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Solution of the Dirac equation in the near horizon geometry of an extreme Kerr black hole
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The Dirac equation is solved in the near horizon limit geometry of an extreme Kerr black hole. We decouple
equations first, as usual, into an axial and angular part. The axial equation turns out to be independent of the
mass and is solved exactly. The angular equation reduces, in the massless case, to a confluent Heun equation.
In general for a nonzero mass, the angular equation is expressible, at best, as a set of coupled first order
differential equations apt for numerical investigation. The axial potentials corresponding to the associated
Schralinger-type equations and their conserved currents are found. Finally, based on our solution, we verify in
a similar way the absence of superradiance for Dirac particles in the near horizon, a result which is well known
within the context of a general Kerr background.

DOI: 10.1103/PhysRevD.69.124012 PACS nunfer04.20.Jb

[. INTRODUCTION This result is in accordance with the treatment of the Dirac
equation in the general Kerr background in the absence of an
During the last three decades the study of spiparticles  exact solution[1]. The analysis of fermions in the Kerr-
on type-D spacetimes has attracted much interest and by noewman background and the absence of superradiance was
accumulated results are already available in the literaturghown first by Led3]. Our aim is to reexamine this item—
[1-3] (and references cited thergiiThe main reason for this not only by separating equations and deducing results on
is that all well-known black hole@BHs) are in this category general grounds—but rather obtaining exact solutions and
and their better Understanding involves a detailed analySiS @mp|oy|ng them. The advantage of Conﬁning ourselves to the
various physical fields in their vicinity. Dirac particles with near horizon alone bears fruits by allowing solutions ex-
(and withou} mass constitute one such potential Candidatebressible in terms of known polynomials. In the general
whose interaction and behavior around BHs may reveal i”background of the Kerr family of BHs even this much re-

formation of much significance. Tests of the Dirac equationmains a problem beyond technical reach. Meanwhile, it is

in spacetimes other than BHs have also started to arou?&portant to note that in contrast to the general Kerr metric,

interest for various reasons. From this token we cite th o : o
Robertson-Walker and Bertotti-RobinsdBR) spacetimes ‘ihe throat metrlq IS nqt asymptotlgally flat. This difference
naturally shows itself in the potentials, too. In other words,

[4—6]. The latter in particular has already gained much reCihe extreme Kerr throat metric represent h a local redion
ognition in connection with extremal BHs, higher dimen- € extreme e oat METC represents such a local regio

sions, and the brane world. that the geometry of interest is diﬁerer_ﬂ_than the geometry of
In this paper we consider the Dirac equation in the neathe gene_ral Ker_r metric. The_ s_te_eply rising potential prevents
horizon geometry of an extreme Kerr BH. This constitutesd"y particle(or field) flow to infinity to make superradiance.
the most important region of the outerworld prior to the ho-Hence, we can mentally say that the behavior of particles in
rizon of a Kerr BH enhanced with the extremality condition. fWO geometries must be considered separately.
Extremal BHs are believed to have connection with the In order to separate equations we employ the well-known
ground states of quantum gravity. This alone justifies, inmethod due to Chandrasekhar so that we prefer to label the
spite of the absence of backreaction effects, the importanceet of equations as Chandrasekhar-Di{@D) equations. We
of spin+ particles on such backgrounds. The throat geomseparate thg (axial) and # (angulaj dependence in such a
etry is a completely regular vacuum solution with an en-way that the resulting axial equation remains independent of
hanced symmetry grouBL(2,R) XU(1). In many aspects, mass. This leads us to an exact solution irrespective of mass.
this solution shares common features with the A4S, ge-  The angular equation on the other hand depends strictly on
ometry arising in the near horizon limit of extreme Reissnerthe mass. For the massless cdadich we refer to as a
Nordstran BHs. The behavior of massless scalar fields in theneutrino equationthe angular equation reduces to a conflu-
extreme Kerr throat has been considered, and it is found thant Heun equatiof8]. When the mass is nonzero, however,
certain modes with large azimuthal quantum number exhibitve cannot identify our equations but instead we express
superradiancg¢?]. This implies that the geodesics near thethem as a set of linear equations suitable for numerical analy-
horizon can escape to infinity carrying energy-momentunsis.
more than the amount that infalls. Our solution enables us to The organization of the paper is as follows: in Sec. Il we
investigate a similar phenomenon with Dirac fields whichreview the near horizon geometry of an extreme Kerr BH
turns out to be negative as far as superradiance is conserveghd separation of variables of the CD equation. Solution of
the axial equation follows in Sec. lll. The massless and mas-
sive cases are discussed in Secs. IV and V, respectively. The
*Email address: izzet.sakalli@emu.edu.tr reduction of our equations to one-dimensional Sdhnger-
"Email address: mustafa.halilsoy@emu.edu.tr type equations with their conserved currents and superradi-
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ance is included in Sec. VI. The paper ends with a conclusion Finally, passing to more general coordinates,

in Sec. VII.

Il. EXTREME KERR THROAT GEOMETRY AND
SEPARATION OF DIRAC EQUATION ON IT

The extreme Kerr metric in the Boyer-Lindquist coordi-

nates is given by
2v 12 2 = (1) 2 2 d?Z 2
ds?=e?"dt?—e?/(dp+ wdt)2—p T+d0 , (D

where
Ap?

2v__
e - ~ ~ 1
(r’+M?)2—AM?3sirfg

2+ =7 sir?e,

p?=T2+M?coH. 2

In the extreme case, both the total m&ésésand the rotation

1
_ 2 12y _

1
cott=——{[r?(1—t'?)+1],
2t'r

cost+y sint

6
1+t'r ©

¢=¢+In

we can write the throat metri@) as

d 2
(1+y2)dt2—1—y

sirfe
ds?=F 5 —d6?| - ——(de+ydt)?.
+y F

@)

The metric functions in Eq(7) depend only on the vari-
able # and thus as expected in the search for a solution of the
Dirac equation the angular equation forms the crux of the
problem. The coordinates o <t<c, —oo<y<w cover the
entire, singularity free spacetime. The Killing vectgiot is
not timelike everywhere; it admits a regioffor sir’é
>0.536) in which it becomes spacelike. Therefore by a co-

J=M?2 and the extremal horizon corresponds teM. The
area of the horizon i&n\=8J.
To describe the near horizqor throaj limit of the ex-

treme Kerr metric, due originally to Bardeen and Horowitz

[7], one can set

T=M+nr,

~_t/

t—x,

~ t’ 3
¢—¢—m, ©)

and take the limit\— 0. In these new coordinates, the throat

metric is obtained as

r2 r )
ds?=F —Zdt'z——zdl’z—l’odg2
r r
rasir?6 r 2
= de+—dt' | (4)
F 2
where
B 1+cos 6
=—
ré=2m2 (5)

We set further, for simplicityr,Sz 1. This throat spacetime no

longer has asymptotic flatness.

able into the spacetime of colliding plane waJ&s. Re-
cently, it has also been shown that the metii¢ can be
obtained as a solution to dilaton-axion gravity which is simi-
lar to the rotating BR spacetinj&0].

The singularity free character can best be seen by check-
ing the Weyl scalaf', and the Kretschmann scalar:

\pzzm[B cog6—1+i cosb(coso—3)],
8

R pro_w[(lJrcosza)z—16c0§0]

Krpe " (1+cog6)" '

(€)

When the backreaction of the spjntest particles on the
background geometry is neglected, the Dirac field equation is
given by the CD equationdl] on a fixed spacetimé?).

We choose a complex null tetrdt,n,m,m} that satisfies
the orthogonality conditions-n=—m-m=1. We note that,
throughout the paper, an overbar denotes complex conjuga-
tion. Thus the covariant one-forms can be written as

JF

V2l = VE(1+y?)dt— dy,

A F
v2n=VF(1+y?dt+ dy,
n=VF(1+y%) Ty y
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iy sing i sing Go=0a(Y)Ay( )™, (14)
V2m= dt+ VFdo+ de,
\/E \/E where o is the frequency of the corresponding Compton
wave of the Dirac particle anth is the azimuthal quantum
iy sin@ i sing number of the wave. Our convention is thatis always

J2m=— dt+Fdo—

F e

(10

and their corresponding directional derivatives are

V2D = ! 9+ 1+y2(7
R

1 Vi+y?
oy— 0
VFa+y?)  F

1 ik
\/Eéz—ﬁag—

1 |\/—
\/—5_—F199

One can determine the nonzero Newman-Pen(d&e
complex spin coefficientgl1] in the above null tetrad as

V2a=

—0,,
sing ¢

11
sing %o (1)

sing(cosf—i)
(2F)3/2

T=—T=

y

2\2F(1+y?)

8 2 cotd—isiné (12
a=— =
2(2F)%2

The CD equations in the NP formalism are théan
(D+e—p)Fy+(6+m—a)F,=iu,Gy,
(At+p—y)Fot+(6+B—1)F1=iupGy,
(D+e—p)Gy— (6+m— )Gy =i u,Fy,
(A+u=7)G1—(6+B—1)Go=ipyF1, (13

whereu* = \/—M is the mass of the Dirac particle.

[1.6]
Fi=f1(y)A(0)e' 7t me),
G1=01(y)Ay(h)e' e me),

Fo="fa(y)As(0)e' (0t me),

positive.

Inserting for the appropriate spin coefficier(ts2) with
the spinorg14) into the four coupled CD equatiori$3), we
obtain

(Zf) o A, (LA3)
=ip* — —\F- :
f, fo Ay Aq
(Zt,) g2 A (L*Ay)
i -,
fl f1 A3 A3
(Zg,) o Aq (7 A2>
=ip* — —\F-
g1 g1 As Ay
(Zgy)  fi A <£A4>
- —ipr— —F- , (15)
92 g2 A

where the axial and the angular operators are

1

2V1+y?

Z=V1+y%9,+ [y+2ia],

Z=\1+y%,+ 2o 16
\/+—[y ia], (16)

and

B mF 1 [cosd isind
_aa+sin0+ﬁ sin0+ 2

Lo mF+ 1 co§6+isin0
=% gina T 2F | sing 2

. mF 1 [cosSd isiné
_{99+sin0+ﬁ sing 2 |’

£he mF+ 1 [cosH ising L
=% Sine T 2F | sing 2 (17

respectively. One can easily see that£ andL* =
Further, choosing,=g,, f,=g4,, A;= A2, andA3 A4

The form of the CD equations suggests that we introduc@ng introducing the separation constant aswhere is a

real constant, we can separate Dirac equatidi into axial

and angular parts

Z9;=—1i\gy, (18)

Z9,=i\g; (19
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and In order to get the real functions for solutiof®2), the re-
_ _ quired condition ism— |n|=even number.
LAg+iu* ApVF=iNA, (20) It is worth also drawing attention to the following re-
marks.
L*A1+i,u*A4\/E=i)\A3. (21) (i) In the case o =0, Eqgs.(18), (19) reduce to simple

. first order differential equations which admit the solutions
It is clear from Eqgs(18), (19) thatg,=05.
gl(y) — C3(1+ y2) —l/4ei0' tanfl(y),
I1l. SOLUTION OF THE AXIAL EQUATION

_ 2\ — 14 —io tan 1(y)
If we decouple the axial equatio(8), (19) in Eq.(18) to Ga(y)=Ca(1+y") ™ e 17N, (29)

getg,, we obtain with c5,c, complex constants.

These two solutions can be interpreted as representing
ingoing and outgoing waves.

(i) In the case ok =%, we obtain the following complex
solutions from Eqs(18), (19):

’z(igl):)\zgl- (22

Similarly one can decouple the axial equations in @&)
for g,. The explicit form of Eq.(22) can be obtained as

(1+y*)gi(y) +2ygi(y) 0uy)=c iy+1\#2  fiy+1) AR
1 1 5 1 5 |y_1 6 |y_1 ’
y .
N N S AN 2 _ ) )
+1+y2 2+(r + 7 N (1+y9)+ioy|g.(y)=0. 1-iy b Ly i
23 ga2(y)=cy T+iy 8| 11y . (30)

(Throughout the paper, a prime denotes a derivative wittwhere agairc; with j=5,6,7,8 are complex constants.
respect to its argument.

Thus the SOlUtiO-nS of the deCOUpIEd equ-ationﬁpr Eq IV. REDUCTION OF THE ANGULAR EQUATION TO THE
(23), and o) (not given her?? can be found in terms of the HEUN EQUATION: THE MASSLESS CASE
associated Legendre functions as follows:
R In this section, we shall show that the angular equations
gl(y)zclpf_m(iy), (20), (21) for the neutrino particles can be decoupled to the
confluent Heun equation. To the end that let us reconsider

A . Egs.(20), (2) i licit f foru* =0:
Ga(Y)=CPE L (—iy), (24) gs.(20), (22) in an explicit form foru* =0
where AL(0)+ (K+G)Az(0)=iNA(6), (31)
. o 1 AL(8)+(K=G)A1(0)=iNA3(0), (32)
B=\/o*+=+— (25)
2 4 where
andc,, c, are complex constants. 1 [coSo isine
Here, as a result of the physical necessities, we considered K= ﬁ( e + 5 ) (33
only the first kind of the associated Legendre functions. Al-
though solution$24) seem like complex solutions, it is pos- F
sible to draw real functions from the above associated Leg- G= m _ (34)
endre functions. We may define sing
~ 1 . By introducing the scalings
A=m+ > with m=1,2,3 ... (26)
and A1(0)=H1(0)exp(—f (K—G)da), (35
1 -
a=Z(V16n2—3—1) (27 A3(¢9)=H3(0)exp<—f (K+G)d0), (36)
so that one gets
B=n with n:_m,—m+1,...,—1,1,...m—l,r(g.8) H1(6)=i)\H3(6)exr{—JZGd6), (37
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Hg(a):ile(a)exp( f ZGda). (39)

If we decouple Eqs(37), (38) in Eq. (37) for H.(6), we
get

HY(6)+2GH;(6)+\2H(6)=0. (39
In similar fashion, we find, foH (),
H5(6)—2GH5(8) +\2Hy(6)=0. (40)

Introducing a new variable=cos (1—22), Egs. (39),
(40) turn out to be

1 N 1
Hf 2 2 " 2" Hj
1(2)+ m+ T+ —] 1(2)
2
- mHl(Z)IO, (41)
1 1
m—-- m+z
H3(Z)+ —-2m+ 5 + ﬂ H3(Z)
)\2
— mHg(Z)ZO. (42)
Let us recall the general confluent form of Heun equation
(8]
Hi)+ [ At ot i) 2ot M hz)=0
(z)+ +E+; (Z)—m (z)=0.
(43)

Drawing the similarities between E@43) and Egs.(41),
(42), we observe the following correspondences.
(a) For Eq.(41),

1 1
(44)
(b) For Eq.(42),
1
D=0, h=\?2 A=-2m, B=m-, C:m+§.
(45)

The confluent Heun equatigd3), with its accessory pa-

rameterh, has two regular singular points at=0,1 with

PHYSICAL REVIEW 69, 124012 (2004

and the coefficienW; satisfies a three-term recurrence rela-
tion [8]

(J+D(+B)Wj 1= A~ 1+ D)Wy
=[j(j—1-A+B+C)—h]w;. (47)

It is also possible to obtain the power series solution in the
vicinity of the pointz=1 by a linear transformation inter-
changing the regular singular poirtss 0 andz=1. Namely,
z—1-z

Expansion of solutions to the confluent Heun equation in
terms of the hypergeometric and confluent hypergeometric
functions can be seen [8]. In Ref.[8], it is also shown that
the confluent Heun equation can be normalized to constitute
a group of orthogonal complete functions and the confluent
Heun equation also admits quasipolynomial solutions for
particular values of the parameters.

SinceD=0 in our case, it follows from the three-term
recurrence relation thatl(D,A,B,C,h;z) is a polynomial
solution if W, (h) =0, whereW; stands for a polynomial of
degree 1 irh. Namely , there is only one eigenvalbgfor h
such thatw;(h;)=0 (i.e., A\=0).

V. REDUCTION OF THE ANGULAR EQUATION INTO A
SET OF LINEAR FIRST ORDER DIFFERENTIAL
EQUATIONS: THE CASE WITH MASS

To complete our analysis of the angular equation, we need
to discuss the angular equation for the Dirac particles with
mass.

The angular equation@0), (21) can be rewritten in the
forms

LAg+ippV1+cog0 Aj=iNA,, (49)
LAy +ippV1+ o020 Ag=iNAq. (49)

With substitutions

. cos'd
Al(G)Z[AO(Q)-HBO(H)]EX[{fmd@), (50

_ cos'd
As(0)= (Mo(9)+|No(9)]9X%de¢9),
(51

we can transform Eq948), (49) into a set of first order

exponents (0,2 B) and (0,1 C), respectively, as well as an differential equations

irregular singularity at infinity. In the vicinity of the poirzt
=0, its power series can be written as

H(D,A,B,C,h;z)= >, W, (46)
i=o0

siné
M6(0)+GM0(«9)—FN0(0)

=—(N+pupV1+cog0)By(6),

124012-5



I. SAKALLI AND M. HALILSOY PHYSICAL REVIEW D 69, 124012 (2004

sin@ and applying the coordinate transformatigr-tanu; the
N§(6) +GNy(6) + EMO( 0) axial equations then take the form
Zi(u)—iogZy(u)=—iAXZy(u), 58
— (A= V1T C0Z0) Aol 0), (W) —ioZy(u) 2(U) (58)
sing Z5(u)+ioZy(u)=iNXZy(u), (59
AN(O)—G 6)— ——By(0
o(0) Aol6) 4F o(0) whereX=(\/1+—y2)Ellcosu.
Letting
=— (N +upV1+CcogO)Ny(6), _
iP1(u)—Py(u)
sing Zu)=——> (60)
Bo(6)— GBy( )+ FA(,(a)=(>\—Mp\/1+cosze)lvlo(a).
iPq(u)+Py(u)
(52 Zy(u)= ————2—~ 5 : (61)
Introducing a new variabl&=cos# and with the further
substitutions we can combine Eq$58), (59) to give
1 1 Pi(u)=—E_P,(u), 62
Mo(0) = 5[mo(0) +a0(0)],  No(0)= 5LNol 6)-+Do(0)], (W)=~ EPall) (62
L L Po(u)=E_Py(u), (63)
Ao(0)= E[mO( 0)—ag(0)], Bo(0)= E[no( 0) —bo(6)], where
53 E,=0c+\X, (64)
we may obtain the final form of the set as linear first order
differential equations E_=0c—\X. (65)
my(X) + a1ag(X) + (ay— az)ng(x) =0, Decoupling is attained by introducing
ap(X) + a1Mo(X) + (as+ as)bo(x) =0, Pi(uw)=VE,T(u), (66)
No(X) + a1bo(X) = (@p+ az)mg(x) =0, P,(u)=vVE_S(u), (67)
bo(X) + @1Ng(X) — (@s— az)ag(x)=0, (54)  where we obtain a pair of one-dimensional Scfinger-type
equations
where
T"(u)+V,T(u)=0, (68)
m(1+x2) 1 A (W+VaT(
oG=———, Q= - , /r _
2(1_X2) 2(1+X2) 1_X2 S (U)+V2$(U) 01 (69)
with the potentials
ppV1+x2 1 A P
a3=—2, ap= 5 + > (55) y2 AX
V1-x 2(1+x%)  V1-x V= g?—\2X? Lo +E[a(1+2y2)+>\x3],
Although the system(54) does not seem to be solved " i (70)
analytically, one may develop an appropriate numerical tech-
nigue to study it. In the literature, there may exist such in- y2 AX
teresting systems which are more or less of this type. V,o=02—\2X2?| 1+ i E[a(ﬂ— 2y2)— 1\ X3].
VI. REDUCTION OF THE DIRAC EQUATION TO A ONE- (71

DIMENSIONAL SCHRO DINGER-TYPE EQUATION

One can easily observe that fgr— = the potentials di-
WITH CONSERVED CURRENT

verge. This result stems from the fact that our spacetime is
It is possible to get more compact forms the axial equanot asymptotically flat.

tions (18), (19) by introducing the scalings To examine the existence of superradiance, one may con-
sider the conserved net current of Dirac partiJé$—in
91(Y)=Z4(y)(1+y?) 4 (56)  other words, the rated{N/dt);, at which particles falling
through the horizon per unit time, which must be negative
92(Y) =Z(y)(1+y?) ¥4 (57)  for the superradiance to occur:
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dN

—) - —( f J-grdede

<0,
horizon

ot (72

whereg is the determinant of the spacetime metric dids

the axial component of the neutrino particle current. We re-

call from metric(7) that we have
V—g=Fsiné.

It is clear from transformation§3), (6) that the horizon of
metric (7) corresponds tg— (—<). In other words, integral
(72) is taken overy— (—x).

In the more standard spinor formalisd,is introduced as

[1]

(73

1 - ey -1
— =0, (P"PE +Q Q") (74)

V2

1+y?
Ny i 0
1 F

o, =— . (75)
AB \/— O 1+y2
¥V F

In this notation, the basic spinors defined By and or
correspond tg6]

where

N

P°=F,, P!=F,,

Q¥=-G2, QY=cG1. (76)

We evaluate)’ as

1ty? 2 2 2 2
Y= = (192°= a1l (|AL*+|Ag?).  (77)

Assuming that the angular functios; () and Az(6) are
normalized to unity, the integral in E§72) yields

f V—09Xdode=3.246m(|Z,|?—|Z4]?). (79

From Egs.(60), (61), (62), and(63), we successively find

PHYSICAL REVIEW D69, 124012 (2004
i _ _
1Z,|%—|Z4|%= E(PIPZ_ P,Py)

= E[Plvsl]u1 (79)

where[P,P,], is the Wronskian.

Therefore, in order to check the existence of superradi-
ance, it will suffice to seek a solution fét; at the horizon.

The reality that the potential¢; andV, become infinite
at both the horizon ang— o leads us to think of the prob-
lem as a problem of particles in an infinite potential well.
Since the particles are bound inside the well, the principal
physical fact requires that the solutions of the wave equa-
tions (68), (69) must be identically zero at the wallghe
horizon andy—x). Clearly, the Wronskian vanishes at the
horizon and it follows that the number of particles exiting the
horizon per unit time is zero. Consequently, similar to the
general Kerr backgrour(d,,3], there is also no superradiance
in the extreme Kerr throat geometry.

VIl. CONCLUSION

Our aim in this paper was to do more than separating the
Dirac equation in a sector of Kerr—namely, the extremal
Kerr throat geometry and obtain exact solutions if possible.
This premise has mostly been accomplished and it definitely
will contribute to the wave mechanical aspects of spipar-
ticles prior infalling into the extreme Kerr BH.

In the general Kerr background the radial Dirac equation
was the harder part to be tackled compared with the angular
part[1]. In the present problem of the extremal Kerr throat
we have the opposite case: the axial part poses no more
difficulty than the angular part does. For the massless case,
we overcome the difficulty and attain an exact solution in
terms of Heun polynomials. Inclusion of mass prevents this
reduction and as a result we are unable to express the angular
equation in terms of a set of known equations. This part of
the problem can be handled numerically. Alternatively, the
angular equation is cast into a pair of Sdlirger-type equa-
tions. Unlike the scalar field case Dirac fields exhibit no
superradiance. The charge coupling of a Dirac particle to an
extremal Kerr-Newman BH in its near horizon limit may
reveal more information compared to the present case. This
is the next stage of study that interests us.
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