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Existence of Reissner-Nordström type black holes in f(R) gravity
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We investigate the existence of Reissner-Nordström (RN) type black holes in f(R) gravity. Our
emphasis is to derive, in the presence of electrostatic source, the necessary conditions which provide
such static, spherically symmetric (SSS) black holes available in f(R) gravity. We also study the
thermodynamics of the black hole solution.
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I. INTRODUCTION

Due to a number of valid reasons f(R) gravity attracted much interest during the recent decade as an extension
/ modification of Einstein’s general relativity [1–6] (for some review works see [7–10]). Here R stands for the Ricci
scalar, the simplest among much complicated ones and f(R) is an analytic function of R. Herein we wish to look at
f(R) gravity from a different angle which was introduced by Bergliaffa and Nunes in their novel paper [11, 12]. Since
the black hole solutions in Einstein’s f(R) = R, theory has already built enough prominence and play the leading role
it should be wise to seek for similar solutions in the more general f(R) theories. This approach concerns directly the
existence problem of black holes and it’s associated necessary conditions for analog objects in the latter. The existence
conditions may simply be dubbed as the ”near-horizon test” in order to highlight the event horizon of a black hole as a
physical reality. It is well-known that physically when the observer approaches the event horizon he / she feels nothing
unusual except strong gravity, so this mathematically must reflect analytically on the event horizon. The analytic

expansion of a metric function, say f(r), is developed in series of the form f(r) = f(r0)+f ′(r0) (r − r0)+O
(

(r − r0)
2
)

where r0 is the event horizon and (r − r0) stands naturally small. When these developed series are substituted back
into the Einstein equations they will give conditions of zeroth,first and higher orders. These are precisely what
we call the necessary conditions for the existence of certain / analog black hole types. To our amazement these
necessary conditions emerge rather restrictive so that we can’t propose arbitrarily any polynomial forms of f(R) as
the representative black holes. For instance,what are the necessary conditions in order that it will admit Schwarzschild-
like black hole solutions? This particular problem without external sources has already been considered and it’s found
that the possible f(R) must be of the form f(R) = α

√
R+ β, in which α and β are constants [11, 12]. An analytic

expansion reveals that the first term retains the Einstein-Hillbert term with the addition of higher orders in R which
seems to be the payoff in the enterprise of f(R) theory. Any f(R) theory is known to create it’s own source from
the inherent non-linearity of the theory. Beside these, however, additional external sources may be considered (some
examples of f(R) black hole with charge are given in [13–19]), which makes the principal aim of the present paper. We
consider an external static electric field as source and adopt the Reissner-Nordström (RN)-type black hole within f(R)
gravity. Expectedly, the results for necessary conditions for the existence of a RN black hole are more complicated than
the case of a Schwarzschild black hole. In this process we obtain an infinite series representation for the near-horizon
behavior of our metric functions. The exact determination of the constant coefficients in the series is theoretically
possible, at least in the leading orders. The addition of further external sources beside electromagnetism will naturally
make the problem more complicated. An equally simple case is the extremal RN black hole which is also considered
in our study.
The paper is organized as follows. Section II investigates the necessary conditions for the existence of a RN-type

black hole in f(R) gravity. Thermodynamics, and in particular the first law for such black holes are presented in
Section III. Section IV is devoted to an extremal RN-type black hole. The paper is completed with Concluding
Remarks, which appears in Section V.
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II. ANALOG RN BLACK HOLES IN f(R) GRAVITY

The proper action in f(R) gravity coupled minimally with Maxwell source in 4−dimensions is given by

S =

∫ √−g

(

f(R)

2κ
− F

4π

)

d4x (1)

in which f(R) is a real function of the Ricci scalar R, F = 1
4FµνF

µν is the Maxwell invariant and κ = 8πG where
G is the Newton’s constant. Our choice of the spacetime is a RN-type black hole solution whose line element can be
written as

ds2 = −e−2Φ

(

1− 2M

r
+

Q2

r2

)

dt2 +
dr2

(

1− 2M
r

+ Q2

r2

) + r2
(

dθ2 + sin2 θdϕ2
)

, (2)

where M and Q are two real constants which indicate the mass and the charge of the black hole respectively. Also
Φ = Φ (r) is an unknown real function which is well behaved everywhere and dies off at large r. The matter source
which we shall consider in our consideration is a Maxwell electric field whose two-forms is given by

F = E (r) dt ∧ dr (3)

where E (r) is the electric field. Following the line element (2) one finds the dual-Maxwell field as

∗
F = −E (r) eΦr2 sin θdθ ∧ dϕ (4)

and in turn the Maxwell equation

d∗F = 0 (5)

implies

E (r) =
q

r2
e−Φ (6)

in which the integration constant q is to be identified with Q. Varying the action with respect to gµν provides the
field equations

FRµν − 1

2
fgµν −∇µ∇νF + gµν�F = κTµν (7)

where F = df
dR

, �F = 1√−g
∂µ

(√−g∂µ
(

df
dR

))

and ∇ν∇µF = gαν
[

F,µ,α − Γm
µαF,m

]

. We obtain

�F = �
df

dR
=

1√−g
∂r

(√−ggrr∂rF
)

, (8)

∇t∇tF =
1

2
gttgrrgtt,rF

′, (9)

∇r∇rF = grrF ′′ − grrΓr
rrF

′, (10)

∇ϕ∇ϕF = ∇θ∇θF =
1

2
gθθgrrgθθ,rF

′ (11)

in which a prime denotes derivative with respect to r. Also in Eq. (7) the stress-energy tensor T ν
µ reads as

T ν
µ = − 1

4π

(

Fδνµ − FµλF
νλ
)

, (12)
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which after considering the line element (2) and the Maxwell field (3) together with (6), one finds

T ν
µ =

1

8π

Q2

r4
diag [−1,−1, 1, 1] . (13)

We note that another dependent equation is the vanishing trace condition

FR− 2f + 3�F = 0, (14)

which is obtained after knowing T = T µ
µ = 0. The trace equation may be used to simplify the field equations and

therefore Eq. (7) becomes

FRµ
ν − 1

4
δµν (FR−�F )−∇µ∇νF = κT µ

ν . (15)

From the metric given in (2) one finds the event horizon at r = r0 = M +
√

M2 −Q2 or consequently

M =
r20 +Q2

2r0
, (16)

as the ADM mass. Based on the near horizon test introduced in Ref. [11, 12] we expand all the unknown functions
about the horizon. This would lead to the expansions

R (r) = R0 +R′
0 (r − r0) +

1

2
R′′

0 (r − r0)
2
+O

(

(r − r0)
3
)

, (17)

Φ (r) = Φ0 +Φ′
0 (r − r0) +

1

2
Φ′′

0 (r − r0)
2
+O

(

(r − r0)
3
)

, (18)

F = F0 + F ′
0 (r − r0) +

1

2
F ′′
0 (r − r0)

2 +O
(

(r − r0)
3
)

, (19)

in which the sub zero implies the corresponding quantity evaluated at the horizon. After some manipulation, the
field equations would develop as series in different orders of (r − r0) . In the zeroth order one finds two independent
equations

f0r
4
0 − (E0R

′
0 + 3Φ′

0F0) r
3
0 +Q2 (E0R

′
0 + 3Φ′

0F0) r0 + 2Q2 (F0 − 1) = 0, (20)

f0r
4
0 − 2r30E0R

′
0 + 2Q2r0E0R

′
0 − 2Q2 (F0 − 1) = 0, (21)

together with

R0 =
3Φ′

0

(

r20 −Q2
)

r30
. (22)

The first order equations admit another pair of equations

F0R
′
0r

4
0 +

[(

2Φ′2
0 − 5Φ′′

0

)

F0 − 3Φ′
0E0R

′
0 − 3H0R

′2
0 + 4f0 − 3E0R

′′
0

]

r30 − 2 (3E0R
′
0 + 5Φ′

0F0)+ (23)
[(

−2Φ′2
0 + 5Φ′′

0

)

F0 + 3Φ′
0E0R

′
0 + 3H0R

′2
0 + 3E0R

′′
0

]

Q2r0 + 6Q2E0R
′
0 + 4Φ′

0F0Q
2 = 0,

F0R
′
0r

4
0 + 4

(

f0 − E0R
′′
0 −H0R

′2
0 +

1

2
Φ′

0E0R
′
0

)

r30 − 2 (Φ′
0F0 + 3E0R

′
0) r

2
0+ (24)

(

4E0R
′′
0 − 2Φ′

0E0R
′
0 + 4H0R

′2
0

)

Q2r0 + 2Φ′
0F0Q

2 = 0

together with

R′
0 =

(

5Φ′′
0 − 2Φ′2

0

)

r30 − 2Φ′
0r

2
0 +

(

2Q2Φ′2
0 − 5Q2Φ′′

0

)

r0 + 8Q2Φ′
0

r40
. (25)
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In these equations E = d2f
dR2 = dF

dR
and H = d3f

dR3 = dE
dR

and a sub ”0” implies the value at the horizon. From these
equations we find the possible solutions for the unknown coefficients. The following are the results:

Φ = β1ǫ+ β2ǫ
2 + O

(

ǫ3
)

(26)

f = f0 −
1

6

(

f0r
4
0 − 6Q2

) [

2r0
(

r20 −Q2
)

β2
1 + 2

(

r20 − 4Q2
)

β1 − 5r0
(

r20 −Q2
)

β2

]

r40 (r0 (r
2
0 −Q2)β1 −Q2)

ǫ +O
(

ǫ2
)

(27)

F =
f0r

4
0 − 6Q2

6 (β1r0 (r
2
0 −Q2)−Q2)

+
3β1

(

r20 −Q2
) (

r40f0 + 2Q2
)

− 4f0r
3
0Q

2

6 (r20 −Q2) (β1r0 (r
2
0 −Q2)−Q2)

ǫ+O
(

ǫ2
)

, (28)

R =
3β1

(

r20 −Q2
)

r30
− 2r0

(

r20 −Q2
)

β2
1 + 2

(

r20 − 4Q2
)

β1 − 5r0
(

r20 −Q2
)

β2

r40
ǫ+O

(

ǫ2
)

(29)

in which ǫ = r − r0, β1, β2 are constants and

f0 = −6Q2

r30

8r0
(

r20 −Q2
)2

β2
1 − 2

(

r20 −Q2
) (

Q2 + 5r20
)

β1 − 5r0
(

r20 −Q2
)2

β2

16r20 (r
2
0 −Q2)

2
β2
1 + 2r0 (r20 −Q2) (5r20 − 23Q2)β1 + 5r20 (r

2
0 −Q2)

2
β2 + 24Q4

. (30)

Let us note that Φ0 remains unknown, but since it can be absorbed into the redefinition of time it can be set as
Φ0 = 0. What we have here are some complicated relations between the forms of f, F and R in terms of β1 and β2

which are arbitrary. In the zeroth order the conditions on any f(R) can be written as

f |r0 = −6Q2

r30

8r0
(

r20 −Q2
)2

β2
1 − 2

(

r20 −Q2
) (

Q2 + 5r20
)

β1 − 5r0
(

r20 −Q2
)2

β2

16r20 (r
2
0 −Q2)

2
β2
1 + 2r0 (r20 −Q2) (5r20 − 23Q2) β1 + 5r20 (r

2
0 −Q2)

2
β2 + 24Q4

(31)

and

F |r0 =
f0r

4
0 − 6Q2

6 (β1r0 (r
2
0 −Q2)−Q2)

. (32)

A. Examples of f(R) = R and f(R) = R2

For instance, in the case of R gravity we have f0 = R0 and F = 1. The latter yields

(

β1

(

r20 −Q2
))

r0 − 2Q2

2 (β1r0 (r
2
0 −Q2)−Q2)

= 1 (33)

or consequently β1 = 0. Having β1 = 0 implies

f0 = R0 → −6Q2

r30

−5r0
(

r20 −Q2
)2

β2

5r20 (r
2
0 −Q2)

2
β2 + 24Q4

= 0 (34)

which clearly leads to β2 = 0. Therefore f(R) = R satisfies our general conditions with β1 = 0 = β2. Next we test
the case of f(R) = R2 for which the above conditions become

R2
0 = −6Q2

r30

8r0
(

r20 −Q2
)2

β2
1 − 2

(

r20 −Q2
) (

Q2 + 5r20
)

β1 − 5r0
(

r20 −Q2
)2

β2

16r20 (r
2
0 −Q2)

2
β2
1 + 2r0 (r20 −Q2) (5r20 − 23Q2)β1 + 5r20 (r

2
0 −Q2)

2
β2 + 24Q4

(35)

and

2R0 =
R2

0r
4
0 − 6Q2

6 (β1r0 (r
2
0 −Q2)−Q2)

. (36)
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These two conditions admit

β1 =
1

6

4Q+ 2
√

4Q2 − 2r40
r0 (r20 −Q2)

(37)

and

β2 = (38)

−4Q
{

[

Q2
(

20Q2 − 11r40
)

+ 15r20
(

r40 − 2Q2
)]

√

4Q2 − 2r40 +Q
[

20Q2
(

2Q2 − 3r20
)

+ r40
(

r20
(

2r20 + 45
)

− 32Q2
)]

}

45r20 (r
2
0 −Q2)

2
(

2 (r40 −Q2)−Q
√

4Q2 − 2r40

)

which are only acceptable if 4Q2 − 2r40 ≥ 0. Specifically, once the equality holds one has

r40 = 2Q2 (39)

while from (16) we have

r20 − 2Mr0 +Q2 = 0. (40)

These together become

r20 − 2Mr0 +
r40
2

= 0 (41)

or

M = r0 +
1

2
r30 . (42)

Also in this case we find

β1 =
2

3

Q

r0 (r20 −Q2)
, (43)

β2 =
8

45

4r20 − 15

(r20 − 2)
2 (44)

and f0 = R0 = 1 while F0 = 2.
These examples can further be extended to cover more general polynomial forms of f(R) to justify the validity of

our existence conditions, however, we shall be satisfied with an extremal-RN example in the following section.

B. Extremal RN-type black hole

An interesting case which can be considered here is the case for M = Q in (2). This will make the extremal RN-type
black hole with the line element

ds2 = −e−2Φ

(

1− b0

r

)2

dt2 +
dr2

(

1− b0
r

)2 + r2(dθ2 + sin2 θdϕ2) (45)

in which b0 = Q. Taking this into account would lead from the general equations

R = 6
β

r20
ǫ− 6β

r20

(

2β +
5

r0

)

ǫ2 +
β

r20

(

93β2

4
+

71β

r0
+

90

r20

)

ǫ3 +O
(

ǫ4
)

, (46)

f = 6
β

r20
ǫ − 3β

r20

(

3β +
10

r0

)

ǫ2 +
β

r20

(

57β2

4
+

49β

r0
+

90

r20

)

ǫ3 +O
(

ǫ4
)

, (47)
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F =

(

df

dR

)

= 1 + βǫ− β

2

(

β +
2

r0

)

ǫ2 + β

(

3β2

8
+

3β

4r0
+

1

r20

)

ǫ3 +O
(

ǫ4
)

(48)

and

Φ = Φ0 + βǫ− β

8

(

5β +
8

r0

)

ǫ2 + β

(

73β2

120
+

73β

60r0
+

1

r20

)

ǫ3 +O
(

ǫ4
)

(49)

in which β is an arbitrary, non-zero constant and ǫ = (r − r0) . As before, we absorb Φ0 into time. It is remarkable

observe that R is zero at the horizon and so is f, but
(

df
dR

)

= 1. This is an indication that a proper candidate for

such an f(R) is of the form

f (R) = R+ a2R
2 + a3R

3 + a4R
4 + ... (50)

in which the constant coefficients ai can be determined, using above conditions. For instance, if we restrict ourselves

up to the third order we get f (R) ∼ R +
r2
0

12R
2 + r30

(

5
72r0 +

19
108β

)

R3. One can easily check that this form of f(R)

satisfies all the conditions given above up to the second order. Subsequent implication of the results found above is
that f (R) ∼ Rν . Here any ν can not satisfy the conditions without choosing β = 0, which is the case of ν = 1 or GR.
Another example which at least satisfies the above conditions up to first order is f (R) = R

1−R
.

III. THERMODYNAMICS OF THE ANALOG BLACK HOLE

After having the solution one may be curious about the thermodynamical properties of the solution. This is doable
in exact form because of the metric function which is known about the horizon. First of all the horizon will remain
as r = r0 and the Hawking temperature is found by

TH =
∂
∂r
gtt

4π

∣

∣

∣

∣

∣

r=r0

= T
(RN)
H =

1

4πr0

(

1− Q2

r20

)

(51)

in which T
(RN)
H implies RN Hawking temperature. The form of Entropy is given by

S =
A
4G

F

∣

∣

∣

∣

r=r0

= πr20F0 (52)

in which A|r=r0
= 4πr20 is the surface area of the black hole at the horizon and F |r=r0

= F0. We note that TH and
S are both exact. Having TH and S one may find the heat capacity of the black hole

Cq = T

(

∂S

∂T

)

Q

= C(RN)
q I (53)

in which

I = 12Q2
(

r20 −Q2
)

Π (54)

where

Π =

[

5r30
((

r40 −Q4
)

β1 − 4Q2r0
)

β2 + 16r30β
3
1

(

r40 −Q4
)

+ 4Q2r20β
2
1

(

7r20 − 23Q2
)

+
2Q2(24Q4−r0β1(15r40+32r2

0
Q2−59Q4))

(r20−Q2)

]

[

r20 (r
2
0 −Q2)

2 (
5β2 + 16β2

1

)

+ 2r0 (r20 −Q2) (5r20 − 23Q2) β1 + 24Q4
]2

(55)
We comment that I in the RN limit (i.e., βi → 0) becomes unit as expected. Let us note also that the form of
Cq is exact. In order to study the thermodynamics of the extremal solution we use the general results found in the
non-extremal RN type solution. One easily finds that TH = 0, and Cq = 0.
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A. First Law of Thermodynamics

Furthermore, in this section, we would like to show that in general, the above solution also satisfies the first law of
thermodynamics. This is somehow a generalization of what was introduced in Ref. [20] to find a higher dimensional
form of the Misner-Sharp (MS) energy [21] and was used in SSS black hole in f(R) gravity in Ref. [22]. To this end
we rewrite the field equation in the following form

Gν
µ = κ

[

1

F
T ν
µ +

1

κ
Ť ν
µ

]

, (56)

in which Gν
µ is the Einstein tensor,

Ť ν
µ =

1

fR

[

∇ν∇µF −
(

�F − 1

2
f +

1

2
RF

)

δνµ

]

(57)

and for our later convenience we consider

ds2 = −e−2ΦUd2t+
1

U
d2r + r2dΩ2. (58)

In turn, the tt component of the latter field equation would read

G0
0 = κ

[

1

F
T 0
0 +

1

κ

1

F

[

∇0∇0F −
(

�F − 1

2
f +

1

2
RF

)]]

(59)

in which

G0
0 =

U ′r − 1 + U

r2
, (60)

∇0∇0F =
1

2
(−2Φ′U + U ′)F ′ (61)

and �F = 2
3f − 1

3RF. At the horizon (where the MS energy is introduced) U (r0) = 0, which yields G0
0 =

U ′

0
r0−1

r2
0

,

∇0∇0F = 1
2U

′
0F

′
0. A substitution in (40) and calculating everything at the horizon r = r0 yields

F0U
′
0

r0
− F0

r20
= κT 0

0 +

(

1

2
U ′
0F

′
0 −

1

6
(f0 +R0F0)

)

. (62)

Next, we multiply both sides by the spherical volume element at the horizon i.e. dV0 = Adr0 to get

F0U
′
0

r0
Adr0 =

(

F0

r20
+

1

2
U ′
0F

′
0 −

1

6
(f0 +R0F0)

)

Adr0 + κT 0
0 dV0. (63)

Using A
r0

= 1
2

d
dr0

A and some manipulation one finds

U ′
0

4π

d

dr0

(

2πA
κ

F0

)

dr0 =
1

κ

(

F0

r20
+ U ′

0F
′
0 −

1

6
(f0 +R0F0)

)

Adr0 + T 0
0 dV0 (64)

which is nothing but the first law of thermodynamics i.e., TdS = dE + PdV . This is due to the definition which we

have for Hawking temperature T =
U ′

0

4π , entropy of the black hole S = 2πA
κ

F0, the radial pressure P = T r
r = T 0

0 and
the MS energy as

E =
1

κ

∫
(

F0

r20
+ U ′

0F
′
0 −

1

6
(f0 +R0F0)

)

Adr0 (65)

in which the integration constant is set to zero [20, 23–26] (also for a BH-like solutions see [27]). Here we comment that

all quantities are calculated at the horizon and due to this the Hawking temperature becomes T =
(e−2ΦU)

′

4π

∣

∣

∣

∣

r0

=
U ′

0

4π .

The above results imply that, using (65) as MS energy, the first law of thermodynamic is satisfied. Once more we
wish to add that our results are exact.
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IV. CONCLUDING REMARKS

In this paper we have applied the ”near-horizon test” to the Reissner-Nordström (RN)-type black holes in f(R)
gravity. Necessary conditions, not the sufficient ones that a RN-type black hole exists are derived. These are nothing
but the regularity conditions of the metric functions in the vicinity of the event horizon. Our metric ansatz consists
of a general static, spherically symmetric (SSS) case adopted from the Einstein’s general relativity. We considered
also the extremal case as an analog black hole in f(R) gravity and derived the underlying conditions. Due to their
intricacy we didn’t attempt to solve those equations in general. To the zeroth order, however, they can be obtained
exactly while to the first order approximation is also tractable. Our analysis shows that a closed form of f(R) doesn’t
seem possible: With a given source we can determine f(R) implicitly as an infinite series in (r − r0) , since R (r) also
is expressed in similar series. This is against the strategy adapted so far, namely, an explicit form of f(R) is assumed
a priori to be tested whether it fits physical requirements. In our opinion, the ”near-horizon test”, introduced in
[11, 12] and developed here further constitutes a more fundamental test than any other arguments in connection with
black holes. We admit that since our necessary conditions for the existence of RN-type black holes are entirely local
they don’t involve the requirements for asymptotic flatness. Stability of such black holes must also be considered

separately when one considers exact solutions. Our test must naturally be supplemented with d2f
dR2 > 0 and df

dR
> 0,

for stability and no-ghost requirements [28, 29]. We have shown also that the thermodynamic of these analog black
holes can be studied through the Misner-Sharp formalism to verify the validity of the first law. Finally, we remark
that solution for f(R) gravity admitting an electromagnetic field with similar thermodynamics was reported before
[30].
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