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In this study we advocate the view that the cosmological constant is of electromagnetic (em)
origin, which can be generated from the collision of em shock waves coupled with gravitational
shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown
that, circular polarization with equal amplitude waves does not generate cosmological constant. We
also prove that the generation of the cosmological constant is related to the linear polarization.
The addition of cross polarization generates no cosmological constant. Depending on the value of
the wave amplitudes, the generated cosmological constant can be positive or negative. We show
additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also
yields a cosmological constant.
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I. INTRODUCTION

The subject of colliding plane waves (CPW) in general
relativity constitutes one of the important topics that
the effects of the nonlinearity of the Einstein’s equations
manifests itself explicitly. The basic results of CPW’s are
not limited to find exact solutions, but rather its connec-
tions with other predictions of the theory of general rel-
ativity such as the spacetime singularities and the black
hole interiors. (see [1], for a general review of related
works). Although the collision of plane waves assumes
idealized situations (the waves that participate in the col-
lision are assumed to be plane symmetric, having an infi-
nite extent in transverse directions), the dynamic nature
of CPW spacetime may provide a theoretical background
to experimental observations.

For example, according to the Standard Big Bang Cos-
mological Model in which the universe contains a cosmo-
logical constant, the universe went through an exponen-
tial growth called inflation and caused the formation of
ripples propagating at the speed of light in the fabric of
spacetime, called the gravitational waves within a tiny
fraction of time after the big bang. It is now well un-
derstood that electromagnetic (em) radiation decoupled
from free electrons about 380,000 years after the big bang
[2]. Once they formed, as a requirement of the Einstein’s
theory of relativity, em waves are coupled with primordial
gravitational waves and naturally their nonlinear inter-
actions started to shape the em distribution.

The findings of BICEP-2, can be given as an exam-
ple to such phenomena [3]. The observed B-mode in the
polarization vector of the cosmic microwave background
(CMB) radiation may be explained as a result of interac-
tion with the primordial gravitational waves originated
during the inflationary phase of the universe. This prob-
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lem can be considered within the context of CPW and
the exact analytic solution to the Einstein-Maxwell equa-
tions. The nonlinear interaction between plane gravita-
tional waves and shock em waves with cross polarization
is of utmost importance. Here, the primordial gravita-
tional waves are assumed to be impulsive and shock types
for the sake of an analytic exact solution. It has been
shown in [4], that the Faraday rotation in the polarization
vector of em waves can be attributed to the encounters
with the strong gravitational waves with cross polariza-
tion.

On the other hand, the cosmological constant in the
Standard Model of Big Bang Cosmology has been as-
sociated with the dark energy. Understanding the ori-
gin of the cosmological constant, its role in the universal
vacuum energy, its repulsive effect in the accelerating ex-
pansion of the universe and related matters all constitute
a vast literature in modern cosmology. Although experi-
mental observations revealed much information about the
evolution of the universe, the origin of the cosmological
constant still lacks a satisfactory answer.

Recently, within the framework of CPW, one possible
mechanism about the origin of the cosmological constant
has been introduced by Barrabes and Hogan [5]. In this
study, it has been shown that, the cosmological constant
emerges as a result of nonlinear interaction of plane elec-
tromagnetic (em) shock waves accompanied by gravita-
tional shock waves. As it was given in [5], this is a special
solution in the sense that, there is only one component
of electric and magnetic fields of the combined em waves
that participate in the collision. On the other hand, the
fundamental solution in this context is the Bell-Szekeres
(BS) [6] solution which describes the collision of plane em
shock waves in which there are two components of equal
amplitudes of electric and magnetic fields that partici-
pate in the collision. Thus, the solution given in [5], is a
special case that has no BS limit of equal em amplitudes
[6].

Our motivation in this paper is to explore in detail the
effects of polarization and wave amplitudes on the emer-
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gence of the cosmological constant as a result of nonlinear
interaction of plane em shock waves coupled with grav-
itational shock waves. That is, our strategy from the
outset, is not to introduce a cosmological constant in the
initial data of the problem but rather to obtain it emer-
gent as a result of colliding em data. Owing to the im-
portance of the problem, we wish to extend the solution
presented in [5] further in various directions. First, we
consider the nonlinear interaction of em waves with dif-
ferent amplitudes in the initial data of BS solution. We
show that emergent cosmological constant relates only to
the linear polarization context of the waves with different
amplitudes. We obtain that the cosmological constant
(= λ0) = α2 − β2, where α and β denote the ampli-
tude constants of electric field components along x and
y directions, respectively. Such a theoretical prediction
probably may be verified by experimental observations
and this naturally necessitates to reevaluate the polar-
ization data of CMB.

Extension of the BS solution to cross-polarized colli-
sion with single essential parameter was also found [7, 8].
In this problem the two incoming waves have non-aligned
polarization vectors prior to the collision and naturally
give rise to an off-diagonal component in the metric.
This is analogous to the relation of Khan-Penrose [9] and
Nutku-Halil [10] metrics. Secondly, in order to under-
stand the effect of polarization together with different
amplitudes, we extend the linear polarization problem to
the case of cross-polarization, however, this doesn’t yield
a pure cosmological constant term. Instead, we obtain a
general energy-momentum without immediate interpre-
tation but yet it can be considered as a conversion of em
energy into other forms.

In addition, we answer the question whether colliding
em waves accompanied with gravitational waves in grav-
ity coupled nonlinear electrodynamics [11] give rise to
cosmological constant or not. Our finding for the Born-
Infeld (BI) [12] theory is positive, however, this leaves the
case of different nonlinear electromagnetic models open.

The work described in this paper and also in [5], i.e.
generation of cosmological constant in the interaction re-
gion can be explained as a result of the re-distribution
of the incoming energies in the waves that participate
in the collision. Furthermore, as a by product besides
the cosmological constant, two light-like shells are also
generated on the null boundaries accompanying the im-
pulsive gravitational waves. To recall a similar scenario
and seek support from a different (i.e. quantum) domain
of physics we refer to the theoretical side to the historic
Breit-Wheeler analysis [13] of matter creation from the
process of photon collisions. On the experimental side,
this has been taken seriously in recent times through en-
ergetic laser photon collisions to materialize the idea at
a grand scale [14]. If this quantum picture has any re-
flections in our macroworld it must correspond with our
approach of colliding em plane waves, which is entirely
classical.

Let us add that in addition to Ref. [5], Barabes and

Hogan also gave a method to generate a cosmological
constant from collision of pure gravitational shock waves
[15]. In this work the energy-momentum created with the
cosmological constant balances with the emergent null
currents on the boundaries of the collision. Hence, the
consistency of the Einstein’s equations hold.

The organization of the paper is as follows. Section II
explores the collision of shock waves in Einstein-Maxwell
(EM) theory. Section III considers collision of waves in
nonlinear electrodynamic. The paper ends with Conclu-
sion in Section IV. In Appendix A / B, we provide all
Ricci / curvature components. Appendix C shows the
effect of cross polarization while Appendix D presents
energy-momenta and Einstein tensor components of the
non-linear electromagnetic model used.

II. COLLIDING SHOCK WAVES IN
EINSTEIN-MAXWELL (EM) THEORY

The spacetime describing colliding em shock waves
with general polarization is summarized by [6]

ds2 = 2e−Mdudv−
e−U

(
coshW

(
eV dx2 + e−V dy2

)
− 2 sinhWdxdy

)
. (1)

Here (u, v) are the null coordinates while M, U, V and
W are metric functions depending on both u and v in
the interaction region. In the incoming regions, how-
ever, the metric functions depend only on one (either u
or v) of the null coordinates. We must add that since
the waves are moving at the speed of light, their collision
problem can be best described in the null coordinates.
The null coordinates are related to (t, z) coordinates by√

2u = t + z and
√

2v = t − z. The incoming waves
are moving along ±z and they collide at t = z = 0 (or
u = v = 0). Since em waves are transverse in this picture,
we expect to have the x and y components of E (electric)
and B (magnetic) vectors to be non-zero. The Maxwell
and Einstein-Maxwell (EM) equations must be satisfied
with the appropriate boundary conditions. For the EM
waves these were formulated by O’Brien and Synge [16],
but in the present problem, these conditions will be re-
lieved. We wish also to comment that the metric function
W carries the information about the second (or cross, or
relative) polarization of the incoming waves. Care should
be taken that a coordinate rotation of the (x, y) coordi-
nates must not yield parallelly polarized vectors in the
two incoming regions. Otherwise the waves are still lin-
early polarized so that the metric function W can be set
to zero by a coordinate rotation. For a similar situation
in colliding gravitational waves, one may consult [17].
Non-aligned polarization vectors in the incoming regions
is therefore crucial to obtain a genuine solution in the
interaction region with W 6= 0. As a matter of fact, Bell
and Szekeres gave the exact solution only with W = 0 [6].
With the exception of the case considered in Appendix C
in this paper, we shall restrict ourselves entirely to linear
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polarization. The line element

ds2 = 2dudv − cos2 α (u+ − v+) dx2−
cos2 β (u+ + v+) dy2 (2)

with the em potential 1−form

A (u, v) = sinα (u+ − v+) dx+ sinβ (u+ + v+) dy (3)

solves the problem of colliding shock waves in EM theory
subject to the following information:

Here α and β are amplitude constants of the em waves;
u+ = uθ (u) and v+ = vθ (v) , where θ (u) / θ (v) is the
Heaviside unit step function. Note that we have the free-
dom to scale u → au and v → bv for constants a and
b. Since we can absorb ab into the x and y coordinates
and for the sake of simplicity, we shall make the choice
a = b = 1 throughout the paper. For u > 0, v > 0, the
line element (1) represents the geometry of interaction
region (region IV). The incoming region II, for v < 0,
u > 0 is given by, (see Fig. 1)

ds2 = 2dudv − cos2 (αu+) dx2 − cos2 (βu+) dy2. (4)

For u < 0, v > 0 we obtain the incoming region III from
(1), which is similar to II with u → v. The non-zero em
field components are obtained from (2) as follows;

Fux = αθ (u) cosα (u+ − v+) , (5)

Fvx = −αθ (v) cosα (u+ − v+) , (6)

Fuy = βθ (u) cosβ (u+ + v+) , (7)

Fvy = βθ (v) cosβ (u+ + v+) . (8)

The Newman-Penrose (NP) quantities [18] in the null
basis 1−forms

` = du, n = dv, (9)

√
2m = cosα (u+ − v+) dx+ i cosβ (u+ + v+) dy, (10)

√
2m̄ = cosα (u+ − v+) dx− i cosβ (u+ + v+) dy (11)

and their Ricci tensor connections are given in the Ap-
pendix A. From (5-8) we can easily read the incoming
em waves in region II (with v < 0) and region III (with
u < 0). Equivalently, we find the NP components of the
em field by

Φ2 (u) = Fµνm̄
µnν =

1√
2

(α+ iβ) θ (u) (region II) (12)

Φ0 (v) = Fµν`
µmν =

1√
2

(α+ iβ) θ (v) (region III). (13)

The gravitational shock waves are also given in Appendix
B as

Ψ4 (u) =
1

2

(
α2 − β2

)
θ (u) (region II) (14)

Ψ0 (v) =
1

2

(
α2 − β2

)
θ (v) (region III). (15)

From (5-8), the electric and magnetic components of our
fields are

Ex =
α

2
(θ (u)− θ (v)) cosα (u+ − v+) (16)

Ey =
β

2
(θ (u) + θ (v)) cosβ (u+ + v+) (17)

Bx =
β

2
(θ (u)− θ (v)) cosβ (u+ + v+) (18)

By = −α
2

(θ (u) + θ (v)) cosα (u+ − v+) . (19)

Since the incoming em waves move along
±z−directions, they are transverse. Therefore, their Ex,
Ey and Bx, By components are all non-zero. This is
due to the fact that the chosen ansatz (3) for the vector
potential is quite general. We note that our convention
to define the polarization of the em waves is based on
the electric field vector E. An alternative choice can be
made by using the magnetic field vector B. From our
ansatz for the em potential (3) and the derived field
vectors (5-8), it is observed that the waves in region
II and III are linearly polarized. The x−components
of E from region II and III yield opposite signs, but
this doesn’t change the polarization. We remind that
em wave is a spin−1 field so that a π−rotation in axis,
i.e. from +x to −x is allowed. We finally note that
Ex 6= Ey leads to elliptical polarization which reduces
to circular polarization for Ex = Ey, but these are still
linearly polarized along a line in the xy−plane. It is
readily seen from (16-19) that after the collision, we
have Ex = Bx = 0. Prior to the collision, regions II and
III both have the em components elliptically polarized
in the orthonormal frame {u, v, x̄, ȳ}. To see this, we
choose dx̄ = gxxdx and dȳ = gyydy so that

E2
x̄

α2
+
E2
ȳ

β2
= 1. (20)

Also note that, after the collision both the electric and
magnetic fields are polarized in y−direction, i.e. the
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FIG. 1: The spacetime diagram for colliding (em+grav) waves.
The region I (u < 0, v < 0) is flat, i.e. no-wave region. The
incoming region II, (u > 0, v < 0), has φ2 (u) 6= 0 6= ψ4 (u) while
region III (u < 0, v > 0) has φ0 (v) 6= 0 6= ψ0 (v) . The interaction
region IV (u > 0, v > 0) has the non-zero components
φ0 (u, v) , φ2 (u, v) ψ0 (u, v) , ψ4 (u, v) , ψ2 (u, v) and λ0. The
equivalent non-zero Ricci tensor components are given in
Appendix A. It can easily be seen that for (α = β) in the waves
sets ψ4 (u) = 0 = ψ0 (v) in the incoming regions and λ0 = 0 = ψ2

in the interaction region. This reduces the problem to colliding
pure em waves problem of Bell and Szekeres. We wish to draw
attention in particular to the null sources
Suu = δ (u) (β tanβv+ − α tanαv+) and
Svv = δ (v) (β tanβu+ − α tanαu+) emerging after the collision
on the null boundaries. These vanish for the choice α = β. From
Suu and Svv we can read the null singularities as: u = 0,
v1 = π

2α
, v2 = π

2β
and v = 0, u1 = π

2α
, u2 = π

2β
.

process of collision acts as a polarizer. Throughout the
spacetime, EM field equations are given by

Rµν −
R

2
gµν = −Tµν + Sµν + λ0gµν (21)

where the energy-momentum tensor of the em field is

Tµν = FµλF
λ
ν −

1

4
gµνFαβF

αβ (22)

and Sµν stands for the energy-momentum on the null-
hypersurfaces [19]. From Appendix A and Eqs. (21-
22) we read Suu = δ (u) (β tanβv+ − α tanαv+) and
Svv = δ (v) (β tanβu+ − α tanαu+). The latter contains
the delta functions of the Ricci tensor as displayed in the
Appendix. Let us add that upon suppressing the infinite
energy contributions from the planar (x, y) directions the
integral of Sab can be shown to contribute finite to the
(u, v) plane. This is a result of the integral

2

∫ δ

−δ
du

∫ ε

0

dv
√
−gSuu =

β − α
β + α

(1− cos ε (α+ β)) +
β + α

β − α
(1− cos ε (β − α))

(23)

in which δ > 0 and ε > 0 are small parameters. A similar
result follows also from the Svv integral. The constant
λ0 is identified as the cosmological constant which turns
out to be

λ0 =
(
α2 − β2

)
θ (u) θ (v) . (24)

Obviously λ0 emerges in region IV for u > 0 and v > 0
and depending on whether α2 > β2 or α2 < β2 it can be
positive or negative. It is not difficult to speculate that
the waves may start with α2 > β2 but the y−mode can
build up by superposition or other mechanisms to sup-
press the x-mode in successive collisions to make α2 < β2.
Thus, the emergent cosmological constant through collid-
ing waves has the potential to change sign in accordance
with the dominance of linear x/y modes.

From the Weyl scalars Ψ4 (Ψ0) (see Appendix B) it
can easily be seen that null singularities occur at u = 0
(v1 = π

2α and v2 = π
2β ) and v = 0 (u1 = π

2α and u2 = π
2β )

that is, they double in number of the BS solution. When
α = β, the incoming Weyl curvatures disappear and we
recover the problem of colliding em shock waves of BS
[6].

The effect of second polarization on the formation of
the cosmological constant has also been considered in this
study. The solution presented in [8] is generalized to
different amplitude wave profiles. Our analysis has shown
that the addition of second polarization does not yield
a cosmological constant. The related metric and Ricci
scalar Λ are given in Appendix C.

III. COLLIDING WAVES IN
EINSTEIN-NONLINEAR ELECTROMAGNETISM

Let’s consider a general form of the nonlinear Maxwell
Lagrangian as L (F) in which F = FµνF

µν . Hence the
Einstein nonlinear Maxwell action reads (16πG = 1)

S =

∫
d4x
√
−g
[
R

2
+ L (F)

]
. (25)

The line element is chosen to be (note that in this sec-
tion we use more appropriately the commonly used +2
signature)

ds2 = −2dudv + cos2 ξdx2 + dy2 (26)

in which

ξ = ε (u+ − v+) . (27)

Our em potential ansatz is A = a0 sin ξdx so that the em
field 2−form is

F = α cos ξ (θ (u) du− θ (v) dv) ∧ dx, (28)

where the constant α is α = a0ε. Its dual ∗F is given by

∗F =− α (θ (u) du+ θ (v) dv) ∧ dy (29)
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and

F = 4α2θ (u) θ (v) . (30)

The final form of F implies that F is non-zero only in
the interaction region i.e. v > 0 and u > 0 (i.e. the
incoming em fields are null) and it is a constant. We must
add that choosing the field ansatz as in (28) guarantees
that the other Maxwell invariant is zero i.e., G = − 1

4Fµν∗Fµν = 0. Therefore the general form of the nonlinear
Lagrangian depends only on F . For instance, in the case
of BI theory, Lagrangian becomes

L (F) = 2b2

(
1−

√
1 +
F
b2

)
(31)

which reduces to the linear Maxwell Lagrangian in the
limit b→∞. We note that b 6= 0 is called the BI param-
eter with dimension of mass. The nonlinear Maxwell’s
equation in the interaction region (u > 0 and v > 0) is
given by

d

(
∗F

dL (F)

dF

)
= 0. (32)

or effectively for (29) and (31) it means

d (∗F) = 0, (33)

which is obviously satisfied. On the boundaries, however,
this gives null currents i.e.

d

(
∗F

dL (F)

dF

)
= ∗J (34)

where ∗J is the current 3−form given by

∗J =
2α3

b2
(δ (u) θ (v)− δ (v) θ (u))(

1 + 4α2

b2 θ (u) θ (v)
)3/2 du ∧ dv ∧ dy, (35)

which occurs similar to Sab on the null boundaries. The
energy momentum tensor of this nonlinear field and its
explicit components are given in Appendix D. Plugging
these into the field equations inside the interaction region

Gνµ − λ0δ
ν
µ = T νµ + Sνµ (36)

yields λ0 = −
(
L − 2F dL

dF
)

and to have consistency with

the other equations, we must have ε2 = −4α2 dL(F)
dF which

is a constant (note that dL(F)
dF < 0). The fact that λ0

emerges as a constant is by virtue of the chosen La-
grangian (31) and the solution (26-28).

Breton considered the following line element [11]

ds2 = −2dudv + cos2 ξdx2 + cos2 ηdy2 (37)

in which

ξ = ε (u+ + v+) (38)

and

η = κ (u+ − v+) (39)

together with the em 2−form (here ε and κ are amplitude
constants analogous to our α and β in the linear Maxwell
theory)

F =α0 cos ξ (dx ∧ du+ dx ∧ dv)−
β0 cos η (dy ∧ du− dy ∧ dv) . (40)

Note that the constants α0 and β0 are related to ε and
κ through the field equations. The nonlinear Lagrangian
used here is the more general BI Lagrangian given by

L = 2b2

(
1−

√
1 +
F
b2
− G

2

b4

)
. (41)

As it was shown in Ref. [11] in the limit b→∞ it reduces
rightly to the Bell-Szekeres solution. In this general case
we also find that there is emergent cosmological constant
in the interaction region. Emergence of null currents on
the null boundaries after collision, however, from the non-
linear Maxwell equation is also inevitable in [11]. For the
case of different nonlinear electromagnetic models other
than BI, a similar conclusion remains to be seen.

IV. CONCLUSION

In this study we propose that cosmological constant
is of em origin. Collision of linearly polarized em waves
accompanied by appropriate gravitational shock waves
gives rise to cosmological constant λ0 = α2 − β2 in the
interaction region (u > 0 and v > 0). Here α and β
are amplitude constants of the incoming em waves. For
α = β we have the typical collision of em shock waves
derived first by Bell and Szekeres [6] in which the inter-
action region has only em field with null singularities on
the null boundaries. Two null em waves collide and turn
into a non-null em field which is isometric to the Bertotti-
Robinson spacetime (see [1]). Now, an interesting situa-
tion, observed by Barrabes and Hogan [5] arises: When
the wave amplitudes along two space directions are un-
equal (i.e. α 6= β), a cosmological constant emerges in the
interaction region. We use this observation to speculate
about the possible origin of the cosmological constant.
We prove that this happens when the em waves are lin-
early polarized. We do this by extending the problem to
cross polarized collision where the em energy transforms
into a general form of energy-momentum which can’t be
identified as a cosmological constant. (See Appendix C)

We also show that the collision of em waves in a non-
linear electromagnetism, specifically a reduced version
of the BI theory, similar trace of cosmological constant
emerges. It should be added that the nonlinear Maxwell
equations are satisfied modulo the currents on the null
boundaries, after the collision, much like the sources Sab
of the linear theory on the null-boundaries.
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Appendix A:
From the metric (1) and NP null-tetrad (8-10) we ob-

tain the following Ricci components

2φ22 = Ruu =
(
α2 + β2

)
θ (u) +

δ (u) (β tan (βv+)− α tan (αv+)) (42)

2φ00 = Rvv =
(
α2 + β2

)
θ (v) +

δ (v) (β tan (βu+)− α tan (αu+)) (43)

2φ02 = Rµνm
µmν =

(
α2 + β2

)
θ (v) θ (v) (44)

Ru v =
(
β2 − α2

)
θ (u) θ (v) (45)

Rxx = 2α2θ (u) θ (v) cos2 α (u− v) (46)

Ryy = −2β2θ (u) θ (v) cos2 β (u+ v) (47)

R = −24Λ = 4
(
β2 − α2

)
θ (u) θ (v) = −4λ0 (48)

(δ (u) and δ (v) are Dirac delta functions and

u+ = uθ (u) and v+ = vθ (v) )

Appendix B:
The non-zero Weyl components ψ2, ψ4 and ψ0 are as

follows:

6ψ2 =
(
α2 − β2

)
θ (u) θ (v) (49)

2ψ4 =
(
α2 − β2

)
θ (u)−

δ (u) (α tan (αv+) + β tan (βv+)) (50)

2ψ0 =
(
α2 − β2

)
θ (v)−

δ (v) (α tan (αu+) + β tan (βu+)) (51)

Appendix C:
Colliding em waves with cross polarization:
Collision of linearly polarized em waves was generalized

to include the second polarization in [7, 8]. The situa-
tion is analogous to Khan-Penrose [9] and Nutku-Halil
[10], or Schwarzschild-Kerr relation. The latter solutions
contain one extra parameter so that when the parameter
vanishes, we obtain the former solutions. In the wave
collision problem, the parameter is the angle of relative
polarization of the two incoming waves, say α0. The
metric of the interaction region induces a cross-term gxy
which is proportional to sinα0 so that gxy → 0, when
the waves are linearly polarized. With reference to [7],

it is not difficult to give the spacetime of the interaction
region in oblate-spheroidal type coordinates [10]

ds2 = F

(
dτ2

β2∆
− dσ2

α2δ

)
− δ

F
dx2−(

∆F +
δ

F
(τ sinα0)

2

)
dy2 +

2τδ

F
sinα0dxdy. (52)

The notation here goes as follows

τ = sinβ (u+ v) , σ = sinα (u− v) , (53)

∆ = 1− τ2, δ = 1− σ2, (54)

2F =

√
1 + sin2 α0

(
1 + σ2

)
+ 1− σ2. (55)

Note that

dτ2

β2∆
− dσ2

α2δ
= 4dudv (56)

and in the limit α0 → 0 we recover the BS metric of linear
polarization. The existence of α 6= β, however, makes the
curvature components rather complicated so that a pure
cosmological constant doesn’t arise in the present case.
To verify this we make use of the null-tetrad basis 1-forms

√
2` =

√
F

(
dτ

β
√

∆
− dσ

α
√
δ

)
(57)

√
2n =

√
F

(
dτ

β
√

∆
+

dσ

α
√
δ

)
(58)

√
2m =

√
δ

F
(dx− τ sinα0dy) + i

√
∆Fdy (59)

and the complex conjugate of m. It suffices to compute
the NP scalar Λ which is

Λ =

(
α2 − β2

)
48F 3

(
4F 2 − δ sin2 α0

)
. (60)

From the trace of equation (20), we see that the expected
cosmological ’constant’ λ0 = −R4 is not a constant. In
the linear polarization limit α0 = 0 (F = 1) we obtain
that λ0 = 1

2

(
α2 − β2

)
. (Note that the extra 1

2 factor
comes from 4dudv in (3) instead of 2dudv). Therefore
we conclude that emergence of cosmological constant is
related to the linear polarization property of the colliding
waves. We recall that the cross polarization of waves
through the Faraday rotation may be instrumental in the
detection of gravitational waves [4].
Appendix D:
The energy-momentum tensor T νµ in region IV with its

explicit components and Einstein’s terms in all regions
are given as follow:
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T νµ = Lδνµ − 4FµλF
νλ dL
dF

(61)

Tuu = L − F dL
dF

, (62)

T vv = L − F dL
dF

, (63)

T vu = 4α2θ (u)
dL
dF

, Tuv = 4α2θ (v)
dL
dF

, (64)

T xx = L − 2F dL
dF

, T yy = L. (65)

Guu = −ε2θ (u) θ (v) , Gvv = −ε2θ (u) θ (v) , (66)

Gvu = −ε2θ (u)− ε tan ξδ (u) , (67)

Guv = −ε2θ (v) + ε tan ξδ (v) , (68)

Gxx = 0, Gyy = −2ε2θ (u) θ (v) . (69)
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