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The Dirac equation is solved in the rotating Bertotti–Robinson spacetime. The set
of equations representing the Dirac equation in the Newman–Penrose formalism is
decoupled into an axial and an angular part. The axial equation, which is indepen-
dent of mass, is exactly solved in terms of hypergeometric functions. The angular
equation is considered both for massless �neutrino� and massive spin-1

2 particles.
For the neutrinos, it is shown that the angular equation admits an exact solution in
terms of the confluent Heun equation. In the existence of mass, the angular equa-
tion does not allow an analytical solution, however, it is expressible as a set of first
order differential equations apt for a numerical study. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2912725�

I. INTRODUCTION

The rotating Bertotti–Robinson �RBR� spacetime, which was discovered a long time ago by
Carter,1 is an Einstein–Maxwell solution representing a rotating electromagnetic field. This solu-
tion remained unnoticed until the study of Al-Badawi and Halilsoy,2 who rediscovered it by
applying a coordinate transformation to the cross-polarized Bell–Szekeres solution of colliding
electromagnetic waves.3 We can consider the RBR solution as an extended version of the Bertotti–
Robinson �BR� solution due to the fact that the RBR solution contains one more degree of freedom
to be interpreted as rotation. Adding rotation to the BR creates gravitational curvature, distorts
isotropy, and modifies geodesics significantly. For this reason, the RBR solution assumes a more
complicated topology compared to the BR solution. The RBR spacetime has the topology of
AdS2�S2 and underlying group structure of SL�2,R��U�1�. Nowadays, spacetimes with the AdS
structure are quite popular because of their connection with string theory, higher dimensions, and
brane worlds. The RBR solution can also be interpreted as the “throat” connecting two rotating
black holes with charges. This is due to the fact that the BR solution is considered as the throat
connecting two asymptotically flat Reissner–Nordström regions.4

The first study on the Dirac equation in the BR spacetime without charge coupling was
considered a long time ago.5 During the past decade, studies on spin-1

2 particles in the BR space-
time gained momentum. For example, Silva-Ortigoza6 showed how the Dirac equation could be
separated when the background is the BR spacetime with cosmological constant. Later on, a more
detailed study on the problem of the Dirac equation in the BR spacetime was worked out as well.7

Here, we extend this recent work by looking for the answer to the following question: “How does
a test Dirac particle behave in a rotating spacetime filled with electromagnetic field, i.e., in the
RBR spacetime?” We shall ignore the backreaction effect of the spin-1

2 particle on the spacetime
by the same token done in Ref. 7. The RBR solution represents one of the type-D spacetimes and
as it could be followed from literature, studies on spin-1

2 particles in type-D spacetimes have
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always attracted attention8 �and references therein�. More recently, the problem of the Dirac
equation in the near horizon geometry of an extreme Kerr black hole �Kerr throat� has been
studied in Ref. 9. In many aspects, that spacetime of the Kerr throat shares common features with
the RBR spacetime. The main difference between them is that the Kerr throat is a vacuum
solution, while the RBR is not. On the other hand, they are both regular solutions.

In this paper, our aim is to solve the Dirac equation in the RBR spacetime. To this end, in
order to separate the Dirac equation, we employ the well-known method suggested by
Chandrasekhar.8 We separate the Dirac equation into the axial �function of z only� and the angular
parts �function of � only� in such a way that the resulting axial equation remains independent of
mass. This advantage leads us to obtain an exact solution for the axial equations in terms of
hypergeometric functions. The angular part turns out to be more complicated than the axial part.
This is due to the fact that the metric functions are dependent on the variable �, and also, the
angular equations contain the mass term. For the angular part, two separate cases, which are
massive and massless �neutrinos� cases, are discussed. In the angular equations of the massive
case, we are able to reduce the equations to a set of linear first order differential equations, which
can be numerically utilized. However, the massless particle �neutrino� equations are exactly solved
by reducing the equations to the confluent Heun equations.

Recall that the confluent Heun differential equations are less known than the hypergeometric
family in literature. The modern mathematical development shows that many physical problems
are exactly solved by Heun functions,10–12 for example, problems involving atomic physics with
certain potentials13 which combine different inverse powers or combine the quadratic potential
with inverse powers of 2, 4, 6, etc. Problems in solid state physics, such as dislocation movement
in crystalline materials and quantum diffusion of kinks along dislocations, are also solved in terms
of the Heun function.14 For problems in general relativity, Fiziev15 gave an exact solution of the
Regge–Wheeler equation in terms of the Heun functions and applied them in the study of different
boundary problems. More recently, Birkandan and Hortacsu16 gave examples in which the Heun
functions admit the solution of the wave equation encountered in general relativity. They have
related the solutions of the Dirac equation when the background is Nutku’s helicoid spacetime in
five dimensions to the double confluent Heun function. Nowadays, modern computer packages
have started to involve the Heun functions in their algorithms, as, for instance, it can be seen in the
tenth and higher versions of the famous computer package MAPLE.

The paper is organized as follows: In Sec. II, a brief review of the RBR solution is given.
Next, we present the basic Dirac equations and separate them in the spacetime of RBR. In Sec. III,
we present the exact solution of the axial equation. The angular equation with both massless and
massive cases are discussed in Secs. IV and V, respectively. Finally, in Sec. VI, we draw our
conclusions.

II. ROTATING BERTOTTI–ROBINSON SPACETIME AND SEPARATION OF THE DIRAC
EQUATION ON THIS SPACETIME

The metric describing a rotating electromagnetic field, RBR solution, written in spherical
coordinates, is given by2

ds2 =
F���

r2 �dt̃2 − dr2 − r2d�2 −
r2 sin2 �

F2 �d�̃ −
q

r
dt̃�2� , �1�

where the function F��� and the constant q are

F��� = 1 + a2�1 + cos2 �� ,

q = 2a	1 + a2. �2�

in which a is the rotation parameter. It is readily seen that for a=0, metric �1� reduces to the BR
metric7 �and references cited therein�.
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We make the choice of the following null tetrad basis 1-forms �l ,n ,m , m̄� of the Newman–
Penrose �NP� formalism17 in terms of the RBR geometry that satisfies the orthogonality condi-
tions, l ·n=−m · m̄=1. We note that throughout the paper, a bar over a quantity denotes complex
conjugation. We can write the covariant 1-forms as

	2l =
1

2r
	F�dt̃ − dr� ,

	2n = 2
r
	F�dt̃ + dr� , �3�

	2m = i	Fd� +
sin �

	F
�2a

r
	1 + a2dt̃ − d�̃� .

We obtain the nonzero �2 and �11, which are known as Weyl and Maxwell scalars, respec-
tively, as

�2 =
a2

F3��1 + a2�cos 2� + a2 cos2 � −
i

a
	1 + a2�1 + a2 + a2 sin2 ��cos �� ,

�4�

�11 =
1

2F2 .

The singularity-free and the type-D characters of the metric can be easily deduced from �2. It
is obvious that for a=0, this type-D metric �1� yields a conformally flat spacetime �i.e., the BR
spacetime� in which a uniform electromagnetic field, with �11= 1

2 , fills the entire space. As it can
be seen from Eq. �4�, rotation �a�0� gives rise to anisotropy of the prevailing electromagnetic
field.

In order to study the Dirac equation in the RBR spacetime, we prefer to work in a more
convenient coordinate system; therefore, by using the following transformation:

z =
1

2r
�t̃2 − r2 + 1� ,

t = tan−1� 1

2t̃
�t̃2 − r2 − 1�� , �5�

� =
1

2
q ln� �r − t̃�2 + 1

�r + t̃�2 + 1
� + �̃ ,

metric �1� is transformed into

ds2 = F�����1 + z2�dt2 −
dz2

�1 + z2�
− d�2 −

sin2 �

F2 �d� − qzdt�2� . �6�

We notice that the metric functions in Eq. �6� explicitly depend on the variable �, as a result,
the angular part of the Dirac equation becomes important. The coordinates −�� t�� ,−��z
�� covers the entire, singularity-free spacetime.

The covariant 1-forms of the metric �6� can be taken as
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	2l = 	F�	1 + z2dt −
dz

	1 + z2� ,

	2n = 	F�	1 + z2dt +
dz

	1 + z2� , �7�

	2m = 	Fd� +
i sin �

	2	F
�d� − qzdt� ,

while their corresponding directional derivatives become

	2D =
�t

	F	1 + z2
+

	1 + z2�z

	F
+

qz��

	F	1 + z2
,

	2� =
�t

	F	1 + z2
−

	1 + z2�z

	F
+

qz��

	F	1 + z2
,

�8�

	2	 = − � ��

	F
+ i

	F

sin �
��� ,

	2	̄ = − � ��

	F
− i

	F

sin �
��� ,

By using the above tetrad, we determine the nonzero NP complex spin coefficients17 as


 = − � =
− 1

2	2F3/2 �a2 sin�2�� + �iq sin ��� ,

� = 
 =
z

2	2	F	1 + z2
, �9�

� = − � =
1

4	2F3/2 �2 cot ��1 + 2a2� + iq sin �� .

The Dirac equations in the NP formalism are given by8

�D + � − ��F1 + �	̄ + � − ��F2 = i�pG1,

�	 + � − 
�F1 + �� + � − 
�F2 = i�pG2,

�10�
�D + �̄ − �̄�G2 − �	 + �̄ − �̄�G1 = i�pF2,

�� + �̄ − 
̄�G1 − �	̄ + �̄ − 
��G2 = i�pF1,

where �*=	2�p is the mass of the Dirac particle.
The form of the Dirac equation suggests that we assume,8
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F1 = f1�z�A1���ei�kt+m��,

F2 = f2�z�A3���ei�kt+m��,

�11�
G1 = g1�z�A2���ei�kt+m��,

G2 = g2�z�A4���ei�kt+m��.

Here, we consider the corresponding Compton wave of the Dirac particle as in the form of
f�z�A���ei�kt+m��, where k is the frequency of the incoming wave and m is the azimuthal quantum
number of the wave. The temporal and azimuthal dependencies are chosen to be the same but the
axial and angular dependencies are chosen to be different for different spinors.

Substituting the appropriate spin coefficients �9� and the spinors �11� into the Dirac equation
�10�, we obtain

Z̃f1

f2
−

LA3

A1
= i�*

g1

f2

A2

A1

	F ,

Z̃f2

f1
+

L†A1

A3
= − i�*

g2

f1

A4

A3

	F ,

�12�
Z̃g2

g1
+

£†A2

A4
= i�*

f2

g1

A3

A4

	F ,

Z̃g1

g2
−

£A4

A2
= − i�*

f1

g2

A1

A2

	F ,

where the axial and the angular operators, respectively, are

Z̃ = 	1 + z2�z +
1

2	1 + z2
�z + 2i�k + mqz�� ,

Z̃ = 	1 + z2�z +
1

2	1 + z2
�z − 2i�k + mqz�� ,

and

L = �� +
cot �

2
−

a2 sin 2�

4F
+

mF

sin �
− i

q sin �

4F
,

L† = �� +
cot �

2
−

a2 sin 2�

4F
−

mF

sin �
− i

q sin �

4F
,

�13�

£ = �� +
cot �

2
−

a2 sin 2�

4F
+

mF

sin �
+ i

q sin �

4F
,

£† = �� +
cot �

2
−

a2 sin 2�

4F
−

mF

sin �
+ i

q sin �

4F
.
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It is obvious that L and L† are purely angular operators and L=£̄ ,L†= £̄†.
In order to separate the Dirac equation �12� into axial and angular parts, we choose f1=g2,

f2=g1 ,A2=A1, and A4=A3 and introduce a real separation constant � as

Z̃g2 = − �g1, �14�

Z̃g1 = − �g2, �15�

and

LA3 + i�*Ā1
	F = − �A1, �16�

L†A1 + i�*Ā3
	F = �A3. �17�

III. SOLUTION OF THE AXIAL EQUATION

The structure of the axial equations �14� and �15� admits g1= ḡ2. Thus, it is enough to decouple
the axial equations for g2, namely,

ZD �Z̃g2� = �2g2. �18�

The explicit form of Eq. �18� can be obtained as

�1 + z2�g2��z� + 2zg2��z� +
1

2�1 + z2��1 +
1

2
z2 + 2�k + mqz�2 − 2i�kz − mq� − 2�2�1 + z2��g2�z� = 0.

�19�

�Throughout the paper, a prime denotes the derivative with respect to its argument.�
Let us introduce a new variable y such that z= i�1−2y�, therefore Eq. �19�, becomes

y�1 − y�g2��y� + �1 − 2y�g2��y� −
1

4y�1 − y�
1

4
− m2q2�1 − 2y�2 + y�1 − y� + k�k + 1 − 2y�

− 4�2y�1 − y� + imq�1 + 2k�1 − 2y���g2�y� = 0. �20�

The exact solution of the axial part is found in terms of the Gauss hypergeometric functions
as

g2�y� = C1y��y − 1��
2F1� 1

2 + k − 
, 1
2 + k + 
, 3

2 + k + imq;y�
+ C2y−��y − 1��

2F1�− �
 + imq�,
 − imq, 1
2 − k − imq;y� , �21�

where the parameters are

� = 1
2�k + 1

2 + imq� ,

� = 1
2�k − 1

2 − imq� , �22�


 = 	�2 − m2q2,

and C1 ,C2 are complex constants.
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IV. REDUCTION OF THE ANGULAR EQUATION TO HEUN EQUATION: THE MASSLESS
CASE

The aim of this section is to show that the angular equations �16� and �17� for the massless
Dirac particles �such as neutrinos� can be decoupled to a confluent Heun differential equation.

For �*=0, Eqs. �16� and �17� can be explicitly written as

A1���� + �K − M�A1��� = �A3��� , �23�

A3���� + �K + M�A3��� = − �A1��� , �24�

where

K =
cot �

2
−

a2 sin 2�

4F
− i

q sin �

4F
, �25�

M =
mF

sin �
, �26�

By introducing the scalings

A1��� = H1���e−��K−M�d�, �27�

A3��� = H3���e−��K+M�d�, �28�

we get

H1���� = �H3���e−2�Md�, �29�

H3���� = − �H1���e2�Md�, �30�

By decoupling Eqs. �29� and �30� in Eq. �29� for H1���, we obtain

H1���� + 2MH1���� + �2H1��� = 0. �31�

Similarly, if we decouple the axial equations for H3���, the resulting equation turns out to be

H3���� − 2MH3���� + �2H3��� = 0. �32�

By introducing a new variable �=cos−1�1−2z�, Eqs. �31� and �32� are cast into the general
confluent form of the Heun equation, namely,

H1��z� + �− 4a2m +
1
2 + m + 2a2m

z
+

1
2 − �m + 2a2m�

z − 1
�H1��z� −

�2

z�z − 1�
H1�z� = 0, �33�

H3��z� + �4a2m +
1
2 − �m + 2a2m�

z
+

1
2 + m + 2a2m

z − 1
�H3��z� −

�2

z�z − 1�
H3�z� = 0. �34�

Recall that the general confluent form of the Heun equation12 is given as follows.

H��z� + �A +
B

z
+

C

z − 1
�H��z� +

ADz − h

z�z − 1�
H�z� = 0. �35�

After matching Eqs. �33� and �34� with Eq. �35�, one can get the following correspondences.
�a� For Eq. �33�,
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A = − 4a2m, B = 1
2 + m + 2a2m, C = 1

2 − �m + 2a2m�, D = 0, and h = �2. �36�

�b� For Eq. �34�,

A = 4a2m, B = 1
2 − �m + 2a2m�, C = 1

2 + m + 2a2m, D = 0, and h = �2. �37�

Determining when the solutions of a confluent Heun equation are expressible in terms of more
familiar functions would be obviously useful. Expansion of solutions to the confluent Heun equa-
tion in terms of hypergeometric and confluent hypergeometric functions are studied in detail by
Ref. 12. In Ref. 12, it is also shown that the confluent Heun functions can be normalized to
constitute a group of orthogonal complete functions. Here, as an example, we follow the interme-
diate steps in Ref. 12 �page 102� in order to express the solutions of Eq. �35� with D=0 in terms
of the hypergeometric functions. The transformation between the confluent Heun function and the
hypergeometric function is given with the Floquet expansion,12,14 namely,

Hj�z� = 

n=−�

�

gn2F1��1,�2;B;z� , �38�

where

�1 = − n − � j and �2 = n + � j + C + B − 1, �39�

and � j are known as the Floquet exponents. The coefficients gn satisfy a three-term recurrence
relation:

�ngn−1 + Qngn + �ngn+1 = 0, �40�

where

�n = Abn−1,n,

Qn = �1�2 − h +
A

2
bn,n, �41�

�n = Abn+1,n,

and the coefficients, bn−1,n, bn,n, and bn+1,n expressed in terms of the parameters �1 ,�2, are given
explicitly by Ref. 12. �The only difference between our notation and Ronveaux’s notation is B
�
.�

Finally, it should be noted that one can see a brief analysis of the confluent Heun equation as
well as its power series solution and polynomial solution in Ref. 18.

V. REDUCTION OF THE ANGULAR EQUATION INTO A SET OF LINEAR FIRST ORDER
DIFFERENTIAL EQUATIONS: THE CASE WITH MASS

In this section, we shall reduce the angular equations �16� and �17� into a set of linear set of
first order differential equations for the case of the Dirac particle with mass. To this end, let us
make the following substitutions into Eqs. �16� and �17�.

A1��� = �A0��� + iB0����e−��cot �/2−a2 sin�2��/4F�d�, �42�

A3��� = �M0��� + iN0����e−��cot �/2−a2 sin�2��/4F�d�, �43�

where A0���, B0���, M0���, and N0��� are real functions. After separating the real and the imagi-
nary parts, one obtains a set of first order differential equations:
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A0���� −
mF

sin �
A0��� +

q sin �

4F
B0��� = �M0��� − �*	FN0��� ,

B0���� −
mF

sin �
B0��� −

q sin �

4F
A0��� = �N0��� − �*	FM0��� ,

�44�

M0���� +
mF

sin �
M0��� +

q sin �

4F
N0��� = − �A0��� − �*	FB0��� ,

N0���� +
mF

sin �
N0��� −

q sin �

4F
M0��� = − �B0��� − �*	FA0��� .

By introducing a new variable x=cos �, one can remove the trigonometric functions in the set
of first order differential equations �44�. However, analytically solving the entire system does not
seem possible. To our knowledge, in literature, such a system does not exist. Nevertheless, one can
analyze the system via an appropriate numerical technique, which may need an advanced compu-
tational study.

VI. CONCLUSION

In this paper, our target was not only to separate the Dirac equation for a test spin-1
2 particle

in the rotating electromagnetic spacetime �RBR� but to explore exact solutions as well. By this
way, we wanted to make a contribution to the wave mechanical aspects of the Dirac particles in
the RBR geometry.

Due to the metric functions, which are only functions of the angular variable �, the angular
part of the Dirac equation in the RBR background is the harder part to be tackled compared to the
axial part. Another advantage of the axial part is that the axial equations do not involve the mass
term. These simplifications in the axial equations guided us in obtaining the general solution of the
axial part in terms of the hypergeometric functions. On the other hand, although we could not
obtain the general analytic solution of the angular part, we succeeded in overcoming the difficul-
ties in the angular part in the massless case and obtained its exact solution in terms of the Heun
polynomials. Inclusion of mass prevents us from obtaining an analytic solution for the angular
part. As an alternative way to the analytic solution, in the last section, we showed that the angular
part could be written as a set of first order differential equations, which are suitable for numerical
investigations.

Finally, the study of the charged Dirac particles in the RBR spacetime may reveal more
information compared to the present case. This is going to be our next problem in the near future.
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