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By choosing a fluid source in f(R) gravity, defined by f(R) = R − 12aξ ln|R|, where a

(Rindler acceleration) and ξ are both constants, the field equations correctly yield the
Rindler acceleration term in the metric. We identify domains in which the weak energy
conditions (WEC) and the strong energy conditions (SEC) are satisfied.
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Rindler acceleration is known to act on an observer accelerated in flat spacetime.

Geometrically such a spacetime is represented by ds2 = −x2 dt2 + dx2 + dy2 + dz2,

where the acceleration in question acts in the x-direction.1 The reason that this

acceleration has become popular in recent years anew is due to an analogous ef-

fect detected in the Pioneer spacecrafts launched in 1972/1973. Observation of

the spacecrafts over a long period revealed an attractive, mysterious acceleration

toward Sun, an effect came to be known as the Pioneer anomaly.2 Besides the

MOdified Newton Dynamics (MOND)3 to account for such an extraneous acceler-

ation there has been attempts within general relativity for a satisfactory interpre-

tation. From this token a field theoretical approach based on dilatonic source in

general relativity was proposed by Grumiller to yield a Rindler type acceleration in

the spacetime.4,5 More recently, we attempted to interpret the Rindler acceleration

term as a nonlinear electrodynamic effect with an unusual Lagrangian.6 Therein

the problematic energy conditions are satisfied but at the cost of extra structures

such as global monopoles7 which pop up naturally. In a different study global

monopoles were proposed as source to create the acceleration term in the weak field

approximation.8
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In this paper, we show that a particular f(R) gravity9–14 with a fluid source

accounts for the Rindler acceleration. The fluid satisfies the weak energy condition

(WEC) and strong energy condition (SEC) in regions as depicted in Fig. 1.

The action for f(R) gravity written as

S =
1

2κ

∫ √−gf(R)d4x+ SM , (1)

in which κ = 8πG = 1, f(R) = R− 12aξ ln|R|, (a and ξ are constants) is a function

of the Ricci scalar R and SM is the physical source for a perfect fluid-type energy–

momentum

T ν
µ = diag[−ρ, p, q, q] (2)

with a state function p = −ρ. Note that for dimensional reasons the logarithmic

argument should read
∣

∣

R
R0

∣

∣, where ln |R0| accounts for the cosmological constant. In

our analysis, however, we shall choose |R0| = 1 to ignore the cosmological constant.

The four-dimensional static spherically symmetric line element is given by

ds2 = −A(r)dt2 +
1

B(r)
dr2 + r2(dθ2 + sin2 θ dϕ2) , (3)

where A(r) and B(r) are to be found. Let us add also that in the sequel, for

convenience we shall make the choice A(r) = B(r).

Variation of the action with respect to the metric yields the field equations

Gν
µ =

1

F
T ν
µ + Ť ν

µ , (4)

where Gν
µ stands for the Einstein’s tensor, with

Ť ν
µ =

1

F

[

∇ν∇µF −
(

�F − 1

2
f +

1

2
RF

)

δνµ

]

. (5)

Our notation here is such that � = ∇µ∇µ = 1√
−g

∂µ
(√−g∂µ

)

and ∇ν∇µh =

gλν∇λh,µ = gλν(∂λh,µ−Γβ
λµh,β) for a scalar function h. The field equations explic-

itly read as

FRt
t −

f

2
+�F = ∇t∇tF + T t

t , (6)

FRr
r −

f

2
+�F = ∇r∇rF + T r

r , (7)

FRθ
θ −

f

2
+�F = ∇θ∇θF + T θ

θ , (8)

(

F =
df

dR

)

, (9)

which are independent. Note that the ϕϕ equation is identical with θθ equation.

By adding the four equations (i.e. tt, rr, θθ and ϕϕ) we find
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FR− 2f + 3�F = T , (10)

which is the trace of Eq. (4). As usual tt and rr components admit∇t∇tF = ∇r∇rF

which in turn yields F ′′ = 0, with ′ = d
dr
, and consequently

F = C1 + C2r . (11)

Here C1 and C2 are two integration constants, which for our purpose we set C1 = 1

and C2 = ξ. A detailed calculation gives the metric solution

A(r) = 1− 2m

r
+ 2ar , (12)

which would lead to the following energy-momentum components

−ρ = p =
(6aξ − f)r2 + 4(ξ − a)r − 6mξ

2r2
, (13)

q = −fr − 2ξ + 8a

2r
, (14)

with

f = f(R(r)) = −
(

12a

r
+ 12aξ ln

(

12a

r

))

. (15)

It is observed that in the limit of R-gravity (i.e. ξ → 0) one gets f = R = − 12a
r

and therefore

−ρ = p =
4a

r
, (16)

while

q =
2a

r
. (17)

Naturally the integration constant m accounts for the constant mass while the

Rindler acceleration constant, i.e. a, determines the properties of the fluid source.

These are the results found in Refs. 4 and 5. In the other limit, once a → 0 one

can see from the vanishing Ricci scalar that F cannot be r dependent which means

that ξ must be zero. This, in turn, reduces to the standard R-gravity.

Once more we note that the Rindler acceleration a is positive and C2 = ξ is

positive too, to avoid any nonphysical solutions. Our final remark will be on the

energy conditions.

For WEC one should have (i) ρ ≥ 0, (ii) ρ + p ≥ 0 and (iii) ρ + q ≥ 0. One

observes that the second condition is trivial while the third condition implies

3aξr2 + (2a+ ξ)r − 3mξ ≤ 0 , (18)

which simply confines the range of r as

r ≤
√

(2a+ ξ)2 + 36maξ2 − (2a+ ξ)

6aξ
. (19)

1350073-3

M
od

. P
hy

s.
 L

et
t. 

A
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 Y

O
R

K
 o

n 
06

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



May 23, 2013 16:50 WSPC/146-MPLA S0217732313500739 4–5

S. H. Mazharimousavi & M. Halilsoy

On the other hand, the first condition (ρ ≥ 0) reads as

−6aξr2 ln

(

12a

r

)

− (ξ + 2a)r ≤ 3aξr2 + (2a+ ξ)r − 3mξ ≤ 0 , (20)

which can be satisfied. Figure 1 displays the possible regions in which the WEC

are satisfied. Clearly by a fixed value for the Rindler acceleration larger deviation

from the standard R-gravity provides larger region of satisfaction of WEC. Once

the value of ξ gets smaller and smaller, the region in which ρ ≥ 0 and ρ + q ≥ 0

gets narrower and narrower. In the limit ξ → 0, this region disappears completely.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. A plot of ρ (= B) and ρ+ q (= A) for m = 1, a = 0.1 and various values of ξ. The value
of ξ indicates the deviation of the theory from standard gravity. From the figure it is clear that
by getting far from R-gravity the region in which WEC are satisfied (i.e. ρ ≥ 0 and ρ+ q ≥ 0) is
enlarged. We also note that having WEC satisfied, makes SEC satisfied as well.
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In addition to the WEC one may also check the strong energy conditions (SEC)

i.e. (i) ρ ≥ 0, (ii) ρ + q ≥ 0 and (iii) ρ + p + 2q ≥ 0. The first two conditions

have already been considered in WEC and the third condition becomes effectively

equivalent with q ≥ 0, i.e.

−6aξr ln

(

12a

r

)

− (ξ + 2a) ≤ 0 , (21)

which upon (20) is satisfied trivially.

In conclusion, the Grumiller metric4,5 would be physically acceptable (from en-

ergy point of view) if instead of R-gravity we adopt f(R) = R− 12aξ ln|R| gravity.
Herein a is just the Rindler acceleration and ξ is a parameter which shows the

deviation of the new f(R) gravity from the standard gravity. The external source

consists of a fluid with an energy–momentum given by (2). The pressure of the

fluid is negative by choice so that it plays the role of dark energy. The interesting

feature of the Rindler modified Schwarzschild geometry4,5 is that at large distances

(i.e. outside the galaxy) there exists still an effective mass to yield nearly flat ro-

tation curves. This result is irrelevant to whether the so-called Pioneer anomaly is

a genuine case or not. Clearly our model excludes the flat space (i.e. R = 0) but

becomes applicable to spacetimes with 0 < |R| < ∞. Given the particular fluid

source it is the unique f(R) that yields the Grumiller metric4,5 and satisfies WEC

and SEC. It remains open, however, to explore new forms of f(R) with alternative

energy-momenta, other than the one found here, so that the same Rindler term will

result with energy conditions satisfied. This will be part of our future project.
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