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We reconsider the generalized flare-out conditions in static wormhole throats given by Hochberg and
Visser. We show that, due to the presence of matter sources on the throat, these conditions are not applicable
to the thin-shell wormholes.
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I. INTRODUCTION

Much has been written about traversable wormholes—
the shortcut hypothetical channels—between distant points
of the same or different universes. A safe passage is
assumed provided the tunnel resists collapse for a consid-
erable time. Repulsion against gravitational collapse is
provided by a negative energy density that is absent in large
amounts in our world. Although at atomic scales quantum
theory comes to our rescue such scales are for elementary
particles/photons, not for humans. Let us add that modified
Einstein theories admit wormholes that are supported by
normal, nonexotic matter. The difficulty is finding similar
objects in the simplest theory of gravity, namely Einstein’s
general relativity. Exploring such structures relies on our
understanding of the physics of the tunnel and its narrowest
surface: the throat. It was suggested first by Morris and
Thorne [1] that the minimal two-dimensional surface of the
throat must satisfy the flare-out conditions. This ensured
connection to distant points provided the points belong to
asymptotically flat universes. This is an ideal case that can
be relaxed, i.e., even for nonasymptotically flat spaces
construction of wormholes may be taken for granted.
The flare-out conditions for a throat set by Morris and

Thorne [1] were generalized by Hochberg and Visser [2]. In
the latter, known as the generalizedMorris-Thorne flare-out
conditions, they employ the extrinsic curvature tensor Kab

and its trace, trðKÞ ¼ gabKab, for ða; bÞ ∈ Σ, the two-
dimensional geometry of the throat. In brief it states that the
area of the throat AðΣÞ satisfies both δA ¼ 0 and δ2A ≥ 0
for the minimality requirement. These amount to trðKÞ ¼ 0

and ∂ðtrðKÞÞ
∂n ≤ 0, for the normal direction n to the two-

dimensional geometry of the throat.
We show in this article that the generalized Morris-

Thorne flare-out conditions introduced for a wormhole are
not applicable to a thin-shell wormhole (TSW), which is
constructed by the cut-and-paste technique. For this pur-
pose we split the geometry in Gaussian normal coordinates
into T × Σ and apply the Israel junction conditions [3]. The
very existence of surface energy density σ at the junction of

the TSW violates trðKÞ ¼ 0 condition but yet the minimal-
ity of the area can be preserved. This is not as a result of a
mathematical proof but rather as a requirement to define the
existence of a throat. The distinction can be seen in Fig. 1
between a normal wormhole and a TSW. In the latter case
the lack of smoothness at the throat prevents the metric
functions to admit continuous derivatives. For the TSW we
proceed to propose the condition trðKÞ ≷ 0, irrespective of
the minimality of area. This yields further that the surface
energy-density σ can locally be negative/positive, but more
importantly its total (i.e., the integral of σ), which matters
physically may turn out to be positive. This is shown by
application to the nonspherical Zipoy-Voorhees (ZV) [4,5]
metric through numerical plots for tuned parameters.

II. WEAKER FLARE-OUT CONDITIONS
FOR TSWS

Hochberg and Visser, [2], generalized the minimal area
condition for wormholes given previously by Morris and
Thorne in [1]. Based on [2] an arbitrary static spacetime
(which is supposed to be a wormhole) can be written as

ds2 ¼ gμνdxμdxν ¼ − exp ð2ϕÞdt2 þ gð3Þij dx
idxj ð1Þ

in which μ; ν ¼ 0; 1; 2; 3while i; j ¼ 1; 2; 3 and ϕ ¼ ϕðxiÞ.
The definition of a throat for the traversable wormhole,
following [1,2], is given to be a two-dimensional

FIG. 1 (color online). A plot of a normal wormhole and thin-
shell wormhole. The existence of matter at the throat of a thin-
shell wormhole causes trðKÞ ≠ 0 unlike in the normal wormhole.
We also add that the original minimum area condition of Morris
Thorne for both cases is applicable.
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hypersurface Σ of minimal area taken in one of the
constant-time spatial slices. The area of the throat is
given by

AðΣÞ ¼
Z ffiffiffiffiffiffiffi

gð2Þ
q

d2x: ð2Þ

A further step is taken if one uses the Gaussian normal
coordinates with xi ¼ ðxa; nÞ and rewrites

gð3Þij dx
idxj ¼ gð2Þab dx

adxb þ dn2: ð3Þ

Now, the question is “are the generalized Morris-Thorne
flare-out conditions [2] applicable to a TSW?” To find the
answer we start from the beginning. Let us consider an
arbitrary static four-dimensional spacetime of the form

ds2 ¼ gð4Þμν dxμdxν ¼ g00dt2 þ gð3Þij dx
idxj: ð4Þ

We note that here in (4) g00 may have root(s) or not and, if
yes, we call r ¼ rh the largest root, or event horizon. Then
we use the standard method of making TSW [6]. The throat
is located at the hypersurface xi ¼ a where i can be only
one of the possible spatial coordinates. Without loss of
generality we set i ¼ 1 and the line element of the throat
reads as

ds2Σ ¼ −dτ2 þ gð2Þab dx
adxb ð5Þ

in which a; b ¼ 2; 3. The full line element of the throat in a
TSW, by definition, is in the form of the Gaussian normal
coordinates [7] and therefore the area of the throat is given
by (2). Having minimum spatial area for the throat, hence,
requires the same procedure as introduced in [2], i.e.,
δAðΣÞ ¼ 0 and δ2AðΣÞ ≥ 0 which ultimately end up with
the same conditions as the ordinary wormholes, i.e.,

trðKÞ ¼ 0 and ∂trðKÞ
∂n ≤ 0. Further study on TSWs, however,

manifests that unlike the case of an ordinary wormhole
spacetime, in TSW we are allowed to have some matter
sources on the throat. The matter supporting the throat
should satisfy the standard Israel junction conditions [3] or
Einstein equations on the throat,

hKj
ii − hKiδji ¼ −8πSji ; ð6Þ

in which h:i stands for a jump across the hypersurface Σ,
hKi ¼ hKi

ii, and Sji ¼ diagð−σ; p2; p3Þ with i; j ¼ τ; 2; 3.
The trðKÞ that must be zero is just the trace of spatial part of
the extrinsic curvature tensor (6) that corresponds to the
space part of Eq. (5),

Kb
a ¼

� hK2
2i 0

0 hK3
3i

�
; ð7Þ

i.e., trðKÞ ¼ hK2
2i þ hK3

3i. We note that, as it was used in
[2], trðKÞ refers to the trace of extrinsic curvature of the
spatial part of Gaussian line element (5), i.e., trðKÞ ¼ hKa

ai,
while hKi implies the trace of the 2þ 1-dimensional
Gaussian line element of the thin-shell wormhole, i.e.,
hKi ¼ hKi

ii. In other words, trðKÞ þ hKτ
τi ¼ hKi.

Looking closely at (6), one finds the ττ component to be

hKτ
τi − hKi ¼ 8πσ ð8Þ

or after considering the 2þ 1-dimensional trace implied in
(6) hKi ¼ hKτ

τi þ hK2
2i þ hK3

3i this becomes

hK2
2i þ hK3

3i ¼ −8πσ: ð9Þ

The left-hand side is nothing but trðKÞ, which is supposed
to vanish at the throat. In general σ ≠ 0, which violates
trðKÞ ¼ 0 and simply means that the generalized Morris-
Thorne flare-out conditions are not applicable to the TSW.
However, the latter condition does not change the appli-
cability of the original Morris-Thorne’s minimality con-
ditions. In Fig. 1 we see the implication of trðKÞ ≠ 0 for a
TSW, since derivatives of the metric function are not
continuous at the throat. Let us add that trðKÞ ¼ 0 also
indirectly stands for the ordinary wormholes whose throat
surfaces trivially have no external energy momenta.
Based on what we found, for the TSWs in general

trðKÞ ≠ 0 while the area of the throat can still be minimum.
Nevertheless, trðKÞ > 0=trðKÞ < 0 strongly suggests that
σ < 0=σ > 0 on the throat.

III. ILLUSTRATIVE EXAMPLES

Next, we consider some explicit examples studied in the
literature. The first example is the TSW in Schwarzschild
spacetime given by Poisson and Visser [7]. In that case

gð2Þab ¼
�
a2 0

0 a2 sinðθÞ

�
; ð10Þ

and the throat is located at r ¼ a. The extrinsic curvature of
2-surface is found to be

Kb
a ¼

0
B@

2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

a

q
0

0 2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

a

q
1
CA ð11Þ

with trðKÞ ¼ 4
a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

a

q
at the throat, which is clearly

positive. This can be seen when we recall that
a > rh ¼ 2M.
For the second example we consider the cylindrically

symmetric TSW studied in [8]. The bulk metric is given by

ds2 ¼ fðrÞð−dt2 þ dr2Þ þ hðrÞdz2 þ gðrÞdφ2 ð12Þ
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and the throat is located at r ¼ a with the line element

ds2Σ ¼ −dτ2 þ hðaÞdz2 þ gðaÞdφ2; ð13Þ

therefore, we have

gð2Þab ¼
�
hðaÞ 0

0 gðaÞ

�
: ð14Þ

As it was found in [8] one finds

Kb
a ¼

0
B@

h0

h
ffiffi
f

p 0

0 g0

g
ffiffi
f

p

1
CA ð15Þ

in which a prime stands for the derivative with respect to r
and all functions are found at r ¼ a. The trace of the
extrinsic curvature is given by

trðKÞ ¼ h0

h
ffiffiffi
f

p þ g0

g
ffiffiffi
f

p ; ð16Þ

which in general is not zero. For instance, one of the cases
in [8] is the straight cosmic string with f ¼ 1; g ¼ W0r2

and h ¼ 1 with trðKÞ ¼ 2
a, which is not zero but positive.

Our last example has been introduced in [5], which is
the TSW in ZV spacetime [4]. The bulk metric of ZV is
given by

ds2 ¼ −AðxÞdt2 þ Bðx; yÞdx2 þ Cðx; yÞdy2 þ Fðx; yÞdφ2;

ð17Þ

where

AðxÞ ¼
�
x − 1

xþ 1

�
δ

ð18Þ

Bðx; yÞ ¼ k2
�
xþ 1

x − 1

�
δ
�
x2 − 1

x2 − y2

�
δ2
�
x2 − y2

x2 − 1

�
ð19Þ

Cðx; yÞ ¼ k2
�
xþ 1

x − 1

�
δ
�
x2 − 1

x2 − y2

�
δ2
�
x2 − y2

1 − y2

�
ð20Þ

and

Fðx; yÞ ¼ k2
�
xþ 1

x − 1

�
δ

ðx2 − 1Þð1 − y2Þ; ð21Þ

in which k ¼ M
δ with M ¼ mass and δ is the parameter of

oblateness. The range of coordinates is 1 < x < ∞,
−1 ≤ y ≤ 1, 0 ≤ φ ≤ 2π. The throat is located at x ¼ a ¼
const > 1 and therefore

gð2Þab ¼
�
Cða; yÞ 0

0 Fða; yÞ

�
: ð22Þ

The extrinsic curvature then reads

Kb
a ¼

 Ca

C
ffiffiffi
B

p 0

0 Fa

F
ffiffiffi
B

p

!
ð23Þ

in which a sub a implies partial derivative with respect to a.
The trace of (23) is given by

trðKÞ ¼ Ca

C
ffiffiffiffi
B

p þ Fa

F
ffiffiffiffi
B

p ¼ 1ffiffiffiffi
B

p ∂
∂a ln ðFCÞ: ð24Þ

This is a function of a and y that obviously is not zero. In
Fig. 2 we plot trðKÞ in terms of a and y for some value of
δ > 2 that is of interest in [5]. We observe that for large
enough a for the entire interval of y the trace of trðKÞ is
positive.

IV. CONCLUSION

The generalized Morris-Thorne flare-out conditions, i.e.,
δAðΣÞ ¼ 0 and δ2AðΣÞ ≥ 0 proposed for general worm-
holes are weakened for the case of TSWs. This is necessary
due to the fact that on the TSW at the throat we have a
surface energy density σ ≠ 0. Accordingly, this modifies
the vanishing of trðKÞ. We propose instead that
trðKÞ > 0=trðKÞ < 0, which relates to the sign of the local
energy density. Therefore the original minimality of the
throat area by Morris and Thorne stays intact by

FIG. 2. Extrinsic curvature trðKÞ with respect to a and y for
δ ¼ 3. As it is seen from the figure for large enough a, trðKÞ is
positive on the entire y-axis. For small a, trðKÞ is not positive
everywhere on the y-axis but it is also not entirely negative on the
y-axis.
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construction while the extrinsic curvature tensor has a
nonzero trace at the throat. Derivatives of the extrinsic
curvature are not continuous at the throat so that the
mathematical proof of Ref. [2] cannot be used. The throat
can be chosen anywhere through the cut-and paste method
beyond singularities or event horizons (if any). This is the

strategy that has been adopted in the TSW example of
nonspherical ZV spacetime [5].
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