
Evolutionary Multiobjective Optimization with a Segment-Based
External Memory Support for the Multiobjective Quadratic

Assignment Problem

Adnan Acan
Eastern Mediterranean University

Computer Engineering Department
Gazimagusa, TRNC

Mersin 10, TURKEY
adnan.acan@emu.edu.tr

Ahmet Ünveren
Eastern Mediterranean University

Computer Engineering Department
Gazimagusa, TRNC

Mersin 10, TURKEY
ahmet.unveren@emu.edu.tr

 Abstract - Multiobjective evolutionary optimization
has been demonstrated to be an efficient method for
some difficult multiobjective optimization problems;
particularly the quadratic assignment problem which
is a provably difficult NP-complete problem with a
multitude of real-world applications. This paper
introduces the use of a segment-based external
memory in evolutionary multiobjective optimization.
In principle, variable-size solution segments taken
from a number of previously promising solutions are
stored in an external memory whose elements are used
in the construction of new solutions. In the
construction of a solution, a solution segment is
retrieved from the external memory and used in the
construction of complete solutions through
evolutionary recombination operators. The aim is to
provide further intensification around promising
solutions without weakening the exploration
capabilities. Different instances of the multiobjective
quadratic assignment problem are used for
performance evaluations and, almost in all trials, the
proposed external memory strategy provided
significantly better results than the multiobjective
genetic algorithm (MOGA).

1 Introduction

Multiobjective optimization (MOO) framework provides
more realistic formulation of many real-life problems
since a set of solutions, rather than a single solution,
exhibiting different forms of concession among multiple
and often conflicting objectives is provided as result of
the optimization process. Such a set of solutions is
commonly known as a Pareto-optimal set in which
Pareto-optimality is defined in terms of a dominance
relation between two solutions as follows: given two
solutions u and v, u≠v, u is said to dominate v if u is not
worse than v in all objectives and u strictly is better than v
for at least one objective. For example, for a
maximization problem,

 Max f(x)=(f1(x), f2(x),…,fK(x)) (1)
 x=(x1,x2,…,xn) Є Rn

solution vector u is better than solution vector v with
respect to objective i, if fi(u) ≥ fi(v), and u is said to
dominate v, denoted as vu f , if and only if

 fi(u) ≥ fi(v) for i=1,2,…,j-1,j+1,…K (2)
 fj(u) > fj(v) for at least one 1≤ j ≤ K.

A common difficulty with multi-objective optimization
problems is the presence of a number of conflicting
objectives and, in general, none of the feasible solutions
allow simultaneous optimality for all objectives. Hence,
any favorable Pareto-optimum provides a solution
exhibiting a subjective compromise between the problem
objectives. In order to find such a solution, classical
methods transform the multiobjective optimization
problem into a single-objective one through different
scalarization and objective combination methods that
include serious drawbacks in terms of appropriate
representation of the real-world problem and the resulting
solution qualities [1].

In order to have better mathematical models for real-world
problems and increase the efficiency of search within
arbitrarily complex solution spaces through providing a set
of solutions rather than a single solution, some advanced
MOO techniques have been proposed in the last few years
[2]. These techniques are generally based on some
metaheuristics such as Simulated Annealing, Evolutionary
Algorithms, Tabu Search, Particle Swarm Optimization,
Artificial Immune Systems, Cultural Algorithms and Ant
Colony Optimization algorithms. In this study, the use of
an external memory implementation in evolutionary
multiobjective optimization is introduced towards
improving their search capability and solution quality. For
this purpose, a well-known evolutionary multiobjective
GA, namely MOGA, is taken as the base search strategy
and integrated with a gene segment-based external
memory. The details of the proposed strategy are given in
Section 4.

2 Multiobjective Genetic Algorithms

Studies on multiobjective GAs started with the pioneering
work by Schaffer in 1984 [3] and, since then, there has
been a number of different types of multiobjective genetic
algorithms. A fundamental motivation behind these studies
is due to the population-based search ability of GAs in
which a population of individuals captures multiple Pareto-
optimal solutions in a single run.

In most of the literature surveys and comparative studies,
multiobjective GAs are divided into non-Pareto and
Pareto-based approaches [4,5]. In the category of non-
Pareto GAs, the first multiobjective GA was VEGA
(Vector Evaluating GA) by Schaffer [3]. Basically, it uses
one population and associated selection metric for each
individual objective function. This method generally
results in a poor coverage of Pareto frontier. Later
Fourman and Kurasawe introduced multiobjective GAs
based on binary tournaments where one selected objective
is used as the selection metric within a single population
[6,7]. Different objective selection methods and diversity
maintenance mechanisms are tried within these
approaches, however, they tend to converge to a subset of
the Pareto-frontier while they leave a large part of it
unexplored [8].

The Pareto-based approaches are mainly motivated by a
suggestion of a non-dominated GA by D. Goldberg [9].
According to this approach, first non-dominated
individuals within the population are identified, they are
given the rank 1, and removed from the population. Then,
the non-dominated individuals within the reduced
population are identified and given the rank 2, followed by
their removal from the population. This procedure is
repeated until the whole population is ranked. Srinivas and
Deb [10] implemented non-dominated sorting GA
(NSGA) based on Goldberg’s suggestions and sharing
techniques between individuals with the same ranking.
NSGA and an improved version of it NSGA-II [11] have
been proved to be quite successful in maintaining diversity
and exploring the Pareto-front in several benchmark
numerical multiobjective optimization problems.

Fonseca and Fleming introduced a multiobjective GA
(MOGA) [12,13], in which each individual is ranked
according to their degree of dominance defined in terms of
the number of individuals that dominate a given individual.
Accordingly, individuals on the Pareto-front are given rank
1 since they are non-dominated. Both sharing and mating
restrictions are employed to maintain population diversity.
We have compared our proposed approach with MOGA in
the solution of a provably difficult combinatorial
optimization problem and have demonstrated that the
proposed approach beats MOGA for several problem
instances.

The strengthened Pareto evolutionary algorithm (SPEA)
presented by Zitzler and Thiele [14] uses two populations

P and P’ such that copies of all non-dominated individuals
are stored in P’. The fitness of the individuals in P’ is
calculated based on how many individuals in P they
dominate and fitness of solution in P is computed as a sum
of the fitness values of individuals in P’ that dominate it.
In addition, selection is performed using binary
tournaments from both populations. In the niched Pareto
GA (NPGA) of Horn et al. [15], individuals are selected
using Pareto-domination tournaments where a subset of
the population is used as a basis to form the tournament.
Accordingly, if an individual in the subset dominates its
contestant, it is selected to survive, else selection is based
on the niche count of similar individuals. Both SPEA and
NPGA are used for numerical multi-objective optimization
problems and proved to be successful with respect to other
Pareto-based approached. Comparative studies on
multiobjective GAs can be found in [14].

3 Multi-Objective Quadratic Assignment
Problem

The quadratic assignment problem (QAP) is a model for
many practical problems like backboard wiring, campus
and hospital layout, and scheduling. Intuitively, QAP can
best be described as the problem of assigning a set of
facilities to a set of locations with given distances between
the locations and given flows between facilities. The goal
then is to place the facilities on locations in such a way that
the sum-of-product of flows and distances is minimal [16].
More formally, given n facilities and n locations, two

nn× matrices][ijaA = and][rsbB = , here ija is the

distance between location i and location j and rsb is the
flow between facility r and facility s. The QAP can be
stated as follows:

() 1 1

min
i j

n n

ijS n i j

J b aΨ Ψ ΨΨ∈
= =

= ∑∑ (3)

 where S(n) is the set of all permutations (corresponding to
the assignments) of the set of integers { }1,..., n , and iΨ

gives the location of facility i in the current solution
()S nΨ∈ . Here the product

i jijb aΨ Ψ describes the cost

contribution of simultaneously assigning facility i to
location iΨ and facility j to location jΨ [17].

The multi-objective QAP (mQAP) with multiple flow
matrices naturally models any facility layout problem that
is concerned with the flow of more than one type of items
or agents. For example, in a hospital layout problem we
may be concerned with simultaneously minimizing the
flow/distance products of doctors on their rounds, of
patients, of hospital visitors, and of pharmaceuticals and
other equipment. The mQAP proposed by Knowles and

 Gene-segment

Corne [17] uses different flow matrices and keeps the same
distance matrix. Given n facilities and n locations, a nn×
matrix A, where ija is the distance between locations i and

j, and T number of nn× matrices tB , 1,...,t T= ,

where t
rsb is the tht flow between facilities r and s, the

mQAP can be stated as follows:

1

1 1

()

1 1

min

i j

i j

n n

ij
i j

S n
n n

T
ij

i j

a b

a b

Ψ Ψ
= =

Ψ∈

Ψ Ψ
= =

∑∑

∑∑

M (4)

where min refers to the notion of Pareto optimality [18].

4 The Proposed Segment-Based External
Memory Strategy

The basic inspiration behind the use of a gene-segment
memory is to store some allelic values that result in non-
dominated solutions within the current population so that
they can be reused in future generations for providing
further intensification around non-dominated solutions.
Storing gene-segments from non-dominated individuals
of previous generations will give a chance to these
individuals to take part in recombination operations over
multiple future generations, which is obvoiusly an
effective method of intensification around the set of non-
dominated solutions.

Generation of a gene-segment from a given parent
chromosome is illustrated in Figure 1. Simply, a randomly
located and random-length gene-segment is selected from
the parent chromosome and stored within the external
memory. The stored parental objective function values are
used in memory update procedures.

g1 g2 … gN-1 gN f1 f2 … fK

 | | |

a) A parent chromosome

… gi gi+1 … gm … f1 f2 … fK
 | | |

b) A gene segment and associated parental objective

values stored in memory.

 Figure 1. a) A parent chromosome and b) a randomly
located random-length gene-segment stored in the
external memory.

Based on the above descriptions, an external memory of
variable-size solution segments from a number of non-
dominated solutions of previous iterations is maintained.
Initially the memory is empty and a number classical
MOGA iterations is performed to fill in the memory. In
this respect, after every iteration, the set of non-dominated
solutions are determined and randomly positioned
variable-size segments are cut from these individuals, one
segment per solution, and stored in the memory. Each
segment is also associated with a vector of objective
function values that will be used in updating the memory.
The memory size M is fixed and normal MOGA iterations
are repeated until the memory is full.

After the initial phase, MOGA algorithm works in
conjunction with the implemented external memory as
follows: in order to construct an offspring, one parent is
selected from the current population based on the
MOGA’s ranking methodology. Then, a solution segment
is retrieved from the memory using a uniformly random
selection strategy and inserted into the parent
chromosome similar to a reciprocal translocation
operation. The location of the segment within the selected
parent is also determined randomly. This operation also
plays the role of the crossover where the recombination is
carried out between a non-dominated individual and a
solution segment of a previously non-dominated solution.
This procedure is followed by a mutation of the offspring
with a very small probability. Based on these descriptions,
the proposed external-memory based MOGA method can
be put into an algorithmic form as described in Figure 2.

In memory update procedure, first the set of non-
dominated solutions within the offspring population is
determined. Then, each individual within this set is
compared with the objective vectors of memory elements
and in cases where a memory element is dominated by the
newly developed solution; the memory element is
replaced by a new one cut from the dominating solution.
One randomly-positioned and random-length segment is
cut from dominating individual within the new
population. The results that are obtained by the proposed
MOGA strategy are listed in the following section.

5 Results

In all experiments, integer-valued chromosomes
representing a permutation of facilities assigned to N
locations are used for problem representations. The
selection method used is the tournament selection with
elitism. Uniform crossover is used for conventional
MOGAs, whereas there is no crossover operator in the
proposed approach since recombination is carried out by
inserting selected gene segments into parent
chromosomes. A mutation operator is used to modify
those parent-only genes, while genes of the inserted
sequences remain unmodified, and the mutation rate is
0.06. Experiments are carried out using a population size

 Genome

Objective Values

 Objective Values

of 400 individuals for conventional MOGAs. For the
proposed approach, the total number of individuals in the
population and the gene- segments library is also taken as
400, i.e. 200 individuals in each. This way, total number
of individuals in conventional MOGAs and the proposed
strategy are kept the same.

Algorithm: MOGA integrated with an external memory

1. Initialize the population.
2. Evaluate the initial population
3. Repeat
3.1 Perform one MOGA generation
3.2 Determine the set of non-dominated solutions.
3.3 Cut one randomly located random-length gene

segment form each non-dominated solution and
insert into the external memory. Also, store the
length of the segment and the objective vector its
parent.

4. Until the memory is full.
5. ITER=1
6. Repeat
6.1 Rank the individuals according to their degree of

dominance.
6.2 For i=1 to |Pop|
6.3 Parent=Selection(Pop,Ranking)
6.4 Gene_Segment= Select a memory element

uniformly randomly.
6.5 Offspring=Insert(Parent, Gene_Segment)
6.6 Mutate Offspring.
6.7 New_Pop(i)=Offspring.
6.8 EndFor
6.9 Evaluate the new population.
6.10 Update memory using new population.
6.11 ITER=ITER+1.
6.12 Until (Termination Condition == TRUE)

Figure 2. MOGA with an external solution-segment
memory.

The developed Algorithm was tested on eleven real-life
like instances and fifteen uniform instances making a total
of twenty six different mQAP instances. All instances
used in experimental evaluations are taken from [17, 19].
The results of the most difficult 2-objective QAP’s
instances with 10 and 20 locations are given in the
following figures.

In Figure 3, non-dominated solution sets provided by the
proposed algorithm SBEM (SBEM- Segment-Based
Extended Memory algorithm with MOGA) and MOGA
when applied to KC10-2fl-1uni uniform instance with 10
locations are presented. According to these results SBEM
returned almost the same Pareto points as the given Pareto
Front of this problem and found more pareto points than
MOGA. In this respect, the number of points on the
Pareto front is 12, MOGA found only 7 non-dominated

solutions while the number of non-dominated solutions
found by SBEM is 13.

In Figure 4, non-dominated solution sets provided by
SBEM and MOGA when applied to KC10-2fl-3uni
uniform instance with 10 locations are shown. In this
case, the non-dominated solutins found by MOGA and
SBEM are very close to the ones on the Pareto front,
hovewer, the supriority in the success of SBEM is best
seen when the number of non-dominated solutions by
algorithms is considered. The number of solutions on the
provided Pareto front is 64, the number non-dominated
solutions found by MOGA is 15, and the number of non-
dominated solutions computed by SBEM is 120. This
numerical picture makes the additional power gained
through the use of the proposed approach much more
clear.

In Figure 5, and Figure 6, non-dominated solution sets
provided by SBEM and MOGA when applied to KC20-
2fl-1uni and KC20-2fl-2uni uniform instances with 20
locations, respectively, are illustrated. In both cases
Pareto points of SBEM algorithm clearly dominates the
Pareto points of the MOGA algorithm.

Figure 7 exhibits the non-dominated solution sets
provided by SBEM and MOGA when applied to KC20-
2fl-3uni, uniform instance, with 20 location. Resutlts
shows that most of the Pareto points obtained by SBEM
algorithm dominates the pareto points obtained by
MOGA. For this particular problem instance, the number
of Pareto solutions extracted by SBEM and MOGA are 66
and 60, respectively.

In Figure 8, the Pareto fronts provided by SBEM and
MOGA when applied to KC10-2fl-5rl real-life like
instance with 10 locations are shown and these results
demonstrate that SBEM return almost the same Pareto
points with MOGA but finds more pareto points than
MOGA. The number of points on the provided Pareto
front is 48. The number of Pareto points computed by
SBEM and MOGA are 33 and 14, respectively. These
results demonstrate that SBEM improves the performance
of MOGA more than a factor of 2.

Figure 9 shows non-dominated solution sets provided by
SBEM and MOGA when applied to KC20-2fl-5rl real-life
like instance with 20 locations. Results show that Pareto
points of SBEM algorithm outperforms MOGA in the
sense that all Pareto points of MOGA algorithm are
dominated by those of SBEM. Considering the
performances in terms of the number of Pareto solutions
computed, the score of SBEM is 105 while that of MOGA
is 41.

Figure 3. KC10-2fl-1uni: 2-objective QAP
 instant with 10 locations.

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

x 105

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4
x 105

Pareto Front
SBEM
MOGA

Figure 4. KC10-2fl-3uni: 2-objective QAP
 instant with 10 locations.

1.8 2 2.2 2.4 2.6 2.8 3

x 105

1.6

1.8

2

2.2

2.4

2.6

2.8
x 105

Pareto Front
SBEM
MOGA

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

x 106

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2
x 105

SBEM
MOGA

Figure 5. KC20-2fl-1uni: 2-objective QAP
instant with 20 locations.

8.45 8.5 8.55 8.6 8.65 8.7 8.75 8.8 8.85 8.9 8.95

x 105

8.35

8.4

8.45

8.5

8.55

8.6

8.65

8.7

8.75

8.8
x 105

SBEM
MOGA

Figure 6. KC20-2fl-2uni: 2-objective
QAP instant with 20 locations.

0.9 0.95 1 1.05 1.1 1.15 1.2

x 106

8

8.5

9

9.5

10

10.5
x 105

SBEM
MOGA

Figure 7. KC20-2fl-3uni: 2-objective QAP
instant with 20 locations.

Figure 8. KC10-2fl-5rl: 2-objective QAP
instant with 10 locations.

2 3 4 5 6 7 8 9 10 11

x 106

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 107

Pareto Front
SBEM
MOGA

6 Conclusions

In this paper a novel external memory-based
multiobjective genetic algorithms strategy employing a
gene segments memory including gene segments from
potentially promising solutions of previous generations is
introduced. The implemented strategy is used to solve a
provably difficult combinatorial optimization problem,
namely the multiobjective quadratic assignment problem,
and its performance is compared with a well known
multiobjective genetic algorithm MOGA.

For all test cases, for the same population size, it is
concluded that the proposed stragey outperforms MOGA
in terms of the number of non-dominated Pareto solution
computed. Also, for all problems instances handled in
experimental evaluations, the performance SBEM in
terms of the closeness to the provided Pareto front is
either equally well or significantly better than that of
MOGA. These results are important in demonstrating the
usefulness of memory-based approaches in evolutionary
multiobjective optimization. The presented approach is an
intial but successful step in this respect, as demonsrated
by the presented results.

This work requires further investigation from following
point of views: supporting SBEM with multiple
chromosome libraries with different chromosome
lifetimes and memory update strategies, use of internal
memory-based methods in MOO, and integration with
other well-known evolutionary multiobjective
optimization algorithms.

Bibliography

[1] C. A. Coello, D. A. Van Veldhuizen, G. B. Lamant,
Evolutionary Algorithms for Solving Multiobjective
Problems, Kluwer, 2002.

[2] X. Gandibleux, M. Sevaux, K. Sörensen, V. T’kindt
(Eds.), Metaheuristics for Mutiobjective Optimisation,
Lecture Notes in Economics and Mathematical Systems
535, Springer Verlag, 2004.

[3] C. Fonseca C., P. Fleming, An overview of
evolutionary algorithms in multiobjective optimization,
Evolutionary Computation, vol. 3, pp. 1-18, 1995.

[4] H. Tamaki, H. Kita, and S. Kobayashi, Multi-objective
optimization by genetic algorithms: a review, 1996 IEEE
International Conference on Evolutionary Computation,
ICEC'96, Nagoya, Japan, 1996.

[5] E. Zitzler, L. Thiele, Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the Strength
Pareto Approach, IEEE Transaction on evolutionary
computation, vol. 3, pp. 257-271, 1999.

[6] M.P. Fourman, Compaction of symbolic layout using
genetic algorithms, 1st Int. Conference on Genetic
Algorithms, Pittsburgh, 1985.

[7] F. Kurasawe, A variant of evolution strategies for
vector optimization, Parallel Problem Solving from
Nature, Lecture Notes in Computer Science 496, Berlin,
Springer Verlag, pp. 193-7, 1991.

[8] G. Harik, Finding multimodal solutions using
restricted tournament selection, Sixth International
Conference on Genetic ALgorithms, 1995.

[9] D. Goldberg, Genetic Algorithms in Search and
Machine Learning. Reading, Addison Wesley, 1989.

[10] N. Srinivas, K. Deb, Multiobjective optimization
using nondominated sorting in genetic algorithms,
Evolutionary Computation, vol. 2, pp. 221-248, 1995.

[11] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast
elitist non-dominated sorting genetic algorithm for
multiobjective optimization: NSAGA-II, Parallel Problem
Solving From Nature VI, pp. 849-858, 2000.

[12] C.M. Fonseca, P.J. Fleming, Multiobjective
optimization and multiple constraint handling with
evolutionary algorithms - Part I: a unified formulation,
IEEE Transactions on Systems, Man, & Cybernetics Part
A: Systems & Humans, vol. 28, pp. 26-37, 1998.

[13] C.M. Fonseca, P.J. Fleming, Multiobjective genetic
algorithms made easy: Selection, sharing and mating
restriction, 1st IEE/IEEE International Conference on

Figure 9. KC20-2fl-5rl: 2-objective QAP
instant with 20 locations.

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

x 107

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 107

SBEM
MOGA

Genetic Algorithms in Engineering Systems, Sheffield,
England, 1995.

[14] E. Zitzler, L. Thiele, Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the Strength
Pareto Approach, IEEE Transaction on evolutionary
computation, vol. 3, pp. 257-271, 1999.

[15] J. Horn, N. Nafpliotis, Multiobjective Optimization
Using the Niched Pareto Genetic Algorithm, Technical
Report 93005, Illinois Genetic Algorithm Laboratory,
Dept. of General Engineering, University of Illinois at
Urbana- Champaign, Urbana, USA, 1993.

[16] T. Stützle and M. Dorigo, 2001. Local Search and
Metaheuristics for the Quadratic Assignment Problem.
Technical Report AIDA-01-01, Intellectics Group,
Darmstadt University of Technology, Germany.

[17] J. Knowles and D. Corne. Instance generators and
test suites for the multiobjective quadratic assignment
problem. In C. M. Fonseca et al., editors, Proc. Of
EMO’03, LNCS 2632, pages 295–310. Springer Verlag,
2003.

[18] M. López-Ibáňez, L. Paquete, T. Stützle, On the
Design of ACO for the Biobjective Quadratic Assignment
Problem. In M. Dorigo, M. Birattari, C. Blum, L.
Gambardella, F. Montada, and T.Stützle (Eds.), Proc. Of
the Fourth International Workshop on Ant Colony
Optimization (ANTS2004), Lecture Notes in Computer
Science, Springer Verlag, 2004.

[19] The multi-objective Quadratic Assignment Problem
(mQAP), 2003, http://dbkweb.ch.umist.ac.uk/knowles/mQAP/.

