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We present a class of exact solutions in the framework of ð2þ 1Þ-dimensional Einstein gravity coupled
minimally to a doublet of scalar fields. Our solution can be interpreted upon the tuning of parameters as an
asymptotically flat wormhole as well as a particle model in 2þ 1 dimensions.
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I. INTRODUCTION

The multiplets theory of real-valued scalar fields con-
stitutes a model that naturally generalizes the theory of a
single scalar field model [1]. The σ model [2], the Higgs
formalism [3], and the global monopole theory [4] are just a
few to be mentioned in this category. Extra fields amount
always to extra degrees of freedom and richness in the
underlying theory. The kinetic part of the Lagrangian in
this approach is proportional to ð∇ϕaÞ2 (with a being the
symmetry group index), which is invariant under the
symmetry transformations. In flat spacetime this makes a
linear theory, but in a curved spacetime intrinsic non-
linearity automatically develops. The existence of an
additional potential is employed as instrumental to apply
spontaneous symmetry breaking in the generation of
mass. Additional topological properties also are interesting
subjects in this context.
Our aim in this study is, first, to add new degrees of

freedom to scalar fields with internal indices in the
spacetime of ð2þ 1Þ-dimensional gravity. This amounts
to considering multiplets of scalar fields and obtaining
exact wormhole solutions in 2þ 1 dimensions with non-
zero curvature. ð2þ 1Þ-dimensional wormholes were con-
sidered before [5]. However, such a study with scalar
doublets in this particular dimension has not been con-
ducted before. We are motivated in this line of thought
mainly by the ð2þ 1Þ-dimensional analogue of a Barriola-
Vilenkin-type [4] global monopole solution which is not
any simpler than its ð3þ 1Þ-dimensional counterpart [6].
We recall that the original idea of a spacetime wormhole,
namely the Einstein-Rosen bridge [7], aimed to construct a
geometrical model for an elementary particle. For the
popularity of wormholes, however, we are indebted to
the pioneering work of Morris and Thorne [8].
As expected, the invariance group in our case is Oð2Þ

instead of Oð3Þ. It should be added that in 2þ 1
dimensions even the single scalar field solutions are
very rare and restrictive [9]. This situation alone gives
enough justification to search for alternatives such as the

nonisotropic scalar multiplets. Second, we show that the
solution obtained is a wormhole solution with the
particular redshift function ΦðrÞ ¼ 0, leaving us with
the shape function bðrÞ. It should be emphasized that
vanishing of the redshift function is not a choice but is
rather imposed as a result of the field equations. Our
wormhole is powered by an exotic matter [10], and the
scalar field doublet ϕaðr; θÞ is expressed in transcenden-
tal Lambert functions. When these are brought together,
our solution for the wormhole becomes supported by a
phantom scalar field doublet. Wormholes with a phantom
scalar in 3þ 1 dimensions were studied in [11]. Phantom
wormholes in 2þ 1 dimensions were considered in [12].
Another interpretation for our solution can be considered
à la Einstein and Rosen to represent a localized particle
model in 2þ 1 dimensions. We wish to comment that
ð2þ 1Þ-dimensional gravity gained enough prominence
during recent decades due to the discovery of a cosmo-
logical black hole [13]. This gave birth to the general
consensus among relativists that the ð2þ 1Þ-dimensional
geometrical structures such as black holes and wormholes
provide useful test beds for understanding their higher-
dimensional cousins. Within this context, we see certain
advantages in studying and understanding better the ð2þ 1Þ-
dimensional wormhole solutions.
The organization of the paper is as follows. In Sec. II we

introduce our action and derive the field equations. We
solve and plot the metric function in Sec. III either as a
wormhole or particle. Our conclusion in Sec. IV completes
the paper.

II. ACTION AND FIELD EQUATIONS

The ð2þ 1Þ-dimensional action in the Einstein gravity
coupled to a scalar field, without cosmological constant and
self-interacting potential, is given by (16πG ¼ c ¼ 1),

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
R −

ϵ

2
ð∇ϕaÞ2

�
; ð1Þ

in which ϵ ¼ þ1= − 1 corresponds to the normal/phantom
scalar field where ϕa is the doublet scalar field with
a ¼ 1; 2. The standard form of the line element for a
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wormhole in circularly symmetric ð2þ 1Þ-dimensional
spacetime is given by

ds2 ¼ −e2Φdt2 þ 1

1 − bðrÞ
r

dr2 þ r2dθ2: ð2Þ

HereΦ ¼ ΦðrÞ is the redshift function and bðrÞ is the shape
function satisfying the so-called flare-out conditions to
which we shall refer in the sequel. Our doublet scalar field
ansatz is given by

ϕa ¼ ηfðrÞ x
a

r
; ð3Þ

where x1 ¼ r cos θ and x2 ¼ r sin θ, η is a coupling con-
stant and fðrÞ is a real function of r. This ansatz is well
known from the particlelike global monopole solution in
the gravity coupled field theory model [4]. It admits
topological properties, and due to its angular dependence
it exhibits nonisotropic properties in the radial plane. In
particular, the asymptotic behaviors are comparable with
those of cosmic strings which are known to possess deficit
angles. Such a model gives rise to lumpy structures in
cosmic formations and naturally modifies all tests of
general relativity ranging from planetary motion to light
bending. The reality of the model can only be tested by
comparing geodesics of all kinds with the experimen-
tal data.
Considering the doublet field given in (3), one finds

ð∇ϕaÞ2 ¼ η2
��

1 −
b
r

�
f02 þ f2

r2

�
; ð4Þ

such that after applying the variation of the action with
respect to f, the field equation becomes

f00 þ
�
Φ0 þ 2r − ðbþ rb0Þ

2rðr − bÞ
�
f0 −

f
rðr − bÞ ¼ 0: ð5Þ

We note that a prime stands for the derivative with respect
to r. Einstein’s equations are given as

Gν
μ ¼ Tν

μ ð6Þ

for

Tν
μ ¼

ϵ

2

�
∂μϕ

a∂νϕa −
1

2
∂ρϕ

a∂ρϕaδνμ

�
: ð7Þ

The latter implies

Tt
t ¼ −ϵ

η2

4

��
1 −

b
r

�
f02 þ 1

r2
f2
�
; ð8Þ

Tr
r ¼ ϵ

η2

4

��
1 −

b
r

�
f02 −

1

r2
f2
�
; ð9Þ

and

Tθ
θ ¼ −Tr

r: ð10Þ

Accordingly, Einstein’s equations read

b − rb0

2r3
¼ −ϵ

η2

4

��
1 −

b
r

�
f02 þ 1

r2
f2
�
; ð11Þ

ðr − b0ÞΦ0

r2
¼ ϵ

η2

4

��
1 −

b
r

�
f02 −

1

r2
f2
�
; ð12Þ

and

2rðr − bÞΦ00 þ 2Φ0ðrðr − bÞΦ0 þ 1
2
ðb − rb0ÞÞ

2r2

¼ −ϵ
η2

4

��
1 −

b
r

�
f02 −

1

r2
f2
�
: ð13Þ

In the next section we shall find an exact solution for the
four field equations given in (5), (11), (12), and (13).

III. EXACT SOLUTIONS

The field equations admit an exact solution for Φ ¼ 0.
The field equations, in this setting, become

f00 þ
�
2r − ðbþ rb0Þ
2rðr − bÞ

�
f0 −

f
rðr − bÞ ¼ 0; ð14Þ

b − rb0

2r3
¼ −ϵ

η2

4

��
1 −

b
r

�
f02 þ 1

r2
f2
�
; ð15Þ

and

�
1 −

b
r

�
f02 −

1

r2
f2 ¼ 0: ð16Þ

The last equation implies

b ¼
�
r −

1

r
f2

f02

�
; ð17Þ

and upon substitution into (14), one finds that it is satisfied.
Therefore, the only equation left becomes

2rf02 − 2ff0 − 2rf00f þ ϵη2r2ff03 ¼ 0; ð18Þ

which can be rewritten as

�
f
rf0

�0
¼ −

1

2
ϵη2ff0: ð19Þ

An integration yields
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f
rf0

¼ −
ϵη2

4
f2 þ C1; ð20Þ

with the integration constant C1. The resulting equation
simply reads

dr
r
¼

�
−
ϵη2

4
f þ C1

f

�
df; ð21Þ

which is integrable as

ln

�
r
r0

�
¼ −

ϵη2

8
f2 þ C1 ln f; ð22Þ

with r0 another integration constant. Finally, f is found
to be

f ¼
�
r
r0

�
ξ

exp

�
−
1

2
LW

�
−
ϵη2ξ

4

�
r
r0

�
2ξ
��

; ð23Þ

in which ξ ¼ 1
C1

and LWðxÞ is the Lambert-W function
[14]. Using (23) we also find the exact form of bðrÞ
which is determined as

b ¼ r

�
1 −

ð1þ LWð− ϵη2ξ
4
ð rr0Þ2ξÞÞ

2

ξ2

�
: ð24Þ

The only nonzero component of the energy momentum
tensor is T0

0 ¼ −ρ in which the energy density is given by

ρ ¼ −
2

r2ξ
LW

�
−
ϵη2ξ

4

�
r
r0

�
2ξ
�
: ð25Þ

In these solutions there are four parameters: η and ϵ from
the action and r0 and ξ ¼ 1

C1
as integration constants.

Setting η ¼ 0 directly yields ϕa ¼ 0 and bðrÞ ¼ 1
ξ2

which

corresponds to the flat spacetime. Due to the quadratic
form of η2, both in the action and in the solution, η ≶ 0
have similar contribution. Also, r0 is a scale factor with
dimension as r and, therefore, we restrict r0 > 0. Unlike η,
the sign of the other two parameters brings different
features for the general solutions. Here we study each
case separately.

A. ϵ ¼ 1;ξ > 0

The first setup corresponds to ϵ ¼ 1; ξ > 0. In this
setting, fðrÞ is defined for r < rc ¼ ð2=η ffiffiffiffiffi

ξe
p Þ1=ξr0 and,

therefore, the solution is bounded from above, and we shall
call it a particle model. In this confined model, the particle
is supported by normal matter with ρ > 0.

B. ϵ ¼ 1;ξ < 0

The second setup for the two free parameters is consid-
ered as ϵ ¼ 1 and ξ < 0. In this case the line element can be
written as

ds2 ¼ −dt2 þ 1

BðrÞ dr
2 þ r2dθ2; ð26Þ

where

BðrÞ ¼ 1

ξ2

�
1þ LW

�
−
η2ξ

4

�
r
r0

�
2ξ
��

2

; ð27Þ

which is positive for r > 0. For r ¼ 0, there exists a
singularity while for large r, BðrÞ asymptotes to 1

ξ2
.

Therefore, without loss of generality, one may set
ξ ¼ −1. (We note that unlike the ð3þ 1Þ-dimensional
spacetime where

ds2 ¼ −dt2 þ ξ2dr2 þ r2ðdθ2 þ sin2θdϕ2Þ ð28Þ

is flat only if ξ2 ¼ 1, in 2þ 1 dimensions for any value of
ξ ≠ 0, the spacetime is flat.) In Fig. 1 we plot BðrÞ in terms
of r for various values for η. The solution is supported by
the normal matter of the doublet scalar field which is
naked singular at r ¼ 0 and asymptotically flat. We
observe from this figure that the larger value of η2

makes the spacetime more deviated from the flat space-
time corresponding to η2 ¼ 0. Therefore, the larger the
η2, the stronger the doublet scalar fields, which results in
stronger curvature. Having ϵ ¼ 1 in the action makes the
scalar fields physical and also ξ < 0 makes the energy
density ρ > 0. Therefore, this solution represents a naked

FIG. 1 (color online). BðrÞ versus r [Eq. (27)] for various
values of η ¼ 5.0; 1.0; 0.5; 0.1, and 0.0 from top to bottom,
respectively, with ξ ¼ −1; ϵ ¼ 1; r0 ¼ 1.
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singular solution supported by a normal doublet of the
scalar field which is asymptotically flat. This solution can
also be interpreted as a particle model constructed from
the doublet of the scalar fields. To complete this part, we
add that the field function fðrÞ is well defined for r > 0
and its asymptotic behaviors are

lim
r→0

fðrÞ ¼ ∞ ð29Þ

and

lim
r→∞

fðrÞ ¼ 0: ð30Þ

It is observed that the source of the field looks to be
diverging at r ¼ 0, where the spacetime is curved
maximally and is singular.

C. ϵ ¼ −1;ξ > 0

In this setting for ϵ ¼ −1 and ξ > 0 the solution is
exotic, supported by negative energy density. The field
function fðrÞ is well defined for r > 0, and while at r ¼ 0 it
vanishes, at large r it diverges.
In Fig. 2 we plot BðrÞ versus r for different values of η.

The solution is supported by the exotic matter/phantom
doublet of scalar fields, which is flat near r ¼ 0 and
nonasymptotically flat for r → ∞. The larger value of η2

makes the spacetime more deviated from the flat spacetime
with η2 ¼ 0. Note that the asymptotic behaviors of the
solution at small r and large r in the present case look to be
the opposite of the previous case. The two cases are still
different solutions and by a change of variable, for instance
r → 1

r, it is not possible to obtain one from the other.

D. Wormhole solution for ϵ ¼ −1;ξ < 0

Our last general setting addresses the most interesting
case, where ϵ ¼ −1; ξ < 0 and the solution represents a
wormhole with a throat located at

b0 ¼ r0

�
eη2jξj
4

� 1
2jξj
; ð31Þ

in which e stands for the natural base of logarithm. The
wormhole is asymptotically flat with

lim
r→∞

BðrÞ ¼ 1

ξ2
; ð32Þ

where we shall choose ξ ¼ −1. Both bðrÞ and fðrÞ are
positively defined for r > b0, and bðrÞ satisfies the flare-
out conditions; i.e., (i) bðb0Þ¼b0 and (ii) for r>b0, rb0<b
such that the field function smoothly vanishes at infinity

from its maximum value
ffiffi
2

p
jηj at the throat. In terms of the

throat radius, one may write

f ¼ 2ðb0r Þjξj
η

ffiffiffiffiffiffiffiffi
ejξjp exp

�
−
1

2
LW

�
−1
e

�
b0
r

�
2jξj��

; ð33Þ

b ¼ r
�
1 −

1

ξ2

�
1þ LW

�
−1
e

�
b0
r

�
2jξj��2�

ð34Þ

with the scalar invariants given by

K ¼ RμναβRμναβ ¼ 16LWð−1e ðb0r Þ2jξjÞ2
r4ξ2

; ð35Þ

RμνRμν ¼ 8LWð−1e ðb0r Þ2jξjÞ2
r4ξ2

; ð36Þ

and

R ¼ Rμ
μ ¼ 4LWð−1e ðb0r Þ2jξjÞ

r2jξj : ð37Þ

The only nonzero component of the energy momentum
tensor is the tt component which is given by

Tt
t ¼ −ρ ¼ −

2LWð−1e ðb0r Þ2jξjÞ
r2jξj : ð38Þ

Let us add that on the range of r, i.e., r ≥ b0, all of the
quantities given above are finite and they vanish asymp-
totically. In addition, one finds

FIG. 2 (color online). BðrÞ versus r [Eq. (27)] for various
values of η ¼ 5.0; 1.0; 0.5; 0.1, and 0.0 from top to bottom,
respectively, with ξ ¼ 1; ϵ ¼ −1; r0 ¼ 1.
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lim
r→bþ

0

f ¼ 2

η
ffiffiffiffiffijξjp ; lim

r→bþ
0

b ¼ b0; ð39Þ

lim
r→bþ

0

ρ ¼ −
2

b20
ffiffiffiffiffijξjp ; lim

r→bþ
0

K ¼ 16

b40ξ
2
; ð40Þ

and

lim
r→bþ

0

RμνRμν ¼ 8

b40ξ
2
; lim

r→bþ
0

R ¼ −
4

b20jξj
: ð41Þ

In Fig. 3(a) we plot the scalars given above to show that
they are finite everywhere, and in Fig. 3(b) the curve of

energy density ρ together with the corresponding metric
function BðrÞ are displayed. The energy density is negative
everywhere but finite, indicating the wormhole is supported
by exotic matter [10]. In Fig. 4 we plot BðrÞ versus r for
different values of η with fixed values for ξ ¼ −1 and
r0 ¼ 1 (note that with r0 ¼ 1 and different values for η, the
throat b0 is not fixed). The magnitude of η plays a critical
role to form the throat of the wormhole such that the larger
value for η implies a larger size of the throat.

E. ξ ¼ 0 and ξ ¼ ∞
Among the possible values for ξ the case with ξ ¼ 0

corresponds to f ¼ 1 and consequently to the flat space
solution. In contrast to that, when ξ → ∞, the solution
becomes (this can be seen from (22) when C1 ¼ 0)

f2 ¼ −
8

ϵη2
ln

�
r
r0

�
; ð42Þ

so that

b ¼ r

�
1 − 4

�
ln

r
r0

�
2
�

ð43Þ

and

ds2 ¼ −dt2 þ dr2

ð2 ln r
r0
Þ2 þ r2dθ2: ð44Þ

This line element has the following scalar invariants:

R ¼ Rμ
μ ¼ −

8 ln r
r0

r2
; ð45Þ

FIG. 3 (color online). (a) From top to bottom [Eqs. (35)–(38)];
K, RμνRμν, ρ, and R versus r > b0 (b) BðrÞ (dashed) and ηfðrÞ
(solid) in terms of r for r > b0. For both we set b0 ¼ 1, ϵ ¼ −1,
and ξ ¼ −1.

FIG. 4 (color online). BðrÞ versus r from Eq. (27) for various
values of η ¼ 5.0; 1.0; 0.5; 0.1, and 0.0 from bottom to top,
respectively, with ξ ¼ −1; ϵ ¼ −1; r0 ¼ 1.
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K ¼ RμναβRμναβ ¼
64 ln2 r

r0

r4
; ð46Þ

and

RμνRμν ¼
32 ln2 r

r0

r4
: ð47Þ

It is seen clearly that r ¼ 0 is a spacetime singularity while
at r ¼ r0 it is regular. This metric cannot be interpreted
as a wormhole since from (43) as r > r0 the sign of bðrÞ
turns negative which is in contrast to the definition of a
wormhole. The only nonzero component of the energy-
momentum tensor is given by

Tt
t ¼

4 ln r
r0

r2
; ð48Þ

with a divergent energy density at the origin given by

ρ ¼ −Tt
t ð49Þ

IV. CONCLUSION

For a number of reasons in recent decades the lower-/
higher-dimensional curved spacetimes received much
attention. Our aim in this paper was to consider a doublet
of nonisotropic scalar fields ϕaðr; θÞ transforming under
the group Oð2Þ. We present parametric solutions for such a
system to determine the underlying ð2þ 1Þ-dimensional
spacetime. Our solution involves the restrictive condition of
the vanishing redshift function. Making gtt ¼ −1 leaves us
with a single metric function grr ¼ 1

BðrÞ besides ϕaðr; θÞ.
Once the redshift function vanishes, our solution loses its
chance to represent a black hole. However, the wormhole
and particle interpretations are admissible, and as a matter
of fact, this summarizes the contribution made in this paper.
Our only metric function as well as the doublet scalar
functions are expressed in terms of a Lambert function
which is tabulated extensively in the literature. The source
supporting our wormhole turns out to be exotic, which
persists in being a deep-rooted problem in general. We wish
to remark finally that in order to overcome this problem of
exoticity, we recently proposed a resolution, which is to
change the circular topological character of the throat [15].
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