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A regular class of static, cylindrically symmetric pure magnetic field metrics is rederived in a
different metric ansatz in all dimensions. Radial, time dependent perturbations show that for
dimensions d > 3 such spacetimes are stable at both near r ≈ 0 and large radius r → ∞. In a different
gauge these stability analysis and similar results were known beforehand. For d = 3, however,
simultaneous stability requirement at both, near and far radial distances can not be reconciled
for time - dependent perturbations. Restricted, numerical geodesics for neutral particles reveal a
confinement around the center in the polar plane. Charged, time-like geodesics for d = 4 on the
other hand are shown numerically to run toward infinity.

I. INTRODUCTION

In 4−dimensional spacetimes the electric - magnetic duality symmetry of the Maxwell equations is an important
property which can not be satisfied in other dimensions unless different form fields other than 2−forms are introduced.
For this reason a dyonic solution admits a meaningful interpretation only in d = 4. The Reissner - Nordestrom (RN)
solution constitutes in this regard the best example which has both electric and magnetic solutions in a symmetric
manner. In other dimensions ( d 6= 4 ) similar duality properties can, in principle, be defined as well but physical
interpretation corresponding to electric and magnetic fields turn out to be rather abstract. For such reasons, in order
to avoid complications due to the absence of a tangible duality, pure electric or pure magnetic solutions seemed to
attract considerable attention. This amounts to only half of the Maxwell equations, the other half being trivially
satisfied. From this token we wish to resort here to the pure magnetic solutions which yield a completely solvable
class without much effort. From the physical side, occurrence of pure and very strong magnetic fields associated with
astronomical objects such as magnetars motivate us to search for such solutions in general relativity.
It was Melvin, who first studied such cylindrically symmetric parallel magnetic lines of force remaining in equilibrium

under their mutual gravitational attraction in d = 4[1]. Later on, generalized version of the Melvin’s magnetic universe
was also considered[2]. The Melvin universe is invariant under rotation and translation along the zi axis orthogonal to
the polar plane (r, ϕ). Thorne popularized the Melvin universe further by showing its absolute stability against small
radial perturbations[3]. Due to this stability property it can be presumed that astrophysical objects emitting strong
beams of magnetic fields may everlast in an accelerating universe. Additionally, in d = 3 [4] and 5 dimensional [5]
cases also pure magnetic field solutions were found and their energy content investigated [6]. Pure magnetic solutions
in higher dimensions are also known to exist in string, Lovelock, Yang-Mills, Born-Infeld and other theories [7].
In this paper, we present in a particular cylindrically symmetric metric ansatz, a class of non-singular, source-free,

static, pure magnetic solutions to Einstein-Maxwell (EM) equations in all dimensions. In a different metric ansatz
these solutions were known previously [4, 8]. Our principal aim is to investigate the stability of such magnetic universes
against time dependent small radial perturbations and explore the possible role of dimensionality of spacetime in such
matters. It has been known for a long time that for d > 3 these kind of magnetic solutions are all stable [8] . We verify
these results once more in a different metric (i.e. non canonical) ansatz with supplement of the d = 3 case.. We show
that for d > 3 the metrics are stable against small perturbations at both near axis zi and at far distance away from
zi. We observe also that when d = 3 these two regions behave differently. Namely, the metric can be made stable at
r ≈ 0 or, at r → ∞, but not simultaneously, which we phrase as ’weakly’ stable. The solutions justify once more the
impossibility of cylindrical magnetic field lines implosion and therefore formation of such black holes. We investigate
the time-like ( d ≥ 4,with fixed polar angle) and null ( d = 3, 4 ) geodesics for neutral particles numerically. Only for
d = 4 and 5 we were able to obtain exact integrals, albeit in non-invertible forms, of the geodesics equation. In each
case a confinement of geodesics is observed to take place near the central region. Due to its physical importance we
consider also the time-like geodesics of a charged particle. It turns out that such geodesics can not be confined and
in their proper time they diverge to infinity.
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Organization of the paper is as follows. In Section II we present our metric, field equations and solve them in
d−dimensions. Perturbation analysis of our system follows in Section III. Geodesics motion is studied in Section IV.
Our results are summarized in Conclusion which appears in Section V.

II. METRIC AND SOLUTIONS OF FIELD EQUATIONS IN d−DIMENSIONS

Our d−dimensional static, cylindrically symmetric line element ansatz is given by

ds2 = f (r)

(

dt2 − dr2 −
d−3
∑

i=1

dz2i

)

− r2b20

f (r)
k
dϕ2, d ≥ 3 (1)

in which f (r) is a function of r to be found and b0 and k are constant parameters. Also the pure magnetic 2−form
field is chosen to be

F =Frϕdr ∧ dϕ, (2)

where Frϕ is the only non-zero component of the electromagnetic field. The energy momentum tensor is defined by

4πT j
i = −FikF

jk +
1

4
δjiFmnF

mn (3)

which admits the non-zero components

T j
i = diag

[

T 0
0 = T 2

2 = T 3
3 = · · · = −T 1

1 = −T d−1
d−1

]

=
1

8π
FrϕF

rϕ. (4)

We note that our choice of indices {0, 1, 2, . . . , (d− 1)} denote {t, r, z1, · · · , zd−3, ϕ} and the energy conditions satisfied

by this energy-momentum tensor are discussed in the Appendix A. From the Einstein equations, T j
i = Gj

i Eq. (4)
implies that

G0
0 = G2

2 = G3
3 = · · · = −G1

1 = −Gd−1
d−1. (5)

From these relations we can write

G1
1 = Gd−1

d−1 (6)

G1
1 = −G0

0 (7)

G0
0 = −Gd−1

d−1 (8)

where

G0
0 =

1

4f3r

[

2ff ′′r (k − (d− 3)) + rf´2
(

−k2 + (d− 6)k − (d− 8)
(d− 3)

2

)

+ 2f f́ (2k − (d− 4))

]

(9)

G1
1 =

1

4f3r

[

rf´2
(

(d− 2) k − (d− 2)
(d− 3)

2

)

− 2f f́ (d− 2)

]

(10)

Gd−1
d−1 =

1

4f3r

[

−2ff ′′r (d− 2)− rf ´2

(

(d− 2)
(d− 7)

2

)]

. (11)

From equation (6) we obtain the differential equation

2rf ′′f + (k − 2)rf́ 2 − 2f f́ = 0. (12)

whose solution for d ≥ 4 is

f(r) = (kr2 + C1)
2
k . (13)
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By putting this result into Eq. (7) for finding k we find out that for d ≥ 4, k is d− 3. On the other hand, for d = 3
the solution turns out to be

f(r) = C2e
cr2 (14)

for the integration constants C2 and c. For convenience we make the choices C1 = d − 3 and C2 = 1, so that the
solution can be expressed by

f(r) =

{

(d− 3)
2

d−3 (r2 + 1)
2

d−3 d ≥ 4

ecr
2

d = 3
. (15)

Accordingly, our line element takes the form

ds2 =







(d− 3)
2

d−3 (r2 + 1)
2

d−3

(

dt2 − dr2 −
d−3
∑

i=1

dz2i

)

− r2b20
(d−3)2(r2+1)2 dϕ

2, d ≥ 4

ecr
2 (

dt2 − dr2
)

− r2b20dϕ
2, d = 3

. (16)

We note that these solutions are not new, for they coincide with those of [8] (for d ≥ 4) and [4] for (d = 3), respectively.
It can easily be seen that for r → 0 it reduces to the following form

ds2 ≈







(d− 3)
2

d−3 (dt2 − dr2 −
d−3
∑

i=1

dz2i )−
r2b20

(d−3)2 dϕ
2, d ≥ 4

(dt2 − dr2)− r2b20dϕ
2, d = 3

(17)

This represents a conical geometry signalling the existence of a cosmic string near r = 0. By choosing
b20

(d−3)2 = 1 for

d ≥ 4 and b0 = 1 for d = 3 , we have Minkowskian metrics as one approaches the axes zi. The solution (16) is a
singularity free magnetic universe in d− dimensions in analogy with the Melvin space time.
From Maxwell’s Eq. it fallows that

F rϕ =

{

B0

(d−3)
2

d−3 rb0(1+r2)
2

d−3
, d ≥ 4

B0

rb0
e−cr2, d = 3

(18)

(B0 = an integration constant)

which implies that the magnetic field behaviors as a function of r are

Frϕ ∼
{

r
(1+r2)2 d ≥ 4

r d = 3
.

The marked distinction between d = 3 and d ≥ 4 cases can already be seen from these behaviors. Accordingly the
energy density reads

T 0
0 =







B2
0

8π(d−3)
2d−4
d−3 (1+r2)

2d−4
d−3

d ≥ 4

B2
0

8π e
−cr2 d = 3

(19)

while the Ricci scalar for the metric (16) is

R =











−4(d−4)(d−3)

1−d

d−3

(1+r2)
2(d−2)
d−3

d ≥ 4

2ce−cr2 d = 3

. (20)

Similarly, the Kretchmann scalar has the behavior

K ∼
{ 1

(d−3)
4(d−2)
d−3 (1+r2)

4(d−2)
d−3

d ≥ 4

12c2e−2cr2 d = 3
. (21)

It is observed that regularity at r → ∞ dictates us to make the choice c > 0 for the integration constant.



4

III. PERTURBATION ANALYSIS

In this section we perturb the metric and magnetic potential. Since the case d = 3 forms a special case we consider
it separately. Similar analysis was carried out by Gibbons and Wiltshire [8] where they used the canonical metric
ansatz. We shall show below that their results can also be obtained in a different metric ansatz.

1. The case for d = 3

Our line element is

ds2 = f(r, t)
(

dt2 − dr2
)

− r2b20
g(r, t)

dϕ2 (22)

where

f(r, t) = f0(r) + ǫu(r, t) (23)

g(r, t) = g0(r) + ǫw(r, t)

and the magnetic potential is expressed by

Aϕ(r, t) = Aϕ(r) + ǫa(r, t). (24)

The unperturbed functions are

f0(r) = ecr
2

(25)

g0(r) = 1 (26)

Aϕ(r) =
B0b0r

2

2
(27)

where u (r, t) , w (r, t) and a (r, t) are the perturbed functions. Since ǫ is a small parameter we assume that ǫ2 ≈ 0 in
our analysis. We use Einstein’s equations to find the perturbed functions. The differential equations satisfied by the
perturbed functions are

(

cr2
∂w(r, t)

∂r
− r

∂2w(r, t)

∂t2

)

ecr
2

+ b0

[

r
∂2u(r, t)

∂r2
− r

∂2u(r, t)

∂t2
− 4r2c

∂u(r, t)

∂r
+ 4r3c2u(r, t)− ∂u(r, t)

∂r

]

= 0 (28)

r
∂2w(r, t)

∂r2
+ 2

∂w(r, t)

∂r
− r

∂2w(r, t)

∂t2
= 0 (29)

− ∂2a(r, t)

∂t2
+

∂2a(r, t)

∂r2
− 1

r

∂a(r, t)

∂r
+

B0b0r

2

∂w(r, t)

∂r
= 0. (30)

This system of differential equations admits the solutions

u(r, t) = e−αt+cr2
(

4rB0

b0
[B1I1(αr) +B2K1(αr)] + (31)

cre(−αr−α)
{

−(sinhαr + coshαr)(E1 + E2)e
2αr + e2α(sinhαr − coshαr)(−E1 + E2)

}

+

{(crE2 − αE1) coshαr + (crE1 − αE2) sinhαr})

w(r, t) = e−αt(E1
sinhαr

r
+ E2

coshαr

r
) (32)
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a(r, t) = re−αt (B1I1(αr) +B2K1(αr)− (33)

B0b0
4

e−αr−α
{

(sinhαr + coshαr)(E1 + E2)e
2αr + e2α(sinhαr − coshαr)(−E1 + E2)

}

)

,

where B1, B2, E1, E2 and α are all integration constants while I1(αr) and K1(αr) are the modified Bessel functions
of order one. At all times t, to a first order in ǫ , the locally flat nature of the metric near r = 0 will not be altered
[1]. This implies when r → 0

u(r, t) = e−αt+cr2
(

4rB0

b0
B2K1 (αr) − crE1e

−αr−α
{

(sinhαr + coshαr)e2rα + e2α(sinhαr − coshαr)
}

(34)

+E1 {cr sinhαr − α coshαr}) ,

w(r, t) = e−αtE1
sinhαr

r
, (35)

a(r, t) = re−αt

(

B2K1(αr)−
b0B0

4
E1e

−αr−α
{

(sinhα+ coshα)e2αr − e2α(sinhα− coshα)
}

)

. (36)

It is seen that we can choose B1 = 0 and E2 = 0 to have finite limit when r → 0. However, for r → ∞ it can

be checked that w(r, t) diverges and since g0(r) = 1 this implies that the ratio of w(r,t)
g0(r)

grows indefinitely. No other

choice of constants suffice to eliminate this divergence. As a result the perturbation converges for r → 0 but diverges
for r → ∞ in d = 3 case. Let us note that for the time - independent perturbation both, near and far - region
perturbation terms become convergent.

2. The case for d = 5 and d > 5

Our perturbed line element now for d = 5 is of the form

ds2 = f(r, t)
(

dt2 − dr2 − dx2 − dy2
)

− r2b20
g(r, t)

dϕ2 (37)

From Eq. (23) and (24) we introduce in analogy, the perturbed functions in which the unperturbed functions are
given by

f0(r) = 2(r2 + 1) (38)

g0(r) = 4(r2 + 1)2 (39)

Aϕ(r) = −B0b0
8

1

(r2 + 1)
(40)

From the Einstein’s equations we obtain to the first order in ǫ the following differential equations for u(r, t) and w(r, t)

r
∂2u (r, t)

∂r2
− ∂u(r, t)

∂r
− ru(r, t) = 0 (41)

2(r2 + 1)
∂2u(r, t)

∂t2
− 1

2

∂2w(r, t)

∂t2
= 0 (42)

Integration of these equations yield

u(r, t) = e−αt [r(pI1(αr) + qK1(αr))] (43)

w(r, t) = 4e−αt [r(pI1(αr) + qK1(αr))] (r
2 + 1) (44)
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for integration constants p, q and α, and I1(αr) and K1(αr) are the modified Bessel functions of order one. At all
times t, to a first order in ǫ , the locally flat nature of the metric near r = 0 remains intact. Also, for all times to
a first order in ǫ , the static metric for r → ∞ will not be altered. In this case we see that perturbed functions are
finite at r = 0, and when r → ∞ they go to zero.
A similar analysis has been carried out for d = 6, 7, ... so that we found the general solution for the metric functions.

In each case we have obtained the following relations between w (r, t) and u (r, t)

w (r, t) = (d− 3)
g0 (r)

f0 (r)
u (r, t) (45)

f0 (r) = (d− 3)
2

d−3 (r2 + 1)
2

d−3 (46)

g0 (r) = (d− 3)2(r2 + 1)2. (47)

Solutions for w (r, t) and u (r, t) are given in all dimensions as follow

w (r, t) = (d− 3)
3d−11
d−3 (r2 + 1)

2d−8
d−3 u (r, t) , (48)

u (r, t) = e−αt (d− 3)
d−1
d−3 (pI1 (αr) + qK1 (αr))

r

(r2 + 1)
d−5
d−3

, (49)

in which p and q are constants. These are both finite at r → 0 and the ratio of them when r → ∞ go to zero.
Now, from Maxwell’s equations we attempt to find the perturbative solution for the magnetic potential. We take the
potential in the form

Aϕ(r, t) = Aϕ(r) + ǫa(r, t)

where

Aϕ(r) = − B0b0
2(d− 3)2

1

(r2 + 1)
. (50)

The differential equation satisfied by a (r, t) becomes

− ∂2a (r, t)

∂t2
+

∂2a (r, t)

∂r2
+

(

3r2 − 1
)

r (r2 + 1)

∂a (r, t)

∂r
+

b0B0r

(d− 3)
d−1
d−3 (r2 + 1)2

d

dr

[

u (r, t)

(r2 + 1)
2

d−3

]

= 0 (51)

in which

u (r, t) = e−αt (d− 3)
d−1
d−3 (pI1 (αr) + qK1 (αr))

r

(r2 + 1)
d−5
d−3

. (52)

Upon substitution for u (r, t) we see that for all dimensions the equation satisfied by a (r, t) takes the form

− ∂2a (r, t)

∂t2
+

∂2a (r, t)

∂r2
+

(

3r2 − 1
)

r (r2 + 1)

∂a (r, t)

∂r
+

b0B0re
−αt

(r2 + 1)2
d

dr

[ r
(r2+1)

(pI1 (αr) + qK1 (αr))
]

= 0. (53)

An exact solution for a (r, t) for all r is not at our disposal, therefore, we shall search for solutions near r = 0 and for
r → ∞. The solution for the homogenous part is

aH (r, t) =
re−αt

(r2+1)
(C1I1 (αr) + C2K1 (αr)) . (54)

Since a particular solution is not available we proceed to study the answers for a limited case, when r is small (to
order r)
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−∂2a (r, t)

∂t2
+

∂2a (r, t)

∂r2
− 1

r

∂a (r, t)

∂r
= 0, (55)

a (r, t) = e−αtr (C1I1 (αr) + C2K1 (αr)) .

If we go to higher orders of r, (order r3 for instance) we obtain

− ∂2a (r, t)

∂t2
+

∂2a (r, t)

∂r2
+

[

4r − 1

r

]

∂a (r, t)

∂r
+ b0B0r

2

{

−pα

(

− ln

(

1

2
α

)

− ln r − γ

)

+ pα− 2q

α

}

= 0 (56)

whose solution can be expressed as

a (r, t) = e−r2−αt

{

C3Whitta kerM(−1

8
α2,

1

2
, 2r2) + C4Whitta kerM(−1

8
α2,

1

2
, 2r2)

}

− B0b0e
−αt

α (−8 + α2)
2 (Ξ + Π) (57)

in which

Ξ = −α2r2q
(

−8 + α2
)

lnα− α2r2q
(

−8 + α2
)

ln r + [q (ln 2− γ)− p]α4r2,

Π =
([

(8γ − 2− 8 ln 2) r2 − 2
]

q + 8r2p
)

α2 + 16q − 16r2q.

Here p, q, C3, C4, α and γ are all constants and WhittakerM
(

− 1
8α

2, 1
2 , 2r

2
)

stands for the Whittaker function[9]. For
r → 0 the function a (r, t) is finite. Now, to see the case when r goes to infinity we solve the differential equation

− ∂2a (r, t)

∂t2
+

∂2a (r, t)

∂r2
= 0, (to order 1/r) (58)

whose solution reads

a (r, t) = e−αt
(

C5e
αr + C6e

−αr
)

. (59)

Here C5 and C6 are new integration constants. It can easily be checked that the ratio of this solution goes to zero for
r → ∞ if we choose C5 = 0.

IV. GEODESIC MOTION

In this section we shall investigate the time-like (for d ≥ 4) and null (for d = 3, 4) geodesics by employing our line
element given in Eq. (15). For d ≥ 4 we divide the line element by dτ (τ is proper time) and for d = 3 by dλ (λ is an
affine parameter) so that the Lagrangian can be expressed in the form

L =











(d− 3)
2

d−3 (r2 + 1)
2

d−3

[

(

dt
dτ

)2 −
(

dr
dτ

)2 −
d−3
∑

i=1

(

dzi
dτ

)2
]

− r2b20
(d−3)2(r2+1)2

(

dϕ
dτ

)2

, d ≥ 4

ecr
2
[

(

dt
dλ

)2 −
(

dr
dλ

)2
]

− r2b20

(

dϕ
dλ

)2

, d = 3

. (60)

For the equations of motion with constant azimuthal angle (ϕ =constant for d ≥ 4) and null geodesics for d = 3 we
obtain























dt
dτ

= d0

(d−3)
2

d−3 (r2+1)
2

d−3

dzi
dτ

= di

(d−3)
2

d−3 (r2+1)
2

d−3

d ≥ 4

dt
dλ

= H0e
−cr2

dϕ
dλ

= H1

r2b20

d = 3

(61)
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in which d0 , di, H0 and H1 are all constants of integration. From the metric condition we find dr
dτ

(for d ≥ 4, ϕ =

constant) and dr
dλ

(for d = 3) as follow



































dr
dτ

= ± 1

(d−3)
2

d−3 (r2+1)
2

d−3

√

a20 − (d− 3)
2

d−3 (r2 + 1)
2

d−3

a20 = d20 −
d−3
∑

i=1

d2i

d ≥ 4

dr
dλ

= ±H0e
−cr2

√

1− H2
2

r2
ecr2

H2 = H1

H0b0

d = 3

(62)

In effect, we obtain for d = 4 the relation between r and τ but for d = 3 we want to find the relation between r and
ϕ.















± (τ − τ0) = (d− 3)
1

d−3

∫

(r2+1)
2

d−3 dr
√

k2
0−(r2+1)

2
d−3

(

k0 = a0

(d−3)
1

d−3

) d ≥ 4 (63)

± (ϕ− ϕ0) =
1
H0

∫

ecr
2
dr

r
√

r2−H2
2e

cr2
d = 3 (64)

in which, τ0 and ϕ0 are initial constants and we impose the restrictions so that

{

(r2 + 1)
2

d−3 < k20 d ≥ 4
H2

2

r2
ecr

2

< 1 d = 3
. (65)

For d = 4 and 5, we have exact integrals given by

τ − τ0 =















− 1
3r
√

k20 − (r2 + 1)2 +

√

1+ r2

(k0+1)
(k0−1)

√

1− r2

(k0−1)

3
√

k2
0−(r2+1)2

√
k0−1

Ω d = 4

√
2

[

− 1
2r
√

k20 − (r2 + 1) + 1
2

(

k20 + 1
)

arctan

(

r√
k2
0−(r2+1)

)]

d = 5
(66)

in which

Ω =
(

k20 − 2k0
)

EllipticF

(

r√
k0 − 1

,

√

−1 +
2

(k0 + 1)

)

+ (2k0 + 2)EllipticF

(

r√
k0 − 1

,

√

−1 +
2

(k0 + 1)

)

.

Fig.s 1a and 1b depict the behaviors of (63) (for d = 4) and (66) (for d = 5) , respectively. Now, we wish to consider
the d = 4 null geodesics as well. The line element is

ds2 = (r2 + 1)2
(

dt2 − dr2 − dz2
)

− r2b20
(r2 + 1)2

dϕ2 (67)

Eq.s of motion imply for the affine parameter λ

dt

dλ
=

α0

(r2 + 1)2
,

dz

dλ
=

β0

(r2 + 1)2
,

dϕ

dλ
= γ0

(r2 + 1)2

r2
(68)

in which α0, β0 and γ0 are integration constants. We note that (67) and (68) correspond to Eq.s (1) and (6) of [3],
respectively. From the null-metric condition ds2 = 0 and upon shifting the independent variable to ϕ we obtain

± (ϕ− ϕ0) =

∫

(r2 + 1)4dr

r
√

λ2
0r

2 − b20(r
2 + 1)4

, (69)
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where we have introduced the constant λ0 as λ2
0 =

α2
0−β2

0

γ2
0

. Fig.s 2a and 2b are the plots corresponding to (64) and

(69), respectively.
Finally, we study the 4-dimensional time-like geodesics of a charged particle with charge e whose Lagrangian is

given by

L = (r2 + 1)2

[

(

dt

dτ

)2

−
(

dr

dτ

)2

−
(

dz

dτ

)2
]

− r2b20
(r2 + 1)2

(

dϕ

dτ

)2

− eB0b0
2

1

(r2 + 1)

(

dϕ

dτ

)

. (70)

The Euler-Lagrange equations of motion yield

dt

dτ
=

l0
(r2 + 1)2

,
dz

dτ
=

µ0

(r2 + 1)2
,
dϕ

dτ
=

1

2

(

−σ0r
2 − σ0 + b0a1

)

(r2 + 1)

b20r
2

, a1 = −eB0

2
, (71)

for the integration constants l0, µ0 and σ0. Since we shall be interested only in the r (τ ) behavior of the motion we
derive the second order equation as follows

−2(r2 + 1)2
d2r

dτ2
+

[

−8r(r2 + 1) +
4r

(r2 + 1)3
(

r8 + 4r6 + 6r4 + 4r2 + 1
)

](

dr

dτ

)2

(72)

+
1

2r3b20(r
2 + 1)3

[

σ2
0r

10 + 3σ2
0r

8 + r6
(

2σ2
0 + b20a

2
1

)

− r4
(

2σ2
0 + b20

[

−3a21 + 2µ2
0 − 2l20

])

−r2
(

3σ2
0 − 3a21b

2
0

)

− σ2
0 + a21b

2
0

]

= 0.

For a set of chosen constants and initial values we plot the behavior of r (τ ) as depicted in Fig. 3. Our overall analysis
shows that irrespective of the initial conditions r (τ ) → ∞ , with the increasing proper time.

V. CONCLUSION

We rederive the family of cylindrically symmetric magnetic universes in a particular metric ansatz which is con-
formally flat on each constant azimuthal angle. These are non-black hole solutions where unlike their spherical
counterparts the gravity of magnetic fields is not strong enough to make black holes. The energy conditions (in the
Appendix) of the magnetic field are satisfied only in particular dimensions. Being inspired by the stability properties
of the original 4-dimensional Melvin’s magnetic universe and those of Gibbons and Wiltshire we prove also the sta-
bility of present universes in a different gauge and in all dimensions including d = 3. Small radial perturbations of
metric functions and the magnetic field (which automatically yields an electric field in accordance with the Maxwell
equations) result in convergent expansions. Stability of the 3-dimensional case which was not considered in previous
studies turns out to be weaker (i.e. convergence of perturbations are not satisfied simultaneously at r = 0 and at
r → ∞).
Geodesics show numerically that in running proper time uncharged particles are confined while null geodesics spiral

around the center. Exact, particular geodesics in terms of the elementary functions are available in d = 5, whereas in
d = 4 we have elliptic functions.
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Apendix A

Energy conditions

When a matter field couples to any system, energy conditions must be satisfied for physically acceptable solutions.
We follow the steps as given in[10] .
Weak Energy Condition (WEC):

The WEC states that

ρ ≥ 0 (A1)

ρ+ pi ≥ 0

In which ρ is the energy density and piare the principle pressure given by

ρ = T 0
0 (A2)

pi = −T i
i , i = 1, 2, · · · , (d− 1)

The WEC conditions are trivially satisfied.
Strong Energy Condition (SEC):
This condition states that

ρ+
d−1
∑

i=1

pi ≥ 0 (A3)

ρ+ pi ≥ 0

For d=3, it means that

ρ+
d−1
∑

i=1

pi ≥ 0 ⇒ 3T 0
0 ≥ 0 (A4)

ρ+ pi ≥ 0 ⇒ 2T 0
0 ≥ 0

which are satisfied. For 4 ≤ d ≤ 6 it is also satisfied because ρ+
d−1
∑

i=1

pi = −(d− 6)T 0
0 . It can easily be seen also that

for 7 ≤ d

ρ+
d−1
∑

i=1

pi ≥ 0 ⇒ −T 0
0 ≥ 0 (A5)

ρ+ pi ≥ 0 ⇒ T 0
0 ≥ 0

i.e. the SEC is violated.
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Dominant Energy Condition (DEC):
In accordance with DEC, the effective pressure should not be negative. This amounts to

peff =
1

d− 1

d−1
∑

i=1

T i
i =

(d− 5)

d− 1
T 0
0 ≥ 0 (A6)

For having peff ≥ o it is clear that d ≥ 5.

Causality Condition:
In addition to the energy conditions one can impose the causality condition

0 ≤ peff
ρ

< 1 (A7)

This implies that

0 ≤ (d− 5)

d− 1
< 1 (A8)

which is satisfied for d ≥ 5.

Figure captions

Fig. 1 : Radial distance behavior as a function of proper time for time-like, neutral particle geodesics. From Eq.
(63) in the text, the behavior of r (τ ) as the proper time τ runs from zero to infinity. The starting points are chosen
such that r = 0 at τ = 0, in both d = 4 (Fig. 1a) and d = 5 (Fig. 1b)cases. The fact that r is confined is clearly
seen from these plots. This particular property is already implied from Eq. (65). Let us note that in both cases for
simplicity we choose (+) sign and τ0 = 0. Further, we choose the constant k0 = 2.
Fig. 2 : Radial behavior as a function of the azimuthal angle ϕ for null geodesics in d = 3 (Fig 2a) and d = 4

dimensional (Fig. 2b) magnetic universes. The horizontal axis x (= r cosϕ) and vertical axis y (= r sinϕ) are plotted
numerically in each case from the expressions given in Eq. (64) and Eq. (69) . For simplicity we choose the constants
H2 = 0.01, b0 = 0.01 , H0 = 1, c = 1 and λ0 = 1. Let us note that we have chosen the (+) sign in both (64) and (69)
, which give outward orbits around the center. Obviously, the choice (−) should yield inward orbits.
Fig. 3 : This is a numerical plot of the intricate second order differential equation (72) in d = 4. For technical

reason we choose the constants a1, b0, l0, µ0 and σ0 all equal to one. Two different initial conditions are displayed
(A and B) which reveal the pattern of increasing radial distance in proper time.
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