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Abstract In the presence of external, linear/nonlinear elec-
tromagnetic fields we integrate f (R) ∼ R +2α

√
R + const.

gravity equations. In contrast to their Einsteinian cousins
the obtained black holes are non-asymptotically flat with a
deficit angle. In proper limits we obtain from our general
solution the global monopole solution in f (R) gravity. The
scale symmetry breaking term adopted as the nonlinear elec-
tromagnetic source adjusts the sign of the mass of the result-
ing black hole to be physical.

1 Introduction

f (R) gravity is a modified version of standard Einstein’s
gravity, which incorporates an arbitrary function of the Ricci
scalar (R) instead of the linear one (see [1] for a recent re-
view). Depending only on the Ricci scalar may sound sim-
pler initially but the pertinent nonlinearity makes it nothing
simpler than Einstein’s gravity with sources. There are both
advantages and disadvantages in adopting such a model.
It contains, for instance, its own source known as the curva-
ture source in the absence of an external matter source. The
identification of physical sources, however, within the non-
linear structure through its equations is not an easy task at
all. For the same reason almost all known solutions, except
very few, result in nonanalytical (i.e. numerical) expressions
for the function f (R). Starting from a known function of
f (R) a priori is an alternative approach which hosts its own
shortcoming from the outset. Keeping a set of free parame-
ters fixed by observational data can be employed in favor of
f (R) gravity to explain a number of cosmological phenom-
ena. First of all, to be on the safe side along with the suc-
cesses of general relativity most researchers prefer an ansatz
of the form f (R) = R + αg(R), so that with α → 0 one re-
covers the Einstein limit. The struggle now is for the new
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function g(R) whose equations are not easier than those sat-
isfied by f (R) itself. Without seeking resort to this latter
(and easier) route we have shown recently that f (R) = √

R

gravity admits an exact solution in 6-dimensional spacetime
with the external Yang–Mills field [2, 3]. Without demand-
ing an analytical representation for f (R), as a matter of
fact, exact solutions are available in all dimensions with the
Yang–Mills source. Similar results may be investigated with
other sources such as the Maxwell fields. This will be our
strategy in the present Letter.

We assume f (R) = ξ(R + R1) + 2α
√

R + R0, in which
ξ, α, R0 and R1 are constants, a priori to secure the Ein-
stein limit by setting the constants R0 = R1 = α = 0 and
ξ = 1. This extends a previous study without sources [4–6]
to the case with sources. Why the square-root term in the
Lagrangian? It will be shown that for R0 = R1 = 0 and
without external sources such a choice of square-root La-
grangian gives the curvature energy-momentum tensor com-
ponents as T t

t = T r
r , T θ

θ = T
ϕ
ϕ = 0, which signify a global

monopole [7–11]. A global monopole which arises from
spontaneous breaking of gauge symmetry is the minimal
structure that yields non-zero curvature even with zero mass.
We test the analogous concept in f (R) gravity to obtain
similar structures. Unlike the case of [2, 3] our concern
here will be restricted to the 4-dimensional spacetime. As
source, we take electromagnetic fields, both from the lin-
ear (Maxwell) and the nonlinear theories. For the linear
Maxwell source we obtain a black hole solution with elec-
tric charge (Q) and magnetic charge (P ) reminiscent of the
Reissner–Nordström (RN) solution with different asymp-
totic behaviors. That is, our spacetime is non-asymptotically
flat with a deficit angle. For the nonlinear, pure electric
source we choose the standard Maxwell invariant super-
posed with the square-root invariant, i.e. the Lagrangian is
given by L(F ) ∼ F + 2β

√−F , where F = 1
4FμνF

μν is the
Maxwell invariant and β is a coupling constant. This par-
ticular choice has the feature that it breaks scale invariance
[12, 13], and gives a linear electric potential which plays a
role in quark confinement [14, 15]. We find that the scale
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breaking parameter β modifies the mass of the black hole.
For this reason Lagrangians supplemented by a square-root
Maxwell Lagrangian may find room of applications in black
hole physics.

2 f (R) gravity coupled with Maxwell field

The action for f (R) gravity coupled with Maxwell field in
four dimensions is given by

S =
∫

d4x
√−g

[
f (R)

2κ
− 1

4π
F

]
(1)

in which f (R) is a real function of the Ricci scalar R and
F = 1

4FμνF
μν is the Maxwell invariant. (We choose κ = 8π

and G = 1.) The Maxwell two-form is chosen to be

F = Q

r2
dt ∧ dr + P sin θ dθ ∧ dφ (2)

in which Q and P are the electric and magnetic charges,
respectively. Our static spherically symmetric metric ansatz
is

ds2 = −A(r) dt2 + dr2

A(r)
+ r2(dθ2 + sin2 θ dφ2) (3)

where A(r) stands for the only metric function to be found.
The Maxwell equations (i.e. dF = 0 = d∗F) are satisfied
and the field equations are given by

fRRν
μ +

(
�fR − 1

2
f

)
δν
μ − ∇ν∇μfR = κT ν

μ (4)

in which

fR = df (R)

dR
, (5)

�fR = 1√−g
∂μ

(√−g∂μ
)
fR, (6)

∇ν∇μfR = gαν
[
(fR),μ,α − Γ m

μα(fR),m
]
, (7)

while the energy-momentum tensor is

4πT ν
μ = −Fδν

μ + FμλF
νλ. (8)

Furthermore, the trace of the field equation (4) reads

fRR + (d − 1)�fR − d

2
f = κT (9)

with T = T
μ
μ . The non-zero energy-momentum tensor com-

ponents are

T ν
μ = P 2 + Q2

8πr4
diag[−1,−1,1,1] (10)

with zero trace and consequently

f = 1

2
fRR + 3�fR. (11)

One finds

R = − r2A′′ + 4rA′ + 2(A − 1)

r2
, (12)

Rt
t = Rr

r = −1

2

rA′′ + 2A′

r
, (13)

Rθ
θ = R

φ
φ = − rA′ + A − 1

r2
, (14)

in which a prime denotes derivative with respect to r . Over-
all, the field equations read now

fR

(
−1

2

rA′′ + 2A′

r

)
+

(
�fR − 1

2
f

)
− ∇ t∇t fR = κT 0

0 ,

(15)

fR

(
−1

2

rA′′ + 2A′

r

)
+

(
�fR − 1

2
f

)
− ∇r∇rfR = κT 1

1 ,

(16)

fR

(
− rA′ + (A − 1)

r2

)
+

(
�fR − 1

2
f

)
− ∇θ∇θfR = κT 2

2 .

(17)

Herein

�fR = A′f ′
R + Af ′′

R + 2

r
Af ′

R, ∇ t∇t fR = 1

2
A′f ′

R,

∇r∇rfR = Af ′′
R + 1

2
A′f ′

R,

∇φ∇φfR = ∇θ∇θfR = A

r
f ′

R

(18)

and for the details we refer to [2, 3]. The t t and rr compo-
nents of the field equations imply

∇r∇rfR = ∇ t∇t fR (19)

or equivalently

f ′′
R = 0. (20)

This leads to the solution

fR = ξ + ηr (21)

where ξ and η are two positive constants [16–20]. The other
field equations become

fR

(
−1

2

rA′′ + 2A′

r

)
+ 1

2
ηA′ + 2

r
Aη − 1

2
f = κT 0

0 , (22)

fR

(
− rA′ + (A − 1)

r2

)
+ A′η + 1

r
Aη − 1

2
f = κT 2

2 . (23)
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Now, we make the choice

f (R) = ξ

(
R + 1

2
R0

)
+ 2α

√
R + R0 (24)

which leads to

R = α2

η2r2
− R0 (25)

where α, R0 and ξ (from (21)) are constants. As a result one
obtains for f (r)

f = ξα2

η2r2
+ 2α2

ηr
− 1

2
ξR0 (26)

and from (12) we have

− r2A′′ + 4rA′ + 2(A − 1)

r2
= α2

η2r2
− R0. (27)

This equation admits a solution for the metric function given
by

A(r) = 1 − α2

2η2
+ C1

r
+ C2

r2
+ 1

12
R0r

2. (28)

Herein the two integration constants C1 and C2 are identi-
fied through the other field equations (22) and (23) as

C1 = ξ

3η
and C2 = (Q2 + P 2)

ξ
, (29)

while for the free parameters we have α = η > 0. Finally the
metric function becomes

A(r) = 1

2
− m

r
+ q2

r2
− Λeff

3
r2 (30)

where m = − ξ
3η

< 0, Λeff = −R0
4 and q2 = (Q2+P 2)

ξ
. The

choice of the free parameters in terms of each other pre-
vents us from obtaining the general relativity limit, namely
the Reissner–Nordström (RN)–de Sitter (dS) solution. It
is observed that the parameter ξ acts as a scale factor
for mass and charge and for the case ξ = 1 and Q =
P = 0 the solution reduces to the known solution given by
[4–6, 21, 22]. The properties of this solution can be sum-
marized as follows: The mass term has the opposite sign to
that of Schwarzschild and the solution is not asymptotically
flat, giving rise to a deficit angle. The latter property is rem-
iniscent of a global monopole term with a fixed charge. To
see the case of a global monopole we set R0 = 0 = q2 (i.e.
zero external charges and zero cosmological constant) and
find the energy-momentum components. This reveals that
the non-zero components are T t

t = T r
r = − 1

2r2 , which iden-
tifies a global monopole [7–11]. The solution (30) can there-
fore be interpreted as an Einstein–Maxwell plus a global

monopole solution in f (R) gravity. The area of a sphere of
radius r (for q2 = R0 = 0) is not 4πr2 but 2πr2. Further, it
can be shown easily that the surface θ = π

2 has the geome-
try of a cone with a deficit angle Δ = π

2 [7–11]. It can also
be anticipated that a global monopole modifies perihelion of
circular orbits, light bending and other physical properties.
Although in the linear Maxwell theory the sign of mass is
opposite, in the next section we shall show that this can be
overcome by going to the nonlinear electrodynamics with
a square-root Lagrangian. Another aspect of the solution is
that since fR > 0 we have no ghost states.

3 f (R) gravity coupled with nonlinear
electromagnetism

3.1 Solution within nonlinear electrodynamics

In this section we use an extended model for the Maxwell
Lagrangian given by the action

S =
∫

d4x
√−g

[
f (R)

2κ
+ L(F )

]
(31)

where f (R) = ξ(R + R1) + 2α
√

R + R0, in which R1 and
R0 are constants to be found while

L(F ) = − 1

4π

(
F + 2β

√−F
)
. (32)

Here β is a free parameter such that limβ→0 L(F ) = − 1
4π

F ,
which is the linear Maxwell Lagrangian. The main rea-
son for adding this term is to break the scale invariance
and create a mass term [7–11]. The normal Maxwell ac-
tion is known to be invariant under the scale transformation,
x → λx, Aμ → 1

λ
Aμ (λ = const.), while

√−F violates this
rule. We shall show how a similar term modifies the mass
term in f (R) gravity. Our choice of the Maxwell 2-form is
written as

F = E(r) dt ∧ dr (33)

and the spherical line element as (3). The nonlinear Maxwell
equation reads

d

(
�F

∂L
∂F

)
= 0 (34)

which yields the solution

E(r) = √
2β + Q

r2
(35)

with a confining electric potential as V (r) = −√
2βr + Q

r
.

This is known as the “Cornell potential” for quark con-
finement in quantum chromodynamics (QCD) [14, 15]. The
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Einstein equations imply the same equations as (4)–(7) and
the energy-momentum tensor

T ν
μ = L(F )δν

μ − FμλF
νλ ∂L

∂F

= F

4π
diag

[
1,1,

2β√−F
− 1,

2β√−F
− 1

]
, (36)

with the additional condition that the trace T
μ
μ = T 	= 0,

here. Upon substitution into the field equations one gets

R1 = 4β2

ξ
+ 1

2
R0, (37)

α = η (38)

and a black hole solution results with the metric function

A(r) = 1

2
− 4

√
2βQ − ξ

3ηr
+ Q2

ξr2
+ R0

12
r2. (39)

This is equivalent to the solution given in (30) with the same

Λeff but with the new m = 4
√

2βQ−ξ
3η

and q = Q2

ξ
. This is

how the scale breaking term in the Lagrangian modifies the
mass.

For the sake of completeness we comment here that,
choosing a magnetic ansatz for the field two-form as

F = P sin θ dθ ∧ dϕ (40)

together with a nonlinear Maxwell Lagrangian

L(F ) = − 1

4π

(
F + 2β

√
F

)
(41)

and

R1 = 1

2
R0 (42)

admits the magnetic version of the solution as

A(r) = 1

2
− 4

√
2βP − ξ

3ηr
+ P 2

ξr2
+ R0

12
r2. (43)

The magnetic solution, however, is not as interesting as the
electric one.

3.2 Thermodynamical aspects

The solution we found in the previous section is feasible
as far as a physical solution is concerned. Here we set our
parameters, including the condition ξ and η positive, to get
4
√

2βQ − ξ > 0 such that the solution admits a black hole
solution with positive mass as

A(r) = 1

2
− m

r
+ q2

r2
+ R0

12
r2. (44)

Now we wish to discuss some of the thermodynamical
properties by using the Misner–Sharp [2, 3, 23–29] energy
to show that the first law of thermodynamics is satisfied. To
do so first we set R0 = 0 and introduce the possible event
horizon as r = rh such that A(rh) = 0. This yields

r± = m ±
√

m2 − 2q2

(rh = r+)

(45)

in which

A(r) = (r − r−)(r − r+)

2r2
(46)

and the constraint m ≥ mcri is imposed with mcrit = √
2q . If

one sets Q > 0, this condition is satisfied if Q >
ξ√

2(4β+ 3√
ξη

)

(provided 4β + 3√
ξη

	= 0). The choice m = mcrit leads to the
extremal black hole. The Hawking temperature is defined as

TH = A′(r+)

4π
= r2+ − 2q2

8πr3+
(47)

and the entropy [30]

S = A+
4G

fR|r=r+ (48)

with A+ = 4πr2+, the surface area of the black hole at the
horizon. The heat capacity of the black hole also is given by

Cq = T

(
dS

dT

)
q

= −2

3

r2+π(2q2 − r2+)(12q4 + 4q2r2+ + r4+)

(2q2 + r2+)2(6q2 − r2+)
, (49)

which takes both (+) and (−) values. Both the vanish-
ing/diverging Cq values indicate special points at which the
system attains thermodynamical phase changes.

The first law of thermodynamics can be written as

T dS − dE = P dV (50)

in which

dE = 1

2κ

[
2

r2
h

fR + (f − RfR)

]
A+ dr+ (51)

with E the Misner–Sharp energy and T = A′
4π

the Hawking

temperature. Further, S = A+
4 fR stands for the black hole

entropy, p = T r
r = T 0

0 is the radial pressure of matter fields
at the horizon and finally the change of volume of the black
hole at the horizon is given by dV = A+ dr+. One can eas-
ily show that the first law in thermodynamics in the form
introduced above is satisfied.
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4 Conclusion

Exact solutions for the nowadays popular, modified grav-
ity model known as f (R) gravity with external sources (i.e.
T matter

μν 	= 0) are rare in the literature. We attempt to fill this
vacuum partially by considering external electromagnetic
fields (both linear and nonlinear) in f (R) gravity with the
ansatz f (R) = ξ(R + R1) + 2α

√
R + R0. In this choice R0

is a constant related to the cosmological constant, the con-
stant R1 is related to R0 while α is the coupling constant
for the correction term. This covers both the cases of linear
Maxwell and a special case of power-law nonlinear elec-
tromagnetism. The non-asymptotically flat black hole so-
lution obtained for the Maxwell source is naturally differ-
ent and has no limit as the RN black hole solution. In the
limit of Q = P = Λeff = 0 we obtain the metric for a global
monopole in f (R) gravity. Our solution can appropriately
be interpreted as a global monopole solution in the pres-
ence of the electromagnetic fields. The thermodynamical
properties of our black hole solution is analyzed by making
use of the Misner–Sharp formalism and shown to obey the
first law. As the nonlinear electromagnetic Lagrangian we
choose the normal Maxwell, supplemented with the square-
root Maxwell invariant which amounts to a linear electric
field. This latter form is known to break scale invariance
yielding a linear potential which is believed to play role in
quark confinement problem. Within f (R) gravity the pres-
ence of a scale breaking term modifies the mass of the result-
ing black hole. The advantage of employing a square-root
Maxwell Lagrangian as a nonlinear correction can be stated
as follows: Besides confinement in the linear Maxwell case
we have in f (R) gravity an opposite mass term while with
the coupling of the square-root Maxwell Lagrangian we can
rectify the sign of this term.
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