1309.5833v2 [gr-gc] 20 Nov 2013

arxXiv

Effect of the Refractive Index on the Hawking Temperature: An Application of the
Hamilton-Jacobi Method

I. Sakalli and S.F. Mirekhtiary*
Department of Physics, Eastern Mediterranean University,
G. Magusa, North Cyprus, Mersin-10, Turkey and
Tizzet.sakalli@emu. edu. tr,” fatemeh. mirekhtiary@emu. edu. tr

Hawking radiation of a non-asymptotically flat (NAF) 4-dimensional spherically symmetric and
static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method has been studied. In addition
to the naive coordinates, we have used four more different coordinate systems which are well-behaved
at the horizon. Except the isotropic coordinates, direct computation of the HJ method leads us the
standard Hawking temperature for all coordinate systems. The isotropic coordinates render possible
to get the index of refraction extracting from the Fermat metric. It is explicitly shown that the
index of refraction determines the value of the tunneling rate and its natural consequence, Hawking
temperature. The isotropic coordinates within the conventional HJ method produce wrong result
for the temperature of the dilatonic BH. Here, we explain how this discrepancy can be resolved by
regularizing the integral possessing a pole at the horizon.

I. INTRODUCTION

In 1974, Stephan Hawking |1, [2] proved that a BH, when taking into account of quantum effects, can emit thermal
radiation. This meant that each BH has a characteristic temperature and can be thought as a thermodynamical
system. In fact, this discovery broke all taboos which were classically prohibited about the BHs until that day.
Together with Bekenstein’s work [3] it caused to born a new subject that is the so-called quantum gravity theory
which has not been completed yet. After Hawking, there has always been curiosity to derive new methods to the
Hawking radiation (HR) which can decode the underlying BH spacetime. Today, we can see many found methods for
the HR in the literature (see [4] and references therein for a general review). Among them, the most promising one is
the tunneling method which is originated from Kraus and Wilczek (KW) [35, 16]. KW used the null geodesic method
to develop the action for the tunneling particle which is considered as a self-gravitating thin spherical shell and then
managed to quantize it. KW method’s strong suit indeed is to provide a dynamical model of the HR in which BH
shrinks as particles radiate. In this dynamical model, both energy conservation and back-reaction effects are included
which were not considered in the original derivation of HR. Six years later, their calculations were reinterpreted
by Parikh and Wilczek (PW) [7]. They showed that the spectrum of the HR can deviate from pure thermality,
which implies unitarity of the underlying quantum process and the resolution of the information loss paradox |8, 9].
Nowadays, PW’s pioneer work has been still preserving its popularity. A lot of works for various BHs proves its
validity (a reader may refer to |[10]). As far as we know, the original PW’s tunneling method only suffers from one of
the NAF BHs which is the so-called linear dilaton BH (LDBH). Unlike to the other well-known BHs, their evaporation
does not admit non-thermal radiation, therefore causes the violation of information conservation. This problem was
firstly unraveled by Pasaoglu and Sakalli [11]. Recently, it has been shown that the weakness of the PW’s method
in retrieving the information from the LDBH can be overcome by adding the quantum corrections to the entropy
[12]. Furthermore, it has proven by another study of Sakalli et al. [13] that the entropy of the LDBH can be tweaked
by the quantum effects that both its temperature and mass simultaneously become zero at the end of the complete
evaporation.

Based on the complex path analysis of Padmanabhan and his collaborators [14-16], Angheben et al. [17] developed
an alternate method for calculating the imaginary part of the action belonging to the tunneling particles. To this end,
they made use of the relativistic HJ equation. Their method neglects the effects of the particle self-gravitation and
involves the WKB approximation. In general, the relativistic HJ equation can be solved by substituting a suitable
ansatz. The chosen ansatz should consult the symmetries of the spacetime in order to allow for the separability. Thus
one can get a resulting equation which is solved by integrating along the classically forbidden trajectory that initiates
inside the BH and ends up at the outside observer. However, the integral has always a pole located at the horizon.
For this reason, one needs to apply the method of complex path analysis in order to circumvent the pole.

A Friedmann-Robertson-Walker universe — assumed to be a good model for our universe — is generally NAF [18].
For this reason, we believe that most of the BHs in the real universe have necessarily NAF geometries. Hence, it is
of our special interest to find out specific examples of NAF BHs as a test bed for HR problems via the HJ method.
Starting from this idea, in this paper we consider the LDBHs. First of all, the eponym of these BHs is Clément
and Gal'tsov |19]. Initially, they were found as a solution to Einstein-Maxwell-Dilaton (EMD) theory [20] in four
dimensions. Later on, it is shown that in addition to the EMD theory N > 4 dimensional LDBHs (even in the case of
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higher dimensions) are available in Einstein-Yang-Mills-Dilaton (EYMD) and Einstein-Yang-Mills-Born-Infeld-Dilaton
(EYMBID) theories [21] (and references therein). The most intriguing feature of these BHs is that while radiating,
they undergo an isothermal process. Namely, their temperature does not alter with shrinking of the BH horizon or with
the mass loss. Our primary concern of this study is to obtain the imaginary part of the action of the tunneling particle
through the LDBH’s horizon. This produces the tunneling rate that yields the Hawking temperature. In order to test
the HJ method on the LDBH, in addition to the naive coordinates we will consider four more coordinate systems (all
regular) which are isotropic, Painlevé-Gullstrand (PG), ingoing Eddington-Finkelstein (IEF) and Kruskal-Szekeres
(KS), respectively. Especially, we will mainly focus on the isotropic coordinates. They require more straightforward
calculations when compared with the others. Furthermore, as it will be shown in the associated section, the usage
of the standard HJ method with isotropic coordinates reveals a discrepancy in the temperatures. For a more recent
account in the same line of thought applied to Schwarzschild BH within the isotropic coordinates, one may consult
[22] in which a similar discrepancy problem in the HR has been studied. Gaining inspiration from [22], we will discuss
about how one can also remove the discrepancy appeared in the LDBH’s radiation. Differently from [22], we will
also represent the calculation of the index of refraction of the LDBH medium, its effect on the tunneling rate and
consequently on the Hawking temperature. According to our knowledge, such a theoretical observation has not been
reported before in the literature. Slightly different from the other coordinate systems, during the application of the
HJ method in the KS coordinates, we will first reduce the LDBH spacetime to Minkowski space and then demonstrate
in detail how one recovers the Hawking temperature.

The paper uses the signature (—, +, 4+, +) and units where ¢ = G = h = kg = 1. The paper is organized as follows.
In Sec. II we review some of the geometrical and thermodynamical features of the LDBH with naive coordinates and
show the separation of variables of the relativistic HJ equation. The calculation of the tunneling rate and henceforth
the Hawking temperature via the HJ method is also represented. In Sec. III the metric for a LDBH in isotropic
coordinates is derived. The effect of index of refraction on the tunneling rate is explicitly shown. The obtained
temperature is the half of the accepted value of the Hawking temperature. It is demonstrated that how the proper
regularization of singular integrals resolves the discrepancy in the aforementioned temperatures. Sec. IV and V are
devoted to the calculation of the Hawking temperature in PG and IEF coordinate systems, respectively. In Sec. VI
we apply the HJ method to KS form of the LDBHs. Finally, the conclusion and future directions are given in Sec.
VII.

II. LDBH AND HJ METHOD

In general, the metric of spherically symmetric and static BH in four dimensions is given by

ds* = —fdt* + f~'dr® + R%dQ?, (1)
where
d0? = db* + sin® 0dyp?, (2)

is the metric on a unit two-sphere S2. Since we aim to solve the relativistic HJ equation for a massive but uncharged
scalar field in the LDBH background, let us first analyze the geometry of the LDBH. Whenever the metric functions
of the line-element (1) are given by

R*= A%, f=%(r—1m1), (3)

we call the metric (1) as LDBH [19, [21]. In various theories (EMD, EYMD and EYMBID), metric functions do not
alter their forms as seen in the Eq. (3). Only non-zero positive constants A and ¥ take different values depending
on which theory is taken into account |21]. It can be easily deduced from the metric function f that LDBHs possess
NAF geometry and rj, represents the horizon. For rj, # 0, the horizon hides the null singularity at » = 0. Even in the
extreme case 7, = 0 in which the central null singularity at r = 0 is marginally trapped, such that outgoing waves
are permitted to reach the external observers, the LDBH still sustains its BH property.

NAF structure of the LDBH leads us to use the definition of quasi-local mass M [23] in order to obtain a relationship
between the horizon r, and the mass M of the BH as follows
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According to the laws of BH thermodynamics, the conventional definition of the Hawking temperature Ty [24] is
expressed in terms of the surface gravity k. For the metric (1), Ty is given in the explicit form as follows:

Thg=— = 5
H o0 A ) ()

T=Th
After substituting the metric function f (3) into the above equation, Ty of the LDBH becomes

5
Ty = . (6)

We can immediately observe that the obtained temperature is constant. In general, such an event typically occurs
in an isothermal process of the standard thermodynamics in which AT = 0. Therefore, the LDBH’s radiation is such
a particular process that the energy (mass) transfer out of the BH typically happens at a slow rate that thermal
equilibrium is maintained.

Here, we consider the problem of a scalar particle which it moves in this spacetime while there is no back-reaction
or self-gravitational effect. Within the semi-classical framework, the classical action I of the particle satisfies the
relativistic HJ equation

g"" 9,10, +m? =0, (7)

in which m is the mass of the scalar particle, and g"" represents the invert metric tensors derived from the metric
(1). By considering Eqs.(1), (3) and (7), we get

-1 2 2, 1 2 1 2 2 _
7 @)" + SO D) + 5 |(Bod)" + —57(0 D)7 +m” =0, (®)

For the HJ equation it is common to use the separation of variables method for the action I = I(¢t,r, 0, ¢) as follows

I=—-Et+W(r)+ J(", (9)

where

Ol = —F, oI = 0, W(r), Ol = Ji, (10)

and J;’s are constants in which ¢ = 1,2 labels angular coordinates 6 and ¢, respectively. Since the norm of the
timelike Killing vector d; is (negative) unity at a particular location r = 7 = % + 7, E is the energy of the particle
detected by an observer at 7, where is outside the horizon. Solving for W (r) yields

T?
f
where + naturally comes since the Eq.(8) was quadratic in terms of W (r). Solution of the Eq.(11) with "+ sign
corresponds to scalar particles moving away from the BH (outgoing) and the other solution i.e., the solution with ” —”

sign represents particles which move toward the BH (ingoing). After evaluating the above integral around the pole
at the horizon (adhering to the Feynman’s prescription |25]), one arrives at the following;:

_fqgza Tl mA 7
W(r)_i/\/m i [J§ + 55 + (mA) ]d )

W(:I:) =+—+¢, (12)
by
where ¢ is a complex integration constant. Thus, we can deduce that imaginary parts of the action can arise due
to the pole at the horizon and from the complex constant c. Thence, we can determine the probabilities of ingoing
and outgoing particles while crossing the horizon as



Py =e 2™ =exp [-2(Im W4 + Imc)] , (13)

Py = e 2™ = exp [-2(ImW(_) +Imc)] (14)

In the classical point of view, a BH absorbs any ingoing particles passing its horizon. In other words, there is no
reflection for the ingoing waves which corresponds to P, = 1. This is enabled by setting Im ¢ = % This choice also
implies that the imaginary part of the action I for a tunneling particle can only come out W,.. Namely, we get

o E
ImI:ImWJr:WT, (15)

which is independent of the horizon r,. Therefore, the tunneling rate for the LDBH can be obtained as

—4AnE

I'=PFPu=e = ) (16)

and since [7]

—

=e PP (17)
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in which 8 denotes the Boltzmann factor and T = %, one can easily read the horizon temperature of the LDBH as

v D)
T

.Y (1)

which means that Hawking temperature Ty (6) is impeccably recovered.

IIT. ISOTROPIC COORDINATES

In general, when the metric (1) is transformed to the isotropic coordinates, the resulting line-element admits a BH
spacetime in which the metric functions are non-singular at the horizon, the time direction is a Killing vector and the
three dimensional subspace of the spatial part of the line-element (known as time slice) appears as Euclidean with a
conformal factor. Furthermore, using of these coordinates renders the calculation of the index of refraction of the light
rays (a subject of gravitational lensing) around a BH possible. So, the light propagation of a BH can be mimicked by
the index of refraction. By this way, an observer may identify the type of the BH [26].

In this section, we firstly transform the LDBH to the isotropic coordinates and then analyze the HJ equation.
Next, we examine the horizon temperature whether it agrees with the Ty or not. At the final stage, we discuss the
discrepancy in the temperatures and its abolishment.

The LDBH solution in isotropic coordinates can be found by the following transformation

b )
P A/3(r2 —rry)

so that we obtain

o= (r—m+2i=m) . (20)

and inversely

r=——(" +mm), (21)



where v = Ay/E. This transformation takes the metric (1) to the form

ds? = —Fdt® + G(dp? + p2d0?), (22)
with
FeZ (i om)?, G= A () (23)
T P TR T g2 WP TTR

In this coordinate system, the event horizon is located at p, = (rh)% and the region p > p, covers the exterior
region of the LDBH, which is static. In the naive coordinates (1) of the LDBH, all Killing vectors are spacelike in the
interior region and we deduce that the interior of the LDBH is nonstationary. On the other hand, when we consider
the interior region p < p,, of the metric (22), it admits a hypersurface-orthogonal timelike Killing vector which implies
the static region. Namely, the region p < p, does not cover the interior of the LDBH. Instead, it again covers the
exterior region such that metric (22) is a double covering of the LDBH exterior |27].

One can easily rewrite the metric (22) as follows

ds®> = F(—dt* +7), (24)

and obtain the Fermat metric [26] form of the LDBH as

g = n(p)*(dp® + p*dQ2?), (25)

where n(p) is known as the index of refraction. For the LDBH medium, it is calculated as

G A pV 4+

n = _— = — 5 26
0)=\F = 75 o (26)
The expression for the HJ equation (7) on the background (22) corresponds to
“LOD? + =0, + = |(@0])? + —= (02| +m2 =0 (27)
F G\’ Gp? sin?0" 7 ’
There exists a solution of the form
I = —Et+Wi(p) + J(2%), (28)
Solving for Wi, (p) yields
Wiso(p) = :I:/n(p) E? — 1 (J2 + L > —m2Fdp (29)
5o Gp2 \"? " sin20 ’
which can be written near the horizon p ~ (rh)% as
Wiso(:l:) = :tE/n(p)dpu (30)

Here, it is clear that Wis,(+) is governed by the index of refraction of the LDBH. After applying the Feynman’s
prescription to the above integral, one obtains

12nE
Wiso(:t) ==

+ C2, (31)



where ¢ is another integration constant. Similar to the procedure followed in the previous section i.e., setting

P;, = 1 which yields Im ¢y = %, we obtain the imaginary part of the action I of the tunneling particle as follows

B
Im7=ImW,; = — 32
m m Wiso(+) K ( )
Thus, by using the tunneling rate formulation (16) one obtains the horizon temperature of the LDBH as
. by
Ty = —, (33)
8w

But the obtained temperature is the half of the conventional Hawking temperature, T = %TH. So, the above result
(33) represents that transforming the naive coordinates to the isotropic coordinates yield an apparent temperature of
the BH that it is less than the true temperature Ty. This is in analogy with the apparent depth ¢ of a fish swimming
at a depth d below the surface of a pond is less than the true depth d i.e., ¢ < d. This illusion is due to the difference
of the index of refractions between the mediums. Particularly, such a case occurs when nopserver < Mobject, s in here.
Because, it is obvious from Eq.(26) that the index of refraction of the medium of an observer who is located at the
outer region is less than the index of refraction of the medium near to the horizon. Since the value of Wis,4y (30)
acts as a decision-maker on the value of the Hawking temperature T of the BH, one can deduce that the index of
refraction (26), consequently the gravitational lensing effect, plays an important role on the observation of the true
Ty.

On the other hand, we admittedly know that coordinate transformation of the naive coordinates to the isotropic
coordinates should not alter the true temperature of the BH. Since the appearances are deceptive, one should make
deeper analysis to get the real. Very recently, this problem has been throughly discussed by Chatterjee and Mitra [22].
Since the isotropic coordinate p becomes complex inside the horizon (r < rp,), they have proven that while evaluating
the integral (30) around the horizon, the path across the horizon involves a change of 7/2 instead of 7 in the phase
of the complex variable (p” — rp). This could best be seen from Eq.(21), which is rewritten as

_ (p" —r1)*
r=rp+ By (34)
and implies that
dr _ @ n 2vdp
) T T — )
d 2d
= 422y (35)
p Z—=Th

where z = p7. The first term does not admit any imaginary part at the horizon. Hence, any imaginary contribution

coming from idf} must be half of the TfT . The latter remark produces a factor im/2 for the integral (30) and

Th
subsequently it yields Im Wig,4) = % as obtained in the previous section. Thus, we get the horizon temperature

as Ty = % which is again the Tp.

IV. PG COORDINATES

Generally, we use the PG coordinates |28 29] in order to describe the spacetime on either side of the event horizon
of a static BH. In this coordinate system, an observer does not consider the surface of the horizon to be in any way
special. In this section, we shall employ the PG coordinates as another regular coordinate system in the HJ equation
and examine whether they yield the correct calculation of the Ty or not.

We can pass to the PG coordinates by applying the following transformation [30] to the metric (1)

dl'=dt +

vi-7 - g, (36)



where T is our new time coordinate (let us say PG time). Substituting this metric (1) gives

ds* = —fdT? + 2\/1 — fdTdr + dr* + R*dQ?, (37)

One of the main features of these coordinates is that the PG time concurrently corresponds to the proper time. For
the metric (37) the HJ equation (7) takes the form

1

—(0rI)? +2y/1 — f(OrD)(0, 1) + f(O.1)* + %(691)2 + m(aﬂf +m? =0, (38)

Letting

I=—ET+Wpg(r) + J(z"), (39)

and substitute Egs.(39) and (3) into Eq.(38), we find

WPG(T)Z/ﬁ( 1—E(r—rh)i\/1—2(r—rh)—%) dr, (40)

where

I3 JZ
A=m2-E24+ 20 4 e A1
i TR T Rrante’ (41)
Near the horizon, Eq.(40) in turn implies that
E 1
w == | ——(1x1)d 42
racs) = 5 | Gy (1 D (12)

Therefore, imposing the condition Wpg(—y = 0 which ensures that there is no reflection for the ingoing particle, we
have

12TE
Wra) = —~5— (43)

Thus, we get the imaginary part of the action I as

2nE
ImI=ImW, = — 44
m! =ImWpgy) = = (44)
With the aid of Egs.(16) and (17), one can readily read the horizon temperature of the LDBH which is featured in

the PG coordinates as

. D)

H= (45)

This result is fully in agreement with the standard value of the Hawking temperature (6).

V. IEF COORDINATES

The another useful coordinate system which is also regular at the event horizon originally constructed by Eddington
[31] and Finkelstein [32]. These coordinates are fixed to radially moving photons. The line-element (1) takes the
following form in the IEF coordinates (see for instance [33])



ds* = —fdv® + 2/1 — fdvdr + dr? + R?(d#* + sin’ fdp?), (46)

in which v is a new null coordinate, the so-called advanced time. It is given by

v=1+"7, (47)

where 7, is known as the Regger-Wheeler coordinate or the tortoise coordinate. For the outer region of the LDBH,
it is found to be

1 r

Since the metric (46) has a Killing vector field of £&¥ = 8,,, in this coordinate system an observer measures the scalar
particle’s energy as E = —0,,I. In this regard, the action is assumed to be of the form

I =—FEv+Wgp(r)+ J(x%). (49)

Employing the HJ equation (7) in the metric (46), the final result for Wgp(r) can be found as

E 25 (1 — Ty
W = — (11 -2 g 50
erlr) = | E(T_rh)< ) dr (50)
where
J? J2
_m2aJe . 51
I e T Rrante (51)

In the vicinity of the event horizon, Wgr(r) reduces to the following expression

which has the same expression appeared in the Eq. (42). Henceforth,

2nE 21 E
Wgp—) =0, Wgpy) = ~ ImI =ImWgp) = ~ (53)
and likewise to the PG coordinates, the usage of the EF coordinates in the HJ equation enables us to reproduce
the standard Hawking temperature from the horizon temperature of the LDBH:

Ty = — =T (54)

VI. KS COORDINATES

The another well-behaved coordinate system which covers the entire spacetime manifold of the maximally extended
BH solution is the so-called KS coordinates |34, [35]. These coordinates have the effect of squeezing infinity into a
finite distance and thus the entire spacetime can be displayed on a stamp-like diagram. In this section, we will apply
the HJ equation to KS metric of the LDBH in order to verify whether Ty is going to be equal to the T or not.

Metric (1) can be rewritten as follows [33]



ds* = — fdudv + R*dQ?, (55)

where

du=dt —dr., dv=dt+drs, (56)

Furthermore, if we define new coordinates (U, V') in terms of the surface gravity « (5)

U=—e"™, V=e", (57)

metric (55) transforms to the KS metric as

. [ dUdv
k2 UV

Recalling the definitions given in Eqgs. (3-5) and (57), it is then straightforward to obtain the KS metric of the
LDBH. It is given by

ds + R%d02, (58)

16M
242

This metric is well-behaved everywhere outside the physical singularity » = 0. Alternatively, metric (59) can be
rewritten as

ds* = dUdV + R*dQ?, (59)

ds* = —dT? + dX? + R*dQ?, (60)

This is possible with the following transformation

4 M 4V M [r it
T=_""" =, /— —1sinh(— 1
SA (V+4+0) R s1n(2), (61)

4V M 4vM [r it
X=5a VU=, ~teosh5), (62)

From now on, it easy to see that
16M , r
2 _ g2 _ AOM T

X-T SEE (Th 1), (63)

which means that X = 4+7T corresponds to the future and past horizons. On the other hand, Or is not a timelike
Killing vector anymore for the metric (60), instead one should consider the timelike Killing vector as

(9f = N(X8T+T8X), (64)

where N denotes the normalization constant. It can admit a specific value that the norm of the Killing vector
becomes negative unity at a specific location in the outer region of the LDBH where r = % + r,. This implies that

Y
N =—
2

; (65)

Since the energy is defined by
19)

ol = —E, (66)
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then

(X0rl +ToxI) = —E, (67)

no| M

Without loss of generality, we may only consider the (141) dimensional form of the KS metric (60) which now
appears as Minkowskian

ds® = —dT? + dX?, (68)
The calculation of the HJ method is more straightforward in this case. The HJ equation (7) for the above metric
reads

— (00D + (0x 1) +m? =0, (69)

This equation implies that the action I to be used in the HJ equation (7) for the metric (68) can be

I=g(X-T)+J("), (70)

For simplicity, we may further set J(z') = 0 and m = 0. Using Eq. (67) with the ansatz (70), one derives the
following expression.

ow) = [ Sodu ()

where u = X — T'. This expression develops a divergence at the horizon v = 0, namely X = T. Thus, it leads to a
pole at the horizon (doing a semi-circular contour of integration in the complex plane) and the result is found to be

21 E
ImI = — 72
m E ? ( )
So, referring to the tunneling probability (7) we get
F=e = . (73)
which means that the correct Hawking temperature Ty = % is recovered in the background of the KS metric of

the LDBH.

VII. CONCLUSION

In this study, the Hawking radiation of the LDBH in four dimensions via the HJ method is studied. To the authors’s
knowledge, LDBH is the only BH that its radiation obeys an isothermal process which corresponds to no change in
the temperature during its evaporation: AT = 0. This can be easily deduced from its Hawking temperature which
yields constant value. Namely, it is independent from the mass M (or horizon ri) of the BH. In addition to the
naive coordinates, four different regular coordinate systems are examined throughout this study. It was shown that
the computed horizon temperatures in the naive, PG, IEF and KS coordinates via the HJ method exactly matched
with the conventional Hawking temperature. Here, we should notice that in the Sec. VI which considers the KS
coordinates, the way that followed up was slightly different than the other sections. In that section, without loss
of generality, we discarded the mass of the scalar field and neglected the angular dependence of the HJ equation.
This turned out to be the application of the HJ method for the Minkowski metric. As a result, matching of the
temperatures was successfully shown.

We believe that the most interesting part of the present paper is Sec. III where the LDBH metric was expressed
in terms of the isotropic coordinates. Using of the Fermat metric enabled us to determine the index of refraction
of the LDBH. In particular, it is proven that the index of the refraction plays a decisive role on the tunneling rate.
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Unlike to the other coordinate systems, in the isotropic coordinates the standard integration around the pole at the
horizon caused to produce unacceptable value of the temperature: half of the standard T. In order to overcome this
discrepancy, we inspired from a recent study |22] which has demonstrated how the proper regularization of singular
integrals leads to the standard Hawking temperature for the isotropic coordinates. As a result, it is clarified that the
path across the horizon entails the value % on integration instead of ¢w. The underlying reason of this is that the
isotropic radial coordinate p (20) is real outside the BH, however it becomes complex inside the BH.

Finally, it would be interesting to extend our analysis to yet another BHs, which could be BHs with multiple

horizons, multi-BHs, higher dimensional BHs etc. This will be considered in the near future.
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