAP instances. All instances 
used in experimental evaluations are taken from [17, 19]. 
The results of the most difficult 2-objective QAP’s 
instances with 10 and 20 locations are given in the 
following figures. 
 
In Figure 3, non-dominated solution sets provided by the 
proposed algorithm SBEM (SBEM- Segment-Based 
Extended Memory algorithm with MOGA) and MOGA 
when applied to KC10-2fl-1uni uniform instance with 10 
locations are presented. According to these results SBEM 
returned almost the same Pareto points as the given Pareto 
Front of this problem and found more pareto points than 
MOGA.  In this respect, the number of points on the 
Pareto front is 12, MOGA found only 7 non-dominated 

solutions while the number of non-dominated solutions 
found by SBEM is 13.  
 
In Figure 4, non-dominated solution sets provided by  
SBEM and MOGA when applied to KC10-2fl-3uni 
uniform instance with 10 locations are shown. In this 
case, the non-dominated solutins found by MOGA and 
SBEM are very close to the ones on the Pareto front, 
hovewer, the supriority in the success of SBEM is best 
seen when the  number of non-dominated solutions by 
algorithms is considered. The number of solutions on the 
provided Pareto front is 64, the number non-dominated 
solutions found by MOGA is 15, and the number of non-
dominated solutions computed by SBEM is 120. This 
numerical picture makes the additional power gained 
through the use of the proposed approach much more 
clear.  
 
In Figure 5, and Figure 6, non-dominated solution sets 
provided by SBEM and MOGA when applied to KC20-
2fl-1uni and KC20-2fl-2uni uniform instances with 20 
locations, respectively, are illustrated. In both cases 
Pareto points of SBEM algorithm clearly dominates the 
Pareto points of the MOGA algorithm. 
 
Figure 7 exhibits the non-dominated solution sets 
provided by  SBEM and MOGA when applied to KC20-
2fl-3uni, uniform instance, with 20 location. Resutlts 
shows that most of the Pareto points obtained by SBEM 
algorithm dominates the pareto points obtained by 
MOGA. For this particular problem instance, the number 
of Pareto solutions extracted by SBEM and MOGA are 66 
and 60, respectively.  
 
In Figure 8, the Pareto fronts provided by  SBEM and 
MOGA when applied to KC10-2fl-5rl real-life like 
instance with 10 locations are shown and these results 
demonstrate that SBEM return almost the same Pareto 
points with MOGA but finds more pareto points than 
MOGA. The number of points on the provided Pareto 
front is 48. The number of Pareto points computed by 
SBEM and MOGA are 33 and 14, respectively. These 
results demonstrate that SBEM improves the performance 
of MOGA more than a factor of 2.  
 
Figure 9 shows non-dominated solution sets provided by  
SBEM and MOGA when applied to KC20-2fl-5rl real-life 
like instance with 20 locations. Results show  that Pareto 
points of SBEM algorithm outperforms MOGA in the 
sense that all Pareto points of MOGA algorithm are 
dominated by those of SBEM. Considering the 
performances in terms of the number of Pareto solutions 
computed, the score of SBEM is 105 while that of MOGA 
is 41. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. KC10-2fl-1uni: 2-objective QAP 
       instant with 10 locations. 
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Figure 4. KC10-2fl-3uni: 2-objective QAP 
   instant with 10 locations. 
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Figure 5. KC20-2fl-1uni: 2-objective QAP 
instant with 20 locations.  
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Figure 6. KC20-2fl-2uni: 2-objective 
QAP instant with 20 locations. 
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Figure 7. KC20-2fl-3uni: 2-objective QAP  
instant with 20 locations. 

Figure 8. KC10-2fl-5rl: 2-objective QAP  
instant with 10 locations. 
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6 Conclusions 

In this paper a novel external memory-based 
multiobjective genetic algorithms strategy employing a 
gene segments memory including gene segments from 
potentially promising solutions of previous generations is 
introduced. The implemented strategy is used to solve a 
provably difficult combinatorial optimization problem, 
namely the multiobjective quadratic assignment problem, 
and its performance is compared with a well known 
multiobjective genetic algorithm MOGA. 
 
For all test cases, for the same population size, it is 
concluded that the proposed stragey outperforms MOGA 
in terms of the number of non-dominated Pareto solution 
computed. Also, for all problems instances handled in 
experimental evaluations, the performance SBEM in 
terms of the closeness to the provided Pareto front is 
either equally well or significantly better than that of 
MOGA.  These results are important in demonstrating the 
usefulness of memory-based approaches in evolutionary 
multiobjective optimization. The presented approach is an 
intial but successful step in this respect, as demonsrated 
by the presented results. 
 
This work requires further investigation from following 
point of views: supporting SBEM with multiple 
chromosome libraries with different chromosome 
lifetimes and memory update strategies, use of internal 
memory-based methods in MOO, and integration with 
other well-known evolutionary multiobjective 
optimization algorithms.  
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