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Abstract

In this paper we test the forecasting ability of three estimated financial conditions indices (FClIs)
with respect to key macroeconomic variables of output growth, inflation and interest rates. We do this by
forecasting the aforementioned macroeconomic variables based on the information contained in the three
alternative FCIs using a Bayesian VAR (BVAR), nonlinear logistic vector smooth transition autoregression
(VSTAR) and nonparametric (NP) and semi-parametric (SP) regressions, and compare the results with the
standard benchmarks of random-walk, univariate autoregressive and classical VAR models. The three FCls
are constructed using rolling-window principal component analysis (PCA), dynamic model averaging
(DMA) in the context of a time-varying parameter factor-augmented vector autoregressive (TVP-FAVAR)
model, and a time-varying parameter vector autoregressive (TVP-VAR) model with constant factor
loadings. Our results suggest that the VSTAR model performs best in the case of forecasting
manufacturing production and inflation, while a SP specification proves to be the best for forecasting the
interest rate. More importantly, statistics testing for significant differences in forecast errors across models

corroborate the finding of superior predictive ability of the nonlinear models.
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1. Introduction

The global financial crisis of 2008 has sparked an interest in and demonstrated the need for better
measurement of financial shocks and their impact on the macroeconomy. To this end, recent literature has
explored the development of financial conditions indices (FCIs). In this regard, the reader is referred to
Koop and Korobilis (2014), Alessandri and Mumtaz (2014) and Thompson, Van Eyden and Gupta
(forthcoming (a)) for an overview of the recent literature on FCIs. One of the key objectives of designing
an FCl is for policymakers to use it as an early-warning tool of future crises.

Given this, Thompson et al., (forthcoming (a)) developed a financial conditions index for South
Africa based on monthly data over the period of 1966 to 2011, using a set of sixteen financial variables,
which include variables that define the state of international financial markets, asset prices, interest rate
spreads, stock market yields and volatility, bond market volatility and monetary aggregates. The authors
explore different methodologies for constructing the FCI, and find that rolling-window principal
components analysis (PCA) yields the best results in terms of in-sample predictability of output growth,
inflation and the interest rate. The intuition behind the rolling-window based FCI outperforming the full-
sample FCI was explained by indicating the fact that the importance of the sixteen variables included in the
FCI varied considerably over ten-year sub-samples during the period 1966-2011." In a different paper,
Thompson, Van Eyden and Gupta, (forthcoming (b)) tested whether the rolling-window estimated FCI
does better than its individual financial components in forecasting output growth, inflation and interest
rates. They used the concept of forecast encompassing to examine the forecasting ability of the individual
predictors and the FCI for the three key macroeceonomic variables controlling for data-mining. Thompson
et al., (forthcoming (b)) find that the rolling-window estimated FCI has out-of-sample forecasting ability
with respect to manufacturing output growth at short- to medium-horizons, but has no forecasting ability
with respect to inflation and interest rates.

Against this backdrop, the objectives of the current paper are twofold: (a) Due to the fact that the
weights the financial variables carry in the construction of the FCI vary over time, as indicated by
Thompson et al., (forthcoming (a)), we look at an alternative and more sophisticated statistical approach to
the rolling-window PCA method, for the construction of the FCI for South Africa based on the same set of
16 variables used by Thompson et al., (forthcoming (a)). More specifically, we follow Koop and Korobilis
(2014), and employ time-varying parameter factor-augmented vector autoregressive (TVP-FAVAR)
models. However, given that we work with a large set of TVP-FAVARs that differ in which financial
variables are included in the construction of the FCI, we augment the approach with Dynamic Model
Selection (DMS) and Dynamic Model Averaging (DMA) to accommodate for the large model space and
the intention to allow for model change. As indicated by Koop and Korobilis (2014), these methods

! Thompson et al, (forthcoming (a)) also developed a recursively generated FCI, but they found that this FCI
performed relatively poorly in terms of serving as an early warning system for South Africa. Further details can
be found in Thompson et al, (forthcoming (a)).
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forecast at each point in time with a single optimal model (DMS), or reduce the expected risk of the final
forecast by averaging over all possible model specifications (DMA), with model selection or model
averaging applied in a dynamic manner. More precisely, DMS helps in choosing different financial
variables for the construction of the FCI at different points in time, while the DMA constructs a FCI by
averaging over many individual FCIs constructed using different financial variables. Clearly then, the
weights used in this averaging procedure vary over time.

We compare the DMS and DMA based FCI with the rolling-window PCA FCI of Thompson ef al.,
(forthcoming (a)) and a standard full-sample FCI where all sixteen variables are included at each point in
time, by looking at the ability of the respective indices to predict the South African recession visually, but
the formal comparison is based on an extensive out-of-sample forecasting exercise across these three
alternative FClIs. Specifically, we look at the ability of the three alternative FCIs in predicting output
growth, inflation and interest rate over an out-of-sample period of 1986:1-2012:1, using an in-sample
period of 1966:2-1985:12. The starting point of the out-of-sample corresponds to the period of financial
liberalization in South Africa and was also used by Thompson et al., (forthcoming (b)). In addition to the
standard benchmarks such as a random-walk (RW), univariate autoregressive (AR) models and classical
VAR models, we also look at Bayesian VARs, nonlinear logistic vector smooth transition autoregression
(VSTAR) models, non-parametric (NP) and semi-parametric (SP) models, which incorporate the three
different FCIs along with the three key variables to be predicted. Note that in case of the VSTAR and in
the nonparametric part of the semi-parametric regressions, we use the FCI as the switch variable, or rather
the source of nonlinearity as in Alessandri and Mumtaz (2014). The decision to look at models that capture
the nonlinear effects of FCIs on the three macroeconomic variables emanate from the recent work by
Balcilar, Thompson, Gupta and Van Eyden (2014).

The nonlinear logistic VSTAR model used in this paper allows for a smooth evolution of the
economy, governed by a chosen switching variable between periods of high and low financial volatility.
Balcilar et al. (2014) found that the South African economy responds nonlinearly to financial shocks, and
that manufacturing output growth and Treasury Bill rates are more affected by financial shocks during
upswings. Inflation was found to respond significantly more to financial changes during recessions. In
addition to the forecasting exercise conducted over the recursively estimated out-of-sample period, we also
conduct an ex ante forecasting exercise, i.e., without updating the estimates of the parameters based on
recursive estimation of the models. This forecasting exercise is conducted over the period 2012:2-2014:2 to
gauge the ability of our best performing (over 1986:1-2012:1) FCIs and models in predicting the turning
points in the three variables of concern. To the best of our knowledge this the first attempt in developing a
DMS-DMA-based FCI for South Africa, and also comparing the ability of this FCI relative to the existing
FCIs in the South African literature in forecasting key macroeconomic variables based on a wider set of
linear and nonlinear models.

The rest of the paper is organized as follows: section 2 contains a discussion of the construction of

the three different FCIs in terms of the financial and real economic variables used in the construction



thereof as well as the techniques used. Section 3 discusses the methodologies used in the forecasting

exercises. Section 4 contains the empirical results, while section 5 concludes.
2. Data

This paper sets out to test the forecasting ability of three FCIs which are estimated using contrasting
methodologies. The variables making up each of the FCIs are the same in all three instances, and comprise
a set of sixteen monthly financial variables (see Table 1Fable—3 in the Appendix) over the period
1966M02-2012MO1. The three FCls are estimated as follows.

The first FCI is estimated in Thompson, et al. (forthcoming (a)) and is compiled using rolling-
window PCA applied to the set of financial variables, where a common factor, in this case FCI1,, is
extracted from a group of 16 variables, X;. FCI1; is furthermore purged of any endogenous feedback effects
related to output, inflation and monetary policy. Thompson, et al. (forthcoming (b)) find, using a forecast
encompassing approach, that FCI1, has good out-of-sample forecasting ability for the key macroeconomic
variable of growth in manufacturing production. Balcilar, et al. (2014) find, using a nonlinear logistic
VSTAR model which incorporates FCI1, that the South African economy responds nonlinearly to financial
shocks. Specifically, manufacturing output growth and Treasury Bill rates are more affected by financial
shocks during upswings, while inflation responds significantly more to financial changes during recessions.

The second FCI is compiled using DMA in the context of a TVP-FAVAR, which accounts for the
fact that the 16 variables making up the FCI can change in importance over time (see Thompson, et al.
(forthcoming (a)) for a discussion of the need for time-varying weights in an FCI). The process followed is
similar to Koop and Korobilis (2014), and the reader is referred to their paper for a discussion on DMA,
which “constructs an FCI by averaging over many individual FCIs constructed using different financial
variables” (2014:3). Specifically, if )X; is again a vector of 16 financial variables used in constructing the

FCI, the TVP-FAVAR can be represented as:

Xt == A:{yt +A{ft +ut

}]ﬁ:] = c.+B, [?:] + & (1)
with

Ae = A1 + g

Bt = Bt—1 + ¢ (2)

where A; = ((,1%’ ), (/‘L{ )’)’, B = (c',vec(B:)")" and f; is a latent factor interpreted as FCI2,.

As with Koop and Korobilis (2014:12-14), the model above “allows factor loadings, regression
coefficients and VAR coefficients to evolve over time according to a random walk, ... and all of the error
covariance matrices to be time-varying” using exponentially weighted moving average (EWMA) methods

combined with Kalman filter recursions.



The third FCI is also compiled using a time-varying VAR (as with FCI2,), however DMA is not used
to allow varying importance of the financial variables over time. Instead, FCI3, always includes all of the
16 financial variables, and their probabilities remain the same throughout the sample — i.e. the weights in
the FCI are constant. Specifically, in equation (2) a restriction is imposed such that 4, = A, which means
that even though the factor equation will have constant factor loadings, the VAR component of the model
will still have time-varying parameters. Koop and Korobilis (2014) refer to this restricted model as a
factor-augmented TVP-VAR, or a FA-TVP-VAR.

The three FCI series are subsequently used in a forecasting exercise, where the respective indices are
compared in terms of their ability to forecast manufacturing output, inflation and the Treasury Bill rate. All
data is sourced from the Global Financial Database (see Table 3 in Appendix).

Figure 1 shows that the three estimated FCIs exhibit similar trends — albeit at differing levels and
magnitudes. The rolling-window PCA-estimated FCI (FCI1,) appears to exhibit larger fluctuations than the
other two indices. A noticeable divergence is evident during the period of the global financial crisis (late
2000s) where the no-DMA-estimated FCI (FCI3,) does not appear to pick up the global recession. FCI1,

and the DMA-estimated FCI (FCI2,), however, both capture the recession — the former to a much larger

extent.
Figure 1. Comparison of three estimated FCIs
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3. Forecasting methodology

In this paper we test the forecasting ability of the three estimated FCIs with respect to the key
macroeconomic variables of output growth (y) — the month-on-month rate of change in South Africa’s
Manufacturing Production Index; a measure of inflation (7) — the month-on-month rate of change in the
consumer price index (CPI); and the 3-month Treasury Bill yield (7).

We do this by forecasting the aforementioned macroeconomic variables based on the information
contained in the three alternative FCIs using a Bayesian VAR, nonlinear logistic VSTAR and
nonparametric and semi-parametric regressions, and compare the results with the standard benchmarks of a
random-walk, autoregressive and classical VAR, where understandably, the RW and AR models
incorporate only one of the variables to be predicted, while the VAR includes all three variables chosen for

prediction.

3.1 Model descriptions

This section describes the models used in our empirical analysis.

Classical Vector Autoregressive (VAR) Model

The VAR model, though ‘atheoretical,’ is particularly useful for forecasting purposes. VAR models suffer
from an important drawback, since they require the estimation of many potentially insignificant
parameters. This problem of over-parameterization, resulting in multicollinearity and loss of degrees of
freedom, leads to inefficient estimates and large out-of-sample forecasting errors. One solution, often
adopted, simply excludes the insignificant lags based on statistical tests. Another approach uses near VAR
models, which specify unequal number of lags for the different equations.

An alternative approach to overcoming over-parameterization, as described in Litterman (1981),
Doan et al. (1984), Todd (1984), Litterman (1986), and Spencer (1993), uses a Bayesian VAR (BVAR)
model. Instead of eliminating longer lags, the Bayesian method imposes restrictions on the model’s
coefficients by assuming that these coefficients more likely approach zero than the coefficients on shorter
lags. If strong effects from less important variables exist, the data can override this assumption. The
researcher imposes restrictions by specifying normal prior distributions with zero means and small
standard deviations for all coefficients with the standard deviations decreasing as the lag length increases.
The researcher sets the coefficient on the first own lag of a variable equal to unity, unless the variable is
mean reverting or stationary. Generally, following Litterman (1981), the constant exhibits a diffuse prior.
This specification of the BVAR prior is popularly called the ‘Minnesota prior’ due to its development at
the University of Minnesota and the Federal Reserve Bank at Minneapolis.

We can represent a reduced form VAR using following linear regression specification:



Yt+l = sz + gz+1 (3)

where Y

.1 denotes an (m x I) vector of dependent variables (i.e., output growth, inflation, the measure of
short-term interest rate i.e., y, m, r;,) from time ¢t = /, ..., T; X, denotes a (k x /) vector, which may include

lags of the dependent variables, intercepts, dummies, trends, and exogenous regressors; B denotes an (m x
k) vector of VAR coefficients; and e~N(0,2), where X denotes a (mxm) covariance matrix.
We can rewrite equation (3) as a system of seemingly unrelated regressions (SURs) as follows,

where different equations in the VAR can include different explanatory variables:
Yt+1 = ZtlB+ gtﬂ (4)
where Y,,, andég, are defined in equation (3); z, =/, ® x] is a (m x n) matrix vector; and

P =vec(B) is an (nx1) matrix. When no parameter restrictions exist, equation (4) is an unrestricted VAR

model.

Bayesian Vector Autoregressive (BVAR) Model

For the BVAR based on the Minnesota prior, the means and variances of the Minnesota prior for § take
the form g~ N(»"”,17"" ) where VZ’,”’” =g,/p° and g5 Xsf applying to parameters on own lags and for
intercepts respectively, while 17/ = (g, Xs7 )/ (5] X p* ) is for parameters j on variable / # ; i =1,...,m.
5 f is the residual variance from the p-lag univariate autoregression for variable i. Following Banbura et al.,
(2010), we set the hyperparameters of the BVAR to the following values: g, = g, =0.1274, 0.1964 and

0.2111 under FCI1, FCI2 and FCI3 respectively, and g, =700 . Note that, g;(=g>) is obtained to ensure

that the average fit of the three variables of interest (output growth, inflation and the interest rate) matches
that of the in-sample fit of the VAR model without the specific FCI. To be specific, the BVAR includes a
specific FCI one at a time, over and above the variables to be predicted, and hence is made up of four

variables rather than three as in the classical VAR. Since we transform the variable used in the forecasting

exercise to induce stationarity, we set the prior mean vector b equal to zero for parameters on the lags of
all variables, including the first own lag (Banbura et al., 2010). The forecasts from the BVAR are based on
30,000 draws from the posterior, discarding the first 2,000 draws. Also, we set the lags in these models to
2, determined by the Bayesian information criterion (BIC). Besides the VAR and BVAR, we also use the
standard linear benchmarks, namely the random-walk (RW) and autoregressive (AR) model of order p in

our forecasting exercises.

Vector Smooth Transition Autoregressive (VSTAR) Model

Next, we turn our attention to the VSTAR model used by Balcilar ef al., (2014) to analyze the nonlinear



impact of financial conditions index on key South African macroeconomic variables. Define

X, =(x,x,,...,x,) as a (kxl) time-series vector. In our case, X; is defined as (4x1) time-series

vector comprising of output growth, inflation, interest rate and the specific FCI (i.e., y, =, r, FCI;;). We
specify the k-dimensional VSTAR model as follows:
p p
X, =(0,+).0, X, )+(0,,+>.0, X, )G(s;7,0)+¢, (5)
J=1 J=1

where ©.

o =12, are (kx1) vectors, ©, ., i=12, j=1,2,..,p, are (£x &) matrices, and

ij?
& =(&,,&,,..,&,) is a k-dimensional vector of white noise processes with zero mean and nonsingular
covariance matrix {2, G(*) is the transition function that controls smooth moves between the two regimes,
and s, is the transition variable.

The VSTAR model in equation (5) defines for two regimes, one associated with G(s,;,¢)=0 and

another associated with G(s,;,c)=1. The transition from one regime to the other occurs smoothly,
depending on the shape of the G(+) function. In this paper, we consider a logistic transition function

1

o ey =61

y >0, (6)

where ¢ is the estimate of the standard deviation of transition variable s, . The threshold parameter
¢ determines the midpoint between two regimes at G(¢;7,¢)=0.5. The parameter y determines the

speed of transition between the regimes with higher values corresponding to faster transition.
To specify the VSTAR model, we follow the procedure presented in Terasvirta (1998) (see, also
Lundbergh and Terasvirta, 2002; Van Dijk and Franses, 2003). First, we specify the lag order of p =2.
Second, we test linearity against the VSTAR alternative. Since the VSTAR model contains
parameters not identified under the alternative, we follow the approach of Luukkonen et al. (1988) and

replace the transition function G(-) with a suitable Taylor approximation to overcome the nuisance

parameter problem. The testing procedure selects a logistic VSTAR model with a single threshold, which

we maintain for the univariate case as well.
Third, we select the transition variable s . To identify the appropriate transition variable, we run the
linearity tests for several candidates, s,,,s,,,...,5,,, and select the one that gives the smallest p-value for the

test statistic. Here, we consider lagged values of only the FCI;s for lags 1 to 2 as the candidate transition

variable, to check whether allowing the FCI to nonlinearly affect the variables of interest improves our
forecasts relative to the linear models. Let S, =X where x equals the various FClIs in turn. We test
linearity with these variables for delays 4 =1,2. We obtain the smallest p-value with s, = FCI,,_, and
d =2. Note that, in this regard, we follow Alessandri and Mumtaz (2014), by allowing the
nonlinearity to emerge from the FCIs. Explicit analytical point formula for obtaining forecasts do not
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exist for mnon-linear (V)AR models even with a Gaussian disturbance term when

h>2, as [ f(x)]# f[E(x)], where & is the number of steps-ahead for the forecasts.” That is, a

nonlinear function involving a stochastic variable will arise for /> 2 and expected value of the forecast

function will depend on the unknown stochastic term, since E[ f(x)]# f[E(x)].

Nonparametric (NP) and Semi-Parametric (SP) Models

We now consider nonparametric and semi-parametric regression approaches for forecasting output growth,
inflation and the interest rate. We consider two competing multivariate models, and examine their
forecasting abilities. These specifications are as follows:

Model 1: Nonparametric regression model (NP model)

jx :ﬁ()/f—lﬂjr—2>72 7[ ﬂ FCI;/ l’F(:[z; 2) t’ (7)
ﬂ; =f20/¢71>)/;72>7; ﬂ- ﬂ FCI:; 1>FCIz/ 2)+€m; (8)
7; :ngtA’jf—Z”; 7[ 7[ FCIzt l’FC[zt 2)+ (9)

Model 2: Semi-parametric regression model (SP model)
%} +0'/l})/l 1+% JI 2+0'/lﬁ7z. +a27rﬂ. +alr7t‘ 1+abr +gl( i1 zt2)+ )i’ (10)
ﬂ; :IBOH +ﬂl_)u)/tfl +ﬂ2_y.)/l72 +18171'7Z;71 +1827r7z;72 +1811 +ﬂZr f —2 +<g2( i1 it 2)+ (1 1)

n=4A, +21 /e 1+ﬂ2 JoH AT AT A+ A+ 4 (B, i1 1;2)+g (12)

Here, fi(.) and g(.), i=1,2 and 3, denote unknown functions that the data estimate. The &, i=y, r, 7,
are mean-zero errors with unchanged variance over the entire data set. The parameters ao;, Soi, Aoi; i Pris
Ay and oy, B, Az, i=V, ¥, 7, are constants estimated from the data. Therefore, we can also describe the
semi-parametric model as a partially linear nonparametric model, with the nonlinearity coming from the
lagged-values of the FCIs — as with the VSTAR, this is to check if allowing the FClIs to have a nonlinear
impact on the key variables improves our forecasts.

In the time-series context, nonparametric regressions can lead to issues with correlated errors (e.g.,
Opsomer, et al. 2001). For instance, the data-driven band-width selection techniques in the kernel-
smoothing methodology can break down in this context. In such cases, we could use a correlation-
corrected method called CDPI to yield stable results. In our case, for Models 1 and 2, two lags guarantee
the absence of autocorrelation. As a result, the responses in equations (7) to (9) and (10) to (12) exhibit
uncorrelated errors. Also, stationarity checks ensure constant variances in each model. Finally, we compare

such models based on their prediction errors or forecast performances.

2 Details of the bootstrapping procedure are available upon request from the authors. We implement all
computations of the STAR models with the RSTAR package (Version 0.1-1) in R developed by the one of the
authors of this paper.

3 We use the np package in Rto carry out the regressions outlined above.
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We check the goodness of fit using Bootstrap testing and find p-values close to 1 for the models
used. When estimating the unknown functions fi(.) and g;() in case of the nonparametric models, we use a
local linear regression, using A/C,. bandwidth selection criterion. In this case, we also examine all options
for the choice of kernels and find that the Gaussian kernel of order 2 works the best yielding the highest R-
squared values and smallest MSE. We use the optimum bandwidth chosen by the software. In case of the
semi-parametric modeling, we first compute data-driven bandwidths of the kernels to use in the fi(.) and
gi(-) parts of the model, since bandwidth selection for lower levels of tolerance takes an extremely long
time. We use a local-linear, and not local-constant, regression type, as the local-linear type yields smaller
R-squared values.* Again, for the fi(.) and g;(.) parts of the model, we use Gaussian kernels of order 2,
because they yield the highest R-squared values and the lowest MSE. We generate the forecasts from the
NP and SP models using a recursive algorithm. That is, the forecast from origin » is generated for period
n+1, and forecast values for period n+1 is inserted for unobserved values when forecasting for period n+2,

and so forth.

4. Empirical results

4.1 Posterior inclusion probabilities

Before considering the forecasting results, the posterior inclusion probabilities of each of the financial
variables in FCI2, are presented in Figure 2. This figure enables us to determine (a) if each of the 16
financial variables is being allocated differing weights at different points in time’; and (b) if so, which
financial variables are more relevant in the FCI construction.

It is interesting to note that the inclusion probabilities for all of the financial variables, bar one,
show, on average, an increasing trend over the sample. The exception is the Rand-Dollar exchange rate,
which has a relatively stable (and significant in size) probability of between 0.3 and 0.6 throughout the
sample. The exchange rate has traditionally been considered a central variable of concern in the financial
conditions literature. The Bank of Canada (BOC) pioneered work on broader financial condition measures
in the mid-1990s, when it introduced its monetary conditions index (MCI). For the BOC, the exchange rate
was the most important additional variable. Its MCI, therefore, consisted of a weighted average of its
refinancing rate and the exchange rate. The weights were determined via simulations with macroeconomic
models designed to quantify the relative effect of a given percentage change in each variable on GDP or

final demand. In the case of Canada, a relatively open economy, the exchange rate was given a weight

* The decision to use the local linear regression method instead of the kernel-smoother methods adopted by Arora et
al. (2011) in forecasting US real GDP based on nonparametric method, emanates from the fact that the former does
not suffer from the problem of biased boundary points.

> It should be noted here that in order for the DMA model to compute, one of the 16 financial variables needs to
remain fixed. As with Koop and Korobilis (2014), we set stock returns (D_LALSI) as fixed. Therefore, the inclusion
probabilities for the remaining 15 variables indicate whether they contain information useful for forecasting beyond
that which is provided by stock returns.
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equal to about one-third that of the refinancing rate (Freedman, 1994). With South Africa also being a
small open economy, one would likewise expect a fairly constant and significantly large weight, and
therefore probability of inclusion.

The three volatility measures included in the FCI (house price volatility (HOUSEP VOL),
government bond volatility (GBINDEX VOL) and stock return volatility (ALSI_VOL)) all exhibit rapidly
rising inclusion probabilities. The four spread measures exhibit similarly increasing inclusion probabilities
until approximately the mid- to late-1980s, where after they remain relatively steady. Early research on
financial conditions centred on the slope of the yield curve and has been found to outperform other
financial variables in terms of predicting recessions (Hatzius et al., 2010), while stock market performance
has been found to be a useful recession predictor as well (Stock & Watson, 1989; Estrella & Hardouvelsis,
1991). The commercial paper-Treasury bill spread has been seen as a measure for credit risk, and been
used as a leading indicator of output since the late 1980s (Stock and Watson, 1989). The period of stability
in the probabilities of inclusion for the spread measures coincides with the era of financial liberalisation in
South Africa. The political transition to a democracy during the first half of the 1990s, also contributed to
greater stability in financial markets as well as the real sector of the economy.

Credit and money variables (D LPSCE and M3 GR) show trends of decreasing inclusion
probabilities in the 2000s, as do variables related to the housing market (HOUSEP VOL and
D _LHOUSEP). The decline in inclusion probabilities in credit and money variables during the 2000s can
likely be attributed to the fact that South Africa introduced inflation targeting in February 2000 following a
monetary-aggregate targeting framework. (Between 1960 and 1998 monetary policy frameworks included
exchange rate targeting, discretionary monetary policy, monetary-aggregate targeting and an eclectic
approach.) By 2000 the probability of inclusion of the house price variable exceeded 0.5. During the
housing boom (from 2000 to 2006), house prices rose by an average of 20% annually. Riding on the back
of an empowered middle class, house price peaked in October 2004 with 35.7% annual growth (32.5% in
real terms). The probability of inclusion increased to above 0.6 during the same period. However in Q1
2008 the boom ground to a halt, following the global financial crisis. Between 2008 and 2011 house prices
fell for four consecutive years by 9%, 5.4%, 1% and 5.1% in real terms, respectively. The probability of
inclusion also fell back to 0.4 during this time. Only in 2012 did the housing market bounce back with
house price rising by 3.2% in real terms, however, this turnaround does not reflect in the graph as our

sample ends in 2012M1.)
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4.2  Out-of-sample forecasting

Table 1 provides the results of the various forecasts conducted with respect to the key macroeconomic
variables of output growth, inflation and interest rates. The measure of forecast performance used is the
root mean squared error (RMSE) which is evaluated over the period 1987:01 to 2012:01 forh =1, 2,..., 24
forecast horizons. The RMSE results in Table 1 are reported relative to the RW RMSE. In the case of
manufacturing output growth, it is interesting to note that on average, the nonlinear methods provide
superior forecasts to the linear models. In terms of the linear approaches, the BVAR using FCI3; is slightly
superior to the BVAR using FCII, (at four decimal points) in providing the best forecast. The best NP and
SP forecasts are both achieved using FCI2,. The best VSTAR forecast is achieved using FCI1,. Overall, the
best forecast of manufacturing output growth is achieved using FCI1, in a nonlinear VSTAR.

In terms of forecasting inflation — a notoriously autoregressive and persistent variable — it is
unsurprising that the best linear forecast is provided by the AR model. In terms of NP and SP models,
FCI2 provides the best SP forecasts. The best VSTAR forecast is achieved using FCI2,, and this also
represents the best inflation forecast overall.

The best linear forecast of the Treasury Bill rate is achieved by using FCI3, in the BVAR. FCII,
provides the best NP forecast, while FCI3, presents both the best SP forecast and the best VSTAR forecast.
Overall, the best forecast of the Treasury Bill rate is achieved using FCI3, in a SP model.

Figure 3 contains ex-ante forecasts for the three models selected as the best performing overall for
manufacturing growth, inflation and Treasury Bill rate according to RMSE measures. Ex ante forecasts are

carried out over the period 2012:01 to 2014:01.

Table 1. Out-of-sample forecasting for x;: FCI (Sample: 1986:01 — 2012:01) — RMSE statistics

under differing models relative to RW model

Horizon (h) months ahead: 1m 6m 12m 24m Ave 1 Ave 2
X¢¢ Manufacturing production growth as dependent variable

RW 3.883 3.058 3.131 3.484 3.389 3.266
AR 0.564 0.737 0.722 0.647 0.668 0.696
VAR 0.556 0.733 0.719 0.647 0.664 0.693
BVAR (Rolling FCI) 0.550 0.734 0.719 0.647 0.663 0.693
BVAR (DMA) 0.558 0.733 0.719 0.647 0.664 0.694
BVAR (no DMA) 0.548 0.733 0.719 0.647 0.662 0.693
NP (Rolling FCI) 0.493 0.745 0.787 0.671 0.674 0.744
NP (DMA) 0.523 0.740 0.721 0.653 0.659 0.700
NP (no DMA) 0.505 4.533 0.876 0.843 1.689 1.167
SP (Rolling FCI) 0.489 0.739 0.735 0.657 0.655 0.704
SP (DMA) 0.522 0.743 0.713 0.649 0.657 0.697
SP (no DMA) 0.494 0.748 0.757 0.650 0.662 0.697
VSTAR (Rolling FCI) 0.523 0.735 0.721 0.646 0.656 0.692
VSTAR (DMA) 0.536 0.735 0.720 0.647 0.660 0.693
VSTAR (no DMA) 0.517 0.738 0.723 0.647 0.656 0.693
x¢: Inflation as dependent variable

RW 0.565 0.623 0.622 0.606 0.604 0.654
AR 0.841 0.854 0.865 0.906 0.867 0.817
VAR 0.846 0.884 0.894 0.959 0.896 0.847
BVAR (Rolling FCI) 0.850 0.886 0.894 0.959 0.897 0.848
BVAR (DMA) 0.827 0.873 0.892 0.957 0.887 0.841
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BVAR (no DMA) 0.832 0.883 0.897 0.957 0.892 0.846
NP (Rolling FCI) 0.768 0.859 0.902 1.005 0.884 0.852
NP (DMA) 0.773 1.591 0.857 0.913 1.034 0.841
NP (no DMA) 0.770 1.144 0.915 1.040 0.967 0.935
SP (Rolling FCI) 0.761 0.835 0.876 0.932 0.851 0.849
SP (DMA) 0.768 0.844 0.859 0.911 0.846 0.841
SP (no DMA) 0.754 0.886 1.105 0.924 0.917 0.876
VSTAR (Rolling FCI) 0.777 0.854 0.878 0.949 0.865 0.820
VSTAR (DMA) 0.781 0.835 0.854 0.886 0.839 0.797
VSTAR (no DMA) 0.788 0.846 0.876 0.941 0.863 0.824
X¢: Treasury Bill as dependent variable

RW 0.520 1.790 2.722 3.911 2.236 2.598
AR 0.938 0.972 0.973 0.964 0.962 0.968
VAR 0.948 0.956 0.961 0.987 0.963 0.967
BVAR (Rolling FCI) 0.952 0.960 0.964 0.989 0.966 0.971
BVAR (DMA) 0.948 0.975 0.972 0.965 0.965 0.970
BVAR (no DMA) 0.931 0.926 0.919 0.923 0.925 0.923
NP (Rolling FCI) 0.637 1.091 0.965 1.089 0.946 0.954
NP (DMA) 0.635 1.182 1.065 0.962 0.961 1.013
NP (no DMA) 0.604 1.295 1.170 1.159 1.057 1.202
SP (Rolling FCI) 0.631 0.818 0.854 0.986 0.822 0.894
SP (DMA) 0.644 0.891 0.880 0.900 0.829 0.883
SP (no DMA) 0.600 0.870 0.813 0.854 0.784 0.842
VSTAR (Rolling FCI) 0.894 0.926 0.902 0.909 0.908 0.910
VSTAR (DMA) 0.902 0.947 0.931 0.886 0.917 0.922
VSTAR (no DMA) 0.865 0.837 0.825 0.831 0.840 0.833

Notes: Entries corresponding to RW is the absolute RMSEs for the model, rest of the entries are relative to the RW. Ave 1 refers to the average
over the columns in this table. Ave 2 refers to the average RMSE over all forecast horizons (including those not reflected in the table).

Figure 3. Ex ante forecasts of manufacturing production growth, inflation and Treasury Bill yields
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4.3 Weighted Diebold-Mariano (DM) Tests

To further assess the forecast accuracy of the various models above, we conduct pairwise Diebold and
Mariano (1995) tests. Specifically, we use a modified version of this test developed by Harvey, Leybourne
and Newbold (1997). This modified DM test is based on a weighted loss function, and basically compares
the loss differences between a pair of models to determine if the average is significantly different from
zero. Under the null hypothesis of equal forecast performance between a benchmark model, 0, and an

alternative model, i, the expected loss differential, d; ;, is given by:
E[di,t] = E[Lgft - Ll?,)t] =0
where the weighted loss function is £}, = wteft. Van Dijk et al., (2003) assign heavier weights to extreme
events, such that:
* Wiprr =1-— F(y,) where F(-) represents the cumulative distribution of the variable being
forecasted, y;, so as to impose heavier weights on the left tail of the distribution.

*  Wrightt = F (y,) where heavier weights are imposed on the right tail of the distribution.

1-F(ye)

®  Wigilt = =
tailbt ™ max(F(vy))

where F(*) represents the density of y;, so as to impose heavier weights on

both tails.
The modified DM-test statistic (MDM) from Harvey, et al. (1997) is used to “ascertain whether empirical
loss differences between two contending models are statistically significant, ... (i.e.) compares the forecast
accuracy of two models at a time” (Bahramian, et al., 2014:5) and is given as:

P+1—-2h+P th(th—-1)
P

1
2
MDM = ( > P (d)zd;

where / is the forecast horizon and V(d;) is the variance of d;¢, and the MDM is compared to a t-

distribution with P — 1 degrees of freedom.
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O0Fables 3 through 14 in the appendix present the results of the MDM tests of the best performing
linear, NP, SP and VSTAR models for inflation, manufacturing production growth and the Treasury Bill
rate respectively, under boom, recession, uniform and tail weighting schemes. Based on the RMSE results
contained in Table 1, the best linear model for inflation is the simple AR model, while the BVAR model
using FCI3; (no DMA) is the best model for both manufacturing output growth and Treasury Bill rate. (For
manufacturing output growth, the forecasting performance for the BVAR with rolling-window FCI and no
DMA FCI is virtually the same, but BVAR with no DMA FCI has a marginally lower RMSE when
considering more decimal digits.)

Tables 3, 4, 5 and 6 report results from the MDM test which compares the forecasting performance
of the linear, NP, SP and VSTAR models of inflation based on different weighting schemes and across
different forecasting horizons. Under boom weights and at a short horizon (h=1), SP models significantly
outperform linear and NP models, while at longer horizons (h=24) NP models are outclassed by both linear
and VSTAR models. When using recession weights, NP, SP and VSTAR models outperform the linear
model at a one-month horizon, while the linear model is also outperformed by SP and VSTAR models at
the 6-month horizon. At longer horizons (h=24), NP models are outperformed by all rival models. At this
horizon the VSTAR model also displays better forecasting abilities when compared to linear and SP
models. Similar results are found when a tail or uniform weighting scheme is employed — at short
horizons, (h=1), all models are significantly better than the linear model while at long horizons NP is
outperformed by other models. For the uniform weighting scheme, the VSTAR model outperforms all rival
models at a 24-mont horizon. These results are supportive of the out-of-sample forecasting results reported
in section 4.2, where the VSTAR model is reported to have the best inflation forecast overall.

Tables 7, 8, 9 and 10 repeat the comparative analysis for manufacturing output growth. Under boom
weights, the VSTAR model significantly outperforms all other models at a horizon of 24 months. At a 12-
month horizon, it also outperforms all rival models, although the null is only rejected at a 10 per cent level
of significance for the linear model. The same holds true for a 6-month horizon, with a rejection of the null
for the NP model. The same holds true when a tail weighting scheme is employed, namely that the VSTAR
model significantly outperforms all other models, in this case for a short forecasting horizon. When using
recession weights, all models outclass the linear model at short horizons (h=1). Under a uniform weighting
scheme there are no significant differences between models’ forecasting ability, except for the linear model
being outperformed by other models at a one-month horizon. Once again, results support the finding in
section 4.2 that the VSTAR model has the best overall forecast for manufacturing output growth.

Lastly, tables 11, 12, 13 and 14 report the MDM results, comparing different models for the
Treasury Bill rate, again using different weighting schemes and different horizons. Under boom weights at
short horizons (h=1), both linear and VSTAR models are significantly outperformed by SP and NP models.
The SP model in turn outperforms the NP model. At longer horizons (h=6, 12 and 24), the null is only
significantly rejected for the linear model as benchmark and VSTAR as alternative model, with VSTAR

outperforming the linear model. With a recession weighting scheme, the SP model performs significantly
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better than linear and VSTAR models at short (h=1) horizons. It also outperforms the linear model at a 6-
month horizon and the NP model at a 12-month horizon. At short horizons the NP model significantly
outperforms the linear and VSTAR model, whereas the VSTAR displays significantly better forecasting
performance at medium to longer (h=12, 24) horizons. When using tail weights, only SP model displays
better forecasting performance than other models at short horizons (h=1), while linear models are
outperformed by VSTAR models at longer horizons (h=12, 24). For a uniform weighting scheme, once
again SP models significantly outperform all rival models at a short forecasting horizon (h=1), with
VSTAR showing a significantly better performance than linear models at longer horizons. Out-of-sample
forecasting analysis suggested that the SP model achieves the best results, which result is supported by the
MDM tests for the Treasury bill rate.

5 Conclusions

In this paper we set out to compare the forecasting ability of three estimated financial conditions indices
(FCIs) with respect to key macroeconomic variables of output growth, inflation and interest rates. We do
this by forecasting the aforementioned macroeconomic variables based on the information contained in the
three alternative FCIs using a Bayesian VAR, nonlinear logistic VSTAR and nonparametric and semi-
parametric regressions, and compare the results with the standard benchmarks of random-walk, univariate
autoregressive and classical VAR models.

The three FCls are constructed using rolling-window principal component analysis (PCA), dynamic
model averaging (DMA) in the context of a time-varying parameter factor-augmented vector
autoregressive (TVP-FAVAR) model, and a time-varying parameter vector autoregressive (TVP-VAR)
model with constant factor loadings.

Using RMSE as model selection criteria our out-of-sample forecasting results suggest that the
VSTAR model performs best in the case of forecasting manufacturing production and inflation, while a SP
specification proves to be the best for forecasting the interest rate. Weighted Diebold-Mariano test results
lend support to these findings. Overall, our results point to the importance of allowing nonlinear effects of

the FCI on macroeconomic variables in order to produce more accurate forecasts relative to linear models.
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Appendix

Table 1.  Variables used to construct and test the FCI

Name | Description | Transformation(s)

FCI construction

ALSI_VOL Stock exchange volatility (South Africa) Square of the first log difference
of the All-Share Index

CONFUSN University of Michigan US Consumer Sentiment Index N/A

D LALSI FTSE/JSE All-Share Index (South Africa) Seasonally adjusted, deflated by
South African CPI, first log
difference

D LHOUSEP Absa House Price Index (medium house size 141m’— Deflated by South African CPI,

220m?) (South Africa) first log difference

D LPSCE Credit extended to domestic private sector (South Africa) Deflated by South African CPI,
first log difference

D LRD Rand-US Dollar exchange rate Seasonally adjusted, deflated by
relative US-SA CPI, first log
difference

D _LSP500 S&P500 Composite Price Index Seasonally adjusted, deflated by
US CPI, first log difference

DIVN Johannesburg Stock Exchange dividend yield (South Seasonally adjusted

Africa)
FED US Federal Funds market rate Deflated by US CPI

GBINDEX_VOL

Government bond volatility (South Africa)

Square of the first log difference
of Government Bond Return
Index

HOUSEP_VOL House price volatility (South Africa) Square of the first log difference
of House Price Index
M3 GR Month-on-month growth in M3 money supply (South Seasonally adjusted, deflated,

Africa)

month-on-month rate of change

SPREADN_BOND

Long-term bond spread between Eskom Corporate Bond
yield and 10-year Government Bond yield (South Africa)

N/A

SPREADN MORT Mortgage spread between mortgage loan borrowing rate N/A
and 3-month Treasury Bill yield (South Africa)

SPREADN_ TBILL Short-term spread between prime overdraft rate and 3- N/A
month Treasury Bill yield (South Africa)

SPREADN_TERM Term spread between 10-year Government Bond yield and | N/A

3-month Treasury Bill yield (South Africa)

FCI forecasting

T Month-on-month growth in CPI (South Africa) Seasonally adjusted, month-on-
month rate of change

y Month-on-month growth in Manufacturing Production Month-on-month rate of change

Index (South Africa)

T

3-month Treasury Bill Yield (South Africa)

N/A

Notes: All data is extracted from the Global Financial Database (https://www.globalfinancialdata.com). The US Census X-12 procedure is used to
seasonally adjust the data for series not already seasonally adjusted. Unit roots are tested for using the Ng-Perron (2001) procedure, and non-

stationary series are differenced to be made stationary. All data series are standardised.
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Figure 4.
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Table 3.  Modified Diebold-Mariano test for inflation under boom weights

| Linear | NP | sp | VSTAR | + -
h=1
Linear -1.48(0.14) [ -2.05(0.04) [ -1.50(0.13) 0 1
NP 1.48 (0.14) 2.12(0.03) | -0.46 (0.65) 0 1
SP 2.05 (0.04) 2.12(0.03) 0.61 (0.54) 2 0
VSTAR 1.50 (0.13) 0.46 (0.65) -0.61 (0.54) 0 0
h=6
Linear 0.84 (0.40) 0.40 (0.69) -0.13 (0.89) 0 0
NP -0.84 (0.40) -1.35(0.18) | -0.88 (0.38) 0 0
SP 040 (0.69) | 1.35(0.18) -0.44 (0.66) 0 0
VSTAR 0.13 (0.89) 0.88 (0.38) 0.44 (0.66) 0 0
h=12
Linear 1.18 (0.24) 1.24 (0.22) 0.02 (0.99) 0 0
NP -1.18 (0.24) -0.93(0.35) | -1.20(0.23) 0 0
SP -1.24(0.22) | 0.93(0.35) -1.18 (0.24) 0 0
VSTAR -0.02(0.99) | 1.20(0.23) 1.18 (0.24) 0 0
h=24
Linear 2.02 (0.04) 1.39 (0.16) 1.01 (0.31) 1 0
NP -2.02 (0.04) -1.19(0.23) | -1.80(0.07) 0 2
SP -139(0.16) | 1.19(0.23) -1.07 (0.29) 0 0
VSTAR -1.01(0.31) | 1.80(0.07) 1.07 (0.29) 1 0
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Table 4.  Modified Diebold-Mariano test for inflation under recession weights

| Linear | NP | sp | VSTAR | - -
h=1
Linear 3.58 (<0.01) | -3.60 (<0.01) | -3.10 (<0.01) 0 3
NP 3.58 (<0.01) -0.36(0.72) | 1.20(0.23) 1 0
SP 3.60 (<0.01) | 0.36(0.72) 1.24 (0.22) 1 0
VSTAR 3.10(<0.01) | -1.20(0.23) | -1.24(0.22) 1 0
h=6
Linear 20.69 (0.49) | -1.68(0.09) | -2.18(0.03) 0 2
NP 0.69 (0.49) -1.55(0.12) | -0.59 (0.56) 0 0
SP 1.68 (0.09) 1.55 (0.12) 0.32 (0.75) 1 0
VSTAR 2.18 (0.03) 0.59 (0.56) -0.32 (0.75) 1 0
h=12
Linear 1.06 (0.29) -0.31(0.75) | -1.62(0.11) 0 0
NP -1.06 (0.29) -1.03(0.30) | -1.31(0.19) 0 0
SP 0.31 (0.75) 1.03 (0.30) -0.32 (0.75) 0 0
VSTAR 1.62 (0.11) 1.31(0.19) 0.32 (0.75) 0 0
h=24
Linear 2.04 (0.04) 0.15 (0.88) -4.40 (<0.01) 1 1
NP -2.04 (0.04) 2.05(0.04) | -3.52(<0.01) 0 3
SP -0.15(0.88) | 2.05(0.04) -1.70 (0.09) 1 1
VSTAR 440 (<0.01) | 3.52(<0.01) | 1.70(0.09) 3 0
TableS.  Modified Diebold-Mariano test under inflation for tail weights

| Linear | NP | sp | VSTAR | ~ -
h=1
Linear -3.16 (<0.01) | -3.62(<0.01) | -2.70 (0.01) 0 3
NP 3.16 (<0.01) -1.96 (0.05) | 0.49 (0.62) 1 1
SP 3.62 (<0.01) | 1.96 (0.05) 1.01 (0.31) 2 0
VSTAR 2.70 (0.01) 1049 (0.62) | -1.01 (0.31) 1 0
h=6
Linear -139(0.16) | -1.98(0.05) | -0.85 (0.40) 0 1
NP 1.39 (0.16) -1.54(0.12) | 0.87 (0.39) 0 0
SP 1.98 (0.05) 1.54 (0.12) 1.32(0.19) 1 0
VSTAR 0.85 (0.40) -0.87(0.39) | -1.32(0.19) 0 0
h=12
Linear 0.62 (0.54) -0.57(0.57) | -0.15 (0.88) 0 0
NP -0.62 (0.54) -0.93(0.35) | -0.80 (0.43) 0 0
SP 0.57 (0.57) 0.93 (0.35) 0.36 (0.72) 0 0
VSTAR 0.15 (0.88) 0.80 (0.43) -0.36 (0.72) 0 0
h=24
Linear 1.82 (0.07) 0.17 (0.86) -1.43 (0.15) 1 0
NP -1.82 (0.07) 2.07(0.04) | -2.21(0.03) 0 3
SP -0.17 (0.86) | 2.07 (0.04) -0.72 (0.47) 1 0
VSTAR 1.43 (0.15) 2.21(0.03) 0.72 (0.47) 1 0
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Table 6.  Modified Diebold-Mariano test for inflation under uniform weights

| Linear | NP | sp | VSTAR | - -
h=1
Linear 3.62 (<0.01) | -4.08 (<0.01) | -3.35(<0.01) 0 3
NP 3.62 (<0.01) -1.66 (0.10) | 0.85 (0.40) 1 1
SP 4.08 (<0.01) | 1.66 (0.10) 1.32(0.19) 2 0
VSTAR 335(<0.01) | -0.85(0.40) | -1.32(0.19) 1 0
h=6
Linear -0.17(0.86) | -1.23(0.22) [ -1.78(0.07) 0 1
NP 0.17 (0.86) -1.60 (0.11) | -0.84 (0.40) 0 0
SP 1.23 (0.22) 1.60 (0.11) 0.10 (0.92) 0 0
VSTAR 1.78 (0.07) 0.84 (0.40) -0.10 (0.92) 1 0
h=12
Linear 1.10 (0.27) 0.19 (0.85) -1.34(0.18) 0 0
NP -1.10 (0.27) -1.00 (0.32) | -1.27(0.20) 0 0
SP -0.19 (0.85) | 1.00(0.32) -0.61 (0.54) 0 0
VSTAR 1.34 (0.18) 1.27 (0.20) 0.61 (0.54) 0 0
h=24
Linear 2.64 (0.01) 0.83 (0.41) -2.78 (0.01) 1 1
NP -2.64 (0.01) -1.91 (0.06) | -3.43 (<0.01) 0 3
SP -0.83(0.41) | 1.91(0.06) -1.80 (0.07) 1 1
VSTAR 2.78 (0.01) 3.43(<0.01) | 1.80(0.07) 3 0
Table 7. Modified Diebold-Mariano test for manufacturing production growth under boom

weights

| Linear | NP | sp | VSTAR [ - -
h=1
Linear -0.21(0.84) [ 0.27(0.79) 0.20 (0.84) 0 0
NP 0.21 (0.84) 1.34 (0.18) 0.36 (0.72) 0 0
SP -0.27 (0.79) -1.34 (0.18) -0.05 (0.96) 0 0
VSTAR -0.20 (0.84) | -0.36(0.72) | 0.05 (0.96) 0 0
h=6
Linear 1.59 (0.11) 0.32 (0.75) -0.57 (0.57) 0 0
NP -1.59 (0.11) -0.23(0.81) | -2.03 (0.04) 0 1
SP -0.32(0.75) | 0.23(0.81) -0.48 (0.63) 0 0
VSTAR 0.57 (0.57) 2.03 (0.04) 0.48 (0.63) 1 0
h=12
Linear 1.13 (0.26) -0.00 (1.00) [ -2.28 (0.02) 0 1
NP -1.13 (0.26) -0.88(0.38) | -1.31(0.19) 0 0
SP 0.00 (1.00) 0.88 (0.38) -0.29 (0.77) 0 0
VSTAR 2.28 (0.02) 1.31 (0.19) 0.29 (0.77) 1 0
h=24
Linear 0.73 (0.47) 0.96 (0.34) -4.50 (<0.01) 0 1
NP -0.73 (0.47) 0.31 (0.75) -2.26 (0.02) 0 1
SP -0.96 (0.34) -0.31 (0.75) -2.42 (0.02) 0 1
VSTAR 4.50 (<0.01) | 2.26 (0.02) 2.42(0.02) 3 0
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Table 8.  Modified Diebold-Mariano test for manufacturing production growth under recession
weights
| Linear | NP | sp | VSTAR | - | -
h=1
Linear -3.19(<0.01) | -3.33(<0.01) | -2.59 (0.01) 0 3
NP 3.19 (<0.01) -0.18 (0.86) | 0.44 (0.66) 1 0
SP 3.33(<0.01) | 0.18(0.86) 0.51 (0.61) 1 0
VSTAR 2.59 (0.01) -0.44 (0.66) | -0.51 (0.61) 1 0
h=6
Linear 0.66 (0.51) | 0.82(0.41) 0.81 (0.42) 0 0
NP 0.66 (0.51) 1.17 (0.24) 1.17 (0.24) 0 0
SP -0.82(0.41) | -1.17(0.24) -0.54 (0.59) 0 0
VSTAR -0.81(042) | -1.17(024) | 0.54(0.59) 0 0
h=12
Linear 0.29 (0.77) -1.69(0.09) | 3.20 (<0.01) 1 1
NP -0.29 (0.77) -1.05(0.29) | 0.04 (0.97) 0 0
SP 1.69 (0.09) 1.05 (0.29) 2.31(0.02) 2 0
VSTAR -3.20(<0.01) | -0.04(0.97) | -2.31(0.02) 0 2
h=24
Linear 20.10(0.92) [-027(0.79) | 4.23(<0.01) 1 0
NP 0.10 (0.92) -0.25(0.81) | 1.89 (0.06) 1 0
SP 0.27 (0.79) 0.25 (0.81) 0.55 (0.58) 0 0
VSTAR 423 (<0.01) | -1.89(0.06) | -0.55(0.58) 0 2
Table 9. Modified Diebold-Mariano test for manufacturing production growth under tail weights
| Linear | NP | sp | VSTAR [ - | -
h=1
Linear 0.87 (0.39) 1.04 (0.30) -1.12 (0.26) 0 0
NP -0.87 (0.39) 0.85 (0.40) -2.14(0.03) 0 1
SP -1.04 (0.30) -0.85 (0.40) -2.23 (0.03) 0 1
VSTAR 1.12 (0.26) 2.14(0.03) 2.23(0.03) 2 0
h=6
Linear 1.11 (0.27) -0.26 (0.80) | 0.26 (0.80) 0 0
NP -1.11 (0.27) -0.60 (0.55) | -1.00 (0.32) 0 0
SP 0.26 (0.80) 0.60 (0.55) 0.33 (0.74) 0 0
VSTAR -0.26 (0.80) | 1.00 (0.32) -0.33 (0.74) 0 0
h=12
Linear -1.50(0.13) [ -1.20(0.23) [ 1.21(0.22) 0 0
NP 1.50 (0.13) -0.85(0.39) | 1.70 (0.09) 1 0
SP 1.20 (0.23) 0.85 (0.39) 1.32(0.19) 0 0
VSTAR -1.21(0.22) [ -1.70(0.09) | -1.32(0.19) 0 1
h=24
Linear 0.24 (0.81) -0.54(0.59) | 0.02(0.98) 0 0
NP -0.24 (0.81) -0.59 (0.56) | -0.23 (0.81) 0 0
SP 0.54 (0.59) 0.59 (0.56) 0.53 (0.60) 0 0
VSTAR -0.02(0.98) | 0.23(0.81) -0.53 (0.60) 0 0
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Table 10.

Modified Diebold-Mariano test for manufacturing production growth under uniform

weights

| Linear | NP | SP | VSTAR | + -
h=1
Linear 2.14(0.03) | -1.95(0.05) | -1.60(0.11) 0 2
NP 2.14(0.03) 0.85 (0.40) 0.48 (0.63) 1 0
SP 1.95 (0.05) -0.85 (0.40) 0.26 (0.80) 1 0
VSTAR 1.60 (0.11) 0.48 (0.63) | -0.26 (0.80) 0 0
h=6
Linear 0.78 (0.43) 0.54 (0.59) 0.03 (0.98) 0 0
NP -0.78 (0.43) 0.26 (0.79) -0.87 (0.39) 0 0
SP 0.54(0.59) | -0.26 (0.79) -0.57 (0.57) 0 0
VSTAR -0.03(0.98) | 0.87 (0.39) 0.57 (0.57) 0 0
h=12
Linear 0.76 (0.45) -0.80 (0.42) | 0.84 (0.40) 0 0
NP -0.76 (0.45) -0.98 (0.33) | -0.71 (0.48) 0 0
SP 0.80 (0.42) 0.98 (0.33) 0.90 (0.37) 0 0
VSTAR -0.84 (0.40) | 0.71 (0.48) -0.90 (0.37) 0 0
h=24
Linear 0.46 (0.65) -0.05(0.96) | -0.70 (0.49) 0 0
NP -0.46 (0.65) -0.18 (0.86) -0.60 (0.55) 0 0
SP 0.05 (0.96) 0.18 (0.86) 0.01 (0.99) 0 0
VSTAR 0.70 (0.49) 0.60 (0.55) -0.01 (0.99) 0 0
Table 11. Modified Diebold-Mariano test for Treasury Bill under boom weights

| Linear | NP | sp | VSTAR | - -
h=1
Linear -1.90 (0.06) | -2.02(0.04) | -1.05(0.29) 0 2
NP 1.90 (0.06) 2.07(0.04) | 2.20 (0.03) 2 1
SP 2.02 (0.04) 2.07 (0.04) 2.33(0.02) 3 0
VSTAR 1.05 (0.29) 2.20(0.03) | -2.33(0.02) 0 2
h=6
Linear 1.02 (0.31) -0.24(0.81) | -1.92(0.06) 0 1
NP -1.02 (0.31) 0.90 (0.37) | -1.19(0.23) 0 0
SP 0.24 (0.81) 0.90 (0.37) -0.39 (0.70) 0 0
VSTAR 1.92 (0.06) 1.19 (0.23) 0.39 (0.70) 1 0
h=12
Linear -1.12(026) | -1.55(0.12) | -2.46 (0.01) 0 1
NP 1.12 (0.26) -1.06 (0.29) | -0.63 (0.53) 0 0
SP 1.55 (0.12) 1.06 (0.29) 0.73 (0.46) 0 0
VSTAR 2.46 (0.01) 0.63 (0.53) -0.73 (0.46) 1 0
h=24
Linear -1.28(0.20) | -1.40(0.16) | -2.71(0.01) 0 1
NP 1.28 (0.20) -0.88 (0.38) | -0.65 (0.52) 0 0
SP 1.40 (0.16) 0.88 (0.38) 0.43 (0.66) 0 0
VSTAR 2.71(0.01) 0.65 (0.52) -0.43 (0.66) 1 0
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Table 12. Modified Diebold-Mariano test for Treasury Bill under recession weights

| Linear | NP | sp | VSTAR | - -
h=1
Linear 3.94(<0.01) | -4.52(<0.01) | 0.65 (0.52) 0 2
NP 3.94 (<0.01) -1.21(0.23) | 4.21 (<0.01) 2 0
SP 4.52(<0.01) | 1.21(0.23) 4.83 (<0.01) 2 0
VSTAR 0.65(0.52) | -4.21(<0.01) | -4.83 (<0.01) 0 2
h=6
Linear 0.28 (0.78) -1.52(0.13) | -2.84 (<0.01) 0 1
NP -0.28 (0.78) -0.94 (0.35) | -1.02(0.31) 0 0
SP 1.52 (0.13) 0.94 (0.35) 0.14 (0.89) 0 0
VSTAR 2.84(<0.01) | 1.02(0.31) -0.14 (0.89) 1 0
h=12
Linear 1.15 (0.25) -0.62(0.53) | -2.81(<0.01) 0 1
NP -1.15 (0.25) -1.67(0.09) | -1.70 (0.09) 0 2
SP 0.62 (0.53) 1.67 (0.09) -0.41 (0.68) 1 0
VSTAR 2.81(<0.01) | 1.70 (0.09) 0.41 (0.68) 2 0
h=24
Linear 1.71 (0.09) 0.71 (0.48) -2.43 (0.01) 1 1
NP -1.71 (0.09) -1.42(0.16) | -2.19(0.03) 0 2
SP -0.71 (0.48) | 1.42(0.16) -1.63 (0.10) 0 0
VSTAR 2.43(0.01) 2.19(0.03) 1.63 (0.10) 2 0
Table 13. Modified Diebold-Mariano test for Treasury Bill under tail weights

| Linear | NP | sp | VSTAR | ~ -
h=1
Linear -1.55(0.12) | -1.64(0.10) | -1.05 (0.30) 0 0
NP 1.55(0.12) -1.97(0.05) | 1.75 (0.08) 1 1
SP 1.64 (0.10) 1.97 (0.05) 1.86 (0.06) 2 0
VSTAR 1.05 (0.30) -1.75(0.08) | -1.86 (0.06) 0 2
h=6
Linear 1.06 (0.29) -0.38(0.70) | -1.54(0.12) 0 0
NP -1.06 (0.29) 10.94(0.35) | -1.19(0.23) 0 0
SP 0.38 (0.70) 0.94 (0.35) -0.02 (0.98) 0 0
VSTAR 1.54 (0.12) 1.19 (0.23) 0.02 (0.98) 0 0
h=12
Linear 048 (0.63) | -1.47(0.14) [ -2.36(0.02) 0 1
NP 0.48 (0.63) -1.20(0.23) | -0.67 (0.50) 0 0
SP 1.47 (0.14) 1.20 (0.23) 0.44 (0.66) 0 0
VSTAR 2.36 (0.02) 0.67 (0.50) -0.44 (0.66) 1 0
h=24
Linear 0.32 (0.75) -0.72(0.47) | -1.95(0.05) 0 1
NP -0.32 (0.75) -1.25(0.21) | -1.34(0.18) 0 0
SP 0.72 (0.47) 1.25 (0.21) -0.18 (0.86) 0 0
VSTAR 1.95 (0.05) 1.34 (0.18) 0.18 (0.86) 1 0
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Table 14. Modified Diebold-Mariano test for Treasury Bill under uniform weights

| Linear | NP | sp | VSTAR | - -
h=1
Linear 2.33(0.02) | -245(0.01) [ -0.95(0.34) 0 2
NP 2.33(0.02) _1.88(0.06) | 2.82 (<0.01) 2 1
SP 2.45(0.01) 1.88 (0.06) 2.91 (<0.01) 3 0
VSTAR 0.95 (0.34) 2.82(<0.01) | -2.91 (<0.01) 0 2
h=6
Linear 0.95 (0.34) 0.51(0.61) | -2.28(0.02) 0 1
NP -0.95 (0.34) 20.92(0.36) | -1.19(0.23) 0 0
SP 0.51 (0.61) 0.92 (0.36) -0.33 (0.74) 0 0
VSTAR 2.28(0.02) 1.19 (0.23) 0.33 (0.74) 1 0
h=12
Linear 0.34 (0.73) -1.23(0.22) | -2.83(<0.01) 0 1
NP -0.34 (0.73) -1.54(0.12) | -1.51(0.13) 0 0
SP 1.23(0.22) 1.54 (0.12) 0.23 (0.81) 0 0
VSTAR 2.83(<0.01) | 1.51(0.13) -0.23 (0.81) 1 0
h=24
Linear 0.80 (0.42) 0.46 (0.64) | -3.03 (<0.01) 0 1
NP -0.80 (0.42) -1.42(0.16) | -2.01 (0.04) 0 1
SP 0.46 (0.64) 1.42 (0.16) -0.68 (0.50) 0 0
VSTAR 3.03 (<0.01) | 2.01(0.04) 0.68 (0.50) 2 0
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