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Solution of the Dirac equation in the near horizon geometry of an extreme Kerr black hole
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The Dirac equation is solved in the near horizon limit geometry of an extreme Kerr black hole. We decouple
equations first, as usual, into an axial and angular part. The axial equation turns out to be independent of the
mass and is solved exactly. The angular equation reduces, in the massless case, to a confluent Heun equation.
In general for a nonzero mass, the angular equation is expressible, at best, as a set of coupled first order
differential equations apt for numerical investigation. The axial potentials corresponding to the associated
Schrödinger-type equations and their conserved currents are found. Finally, based on our solution, we verify in
a similar way the absence of superradiance for Dirac particles in the near horizon, a result which is well known
within the context of a general Kerr background.
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I. INTRODUCTION

During the last three decades the study of spin-1
2 particles

on type-D spacetimes has attracted much interest and by
accumulated results are already available in the litera
@1–3# ~and references cited therein!. The main reason for this
is that all well-known black holes~BHs! are in this category
and their better understanding involves a detailed analys
various physical fields in their vicinity. Dirac particles wit
~and without! mass constitute one such potential candid
whose interaction and behavior around BHs may reveal
formation of much significance. Tests of the Dirac equat
in spacetimes other than BHs have also started to aro
interest for various reasons. From this token we cite
Robertson-Walker and Bertotti-Robinson~BR! spacetimes
@4–6#. The latter in particular has already gained much r
ognition in connection with extremal BHs, higher dime
sions, and the brane world.

In this paper we consider the Dirac equation in the n
horizon geometry of an extreme Kerr BH. This constitu
the most important region of the outerworld prior to the h
rizon of a Kerr BH enhanced with the extremality conditio
Extremal BHs are believed to have connection with
ground states of quantum gravity. This alone justifies,
spite of the absence of backreaction effects, the importa
of spin-12 particles on such backgrounds. The throat geo
etry is a completely regular vacuum solution with an e
hanced symmetry groupSL(2,R)3U(1). In many aspects
this solution shares common features with the AdS23S2 ge-
ometry arising in the near horizon limit of extreme Reissn
Nordström BHs. The behavior of massless scalar fields in
extreme Kerr throat has been considered, and it is found
certain modes with large azimuthal quantum number exh
superradiance@7#. This implies that the geodesics near t
horizon can escape to infinity carrying energy-moment
more than the amount that infalls. Our solution enables u
investigate a similar phenomenon with Dirac fields whi
turns out to be negative as far as superradiance is conse
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This result is in accordance with the treatment of the Di
equation in the general Kerr background in the absence o
exact solution@1#. The analysis of fermions in the Kerr
Newman background and the absence of superradiance
shown first by Lee@3#. Our aim is to reexamine this item—
not only by separating equations and deducing results
general grounds—but rather obtaining exact solutions
employing them. The advantage of confining ourselves to
near horizon alone bears fruits by allowing solutions e
pressible in terms of known polynomials. In the gene
background of the Kerr family of BHs even this much r
mains a problem beyond technical reach. Meanwhile, i
important to note that in contrast to the general Kerr met
the throat metric is not asymptotically flat. This differen
naturally shows itself in the potentials, too. In other word
the extreme Kerr throat metric represents such a local reg
that the geometry of interest is different than the geometry
the general Kerr metric. The steeply rising potential preve
any particle~or field! flow to infinity to make superradiance
Hence, we can mentally say that the behavior of particle
two geometries must be considered separately.

In order to separate equations we employ the well-kno
method due to Chandrasekhar so that we prefer to labe
set of equations as Chandrasekhar-Dirac~CD! equations. We
separate they ~axial! andu ~angular! dependence in such
way that the resulting axial equation remains independen
mass. This leads us to an exact solution irrespective of m
The angular equation on the other hand depends strictly
the mass. For the massless case~which we refer to as a
neutrino equation! the angular equation reduces to a confl
ent Heun equation@8#. When the mass is nonzero, howeve
we cannot identify our equations but instead we expr
them as a set of linear equations suitable for numerical an
sis.

The organization of the paper is as follows: in Sec. II w
review the near horizon geometry of an extreme Kerr B
and separation of variables of the CD equation. Solution
the axial equation follows in Sec. III. The massless and m
sive cases are discussed in Secs. IV and V, respectively.
reduction of our equations to one-dimensional Schro¨dinger-
type equations with their conserved currents and superr
©2004 The American Physical Society12-1
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ance is included in Sec. VI. The paper ends with a conclus
in Sec. VII.

II. EXTREME KERR THROAT GEOMETRY AND
SEPARATION OF DIRAC EQUATION ON IT

The extreme Kerr metric in the Boyer-Lindquist coord
nates is given by

ds25e2nd t̃22e2c~df̃1vd t̃ !22r2S dr̃2

D̃
1du2D , ~1!

where

e2n5
D̃r2

~ r̃ 21M2!22D̃M2sin2u
,

e2(n1c)5D̃ sin2u,

D̃5~ r̃ 2M !2,

v5
2M2r̃ e2n

D̃r2
,

r25 r̃ 21M2cos2u. ~2!

In the extreme case, both the total massM and the rotation
parametera become identical so that the angular moment
J5M2 and the extremal horizon corresponds tor̃ 5M . The
area of the horizon isA58pJ.

To describe the near horizon~or throat! limit of the ex-
treme Kerr metric, due originally to Bardeen and Horow
@7#, one can set

r̃ 5M1lr ,

t̃ 5
t8

l
,

f̃5f2
t8

2lM
, ~3!

and take the limitl→0. In these new coordinates, the thro
metric is obtained as

ds25FF r 2

r 0
2

dt822
r 0

2

r 2
dr22r 0

2du2G
2

r 0
2sin2u

F S df1
r

r 0
2

dt8D 2

, ~4!

where

F5
11cos2u

2
,

r 0
252M2. ~5!

We set further, for simplicity,r 0
251. This throat spacetime n

longer has asymptotic flatness.
12401
n

t

Finally, passing to more general coordinates,

y5
1

2r
@r 2~11t82!21#,

cott5
1

2t8r
@r 2~12t82!11#,

f5w1 lnUcost1y sint

11t8r
U , ~6!

we can write the throat metric~4! as

ds25FF ~11y2!dt22
dy2

11y2
2du2G2

sin2u

F
~dw1ydt!2.

~7!

The metric functions in Eq.~7! depend only on the vari-
ableu and thus as expected in the search for a solution of
Dirac equation the angular equation forms the crux of
problem. The coordinates2`,t,`, 2`,y,` cover the
entire, singularity free spacetime. The Killing vector]/]t is
not timelike everywhere; it admits a region~for sin2u
.0.536) in which it becomes spacelike. Therefore by a
ordinate transformation this particular region is transfor
able into the spacetime of colliding plane waves@9#. Re-
cently, it has also been shown that the metric~7! can be
obtained as a solution to dilaton-axion gravity which is sim
lar to the rotating BR spacetime@10#.

The singularity free character can best be seen by ch
ing the Weyl scalarC2 and the Kretschmann scalar:

C25
2

~11cos2u!3
@3 cos2u211 i cosu~cos2u23!#,

~8!

RmnrsRmnrs5
192 sin2u

~11cos2u!6
@~11cos2u!2216 cos2u#.

~9!

When the backreaction of the spin-1
2 test particles on the

background geometry is neglected, the Dirac field equatio
given by the CD equations@1# on a fixed spacetime~7!.

We choose a complex null tetrad$ l ,n,m,m̄% that satisfies
the orthogonality conditionsl •n52m•m̄51. We note that,
throughout the paper, an overbar denotes complex conju
tion. Thus the covariant one-forms can be written as

A2l 5AF~11y2!dt2
AF

A11y2
dy,

A2n5AF~11y2!dt1
AF

A11y2
dy,
2-2
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A2m5
iy sinu

AF
dt1AFdu1

i sinu

AF
dw,

A2m̄52
iy sinu

AF
dt1AFdu2

i sinu

AF
dw,

~10!

and their corresponding directional derivatives are

A2D5
1

AF~11y2!
] t1

A11y2

AF
]y ,

A2D5
1

AF~11y2!
] t2

A11y2

AF
]y ,

A2d52
1

AF
]u2

iAF

sinu
]w ,

A2d̄52
1

AF
]u1

iAF

sinu
]w . ~11!

One can determine the nonzero Newman-Penrose~NP!
complex spin coefficients@11# in the above null tetrad as

p52t5
sinu~cosu2 i !

~2F !3/2
,

«5g5
y

2A2F~11y2!
,

a52b5
2 cotu2 i sinu

2~2F !3/2
. ~12!

The CD equations in the NP formalism are then@1#

~D1«2r!F11~ d̄1p2a!F25 impG1 ,

~D1m2g!F21~d1b2t!F15 impG2 ,

~D1 «̄2 r̄ !G22~d1p̄2ā !G15 impF2 ,

~D1m̄2ḡ !G12~ d̄1b̄2 t̄ !G25 impF1 , ~13!

wherem* 5A2mp is the mass of the Dirac particle.
The form of the CD equations suggests that we introd

@1,6#

F15 f 1~y!A1~u!ei (st1mw),

G15g1~y!A2~u!ei (st1mw),

F25 f 2~y!A3~u!ei (st1mw),
12401
e

G25g2~y!A4~u!ei (st1mw), ~14!

where s is the frequency of the corresponding Compt
wave of the Dirac particle andm is the azimuthal quantum
number of the wave. Our convention is thats is always
positive.

Inserting for the appropriate spin coefficients~12! with
the spinors~14! into the four coupled CD equations~13!, we
obtain

~ Z̃f 1!

f 2

5 im*
g1

f 2

A2

A1

AF2
~LA3!

A1

,

~ Z̄̃ f 2!

f 1

52 im*
g2

f 1

A4

A3

AF2
~L1A1!

A3

,

~ Z̃g2!

g1

5 im*
f 2

g1

A3

A4

AF2
~£1A2!

A4

,

2
~ Z̄̃g1!

g2

5 im*
f 1

g2

A1

A2

AF2
~£A4!

A2

, ~15!

where the axial and the angular operators are

Z̃5A11y2]y1
1

2A11y2
@y12is#,

Z̄̃5A11y2]y1
1

2A11y2
@y22is#, ~16!

and

L5]u1
mF

sinu
1

1

2F S cos3u

sinu
1

i sinu

2 D ,

L15]u2
mF

sinu
1

1

2F S cos3u

sinu
1

i sinu

2 D ,

£ 5]u1
mF

sinu
1

1

2F S cos3u

sinu
2

i sinu

2 D ,

£ 15]u2
mF

sinu
1

1

2F S cos3u

sinu
2

i sinu

2 D , ~17!

respectively. One can easily see thatL5£̄ andL15£1.
Further, choosingf 15g2 , f 25g1 , A15A2, andA35A4

and introducing the separation constant asil, wherel is a
real constant, we can separate Dirac equation~15! into axial
and angular parts

Z̄̃g152 ilg2 , ~18!

Z̃g25 ilg1 ~19!
2-3
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and

LA31 im* A2AF5 ilA1 , ~20!

L1A11 im* A4AF5 ilA3 . ~21!

It is clear from Eqs.~18!, ~19! that g15ḡ2 .

III. SOLUTION OF THE AXIAL EQUATION

If we decouple the axial equations~18!, ~19! in Eq. ~18! to
get g1 , we obtain

Z̃~ Z̄̃g1!5l2g1 . ~22!

Similarly one can decouple the axial equations in Eq.~18!
for g2 . The explicit form of Eq.~22! can be obtained as

~11y2!g19~y!12yg18~y!

1
1

11y2 S 1

2
1s21

y2

4
2l2~11y2!1 isyDg1~y!50.

~23!

~Throughout the paper, a prime denotes a derivative w
respect to its argument.!

Thus the solutions of the decoupled equations forg1 , Eq.
~23!, andg2 ~not given here! can be found in terms of the
associated Legendre functions as follows:

g1~y!5c1Pl21/2
b̂ ~ iy !,

g2~y!5c2Pl21/2
b̂ ~2 iy !, ~24!

where

b̂5As21
s

2
1

1

4
~25!

andc1 , c2 are complex constants.
Here, as a result of the physical necessities, we consid

only the first kind of the associated Legendre functions.
though solutions~24! seem like complex solutions, it is pos
sible to draw real functions from the above associated L
endre functions. We may define

l5m̃1
1

2
with m̃51,2,3, . . . ~26!

and

s5
1

4
~A16ñ22321! ~27!

so that

b̂5ñ with ñ52m̃,2m̃11, . . . ,21,1, . . . ,m̃21,m̃.
~28!
12401
h
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In order to get the real functions for solutions~22!, the re-
quired condition ism̃2uñu5even number.

It is worth also drawing attention to the following re
marks.

~i! In the case ofl50, Eqs.~18!, ~19! reduce to simple
first order differential equations which admit the solutions

g1~y!5c3~11y2!21/4eis tan21(y),

g2~y!5c4~11y2!21/4e2 is tan21(y), ~29!

with c3 ,c4 complex constants.
These two solutions can be interpreted as represen

ingoing and outgoing waves.
~ii ! In the case ofl5 1

2 , we obtain the following complex
solutions from Eqs.~18!, ~19!:

g1~y!5c5S iy11

iy21D b̂/2

1c6S iy11

iy21D 2b̂/2

,

g2~y!5c7S 12 iy

11 iy D b̂/2

1c8S 12 iy

11 iy D 2b̂/2

, ~30!

where againcj with j 55,6,7,8 are complex constants.

IV. REDUCTION OF THE ANGULAR EQUATION TO THE
HEUN EQUATION: THE MASSLESS CASE

In this section, we shall show that the angular equatio
~20!, ~21! for the neutrino particles can be decoupled to t
confluent Heun equation. To the end that let us recons
Eqs.~20!, ~21! in an explicit form form* 50:

A38~u!1~K1G!A3~u!5 ilA1~u!, ~31!

A18~u!1~K2G!A1~u!5 ilA3~u!, ~32!

where

K5
1

2F S cos3u

sinu
1

i sinu

2 D , ~33!

G5
mF

sinu
. ~34!

By introducing the scalings

A1~u!5H1~u!expS 2E ~K2G!du D , ~35!

A3~u!5H3~u!expS 2E ~K1G!du D , ~36!

one gets

H18~u!5 ilH3~u!expS 2E 2Gdu D , ~37!
2-4
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H38~u!5 ilH1~u!expS E 2Gdu D . ~38!

If we decouple Eqs.~37!, ~38! in Eq. ~37! for H1(u), we
get

H19~u!12GH18~u!1l2H1~u!50. ~39!

In similar fashion, we find, forH3(u),

H39~u!22GH38~u!1l2H3~u!50 . ~40!

Introducing a new variableu5cos21(122z), Eqs. ~39!,
~40! turn out to be

H19~z!1S 22m1

1

2
1m

z
1

1

2
2m

z21
D H18~z!

2
l2

z~z21!
H1~z!50, ~41!

H39~z!1S 22m1

m2
1

2

z
1

m1
1

2

z21
D H38~z!

2
l2

z~z21!
H3~z!50. ~42!

Let us recall the general confluent form of Heun equat
@8#

H9~z!1S A1
B

z
1

C

z21DH8~z!2
DBz2h

z~z21!
H~z!50.

~43!

Drawing the similarities between Eq.~43! and Eqs.~41!,
~42!, we observe the following correspondences.

~a! For Eq.~41!,

D50, h5l2, A522m, B5
1

2
1m, C5

1

2
2m.

~44!

~b! For Eq.~42!,

D50, h5l2, A522m, B5m2
1

2
, C5m1

1

2
.

~45!

The confluent Heun equation~43!, with its accessory pa
rameterh, has two regular singular points atz50,1 with
exponents (0,12B) and (0,12C), respectively, as well as a
irregular singularity at infinity. In the vicinity of the pointz
50, its power series can be written as

H~D,A,B,C,h;z!5(
j 50

`

Wjz
j ~46!
12401
n

and the coefficientWj satisfies a three-term recurrence re
tion @8#

W051, W15
2h

B
,

~ j 11!~ j 1B!Wj 112A~ j 211D !Wj 21

5@ j ~ j 212A1B1C!2h#Wj . ~47!

It is also possible to obtain the power series solution in
vicinity of the point z51 by a linear transformation inter
changing the regular singular pointsz50 andz51. Namely,
z→12z.

Expansion of solutions to the confluent Heun equation
terms of the hypergeometric and confluent hypergeome
functions can be seen in@8#. In Ref. @8#, it is also shown that
the confluent Heun equation can be normalized to consti
a group of orthogonal complete functions and the conflu
Heun equation also admits quasipolynomial solutions
particular values of the parameters.

Since D50 in our case, it follows from the three-term
recurrence relation thatH(D,A,B,C,h;z) is a polynomial
solution if W1(h)50, whereW1 stands for a polynomial of
degree 1 inh. Namely , there is only one eigenvaluehi for h
such thatW1(hi)50 ~i.e., l50).

V. REDUCTION OF THE ANGULAR EQUATION INTO A
SET OF LINEAR FIRST ORDER DIFFERENTIAL

EQUATIONS: THE CASE WITH MASS

To complete our analysis of the angular equation, we n
to discuss the angular equation for the Dirac particles w
mass.

The angular equations~20!, ~21! can be rewritten in the
forms

LA31 impA11cos2u A15 ilA1 , ~48!

L1A11 impA11cos2u A35 ilA3 . ~49!

With substitutions

A1~u!5@A0~u!1 iB0~u!#expS E cos3u

2 sinuF
du D , ~50!

A3~u!5F ~M0~u!1 iN0~u!#expS E cos3u

2 sinuF
du D ,

~51!

we can transform Eqs.~48!, ~49! into a set of first order
differential equations

M08~u!1GM0~u!2
sinu

4F
N0~u!

52~l1mpA11cos2u!B0~u!,
2-5
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N08~u!1GN0~u!1
sinu

4F
M0~u!

5~l2mpA11cos2u!A0~u!,

A08~u!2GA0~u!2
sinu

4F
B0~u!

52~l1mpA11cos2u!N0~u!,

B08~u!2GB0~u!1
sinu

4F
A0~u!5~l2mpA11cos2u!M0~u!.

~52!

Introducing a new variablex5cosu and with the further
substitutions

M0~u!5
1

2
@m0~u!1a0~u!#, N0~u!5

1

2
@n0~u!1b0~u!#,

A0~u!5
1

2
@m0~u!2a0~u!#, B0~u!5

1

2
@n0~u!2b0~u!#,

~53!

we may obtain the final form of the set as linear first ord
differential equations

m08~x!1a1a0~x!1~a22a3!n0~x!50,

a08~x!1a1m0~x!1~a41a3!b0~x!50,

n08~x!1a1b0~x!2~a21a3!m0~x!50,

b08~x!1a1n0~x!2~a42a3!a0~x!50, ~54!

where

a152
m~11x2!

2~12x2!
, a25

1

2~11x2!
2

l

A12x2
,

a35
mpA11x2

A12x2
, a25

1

2~11x2!
1

l

A12x2
. ~55!

Although the system~54! does not seem to be solve
analytically, one may develop an appropriate numerical te
nique to study it. In the literature, there may exist such
teresting systems which are more or less of this type.

VI. REDUCTION OF THE DIRAC EQUATION TO A ONE-
DIMENSIONAL SCHRÖ DINGER-TYPE EQUATION

WITH CONSERVED CURRENT

It is possible to get more compact forms the axial eq
tions ~18!, ~19! by introducing the scalings

g1~y!5Z1~y!~11y2!21/4, ~56!

g2~y!5Z2~y!~11y2!21/4, ~57!
12401
r
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-

-

and applying the coordinate transformationy5tanu; the
axial equations then take the form

Z18~u!2 isZ1~u!52 ilXZ2~u!, ~58!

Z28~u!1 isZ2~u!5 ilXZ1~u!, ~59!

whereX5(A11y2)[1/cosu.
Letting

Z1~u!5
iP1~u!2P2~u!

2
, ~60!

Z2~u!5
iP1~u!1P2~u!

2
, ~61!

we can combine Eqs.~58!, ~59! to give

P18~u!52E1P2~u!, ~62!

P28~u!5E2P1~u!, ~63!

where

E15s1lX, ~64!

E25s2lX. ~65!

Decoupling is attained by introducing

P1~u!5AE1T~u!, ~66!

P2~u!5AE2S~u!, ~67!

where we obtain a pair of one-dimensional Schro¨dinger-type
equations

T9~u!1V1T~u!50, ~68!

S9~u!1V2S~u!50, ~69!

with the potentials

V15s22l2X2S 11
y2

4E1
2 D 1

lX

2E1
2 @s~112y2!1lX3#,

~70!

V25s22l2X2S 11
y2

4E2
2 D 2

lX

2E2
2 @s~112y2!2lX3#.

~71!

One can easily observe that fory→6` the potentials di-
verge. This result stems from the fact that our spacetim
not asymptotically flat.

To examine the existence of superradiance, one may c
sider the conserved net current of Dirac particles@1#—in
other words, the rate (]N/]t) in at which particles falling
through the horizon per unit time, which must be negat
for the superradiance to occur:
2-6
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S ]N

]t
D

in

52S E A2gJydudw DU
horizon

,0, ~72!

whereg is the determinant of the spacetime metric andJy is
the axial component of the neutrino particle current. We
call from metric~7! that we have

A2g5F sinu. ~73!

It is clear from transformations~3!, ~6! that the horizon of
metric ~7! corresponds toy→(2`). In other words, integra
~72! is taken overy→(2`).

In the more standard spinor formalism,Jy is introduced as
@1#

1

A2
Jy5sAB8

y
~PAP̄B81QAQ̄B8!, ~74!

where

sAB8
y

5
1

A2 SA11y2

F
0

0 2A11y2

F

D . ~75!

In this notation, the basic spinors defined byPA and Q̄A8

correspond to@6#

P05F1 , P15F2 ,

Q̄0852G2, Q̄185G1. ~76!

We evaluateJy as

Jy5A11y2

F
~ ug2u22ug1u2!~ uA1u21uA3u2!. ~77!

Assuming that the angular functionsA1(u) and A3(u) are
normalized to unity, the integral in Eq.~72! yields

E A2gJydudw53.246p~ uZ2u22uZ1u2!. ~78!

From Eqs.~60!, ~61!, ~62!, and~63!, we successively find
s

12401
-

uZ2u22uZ1u25
i

2
~P1P̄22P2P̄1!

5
2 i

2E1
@P1 ,P̄1#u , ~79!

where@P1 ,P̄1#u is the Wronskian.
Therefore, in order to check the existence of superra

ance, it will suffice to seek a solution forP1 at the horizon.
The reality that the potentialsV1 andV2 become infinite

at both the horizon andy→` leads us to think of the prob
lem as a problem of particles in an infinite potential we
Since the particles are bound inside the well, the princi
physical fact requires that the solutions of the wave eq
tions ~68!, ~69! must be identically zero at the walls~the
horizon andy→`). Clearly, the Wronskian vanishes at th
horizon and it follows that the number of particles exiting t
horizon per unit time is zero. Consequently, similar to t
general Kerr background@1,3#, there is also no superradianc
in the extreme Kerr throat geometry.

VII. CONCLUSION

Our aim in this paper was to do more than separating
Dirac equation in a sector of Kerr—namely, the extrem
Kerr throat geometry and obtain exact solutions if possib
This premise has mostly been accomplished and it defini
will contribute to the wave mechanical aspects of spin-1

2 par-
ticles prior infalling into the extreme Kerr BH.

In the general Kerr background the radial Dirac equat
was the harder part to be tackled compared with the ang
part @1#. In the present problem of the extremal Kerr thro
we have the opposite case: the axial part poses no m
difficulty than the angular part does. For the massless c
we overcome the difficulty and attain an exact solution
terms of Heun polynomials. Inclusion of mass prevents t
reduction and as a result we are unable to express the an
equation in terms of a set of known equations. This part
the problem can be handled numerically. Alternatively, t
angular equation is cast into a pair of Schro¨dinger-type equa-
tions. Unlike the scalar field case Dirac fields exhibit
superradiance. The charge coupling of a Dirac particle to
extremal Kerr-Newman BH in its near horizon limit ma
reveal more information compared to the present case. T
is the next stage of study that interests us.
s

@1# S. Chandrasekhar,The Mathematical Theory of Black Hole
~Clarendon Press, London, 1983!.

@2# E.G. Kalnins and W. Miller, Jr., J. Math. Phys.33, 286
~1992!.

@3# C.H. Lee, Phys. Lett.68B, 152 ~1977!.
@4# A. Zecca, J. Math. Phys.37, 874 ~1996!.
@5# S.O. Gilberto, Gen. Relativ. Gravit.33, 395 ~2001!.
@6# I. Sakalli, Gen. Relativ. Gravit.35, 1321~2003!.
@7# J. Bardeen and G.T. Horowitz, Phys. Rev. D60, 104030
~1999!.

@8# A. Ronveaux,Heun’s Differential Equations~Oxford Science,
Oxford, 1995!.

@9# M. Halilsoy, ‘‘Near horizon geometry of extreme black hole
and colliding waves,’’ gr-qc/0210055.

@10# G. Clement and D. Gal’tsov, Nucl. Phys.B619, 741 ~2001!.
@11# E.T. Newman and R. Penrose, J. Math. Phys.3, 566 ~1962!.
2-7


