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We revisit the stability analysis of cylindrical thin-shell wormholes which have been studied in literature
so far. Our approach is more systematic and in parallel to the method which is used in spherically
symmetric thin-shell wormholes. The stability condition is summarized as the positivity of the second
derivative of an effective potential at the equilibrium radius, i.e., V 00ða0Þ > 0. This may serve as the master
equation in all stability problems for the cylindrical thin-shell wormholes.
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I. INTRODUCTION

Upon the breaking of spherical symmetry in an axial
direction, we arrive at cylindrical symmetry. A large number
of systems fail to satisfy spherical symmetry and are
considered within the context of cylindrical (or axial)
symmetry. Spacetimes that depend on radial r and time t
are known to describe cylindrical waves. Replacing t with
the spacelike coordinate z gives rise to static, axially
symmetric spacetimes. Our interest in this study is to
suppress the t and z dependences and consider spacetimes
depending only on the radial r coordinate. This amounts to
admitting three Killing vectors (ξμt , ξ

μ
z , and ξμφ) in the Weyl

coordinates ft; r; z;φg. Historically, the first such example
was given by Levi-Civita [1]. Topological defect spacetimes
believed to form during the early Universe, such as cosmic
strings [2], also fit into this class. The latter’s currentlike
source is located along an axis which creates a deficit angle
in the surrounding space so that it gives rise to gravitational
lensing. Still another example for cylindrically symmetric
metrics, which is powered by a beamlike magnetic field, is
Melvin’s magnetic universe [3]. The addition of extra fields
such as the Brans-Dicke scalar or various electromagnetic
fields to the cylindrical metrics has been extensively
searched in the literature [4]. Recently, we have given an
example of a Weyl solution in which the magnetic Melvin
and Bertotti-Robinson metrics are combined in a simple
Einstein-Maxwell metric [5]. There is already a large
literature related to the spherically symmetric thin-shell
wormholes (TSW) [6], but for the cylindrically symmetric
cases the published literature is relatively less [7]. From this
token, we wish to consider a general class of cylindrically
symmetric spacetimes in which the metric functions depend
only on the radial function r to construct TSWs. As usual,
our method is the cutting and pasting of two cylindrically
symmetric spacetimes, which unlike the spherical symmetric
cases, are more restrictive toward asymptotic flatness. Being

z independent, the metric is same for both z ¼ 0 and
jzj ¼ ∞. Yet the areal/radial flare-out conditions must be
satisfied [8–11], in spite of the fact that the spacetime may
not be asymptotically flat. The radial (Pr) and axial (Pz)
pressures are assumed to be functions of the energy (mass)
density σ. The junction conditions at the intersection
determine the throat equation as a function of the proper
time. From the extrinsic curvature components we extract an
energy equation for a one-dimensional particle of the form
_a2 þ VðaÞ ¼ 0, where aðτÞ is the radius of the throat and the
dot means a proper time derivative. The form of the potential
VðaÞ can be rather complicated, but since we are interested
in the stability, we need to investigate only the second
derivative of the potential around the equilibrium radius of
the throat. The parametric plotting of the second derivative of
the potential V 00ða0Þ > 0, where a0 is the equilibrium radius,
reveals the stability region for the TSW under consideration.
Our perturbation addresses only the radial and linear cases
for which we may adopt equations of state (EOSs) for the
surface energy-momentum at the throat. Adding an extra
source amounts to the fact that the covariant divergence of
the surface energy-momentum is nonzero. The structural
equations for perturbations expectedly are more complicated
than in the spherical symmetric case, which is natural from
the less-symmetry arguments. Concerning the exotic/normal
matter, however, our formalism does not add anything new;
i.e., our matter to thread the TSW is still exotic. In a recent
study, we have proposed that in order to get anything total
but exotic matter as source, albeit locally is exotic, the
geometry of the throat must be of prolate/oblate type [12].
Organization of the paper is as follows: In Sec. II, we

consider a general line element with cylindrical symmetry
and derive the stability condition for the TSW. In Sec. III,
we make applications of the result found in Sec. II. We
complete the paper with a Conclusion in Sec. IV.

II. GENERAL ANALYSIS FORA CYLINDRICALLY
SYMMETRIC TSW

Let us consider two static, cylindrically symmetric
spacetimes M� [8,13] in Weyl coordinates:
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ds2 ¼ −e2γ�ðr�Þdt2� þ e2α�ðr�Þdr2� þ e2ξ�ðr�Þdz2�

þ e2β�ðr�Þdφ2
�: (1)

By gluing these two manifolds at their boundaries Σ�, one
can, in principle, make a single complete manifold. Each
separate spacetimeM� must satisfy the Einstein equations
with a general form of the energy-momentum tensor
Tν
μ� ¼ ½−ρ�; pr�; pz�; pφ��,

Gν
μ� ¼ Tν

μ�; (2)

with the unit convention (8πG ¼ c ¼ 1). Einstein’s equa-
tions in each spacetime admit (for simplicity, we suppress
sub-� for each spacetime, but they are implicitly there)

−ρ ¼ e−2α½β00 þ ξ00 þ β02 þ ðξ0 − α0Þðβ0 þ ξ0Þ�; (3)

pr ¼ e−2α½ðβ0 þ ξ0Þγ0 þ ξ0β0�; (4)

pz ¼−2α ½γ00 þ β00 þ γ02 þ ðγ0 þ β0Þðβ0 − α0Þ�; (5)

and

pφ ¼−2α ½γ00 þ ξ00 þ γ02 þ ðγ0 þ ξ0Þðξ0 − α0Þ�; (6)

in which a prime stands for the derivative with respect to r�
depending on the manifold under consideration.
After gluing the two spacetimes at their boundaries

whose equation in our study is given by H ¼
r − aðτÞ ¼ 0, the intrinsic line element on the common
boundary Σ ¼ Σ� can be written as

ds2Σ ¼ −dτ2 þ e2ξðaÞdz2 þ e2βðaÞdφ2; (7)

in which a ¼ aðτÞ is a function of proper time τ. The
normal four-vector on the timelike hypersurface Σ is
defined as

nð�Þ
γ ¼

�
�
����gαβ ∂H∂xα

∂H
∂xβ

����
−1=2 ∂H

∂xγ
�

Σ
; (8)

which in closed form becomes

nð�Þ
γ ¼ �ð−eα�þγ� _a; e2α�

ffiffiffiffiffiffiffi
Δ�

p
; 0; 0ÞΣ; (9)

where Δ� ¼ e−2α� þ _a2 and a dot stands for the derivative
with respect to the proper time. Next, we find the extrinsic
curvature on the hypersurface Σ, defined as

Kð�Þ
ij ¼ −nð�Þ

γ

� ∂2xγ�
∂Xi

�∂Xj
�
þ Γγ

�αβ

∂xα�
∂Xi

�

∂xβ�
∂Xj

�

�
Σ
; (10)

in which Xi
� ∈ fτ; z�;φ�g, while xγ� ¼ ft�; r�; z�;φ�g.

Explicit calculations yield

Kτð�Þ
τ ¼�

�
1ffiffiffiffiffiffiffi
Δ�

p
�
äþ

�
α0�þγ0�

�
_a2þe−2α�γ0�

��
Σ
; (11)

Kzð�Þ
z ¼ �ðξ0�

ffiffiffiffiffiffiffi
Δ�

p
ÞΣ; (12)

and

Kφð�Þ
φ ¼ �ðβ0�

ffiffiffiffiffiffiffi
Δ�

p
ÞΣ: (13)

By considering a standard energy-momentum on the shell,
i.e., Sji ¼ diagð−σ; Pz; PφÞ, the Israel junction conditions
[14] imply

hKj
ii − hKiδji ¼ −Sji ; (14)

in which hKj
ii ¼ hKj

iiþ − hKj
ii− and hKi ¼ hKi

ii. The
latter amounts to

σ ¼ −
h
ðξ0þ þ β0þÞ

ffiffiffiffiffiffiffi
Δþ

p þ ðξ0− þ β0−Þ
ffiffiffiffiffiffi
Δ−

p i
; (15)

Pz ¼
ðäþ ðα0þ þ γ0þÞ _a2 þ e−2αþγ0þÞffiffiffiffiffiffiffi

Δþ
p

þ ðäþ ðα0− þ γ0−Þ _a2 þ e−2α−γ0−Þffiffiffiffiffiffi
Δ−

p

þ β0þ
ffiffiffiffiffiffiffi
Δþ

p þ β0−
ffiffiffiffiffiffi
Δ−

p
; (16)

and

Pφ ¼ ðäþ ðα0þ þ γ0þÞ _a2 þ e−2αþγ0þÞffiffiffiffiffiffiffi
Δþ

p

þ ðäþ ðα0− þ γ0−Þ _a2 þ e−2α−γ0−Þffiffiffiffiffiffi
Δ−

p

þ ξ0þ
ffiffiffiffiffiffiffi
Δþ

p þ ξ0−
ffiffiffiffiffiffi
Δ−

p
: (17)

To complete this section, we consider a thin shell on the
junction which is constructed by the same bulk spacetime,
so that on the boundaries γ, α, β, and ξ are continuous, and
consequently

σ ¼ −2ðξ0 þ β0Þ
ffiffiffiffi
Δ

p
; (18)

Pz ¼
2ðäþ ðα0 þ γ0Þ _a2 þ e−2αγ0Þffiffiffiffi

Δ
p þ 2β0

ffiffiffiffi
Δ

p
; (19)

and

Pφ ¼ 2ðäþ ðα0 þ γ0Þ _a2 þ e−2αγ0Þffiffiffiffi
Δ

p þ 2ξ0
ffiffiffiffi
Δ

p
: (20)

From now on, our study will be concentrated on the case of
a TSW made from a single bulk metric.
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A. Energy conservation identity

The energy conservation identity can be found by
calculating Sij;j . Our explicit calculations show that

Sij;j ¼i¼τ dσ
dτ

þ _aðξ0 þ β0Þσ þ _aðξ0Pz þ β0PφÞ: (21)

Furthermore, when we consider the exact forms of σ, Pz,
and Pφ, we find from the latter

dðAσÞ
dτ

þ eβPz
dðeξÞ
dτ

þ eξPφ
dðeβÞ
dτ

¼ _aAΞ; (22)

in which

Ξ ¼ σ

�
β02 þ ξ02 þ β00 þ ξ00

β0 þ ξ0
− ðα0 þ γ0Þ

�
(23)

and the surface area of the shellA ¼ eβþξ. In Eq. (22), dðAσÞ
dτ

is the time change of the total internal energy of the shell,

and eβPz
dðeξÞ
dτ , eξPφ

dðeβÞ
dτ , and _aAΞ are the work done in the

z, φ directions and the external forces, respectively. This is
comparable with the similar result in spherically symmetric
TSWs given in Ref. [13].

B. Stability of the thin-shell wormhole

In this section, we apply a linear perturbation and
investigate whether the wormhole is stable against the
perturbation analysis or not. Our main assumption is that
the matter which supports the TSW obeys the energy
conservation identity. This in turn implies that from Eq. (22),

ðAσÞ0 þ eβPzðeξÞ0 þ eξPφðeβÞ0 ¼ AΞ; (24)

in which a prime stands for the derivative with respect to a.
Following our linear perturbation, the wormhole is dynamic,

and from Eq. (18), one finds the equation of the throat as a
one-dimensional motion _a2 þ VðaÞ ¼ 0 with potential

VðaÞ ¼ e−2α −
1

4

�
σ

ξ0 þ β0

�
2

: (25)

If a ¼ a0 is considered as an equilibrium point with
_a0 ¼ 0 ¼ ä0, then VðaÞ can be expanded about the equi-
librium point at which Vða0Þ ¼ 0 ¼ V 0ða0Þ. Also, the
components of the energy-momentum tensor on the shell
when the equilibrium state is considered are given by

σ0 ¼ −2ðξ00 þ β00Þe−α0 ; (26)

Pz0 ¼ 2ðγ00 þ β00Þe−α0 ; (27)

and

Pφ0 ¼ 2ðγ00 þ ξ00Þe−α0 : (28)

We note that a sub-0 notation implies that the corresponding
quantity is calculated at the equilibrium point. Next, we find
V 00ða0Þ ¼ V 00

0 to examine the motion of the throat. IfV 00
0 > 0,

then the motion is oscillatory and the equilibrium at a0 is
stable; otherwise, it is unstable. To find V 00, we need σ0 and
σ00, which are given by the energy conservation identity, i.e.,

σ0 ¼ Ξ − Pzξ
0 − Pφβ

0 − ðβ0 þ ξ0Þσ (29)

and

σ00 ¼ Ξ0 − P0
zξ

0 − Pzξ
00 − P0

φβ
0 − Pφβ

00 − ðβ00 þ ξ00Þσ
− ðβ0 þ ξ0ÞðΞ − Pzξ

0 − Pφβ
0 − ðβ0 þ ξ0ÞσÞ: (30)

Our extensive calculation eventually yields

V 00
0 ¼ −

2e−2α0

β00 þ ξ00
½β020 ϕ0

0α
0
0 þ ðα00½ϕ0

0 þ ψ 0
0 þ 2�ξ00 þ α00γ

0
0 − ½β000 þ ξ000�ϕ0

0 − ξ000 − γ000Þβ00
þ ðξ00ψ 0

0α
0
0 þ α00γ

0
0 − ðβ000 þ ξ000Þψ 0

0 − γ000 − β000Þξ00�: (31)

Here in this expression, the EOS is considered to be
Pz ¼ ψðσÞ, Pφ ¼ ϕðσÞ. We also note that a prime on a
function denotes the derivative with respect to its argument
—for instance, ψ 0

0 ¼ ∂ψ
∂σ jσ¼σ0

, while β00 ¼ ∂β
∂a ja¼a0

. Having
the form of the metric functions and the EOS is enough to
check whether the TSW is stable or not.
Before we proceed to examine the stability of the TSW,

we would like to introduce the conditions which should be
satisfied for having a wormhole in cylindrical symmetry.
These conditions were studied in Ref. [8], where the first
condition is called the areal flare-out condition, stating that
eξþβ must be an increasing function at the throat [8–11].

The second condition implies that eβ must be an increasing
function at the throat and is called the radial flare-out
condition [8–11]. According to Ref. [8], the appropriate
condition would be the radial flare-out condition.

C. The Levi-Civita metric

Before we find some applications for the general
equation [Eq. (31)] among the known cylindrical TSWs
in the literature, we give the simplest cylindrical TSW
which can be made in the vacuum Levi-Civita (LC) metric
[1]. The LC metric with two essential parameters b and δ
can be written as
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ds2¼−br4δdt2þr4δð2δ−1Þðdr2þdz2Þþr2ð1−2δÞ

b
dφ2; (32)

in which b is related to the topology of the spacetime giving
rise to a deficit angle θ ¼ 2πð1 − 1ffiffi

b
p Þ [15]. For a physical

interpretation of δ, we refer to the third and fourth papers in
Ref. [1]. Comparing the LC line element with our general
line element [Eq. (1)], we find that

e2γ¼br4δ; e2α¼e2ξ¼r4δð2δ−1Þ; e2β¼r2ð1−2δÞ

b
: (33)

Once more, we note that in the cut-paste method, we
consider two copies of the bulk spacetime (here LC) in
which from each we cut the region r < aðτÞ, and then we
join them at r ¼ aðτÞ to have a complete manifold.
Therefore, the outer region of the wormhole is still LC
spacetime with the mentioned essential parameters.
Furthermore, the radial flare-out condition is satisfied only
for δ ≤ 1

2
, while the areal flare-out condition is satisfied for all

δ. Considering the TSW at r ¼ aðτÞ and using the general
condition of stability—i.e., V 00

0 > 0 together with a linear
EOS ψ 0ðσÞ ¼ ϕ0ðσÞ ¼ η0 in which η0 is a constant—we find

�
−2η0δ2 þ ð2η0 þ 1Þδ − η0

2

��
δ2 −

1

2
δþ 1

4

�
≥ 0: (34)

In Fig. 1, we plot the stability region in terms of the
parameters δ and η0, and as can be observed from the figure,
the stability is sensitive with respect to δ. In particular, for
δ < 1

4
the stability is not strong enough, while for 1

4
< δ < 1 it

is quite strong. Note that the topological parameter b does not
play a role in the stability of the LC wormhole.

III. APPLICATIONS

Eiroa and Simeone in Ref. [9] have considered a general
static cylindrical metric in 3þ 1 dimensions given by

ds2 ¼ BðrÞð−dt2 þ dr2Þ þ CðrÞdφ2 þDðrÞdz2; (35)

in which BðrÞ, CðrÞ, and DðrÞ are only functions of r.
Using the results found above together with e2α ¼ e2γ ¼ B,
e2β ¼ C, and e2ξ ¼ D, one finds

σ ¼ −
�
D0

D
þ C0

C

� ffiffiffiffi
Δ

p
; (36)

Pz ¼
1ffiffiffiffi
Δ

p
�
2äþ 2B0

B
_a2 þ B0

B2
þ C0

C
Δ
�
; (37)

and

Pφ ¼ 1ffiffiffiffi
Δ

p
�
2äþ 2B0

B
_a2 þ B0

B2
þD0

D
Δ
�
: (38)

At the equilibrium surface, i.e., a ¼ a0, we have

σ0 ¼ −
�
D0

0

D0

þ C0
0

C0

�
1ffiffiffiffiffiffi
B0

p ; (39)

Pz0 ¼
ffiffiffiffiffiffi
B0

p �
2äþ 2B0

0

B0

_a2 þ B0
0

B2
0

þ C0
0

B0C0

�
; (40)

and

Pφ ¼
ffiffiffiffiffiffi
B0

p �
2äþ 2B0

0

B0

_a2 þ B0
0

B2
0

þ D0
0

B0D0

�
: (41)

The energy conservation identity becomes

ðSij;j ¼i¼τÞ dσ
dτ

þ
�
D0

2D
ðPz þ σÞ þ C0

2C
ðPφ þ σÞ

�
da
dτ

¼ −
da
dτ

σ

�
B0

B
−
ζ

2
−
ζ0

ζ
þD0C0

ζDC

�
; (42)

in which

ζ ¼ D0

D
þ C0

C
: (43)

The potential of the motion of the throat VðaÞ reduces to

VðaÞ ¼ 1

B
−
�
σ

ζ

�
2

; (44)

whose second derivative at point a ¼ a0 becomes

FIG. 1. Stability of a TSW in LC spacetime, supported by a
linear gas, in terms of δ and η0. We see that the stability depends
on one of the essential parameters; i.e., δ in the LC metric. Also,
the radial flare-out condition is satisfied only for δ ≤ 1

2
.
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V 00
0 ¼

C0
0f½ð2B0D00

0 − B0
0D

0
0ÞD0 − 2B0D02

0 �C2
0 þD2

0ð2B0C00
0 − B0

0C
0
0ÞC0 − 2D2

0C
02
0 B0g

2D0B2
0ðD0

0C0 þ C0
0D0ÞC2

0

ϕ0
0

þD0
0f½ð2D0D00

0 − 2D02
0 ÞC2

0 þ 2D2
0C0C00

0 − 2D2
0C

02
0 �B0 − C0D0B0

0ðD0
0C0 þ C0

0D0Þg
2C0B2

0ðD0
0C0 þ C0

0D0ÞD2
0

ψ 0
0

þ 2D0ðB0B00
0 − 3

2
B02
0 ÞD0

0C
2
0 − 2B2

0D0C02
0 D

0
0

2D0C0B3
0ðD0

0C0 þ C0
0D0Þ

þ C0½ð2B0B00
0C

0
0 − 3C0

0B
02
0 ÞD2

0 þ ð½2C00
0D

0
0 þ 2D00

0C
0
0�B2

0 − 2C0
0B0B0

0D
0
0ÞD0 − 2C0

0B
2
0D

02
0 �

2D0C0B3
0ðD0

0C0 þ C0
0D0Þ

; (45)

in which all functions are calculated at a ¼ a0, while ψ 0
0 ¼

dψ
dσ jσ0 and ϕ0

0 ¼ dϕ
dσ jσ0 .

A. Stability of the cylindrical TSW with a positive
cosmological constant

In Ref. [11], Richarte introduced a cylindrical wormhole
based on the spacetime in the presence of a cosmic string in
vacuum and outside the core of the string, which means
r > rcore, where the bulk metric functions are given by (for
a detailed work see Ref. [11])

BðaÞ ¼ cos
4
3 ~a; (46)

CðaÞ ¼ 4δ2

3Λ
sin2 ~a

cos
2
3 ~a

; (47)

and

DðaÞ ¼ 1: (48)

Here ~a ¼
ffiffiffiffi
3Λ

p
2

a, δ is a parameter related to the deficit angle
explicitlygiven inRef. [16],andΛ is thecosmologicalconstant.
An explicit calculation of V 00

0 yields

V 00
0 ¼ −

2Λ

3cos
10
3 ~a0sin2 ~a0�

ðβ2 þ 1Þsin4 ~a0 þ
3

2
ð1 − 3β2Þsin2 ~a0 þ

9

4
β2

�
: (49)

The EOS is a linear gas (LG) in which ψ 0ðσÞ ¼ β1 and
ϕ0ðσÞ ¼ β2, where β1 and β2 are two constant parameters.
In order to have a stable TSW, V 00

0 must be positive. With a
positive cosmological constant, ultimately, the condition of
stability reduces to

ðβ2 þ 1Þsin4 ~a0 þ
3

2
ð1 − 3β2Þsin2 ~a0 þ

9

4
β2 < 0: (50)

In Fig. 2, we show the regions of stability in a frame of β2
versus ~a.

B. Stability of the Brans-Dicke cylindrical TSW

In Ref. [10], Eiroa and Simone presented a TSW in
Einstein-Brans-Dicke (EBD) theory. The corresponding
metric functions are given by

BðaÞ ¼ a2dðd−nÞþ½ωðn−1Þþ2n�ðn−1Þ; (51)

CðaÞ ¼ W2
0a

2ðn−dÞ; (52)

and

DðaÞ ¼ a2d: (53)

Herein, d and n are integration constants such that the
scalar field of the BD theory is given in terms of n as

ϕ ¼ ϕ0a1−n: (54)

Also, ω > −3=2 is a free parameter in BD theory while
W0 ∈ R. To study the stability of the TSW in this
framework, we again consider a LG for the EOS, which
means ψ 0 ¼ β1 and ϕ0 ¼ β2. The master equation [Eq. (45)]
admits

FIG. 2 (color online). Stability of a TSW supported by a LG in
terms of ~a0 and β2. This figure is particularly from Eq. (50).
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V 00
0 ¼

2ðΩ
2
þ 1þ dðd − nÞÞ½ðd − β2Þn2 þ ð½β2 − β1 − 2�d − Ω

2
− d2Þnþ 2d2�

na2dðd−nÞþΩþ2
0

; (55)

in which Ω ¼ ½ωðn − 1Þ þ 2n�ðn − 1Þ. Imposing V 00
0 > 0 is equivalent to

�
Ω
2
þ 1þ dðd − nÞ

��
ðd − β2Þn2 þ

�
½β2 − β1 − 2�d −

Ω
2
− d2

�
nþ 2d2

�
> 0: (56)

This final form of the stability involves too many free
parameters, which always renders it possible to find some
set(s) of parameters to make the TSW stable. In this
particular case, one can go further to find a more specific
relation.

C. BD solution with a magnetic field

In Ref. [10], in addition to the vacuum metric, the
authors considered the TSWs in a cylindrically symmetric
BD solution with a magnetic field which was introduced in
Ref. [17]. Based on Refs. [10,17], the metric functions are
given by

BðaÞ ¼ a2dðd−nÞþΩð1þ c2a−2dþnþ1Þ2; (57)

CðaÞ ¼ W2
0a

2ðn−dÞ

ð1þ c2a−2dþnþ1Þ2 ; (58)

and

DðaÞ ¼ a2dð1þ c2a−2dþnþ1Þ2: (59)

As before, d and n are two integration constants, and c
represents the magnetic field strength. In the case of BD
with the magnetic field, the areal flare-out condition is
trivially satisfied, but to satisfy the radial flare-out con-
dition, one must consider c2ðd − 1Þa−2dþnþ1 þ n − d > 0.
Clearly, when c ¼ 0, we get the conditions for the vacuum
solution, which becomes n > d. Keeping in mind these
conditions, we impose V 00

0 > 0. This in turn yields a very
complicated expression which we refrain to add here, but
instead we remark that for a case with d ¼ n ¼ 1 and β1 ¼
β2 ¼ β it becomes

V 00
0 ¼ −

2β

a2ð1þ c2Þ2 ; (60)

which is clearly positive if β < 0. We note that with our
specific setting, only the areal flare-out condition is
satisfied, leaving the radial flare-out condition open.

IV. CONCLUSION

TSWs are considered in cylindrical symmetry where the
metric functions rely entirely on the radial Weyl coordinate.
Such spacetimes may not be asymptotically flat in general,
so we expect deviations from the spherically symmetric
counterparts. The source to support the TSW is exotic.
Stability analysis in radial direction is worked out in detail,
and a master equation is obtained for an effective potential.
This is summarized as V 00ða0Þ > 0, which turns out to be a
tedious equation for a generic cylindrically symmetric
metric. For specific examples, however, such as Levi-
Civita, Brans-Dicke with magnetic fields, and similar cases,
the stability equation becomes tractable. Parametric plots of
the stability regions can be obtained without much effort.
Since our case is a generic one, all known cylindrically
symmetric TSW solutions to date can be cast into our
format. Finally we would like to add that in this work we
have only considered the EOS of the fluid which supports
the TSW to be a LG. Other possibilities which have been
considered so far for the spherical cases, such as Chaplygin
gas (CG), generalized Chaplygin gas (GCG), modified
generalized Chaplygin gas (MGCG), and logarithmic gas
(LG), are open problems to be considered [18].
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