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Abstract 

In this paper we test the forecasting ability of three estimated financial conditions indices (FCIs) 

with respect to key macroeconomic variables of output growth, inflation and interest rates.  We do this by 

forecasting the aforementioned macroeconomic variables based on the information contained in the three 

alternative FCIs using a Bayesian VAR (BVAR), nonlinear logistic vector smooth transition autoregression 

(VSTAR)  and nonparametric (NP) and semi-parametric (SP) regressions, and compare the results with the 

standard benchmarks of random-walk, univariate autoregressive and classical VAR models. The three FCIs 

are constructed using rolling-window principal component analysis (PCA), dynamic model averaging 

(DMA) in the context of a time-varying parameter factor-augmented vector autoregressive (TVP-FAVAR) 

model, and a time-varying parameter vector autoregressive (TVP-VAR) model with constant factor 

loadings. Our results suggest that the VSTAR model performs best in the case of forecasting 

manufacturing production and inflation, while a SP specification proves to be the best for forecasting the 

interest rate. More importantly, statistics testing for significant differences in forecast errors across models 

corroborate the finding of superior predictive ability of the nonlinear models. 
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1. Introduction 

 

The global financial crisis of 2008 has sparked an interest in and demonstrated the need for better 

measurement of financial shocks and their impact on the macroeconomy. To this end, recent literature has 

explored the development of financial conditions indices (FCIs). In this regard, the reader is referred to 

Koop and Korobilis (2014), Alessandri and Mumtaz (2014) and Thompson, Van Eyden and Gupta 

(forthcoming (a)) for an overview of the recent literature on FCIs. One of the key objectives of designing 

an FCI is for policymakers to use it as an early-warning tool of future crises.  

Given this, Thompson et al., (forthcoming (a)) developed a financial conditions index for South 

Africa based on monthly data over the period of 1966 to 2011, using a set of sixteen financial variables, 

which include variables that define the state of international financial markets, asset prices, interest rate 

spreads, stock market yields and volatility, bond market volatility and monetary aggregates. The authors 

explore different methodologies for constructing the FCI, and find that rolling-window principal 

components analysis (PCA) yields the best results in terms of in-sample predictability of output growth, 

inflation and the interest rate. The intuition behind the rolling-window based FCI outperforming the full-

sample FCI was explained by indicating the fact that the importance of the sixteen variables included in the 

FCI varied considerably over ten-year sub-samples during the period 1966-2011.1 In a different paper, 

Thompson, Van Eyden and Gupta, (forthcoming (b)) tested whether the rolling-window estimated FCI 

does better than its individual financial components in forecasting output growth, inflation and interest 

rates. They used the concept of forecast encompassing to examine the forecasting ability of the individual 

predictors and the FCI for the three key macroeceonomic variables controlling for data-mining. Thompson 

et al., (forthcoming (b)) find that the rolling-window estimated FCI has out-of-sample forecasting ability 

with respect to manufacturing output growth at short- to medium-horizons, but has no forecasting ability 

with respect to inflation and interest rates. 

Against this backdrop, the objectives of the current paper are twofold: (a) Due to the fact that the 

weights the financial variables carry in the construction of the FCI vary over time, as indicated by 

Thompson et al., (forthcoming (a)), we look at an alternative and more sophisticated statistical approach to 

the rolling-window PCA method, for the construction of the FCI for South Africa based on the same set of 

16 variables used by Thompson et al., (forthcoming (a)). More specifically, we follow Koop and Korobilis 

(2014), and employ time-varying parameter factor-augmented vector autoregressive (TVP-FAVAR) 

models. However, given that we work with a large set of TVP-FAVARs that differ in which financial 

variables are included in the construction of the FCI, we augment the approach with Dynamic Model 

Selection (DMS) and Dynamic Model Averaging (DMA) to accommodate for the large model space and 

the intention to allow for model change. As indicated by Koop and Korobilis (2014), these methods 
                                                      

1 Thompson et al., (forthcoming (a)) also developed a recursively generated FCI, but they found that this FCI 
performed relatively poorly in terms of serving as an early warning system for South Africa. Further details can 
be found in Thompson et al., (forthcoming (a)). 
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forecast at each point in time with a single optimal model (DMS), or reduce the expected risk of the final 

forecast by averaging over all possible model specifications (DMA), with model selection or model 

averaging applied in a dynamic manner. More precisely, DMS helps in choosing different financial 

variables for the construction of the FCI at different points in time, while the DMA constructs a FCI by 

averaging over many individual FCIs constructed using different financial variables. Clearly then, the 

weights used in this averaging procedure vary over time.  

We compare the DMS and DMA based FCI with the rolling-window PCA FCI of Thompson et al., 

(forthcoming (a)) and a standard full-sample FCI where all sixteen variables are included at each point in 

time, by looking at the ability of the respective indices to predict the South African recession visually, but 

the formal comparison is based on an extensive out-of-sample forecasting exercise across these three 

alternative FCIs. Specifically, we look at the ability of the three alternative FCIs in predicting output 

growth, inflation and interest rate over an out-of-sample period of 1986:1-2012:1, using an in-sample 

period of 1966:2-1985:12. The starting point of the out-of-sample corresponds to the period of financial 

liberalization in South Africa and was also used by Thompson et al., (forthcoming (b)). In addition to the 

standard benchmarks such as a random-walk (RW), univariate autoregressive (AR) models and classical 

VAR models, we also look at Bayesian VARs, nonlinear logistic vector smooth transition autoregression 

(VSTAR) models, non-parametric (NP) and semi-parametric (SP) models, which incorporate the three 

different FCIs along with the three key variables to be predicted. Note that in case of the VSTAR and in 

the nonparametric part of the semi-parametric regressions, we use the FCI as the switch variable, or rather 

the source of nonlinearity as in Alessandri and Mumtaz (2014). The decision to look at models that capture 

the nonlinear effects of FCIs on the three macroeconomic variables emanate from the recent work by 

Balcilar, Thompson, Gupta and Van Eyden (2014).  

The nonlinear logistic VSTAR model used in this paper allows for a smooth evolution of the 

economy, governed by a chosen switching variable between periods of high and low financial volatility. 

Balcilar et al. (2014) found that the South African economy responds nonlinearly to financial shocks, and 

that manufacturing output growth and Treasury Bill rates are more affected by financial shocks during 

upswings. Inflation was found to respond significantly more to financial changes during recessions. In 

addition to the forecasting exercise conducted over the recursively estimated out-of-sample period, we also 

conduct an ex ante forecasting exercise, i.e., without updating the estimates of the parameters based on 

recursive estimation of the models. This forecasting exercise is conducted over the period 2012:2-2014:2 to 

gauge the ability of our best performing (over 1986:1-2012:1) FCIs and models in predicting the turning 

points in the three variables of concern. To the best of our knowledge this the first attempt in developing a 

DMS-DMA-based FCI for South Africa, and also comparing the ability of this FCI relative to the existing 

FCIs in the South African literature in forecasting key macroeconomic variables based on a wider set of 

linear and nonlinear models. 

 The rest of the paper is organized as follows:  section 2 contains a discussion of the construction of 

the three different FCIs in terms of the financial and real economic variables used in the construction 
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thereof as well as the techniques used. Section 3 discusses the methodologies used in the forecasting 

exercises. Section 4 contains the empirical results, while section 5 concludes.  

 

2. Data 

 

This paper sets out to test the forecasting ability of three FCIs which are estimated using contrasting 

methodologies. The variables making up each of the FCIs are the same in all three instances, and comprise 

a set of sixteen monthly financial variables (see Table 1Table 3 in the Appendix) over the period 

1966M02–2012M01. The three FCIs are estimated as follows.  

The first FCI is estimated in Thompson, et al. (forthcoming (a)) and is compiled using rolling-

window PCA applied to the set of financial variables, where a common factor, in this case FCI1t, is 

extracted from a group of 16 variables, Xt. FCI1t is furthermore purged of any endogenous feedback effects 

related to output, inflation and monetary policy. Thompson, et al. (forthcoming (b)) find, using a forecast 

encompassing approach, that FCI1t has good out-of-sample forecasting ability for the key macroeconomic 

variable of growth in manufacturing production. Balcilar, et al. (2014) find, using a nonlinear logistic 

VSTAR model which incorporates FCI1t that the South African economy responds nonlinearly to financial 

shocks. Specifically, manufacturing output growth and Treasury Bill rates are more affected by financial 

shocks during upswings, while inflation responds significantly more to financial changes during recessions. 

The second FCI is compiled using DMA in the context of a TVP-FAVAR, which accounts for the 

fact that the 16 variables making up the FCI can change in importance over time (see Thompson, et al. 

(forthcoming (a)) for a discussion of the need for time-varying weights in an FCI). The process followed is 

similar to Koop and Korobilis (2014), and the reader is referred to their paper for a discussion on DMA, 

which “constructs an FCI by averaging over many individual FCIs constructed using different financial 

variables” (2014:3). Specifically, if Xt is again a vector of 16 financial variables used in constructing the 

FCI, the TVP-FAVAR can be represented as: 

ܺ௧ ൌ ௧ݕ௧௬ߣ ൅ ௧௙ߣ ௧݂ ൅         ௧ݑ

ቂݕ௧
௧݂
ቃ ൌ ܿ௧ ൅ ௧ܤ ቂ

௧ିଵݕ
௧݂ିଵ

ቃ ൅  ௧      (1)ߝ

with 

௧ߣ ൌ ௧ିଵߣ ൅ ߭௧ 
௧ߚ		 ൌ ௧ିଵߚ ൅  ௧        (2)ߟ

where ߣ௧ ൌ ൫ሺߣ௧௬ሻᇱ, ሺߣ௧௙ሻᇱ൯
ᇱ
௧ߚ , ൌ ሺܿ௧ᇱ,   .௧ሻᇱሻᇱ and ௧݂ is a latent factor interpreted as FCI2tܤሺܿ݁ݒ

As with Koop and Korobilis (2014:12-14), the model above “allows factor loadings, regression 

coefficients and VAR coefficients to evolve over time according to a random walk, … and all of the error 

covariance matrices to be time-varying” using exponentially weighted moving average (EWMA) methods 

combined with Kalman filter recursions. 



5 
 

The third FCI is also compiled using a time-varying VAR (as with FCI2t), however DMA is not used 

to allow varying importance of the financial variables over time. Instead, FCI3t always includes all of the 

16 financial variables, and their probabilities remain the same throughout the sample – i.e. the weights in 

the FCI are constant. Specifically, in equation (2) a restriction is imposed such that Ot  = O,  which means 

that even though the factor equation will have constant factor loadings, the VAR component of the model 

will still have time-varying parameters. Koop and Korobilis (2014) refer to this restricted model as a 

factor-augmented TVP-VAR, or a FA-TVP-VAR.  

The three FCI series are subsequently used in a forecasting exercise, where the respective indices are 

compared in terms of their ability to forecast manufacturing output, inflation and the Treasury Bill rate. All 

data is sourced from the Global Financial Database (see Table 3 in Appendix).    

Figure 1 shows that the three estimated FCIs exhibit similar trends – albeit at differing levels and 

magnitudes. The rolling-window PCA-estimated FCI (FCI1t) appears to exhibit larger fluctuations than the 

other two indices. A noticeable divergence is evident during the period of the global financial crisis (late 

2000s) where the no-DMA-estimated FCI (FCI3t) does not appear to pick up the global recession. FCI1t 

and the DMA-estimated FCI (FCI2t), however, both capture the recession � the former to a much larger 

extent.  

 

Figure 1. Comparison of three estimated FCIs 

Note: The FCIs are standardised 
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3. Forecasting methodology 

 

In this paper we test the forecasting ability of the three estimated FCIs with respect to the key 

macroeconomic variables of output growth (y) – the month-on-month rate of change in South Africa’s 

Manufacturing Production Index; a measure of inflation (S) – the month-on-month rate of change in the 

consumer price index (CPI); and the 3-month Treasury Bill yield (r).  

We do this by forecasting the aforementioned macroeconomic variables based on the information 

contained in the three alternative FCIs using a Bayesian VAR, nonlinear logistic VSTAR and 

nonparametric and semi-parametric regressions, and compare the results with the standard benchmarks of a 

random-walk, autoregressive and classical VAR, where understandably, the RW and AR models 

incorporate only one of the variables to be predicted, while the VAR includes all three variables chosen for 

prediction. 

 

3.1 Model descriptions 

 

This section describes the models used in our empirical analysis. 

 

Classical Vector Autoregressive (VAR) Model 

The VAR model, though ‘atheoretical,’ is particularly useful for forecasting purposes. VAR models suffer 

from an important drawback, since they require the estimation of many potentially insignificant 

parameters. This problem of over-parameterization, resulting in multicollinearity and loss of degrees of 

freedom, leads to inefficient estimates and large out-of-sample forecasting errors. One solution, often 

adopted, simply excludes the insignificant lags based on statistical tests. Another approach uses near VAR 

models, which specify unequal number of lags for the different equations. 

An alternative approach to overcoming over-parameterization, as described in Litterman (1981), 

Doan et al. (1984), Todd (1984), Litterman (1986), and Spencer (1993), uses a Bayesian VAR (BVAR) 

model. Instead of eliminating longer lags, the Bayesian method imposes restrictions on the model’s 

coefficients by assuming that these coefficients more likely approach zero than the coefficients on shorter 

lags. If strong effects from less important variables exist, the data can override this assumption. The 

researcher imposes restrictions by specifying normal prior distributions with zero means and small 

standard deviations for all coefficients with the standard deviations decreasing as the lag length increases. 

The researcher sets the coefficient on the first own lag of a variable equal to unity, unless the variable is 

mean reverting or stationary. Generally, following Litterman (1981), the constant exhibits a diffuse prior. 

This specification of the BVAR prior is popularly called the ‘Minnesota prior’ due to its development at 

the University of Minnesota and the Federal Reserve Bank at Minneapolis. 

We can represent a reduced form VAR using following linear regression specification:  
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  1 1t t tBx H� �8  �         (3) 

where 1�8t  denotes an (m x 1) vector of dependent variables (i.e., output growth, inflation, the measure of 

short-term interest rate i.e., yt, St, rt,) from time t = 1, …, T; tx  denotes a (k x 1) vector, which may include 

lags of the dependent variables, intercepts, dummies, trends, and exogenous regressors; B denotes an (m x 

k) vector of VAR coefficients; and εt~N(0,Σ), where Σ denotes a (mum) covariance matrix. 

We can rewrite equation (3) as a system of seemingly unrelated regressions (SURs) as follows, 

where different equations in the VAR can include different explanatory variables: 

  1 1t t tz E H� �8  �         (4) 

where 1�8t  and tH  are defined in equation (3); tmt xIz c�  is a (m x n) matrix vector; and 

)(Bvec E  is an (nx1) matrix. When no parameter restrictions exist, equation (4) is an unrestricted VAR 

model.  

 

Bayesian Vector Autoregressive (BVAR) Model  

For the BVAR based on the Minnesota prior, the means and variances of the Minnesota prior for β  take 

the form )V,b(N~ minminE  where min 2
i,l 1V = g /p  and 2

3 ig × s  applying to parameters on own lags and for 

intercepts respectively, while min 2 2 2
i,l 2 i lV = (g × s )/(s × p )  is for parameters j on variable zl i; l, i =1, ...,m.  

2
is  is the residual variance from the p-lag univariate autoregression for variable i. Following Banbura et al., 

(2010), we set the hyperparameters of the BVAR to the following values: 21g = g = 0.1274, 0.1964 and 

0.2111 under FCI1, FCI2 and FCI3 respectively, and 3g =100 . Note that, g1(=g2) is obtained to ensure 

that the average fit of the three variables of interest (output growth, inflation and the interest rate) matches 

that of the in-sample fit of the VAR model without the specific FCI. To be specific, the BVAR includes a 

specific FCI one at a time, over and above the variables to be predicted, and hence is made up of four 

variables rather than three as in the classical VAR.  Since we transform the variable used in the forecasting 

exercise to induce stationarity, we set the prior mean vector minb  equal to zero for parameters on the lags of 

all variables, including the first own lag (Banbura et al., 2010). The forecasts from the BVAR are based on 

30,000 draws from the posterior, discarding the first 2,000 draws. Also, we set the lags in these models to 

2, determined by the Bayesian information criterion (BIC). Besides the VAR and BVAR, we also use the 

standard linear benchmarks, namely the random-walk (RW) and autoregressive (AR) model of order p in 

our forecasting exercises. 

 

Vector Smooth Transition Autoregressive (VSTAR) Model 

Next, we turn our attention to the VSTAR model used by Balcilar et al., (2014) to analyze the nonlinear 
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impact of financial conditions index on key South African macroeconomic variables.  Define 

1 , 2( ,..., )t t t ntX x x x c  as a ( 1)k u  time-series vector. In our case, Xt is defined as  (4 1)u  time-series 

vector comprising of output growth, inflation, interest rate and the specific FCI (i.e., yt, St, rt, FCIi,t). We 

specify the k-dimensional VSTAR model as follows: 

  1,0 1, 2,0 2,
1 1

( ) ( ) ( ; , ) ,
p p

t j t j j t j t t
j j

X X X G s cJ H� �
  

 4 � 4 � 4 � 4 �¦ ¦   (5) 

where ,0i4 , i  1,2 , are (k u1) vectors, ,i j4 , i  1,2 , 1,2,...,j p , are   (k u k) matrices, and 

1 2( , ,..., )t t t ktH H H H  is a k-dimensional vector of white noise processes with zero mean and nonsingular 

covariance matrix : ,   G(�) is the transition function that controls smooth moves between the two regimes, 

and ts is the transition variable.  

The VSTAR model in equation (5) defines for two regimes, one associated with G(st ;J , c ) 0  and 

another associated with G(s t ;J , c )  1 . The transition from one regime to the other occurs smoothly, 

depending on the shape of the   G(�) function. In this paper, we consider a logistic transition function 

  J J
J V

 !
� � �

1
( ; , ) , 0,

ˆ1 exp{ ( ) }t
t s

G s c
s c

    (6) 

where V̂ s  is the estimate of the standard deviation of transition variable ts . The threshold parameter 

c  determines the midpoint between two regimes at G(c ;J , c ) 0.5 . The parameter J  determines the 

speed of transition between the regimes with higher values corresponding to faster transition. 

To specify the VSTAR model, we follow the procedure presented in Terasvirta (1998) (see, also 

Lundbergh and Terasvirta, 2002; Van Dijk and Franses, 2003). First, we specify the lag order of p =2.  

Second, we test linearity against the VSTAR alternative. Since the VSTAR model contains 

parameters not identified under the alternative, we follow the approach of Luukkonen et al. (1988) and 

replace the transition function   G(�) with a suitable Taylor approximation to overcome the nuisance 

parameter problem. The testing procedure selects a logistic VSTAR model with a single threshold, which 

we maintain for the univariate case as well.  

Third, we select the transition variable s t . To identify the appropriate transition variable, we run the 

linearity tests for several candidates, 1 2, , ...,t t mts s s , and select the one that gives the smallest p-value for the 

test statistic. Here, we consider lagged values of only the FCIis for lags 1 to 2 as the candidate transition 

variable, to check whether allowing the FCI to nonlinearly affect the variables of interest improves our 

forecasts relative to the linear models. Let st  xi ,t�d , where x  equals the various FCIs in turn. We test 

linearity with these variables for delays d  1,2 . We obtain the smallest p-value with ,t i t ds FCI �  and 

2d  . Note that, in this regard, we follow Alessandri and Mumtaz (2014), by allowing the 

nonlinearity to emerge from the FCIs. Explicit analytical point formula for obtaining forecasts do not 
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exist for non-linear (V)AR models even with a Gaussian disturbance term when 

t z2,  as [ ( )] [ ( )]h E f x f E x , where h is the number of steps-ahead for the forecasts.2 That is, a 

nonlinear function involving a stochastic variable will arise for t 2h  and expected value of the forecast 

function will depend on the unknown stochastic term, since z[ ( )] [ ( )]E f x f E x . 

 

Nonparametric (NP) and Semi-Parametric (SP) Models 

We now consider nonparametric and semi-parametric regression approaches for forecasting output growth, 

inflation and the interest rate. We consider two competing multivariate models, and examine their 

forecasting abilities. These specifications are as follows: 

Model 1: Nonparametric regression model (NP model) 

  1 1 2 1 2 1 2 , 1 , 2( , , , , , ,FCI ,FCI )t t t t t t t i t i t yty f y y r r S S H� � � � � � � � � ;    (7) 

  2 1 2 1 2 1 2 , 1 , 2( , , , , , ,FCI ,FCI )t t t t t t t i t i t tf y y r r SS S S H� � � � � � � � � ;    (8) 

  3 1 2 1 2 1 2 , 1 , 2( , , , , , ,FCI ,FCI )t t t t t t t i t i t rtr f y y r r S S H� � � � � � � � � .    (9) 

Model 2: Semi-parametric regression model (SP model) 

  0 1 1 2 2 1 1 2 2 1 1 2 2 1 , -1 , -2( , )t y y t y t t t r t r t i t i t yty y y r r g FCI FCIS SD D D D S D S D D H� � � � � � � � � � � � � � ; (10) 

  0 1 1 2 2 1 1 2 2 1 1 2 2 2 , -1 , -2( , )t y t y t t t r t r t i t i t ty y r r g FCI FCIS S S SS E E E E S E S E E H� � � � � � � � � � � � � � ;  (11) 

  0 1 1 2 2 1 1 2 2 1 1 2 2 3 , -1 , -2( , )t r y t y t t t r t r t i t i t rtr y y r r g FCI FCIS SO O O O S O S O O H� � � � � � � � � � � � � � .  (12) 

Here, fi(.) and gi(.), i=1,2 and 3, denote unknown functions that the data estimate. The Hit, i=y, r, S, 

are mean-zero errors with unchanged variance over the entire data set. The parameters D0i, E0i, O0i; D1i, E1i, 

O1i; and D2i, E2i, O2i, i=y, r, S, are constants estimated from the data. Therefore, we can also describe the 

semi-parametric model as a partially linear nonparametric model, with the nonlinearity coming from the 

lagged-values of the FCIs – as with the VSTAR, this is to check if allowing the FCIs to have a nonlinear 

impact on the key variables improves our forecasts.3 

In the time-series context, nonparametric regressions can lead to issues with correlated errors (e.g., 

Opsomer, et al. 2001). For instance, the data-driven band-width selection techniques in the kernel-

smoothing methodology can break down in this context. In such cases, we could use a correlation-

corrected method called CDPI to yield stable results. In our case, for Models 1 and 2, two lags guarantee 

the absence of autocorrelation. As a result, the responses in equations (7) to (9) and (10) to (12) exhibit 

uncorrelated errors. Also, stationarity checks ensure constant variances in each model. Finally, we compare 

such models based on their prediction errors or forecast performances. 
                                                      

2 Details of the bootstrapping procedure are available upon request from the authors. We implement all 
computations of the STAR models with the RSTAR package (Version 0.1-1) in R developed by the one of the 
authors of this paper. 
3 We use the np package in R to carry out the regressions outlined above. 
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We check the goodness of fit using Bootstrap testing and find p-values close to 1 for the models 

used. When estimating the unknown functions fi(.) and gi(.) in case of the nonparametric models, we use a 

local linear regression, using AICc bandwidth selection criterion. In this case, we also examine all options 

for the choice of kernels and find that the Gaussian kernel of order 2 works the best yielding the highest R-

squared values and smallest MSE. We use the optimum bandwidth chosen by the software. In case of the 

semi-parametric modeling, we first compute data-driven bandwidths of the kernels to use in the fi(.) and 

gi(.) parts of the model, since bandwidth selection for lower levels of tolerance takes an extremely long 

time. We use a local-linear, and not local-constant, regression type, as the local-linear type yields smaller 

R-squared values.4 Again, for the fi(.) and gi(.) parts of the model, we use Gaussian kernels of order 2, 

because they yield the highest R-squared values and the lowest MSE. We generate the forecasts from the 

NP and SP models using a recursive algorithm. That is, the forecast from origin n is generated for period 

n+1, and forecast values for period n+1 is inserted for unobserved values when forecasting for period n+2, 

and so forth. 

 

4. Empirical results 

4.1 Posterior inclusion probabilities 

 

Before considering the forecasting results, the posterior inclusion probabilities of each of the financial 

variables in FCI2t are presented in Figure 2. This figure enables us to determine (a) if each of the 16 

financial variables is being allocated differing weights at different points in time5; and (b) if so, which 

financial variables are more relevant in the FCI construction. 

It is interesting to note that the inclusion probabilities for all of the financial variables, bar one, 

show, on average, an increasing trend over the sample. The exception is the Rand-Dollar exchange rate, 

which has a relatively stable (and significant in size) probability of between 0.3 and 0.6 throughout the 

sample. The exchange rate has traditionally been considered a central variable of concern in the financial 

conditions literature. The Bank of Canada (BOC) pioneered work on broader financial condition measures 

in the mid-1990s, when it introduced its monetary conditions index (MCI). For the BOC, the exchange rate 

was the most important additional variable. Its MCI, therefore, consisted of a weighted average of its 

refinancing rate and the exchange rate. The weights were determined via simulations with macroeconomic 

models designed to quantify the relative effect of a given percentage change in each variable on GDP or 

final demand. In the case of Canada, a relatively open economy, the exchange rate was given a weight 

                                                      

4 The decision to use the local linear regression method instead of the kernel-smoother methods adopted by Arora et 
al. (2011) in forecasting US real GDP based on nonparametric method, emanates from the fact that the former does 
not suffer from the problem of biased boundary points. 
5 It should be noted here that in order for the DMA model to compute, one of the 16 financial variables needs to 
remain fixed. As with Koop and Korobilis (2014), we set stock returns (D_LALSI) as fixed. Therefore, the inclusion 
probabilities for the remaining 15 variables indicate whether they contain information useful for forecasting beyond 
that which is provided by stock returns. 
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equal to about one-third that of the refinancing rate (Freedman, 1994). With South Africa also being a 

small open economy, one would likewise expect a fairly constant and significantly large weight, and 

therefore probability of inclusion. 

The three volatility measures included in the FCI (house price volatility (HOUSEP_VOL), 

government bond volatility (GBINDEX_VOL) and stock return volatility (ALSI_VOL)) all exhibit rapidly 

rising inclusion probabilities. The four spread measures exhibit similarly increasing inclusion probabilities 

until approximately the mid- to late-1980s, where after they remain relatively steady. Early research on 

financial conditions centred on the slope of the yield curve and has been found to outperform other 

financial variables in terms of predicting recessions (Hatzius et al., 2010), while stock market performance 

has been found to be a useful recession predictor as well (Stock & Watson, 1989; Estrella & Hardouvelis, 

1991).  The commercial paper-Treasury bill spread has been seen as a measure for credit risk, and been 

used as a leading indicator of output since the late 1980s (Stock and Watson, 1989). The period of stability 

in the probabilities of inclusion for the spread measures coincides with the era of financial liberalisation in 

South Africa. The political transition to a democracy during the first half of the 1990s, also contributed to 

greater stability in financial markets as well as the real sector of the economy. 

Credit and money variables (D_LPSCE and M3_GR) show trends of decreasing inclusion 

probabilities in the 2000s, as do variables related to the housing market (HOUSEP_VOL and 

D_LHOUSEP). The decline in inclusion probabilities in credit and money variables during the 2000s can 

likely be attributed to the fact that South Africa introduced inflation targeting in February 2000 following a 

monetary-aggregate targeting framework. (Between 1960 and 1998 monetary policy frameworks included 

exchange rate targeting, discretionary monetary policy, monetary-aggregate targeting and an eclectic 

approach.) By 2000 the probability of inclusion of the house price variable exceeded 0.5. During the 

housing boom (from 2000 to 2006), house prices rose by an average of 20% annually. Riding on the back 

of an empowered middle class, house price peaked in October 2004 with 35.7% annual growth (32.5% in 

real terms). The probability of inclusion increased to above 0.6 during the same period.  However in Q1 

2008 the boom ground to a halt, following the global financial crisis. Between 2008 and 2011 house prices 

fell for four consecutive years by 9%, 5.4%, 1% and 5.1% in real terms, respectively. The probability of 

inclusion also fell back to 0.4 during this time. Only in 2012 did the housing market bounce back with 

house price rising by 3.2% in real terms, however, this turnaround does not reflect in the graph as our 

sample ends in 2012M1.)  
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Figure 2. Posterior inclusion probabilities of financial variables under DMA 
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4.2 Out-of-sample forecasting 

 

Table 1 provides the results of the various forecasts conducted with respect to the key macroeconomic 

variables of output growth, inflation and interest rates. The measure of forecast performance used is the 

root mean squared error (RMSE) which is evaluated over the period 1987:01 to 2012:01 for h = 1, 2,…, 24 

forecast horizons. The RMSE results in Table 1 are reported relative to the RW RMSE. In the case of 

manufacturing output growth, it is interesting to note that on average, the nonlinear methods provide 

superior forecasts to the linear models. In terms of the linear approaches, the BVAR using FCI3t is slightly 

superior to the BVAR using FCI1t (at four decimal points) in providing the best forecast. The best NP and 

SP forecasts are both achieved using FCI2t. The best VSTAR forecast is achieved using FCI1t. Overall, the 

best forecast of manufacturing output growth is achieved using FCI1t in a nonlinear VSTAR. 

In terms of forecasting inflation – a notoriously autoregressive and persistent variable – it is 

unsurprising that the best linear forecast is provided by the AR model.  In terms of NP and SP models, 

FCI2 provides the best SP forecasts. The best VSTAR forecast is achieved using FCI2t, and this also 

represents the best inflation forecast overall. 

The best linear forecast of the Treasury Bill rate is achieved by using FCI3t in the BVAR. FCI1t 

provides the best NP forecast, while FCI3t presents both the best SP forecast and the best VSTAR forecast. 

Overall, the best forecast of the Treasury Bill rate is achieved using FCI3t in a SP model. 

Figure 3 contains ex-ante forecasts for the three models selected as the best performing overall for 

manufacturing growth, inflation and Treasury Bill rate according to RMSE measures. Ex ante forecasts are 

carried out over the period 2012:01 to 2014:01. 

 

Table 1. Out-of-sample forecasting for xt: FCI (Sample: 1986:01 – 2012:01) – RMSE statistics 
under differing models relative to RW model 
 

 
Horizon (h) months ahead: 
 

1m 6m 12m 24m Ave 1 Ave 2 

xt: Manufacturing production growth as dependent variable
RW 3.883 3.058 3.131 3.484 3.389 3.266 
AR 0.564 0.737 0.722 0.647 0.668 0.696 
VAR 0.556 0.733 0.719 0.647 0.664 0.693 
BVAR (Rolling FCI) 0.550 0.734 0.719 0.647 0.663 0.693 
BVAR (DMA) 0.558 0.733 0.719 0.647 0.664 0.694 
BVAR (no DMA) 0.548 0.733 0.719 0.647 0.662 0.693 
NP (Rolling FCI) 0.493 0.745 0.787 0.671 0.674 0.744 
NP (DMA) 0.523 0.740 0.721 0.653 0.659 0.700 
NP (no DMA) 0.505 4.533 0.876 0.843 1.689 1.167 
SP (Rolling FCI) 0.489 0.739 0.735 0.657 0.655 0.704 
SP (DMA) 0.522 0.743 0.713 0.649 0.657 0.697 
SP (no DMA) 0.494 0.748 0.757 0.650 0.662 0.697 
VSTAR (Rolling FCI) 0.523 0.735 0.721 0.646 0.656 0.692 
VSTAR (DMA) 0.536 0.735 0.720 0.647 0.660 0.693 
VSTAR (no DMA) 0.517 0.738 0.723 0.647 0.656 0.693 
xt: Inflation as dependent variable
RW 0.565 0.623 0.622 0.606 0.604 0.654 
AR 0.841 0.854 0.865 0.906 0.867 0.817 
VAR 0.846 0.884 0.894 0.959 0.896 0.847 
BVAR (Rolling FCI) 0.850 0.886 0.894 0.959 0.897 0.848 
BVAR (DMA) 0.827 0.873 0.892 0.957 0.887 0.841 
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BVAR (no DMA) 0.832 0.883 0.897 0.957 0.892 0.846 
NP (Rolling FCI) 0.768 0.859 0.902 1.005 0.884 0.852 
NP (DMA) 0.773 1.591 0.857 0.913 1.034 0.841 
NP (no DMA) 0.770 1.144 0.915 1.040 0.967 0.935 
SP (Rolling FCI) 0.761 0.835 0.876 0.932 0.851 0.849 
SP (DMA) 0.768 0.844 0.859 0.911 0.846 0.841 
SP (no DMA) 0.754 0.886 1.105 0.924 0.917 0.876 
VSTAR (Rolling FCI) 0.777 0.854 0.878 0.949 0.865 0.820 
VSTAR (DMA) 0.781 0.835 0.854 0.886 0.839 0.797 
VSTAR (no DMA) 0.788 0.846 0.876 0.941 0.863 0.824 
xt: Treasury Bill as dependent variable 
RW 0.520 1.790 2.722 3.911 2.236 2.598 
AR 0.938 0.972 0.973 0.964 0.962 0.968 
VAR 0.948 0.956 0.961 0.987 0.963 0.967 
BVAR (Rolling FCI) 0.952 0.960 0.964 0.989 0.966 0.971 
BVAR (DMA) 0.948 0.975 0.972 0.965 0.965 0.970 
BVAR (no DMA) 0.931 0.926 0.919 0.923 0.925 0.923 
NP (Rolling FCI) 0.637 1.091 0.965 1.089 0.946 0.954 
NP (DMA) 0.635 1.182 1.065 0.962 0.961 1.013 
NP (no DMA) 0.604 1.295 1.170 1.159 1.057 1.202 
SP (Rolling FCI) 0.631 0.818 0.854 0.986 0.822 0.894 
SP (DMA) 0.644 0.891 0.880 0.900 0.829 0.883 
SP (no DMA) 0.600 0.870 0.813 0.854 0.784 0.842 
VSTAR (Rolling FCI) 0.894 0.926 0.902 0.909 0.908 0.910 
VSTAR (DMA) 0.902 0.947 0.931 0.886 0.917 0.922 
VSTAR (no DMA) 0.865 0.837 0.825 0.831 0.840 0.833 

Notes: Entries corresponding to RW is the absolute RMSEs for the model, rest of the entries are relative to the RW. Ave 1 refers to the average 
over the columns in this table. Ave 2 refers to the average RMSE over all forecast horizons (including those not reflected in the table). 
 
 

Figure 3. Ex ante forecasts of manufacturing production growth, inflation and Treasury Bill yields 
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4.3 Weighted Diebold-Mariano (DM) Tests  

To further assess the forecast accuracy of the various models above, we conduct pairwise Diebold and 

Mariano (1995) tests. Specifically, we use a modified version of this test developed by Harvey, Leybourne 

and Newbold (1997). This modified DM test is based on a weighted loss function, and basically compares 

the loss differences between a pair of models to determine if the average is significantly different from 

zero. Under the null hypothesis of equal forecast performance between a benchmark model, 0, and an 

alternative model, ݅, the expected loss differential, ݀௜,௧, is given by: 

௜,௧൧݀ൣܧ ൌ ଴,௧ఠࣦൣܧ െ ࣦ௜,௧ఠ ൧ ൌ 0 

where the weighted loss function is ࣦ௜,௧ఠ ൌ ߱௧݁௜,௧ଶ . Van Dijk et al., (2003) assign heavier weights to extreme 

events, such that: 

x ߱௟௘௙௧,௧ ൌ 1 െ  ሺ∙ሻ represents the cumulative distribution of the variable beingܨ ௧ሻ whereݕ෠ሺܨ

forecasted, ݕ௧, so as to impose heavier weights on the left tail of the distribution. 

x ߱௥௜௚௛௧,௧ ൌ  .௧ሻ where heavier weights are imposed on the right tail of the distributionݕ෠ሺܨ

x ߱௧௔௜௟,௧ ൌ ଵିி෠ሺ௬೟ሻ
୫ୟ୶	ሺி෠ሺ௬೟ሻሻ

 where ܨሺ∙ሻ represents the density of ݕ௧, so as to impose heavier weights on 

both tails. 

The modified DM-test statistic (MDM) from Harvey, et al. (1997) is used to “ascertain whether empirical 

loss differences between two contending models are statistically significant, … (i.e.) compares the forecast 

accuracy of two models at a time” (Bahramian, et al., 2014:5) and is given as:  

ܯܦܯ ൌ ቆܲ ൅ 1 െ 2݄ ൅ ܲିଵ݄ሺ݄ െ 1ሻ
ܲ ቇ

భ
మ ෠ܸሺ݀̅௜ሻି

భ
మ݀̅௜ 

where h is the forecast horizon and ෠ܸ ሺ݀̅௜ሻ is the variance of ݀௜,௧, and the MDM is compared to a t-

distribution with ܲ െ 1 degrees of freedom. 
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0Tables 3 through 14 in the appendix present the results of the MDM tests of  the best performing 

linear, NP, SP and VSTAR models for inflation, manufacturing production growth and the Treasury Bill 

rate respectively, under boom, recession, uniform and tail weighting schemes. Based on the RMSE results 

contained in Table 1, the best linear model for inflation is the simple AR model, while the BVAR model 

using FCI3t (no DMA) is the best model for both manufacturing output growth and Treasury Bill rate. (For 

manufacturing output growth, the forecasting performance for the BVAR with rolling-window FCI and no 

DMA FCI is virtually the same, but BVAR with no DMA FCI has a marginally lower RMSE when 

considering more decimal digits.)   

Tables 3, 4, 5 and 6 report results from the MDM test which compares the forecasting performance 

of the linear, NP, SP and VSTAR models of inflation based on different weighting schemes and across 

different forecasting horizons. Under boom weights and at a short horizon (h=1), SP models significantly 

outperform linear and NP models, while at longer horizons (h=24) NP models are outclassed by both linear 

and VSTAR models. When using recession weights, NP, SP and VSTAR models outperform the linear 

model at a one-month horizon, while the linear model is also outperformed by SP and VSTAR models at 

the 6-month horizon. At longer horizons (h=24), NP models are outperformed by all rival models. At this 

horizon the VSTAR model also displays better forecasting abilities when compared to linear and SP 

models.  Similar results are found when a tail or uniform weighting scheme is employed – at short 

horizons, (h=1), all models are significantly better than the linear model while at long horizons NP is 

outperformed by other models. For the uniform weighting scheme, the VSTAR model outperforms all rival 

models at a 24-mont horizon.  These results are supportive of the out-of-sample forecasting results reported 

in section 4.2, where the VSTAR model is reported to have the best inflation forecast overall. 

Tables 7, 8, 9 and 10 repeat the comparative analysis for manufacturing output growth. Under boom 

weights, the VSTAR model significantly outperforms all other models at a horizon of 24 months. At a 12-

month horizon, it also outperforms all rival models, although the null is only rejected at a 10 per cent level 

of significance for the linear model. The same holds true for a 6-month horizon, with a rejection of the null 

for the NP model. The same holds true when a tail weighting scheme is employed, namely that the VSTAR 

model significantly outperforms all other models, in this case for a short forecasting horizon. When using 

recession weights, all models outclass the linear model at short horizons (h=1). Under a uniform weighting 

scheme there are no significant differences between models’ forecasting ability, except for the linear model 

being outperformed by other models at a one-month horizon. Once again, results support the finding in 

section 4.2 that the VSTAR model has the best overall forecast for manufacturing output growth. 

Lastly, tables 11, 12, 13 and 14 report the MDM results, comparing different models for the 

Treasury Bill rate, again using different weighting schemes and different horizons.  Under boom weights at 

short horizons (h=1), both linear and VSTAR models are significantly outperformed by SP and NP models. 

The SP model in turn outperforms the NP model. At longer horizons (h=6, 12 and 24), the null is only 

significantly rejected for the linear model as benchmark and VSTAR as alternative model, with VSTAR 

outperforming the linear model. With a recession weighting scheme, the SP model performs significantly 
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better than linear and VSTAR models at short (h=1) horizons. It also outperforms the linear model at a 6-

month horizon and the NP model at a 12-month horizon. At short horizons the NP model significantly 

outperforms the linear and VSTAR model, whereas the VSTAR displays significantly better forecasting 

performance at medium to longer (h=12, 24) horizons. When using tail weights, only SP model displays 

better forecasting performance than other models at short horizons (h=1), while linear models are 

outperformed by VSTAR models at longer horizons (h=12, 24). For a uniform weighting scheme, once 

again SP models significantly outperform all rival models at a short forecasting horizon (h=1), with 

VSTAR showing a significantly better performance than linear models at longer horizons.  Out-of-sample 

forecasting analysis suggested that the SP model achieves the best results, which result is supported by the 

MDM tests for the Treasury bill rate. 

 

5 Conclusions 

In this paper we set out to compare the forecasting ability of three estimated financial conditions indices 

(FCIs) with respect to key macroeconomic variables of output growth, inflation and interest rates.  We do 

this by forecasting the aforementioned macroeconomic variables based on the information contained in the 

three alternative FCIs using a Bayesian VAR, nonlinear logistic VSTAR and nonparametric and semi-

parametric regressions, and compare the results with the standard benchmarks of random-walk, univariate 

autoregressive and classical VAR models.  

The three FCIs are constructed using rolling-window principal component analysis (PCA), dynamic 

model averaging (DMA) in the context of a time-varying parameter factor-augmented vector 

autoregressive (TVP-FAVAR) model, and a time-varying parameter vector autoregressive (TVP-VAR) 

model with constant factor loadings. 

Using RMSE as model selection criteria our out-of-sample forecasting results suggest that the 

VSTAR model performs best in the case of forecasting manufacturing production and inflation, while a SP 

specification proves to be the best for forecasting the interest rate. Weighted Diebold-Mariano test results 

lend support to these findings. Overall, our results point to the importance of allowing nonlinear effects of 

the FCI on macroeconomic variables in order to produce more accurate forecasts relative to linear models. 
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Appendix  

Table 1. Variables used to construct and test the FCI 

Name Description Transformation(s) 
FCI construction 
ALSI_VOL Stock exchange volatility (South Africa) Square of the first log difference 

of the All-Share Index 
CONFUSN University of Michigan US Consumer Sentiment Index N/A 
D_LALSI FTSE/JSE All-Share Index (South Africa) Seasonally adjusted, deflated by 

South African CPI, first log 
difference 

D_LHOUSEP Absa House Price Index (medium house size 141m2–
220m2) (South Africa) 

Deflated by South African CPI, 
first log difference 

D_LPSCE Credit extended to domestic private sector (South Africa) Deflated by South African CPI, 
first log difference 

D_LRD Rand-US Dollar exchange rate Seasonally adjusted, deflated by 
relative US-SA CPI, first log 
difference 

D_LSP500 S&P500 Composite Price Index Seasonally adjusted, deflated by 
US CPI, first log difference 

DIVN Johannesburg Stock Exchange dividend yield (South 
Africa) 

Seasonally adjusted 

FED US Federal Funds market rate Deflated  by US CPI 
GBINDEX_VOL Government bond volatility (South Africa) Square of the first log difference 

of Government Bond Return 
Index 

HOUSEP_VOL House price volatility (South Africa) Square of the first log difference 
of House Price Index 

M3_GR Month-on-month growth in M3 money supply (South 
Africa) 

Seasonally adjusted, deflated, 
month-on-month rate of change 

SPREADN_BOND Long-term bond spread between Eskom Corporate Bond 
yield and 10-year Government Bond yield (South Africa) 

N/A 

SPREADN_MORT Mortgage spread between mortgage loan borrowing rate 
and 3-month Treasury Bill yield (South Africa) 

N/A 

SPREADN_TBILL Short-term spread between prime overdraft rate and 3-
month Treasury Bill yield (South Africa) 

N/A 

SPREADN_TERM Term spread between 10-year Government Bond yield and 
3-month Treasury Bill yield (South Africa) 

N/A 

FCI forecasting 
S Month-on-month growth in CPI (South Africa) Seasonally adjusted, month-on-

month rate of change 
y Month-on-month growth in Manufacturing Production 

Index (South Africa) 
Month-on-month rate of change 

r 3-month Treasury Bill Yield (South Africa) N/A 
Notes: All data is extracted from the Global Financial Database (https://www.globalfinancialdata.com). The US Census X-12 procedure is used to 
seasonally adjust the data for series not already seasonally adjusted. Unit roots are tested for using the Ng-Perron (2001) procedure, and non-
stationary series are differenced to be made stationary. All data series are standardised. 
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Figure 4. Inflation graphs 

 

 

Figure 5. Manufacturing production graphs 
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Figure 6. Treasury Bill graphs 

 

 

Table 3.  Modified Diebold-Mariano test for inflation under boom weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -1.48 (0.14) -2.05 (0.04) -1.50 (0.13) 0 1 
NP  1.48 (0.14)  -2.12 (0.03) -0.46 (0.65) 0 1 
SP  2.05 (0.04) 2.12 (0.03)  0.61 (0.54) 2 0 
VSTAR 1.50 (0.13) 0.46 (0.65) -0.61 (0.54)  0 0 
h=6 
Linear  0.84 (0.40) 0.40 (0.69) -0.13 (0.89) 0 0 
NP  -0.84 (0.40)  -1.35 (0.18) -0.88 (0.38) 0 0 
SP  -0.40 (0.69) 1.35 (0.18)  -0.44 (0.66) 0 0 
VSTAR 0.13 (0.89) 0.88 (0.38) 0.44 (0.66)  0 0 
h=12 
Linear  1.18 (0.24) 1.24 (0.22) 0.02 (0.99) 0 0 
NP  -1.18 (0.24)  -0.93 (0.35) -1.20 (0.23) 0 0 
SP  -1.24 (0.22) 0.93 (0.35)  -1.18 (0.24) 0 0 
VSTAR -0.02 (0.99) 1.20 (0.23) 1.18 (0.24)  0 0 
h=24 
Linear  2.02 (0.04) 1.39 (0.16) 1.01 (0.31) 1 0 
NP  -2.02 (0.04)  -1.19 (0.23) -1.80 (0.07) 0 2 
SP  -1.39 (0.16) 1.19 (0.23)  -1.07 (0.29) 0 0 
VSTAR -1.01 (0.31) 1.80 (0.07) 1.07 (0.29)  1 0 
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Table 4. Modified Diebold-Mariano test for inflation under recession weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -3.58 (<0.01) -3.60 (<0.01) -3.10 (<0.01) 0 3 
NP  3.58 (<0.01)  -0.36 (0.72) 1.20 (0.23) 1 0 
SP  3.60 (<0.01) 0.36 (0.72)  1.24 (0.22) 1 0 
VSTAR 3.10 (<0.01) -1.20 (0.23) -1.24 (0.22)  1 0 
h=6 
Linear  -0.69 (0.49) -1.68 (0.09) -2.18 (0.03) 0 2 
NP  0.69 (0.49)  -1.55 (0.12) -0.59 (0.56) 0 0 
SP  1.68 (0.09) 1.55 (0.12)  0.32 (0.75) 1 0 
VSTAR 2.18 (0.03) 0.59 (0.56) -0.32 (0.75)  1 0 
h=12 
Linear  1.06 (0.29) -0.31 (0.75) -1.62 (0.11) 0 0 
NP  -1.06 (0.29)  -1.03 (0.30) -1.31 (0.19) 0 0 
SP  0.31 (0.75) 1.03 (0.30)  -0.32 (0.75) 0 0 
VSTAR 1.62 (0.11) 1.31 (0.19) 0.32 (0.75)  0 0 
h=24 
Linear  2.04 (0.04) 0.15 (0.88) -4.40 (<0.01) 1 1 
NP  -2.04 (0.04)  -2.05 (0.04) -3.52 (<0.01) 0 3 
SP  -0.15 (0.88) 2.05 (0.04)  -1.70 (0.09) 1 1 
VSTAR 4.40 (<0.01) 3.52 (<0.01) 1.70 (0.09)  3 0 
  

Table 5. Modified Diebold-Mariano test under inflation for tail weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -3.16 (<0.01) -3.62 (<0.01) -2.70 (0.01) 0 3 
NP  3.16 (<0.01)  -1.96 (0.05) 0.49 (0.62) 1 1 
SP  3.62 (<0.01) 1.96 (0.05)  1.01 (0.31) 2 0 
VSTAR 2.70 (0.01) -0.49 (0.62) -1.01 (0.31)  1 0 
h=6 
Linear  -1.39 (0.16) -1.98 (0.05) -0.85 (0.40) 0 1 
NP  1.39 (0.16)  -1.54 (0.12) 0.87 (0.39) 0 0 
SP  1.98 (0.05) 1.54 (0.12)  1.32 (0.19) 1 0 
VSTAR 0.85 (0.40) -0.87 (0.39) -1.32 (0.19)  0 0 
h=12 
Linear  0.62 (0.54) -0.57 (0.57) -0.15 (0.88) 0 0 
NP  -0.62 (0.54)  -0.93 (0.35) -0.80 (0.43) 0 0 
SP  0.57 (0.57) 0.93 (0.35)  0.36 (0.72) 0 0 
VSTAR 0.15 (0.88) 0.80 (0.43) -0.36 (0.72)  0 0 
h=24 
Linear  1.82 (0.07) 0.17 (0.86) -1.43 (0.15) 1 0 
NP  -1.82 (0.07)  -2.07 (0.04) -2.21 (0.03) 0 3 
SP  -0.17 (0.86) 2.07 (0.04)  -0.72 (0.47) 1 0 
VSTAR 1.43 (0.15) 2.21 (0.03) 0.72 (0.47)  1 0 
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Table 6. Modified Diebold-Mariano test for inflation under uniform weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -3.62 (<0.01) -4.08 (<0.01) -3.35 (<0.01) 0 3 
NP  3.62 (<0.01)  -1.66 (0.10) 0.85 (0.40) 1 1 
SP  4.08 (<0.01) 1.66 (0.10)  1.32 (0.19) 2 0 
VSTAR 3.35 (<0.01) -0.85 (0.40) -1.32 (0.19)  1 0 
h=6 
Linear  -0.17 (0.86) -1.23 (0.22) -1.78 (0.07) 0 1 
NP  0.17 (0.86)  -1.60 (0.11) -0.84 (0.40) 0 0 
SP  1.23 (0.22) 1.60 (0.11)  0.10 (0.92) 0 0 
VSTAR 1.78 (0.07) 0.84 (0.40) -0.10 (0.92)  1 0 
h=12 
Linear  1.10 (0.27) 0.19 (0.85) -1.34 (0.18) 0 0 
NP  -1.10 (0.27)  -1.00 (0.32) -1.27 (0.20) 0 0 
SP  -0.19 (0.85) 1.00 (0.32)  -0.61 (0.54) 0 0 
VSTAR 1.34 (0.18) 1.27 (0.20) 0.61 (0.54)  0 0 
h=24 
Linear  2.64 (0.01) 0.83 (0.41) -2.78 (0.01) 1 1 
NP  -2.64 (0.01)  -1.91 (0.06) -3.43 (<0.01) 0 3 
SP  -0.83 (0.41) 1.91 (0.06)  -1.80 (0.07) 1 1 
VSTAR 2.78 (0.01) 3.43 (<0.01) 1.80 (0.07)  3 0 
 

Table 7. Modified Diebold-Mariano test for manufacturing production growth under boom 
weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -0.21 (0.84) 0.27 (0.79) 0.20 (0.84) 0 0 
NP  0.21 (0.84)  1.34 (0.18) 0.36 (0.72) 0 0 
SP  -0.27 (0.79) -1.34 (0.18)  -0.05 (0.96) 0 0 
VSTAR -0.20 (0.84) -0.36 (0.72) 0.05 (0.96)  0 0 
h=6 
Linear  1.59 (0.11) 0.32 (0.75) -0.57 (0.57) 0 0 
NP  -1.59 (0.11)  -0.23 (0.81) -2.03 (0.04) 0 1 
SP  -0.32 (0.75) 0.23 (0.81)  -0.48 (0.63) 0 0 
VSTAR 0.57 (0.57) 2.03 (0.04) 0.48 (0.63)  1 0 
h=12 
Linear  1.13 (0.26) -0.00 (1.00) -2.28 (0.02) 0 1 
NP  -1.13 (0.26)  -0.88 (0.38) -1.31 (0.19) 0 0 
SP  0.00 (1.00) 0.88 (0.38)  -0.29 (0.77) 0 0 
VSTAR 2.28 (0.02) 1.31 (0.19) 0.29 (0.77)  1 0 
h=24 
Linear  0.73 (0.47) 0.96 (0.34) -4.50 (<0.01) 0 1 
NP  -0.73 (0.47)  0.31 (0.75) -2.26 (0.02) 0 1 
SP  -0.96 (0.34) -0.31 (0.75)  -2.42 (0.02) 0 1 
VSTAR 4.50 (<0.01) 2.26 (0.02) 2.42 (0.02)  3 0 
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Table 8. Modified Diebold-Mariano test for manufacturing production growth under recession 
weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -3.19 (<0.01) -3.33 (<0.01) -2.59 (0.01) 0 3 
NP  3.19 (<0.01)  -0.18 (0.86) 0.44 (0.66) 1 0 
SP  3.33 (<0.01) 0.18 (0.86)  0.51 (0.61) 1 0 
VSTAR 2.59 (0.01) -0.44 (0.66) -0.51 (0.61)  1 0 
h=6 
Linear  -0.66 (0.51) 0.82 (0.41) 0.81 (0.42) 0 0 
NP  0.66 (0.51)  1.17 (0.24) 1.17 (0.24) 0 0 
SP  -0.82 (0.41) -1.17 (0.24)  -0.54 (0.59) 0 0 
VSTAR -0.81 (0.42) -1.17 (0.24) 0.54 (0.59)  0 0 
h=12 
Linear  0.29 (0.77) -1.69 (0.09) 3.20 (<0.01) 1 1 
NP  -0.29 (0.77)  -1.05 (0.29) 0.04 (0.97) 0 0 
SP  1.69 (0.09) 1.05 (0.29)  2.31 (0.02) 2 0 
VSTAR -3.20 (<0.01) -0.04 (0.97) -2.31 (0.02)  0 2 
h=24 
Linear  -0.10 (0.92) -0.27 (0.79) 4.23 (<0.01) 1 0 
NP  0.10 (0.92)  -0.25 (0.81) 1.89 (0.06) 1 0 
SP  0.27 (0.79) 0.25 (0.81)  0.55 (0.58) 0 0 
VSTAR -4.23 (<0.01) -1.89 (0.06) -0.55 (0.58)  0 2 
  

Table 9. Modified Diebold-Mariano test for manufacturing production growth under tail weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  0.87 (0.39) 1.04 (0.30) -1.12 (0.26) 0 0 
NP  -0.87 (0.39)  0.85 (0.40) -2.14 (0.03) 0 1 
SP  -1.04 (0.30) -0.85 (0.40)  -2.23 (0.03) 0 1 
VSTAR 1.12 (0.26) 2.14 (0.03) 2.23 (0.03)  2 0 
h=6 
Linear  1.11 (0.27) -0.26 (0.80) 0.26 (0.80) 0 0 
NP  -1.11 (0.27)  -0.60 (0.55) -1.00 (0.32) 0 0 
SP  0.26 (0.80) 0.60 (0.55)  0.33 (0.74) 0 0 
VSTAR -0.26 (0.80) 1.00 (0.32) -0.33 (0.74)  0 0 
h=12 
Linear  -1.50 (0.13) -1.20 (0.23) 1.21 (0.22) 0 0 
NP  1.50 (0.13)  -0.85 (0.39) 1.70 (0.09) 1 0 
SP  1.20 (0.23) 0.85 (0.39)  1.32 (0.19) 0 0 
VSTAR -1.21 (0.22) -1.70 (0.09) -1.32 (0.19)  0 1 
h=24 
Linear  0.24 (0.81) -0.54 (0.59) 0.02 (0.98) 0 0 
NP  -0.24 (0.81)  -0.59 (0.56) -0.23 (0.81) 0 0 
SP  0.54 (0.59) 0.59 (0.56)  0.53 (0.60) 0 0 
VSTAR -0.02 (0.98) 0.23 (0.81) -0.53 (0.60)  0 0 
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Table 10. Modified Diebold-Mariano test for manufacturing production growth under uniform 
weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -2.14 (0.03) -1.95 (0.05) -1.60 (0.11) 0 2 
NP  2.14 (0.03)  0.85 (0.40) 0.48 (0.63) 1 0 
SP  1.95 (0.05) -0.85 (0.40)  0.26 (0.80) 1 0 
VSTAR 1.60 (0.11) -0.48 (0.63) -0.26 (0.80)  0 0 
h=6 
Linear  0.78 (0.43) 0.54 (0.59) 0.03 (0.98) 0 0 
NP  -0.78 (0.43)  0.26 (0.79) -0.87 (0.39) 0 0 
SP  -0.54 (0.59) -0.26 (0.79)  -0.57 (0.57) 0 0 
VSTAR -0.03 (0.98) 0.87 (0.39) 0.57 (0.57)  0 0 
h=12 
Linear  0.76 (0.45) -0.80 (0.42) 0.84 (0.40) 0 0 
NP  -0.76 (0.45)  -0.98 (0.33) -0.71 (0.48) 0 0 
SP  0.80 (0.42) 0.98 (0.33)  0.90 (0.37) 0 0 
VSTAR -0.84 (0.40) 0.71 (0.48) -0.90 (0.37)  0 0 
h=24 
Linear  0.46 (0.65) -0.05 (0.96) -0.70 (0.49) 0 0 
NP  -0.46 (0.65)  -0.18 (0.86) -0.60 (0.55) 0 0 
SP  0.05 (0.96) 0.18 (0.86)  0.01 (0.99) 0 0 
VSTAR 0.70 (0.49) 0.60 (0.55) -0.01 (0.99)  0 0 
 

Table 11. Modified Diebold-Mariano test for Treasury Bill under boom weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -1.90 (0.06) -2.02 (0.04) -1.05 (0.29) 0 2 
NP  1.90 (0.06)  -2.07 (0.04) 2.20 (0.03) 2 1 
SP  2.02 (0.04) 2.07 (0.04)  2.33 (0.02) 3 0 
VSTAR 1.05 (0.29) -2.20 (0.03) -2.33 (0.02)  0 2 
h=6 
Linear  1.02 (0.31) -0.24 (0.81) -1.92 (0.06) 0 1 
NP  -1.02 (0.31)  -0.90 (0.37) -1.19 (0.23) 0 0 
SP  0.24 (0.81) 0.90 (0.37)  -0.39 (0.70) 0 0 
VSTAR 1.92 (0.06) 1.19 (0.23) 0.39 (0.70)  1 0 
h=12 
Linear  -1.12 (0.26) -1.55 (0.12) -2.46 (0.01) 0 1 
NP  1.12 (0.26)  -1.06 (0.29) -0.63 (0.53) 0 0 
SP  1.55 (0.12) 1.06 (0.29)  0.73 (0.46) 0 0 
VSTAR 2.46 (0.01) 0.63 (0.53) -0.73 (0.46)  1 0 
h=24 
Linear  -1.28 (0.20) -1.40 (0.16) -2.71 (0.01) 0 1 
NP  1.28 (0.20)  -0.88 (0.38) -0.65 (0.52) 0 0 
SP  1.40 (0.16) 0.88 (0.38)  0.43 (0.66) 0 0 
VSTAR 2.71 (0.01) 0.65 (0.52) -0.43 (0.66)  1 0 
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Table 12. Modified Diebold-Mariano test for Treasury Bill under recession weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -3.94 (<0.01) -4.52 (<0.01) 0.65 (0.52) 0 2 
NP  3.94 (<0.01)  -1.21 (0.23) 4.21 (<0.01) 2 0 
SP  4.52 (<0.01) 1.21 (0.23)  4.83 (<0.01) 2 0 
VSTAR -0.65 (0.52) -4.21 (<0.01) -4.83 (<0.01)  0 2 
h=6 
Linear  0.28 (0.78) -1.52 (0.13) -2.84 (<0.01) 0 1 
NP  -0.28 (0.78)  -0.94 (0.35) -1.02 (0.31) 0 0 
SP  1.52 (0.13) 0.94 (0.35)  0.14 (0.89) 0 0 
VSTAR 2.84 (<0.01) 1.02 (0.31) -0.14 (0.89)  1 0 
h=12 
Linear  1.15 (0.25) -0.62 (0.53) -2.81 (<0.01) 0 1 
NP  -1.15 (0.25)  -1.67 (0.09) -1.70 (0.09) 0 2 
SP  0.62 (0.53) 1.67 (0.09)  -0.41 (0.68) 1 0 
VSTAR 2.81 (<0.01) 1.70 (0.09) 0.41 (0.68)  2 0 
h=24 
Linear  1.71 (0.09) 0.71 (0.48) -2.43 (0.01) 1 1 
NP  -1.71 (0.09)  -1.42 (0.16) -2.19 (0.03) 0 2 
SP  -0.71 (0.48) 1.42 (0.16)  -1.63 (0.10) 0 0 
VSTAR 2.43 (0.01) 2.19 (0.03) 1.63 (0.10)  2 0 
  

Table 13. Modified Diebold-Mariano test for Treasury Bill under tail weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -1.55 (0.12) -1.64 (0.10) -1.05 (0.30) 0 0 
NP  1.55 (0.12)  -1.97 (0.05) 1.75 (0.08) 1 1 
SP  1.64 (0.10) 1.97 (0.05)  1.86 (0.06) 2 0 
VSTAR 1.05 (0.30) -1.75 (0.08) -1.86 (0.06)  0 2 
h=6 
Linear  1.06 (0.29) -0.38 (0.70) -1.54 (0.12) 0 0 
NP  -1.06 (0.29)  -0.94 (0.35) -1.19 (0.23) 0 0 
SP  0.38 (0.70) 0.94 (0.35)  -0.02 (0.98) 0 0 
VSTAR 1.54 (0.12) 1.19 (0.23) 0.02 (0.98)  0 0 
h=12 
Linear  -0.48 (0.63) -1.47 (0.14) -2.36 (0.02) 0 1 
NP  0.48 (0.63)  -1.20 (0.23) -0.67 (0.50) 0 0 
SP  1.47 (0.14) 1.20 (0.23)  0.44 (0.66) 0 0 
VSTAR 2.36 (0.02) 0.67 (0.50) -0.44 (0.66)  1 0 
h=24 
Linear  0.32 (0.75) -0.72 (0.47) -1.95 (0.05) 0 1 
NP  -0.32 (0.75)  -1.25 (0.21) -1.34 (0.18) 0 0 
SP  0.72 (0.47) 1.25 (0.21)  -0.18 (0.86) 0 0 
VSTAR 1.95 (0.05) 1.34 (0.18) 0.18 (0.86)  1 0 
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Table 14. Modified Diebold-Mariano test for Treasury Bill under uniform weights 

 Linear NP SP VSTAR + -  
h=1 
Linear  -2.33 (0.02) -2.45 (0.01) -0.95 (0.34) 0 2 
NP  2.33 (0.02)  -1.88 (0.06) 2.82 (<0.01) 2 1 
SP  2.45 (0.01) 1.88 (0.06)  2.91 (<0.01) 3 0 
VSTAR 0.95 (0.34) -2.82 (<0.01) -2.91 (<0.01)  0 2 
h=6 
Linear  0.95 (0.34) -0.51 (0.61) -2.28 (0.02) 0 1 
NP  -0.95 (0.34)  -0.92 (0.36) -1.19 (0.23) 0 0 
SP  0.51 (0.61) 0.92 (0.36)  -0.33 (0.74) 0 0 
VSTAR 2.28 (0.02) 1.19 (0.23) 0.33 (0.74)  1 0 
h=12 
Linear  0.34 (0.73) -1.23 (0.22) -2.83 (<0.01) 0 1 
NP  -0.34 (0.73)  -1.54 (0.12) -1.51 (0.13) 0 0 
SP  1.23 (0.22) 1.54 (0.12)  0.23 (0.81) 0 0 
VSTAR 2.83 (<0.01) 1.51 (0.13) -0.23 (0.81)  1 0 
h=24 
Linear  0.80 (0.42) -0.46 (0.64) -3.03 (<0.01) 0 1 
NP  -0.80 (0.42)  -1.42 (0.16) -2.01 (0.04) 0 1 
SP  0.46 (0.64) 1.42 (0.16)  -0.68 (0.50) 0 0 
VSTAR 3.03 (<0.01) 2.01 (0.04) 0.68 (0.50)  2 0 
 

 

 


